WO2023090761A1 - Method for electrospinning of high-efficiency nanofiber air filter by using pvdf-g-poem double comb copolymer - Google Patents

Method for electrospinning of high-efficiency nanofiber air filter by using pvdf-g-poem double comb copolymer Download PDF

Info

Publication number
WO2023090761A1
WO2023090761A1 PCT/KR2022/017729 KR2022017729W WO2023090761A1 WO 2023090761 A1 WO2023090761 A1 WO 2023090761A1 KR 2022017729 W KR2022017729 W KR 2022017729W WO 2023090761 A1 WO2023090761 A1 WO 2023090761A1
Authority
WO
WIPO (PCT)
Prior art keywords
pvdf
poem
comb copolymer
electrospinning
weight
Prior art date
Application number
PCT/KR2022/017729
Other languages
French (fr)
Korean (ko)
Inventor
지승용
박정태
문주용
Original Assignee
주식회사 레몬
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레몬, 건국대학교 산학협력단 filed Critical 주식회사 레몬
Publication of WO2023090761A1 publication Critical patent/WO2023090761A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Filtering Materials (AREA)

Abstract

The present invention relates to a method for electrospinning of a high-efficiency nanofiber air filter by using a PVDF-G-POEM double comb copolymer. According to the present invention, provided is a nanofiber air filter which: can adsorb both hydrophobic dust and hydrophilic dust; exhibits a uniform diameter distribution of nanofibers, thus compensating for the disadvantages of the prior art of the large diameter and non-uniform distribution of a filter; can exhibit excellent separation efficiency through the manufacture of nanofibers with a diameter similar to the mean free path of oxygen molecules; and has a slip effect due to a narrow fiber diameter, thus having high filter efficiency.

Description

PVDF-G-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법Electrospinning method of high-efficiency nanofiber air filter using PVDF-G-POEM double comb copolymer
본 발명은 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법에 관한 것이다. The present invention relates to an electrospinning method of a high-efficiency nanofiber air filter using a PVDF-g-POEM double comb copolymer.
최근 코로나 바이러스 감염증과 미세먼지 등의 다양한 문제들로 인하여 전 세계적으로 공기 필터에 대한 관심과 중요성이 더욱 증가하고 있다. 이에 다양한 해결방안이 제시되고 있지만 가장 기본적이면서 안정한 방법 중 하나는 마스크를 착용하는 것이다. 오염 물질의 경우 흡입하게 되면 호흡계에 치명적인 영향을 미칠 수 있는 등 건강에 심각한 문제를 일으키나 점차 막아야 하는 미세먼지의 크기가 작아지면서 성능이 뛰어난 공기 필터의 개발의 필요성이 요구되고 있는 실정이다. Recently, due to various problems such as corona virus infection and fine dust, interest in and importance of air filters are increasing worldwide. Various solutions have been proposed, but one of the most basic and stable methods is to wear a mask. In the case of pollutants, when inhaled, they cause serious health problems such as having a fatal effect on the respiratory system, but as the size of fine dust to be blocked gradually decreases, the need for the development of air filters with excellent performance is required.
기존의 공기필터(air filter)는 melt-blown 방식으로 제작했는데 장시간 사용시 안정성이 떨어지고 유기 용매에 분해된다는 단점이 있었다. 전기 방사 방식의 경우 이러한 단점을 보완하면서 쉽고 간단하게 필터를 제조할 수 있다는 장점이 있어 최근 각광을 받고 있다. 그러나 전기방사를 활용할 경우 나노섬유의 직경의 분포비율이 균일하지 않아 필터 효율이 낮고, 특히 PVDF를 사용하여 전기방사하는 경우에는 친수성인 오염 물질을 필터링 하지 못하는 문제점이 있었다. Existing air filters were manufactured by the melt-blown method, but had the disadvantage of low stability and decomposition in organic solvents when used for a long time. In the case of the electrospinning method, it has the advantage of being able to easily and simply manufacture a filter while compensating for these disadvantages, and has recently been in the limelight. However, when electrospinning is used, the distribution ratio of the diameter of the nanofibers is not uniform, so the filter efficiency is low. In particular, in the case of electrospinning using PVDF, there is a problem in that hydrophilic contaminants cannot be filtered.
그러므로 본 발명에서는 상기 PVDF 나노섬유 공기필터의 상기 문제점을 해결하여 높은 필터 효율을 가지는 나노섬유 공기필터의 제조방법을 제공하는 것을 기술적과제로 한다.Therefore, in the present invention, it is a technical task to solve the above problems of the PVDF nanofiber air filter and to provide a method for manufacturing a nanofiber air filter having high filter efficiency.
이에 본 발명자는 원자이동 라디칼 중합 방식을 활용하여 합성한 PVDF-g-POEM고분자를 이용하여 electrospinning 방식으로 air filter를 제조하는 경우에는 고분자 자체의 정전기적 인력과 양친매성 성질을 이용하여 소수성과 친수성의 두가지 특성의 먼지를 모두 흡착할 수 있고, 균일한 나노섬유의 직경분포를 보여 필터의 직경이 굵으며 불균일한 분포를 이루는 종래기술의 단점을 보완하며, 산소 분자의 mean free path와 유사한 직경의 nanofiber를 제조함으로써 뛰어난 분리효율을 보일 수 있고, 좁은 섬유직경으로 인해 slip effect 영향을 받아 높은 필터 효율을 보여줌을 확인하여 본 발명을 완성하게 되었다. Accordingly, when the present inventor manufactures an air filter by electrospinning method using PVDF-g-POEM polymer synthesized by utilizing atomic transfer radical polymerization method, it is possible to obtain hydrophobicity and hydrophilicity by using the electrostatic attraction and amphiphilic property of the polymer itself. It can adsorb dust of both characteristics, and shows a uniform diameter distribution of nanofibers, making up for the disadvantages of the prior art in which the diameter of the filter is thick and non-uniform, and the diameter of the nanofibers is similar to the mean free path of oxygen molecules. The present invention was completed by confirming that excellent separation efficiency could be shown by manufacturing, and high filter efficiency was affected by the slip effect due to the narrow fiber diameter.
그러므로 본 발명에 의하면, PVDF(poly(vinylidene fluoride))를 용매에 용해시킨 후, POEM(poly(oxyethylene methacrylate)),촉매, 중합개시제를 첨가하여 혼합한 반응용액에 질소 가스를 이용하여 내부의 산소를 질소로 전부 치환하는 퍼징을 진행한 후, 90~100℃로 원자이동 라디칼중합(atom transfer radical polymerization)을 실시하여 상기 PVDF 구조 내의 플루오린에 POEM을 중합하면서 치환하는 반응을 진행한 후, 메탄올에 침전시키고 진공오븐에서 건조시켜 PVDF-g-POEM 이중빗살 공중합체를 얻는 PVDF-g-POEM 이중빗살 공중합체 합성단계, Therefore, according to the present invention, after dissolving PVDF (poly (vinylidene fluoride)) in a solvent, POEM (poly (oxyethylene methacrylate)), a catalyst, and a polymerization initiator are added and mixed with nitrogen gas to obtain internal oxygen After purging to completely replace with nitrogen, atom transfer radical polymerization is performed at 90 to 100 ° C to polymerize and replace POEM with fluorine in the PVDF structure, and then proceed with methanol PVDF-g-POEM double comb copolymer synthesis step to obtain PVDF-g-POEM double comb copolymer by precipitating and drying in a vacuum oven;
상기 합성된 PVDF-g-POEM 이중빗살 공중합체 10~30 중량%와 DMAc와 MEK의 공용매(cosolvent) 70~90 중량%를 혼합하고 58~95℃, 12시간동안 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비하는 방사용액제조단계, 및 Electrospinning was performed by mixing 10 to 30% by weight of the synthesized PVDF- g -POEM double comb copolymer and 70 to 90% by weight of a cosolvent of DMAc and MEK and continuously stirring at 58 to 95 ° C. for 12 hours. Preparing a spinning solution for preparing a spinning solution, and
상기 방사용액을 천천히 주입하면서 28~50kV의 높은 DC 전압으로 멤브레인 기판에 전기방사하는 전기방사단계로 이루어지는 것을 특징으로 하는 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법이 제공된다.Electrospinning of a high-efficiency nanofiber air filter using PVDF-g-POEM double comb copolymer, characterized in that it consists of an electrospinning step of electrospinning on a membrane substrate with a high DC voltage of 28 to 50 kV while slowly injecting the spinning solution A method is provided.
또한, 본 발명의 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법에서 상기 PVDF-g-POEM 이중빗살 공중합체의 중합시 상기 반응용액은In addition, in the electrospinning method of a high-efficiency nanofiber air filter using the PVDF-g-POEM double comb copolymer of the present invention, when the PVDF-g-POEM double comb copolymer is polymerized, the reaction solution is
분자량 300K~330K인 PVDF 3~5 중량부, 3 to 5 parts by weight of PVDF having a molecular weight of 300K to 330K;
분자량 500~950인 POEM 46-48 중량부,46-48 parts by weight of POEM having a molecular weight of 500 to 950;
Copper(I)chloride(CuCl), Copper(Ⅱ)chloride(CuCl2), Copper(I)bromide(CuBr) 또는 Copper(Ⅱ)bromide(CuBr2)로 이루어진 군으로부터 하나 이상인 촉매 0.01 내지 0.5 중량부, 0.01 to 0.5 parts by weight of at least one catalyst from the group consisting of Copper(I)chloride(CuCl), Copper(II)chloride(CuCl 2 ), Copper(I)bromide(CuBr) or Copper(II)bromide(CuBr 2 );
HMTETA(1,1,4,7,10,10-Hexamethyltriethylenetetramine), PMDETA(N,N,N',N',N''--pentamethyl diethylenetriamine), DMDP(4,4'-dimethyl-2,2'-dipyridyl), TREN(tris(2-aminoethyl)amine), TMEDA(N,N,N',NTetramethylethylenediamine) 중 어느 하나 이상인 중합개시제 0.1 내지 0.5 중량부 및 NMP(N-methyl-2-pyrrollidinone)또는 DMSO인 용매 43.11 내지 45 중량부를 포함하는 반응용액인 것을 특징으로 한다.HMTETA (1,1,4,7,10,10-Hexamethyltriethylenetetramine), PMDETA (N,N,N',N',N''-pentamethyl diethylenetriamine), DMDP (4,4'-dimethyl-2,2 0.1 to 0.5 parts by weight of any one or more polymerization initiators of '-dipyridyl), TREN (tris(2-aminoethyl)amine), TMEDA (N,N,N',NTetramethylethylenediamine) and NMP (N-methyl-2-pyrrollidinone) or It is characterized in that it is a reaction solution containing 43.11 to 45 parts by weight of DMSO solvent.
또한, 상기 PVDF-g-POEM 이중빗살 공중합체의 분자량은 350K~400K인 것을 특징으로 한다.In addition, the molecular weight of the PVDF-g-POEM double comb copolymer is characterized in that 350K ~ 400K.
또한, 상기 방사용액제조단계의 DMAc-MEK 공용매(cosolvent)는 중량비 DMAc:MEK = 1:1인 공용매(cosolvent)인 것을 특징으로 한다.In addition, the DMAc-MEK cosolvent in the spinning solution preparation step is characterized in that the weight ratio DMAc: MEK = 1: 1 cosolvent.
본 발명은 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법에 관한 것으로서, 원자이동 라디칼중합(atom transfer radical polymerization)을 이용하여 소수성을 띄는 PVDF backbone과 친수성을 띄는 POEM을 grafting함으로써 PVDF-g-POEM 이중빗살 공중합체를 합성하고 전기방사를 통해 고효율 나노섬유 공기필터를 제공하는 것이다.The present invention relates to an electrospinning method of a high-efficiency nanofiber air filter using PVDF-g-POEM double comb copolymer, which uses atom transfer radical polymerization to obtain a hydrophilic PVDF backbone and a hydrophobic backbone. By grafting POEM, a PVDF-g-POEM double comb copolymer is synthesized and a high-efficiency nanofiber air filter is provided through electrospinning.
우선, 본 발명의 고효율 나노섬유 공기필터의 전기방사에 방사용액의 주성분으로 사용되는 PVDF-g-POEM 이중빗살 공중합체(double comb copolymer)의 중합단계에 대해 설명하기로 한다. PVDF-g-POEM 이중빗살 공중합체는 PVDF(poly(vinylidene fluoride)), POEM(poly(oxyethylene methacrylate)),촉매, 중합개시제 및 용매를 혼합한 반응용액에 대하여 원자 이동 라디칼 중합(atom transfer radical polymerization)을 실시하여 PVDF 구조 내의 플루오린에 POEM을 중합하면서 치환해주어 합성한 것이다.First, the polymerization step of the PVDF-g-POEM double comb copolymer used as the main component of the spinning solution for electrospinning of the high-efficiency nanofiber air filter of the present invention will be described. PVDF-g-POEM double-comb copolymer is an atom transfer radical polymerization for a reaction solution in which PVDF (poly (vinylidene fluoride)), POEM (poly (oxyethylene methacrylate)), catalyst, polymerization initiator, and solvent are mixed. ) was carried out to synthesize fluorine in the PVDF structure by substituting it while polymerizing POEM.
상기 PVDF-g-POEM 이중빗살 공중합체의 중합 과정의 모식도는 하기 반응식 1과 같다:A schematic diagram of the polymerization process of the PVDF-g-POEM double comb copolymer is shown in Scheme 1 below:
[반응식 1][Scheme 1]
Figure PCTKR2022017729-appb-img-000001
Figure PCTKR2022017729-appb-img-000001
PVDF는 비닐리덴플루오라이드 단량체의 중합체인 소수성 고분자로서 back bone에 F와 같은 할로겐원소가 있어 본 발명에서 원자 이동 라디칼 중합 반응(ATRP)을 이용하는데 바람직하다. 분자량은 300,000~330,000가 바람직한데, 이는 합성 이후 공중합체가 낮은 분자량을 가질 수 있도록 하여 낮은 직경의 나노섬유를 제공할 수 있다. PVDF는 3~5 중량부가 함유되는 것이 바람직하다.PVDF is a hydrophobic polymer that is a polymer of vinylidene fluoride monomers and has a halogen element such as F in the back bone, so it is preferable to use atom transfer radical polymerization (ATRP) in the present invention. The molecular weight is preferably 300,000 to 330,000, which allows the copolymer to have a low molecular weight after synthesis, thereby providing nanofibers with a low diameter. PVDF is preferably contained in 3 to 5 parts by weight.
POEM(poly(oxyethylene methacrylate)은 이중결합이 존재하여 원자 이동 라디칼 반응의 가지 고분자로 자주 활용하는 친수성고분자이다. 분자량은 500~950이 바람직한데, 이는 합성 이후 공중합체가 낮은 분자량을 가질 수 있도록 하여 낮은 직경의 나노섬유를 제공할 수 있다. POEM은 46-48 중량부가 함유되는 것이 바람직하다.Poly(oxyethylene methacrylate) (POEM) is a hydrophilic polymer that is frequently used as a branch polymer for atom transfer radical reactions due to the presence of double bonds. The molecular weight is preferably 500 to 950, which allows the copolymer to have a low molecular weight after synthesis. It is possible to provide nanofibers of low diameter, and POEM is preferably contained in an amount of 46-48 parts by weight.
촉매로는 Copper(I)chloride(CuCl), Copper(Ⅱ)chloride(CuCl2), Copper(I)bromide(CuBr) 또는 Copper(Ⅱ)bromide(CuBr2)로 이루어진 군으로부터 하나 이상을 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다. 상기 촉매의 함량은 0.01 내지 0.5 중량부를 함유시킬 수 있으며, 상기 범위에서 15 내지 35중량%의 그래프팅 비율을 가지는 그래프트 공중합체를 만들 수 있다. As the catalyst, at least one from the group consisting of Copper(I)chloride(CuCl), Copper(II)chloride(CuCl 2 ), Copper(I)bromide(CuBr) or Copper(II)bromide(CuBr 2 ) may be used. , It is not particularly limited thereto. The content of the catalyst may be 0.01 to 0.5 parts by weight, and a graft copolymer having a grafting ratio of 15 to 35% by weight can be made in the above range.
중합개시제로는 HMTETA(1,1,4,7,10,10-Hexamethyltriethylenetetramine), PMDETA(N,N,N',N',N''--pentamethyl diethylenetriamine), DMDP(4,4'-dimethyl-2,2'-dipyridyl), TREN(tris(2-aminoethyl)amine), TMEDA(N,N,N',NTetramethylethylenediamine) 중 어느 하나 이상을 사용할 수 있다. 0.1 내지 0.5 중량부를 함유시킬 수 있으며, 상기 범위에서 15 내지 35중량% 의 그래프팅 비율을 가지는 그래프트 공중합체를 만들 수 있다. Polymerization initiators include HMTETA (1,1,4,7,10,10-Hexamethyltriethylenetetramine), PMDETA (N,N,N',N',N''-pentamethyl diethylenetriamine), DMDP (4,4'-dimethyl -2,2'-dipyridyl), TREN (tris (2-aminoethyl)amine), TMEDA (N, N, N', NTetramethylethylenediamine), any one or more may be used. It may contain 0.1 to 0.5 parts by weight, and a graft copolymer having a grafting ratio of 15 to 35% by weight within the above range can be made.
용매로는 NMP(N-methyl-2-pyrrollidinone)또는 DMSO와 같은 용매를 43.11 내지 45 중량부를 사용한다.As a solvent, 43.11 to 45 parts by weight of a solvent such as NMP (N-methyl-2-pyrrollidinone) or DMSO is used.
상기 PVDF(poly(vinylidene fluoride))를 용매에 용해시킨 후, POEM(poly(oxyethylene methacrylate)),촉매, 중합개시제를 첨가하여 반응용액을 준비하는데, 상기와 같이 PVDF를 먼저 용매에 용해시키지 않는 경우에는 촉매나 다른 개시제에 의해 PVDF가 균일하게 녹지못해 이중빗살 공중합체의 합성을 방해하기 때문이다.After dissolving the PVDF (poly (vinylidene fluoride)) in a solvent, a reaction solution is prepared by adding POEM (poly (oxyethylene methacrylate)), a catalyst, and a polymerization initiator. As described above, if PVDF is not dissolved in a solvent first This is because PVDF is not uniformly dissolved by catalysts or other initiators, which hinders the synthesis of double comb copolymers.
준비된 상기 반응용액에 질소 가스를 이용하여 내부의 산소를 질소로 전부 치환하는 퍼징을 진행한 후, 90~100℃로 원자이동 라디칼중합(atom transfer radical polymerization)을 실시하여 상기 PVDF 구조 내의 플루오린에 POEM을 중합하면서 치환하는 반응을 진행한 후, 메탄올에 침전시키고 진공오븐에서 건조시켜 PVDF-g-POEM 이중빗살 공중합체를 얻게 된다.The prepared reaction solution is purged using nitrogen gas to replace all internal oxygen with nitrogen, and then atom transfer radical polymerization is performed at 90 to 100 ° C to obtain fluorine in the PVDF structure. After carrying out a substitution reaction while polymerizing POEM, it is precipitated in methanol and dried in a vacuum oven to obtain a PVDF-g-POEM double comb copolymer.
이렇게 얻어진 상기 PVDF-g-POEM 이중빗살 공중합체는 소수성을 띄는 PVDF backbone에 친수성을 띄는 POEM이 그래프트됨(grafting)으로써 소수성과 친수성의 두가지 성질을 가지는 오염물질을 모두 포집할 수 있게 된다. 상기 PVDF-g-POEM 이중빗살 공중합체의 분자량은 350,000~400,000인 것이 낮은 직경의 나노섬유를 제공할 수 있어 뛰어난 필터효율을 보일 수 있어 바람직하다.The PVDF-g-POEM double-comb copolymer thus obtained is capable of collecting both hydrophobic and hydrophilic contaminants by grafting the hydrophilic POEM to the hydrophobic PVDF backbone. The PVDF-g-POEM double comb copolymer has a molecular weight of 350,000 to 400,000, which is preferable because it can provide nanofibers with a low diameter and can show excellent filter efficiency.
본 발명에서는 이렇게 합성된 PVDF-g-POEM 이중빗살 공중합체를 전기방사법을 이용하여 나노섬유 공기필터를 제조하게 되는데, 방사용액의 제조단계는 다음과 같다.In the present invention, a nanofiber air filter is prepared using the electrospinning method of the PVDF-g-POEM double comb copolymer synthesized as described above. The manufacturing steps of the spinning solution are as follows.
상기 합성된 PVDF-g-POEM 이중빗살 공중합체 10~30 중량%와 DMAc와 MEK의 공용매(cosolvent) 70~90 중량%를 혼합하고 58~95℃, 12시간동안 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비하게 된다.Electrospinning was performed by mixing 10 to 30% by weight of the synthesized PVDF- g -POEM double comb copolymer and 70 to 90% by weight of a cosolvent of DMAc and MEK and continuously stirring at 58 to 95 ° C. for 12 hours. Prepare the spinning solution for
상기 DMAc-MEK 공용매(cosolvent)는 중량비 DMAc:MEK = 1:1인 공용매(cosolvent)인 것이 상기 이중빗살 공중합체를 높은 농도로 녹일 수 있어 바람직하다.The DMAc-MEK cosolvent is preferably a cosolvent having a weight ratio of DMAc:MEK = 1:1 because the double comb copolymer can be dissolved at a high concentration.
전기방사단계는 이미 공지된 기술과 같은 방법으로 상기 방사용액을 천천히 주입하면서 28~50kV의 높은 DC 전압으로 멤브레인 기판에 전기방사하여 나노섬유 공기필터를 제공하게 된다. In the electrospinning step, the nanofiber air filter is provided by electrospinning the membrane substrate at a high DC voltage of 28 to 50 kV while slowly injecting the spinning solution in the same manner as in a known technique.
이렇게 본 발명에서는 원자 이동 라디칼 중합반응으로 graft한 PVDF-g-POEM 이중빗살 공중합체를 원료로 하여 친수성 오염물질과 소수성 오염물질을 모두 포집 할 수 있는 에어필터를 제공할 수 있다. In this way, the present invention can provide an air filter capable of capturing both hydrophilic and hydrophobic pollutants using the PVDF-g-POEM double comb copolymer grafted by atom transfer radical polymerization as a raw material.
그러므로 본 발명에 의하면, 원자이동 라디칼 중합 방식을 활용하여 합성한 PVDF-g-POEM고분자를 이용하여 electrospinning 방식으로 air filter를 제공함으로써 고분자 자체의 정전기적 인력과 양친매성 성질을 이용하여 소수성과 친수성의 두가지 특성의 먼지를 모두 흡착할 수 있고, 균일한 나노섬유의 직경분포를 보여 필터의 직경이 굵으며 불균일한 분포를 이루는 종래기술의 단점을 보완하며, 산소 분자의 mean free path와 유사한 직경의 nanofiber를 제조함으로써 뛰어난 분리효율을 보일 수 있고, 좁은 섬유직경으로 인해 slip effect 영향을 받아 높은 필터 효율을 보유하는 나노섬유 공기필터를 제공할 수 있다.Therefore, according to the present invention, by providing an air filter by electrospinning using PVDF-g-POEM polymer synthesized using atom transfer radical polymerization, hydrophobicity and hydrophilic properties are obtained by using the electrostatic attraction and amphiphilic property of the polymer itself. It can adsorb dust of both characteristics, and shows a uniform diameter distribution of nanofibers, making up for the disadvantages of the prior art in which the diameter of the filter is thick and non-uniform, and the diameter of the nanofibers is similar to the mean free path of oxygen molecules. By manufacturing, it is possible to show excellent separation efficiency, and to provide a nanofiber air filter having high filter efficiency due to the slip effect due to the narrow fiber diameter.
도 1은 본 발명의 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법을 설명한 모식도이며,1 is a schematic diagram explaining the electrospinning method of a high-efficiency nanofiber air filter using the PVDF-g-POEM double comb copolymer of the present invention,
도 2는 실시예 1과 비교예 1를 FT-IR을 활용하여 분자의 반응기를 분석한 결과 그래프이며, Figure 2 is a graph of the results of analyzing the molecular reactive groups of Example 1 and Comparative Example 1 using FT-IR,
도 3은 실시예 1과 비교예 1의 XRD 그래프이며,3 is an XRD graph of Example 1 and Comparative Example 1,
도 4는 실시예 1과 비교예 1의 접촉각 측정시험결과이며,Figure 4 is the contact angle measurement test results of Example 1 and Comparative Example 1,
도 5는 분자 구조 분석 그래프이며,5 is a molecular structure analysis graph,
도 6은 실시예 1과 비교예 1의 구성 비율 분석을 진행한 열중량 분석 그래프이며,6 is a graph of thermogravimetric analysis in which composition ratio analysis of Example 1 and Comparative Example 1 was performed;
도 7은 실시예 1과 비교예 1의 air filter의 직경분포를 나타낸 분포도이며,7 is a distribution chart showing the diameter distribution of air filters of Example 1 and Comparative Example 1;
도 8은 실시예 1과 비교예 1의 filter의 성능 측정값이며, 8 is a performance measurement value of the filter of Example 1 and Comparative Example 1,
도 9는 비교예 1의 filter의 성능 측정값이며, 9 is a performance measurement value of the filter of Comparative Example 1,
도 10은 실시예 1의 filter의 성능 측정값이며, 10 is a performance measurement value of the filter of Example 1,
도 11은 실시예 1과 비교예 1의 filter의 성능 측정값이다.11 is a performance measurement value of the filter of Example 1 and Comparative Example 1.
다음의 실시예에서는 본 발명의 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법의 비한정적인 예시를 하고 있다.In the following examples, a non-limiting example of the electrospinning method of a high-efficiency nanofiber air filter using the PVDF-g-POEM double comb copolymer of the present invention is shown.
[실시예 1][Example 1]
5 g의 PVDF(분자량 300K)와 50 ㎖의 NMP를 250㎖ 둥근 플라스크에 넣고 12시간 동안 충분히 녹여준다. PVDF가 완전히 녹은 후에 50 ㎖의 POEM(분자량 500), 0.04 g의 CuCl, 0.23 g의 DMDP를 넣어 준 후 질소 가스를 이용하여 내부의 산소를 질소로 전부 치환해 준다. 1시간 반 이상 퍼징을 진행한 후 90~100 ℃로 24 시간 동안 반응을 진행한 후 메탄올에 침전을 잡고 얻게 된 고분자(PVDF-g-POEM 이중빗살 공중합체, 분자량 400K))를 24 시간 진공오븐에서 건조하였다.5 g of PVDF (molecular weight 300K) and 50 ml of NMP were put in a 250 ml round flask and sufficiently dissolved for 12 hours. After PVDF is completely dissolved, 50 ml of POEM (molecular weight: 500), 0.04 g of CuCl, and 0.23 g of DMDP are added, and all internal oxygen is substituted with nitrogen using nitrogen gas. After purging for more than an hour and a half, the reaction was carried out at 90-100 ° C for 24 hours, and the polymer obtained by precipitating in methanol (PVDF-g-POEM double comb copolymer, molecular weight 400K)) was placed in a vacuum oven for 24 hours dried in
상기 합성된 PVDF-g-POEM 이중빗살 공중합체 10중량%와 DMAc:MEK = 1:1 비율의 공용매(cosolvent) 90 중량%를 혼합하고 58℃, 12시간동안 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비한 후, 방사용액을 전기방사장치에 1㎖/h의 공급 속도로 천천히 주입하면서 28kV의 높은 DC 전압으로 16cm 이격된 멤브레인 기판에 전기 방사를 진행하여 나노섬유 웹을 얻었다.10% by weight of the synthesized PVDF- g -POEM double comb copolymer and 90% by weight of a cosolvent in a DMAc:MEK = 1:1 ratio were mixed and continuously stirred at 58°C for 12 hours to obtain electrospinning. After preparing the spinning solution, while slowly injecting the spinning solution into the electrospinning device at a supply rate of 1 ml / h, electrospinning was performed on a membrane substrate spaced 16 cm apart at a high DC voltage of 28 kV to obtain a nanofiber web.
[비교예 1][Comparative Example 1]
PVDF 고분자 10중량%와 DMAc용매 90 중량%를 혼합하고 58℃, 12시간동안 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비한 후, 방사용액을 전기방사장치에 1㎖/h의 공급 속도로 천천히 주입하면서 28kV의 높은 DC 전압으로 16cm 이격된 멤브레인 기판에 전기 방사를 진행하여 나노섬유 웹을 얻었다.After preparing a spinning solution for electrospinning by mixing 10% by weight of PVDF polymer and 90% by weight of a DMAc solvent and continuously stirring at 58 ° C for 12 hours, the spinning solution was slowly supplied to the electrospinning device at a supply rate of 1 ml / h. Electrospinning was performed on a membrane substrate 16 cm apart at a high DC voltage of 28 kV while injecting to obtain a nanofiber web.
실시예 1과 비교예 1의 나노섬유 웹을 분석하여 도 2~도 11에 나타내었다. 도 2는 실시예 1과 비교예 1를 FTIR을 활용하여 분자의 반응기를 분석한 것으로서 중합 이후 기존에 PVDF에서는 확인할 수 없는 2872.2 (메틸기, CH3),1727(카르보닐기, C=O) and 1100.2 (에스터기 C-O-C)cm-1의 강한 absorption band가 나타남을 확인할수 있어 실시예 1에서 PVDF-g-POEM 이중빗살 공중합체가 성공적으로 합성된 것을 확인할 수 있었다.The nanofiber webs of Example 1 and Comparative Example 1 were analyzed and shown in FIGS. 2 to 11. Figure 2 is a molecular reactive analysis using FTIR for Example 1 and Comparative Example 1, and after polymerization, 2872.2 (methyl group, CH 3 ), 1727 (carbonyl group, C=O) and 1100.2 ( It was confirmed that a strong absorption band of ester group COC)cm -1 appeared, confirming that the PVDF- g -POEM double comb copolymer was successfully synthesized in Example 1.
도 3은 실시예 1과 비교예 1를 XRD를 활용하여 분자의 반응기 공중합체가 중합되면서 d-spacing이 줄어들었음을 확인하였고 amorphous한 고분자 특성을 확인했다. 3 shows Example 1 and Comparative Example 1 using XRD to confirm that the d-spacing was reduced as the reactive copolymer of the molecule was polymerized, and the amorphous polymer characteristics were confirmed.
도 4는 실시예 1과 비교예 1의 접촉각 측정시험결과로서 PVDF의 경우 소수성을 띄지만 중합 이후 친수성을 띄는 POEM이 중합되면서 양친매적인 특성을 갖는것을 확인했는데 비교예 1은 물과의 접촉각이 54°로 나타났으나(a), 실시예 1은 1°보다 적은 접촉각이 나타났다.(b) 4 shows the contact angle measurement test results of Example 1 and Comparative Example 1. In the case of PVDF, it is confirmed that POEM, which is hydrophobic but hydrophilic after polymerization, has amphiphilic properties as it is polymerized. Comparative Example 1 has a contact angle with water 54 ° (a), but Example 1 showed a contact angle of less than 1 °. (b)
도 5는 분자 구조 분석 그래프로서 PVDF-g-POEM의 1H NMR을 보여준다. 분자구조와 이와 대응되는 peak은 그래프 내에 표기했다. NMR을 동해서 중합 비율을 계산했을 때 질량 %로 4:1 비율로 합성된것으로 계산된다.5 is a molecular structure analysis graph showing 1 H NMR of PVDF-g-POEM. Molecular structures and corresponding peaks are indicated in the graph. When the polymerization ratio was calculated using NMR, it was calculated as synthesized in a 4:1 ratio in mass%.
도 6은 구성 비율 분석을 진행한 열중량 분석 그래프로서 250 ℃부근에서 POEM이 분해되는 것을 확인했다.6 is a thermogravimetric analysis graph in which composition ratio analysis was performed, and it was confirmed that POEM was decomposed at around 250 ° C.
도 7은 실시예 1과 비교예 1의 air filter의 직경을 SEM을 통해서 계산하고 이의 분포를 나타낸 분포도이다. 전기방사 방식으로 제조한 filter임에도 불구하고 실시예 1의 경우 (b)와 같이 고른 직경 분포도를 보이고, 비교예 1의 PVDF(a)에 비하여 직경이 굉장히 줄어들었음을 확인하였다. 7 is a distribution chart showing the distribution of diameters of air filters of Example 1 and Comparative Example 1 calculated through SEM. Despite the filter manufactured by the electrospinning method, Example 1 showed an even diameter distribution as in (b), and it was confirmed that the diameter was greatly reduced compared to PVDF (a) of Comparative Example 1.
도 8 내지 도 11은 실시예 1과 비교예 1의 filter의 성능 측정값이다. PVDF에 비하여 뛰어난 필터 성능을 보이며 우수한 공기 필터로의 활용을 확인했다. 8 to 11 are performance measurement values of the filters of Example 1 and Comparative Example 1. It showed excellent filter performance compared to PVDF and confirmed its use as an excellent air filter.
본 발명은 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법에 관한 것이다. The present invention relates to an electrospinning method of a high-efficiency nanofiber air filter using a PVDF-g-POEM double comb copolymer.

Claims (4)

  1. PVDF(poly(vinylidene fluoride))를 용매에 용해시킨 후, POEM(poly(oxyethylene methacrylate)),촉매, 중합개시제를 첨가하여 혼합한 반응용액에 질소 가스를 이용하여 내부의 산소를 질소로 전부 치환하는 퍼징을 진행한 후, 90~100℃로 원자이동 라디칼중합(atom transfer radical polymerization)을 실시하여 상기 PVDF 구조 내의 플루오린에 POEM을 중합하면서 치환하는 반응을 진행한 후, 메탄올에 침전시키고 진공오븐에서 건조시켜 PVDF-g-POEM 이중빗살 공중합체를 얻는 PVDF-g-POEM 이중빗살 공중합체 합성단계, After dissolving PVDF (poly (vinylidene fluoride)) in a solvent, POEM (poly (oxyethylene methacrylate)), a catalyst, and a polymerization initiator are added and mixed with nitrogen gas to replace all internal oxygen with nitrogen. After purging, atom transfer radical polymerization is performed at 90 to 100 ° C to polymerize and replace POEM with fluorine in the PVDF structure, and then precipitate in methanol and in a vacuum oven. PVDF-g-POEM double comb copolymer synthesis step to obtain PVDF-g-POEM double comb copolymer by drying;
    상기 합성된 PVDF-g-POEM 이중빗살 공중합체 10~30 중량%와 DMAc와 MEK의 공용매(cosolvent) 70~90 중량%를 혼합하고 58~95℃, 12시간동안 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비하는 방사용액제조단계, 및 Electrospinning was performed by mixing 10 to 30% by weight of the synthesized PVDF- g -POEM double comb copolymer and 70 to 90% by weight of a cosolvent of DMAc and MEK and continuously stirring at 58 to 95 ° C. for 12 hours. Preparing a spinning solution for preparing a spinning solution, and
    상기 방사용액을 천천히 주입하면서 28~50kV의 높은 DC 전압으로 멤브레인 기판에 전기방사하는 전기방사단계로 이루어지는 것을 특징으로 하는 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법.Electrospinning of a high-efficiency nanofiber air filter using PVDF-g-POEM double comb copolymer, characterized in that it consists of an electrospinning step of electrospinning on a membrane substrate with a high DC voltage of 28 to 50 kV while slowly injecting the spinning solution method.
  2. 제 1항에 있어서, According to claim 1,
    상기 PVDF-g-POEM 이중빗살 공중합체의 중합시 상기 반응용액은 When the PVDF-g-POEM double comb copolymer is polymerized, the reaction solution is
    분자량 300K~330K인 PVDF 3~5 중량부,3 to 5 parts by weight of PVDF having a molecular weight of 300K to 330K;
    분자량 500~950인 POEM 46-48 중량부,46-48 parts by weight of POEM having a molecular weight of 500 to 950;
    Copper(I)chloride(CuCl), Copper(Ⅱ)chloride(CuCl2), Copper(I)bromide(CuBr) 또는 Copper(Ⅱ)bromide(CuBr2)로 이루어진 군으로부터 하나 이상인 촉매 0.01 내지 0.5 중량부, HMTETA(1,1,4,7,10,10-Hexamethyltriethylenetetramine), 0.01 to 0.5 parts by weight of at least one catalyst from the group consisting of Copper(I)chloride(CuCl), Copper(II)chloride(CuCl 2 ), Copper(I)bromide(CuBr) or Copper(II)bromide(CuBr 2 ); HMTETA (1,1,4,7,10,10-Hexamethyltriethylenetetramine);
    PMDETA(N,N,N',N',N''--pentamethyl diethylenetriamine), DMDP(4,4'-dimethyl-2,2'-dipyridyl), TREN(tris(2-aminoethyl)amine), TMEDA(N,N,N',NTetramethylethylenediamine) 중 어느 하나 이상인 중합개시제 0.1 내지 0.5 중량부 및 PMDETA (N,N,N',N',N''-pentamethyl diethylenetriamine), DMDP (4,4'-dimethyl-2,2'-dipyridyl), TREN (tris(2-aminoethyl)amine), TMEDA (N, N, N', NTetramethylethylenediamine) of any one or more polymerization initiators 0.1 to 0.5 parts by weight and
    NMP(N-methyl-2-pyrrollidinone)또는 DMSO인 용매 43.11 내지 45 중량부를 포함하는 반응용액인 것을 특징으로 하는 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법.Electrospinning method of high-efficiency nanofiber air filter using PVDF-g-POEM double comb copolymer, characterized in that the reaction solution contains 43.11 to 45 parts by weight of NMP (N-methyl-2-pyrrollidinone) or DMSO solvent.
  3. 제 1항에 있어서, According to claim 1,
    상기 PVDF-g-POEM 이중빗살 공중합체의 분자량은 350K ~ 400K 인 것을 특징으로 하는 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법.The electrospinning method of a high-efficiency nanofiber air filter using the PVDF-g-POEM double comb copolymer, characterized in that the molecular weight of the PVDF-g-POEM double comb copolymer is 350K to 400K.
  4. 제 1항에 있어서, According to claim 1,
    상기 방사용액제조단계의 DMAc-MEK 공용매(cosolvent)는 중량비 DMAc:MEK = 1:1인 공용매(cosolvent)인 것을 특징으로 하는 PVDF-g-POEM 이중빗살 공중합체를 활용한 고효율 나노섬유 공기필터의 전기방사방법.The DMAc-MEK cosolvent in the spinning solution preparation step is a high-efficiency nanofiber air using PVDF-g-POEM double comb copolymer, characterized in that the weight ratio DMAc: MEK = 1: 1 cosolvent Electrospinning method of filter.
PCT/KR2022/017729 2021-11-16 2022-11-11 Method for electrospinning of high-efficiency nanofiber air filter by using pvdf-g-poem double comb copolymer WO2023090761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0157171 2021-11-16
KR1020210157171A KR20230071220A (en) 2021-11-16 2021-11-16 Manufacturing Method Of High-efficiency Nanofiber Air Filter Using The Amphiphilic Polymer PVDF-g-POEM Double Comb Copolymer By Electro-spinning Method

Publications (1)

Publication Number Publication Date
WO2023090761A1 true WO2023090761A1 (en) 2023-05-25

Family

ID=86397379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017729 WO2023090761A1 (en) 2021-11-16 2022-11-11 Method for electrospinning of high-efficiency nanofiber air filter by using pvdf-g-poem double comb copolymer

Country Status (2)

Country Link
KR (1) KR20230071220A (en)
WO (1) WO2023090761A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032025A (en) * 2000-09-11 2003-04-23 매사츄세츠 인스티튜트 오브 테크놀러지 Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
US8222166B2 (en) * 2004-10-06 2012-07-17 The Research Foundation Of State University Of New York High flux and low fouling filtration media
CN105214526A (en) * 2015-10-12 2016-01-06 中南大学 A kind of PVDF-g-POEM is the preparation method of the double-layer hollow fiber milipore filter of hydrophilic modifying material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821049B1 (en) 2016-07-15 2018-01-23 한국과학기술원 Quasi-aligned 1D Polymer Nanofibers Grid structure Cross-Laminated, Pore distribution and Pore size controlled 3D Polymer Nanofibers Membrane and Manufacturing Method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032025A (en) * 2000-09-11 2003-04-23 매사츄세츠 인스티튜트 오브 테크놀러지 Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
US8222166B2 (en) * 2004-10-06 2012-07-17 The Research Foundation Of State University Of New York High flux and low fouling filtration media
CN105214526A (en) * 2015-10-12 2016-01-06 中南大学 A kind of PVDF-g-POEM is the preparation method of the double-layer hollow fiber milipore filter of hydrophilic modifying material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOGHAREH ABED M.R.; KUMBHARKAR S.C.; GROTH A.M.; LI K.: "Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fibre membranes", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 106, 29 December 2012 (2012-12-29), NL , pages 47 - 55, XP028980141, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2012.12.024 *
MOON JUYOUNG, BUI TAN TAN, JANG SOYOUNG, JI SEUNGYOUNG, PARK JUNG TAE, KIM MYUNG-GIL: "A highly efficient nanofibrous air filter membrane fabricated using electrospun amphiphilic PVDF-g-POEM double comb copolymer", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 279, 1 December 2021 (2021-12-01), NL , pages 119625, XP093068374, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2021.119625 *

Also Published As

Publication number Publication date
KR20230071220A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CA2221618C (en) Water-soluble polymers and compositions thereof
DE3333991A1 (en) POLYMERES, METHOD FOR THE PRODUCTION AND USE THEREOF
CN107619477B (en) Polythioamide and preparation method and application thereof
Yilmaz et al. Polysulfone based amphiphilic graft copolymers by click chemistry as bioinert membranes
US20080257015A1 (en) Graphitic-carbon-nanofiber/polymer brushes as gas sensors
CN101343372A (en) Preparation method of nanofiber ion exchange membrane
KR920000189B1 (en) Poly trialkylgermylpropyne polymers and membranes
CN112375191B (en) Block copolymer, preparation method and application thereof
WO2023090761A1 (en) Method for electrospinning of high-efficiency nanofiber air filter by using pvdf-g-poem double comb copolymer
CN114471487B (en) Super-crosslinked porous polymer material capable of being dissolved and processed and preparation method thereof
CN104628974B (en) A kind of amphipathic copolymer and preparation method thereof assigning membrane material pH responses
CN116764606B (en) BPA molecular imprinting PAN/MOF nanofiber polymer membrane and preparation method and application thereof
CN108948349B (en) Spiro-ring polymer material and preparation method thereof
Yan et al. Graft copolymerization of N, N-dimethylacrylamide to cellulose in homogeneous media using atom transfer radical polymerization for hemocompatibility
CN113262765B (en) Electrostatic spinning fiber membrane based on polythiocarbonate and preparation method and application thereof
CN113831740B (en) Self-repairing organic silicon polymeric material and preparation method and application thereof
CN111533837B (en) Acidic polymeric ionic liquid and preparation method and application thereof
WO2021187685A1 (en) Nanofiber for air filter comprising random copolymer having zwitterionic functional group and method for manufacturing same
Liu et al. A facile strategy for the functionalization of poly [cyclotriphosphazene‐co‐(4, 4′‐sulfonyldiphenol)] materials
US20210362142A1 (en) Catalyst composition with improved chemical warfare agent degradation ability and processability
CN115337785B (en) Anion exchange membrane and application thereof in waste acid treatment
CN115672261B (en) Sulfhydryl Schiff base side group-containing polymer modified attapulgite and preparation method thereof
Ying et al. Synthesis of poly [2-(3-butenyl)-2-oxazoline] with abundant carboxylic acid functional groups as a fiber-based sol–gel reaction supporter for catalytic applications
Biery Synthesis and Characterization of Water Insoluble Copolymers from Diallyldimethylammonium Hexafluorophosphate
CN104761726B (en) Method for regulating and controlling ordered pore diameter of ethyl cellulose grafted polystyrene copolymer material based on main chain length

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895968

Country of ref document: EP

Kind code of ref document: A1