WO2023090420A1 - Drive device for vehicle - Google Patents

Drive device for vehicle Download PDF

Info

Publication number
WO2023090420A1
WO2023090420A1 PCT/JP2022/042849 JP2022042849W WO2023090420A1 WO 2023090420 A1 WO2023090420 A1 WO 2023090420A1 JP 2022042849 W JP2022042849 W JP 2022042849W WO 2023090420 A1 WO2023090420 A1 WO 2023090420A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
gear
rotating
electric machine
combustion engine
Prior art date
Application number
PCT/JP2022/042849
Other languages
French (fr)
Japanese (ja)
Inventor
磯野宏
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2023090420A1 publication Critical patent/WO2023090420A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle drive system comprising an output member drivingly connected to wheels of a vehicle, an input member drivingly connected to an internal combustion engine, a rotating electric machine, and a distribution differential gear mechanism.
  • Patent Document 1 An example of such a vehicle driving device is disclosed in Patent Document 1 below.
  • reference numerals in Patent Document 1 are quoted in parentheses.
  • the vehicle drive device of Patent Document 1 has a first rotating electrical machine (MG1) drivingly connected to an input member (I) and a drivingly connected output member (O) via a distribution differential gear mechanism (P1). and a second rotating electric machine (MG2).
  • MG1 first rotating electrical machine
  • I input member
  • O drivingly connected output member
  • P1 distribution differential gear mechanism
  • MG2 second rotating electric machine
  • the distribution differential gear mechanism (P1) includes a first sun gear (S1) that meshes with the first pinion gear, a second sun gear (S2) that meshes with the second pinion gear, and the first pinion gear. and a carrier (CA) that supports the second pinion gear, and a ring gear (R1) that meshes with the first pinion gear.
  • a ring gear (R1) is drivingly connected to the output member (O).
  • the second sun gear (S2) is drivingly connected to the second rotor (Ro2) of the second rotating electric machine (MG2).
  • the carrier (CA) is also drivingly connected to the input member (I).
  • the above vehicle drive system has a plurality of operation modes, and the states of engagement of the plurality of engagement devices (C, B1, B2) are controlled according to the driving force and vehicle speed required for the vehicle. By doing so, one of the plurality of operation modes is selected.
  • a time lag and a rotational speed difference between the rotating members engaged by the engagement devices (C, B1, B2) occur when the operation mode is switched. Driving force fluctuations and the like caused by this may occur, and the driver may feel uncomfortable. Such a phenomenon tends to occur particularly when the vehicle is accelerated at relatively high acceleration such as maximum acceleration.
  • the characteristic configuration of the vehicle drive system is as follows. a first output member drivingly connected to a first wheel included in the vehicle; an input member drivingly connected to an internal combustion engine; a first rotating electric machine having a first rotor; a first rotating element, a second rotating element, and a third rotating element, wherein the first rotating element is drivingly connected to the input member; the second rotating element is drivingly connected to the first output member; a distributing differential gear mechanism in which three rotating elements are drivingly connected to the first rotor; a control device that controls the internal combustion engine and the first rotating electric machine, The distributing differential gear mechanism is configured so that the rotation speeds of the first rotating element, the second rotating element, and the third rotating element are in the order described,
  • the control device is capable of executing specific acceleration control when accelerating the vehicle at an acceleration equal to or greater than a predetermined value,
  • the rotation speed of the internal combustion engine is defined as a first rotation speed
  • the rotation speed of the first rotating electric machine is defined as a second rotation speed
  • the specific acceleration control is The first rotation speed is controlled so that the difference between the timing at which the first rotation speed reaches the first target rotation speed and the timing at which the second rotation speed reaches the second target rotation speed is within a predetermined range.
  • a first control for gradually increasing the first rotation speed to the first target rotation speed and gradually increasing the second rotation speed to the second target rotation speed; After the first control, at least the second rotational speed is further increased from the second target rotational speed so that the amount of change in the second rotational speed is greater than the amount of change in the first rotational speed. and a second control.
  • the first control causes the internal combustion engine and the first rotation
  • Each of the electric machines can be set to output a predetermined value or more.
  • the vehicle whose vehicle speed is in the low speed range can be appropriately accelerated.
  • the second control can increase the rotation speed of the first rotating electric machine while maintaining a relatively high output of the internal combustion engine.
  • the vehicle can be appropriately accelerated so that the vehicle speed reaches the high speed range.
  • the vehicle speed is adjusted without switching the operation mode by controlling the engagement state of the engagement device. The vehicle can be appropriately accelerated so as to reach the high speed range from the low speed range. Therefore, even when the vehicle is accelerated at a relatively high acceleration, it is possible to keep the discomfort felt by the driver small.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle drive system according to a first embodiment
  • FIG. 1 is a control block diagram of a vehicle drive system according to a first embodiment
  • FIG. FIG. 2 is a diagram showing states of an engagement device and the like in each operation mode of the vehicle drive system according to the first embodiment
  • FIG. 4 is a diagram showing the relationship between the torque and the rotational speed of each of the internal combustion engine and the first rotating electric machine
  • 3 is a velocity diagram of the differential gear mechanism for distribution showing an example of the first control of the specific acceleration control
  • FIG. 3 is a velocity diagram of a distribution differential gear mechanism showing an example of second control of specific acceleration control
  • FIG. 3 is a velocity diagram of the differential gear mechanism for distribution showing an example of the first control of the specific acceleration control
  • FIG. 4 is a diagram showing an example of the relationship between vehicle speed and various values while specific acceleration control is being executed in the vehicle drive system according to the first embodiment;
  • 1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment;
  • FIG. 1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment;
  • FIG. 5 is a diagram showing states of an engagement device and the like in each operation mode of the vehicle drive system according to the second embodiment;
  • FIG. 11 is a diagram showing an example of the relationship between vehicle speed and various values while specific acceleration control is being executed in the vehicle drive system according to the second embodiment;
  • FIG. 4 is a diagram showing a schematic configuration of a vehicle drive system according to another embodiment;
  • FIG. 4 is a diagram showing a schematic configuration of a vehicle drive system according to another embodiment
  • 1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment
  • 1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment
  • the vehicle drive device 100 includes an input member I, a first output member O1, a first rotating electric machine MG1, and a distribution differential gear mechanism SP.
  • the vehicle drive device 100 includes a second rotary electric machine MG2, a transmission TM, a first output differential gear mechanism DF1, a first engagement device CL1, and a second engagement device CL2. , is further provided.
  • the input member I is drivingly connected to the internal combustion engine EG.
  • the internal combustion engine EG functions as a driving force source for the first wheels W1.
  • the internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
  • the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit torque, and the two rotating elements are connected so as to rotate integrally, or It includes a state in which two rotating elements are coupled to transmit torque via one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains.
  • the transmission member may include an engagement device that selectively transmits rotation and torque, such as a friction engagement device and a mesh type engagement device.
  • driving connection it means a state in which each rotating element is drivingly connected without interposing another rotating element.
  • the first output member O1 is drivingly connected to the first wheel W1 of the vehicle.
  • the first output member O1 is arranged in the power transmission path between the transmission TM and the first output differential gear mechanism DF1.
  • the first rotating electric machine MG1 includes a first stator ST1 and a first rotor RT1 (see FIG. 9, etc.).
  • the first stator ST1 is fixed to the non-rotating member NR (not shown).
  • the first rotor RT1 is rotatably supported with respect to the first stator ST1.
  • the non-rotating member NR is a case that accommodates the first rotating electric machine MG1, the second rotating electric machine MG2, and the like.
  • the second rotating electrical machine MG2 includes a second stator ST2 and a second rotor RT2 (see FIG. 9, etc.).
  • the second stator ST2 is fixed to the non-rotating member NR (not shown).
  • the second rotor RT2 is rotatably supported with respect to the second stator ST2.
  • the first rotary electric machine MG1 has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .
  • the first rotating electric machine MG1 is electrically connected to a power storage device BT (see FIG. 2) such as a battery or a capacitor so as to transfer electric power to and from the power storage device BT.
  • the first rotating electric machine MG1 functions as a driving force source for the first wheel W1.
  • the second rotating electric machine MG2 also functions as a driving force source for the first wheel W1.
  • the distribution differential gear mechanism SP is a differential gear mechanism that includes a first rotary element E1, a second rotary element E2, and a third rotary element E3.
  • the first rotating element E1 is drivingly connected to the input member I.
  • the second rotating element E2 is drivingly connected to the first output member O1.
  • the third rotating element E3 is drivingly connected to the first rotor RT1 of the first rotating electric machine MG1.
  • the distribution differential gear mechanism SP is configured so that the rotation speeds of the first rotation element E1, the second rotation element E2, and the third rotation element E3 are in the described order.
  • the distributing differential gear mechanism SP is a first planetary gear mechanism PG1 (see FIG. 9, etc.) that is configured using a first rotating element E1, a second rotating element E2, and a third rotating element E3. It has
  • the “order of rotational speed” refers to the order of rotational speed in the rotating state of each rotating element.
  • the rotation speed of each rotating element changes depending on the rotation state of the planetary gear mechanism, but the order of the rotation speed of each rotating element is fixed because it is determined by the structure of the planetary gear mechanism.
  • the order of rotation speed of each rotating element is the same as the order of arrangement in the velocity diagram (see FIG. 5, etc.) of each rotating element.
  • the “arrangement order of each rotating element in the velocity diagram” is the order in which the axes corresponding to each rotating element in the velocity diagram are arranged along the direction perpendicular to the axis.
  • the arrangement direction of the shaft corresponding to each rotating element in the velocity diagram differs depending on how the velocity diagram is drawn, but the order of arrangement is fixed because it is determined by the structure of the planetary gear mechanism.
  • the second rotor RT2 of the second rotating electrical machine MG2 is drivingly connected to the input member I. Further, the second rotor RT2 is drivingly connected to the first rotary element E1 of the distribution differential gear mechanism SP. Here, the second rotor RT2 is drivingly connected to the first rotating element E1 via the input member I and the second engagement device CL2. Further, in the present embodiment, the first engagement device CL1 is provided in a portion of the power transmission path closer to the first rotating element E1 than the second engagement device CL2.
  • the first engagement device CL1 is an engagement device that selectively fixes the first rotating element E1 of the distribution differential gear mechanism SP to the non-rotating member NR.
  • the first engagement device CL1 is a first brake B1 that selectively fixes the first rotating element E1 to the non-rotating member NR.
  • the second engagement device CL2 is an engagement device that connects and disconnects power transmission between the input member I and the first rotary element E1 of the distribution differential gear mechanism SP.
  • the second engagement device CL2 is the first clutch C1 that connects and disconnects power transmission between the input member I and the first rotating element E1.
  • the transmission TM is configured to change the speed of the rotation transmitted from the distribution differential gear mechanism SP side and transmit it to the first output member O1 side.
  • the transmission TM there are a stepped automatic transmission capable of switching to a plurality of gear stages, a continuously variable automatic transmission capable of steplessly changing the gear ratio, and a transmission having a fixed gear ratio (reducer or speed increaser). ) etc. can be used.
  • the first output differential gear mechanism DF1 is a differential gear mechanism that distributes the rotation transmitted from the first output member O1 side to the pair of first wheels W1.
  • the vehicle drive system 100 includes a control system 10 that controls the internal combustion engine EG and the first rotating electric machine MG1.
  • the control device 10 includes a main control unit 11, an internal combustion engine control unit 12 that controls the internal combustion engine EG, a first rotating electric machine control unit 13 that controls the first rotating electric machine MG1, a second rotating electric machine A second rotary electric machine control section 14 that controls the MG2, and an engagement control section 15 that controls the state of engagement of the first engagement device CL1 and the second engagement device CL2.
  • the main control unit 11 controls the internal combustion engine control unit 12, the first rotating electrical machine control unit 13, the second rotating electrical machine control unit 14, and the engagement control unit 15, respectively. Output commands.
  • the internal combustion engine control unit 12 controls the internal combustion engine EG so that the internal combustion engine EG outputs the target torque commanded by the main control unit 11 or achieves the target rotation speed commanded by the main control unit 11. do.
  • the first rotating electrical machine control unit 13 controls the first rotating electrical machine MG1 to output the target torque commanded by the main control unit 11 or achieve the target rotational speed commanded by the main control unit 11. It controls the single-rotation electric machine MG1.
  • the second rotating electrical machine control unit 14 controls the second rotating electrical machine MG2 to output the target torque commanded by the main control unit 11 or achieve the target rotational speed commanded by the main control unit 11. It controls the two-rotating electric machine MG2.
  • the engagement control unit 15 controls the first engagement device CL1 and the second engagement device CL2 so that each of the first engagement device CL1 and the second engagement device CL2 enters the engagement state commanded by the main control unit 11 . It controls an actuator (not shown) for operating the engagement device CL2.
  • the main control unit 11 is configured to be able to acquire information from sensors provided in each part of the vehicle in order to acquire information of each part of the vehicle in which the vehicle drive device 100 is mounted.
  • the main control unit 11 is configured to be able to acquire information from the SOC sensor Se1, the vehicle speed sensor Se2, the accelerator operation amount sensor Se3, the brake operation amount sensor Se4, and the shift position sensor Se5.
  • the SOC sensor Se1 is a sensor for detecting the state of the power storage device BT electrically connected to the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
  • the SOC sensor Se1 is composed of, for example, a voltage sensor, a current sensor, or the like.
  • the main control unit 11 calculates the state of charge (SOC) of the power storage device BT based on information such as a voltage value and a current value output from the SOC sensor Se1.
  • the vehicle speed sensor Se2 is a sensor for detecting the vehicle speed, which is the running speed of the vehicle in which the vehicle drive device 100 is mounted.
  • the vehicle speed sensor Se2 is a sensor for detecting the rotational speed of the first output member O1.
  • the main control unit 11 calculates the rotational speed (angular speed) of the first output member O1 based on the detection signal of the vehicle speed sensor Se2. Since the rotation speed of the first output member O1 is proportional to the vehicle speed, the main control section 11 can calculate the vehicle speed based on the rotation speed of the first output member O1.
  • the accelerator operation amount sensor Se3 is a sensor for detecting the amount of operation by the driver of an accelerator pedal provided in the vehicle in which the vehicle drive device 100 is mounted.
  • the main control unit 11 calculates the amount of operation of the accelerator pedal by the driver based on the detection signal of the accelerator operation amount sensor Se3.
  • the brake operation amount sensor Se4 is a sensor for detecting the amount of operation by the driver of the brake pedal provided in the vehicle in which the vehicle drive device 100 is mounted.
  • the main control unit 11 calculates the amount of operation of the brake pedal by the driver based on the detection signal of the brake operation amount sensor Se4.
  • the shift position sensor Se5 is a sensor for detecting the selected position (shift position) of the shift lever operated by the driver of the vehicle in which the vehicle drive system 100 is mounted.
  • the main control section 11 calculates the shift position based on the detection signal of the shift position sensor Se5.
  • the shift lever is configured to select a parking range (P range), a reverse travel range (R range), a neutral range (N range), a forward travel range (D range), and the like.
  • the main control unit 11 selects a plurality of operation modes, which will be described later, based on the information from the sensors Se1 to Se5.
  • the main control unit 11 controls, via the engagement control unit 15, each of the first engagement device CL1 and the second engagement device CL2 to be in an engagement state corresponding to the selected operation mode. Switch to the selected operating mode.
  • the main control unit 11 controls the internal combustion engine EG, the first rotating electric machine MG1, and the second rotating electric machine MG2 via the internal combustion engine control unit 12, the first rotating electric machine control unit 13, and the second rotating electric machine control unit 14. By cooperatively controlling the operating states of the two, it is possible to drive the vehicle appropriately according to the selected operating mode.
  • the vehicle drive system 100 has a first HV mode, a second HV mode, a first EV mode, and a second EV mode as operation modes.
  • FIG. 3 shows the first engagement device CL1, the second engagement device CL2, the internal combustion engine EG, the first rotary electric machine MG1, and the second rotary electric machine MG2 in each operation mode of the vehicle drive system 100 of the present embodiment. Each state is indicated. In the columns of the first engagement device CL1 and the second engagement device CL2 in FIG. 3, "o" indicates that the target engagement device is in the engaged state, and “x” indicates the target engagement device. is in a released state.
  • the first HV mode is an operation mode in which the vehicle is driven by the torque of the internal combustion engine EG and the torque of at least one of the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
  • the torque of the first rotary electric machine MG1 and at least the torque of the internal combustion engine EG out of the internal combustion engine EG and the second rotary electric machine MG2 are combined and transmitted to the first output member O1. This is an operation mode in which the vehicle is driven.
  • the first brake B1 as the first engagement device CL1 is released, and the first clutch C1 as the second engagement device CL2 is engaged. state.
  • the internal combustion engine EG is driven.
  • the second rotating electric machine MG2 is controlled to either the power running state or the power generation state according to the vehicle speed, the amount of charge in the power storage device BT, and the like.
  • the first rotating electrical machine MG1 generates reaction torque of the torque transmitted from the internal combustion engine EG and the second rotating electrical machine MG2 to the first rotating element E1, and transmits the reaction torque to the third rotating element E3.
  • the torque of the internal combustion engine EG and the second rotating electrical machine MG2 and the torque of the first rotating electrical machine MG1 are combined and transmitted to the second rotating element E2, and then transmitted from the second rotating element E2 to the first output member O1.
  • the first engagement device CL1 is in the released state, and the torque of at least the internal combustion engine EG out of the internal combustion engine EG and the second rotating electric machine MG2 is applied to the first rotating element E1. It corresponds to the "first mode" in which the torque is transmitted and the torque of the first rotary electric machine MG1 is transmitted to the third rotary element E3.
  • the second HV mode one of the first rotary electric machine MG1 and the second rotary electric machine MG2 is caused to generate power by the torque of the internal combustion engine EG, and the torque of the other one of the first rotary electric machine MG1 and the second rotary electric machine MG2 is generated.
  • This is an operation mode in which the vehicle is driven by
  • the second HV mode of the present embodiment is an operation mode in which the torque of the first rotary electric machine MG1 is used to drive the vehicle while the second rotary electric machine MG2 is caused to generate electric power by the torque of the internal combustion engine EG.
  • the first brake B1 as the first engagement device CL1 is engaged, and the first clutch C1 as the second engagement device CL2 is engaged. released. Then, the internal combustion engine EG is driven. Further, the first rotating electrical machine MG1 is controlled to the power running state, and the second rotating electrical machine MG2 is controlled to the power generation state. As a result, in a state in which the internal combustion engine EG and the second rotating electrical machine MG2 are separated from the distribution differential gear mechanism SP, the second rotating electrical machine MG2 generates power by the torque of the internal combustion engine EG. Then, the torque of the first rotary electric machine MG1 is transmitted to the first output member O1 via the distribution differential gear mechanism SP.
  • the first engagement device CL1 is in the engaged state
  • the second engagement device CL2 is in the disengaged state
  • the torque of the first rotating electric machine MG1 is applied to the third rotating element E3. It corresponds to the "third mode" in which the torque of the internal combustion engine EG is transmitted to the second rotating electrical machine MG2 and the second rotating electrical machine MG2 generates power.
  • the first EV mode is an operation mode in which the vehicle is driven by the torque of either the first rotating electric machine MG1 or the second rotating electric machine MG2.
  • the first EV mode of the present embodiment is an operation mode in which the vehicle travels by transmitting the torque of the first rotating electrical machine MG1 to the first output member O1 while the internal combustion engine EG and the second rotating electrical machine MG2 are stopped.
  • the "stopped state" of the internal combustion engine EG refers to a state in which the internal combustion engine EG is in a non-driving state and rotation is stopped. The same applies to the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
  • the first brake B1 as the first engagement device CL1 is engaged, and the first clutch C1 as the second engagement device CL2 is engaged. released.
  • both the internal combustion engine EG and the second rotating electrical machine MG2 are brought into a stopped state, and the first rotating electrical machine MG1 is brought into a power running state.
  • the internal combustion engine EG and the second rotary electric machine MG2 are separated from the distribution differential gear mechanism SP, and the torque of the first rotary electric machine MG1 is transmitted to the first output member O1 via the distribution differential gear mechanism SP. be.
  • the first engagement device CL1 is in the engaged state, the torque of the first rotating electric machine MG1 is transmitted to the third rotating element E3, and the internal combustion engine EG and the second rotation This corresponds to a "second mode" in which the electric machine MG2 is in a stopped state in which it does not output torque.
  • the first brake B1 is released, the first clutch C1 is engaged, and the second rotating electric machine MG2 does not rotate the first rotating element E1 ( fixed), the first rotating electric machine MG1 may be brought into the power running state.
  • the second EV mode is an operation mode in which the vehicle is driven by the torque of both the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
  • the second EV mode of the present embodiment is an operation mode in which the vehicle travels by transmitting the torque of both the first rotating electrical machine MG1 and the second rotating electrical machine MG2 to the first output member O1 while the internal combustion engine EG is stopped. is.
  • the first brake B1 as the first engagement device CL1 is released, and the first clutch C1 as the second engagement device CL2 is engaged. state.
  • the internal combustion engine EG is brought into a non-driving state in which no torque is generated, and both the first rotary electric machine MG1 and the second rotary electric machine MG2 are brought into a power running state.
  • the torques of both the first rotating electric machine MG1 and the second rotating electric machine MG2 are transmitted to the first output member O1 via the distribution differential gear mechanism SP.
  • the internal combustion engine EG rotates together with the second electric rotating machine MG2.
  • An engagement device such as a clutch that interrupts power transmission is provided between the internal combustion engine EG and the second rotating electric machine MG2. It is also suitable as a configuration to separate from.
  • FIG. 4 shows a graph representing the relationship between the torque and the rotational speed (so-called torque curve) in each of the internal combustion engine EG and the first rotating electric machine MG1.
  • torque is generated when the rotational speed reaches a predetermined value greater than zero.
  • the torque of the internal combustion engine EG increases as the rotational speed of the internal combustion engine EG increases, and then gently decreases as the rotational speed of the internal combustion engine EG increases.
  • the rotation speed of the internal combustion engine EG is referred to as "first rotation speed Ne", and the first rotation speed Ne at which the output of the internal combustion engine EG exceeds a predetermined value is referred to as “first target rotation speed Ne1".
  • first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG is within -10% of its maximum output.
  • the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG has the maximum output.
  • the torque of the internal combustion engine EG when the internal combustion engine EG reaches its maximum output is defined as “first maximum output torque Te1".
  • the “maximum output” of the internal combustion engine EG is the upper limit of the output at which the internal combustion engine EG can be stably and continuously driven for a specified time (for example, one hour).
  • the torque of the first rotating electric machine MG1 is kept constant within the range of the rotation speed from zero to a predetermined value. Then, as the rotation speed of the first rotating electrical machine MG1 increases beyond that range, the torque of the first rotating electrical machine MG1 decreases.
  • the rotational speed of the first rotating electrical machine MG1 is defined as “second rotational speed Nm", and the output of the first rotating electrical machine MG1 (here, the output during power running of the first rotating electrical machine MG1) is predetermined.
  • the second rotation speed Nm equal to or higher than the value is defined as "second target rotation speed Nm1".
  • the second target rotation speed Nm1 is the second rotation speed Nm when the first rotating electrical machine MG1 is within -10% of its maximum output.
  • the second target rotation speed Nm1 is the second rotation speed Nm when the first rotating electric machine MG1 has the maximum output.
  • the torque of the first rotating electrical machine MG1 when the first rotating electrical machine MG1 reaches the maximum output is defined as "second maximum output torque Tm1".
  • the maximum rotational speed of the first rotating electrical machine MG1 is assumed to be "maximum rotational speed Nm2".
  • the upper limit of the rotation speed range in which the torque of the first rotating electric machine MG1 is maintained constant that is, the rotation speed at which the torque of the first rotating electric machine MG1 starts to decrease is the second target rotation speed. Nm1.
  • the torque of the first rotary electric machine MG1 when it is maintained constant is the second maximum output torque Tm1.
  • the "maximum output" of the first rotating electrical machine MG1 is the upper limit of the output at which the first rotating electrical machine MG1 can be stably and continuously driven for a specified time (for example, one hour).
  • the "maximum rotational speed" of the first rotating electric machine MG1 is the upper limit of the rotational speed at which the first rotating electric machine MG1 can be stably and continuously driven for a specified time (for example, one hour).
  • the control device 10 can execute specific acceleration control when the vehicle is accelerated with an acceleration equal to or greater than a predetermined value.
  • the control device 10 executes the specific acceleration control when the operation mode is the first HV mode.
  • 5 to 7 show velocity diagrams of the distribution differential gear mechanism SP in the specific acceleration control of this embodiment.
  • each of the plurality of vertical axes arranged in parallel corresponds to the rotational speed of each rotating element of the distribution differential gear mechanism SP.
  • the symbols shown above the vertical axes are the symbols of the corresponding rotating elements.
  • the symbols shown below the vertical axes are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above.
  • Ne indicates the first rotation speed Ne, which is the rotation speed of the internal combustion engine EG, converted into the rotation speed of the first rotation element E1.
  • No indicates the output rotational speed No, which is the rotational speed of the first output member O1 converted to the rotational speed of the second rotational element E2.
  • Nm indicates the second rotation speed Nm, which is the rotation speed of the first rotating electric machine MG1, converted into the rotation speed of the third rotating element E3.
  • the specific acceleration control includes first control and second control. As shown in FIG. 5, in the first control, the difference between the timing at which the first rotation speed Ne reaches the first target rotation speed Ne1 and the timing at which the second rotation speed Nm reaches the second target rotation speed Nm1 is determined in advance. This control gradually increases the first rotation speed Ne to the first target rotation speed Ne1 and gradually increases the second rotation speed Nm to the second target rotation speed Nm1 so as to be within a predetermined range. In the first control of the present embodiment, the first rotation speed is controlled so that the second rotation speed Nm reaches the second target rotation speed Nm1 at the same time as the first rotation speed Ne reaches the first target rotation speed Ne1.
  • the speed Ne is gradually increased to the first target rotation speed Ne1, and the second rotation speed Nm is gradually increased to the second target rotation speed Nm1.
  • the output rotation speed No is the first output The rotation speed is No.1.
  • timings are completely the same, and that they are within a range that is set in advance as a range in which these timings can be regarded as being the same. It is a concept that also includes
  • the second control reduces at least the second rotational speed Nm so that the amount of change in the second rotational speed Nm is greater than the amount of change in the first rotational speed Ne.
  • This is a control to further increase the second target rotational speed Nm1.
  • the amount of change in the first rotational speed Ne in the second control includes both the amount of change when the first rotational speed Ne increases and the amount of change when the first rotational speed Ne decreases.
  • the amount of change in the second rotational speed Nm in the second control is the amount of change when the second rotational speed Nm increases.
  • the first rotation speed Ne is maintained within a predetermined range including the first target rotation speed Ne1.
  • the second rotation speed Nm is increased from the second target rotation speed Nm1 to the maximum rotation speed Nm2 while maintaining the first rotation speed Ne at the first target rotation speed Ne1.
  • the output rotation speed No is the second output rotation speed No2, which is higher than the first output rotation speed No1. Note that another control may be performed after the second control.
  • the vehicle drive system 100 a first output member O1 drivingly connected to a first wheel W1 of the vehicle; an input member I drivingly connected to the internal combustion engine EG; a first rotating electric machine MG1 having a first rotor RT1; A first rotating element E1, a second rotating element E2 and a third rotating element E3 are provided, the first rotating element E1 being drivingly connected to the input member I and the second rotating element E2 being drivingly connected to the first output member O1.
  • a distributing differential gear mechanism SP in which the third rotating element E3 is drivingly connected to the first rotor RT1; a control device 10 that controls the internal combustion engine EG and the first rotating electric machine MG1,
  • the distributing differential gear mechanism SP is configured so that the rotational speeds of the first rotating element E1, the second rotating element E2, and the third rotating element E3 are in the order described,
  • the control device 10 is capable of executing specific acceleration control when accelerating the vehicle with an acceleration equal to or greater than a predetermined value,
  • the rotation speed of the internal combustion engine EG is assumed to be a first rotation speed Ne
  • the rotation speed of the first rotary electric machine MG1 is assumed to be a second rotation speed Nm
  • the first rotation speed Ne at which the output of the internal combustion engine EG is equal to or higher than a predetermined value is determined.
  • a first target rotation speed Ne1 is set, and a second rotation speed Nm at which the output of the first rotary electric machine MG1 is equal to or higher than a predetermined value is set as a second target rotation speed Nm1,
  • Specific acceleration control is The first rotational speed Ne is controlled so that the difference between the timing at which the first rotational speed Ne reaches the first target rotational speed Ne1 and the timing at which the second rotational speed Nm reaches the second target rotational speed Nm1 is within a predetermined range.
  • a first control that gradually increases the rotation speed Ne to a first target rotation speed Ne1 and gradually increases the second rotation speed Nm to a second target rotation speed Nm1; After the first control, at least the second rotational speed Nm is further increased from the second target rotational speed Nm1 so that the amount of change in the second rotational speed Nm is greater than the amount of change in the first rotational speed Ne. including control.
  • the first control causes the internal combustion engine EG and the first rotation
  • Each of the electric machines MG1 can output a predetermined value or more.
  • the vehicle whose vehicle speed is in the low speed range can be appropriately accelerated.
  • the second control can increase the rotation speed of the first rotary electric machine MG1 while maintaining a relatively high output of the internal combustion engine EG. As a result, the vehicle can be appropriately accelerated so that the vehicle speed reaches the high speed range.
  • the vehicle speed can be increased without switching the operation mode by controlling the engagement state of the engagement device.
  • the vehicle can be appropriately accelerated so as to reach the high speed range from the low speed range. Therefore, even when the vehicle is accelerated at a relatively high acceleration, it is possible to keep the discomfort felt by the driver small.
  • the control device 10 performs control to maintain the first rotation speed Ne within a predetermined range including the first target rotation speed Ne1.
  • the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG has the maximum output.
  • the second target rotation speed Nm1 is the second rotation speed Nm when the first rotary electric machine MG1 has the maximum output.
  • the vehicle drive device 100 a second rotating electric machine MG2 having a second rotor RT2 drivingly connected to the input member I; and a first engagement device CL1 for selectively securing the first rotating element E1 to the non-rotating member NR.
  • the torque of the second rotating electrical machine MG2 can be used for running the vehicle. Further, according to this configuration, the internal combustion engine EG and the second rotary electric machine MG2 can be appropriately switched between the rotatable state and the non-rotatable state.
  • the vehicle drive system 100 has a first mode (here, first HV mode) and a second mode (here, first EV mode) as operation modes,
  • first mode the first engagement device CL1 is in the released state, and the torque of at least the internal combustion engine EG out of the internal combustion engine EG and the second rotating electric machine MG2 is transmitted to the first rotating element E1, and the first rotation The torque of the electric machine MG1 is transmitted to the third rotating element E3,
  • the first engagement device CL1 is engaged, the torque of the first rotating electrical machine MG1 is transmitted to the third rotating element E3, and the internal combustion engine EG and the second rotating electrical machine MG2 stop outputting torque.
  • the control device 10 executes the specific acceleration control when the operation mode is the first mode.
  • the torque of the first rotating electrical machine MG1 and the torque of at least the internal combustion engine EG out of the internal combustion engine EG and the second rotating electrical machine MG2 are combined and transmitted to the first output member O1.
  • the specific acceleration control can be appropriately executed.
  • the torque of the first rotating electric machine MG1 can be transmitted to the first output member O1 while the internal combustion engine EG and the second rotating electric machine MG2 are stopped. Therefore, in the second mode, among the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2, the vehicle can be driven by the torque of only the first rotating electrical machine MG1.
  • the vehicle drive device 100 further comprising a second engagement device CL2 for connecting and disconnecting power transmission between the input member I and the first rotating element E1;
  • a third mode (here, second HV mode) is further provided as an operation mode, In the third mode, the first engagement device CL1 is in the engaged state and the second engagement device CL2 is in the disengaged state, the torque of the first rotating electric machine MG1 is transmitted to the third rotating element E3, and the torque of the internal combustion engine EG is is transmitted to the second rotating electric machine MG2, and the second rotating electric machine MG2 generates electric power.
  • the torque of the internal combustion engine EG can be used to cause the second rotating electric machine MG2 to generate power, while the torque of the first rotating electric machine MG1 can be used to drive the vehicle.
  • the control device 10 controls the difference between the first rotation speed Ne and the second rotation speed Nm to be equal to the speed difference ⁇ N at maximum output at the beginning of the first control. control the internal combustion engine EG and the first rotating electric machine MG1.
  • the maximum output speed difference ⁇ N is the difference between the first target rotation speed Ne1 and the second target rotation speed Nm1 (see FIG. 5).
  • the control device 10 maintains the state where the difference between the first rotation speed Ne and the second rotation speed Nm is the same as the speed difference ⁇ N at maximum output, and adjusts both the first rotation speed Ne and the second rotation speed Nm. Control to raise.
  • control device 10 controls the line segment drawn on the velocity diagram when the first rotation speed Ne becomes the first target rotation speed Ne1 and the second rotation speed Nm becomes the second target rotation speed Nm1 (see FIG. 5). ) is maintained, control is performed to increase both the first rotation speed Ne and the second rotation speed Nm. It is sufficient that the internal combustion engine EG and the first rotating electric machine MG1 are controlled such that the difference between the first rotational speed Ne and the second rotational speed Nm is maintained at the same state as the maximum output speed difference ⁇ N. It is allowed that the difference between the first rotation speed Ne and the second rotation speed Nm deviates slightly from the maximum output speed difference ⁇ N.
  • the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG has the maximum output
  • the second target rotation speed Nm1 is the first rotation speed Ne when the first rotating electrical machine MG1 has the maximum output.
  • the control device 10 controls the internal combustion engine EG and the first rotating electric machine MG1 such that the difference between the first rotation speed Ne and the second rotation speed Nm becomes equal to the speed difference ⁇ N at maximum output
  • the difference between the first rotational speed Ne and the second rotational speed Nm becomes equal to the speed difference ⁇ N at maximum output.
  • control is performed to increase both the first rotation speed Ne and the second rotation speed Nm.
  • the timing at which the first rotation speed Ne reaches the first target rotation speed Ne1 and the timing at which the second rotation speed Nm reaches the second target rotation speed Nm1 are synchronized by relatively simple control. can be made to be Therefore, the first control can be appropriately executed.
  • the control device 10 controls the time required for the first rotation speed Ne to reach the first target rotation speed Ne1 from the rotation speed at the start of the first control
  • Each of the first rotation speed Ne and the second rotation speed Nm is set to a constant value so that the time required for the second rotation speed Nm to reach the second target rotation speed Nm1 from the rotation speed at the start of the first control is the same.
  • the slope of the line segment drawn on the speed diagram when the first rotation speed Ne becomes the first target rotation speed Ne1 and the second rotation speed Nm becomes the second target rotation speed Nm1 is not maintained, and changes over time so as to finally reach the slope.
  • the first target rotation speed Ne1 is not the first rotation speed Ne when the internal combustion engine EG has the maximum output, but the second target rotation speed Nm1 has the maximum output of the first rotary electric machine MG1. It does not have to be the second rotational speed Nm in the case.
  • the timing at which the first rotation speed Ne reaches the first target rotation speed Ne1 and the timing at which the second rotation speed Nm reaches the second target rotation speed Nm1 are synchronized by relatively simple control. can be made to be Therefore, the first control can be appropriately executed.
  • the gear ratio ⁇ (see FIGS. 5 to 7) of the distributing differential gear mechanism SP is the state where the second rotating element E2 is stopped and the first rotating element E1 and the third rotating element E3 are rotating. can be expressed by the ratio of the rotation speed of the third rotation element E3 to the rotation speed of the first rotation element E1 at .
  • the gear ratio ⁇ of the distribution differential gear mechanism SP is the torque of the first rotary electric machine MG1 when the first rotary electric machine MG1 reaches its maximum output (second maximum output torque Tm1). is equal to the ratio of the torque of the internal combustion engine EG (first maximum output torque Te1) when the maximum output is achieved. That is, in this embodiment, the following formula holds.
  • the torque transmitted from the first rotating element E1 to the second rotating element E2 and the third rotation are
  • the torque transmitted from the element E3 to the second rotating element E2 can be balanced. Therefore, the relationship between the rotation speed of the first rotating element E1 and the rotation speed of the third rotating element E3 is greatly changed in a state where the internal combustion engine EG has the maximum output and the first rotating electric machine MG1 has the maximum output. Therefore, the torque of the internal combustion engine EG and the torque of the first rotating electric machine MG1 can be stably transmitted to the first output member O1.
  • “equivalent” means that these numerical values are completely the same, and in addition, the range in which these numerical values can be considered to be the same is determined according to the characteristics of each numerical value. is within a preset range (for example, within ⁇ 10% of the reference value).
  • FIG. 8 shows an example of the relationship between the vehicle speed and various values while the specific acceleration control is being executed in the vehicle drive system 100 of this embodiment.
  • a graph representing the relationship of output to vehicle speed (hereinafter referred to as "output graph") and a graph representing the relationship of rotational speed of each rotating element to vehicle speed (hereinafter referred to as "rotational )
  • rotational a graph representing the relationship between the torque of each rotating element and the vehicle speed
  • ⁇ torque graph'' a graph representing the relationship between the gear ratio of each rotating element and the vehicle speed
  • the ⁇ transmission ratio graph is shown.
  • the operation mode is the first HV mode
  • the first rotating electrical machine MG1 is in the power running state
  • the second rotating electrical machine MG2 is generating power using the torque of the internal combustion engine EG.
  • Pt indicates the sum of the output of the internal combustion engine EG and the output of the power storage device BT.
  • the maximum output of the power storage device BT is smaller than the maximum output of each of the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2.
  • Ne indicates the first rotation speed Ne, which is the rotation speed of the internal combustion engine EG, converted into the rotation speed of the first rotation element E1.
  • Nm indicates the second rotation speed Nm, which is the rotation speed of the first rotary electric machine MG1, converted into the rotation speed of the third rotating element E3.
  • No indicates the output rotation speed No, which is the rotation speed of the first output member O1 converted to the rotation speed of the second rotation element E2.
  • Te indicates the first torque Te, which is the torque transmitted to the first rotating element E1 drivingly connected to the internal combustion engine EG.
  • Tm indicates the second torque Tm, which is the torque transmitted to the third rotating element E3 drivingly connected to the first rotating electric machine MG1.
  • To indicates the output torque To, which is the torque transmitted to the second rotating element E2 drivingly connected to the first output member O1.
  • Re is the ratio of the rotational speed of the first rotating element E1 drivingly connected to the internal combustion engine EG to the rotational speed of the second rotating element E2 drivingly connected to the first output member O1.
  • a first gear ratio Re is shown.
  • Rm indicates a second gear ratio Rm, which is the ratio of the rotational speed of the third rotating element E3 drivingly connected to the first rotary electric machine MG1 to the rotational speed of the second rotating element E2.
  • the vehicle speed becomes V1 by executing the first control of the specific acceleration control when the vehicle speed is zero.
  • the first rotation speed Ne, the second rotation speed Nm, and the output rotation speed No are respectively the first target rotation speed Ne1, the second target rotation speed Nm1, and the first output rotation speed No1.
  • the first gear ratio Re and the second gear ratio Rm are maintained constant in the vehicle speed range from zero to V1.
  • each of the first torque Te, the second torque Tm, and the output torque To is maintained constant in the range of the vehicle speed from zero to V1.
  • the second specific acceleration control is then executed.
  • the second rotation speed Nm increases from the second target rotation speed Nm1 while the first rotation speed Ne is maintained at the first target rotation speed Ne1, so the vehicle speed further increases from V1.
  • the first rotation speed Ne, the second rotation speed Nm, and the output rotation speed No become the same. Accordingly, when the vehicle speed reaches V2, both the first gear ratio Re and the second gear ratio Rm are set to one.
  • the second torque Tm (here, the maximum outputtable value of the second torque Tm) decreases as the second rotation speed Nm increases. This is because the back electromotive force generated in the first rotating electrical machine MG1 increases as the rotation speed of the first rotating electrical machine MG1 increases.
  • the control device 10 performs control to increase the negative torque of the second rotary electric machine MG2 so that the first torque Te decreases in accordance with the decrease in the second torque Tm.
  • a first torque Te which is the sum of the torque of the internal combustion engine EG and the torque of the second rotating electrical machine MG2, which are transmitted from the first rotating element E1 to the second rotating element E2, and the third rotating element E3
  • the first torque Te is controlled so as to be balanced with the second torque Tm, which is the torque of the first rotary electric machine MG1 transmitted from to the second rotating element E2.
  • the second rotary electric machine MG2 is controlled to output negative torque corresponding to the amount of decrease in the second torque Tm.
  • the vehicle drive system 100 further includes the second rotating electric machine MG2 including the second rotor RT2,
  • the second rotor RT2 is drivingly connected to the first rotating element E1
  • the control device 10 rotates the first rotary element E1 from the internal combustion engine EG and the second rotary electric machine MG2 side according to the torque of the first rotary electric machine MG1 that decreases as the second rotation speed Nm increases. Control is performed to increase the negative torque of the second rotary electric machine MG2 so that the transmitted torque (first torque Te) is reduced.
  • the torque of the internal combustion engine EG can be used to cause the second rotary electric machine MG2 to generate power.
  • the second rotation speed Nm and the output rotation speed No are set to the maximum rotation speed while the first rotation speed Ne is maintained at the first target rotation speed Ne1.
  • the vehicle speed further increases from V2 and finally reaches V3, which is the maximum vehicle speed.
  • 9 and 10 each show an example of the configuration of the vehicle drive device 100 according to this embodiment.
  • the direction along the rotation axis of the rotating member (for example, the input member I, the first rotor RT1 of the first rotating electric machine MG1, etc.) in the vehicle drive device 100 is referred to as the "axial direction L ”.
  • One side in the axial direction L is referred to as “first axial side L1”
  • the other side in the axial direction L is referred to as "second axial side L2”.
  • the side on which the input member I is arranged with respect to the internal combustion engine EG is defined as the first axial side L1
  • the opposite side is defined as the second axial side L2.
  • the direction orthogonal to the rotation axis of the rotating member in the vehicle drive device 100 is defined as the "radial direction R" with respect to each rotation axis.
  • radial direction R when it is not necessary to distinguish which rotation axis is used as a reference, or when it is clear which rotation axis is used as a reference, it may simply be described as “radial direction R”.
  • the vehicle drive system 100 does not include the first engagement device CL1 and the second engagement device CL2. Therefore, in this example, the vehicle drive system 100 does not have the second HV mode and the first EV mode as operation modes.
  • the input member I, the second rotating electric machine MG2, and the distribution differential gear mechanism SP are coaxially arranged.
  • the first rotating electric machine MG1 is arranged on a separate shaft from the input member I, the second rotating electric machine MG2, and the distribution differential gear mechanism SP.
  • the first output member O1 and the first output differential gear mechanism DF1 are arranged on a separate axis from the input member I, the second rotating electrical machine MG2, the distribution differential gear mechanism SP, and the first rotating electrical machine MG1. It is
  • the distribution differential gear mechanism SP includes a first planetary gear mechanism PG1.
  • the first planetary gear mechanism PG1 includes a first carrier CA1 that supports the first pinion gear P1, a first sun gear S1 that meshes with the first pinion gear P1, and a radially outer side of the first sun gear S1.
  • a single pinion type planetary gear mechanism provided with a first ring gear R1 that is arranged at and meshes with the first pinion gear P1.
  • the first sun gear S1 functions as the first rotating element E1.
  • the first carrier CA1 functions as the second rotating element E2.
  • the first ring gear R1 functions as the third rotating element E3.
  • the first sun gear S1 is connected to the input member I so as to rotate integrally.
  • the input member I is an input shaft 1 extending along the axial direction L.
  • the first sun gear S1 is coupled to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2.
  • the second rotating electric machine MG2 is arranged on the first side L1 in the axial direction with respect to the first sun gear S1, and the input shaft 1 is arranged on the second side L2 in the axial direction.
  • the first ring gear R1 is connected to rotate integrally with the second gear 22.
  • the second gear 22 is coaxial with the first ring gear R1 and arranged outside in the radial direction R with respect to the first ring gear R1.
  • the second gear 22 is coupled to rotate in conjunction with the first gear 21 via the first idler gear IG1. That is, the second gear 22 and the first gear 21 mesh with the first idler gear IG1 at different positions in the circumferential direction of the first idler gear IG1.
  • the first gear 21 is coupled to rotate integrally with the first rotor RT1 of the first rotating electric machine MG1.
  • the first gear 21 is formed with a smaller diameter than the second gear 22 . Therefore, the gear ratio of the second gear 22 to the first gear 21 is greater than one.
  • the rotation of the first rotor RT ⁇ b>1 is decelerated and transmitted to the second gear 22 .
  • the first gear 21 is arranged on the second side L2 in the axial direction with respect to the first rotor RT1.
  • the first carrier CA1 is connected to the distribution output gear 3 so as to rotate integrally.
  • the distribution output gear 3 is coupled to rotate in conjunction with the first differential input gear 4 via a second idler gear IG2. That is, the distribution output gear 3 and the first differential input gear 4 mesh with the second idler gear IG2 at different positions in the circumferential direction of the second idler gear IG2.
  • the distribution output gear 3 is arranged on the second axial side L2 with respect to the distribution differential gear mechanism SP.
  • the first differential input gear 4 is an input element of the first output differential gear mechanism DF1.
  • the first differential input gear 4 functions as the first output member O1.
  • the first differential input gear 4 is formed to have a larger diameter than the distribution output gear 3 . Therefore, the gear ratio of the first differential input gear 4 to the distribution output gear 3 is greater than one. Therefore, the rotation of the distribution output gear 3 is decelerated and transmitted to the first differential input gear 4 .
  • the distribution output gear 3 and the first differential input gear 4 change the speed of the rotation transmitted from the distribution differential gear mechanism SP and transmit it to the first output member O1. It functions as a transmission TM (here, a speed reducer).
  • the vehicle drive system 100 does not include the first engagement device CL1 and the second engagement device CL2, similarly to the example shown in FIG. 10
  • the input member I, the first rotating electrical machine MG1, the second rotating electrical machine MG2, and the distribution differential gear mechanism SP are coaxially arranged. Then, from the second side L2 in the axial direction, the internal combustion engine EG, the second rotating electrical machine MG2, the first rotating electrical machine MG1, and the distribution differential gear mechanism SP are arranged in that order. Further, the first output member O1 and the first output differential gear mechanism DF1 are arranged so that their rotation axes are orthogonal to the rotation axes of the input member I and the like.
  • the first planetary gear mechanism PG1 does not have the first ring gear R1.
  • the first planetary gear mechanism PG1 includes a large sun gear S11 and a small sun gear S12 instead of the first sun gear S1, and an inner pinion gear P11 and an outer pinion gear P12 instead of the first pinion gear P1.
  • the large-diameter sun gear S11 is coupled to rotate integrally with the input shaft 1 and the second rotor RT2 of the second rotating electric machine MG2.
  • the large-diameter sun gear S11 functions as the first rotating element E1.
  • the small-diameter sun gear S12 is formed to have a smaller diameter than the large-diameter sun gear S11.
  • the small-diameter sun gear S12 is coupled to rotate integrally with the first rotor RT1 of the first rotating electric machine MG1.
  • the small sun gear S12 functions as the third rotating element E3.
  • the small sun gear S12 is arranged on the second side L2 in the axial direction with respect to the large sun gear S11.
  • the inner pinion gear P11 meshes with the small diameter sun gear S12.
  • the outer pinion gear P12 is arranged outside in the radial direction R with respect to the inner pinion gear P11.
  • the outer pinion gear P12 meshes with both the inner pinion gear P11 and the large sun gear S11.
  • the first carrier CA1 supports the inner pinion gear P11 and the outer pinion gear P12. Then, the first carrier CA1 functions as the second rotating element E2.
  • the transmission TM includes a second planetary gear mechanism PG2.
  • the second planetary gear mechanism PG2 includes a second carrier CA2 that supports the second pinion gear P2, a second sun gear S2 that meshes with the second pinion gear P2, and a radially outer side of the second sun gear S2. and a second ring gear R2 that is arranged in the second pinion gear P2 and meshes with the second pinion gear P2.
  • the second sun gear S2 is connected to rotate integrally with the first carrier CA1.
  • the second ring gear R2 is fixed to the non-rotating member NR. Therefore, the rotation of the first carrier CA1 transmitted to the second sun gear S2 is decelerated and transmitted to the second carrier CA2.
  • the second carrier CA2 is connected to the driving pinion gear 6 via the propeller shaft 5 extending along the axial direction L so as to rotate integrally.
  • the drive pinion gear 6 is arranged such that the rotation axis of the drive pinion gear 6 is along the axial direction L.
  • the drive pinion gear 6 meshes with the first differential input gear 4 .
  • the first differential input gear 4 is arranged so that the rotational axis of the first differential input gear 4 is perpendicular to the rotational axis of the drive pinion gear 6 .
  • the first differential input gear 4 and the drive pinion gear 6 are hypoid gears.
  • the first differential input gear 4 is formed to have a larger diameter than the driving pinion gear 6 . Therefore, the gear ratio of the first differential input gear 4 to the drive pinion gear 6 is greater than one. Therefore, the rotation of the driving pinion gear 6 is decelerated and transmitted to the first differential input gear 4 .
  • the drive pinion gear 6 and the first differential input gear 4 function as a transmission TM (reducer here) together with the second planetary gear mechanism PG2.
  • FIG. 11 the position of the second rotating electric machine MG2 and the configuration of the engaging device are different from those of the first embodiment (see FIG. 1). Differences from the first embodiment will be mainly described below. Note that points that are not particularly described are the same as those in the first embodiment.
  • the vehicle drive system 100 includes a third engagement device CL3 and a fourth engagement device CL4 instead of the first engagement device CL1 and the second engagement device CL2. and a fifth engaging device CL5.
  • the third engagement device CL3 is an engagement device that connects and disconnects power transmission between the first output member O1 and the second rotating element E2 of the distribution differential gear mechanism SP.
  • the third engagement device CL3 is the second clutch C2 that connects and disconnects power transmission between the first output member O1 and the second rotating element E2.
  • the fourth engagement device CL4 is an engagement device that selectively fixes the second rotating element E2 of the distribution differential gear mechanism SP to the non-rotating member NR.
  • the fourth engagement device CL4 is a second brake B2 that selectively fixes the second rotating element E2 to the non-rotating member NR.
  • the fifth engagement device CL5 is an engagement device that selectively fixes the first rotating element E1 of the distribution differential gear mechanism SP to the non-rotating member NR.
  • the fifth engagement device CL5 is a third brake B3 that selectively fixes the first rotating element E1 to the non-rotating member NR.
  • the second rotor RT2 of the second rotating electric machine MG2 is drivingly connected to the first output member O1.
  • the second rotor RT2 is drivingly connected to the first output member O1 via the transmission TM.
  • the second rotor RT2 is positioned on the side of the distributing differential gear mechanism SP with respect to the second clutch C2 in the power transmission path connecting the distributing differential gear mechanism SP and the first output member O1. is placed on the opposite side. That is, in this embodiment, the second clutch C2 connects and disconnects power transmission between the second rotor RT2 and the second rotating element E2.
  • the first output member O1 corresponds to the target output member Ot.
  • the engagement control section 15 controls the engagement states of the third engagement device CL3, the fourth engagement device CL4, and the fifth engagement device CL5.
  • the vehicle drive system 100 has the first HV mode, the second HV mode, the first EV mode, and the first HV mode as operation modes. 2EV mode.
  • FIG. 13 shows the third engagement device CL3, the fourth engagement device CL4, the fifth engagement device CL5, the internal combustion engine EG, the first rotary electric machine MG1, , and the states of the second rotating electric machine MG2.
  • the fifth engagement device CL5 in FIG. "x" indicates that the target engagement device is in the released state.
  • the second clutch C2 as the third engagement device CL3 is engaged, the second brake B2 as the fourth engagement device CL4, and the second clutch C2 as the fourth engagement device CL4. Both of the third brake B3 as the 5-engagement device CL5 are released. Then, the internal combustion engine EG is driven. In addition, the first rotary electric machine MG1 generates a reaction torque of the torque transmitted from the internal combustion engine EG to the first rotating element E1, and transmits it to the third rotating element E3. As a result, the torque of the internal combustion engine EG and the torque of the first rotary electric machine MG1 are combined and transmitted to the second rotating element E2, and then transmitted from the second rotating element E2 to the first output member O1.
  • the second rotating electric machine MG2 is controlled to be in the power running state as necessary.
  • the third engagement device CL3 is engaged, the torque of the internal combustion engine EG is transmitted to the first rotating element E1, and the torque of the first rotating electric machine MG1 is transmitted. corresponds to the "fourth mode" in which is transmitted to the third rotating element E3.
  • the fifth engagement device CL5 when the first rotating electric machine MG1 is in the power running state, the fifth engagement device CL5 is put in the disengaged state, and the torque of the internal combustion engine EG and the first rotating electric machine MG1 is reduced to This corresponds to the "eighth mode" in which the torque is transmitted to the first output member O1 and the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot (here, the first output member O1).
  • the second clutch C2 as the third engagement device CL3 is released, the second brake B2 as the fourth engagement device CL4 is engaged, and the fifth engagement device CL4 is engaged.
  • the third brake B3 as the device CL5 is released.
  • the internal combustion engine EG is driven.
  • the first rotating electrical machine MG1 is controlled to the power generation state, and the second rotating electrical machine MG2 is controlled to the power running state.
  • the torque of the internal combustion engine EG causes the first rotating electric machine MG1 to generate power via the distribution differential gear mechanism SP. .
  • the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot (here, the first output member O1).
  • the third engagement device CL3 is in the released state
  • the fourth engagement device CL4 is in the engaged state
  • the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot. and corresponds to the "sixth mode" in which the torque of the internal combustion engine EG is transmitted to the first rotating electrical machine MG1 via the differential gear mechanism SP for distribution and the first rotating electrical machine MG1 generates power.
  • the third engagement device CL3 is in the released state, the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot, and the internal combustion engine and the first rotating electrical machine corresponds to the "fifth mode" in which the torque is not output.
  • the second clutch C2 as the third engagement device CL3 is engaged, the second brake B2 as the fourth engagement device CL4 is released, and the fifth engagement device CL4 is released.
  • a third brake B3 as the device CL5 is engaged.
  • the internal combustion engine EG is brought to a stopped state, and both the first rotary electric machine MG1 and the second rotary electric machine MG2 are brought to a power running state.
  • the torque of the first rotating electrical machine MG1 is transmitted to the first output member O1 via the distribution differential gear mechanism SP, and the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot (here, the first It is transmitted to the output member O1).
  • the fifth engagement device CL5 is in the engaged state, the torque of the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is transmitted to the first output member O1. is transmitted to the target output member Ot, and the internal combustion engine EG is in a stopped state in which no torque is output.
  • the operation mode when the operation mode is the second EV mode, the operation mode is set to the eighth mode by changing the third brake B3 as the fifth engagement device CL5 from the engaged state to the released state. It is possible to shift to the first HV mode.
  • FIG. 14 shows an example of the relationship between the vehicle speed and various values while the specific acceleration control is being executed in the vehicle drive system 100 of this embodiment. Specifically, similarly to FIG. 8, an output graph, a rotation speed graph, a torque graph, and a gear ratio graph are shown in order from the top of FIG. In the example shown in FIG. 14, the vehicle is running in the first HV mode, which is the eighth mode.
  • the torque of the internal combustion engine EG is transmitted to the first output member O1 in addition to the torque of the first rotating electric machine MG1. can be transmitted to
  • 15 and 16 each show an example of the configuration of the vehicle drive device 100 according to this embodiment. 15 and 16, similarly to FIGS. 9 and 10, "axial direction L" and “radial direction R" are defined.
  • the vehicle drive system 100 does not include the third engagement device CL3, the fourth engagement device CL4, and the fifth engagement device CL5. Therefore, in this example, the vehicle drive system 100 does not have the second HV mode and the second EV mode as operation modes.
  • the first gear 21 meshes with the second gear 22 in this example.
  • the first gear 21 is coupled to rotate integrally with the first rotor RT1 of the first rotating electric machine MG1.
  • the first gear 21 is formed to have a smaller diameter than the second gear 22 . Therefore, the gear ratio of the second gear 22 to the first gear 21 is greater than one. Therefore, the rotation of the first rotor RT ⁇ b>1 is decelerated and transmitted to the second gear 22 .
  • the first carrier CA1 is connected to the fourth gear 24 in addition to the distribution output gear 3 so as to rotate integrally.
  • the fourth gear 24 meshes with the third gear 23 .
  • the fourth gear 24 is arranged on the axial first side L1 with respect to the distribution differential gear mechanism SP.
  • the third gear 23 is coupled to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2.
  • the third gear 23 is formed with a smaller diameter than the fourth gear 24 . Therefore, the gear ratio of the fourth gear 24 to the third gear 23 is greater than one. Therefore, the rotation of the second rotor RT ⁇ b>2 is decelerated and transmitted to the fourth gear 24 .
  • the third gear 23 is arranged on the second axial side L2 with respect to the second rotor RT2.
  • the vehicle drive system 100 includes a third engagement device CL3, a fourth engagement device CL4, and a fifth engagement device CL5, similarly to the example shown in FIG. do not have.
  • the configuration of the first planetary gear mechanism PG1 of the distribution differential gear mechanism SP and the connection manner of the second rotating electric machine MG2 to the distribution differential gear mechanism SP are those of the example shown in FIG. is different from
  • the first planetary gear mechanism PG1 includes a small diameter pinion gear P13 and a large diameter pinion gear P14 instead of the inner pinion gear P11 and the outer pinion gear P12.
  • the small pinion gear P13 and the large pinion gear P14 are supported by the first carrier CA1.
  • the small pinion gear P13 meshes with the large sun gear S11.
  • the large diameter pinion gear P14 meshes with the small diameter sun gear S12.
  • the large-diameter pinion gear P14 is formed to have a larger diameter than the small-diameter pinion gear P13.
  • the first carrier CA1 is connected to the input shaft 1 so as to rotate integrally.
  • the large-diameter sun gear S11 is coupled to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2.
  • the small-diameter sun gear S12 is coupled to rotate integrally with the first rotor RT1 of the first rotary electric machine MG1. Therefore, in this example, the first carrier CA1 functions as the first rotating element E1.
  • the large-diameter sun gear S11 functions as the second rotating element E2.
  • the small-diameter sun gear S12 functions as the third rotating element E3.
  • the vehicle drive device 100 which concerns on 3rd Embodiment is demonstrated with reference to FIGS. 17-19.
  • the position of the second rotating electric machine MG2 is different from that in the second embodiment (see FIG. 11).
  • the following description focuses on the differences from the second embodiment. Note that points that are not particularly described are the same as those in the second embodiment.
  • the vehicle drive system 100 includes a second output member O2 that is drivingly connected to a second wheel W2 different from the first wheel W1, and a side of the second output member O2. and a second output differential gear mechanism DF2 that distributes the rotation transmitted from the second wheel W2 to the pair of second wheels W2.
  • the second rotor RT2 of the second rotating electric machine MG2 is drivingly connected to the second output member O2. Therefore, in this embodiment, the second output member O2 corresponds to the target output member Ot.
  • Each state of the two-rotating electric machine MG2 is the same as that of the second embodiment (see FIG. 13), so detailed description thereof will be omitted.
  • 18 and 19 each show an example of the configuration of the vehicle drive device 100 according to this embodiment. 18 and 19, illustration of the second rotating electrical machine MG2 and the configuration around the second rotating electrical machine MG2 is omitted. 18 and 19, similarly to FIGS. 15 and 16, "axial direction L" and "radial direction R" are defined.
  • the vehicle drive system 100 includes the third engagement device CL3 and the fourth engagement device CL4, and does not include the fifth engagement device CL5. Therefore, in this example, the vehicle drive system 100 does not have the second EV mode as an operation mode.
  • the configuration of the power transmission path between the distribution differential gear mechanism SP and the first output member O1 is different from the example shown in FIG.
  • the second clutch C2 as the third engagement device CL3 connects and disconnects power transmission between the first carrier CA1 as the second rotating element E2 and the distribution output gear 3.
  • the second brake B2 as the fourth engagement device CL4 is configured to selectively fix the first carrier CA1 as the second rotating element E2 to the non-rotating member NR.
  • the distribution output gear 3 is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism SP.
  • the vehicle drive system 100 includes a third engagement device CL3 and a fourth engagement device CL4, and a fifth engagement device CL5, similarly to the example illustrated in FIG. not
  • the input member I, the distribution differential gear mechanism SP, and the first rotary electric machine MG1 are coaxially arranged.
  • the first output differential gear mechanism DF1 is arranged on a separate axis from the input member I, the distribution differential gear mechanism SP, and the first rotary electric machine MG1.
  • the first planetary gear mechanism PG1 does not have the first ring gear R1.
  • the first planetary gear mechanism PG1 includes a large-diameter sun gear S11 and a small-diameter sun gear S12 instead of the first sun gear S1, and a small-diameter pinion gear P13 and a large-diameter pinion gear P14 instead of the first pinion gear P1.
  • the distribution output gear 3 is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism SP.
  • the second rotating electric machine MG2 is arranged on the first side L1 in the axial direction with respect to the distribution output gear 3 .
  • the vehicle drive device 100 includes a counter gear mechanism CG including a counter input gear 81 and a counter output gear 82.
  • the counter input gear 81 is coupled to rotate in conjunction with the distribution output gear 3 via a third idler gear IG3. That is, the counter input gear 81 and the distribution output gear 3 mesh with the third idler gear IG3 at different positions in the circumferential direction of the third idler gear IG3.
  • the counter output gear 82 meshes with the first differential input gear 4 .
  • the counter output gear 82 is formed with a smaller diameter than the counter input gear 81 .
  • the counter input gear 81 is formed with a larger diameter than the distribution output gear 3 . Therefore, the gear ratio of the counter input gear 81 to the distribution output gear 3 is greater than one. Therefore, the rotation of the distribution output gear 3 is decelerated and transmitted to the counter input gear 81 .
  • the first differential input gear 4 is formed to have a larger diameter than the counter output gear 82 . Therefore, the gear ratio of the first differential input gear 4 to the counter output gear 82 is greater than one. Therefore, the rotation of the counter output gear 82 is decelerated and transmitted to the first differential input gear 4 .
  • the distribution output gear 3, the counter input gear 81, the counter output gear 82, and the first differential input gear 4 speed up the rotation transmitted from the distribution differential gear mechanism SP. function as a transmission TM (reducer in this case) that transmits power to the side of the first output member O1.
  • the vehicle drive device 100 a second output member O2 drivingly connected to a second wheel W2 different from the first wheel W1; a second rotating electric machine MG2 including a second rotor RT2 drivingly connected to the first output member O1 or the second output member O2; A third engagement device CL3 for connecting and disconnecting power transmission between the first output member O1 and the second rotating element E2 is further provided.
  • the torque of the second rotating electric machine MG2 can be transmitted to the first output member O1 or the second output member O2. Therefore, the vehicle can be run using the torque of the second rotating electric machine MG2. Further, according to this configuration, between the internal combustion engine EG and the first rotating electric machine MG1 and the first output member O1, it is possible to appropriately switch between a state in which power transmission is possible and a state in which power transmission is interrupted. .
  • the vehicle drive system 100 operates in the fourth mode (here, the first HV mode) and the fifth mode (here, the first EV mode).
  • a target output member Ot is the one of the first output member O1 and the second output member O2 that is drivingly connected to the second rotor RT2, and
  • the third engagement device CL3 is engaged so that the torque of the internal combustion engine EG is transmitted to the first rotating element E1, and the torque of the first rotating electric machine MG1 is transmitted to the third rotating element E3.
  • the third engagement device CL3 is in the released state, the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot, and the internal combustion engine EG and the first rotating electrical machine MG1 are in a stopped state in which no torque is output. is,
  • the control device 10 executes the specific acceleration control when the operation mode is the fourth mode.
  • the torque of the first rotary electric machine MG1 and the torque of the internal combustion engine EG can be combined and transmitted to the first output member O1.
  • the specific acceleration control can be appropriately executed.
  • the torque of the second rotating electrical machine MG2 can be transmitted to the target output member Ot while the internal combustion engine EG and the first rotating electrical machine MG1 are brought into a stopped state. Therefore, in the fifth mode, among the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2, the vehicle can be driven by the torque of only the second rotating electrical machine MG2.
  • the vehicle drive device 100 further comprising a fourth engagement device CL4 for selectively fixing the second rotating element E2 to the non-rotating member NR;
  • a sixth mode (here, second HV mode) is further provided as an operation mode, In the sixth mode, the third engagement device CL3 is in the disengaged state, the fourth engagement device CL4 is in the engaged state, the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot, and the torque of the internal combustion engine EG is It is transmitted to the first rotary electric machine MG1 via the distribution differential gear mechanism SP, and the first rotary electric machine MG1 generates electric power.
  • the torque of the internal combustion engine EG is used to generate power by the first electric rotating machine MG1, while the torque of the second electric rotating machine MG2 is used to drive the vehicle.
  • the vehicle drive device 100 a second output member O2 drivingly connected to a second wheel W2 different from the first wheel W1; a second rotating electric machine MG2 including a second rotor RT2 drivingly connected to the first output member O1 or the second output member O2; a fifth engagement device CL5 for selectively fixing the first rotating element E1 to the non-rotating member NR;
  • a seventh mode here, the second EV mode
  • an eighth mode here, the first HV mode
  • a target output member Ot is the one of the first output member O1 and the second output member O2 that is drivingly connected to the second rotor RT2
  • the fifth engagement device CL5 is engaged, the torque of the first rotating electric machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot.
  • the fifth engagement device CL5 is in the released state, the torque of the internal combustion engine EG and the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is the target output. It is transmitted to the member Ot.
  • the vehicle in the seventh mode, while the internal combustion engine EG is stopped, the torque of the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is transferred to the target output member Ot. can be transmitted to Therefore, in the seventh mode, of the internal combustion engine EG, the first rotating electric machine MG1, and the second rotating electric machine MG2, the vehicle can be driven by the torque of the first rotating electric machine MG1 and the second rotating electric machine MG2. Further, according to this configuration, in the eighth mode, the torque of the internal combustion engine EG and the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot. be able to. Therefore, in the eighth mode, the vehicle can be driven by all the torques of the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2.
  • FIG. 22 shows an example of the configuration of the vehicle drive system 100 according to the first embodiment.
  • the vehicle drive device 100 includes an input member I, a first output member O1, a first rotating electric machine MG1, a first planetary gear mechanism PG1, and a reduction gear mechanism RG.
  • the vehicle drive device 100 further includes a second rotating electric machine MG2 and a first output differential gear mechanism DF1.
  • the input member I is drivingly connected to the internal combustion engine EG.
  • the input member I is an input shaft 1 formed to extend along the axial direction L.
  • the internal combustion engine EG functions as a driving force source for the first wheels W1.
  • the internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
  • the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit torque, and the two rotating elements are connected so as to rotate integrally, or It includes a state in which two rotating elements are coupled to transmit torque via one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains.
  • the transmission member may include an engagement device that selectively transmits rotation and torque, such as a friction engagement device and a mesh type engagement device.
  • driving connection it means a state in which each rotating element is drivingly connected without intervening another rotating element.
  • the input member I is arranged on the first axis X1.
  • the second rotating electric machine MG2 is also arranged on the first axis X1.
  • the first planetary gear mechanism PG1 is arranged on a second axis X2 parallel to the first axis X1 and different from the first axis X1.
  • the first rotating electric machine MG1 is also arranged on the second axis X2.
  • the first output member O1 and the first output differential gear mechanism DF1 are arranged on the third axis X3 different from the first axis X1 and the second axis X2.
  • the direction parallel to the first axis X1 and the second axis X2 is defined as "axial direction L".
  • One side in the axial direction L is referred to as “first axial side L1”
  • the other side in the axial direction L is referred to as “second axial side L2”.
  • first axial side L1 the side on which the input member I is arranged with respect to the internal combustion engine EG
  • second axial side L2 the opposite side
  • a direction perpendicular to each of the axes X1 to X3 is defined as a "radial direction R" with respect to each axis.
  • first axis X1, the second axis X2, and the third axis X3 are arranged parallel to each other.
  • the first rotating electric machine MG1 includes a first stator ST1 and a first rotor RT1.
  • the first stator ST1 is fixed to the non-rotating member NR (not shown).
  • the first rotor RT1 is rotatably supported with respect to the first stator ST1.
  • the non-rotating member NR is a case that accommodates the first rotating electric machine MG1 and the like.
  • the second rotating electric machine MG2 includes a second stator ST2 and a second rotor RT2.
  • the second stator ST2 is fixed to the non-rotating member NR (not shown).
  • the second rotor RT2 is rotatably supported with respect to the second stator ST2.
  • the second rotor RT2 is connected to the input member I so as to rotate together.
  • Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 functions as a motor (electric motor) that receives power supply and generates power, and functions as a generator (generator) that receives power supply and generates power. It has the function of Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 is electrically connected to a power storage device (not shown) such as a battery or a capacitor so as to transfer electric power to and from the power storage device. .
  • the first rotating electric machine MG1 functions as a driving force source for the first wheel W1.
  • the second rotating electric machine MG2 also functions as a driving force source for the first wheel W1.
  • the first planetary gear mechanism PG1 is a single pinion type planetary gear mechanism including a first sun gear S1, a first carrier CA1, and a first ring gear R1.
  • the first sun gear S1 functions as the third rotating element E3.
  • the first carrier CA1 functions as the second rotating element E2.
  • the first ring gear R1 functions as the first rotating element E1.
  • the first sun gear S1 is drivingly connected to the first rotor RT1.
  • the first sun gear S1 is arranged on the second axial side L2 with respect to the first rotor RT1.
  • the first sun gear S1 is connected to rotate integrally with the first rotor RT1.
  • the first carrier CA1 is drivingly connected to the first output member O1.
  • the first carrier CA1 supports a first pinion gear P1 that meshes with the first sun gear S1 and the first ring gear R1.
  • the first pinion gear P1 rotates (revolves) around its axis, and rotates (revolves) around the first sun gear S1 together with the first carrier CA1.
  • a plurality of first pinion gears P1 are provided at intervals along the revolution locus.
  • the first ring gear R1 is drivingly connected to the input member I via a reduction gear mechanism RG.
  • the first ring gear R1 is an internal tooth gear that is arranged outside in the radial direction R with respect to the revolution locus of the first pinion gear P1 and meshes with the first pinion gear P1.
  • the first ring gear R1 is formed on the inner peripheral surface of the cylindrical gear forming member 20. As shown in FIG.
  • the reduction gear mechanism RG is configured to reduce the speed of the rotation transmitted from the input member I side and transmit it to the first output member O1 side. In this embodiment, the reduction gear mechanism RG reduces the speed of rotation of the input member I and transmits it to the first ring gear R1 of the first planetary gear mechanism PG1.
  • the first output differential gear mechanism DF1 is configured to distribute the rotation of the first output member O1 to the pair of first wheels W1.
  • the first output differential gear mechanism DF1 includes a first differential input gear 4 that is an input element of the first output differential gear mechanism DF1.
  • the first differential input gear 4 is coupled to rotate in conjunction with the distribution output gear 3 via the second idler gear IG2. That is, the first differential input gear 4 and the distribution output gear 3 mesh with the second idler gear IG2 at different positions in the circumferential direction of the second idler gear IG2.
  • the distribution output gear 3 is connected to rotate integrally with the first carrier CA1, which is the output element of the first planetary gear mechanism PG1.
  • the distribution output gear 3 is arranged on the second axis X2.
  • the distribution output gear 3 is arranged on the second side L2 in the axial direction with respect to the first planetary gear mechanism PG1.
  • the first output member O1 is drivingly connected to the first wheel W1.
  • the first differential input gear 4 functions as the first output member O1.
  • the reduction gear mechanism RG includes a first gear 21 and a second gear 22.
  • the first gear 21 is connected to the input member I so as to rotate integrally.
  • the first gear 21 is arranged on the first axis X1. Further, in the present embodiment, the first gear 21 is arranged between the internal combustion engine EG and the second rotating electric machine MG2 in the axial direction L.
  • the second gear 22 is connected to rotate integrally with the first ring gear R1 of the first planetary gear mechanism PG1.
  • the second gear 22 is an externally toothed gear that is coupled to rotate in conjunction with the first gear 21 via the first idler gear IG1. That is, the first gear 21 and the second gear 22 mesh with the first idler gear IG1 at different positions in the circumferential direction of the first idler gear IG1.
  • the second gear 22 is formed on the outer peripheral surface of the gear forming member 20 . Further, in this embodiment, the second gear 22 is arranged on the second axis X2.
  • the second gear 22 is formed with a larger diameter than the first gear 21 .
  • the first gear 21 and the second gear 22 are arranged so that the rotation of the first gear 21 is reduced by a reduction ratio corresponding to the ratio of the diameters of the first gear 21 and the second gear 22 and transmitted to the second gear 22 . and are connected.
  • the first gear 21 and the second gear 22 are connected via the first idler gear IG1.
  • the vehicle drive system 100 an input member I drivingly connected to the internal combustion engine EG; a first output member O1 drivingly connected to the first wheel W1; a first rotating electric machine MG1 having a first rotor RT1; a single-pinion first planetary gear mechanism PG1 including a first sun gear S1, a first carrier CA1, and a first ring gear R1; a reduction gear mechanism RG that decelerates the rotation transmitted from the input member I side and transmits it to the first output member O1 side,
  • the first sun gear S1 is drivingly connected to the first rotor RT1, the first carrier CA1 is drivingly connected to the first output member O1;
  • the first ring gear R1 is drivingly connected to the input member I via the reduction gear mechanism RG,
  • the input member I is arranged on the first axis X1,
  • the first planetary gear mechanism PG1 is arranged on a second axis X2 parallel to the first axis X1 and different from the first axis X
  • the rotation transmitted from the input member I side is reduced in speed by the reduction gear mechanism RG and transmitted to the first ring gear R1. Therefore, the torque of the internal combustion engine EG is amplified and transmitted to the first planetary gear mechanism PG1. Then, the torque of the internal combustion engine EG and the torque of the first rotating electric machine MG1 are added together in the first planetary gear mechanism PG1 and transmitted to the first output member O1. As a result, it becomes possible to increase the output, particularly in the low and medium vehicle speed range, and the power from the driving force source such as the internal combustion engine EG can be efficiently transmitted to the first wheels W1.
  • the reduction gear mechanism RG includes the first gear 21 that rotates integrally with the input member I, and the first gear 21 that has a larger diameter than the first gear 21 and rotates integrally with the first ring gear R1. and a second gear 22 that The first gear 21 and the second gear 22 are connected to each other so that the rotation of the first gear 21 is reduced by a reduction ratio corresponding to the diameter ratio of the first gear 21 and the second gear 22 and transmitted to the second gear 22. .
  • the reduction gear mechanism RG can be appropriately configured without adding an additional shaft. Therefore, the dimension in the radial direction R of the vehicle drive device 100 can be kept small.
  • the arrangement area of the first gear 21 in the axial direction L, the arrangement area of the second gear 22 in the axial direction L, and the arrangement area of the first planetary gear mechanism PG1 in the axial direction L are mutually arranged. overlapping. As a result, the dimension of the vehicle drive device 100 in the axial direction L can be kept small. As described above, according to this configuration, a large torque can be transmitted to the first output member O1 while suppressing an increase in the size of the vehicle drive device 100 .
  • the second rotor RT2 is connected to the input member I so as to rotate integrally. Further, the input member I is drivingly connected to the first ring gear R1 via a reduction gear mechanism RG including a first gear 21 and a second gear 22. As shown in FIG.
  • the vehicle drive system 100 further includes the second rotating electric machine MG2 including the second rotor RT2,
  • the second rotor RT2 is drivingly connected to the first ring gear R1 via the first gear 21 and the second gear 22 .
  • the torque of the internal combustion engine EG, the torque of the first rotating electrical machine MG1, and the torque of the second rotating electrical machine MG2 can be combined by the first planetary gear mechanism PG1 and transmitted to the first output member O1. can. Therefore, it becomes possible to increase the output, particularly in the low and medium vehicle speed range, and the power from the driving force source such as the internal combustion engine EG can be efficiently transmitted to the first wheels W1.
  • the second gear 22 is arranged outside the first ring gear R1 in the radial direction R and at a position overlapping the first ring gear R1 when viewed in the radial direction R. It is a gear with external teeth.
  • "overlapping in a particular direction view” means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is two It refers to the existence of at least a part of an area that intersects two elements.
  • the first rotating electric machine MG1 is arranged on the second axis X2 on the opposite side of the internal combustion engine EG in the axial direction L with respect to the first planetary gear mechanism PG1. .
  • the first planetary gear mechanism PG1 can be arranged between the internal combustion engine EG and the first rotating electric machine MG1 in the axial direction L.
  • the first output member O1 that is drivingly connected to the first wheel W1 can be arranged closer to the central portion in the axial direction L of the vehicle drive device 100 . Therefore, for example, when the first output differential gear mechanism DF1 that distributes the rotation of the first output member O1 to the pair of first wheels W1 is provided, the first output differential gear mechanism DF1 and the pair of first Since the dimensional difference in the axial direction L of the drive shafts connecting the wheels W1 can be kept small, deterioration of the steering performance of the vehicle caused by the dimensional difference can be suppressed.
  • the second rotating electric machine MG2 is also arranged on the side opposite to the internal combustion engine EG side in the axial direction L with respect to the first planetary gear mechanism PG1.
  • the arrangement area in the axial direction L of the first rotating electrical machine MG1 and the arrangement area in the axial direction L of the second rotating electrical machine MG2 overlap each other.
  • FIG. 23 shows a velocity diagram of the reduction gear mechanism RG and the first planetary gear mechanism PG1 according to this embodiment.
  • vertical lines correspond to the rotation speed of each rotating element of the reduction gear mechanism RG and the first planetary gear mechanism PG1.
  • Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the reduction gear mechanism RG and the first planetary gear mechanism PG1.
  • the symbols shown above the vertical lines are the symbols of the corresponding rotating elements.
  • the symbols shown below the vertical lines are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above.
  • the rotation transmitted from the input member I to the first gear 21 of the reduction gear mechanism RG is reduced according to the diameter ratio between the first gear 21 and the second gear 22. ratio and transmitted to the second gear 22 . Therefore, the torques of the internal combustion engine EG and the second rotating electric machine MG2 are amplified and transmitted to the second gear 22 . Then, the torque transmitted from the second gear 22 to the first ring gear R1 of the first planetary gear mechanism PG1 and the torque transmitted from the first rotating electrical machine MG1 to the first sun gear S1 are combined in the first planetary gear mechanism PG1. They are added and output from the first carrier CA1.
  • FIG. 24 shows an example of the configuration of the vehicle drive system 100 according to the third embodiment.
  • the configuration of the reduction gear mechanism RG and the configuration of the power transmission path between the first planetary gear mechanism PG1 and the first output member O1 are different from those of the above example (see FIG. 22).
  • this example differs from the above example in that the second rotating electric machine MG2 functions as a driving force source for the second wheel W2, which is different from the first wheel W1.
  • first gear 21 and the second gear 22 are connected without interposing the first idler gear IG1. That is, in this embodiment, the first gear 21 and the second gear 22 are meshed with each other.
  • the vehicle drive device 100 further includes a first counter gear mechanism CG1, a first engagement device CL1, and a second engagement device CL2.
  • the first counter gear mechanism CG1 includes a first counter input gear 51 and a first counter output gear 52.
  • the first counter gear mechanism CG1 is arranged on the fourth axis X4 different from the axes X1 to X3.
  • the first counter input gear 51 meshes with the distribution output gear 3.
  • the distribution output gear 3 is arranged on the first side L1 in the axial direction with respect to the first planetary gear mechanism PG1.
  • the first counter output gear 52 meshes with the first differential input gear 4 .
  • the first counter output gear 52 is formed to have a smaller diameter than the first counter input gear 51 .
  • the first counter output gear 52 is arranged on the second side L2 in the axial direction from the first counter input gear 51 . Further, in the present embodiment, the arrangement area of the first counter output gear 52 in the axial direction L overlaps the arrangement area of the first planetary gear mechanism PG1 in the axial direction L. As shown in FIG.
  • the first engagement device CL1 is an engagement device that connects and disconnects power transmission between the first carrier CA1 of the first planetary gear mechanism PG1 and the first output member O1.
  • the first engagement device CL1 includes a first counter input gear 51 that meshes with the distribution output gear 3 rotating integrally with the first carrier CA1, and a first differential input gear as the first output member O1. It is a clutch that connects and disconnects power transmission with the first counter output gear 52 that meshes with 4.
  • the second engagement device CL2 is an engagement device that selectively fixes the first carrier CA1 of the first planetary gear mechanism PG1 to the non-rotating member NR.
  • the second engagement device CL2 is a brake that selectively fixes the first counter input gear 51, which meshes with the distribution output gear 3 that rotates integrally with the first carrier CA1, to the non-rotating member NR.
  • the second engagement device CL2 is arranged adjacent to the first engagement device CL1 on the second side L2 in the axial direction.
  • the first engagement device CL1 and the second engagement device CL2 are configured such that the state of engagement is changed by a common actuator.
  • first engagement device CL1 and the second engagement device CL2 are arranged on the fourth axis X4.
  • the first engagement device CL1 and the second engagement device CL2 are arranged on the first side L1 in the axial direction with respect to the first counter gear mechanism CG1.
  • the arrangement area in the axial direction L of the first engagement device CL1 and the second engagement device CL2 overlaps the arrangement region in the axial direction L of the first rotating electric machine MG1.
  • the vehicle drive device 100 further includes a second counter gear mechanism CG2, a second output differential gear mechanism DF2, and a second output member O2.
  • the second rotating electric machine MG2 is arranged on the fifth axis X5 different from the axes X1 to X4.
  • a second rotor RT2 of the second rotary electric machine MG2 is drivingly connected to the second output member O2 via a second counter gear mechanism CG2.
  • the second counter gear mechanism CG2 includes a second counter input gear 71 and a second counter output gear 72.
  • the second counter gear mechanism CG2 is arranged on the sixth axis X6 different from the axes X1 to X5.
  • the second counter input gear 71 meshes with the third gear 23 that is connected to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2.
  • the third gear 23 is arranged on the fifth axis X5.
  • the second counter output gear 72 is connected to rotate integrally with the second counter input gear 71 .
  • the second counter output gear 72 is formed with a smaller diameter than the second counter input gear 71 .
  • the second counter output gear 72 is arranged on the first side L1 in the axial direction from the second counter input gear 71 .
  • the second output differential gear mechanism DF2 is configured to distribute the rotation of the second output member O2 to the pair of second wheels W2.
  • the second output differential gear mechanism DF2 is arranged on the seventh axis X7 different from the axes X1 to X6.
  • the second output differential gear mechanism DF2 includes a second differential input gear 8 that is an input element of the second output differential gear mechanism DF2.
  • the second differential input gear 8 meshes with the second counter output gear 72 .
  • the second output member O2 is drivingly connected to the second wheel W2.
  • the second differential input gear 8 functions as the second output member O2. Therefore, in this embodiment, the second output member O2 is arranged on the seventh axis X7.
  • the operation mode of the vehicle drive device 100 is the HV mode.
  • the HV mode the internal combustion engine EG is driven, and the first rotary electric machine MG1 is set to the power running state so that the reaction force of the torque transmitted from the internal combustion engine EG to the first ring gear R1 is transmitted to the first sun gear S1. be done.
  • the torque of the internal combustion engine EG and the torque of the first rotary electric machine MG1 are combined and transmitted to the first carrier CA1, and then transmitted from the first carrier CA1 to the first output member O1.
  • the second rotating electric machine MG2 is controlled to be in the power running state as necessary.
  • the operation mode of the vehicle drive device 100 is the EV mode.
  • the internal combustion engine EG and the first rotating electrical machine MG1 are stopped.
  • the second rotating electric machine MG2 is set to the power running state. Thereby, the torque of the second rotating electric machine MG2 is transmitted to the second output member O2.
  • the operation mode of the vehicle drive device 100 becomes the series mode.
  • the internal combustion engine EG is driven and the first rotating electrical machine MG1 is driven to generate power.
  • the second rotating electric machine MG2 is set to the power running state.
  • the torque of the internal combustion engine EG causes the first rotating electrical machine MG1 to generate power via the first planetary gear mechanism PG1.
  • the torque of the second rotating electric machine MG2 is transmitted to the second output member O2.
  • the second rotating electric machine MG2 is driven using electric power generated by the first rotating electric machine MG1.
  • the vehicle drive device 100 includes the second rotating electric machine MG2 including the second rotor RT2 and the second output member drivingly connected to the second wheel W2 different from the first wheel W1.
  • a first engaging device CL1 for connecting and disconnecting power transmission between the first carrier CA1 and the first output member O1 and a second engaging device for selectively fixing the first carrier CA1 to the non-rotating member NR.
  • the second rotor RT2 is drivingly connected to the second output member O2
  • the first output member O1 is arranged on a third axis X3 different from the first axis X1 and the second axis X2
  • the first engagement device CL1 and the second engagement device CL2 are arranged on a fourth axis X4 different from the first axis X1, the second axis X2 and the third axis X3.
  • the torque of the internal combustion engine EG and the torque of the first rotating electrical machine MG1 can be combined by the first planetary gear mechanism PG1 and transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 can be added. of torque can be transmitted to the second output member O2. Therefore, it becomes possible to increase the output, particularly in the low and medium vehicle speed range, and the power from the driving force source such as the internal combustion engine EG can be efficiently transmitted to the first wheel W1 and the second wheel W2. Further, according to this configuration, by disengaging the first engagement device CL1, it is possible to realize the EV mode in which the vehicle is driven by the driving force of the second rotating electric machine MG2.
  • a power generation mode in which the first rotary electric machine MG1 generates power using the torque of the internal combustion engine EG, or the electric power generated in the power generation mode is used to generate the second rotary electric machine.
  • a series mode for driving MG2 can be realized.
  • FIG. 25 shows an example of the configuration of the vehicle drive system 100 according to the first embodiment.
  • the vehicle drive device 100 includes an input member I, a first output member O1, a first rotating electric machine MG1, a first planetary gear mechanism PG1, and a first reduction gear RG1. ing.
  • the vehicle drive device 100 further includes a second rotating electric machine MG2 and a first output differential gear mechanism DF1.
  • axial direction L the direction along the rotation axis of the input member I
  • first axial side L1 One side in the axial direction L
  • second axial side L2 the other side in the axial direction L
  • first axial side L1 the side on which the input member I is arranged with respect to the internal combustion engine EG
  • first axial side L1 the side on which the input member I is arranged with respect to the internal combustion engine EG
  • first axial side L1 the side on which the input member I is arranged with respect to the internal combustion engine EG
  • second axial side L2 A direction orthogonal to the axial direction L is defined as a "radial direction R”.
  • the input member I is drivingly connected to the internal combustion engine EG.
  • the input member I is an input shaft 1 formed to extend along the axial direction L.
  • the internal combustion engine EG functions as a driving force source for the first wheels W1.
  • the internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
  • the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit torque, and the two rotating elements are connected so as to rotate integrally, or the two rotating elements are connected to rotate together. It includes a state in which two rotating elements are connected so as to be able to transmit torque via one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains.
  • the transmission member may include an engagement device that selectively transmits rotation and torque, such as a friction engagement device and a mesh type engagement device.
  • the first rotating electric machine MG1 includes a first stator ST1 and a first rotor RT1.
  • the first stator ST1 is fixed to the non-rotating member NR (not shown).
  • the first rotor RT1 is rotatably supported with respect to the first stator ST1.
  • the non-rotating member NR is a case that accommodates the first rotating electric machine MG1 and the like.
  • the second rotating electric machine MG2 includes a second stator ST2 and a second rotor RT2.
  • the second stator ST2 is fixed to the non-rotating member NR (not shown).
  • the second rotor RT2 is rotatably supported with respect to the second stator ST2.
  • the second rotor RT2 is connected to the input member I so as to rotate together.
  • Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 functions as a motor (electric motor) that receives power supply and generates power, and functions as a generator (generator) that receives power supply and generates power. It has the function of Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 is electrically connected to a power storage device (not shown) such as a battery or a capacitor so as to transfer electric power to and from the power storage device. .
  • a power storage device such as a battery or a capacitor so as to transfer electric power to and from the power storage device.
  • Each of the first rotating electric machine MG1 and the second rotating electric machine MG2 functions as a driving force source for the first wheel W1.
  • the first planetary gear mechanism PG1 includes a first rotating element E1, a second rotating element E2, and a third rotating element E3.
  • the first planetary gear mechanism PG1 is configured such that the first rotating element E1, the second rotating element E2, and the third rotating element E3 always rotate independently of each other.
  • the first planetary gear mechanism PG1 is configured such that the rotation speeds of the first rotation element E1, the second rotation element E2, and the third rotation element E3 are in the order described.
  • “the order of rotational speed” means the order of rotational speed in the rotating state of each rotating element.
  • the rotational speed of each rotating element varies depending on the rotational state of the differential gear mechanism, but the order of the rotational speed of each rotating element is fixed because it is determined by the structure of the differential gear mechanism.
  • the order of rotation speed of each rotating element is the same as the order of arrangement in the velocity diagram (see FIG. 26, etc.) of each rotating element.
  • the “arrangement order of each rotating element in the velocity diagram” is the order in which the axes corresponding to each rotating element in the velocity diagram are arranged along the direction perpendicular to the axis.
  • the arrangement direction of the shaft corresponding to each rotating element in the velocity diagram differs depending on how the velocity diagram is drawn, but the order of arrangement is fixed because it is determined by the structure of the differential gear mechanism.
  • the first planetary gear mechanism PG1 is a single pinion planetary gear mechanism including a first sun gear S1, a first carrier CA1, and a first ring gear R1.
  • the first rotating element E1 is connected to the input member I.
  • the first rotating element E1 is the first sun gear S1.
  • the first sun gear S1 is connected to the input member I so as to rotate integrally therewith.
  • the second rotating element E2 is connected to the first output member O1.
  • the second rotating element E2 is the first carrier CA1.
  • the first carrier CA1 supports a first pinion gear P1 that meshes with the first sun gear S1 and the first ring gear R1.
  • the first pinion gear P1 rotates (revolves) around its axis, and rotates (revolves) around the first sun gear S1 together with the first carrier CA1.
  • a plurality of first pinion gears P1 are provided at intervals along the revolution locus.
  • the third rotating element E3 is connected to the first rotor RT1 via the first speed reducer RG1.
  • the third rotating element E3 is the first ring gear R1.
  • the first ring gear R1 has internal teeth arranged outside in the radial direction R with respect to the first rotating element E1 (here, the first sun gear S1) and the second rotating element E2 (here, the first carrier CA1). Gear.
  • the first ring gear R1 is formed on the inner peripheral surface of a cylindrical gear forming member 20 having an axis along the axial direction L. As shown in FIG.
  • the first reduction gear RG1 always reduces the rotation of the first rotor RT1 at a constant reduction ratio, and transmits the rotation to the third rotating element E3 (here, the first ring gear R1) of the first planetary gear mechanism PG1.
  • the first reduction gear RG1 includes a second planetary gear mechanism PG2.
  • the second planetary gear mechanism PG2 includes a fourth rotating element E4, a fifth rotating element E5, and a sixth rotating element E6.
  • the second planetary gear mechanism PG2 is configured such that the rotational speeds of the fourth rotating element E4, the fifth rotating element E5, and the sixth rotating element E6 are arranged in the described order.
  • the second planetary gear mechanism PG2 is a single pinion planetary gear mechanism that includes a second sun gear S2, a second carrier CA2, and a second ring gear R2.
  • the fourth rotating element E4 is connected to the first rotor RT1.
  • the fourth rotating element E4 is the second sun gear S2.
  • the second sun gear S2 is coupled to rotate integrally with the first rotor RT1.
  • the fifth rotating element E5 is fixed to the non-rotating member NR.
  • the fifth rotating element E5 is the second carrier CA2.
  • the second carrier CA2 supports a second pinion gear P2 that meshes with the second sun gear S2 and the second ring gear R2.
  • the second pinion gear P2 rotates (rotates) about its axis.
  • a plurality of second pinion gears P2 are provided at intervals along the circumferential direction of the second sun gear S2 and the second ring gear R2.
  • the sixth rotating element E6 is connected to rotate integrally with the third rotating element E3.
  • the sixth rotating element E6 is the second ring gear R2. Therefore, the second ring gear R2 is connected to rotate integrally with the first ring gear R1.
  • the second ring gear R2 has internal teeth arranged outside in the radial direction R with respect to the fourth rotating element E4 (here, the second sun gear S2) and the fifth rotating element E5 (here, the second carrier CA2). Gear.
  • the second ring gear R2 is formed on the inner peripheral surface of the gear forming member 20 described above.
  • the second ring gear R2 is arranged on the second side L2 in the axial direction with respect to the first ring gear R1.
  • the first output differential gear mechanism DF1 is configured to distribute the rotation of the first output member O1 to the pair of first wheels W1.
  • the first output differential gear mechanism DF1 includes a first differential input gear 4 that is an input element of the first output differential gear mechanism DF1.
  • the first differential input gear 4 meshes with the drive pinion gear 6 .
  • the drive pinion gear 6 is coupled to the first carrier CA1 of the first planetary gear mechanism PG1 via a propeller shaft 5 extending along the axial direction L so as to rotate integrally.
  • the drive pinion gear 6 is arranged such that the rotation axis of the drive pinion gear 6 is along the axial direction L. As shown in FIG.
  • the drive pinion gear 6 is arranged so that the rotation axis of the drive pinion gear 6 is orthogonal to the rotation axis of the first differential input gear 4 .
  • the first differential input gear 4 and the drive pinion gear 6 are hypoid gears.
  • the first output member O1 is drivingly connected to the first wheel W1.
  • the first differential input gear 4 functions as the first output member O1.
  • the vehicle drive system 100 an input member I drivingly connected to the internal combustion engine EG; a first output member O1 drivingly connected to the first wheel W1; a first rotating electric machine MG1 having a first rotor RT1; A first rotating element E1, a second rotating element E2, and a third rotating element E3 are provided.
  • a first planetary gear mechanism PG1 configured as A vehicle drive device 100 including a first reduction gear RG1, A first rotating element E1 is connected to the input member I, the second rotating element E2 is connected to the first output member O1, The third rotating element E3 is connected to the first rotor RT1 via the first speed reducer RG1, The first reduction gear RG1 is configured to always reduce the rotation of the first rotor RT1 at a constant reduction ratio and transmit it to the third rotating element E3, The first planetary gear mechanism PG1 is configured such that the first rotating element E1, the second rotating element E2, and the third rotating element E3 always rotate independently of each other.
  • the torque of the first rotating electrical machine MG1 is amplified by the first reduction gear RG1 and transmitted to the third rotating element E3, which receives the reaction force of the first rotating element E1 to which the torque of the internal combustion engine EG is transmitted. can do. Therefore, it is easy to reduce the size of the first rotary electric machine MG1 while ensuring the torque required to be transmitted to the third rotating element E3.
  • an engagement device for changing the connection relationship between the three rotating elements E1, E2, and E3 of the first planetary gear mechanism PG1 is not required, and the reduction ratio of the first reduction gear RG1 is changed. No engagement device is required. Therefore, it is easy to achieve simplification and size reduction of the power transmission mechanism of the vehicle drive device 100 .
  • the vehicle drive device 100 can be simplified and miniaturized while ensuring a large torque that can be transmitted to the first output member O1. easy to plan.
  • the first reduction gear RG1 includes the second planetary gear mechanism PG2
  • the second planetary gear mechanism PG2 includes a fourth rotary element E4, a fifth rotary element E5, and a sixth rotary element E6, and the rotational speeds of the fourth rotary element E4, the fifth rotary element E5, and the sixth rotary element E6 are is configured so that the order of A fourth rotating element E4 is coupled to the first rotor RT1, A fifth rotating element E5 is fixed to the non-rotating member NR, the sixth rotating element E6 is coupled to rotate integrally with the third rotating element E3;
  • the third rotating element E3 is an internal toothed first ring gear R1 arranged outside in the radial direction R with respect to the first rotating element E1 and the second rotating element E2, and the sixth rotating element E6 is the fourth rotating element E6.
  • a second ring gear R2 having internal teeth is arranged radially outwardly of the element E4 and the fifth rotating element E5.
  • the third rotating element E3 and the sixth rotating element E6, both of which are ring gears with internal teeth, are connected so as to rotate integrally with each other. This facilitates simplification and miniaturization of the configuration and support structure of the third rotating element E3 and the sixth rotating element E6. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
  • the input member I, the first rotor RT1, the first planetary gear mechanism PG1, and the first reduction gear RG1 are coaxially arranged.
  • a first planetary gear mechanism PG1 and a first reduction gear RG1 are arranged on the first side L1 in the axial direction with respect to the internal combustion engine EG and the first rotor RT1.
  • the first planetary gear mechanism PG1 and the first reduction gear RG1 can be collectively arranged on one side in the axial direction L (first side L1 in the axial direction) with respect to the internal combustion engine EG and the first rotor RT1. .
  • This facilitates simplification and miniaturization of the connecting structure between the gears forming the first planetary gear mechanism PG1 and the gears forming the first reduction gear RG1. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
  • the second rotor RT2 is also arranged coaxially with the input member I and the like.
  • the second rotor RT2 is arranged between the internal combustion engine EG and the first rotor RT1 in the axial direction L.
  • the internal combustion engine EG, the second rotor RT2, the first rotor RT1, the second planetary gear mechanism PG2, and the first planetary gear are arranged from the second axial side L2 toward the first axial side L1.
  • Mechanism PG1 is arranged in the order of description.
  • the vehicle drive system 100 further includes the second rotating electric machine MG2 including the second rotor RT2,
  • the second rotor RT2 is coupled to rotate integrally with the input member I,
  • the input member I, the first rotor RT1, the second rotor RT2, the first planetary gear mechanism PG1, and the first reduction gear RG1 are coaxially arranged
  • a second rotor RT2 is arranged between the internal combustion engine EG and the first rotor RT1 in the axial direction L
  • a first planetary gear mechanism PG1 and a first reduction gear RG1 are arranged on the first axial side L1 with respect to the internal combustion engine EG, the first rotor RT1, and the second rotor RT2.
  • the internal combustion engine EG which is the driving force source for the first wheel W1, the first rotating electrical machine MG1, and the second rotating electrical machine.
  • the first planetary gear mechanism PG1 and the first reduction gear RG1 can be collectively arranged on one side in the axial direction L with respect to MG2. This facilitates simplification and miniaturization of the connecting structure between the gears forming the first planetary gear mechanism PG1 and the gears forming the first reduction gear RG1. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
  • FIG. 26 shows a velocity diagram of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 of the first reduction gear RG1 according to this embodiment.
  • the vertical lines correspond to the rotation speed of each rotating element of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2.
  • Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2.
  • the symbols shown above the multiple vertical lines are the symbols of the corresponding rotating elements.
  • the symbols shown below the vertical lines are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above. The method of describing such a velocity diagram is the same for FIG. 28 as well.
  • the rotation transmitted from the first rotating electric machine MG1 to the second sun gear S2 is reversed and decelerated in the second planetary gear mechanism PG2, and transmitted to the second ring gear R2. be.
  • the torque of the first rotating electrical machine MG1 is amplified and transmitted to the second ring gear R2.
  • the torque of the second rotating electric machine MG2 is added together in the first planetary gear mechanism PG1 and output from the first carrier CA1.
  • FIG. 27 shows an example of the configuration of the vehicle drive system 100 according to the second embodiment.
  • the arrangement of the second rotating electric machine MG2 is different from that in the above example (see FIG. 25).
  • this example differs from the above example in that the vehicle drive system 100 includes a second reduction gear RG2.
  • the vehicle drive system 100 further includes a second reduction gear RG2.
  • the second reduction gear RG2 is configured to always reduce the rotation of the second rotor RT2 at a constant reduction ratio and transmit it to the first output member O1.
  • the second speed reducer RG2 includes a third planetary gear mechanism PG3.
  • the third planetary gear mechanism PG3 is a single pinion type planetary gear mechanism including a third sun gear S3, a third carrier CA3, and a third ring gear R3.
  • the third sun gear S3 is connected to rotate integrally with the second rotor RT2.
  • the third carrier CA3 is coupled to rotate integrally with the first carrier CA1 of the first planetary gear mechanism PG1. Furthermore, the third carrier CA3 is connected to the drive pinion gear 6 via the propeller shaft 5 so as to rotate integrally therewith.
  • the third carrier CA3 also supports a third pinion gear P3 that meshes with the third sun gear S3 and the third ring gear R3.
  • the third pinion gear P3 rotates (revolves) around its axis, and rotates (revolves) around the third sun gear S3 together with the third carrier CA3.
  • a plurality of third pinion gears P3 are provided at intervals along the orbit of the revolution.
  • the third ring gear R3 is fixed to the non-rotating member NR.
  • the second rotor RT2 is connected to the first output member O1 via the second speed reducer RG2.
  • the second rotor RT2 is arranged on the first side L1 in the axial direction with respect to the internal combustion engine EG and the first rotor RT1.
  • a first planetary gear mechanism PG1, a first reduction gear RG1, and a second reduction gear RG2 are arranged between the first rotor RT1 and the second rotor RT2 in the axial direction L.
  • the internal combustion engine EG, the first rotor RT1, the second planetary gear mechanism PG2, the first planetary gear mechanism PG1, and the third planetary gear are arranged from the second axial side L2 toward the first axial side L1.
  • the gear mechanism PG3 and the second rotor RT2 are arranged in the order described.
  • the vehicle drive device 100 further includes the second rotating electric machine MG2 including the second rotor RT2 and the second speed reducer RG2,
  • the second rotor RT2 is connected to the first output member O1 via the second speed reducer RG2,
  • the second speed reducer RG2 is configured to always reduce the rotation of the second rotor RT2 at a constant reduction ratio and transmit it to the first output member O1,
  • the input member I, the first rotor RT1, the second rotor RT2, the first planetary gear mechanism PG1, the first reduction gear RG1, and the second reduction gear RG2 are coaxially arranged
  • a second rotor RT2 is arranged on the first side L1 in the axial direction with respect to the internal combustion engine EG and the first rotor RT1,
  • a first planetary gear mechanism PG1, a first reduction gear RG1, and a second reduction gear RG2 are arranged between the first rotor RT1 and the second rotor RT2 in the axial direction L.
  • the second rotating electrical machine MG2 is positioned between the internal combustion engine EG and the first rotating electrical machine MG1 and the second rotating electrical machine MG2 in the axial direction L.
  • 1 Planetary gear mechanism PG1, 1st reduction gear RG1, and 2nd reduction gear RG2 can be collectively arranged. This facilitates simplification and miniaturization of the connecting structure of the gears that form the first planetary gear mechanism PG1, the gears that form the first reduction gear RG1, and the gears that form the second reduction gear RG2. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
  • FIG. 28 shows velocity diagrams of the first planetary gear mechanism PG1, the second planetary gear mechanism PG2 of the first reduction gear RG1, and the third planetary gear mechanism PG3 of the second reduction gear RG2, according to the present embodiment.
  • the rotation transmitted from the first rotating electric machine MG1 to the second sun gear S2 is reversed in the second planetary gear mechanism PG2. It is decelerated and transmitted to the second ring gear R2. As a result, the torque of the first rotating electrical machine MG1 is amplified and transmitted to the second ring gear R2. Further, in the present embodiment, the rotation transmitted from the second rotating electrical machine MG2 to the third sun gear S3 is reduced in the third planetary gear mechanism PG3 and transmitted to the third carrier CA3.
  • the torque of the first rotary electric machine MG1 transmitted from the second ring gear R2 of the second planetary gear mechanism PG2 to the first ring gear R1 of the first planetary gear mechanism PG1 is transmitted to the first sun gear S1 via the input member I. is added to the torque of the internal combustion engine EG in the first planetary gear mechanism PG1, and the torque of the second rotating electric machine MG2 transmitted to the third carrier CA3 of the third planetary gear mechanism PG3 is added to the torque of the first carrier Output from CA1.
  • the first brake B1 as the first engagement device CL1 and the first clutch C1 as the second engagement device CL2 are provided.
  • the configuration has been described as an example. However, without being limited to such a configuration, as shown in FIG. 20, a configuration may be employed in which the first one-way clutch OWC1 is provided as the first engagement device CL1 without the second engagement device CL2.
  • the first one-way clutch OWC1 engages the pair of engaging members when the direction of relative rotation between the pair of engaging members is the first direction
  • the second clutch OWC1 engages the pair of engaging members in the direction of relative rotation opposite to the first direction. It is an engaging device for releasing the engagement between a pair of engaging members in the case of direction.
  • the first one-way clutch OWC1 is released when the input member I rotates in the positive direction (the rotation speed becomes greater than zero), and the input member I attempts to rotate in the negative direction (
  • the input member I is configured to be engaged and fixed to the non-rotating member NR when the rotational speed is about to become less than zero.
  • the configuration including the third brake B3 as the fifth engagement device CL5 has been described as an example.
  • a configuration including the second one-way clutch OWC2 as the fifth engagement device CL5 may be employed.
  • the second one-way clutch OWC2 engages the pair of engaging members when the direction of relative rotation between the pair of engaging members is in the first direction, and the second one-way clutch OWC2 engages the pair of engaging members in the direction of relative rotation opposite to the first direction. It is an engaging device for releasing the engagement between a pair of engaging members in the case of direction. In the example shown in FIG.
  • the second one-way clutch OWC2 is released when the input member I rotates in the positive direction (the rotation speed becomes greater than zero), and the input member I attempts to rotate in the negative direction (
  • the input member I is configured to be engaged and fixed to the non-rotating member NR when the rotational speed is about to become less than zero.
  • the internal combustion engine EG and the second rotation speed are controlled in accordance with the torque of the first rotary electric machine MG1 that decreases as the second rotation speed Nm increases.
  • a configuration has been described as an example in which the negative torque of the second rotating electric machine MG2 is increased so that the torque (first torque Te) transmitted from the electric machine MG2 side to the first rotating element E1 decreases.
  • the internal combustion engine EG and the second rotating electric machine are controlled according to the torque of the first rotating electric machine MG1 that decreases as the second rotation speed Nm increases.
  • the torque of the internal combustion engine EG may be reduced so that the torque (first torque Te) transmitted from the MG2 side to the first rotating element E1 is reduced.
  • the configuration including the second rotating electric machine MG2 has been described as an example. However, without being limited to such a configuration, a configuration without the second rotating electric machine MG2 may be employed.
  • the first embodiment includes the first engagement device CL1 and the second engagement device CL2, and the second embodiment (see FIG. 11) includes the third engagement device.
  • a configuration including CL3, fourth engagement device CL4, and fifth engagement device CL5 has been described as an example. However, without being limited to such a configuration, the presence or absence of various engagement devices can be appropriately selected according to the type of operation mode to be implemented.
  • the configuration in which the second gear 22 overlaps the first ring gear R1 when viewed in the radial direction R has been described as an example.
  • the second gear 22 may be arranged at a position that does not overlap with the first ring gear R1 when viewed in the radial direction R.
  • the arrangement area of the second gear 22 in the axial direction L is at least part of the arrangement area in the axial direction L of the first planetary gear mechanism PG1 (for example, the first carrier). CA1 in the axial direction L).
  • the first rotating electrical machine MG1 is arranged on the opposite side of the internal combustion engine EG in the axial direction L with respect to the first planetary gear mechanism PG1. explained as an example. However, without being limited to such a configuration, the first rotating electric machine MG1 may be arranged on the same side as the internal combustion engine EG side in the axial direction L with respect to the first planetary gear mechanism PG1.
  • the first reduction gear RG1 includes the second planetary gear mechanism PG2.
  • a mechanism other than PG2 may be further provided.
  • the first reduction gear RG1 may include another gear mechanism such as a parallel shaft reduction gear mechanism.
  • the second sun gear S2 is connected to the first rotor RT1, and the second carrier CA2 is non-rotating.
  • the configuration in which the second ring gear R2 is fixed to the member NR and is connected to the first ring gear R1 of the first planetary gear mechanism PG1 so as to rotate integrally has been described as an example.
  • the second sun gear S2 is coupled to the first rotor RT1
  • the second carrier CA2 is coupled to rotate integrally with the first ring gear R1
  • the second carrier CA2 is coupled to the first ring gear R1.
  • the ring gear R2 may be fixed to the non-rotating member NR.
  • the input member I, the first rotor RT1, the second rotor RT2, the first planetary gear mechanism PG1, and the first reduction gear RG1 are arranged coaxially.
  • the configuration has been described as an example. However, they may be arranged on separate axes without being limited to such a configuration. Alternatively, only some of them may be arranged coaxially.
  • the internal combustion engine EG, the second rotor RT2, the first rotor RT1, and the second planetary gear mechanism are arranged from the second axial side L2 toward the first axial side L1.
  • the configuration in which the PG2 and the first planetary gear mechanism PG1 are arranged in the order described has been described as an example.
  • the internal combustion engine EG, the first rotor RT1, the second planetary gear mechanism PG2, and the first planetary gear are arranged from the second axial side L2 toward the first axial side L1.
  • a configuration in which the mechanism PG1, the third planetary gear mechanism PG3, and the second rotor RT2 are arranged in the order described has been described as an example.
  • the positions of the constituent elements of the vehicle drive system 100 in the axial direction L are not limited thereto, and can be changed as appropriate.
  • the vehicle drive system (100) includes: a first output member (O1) drivingly connected to a first wheel (W1) of the vehicle; an input member (I) drivingly connected to an internal combustion engine (EG); a first rotating electric machine (MG1) including a first rotor (RT1); A first rotating element (E1), a second rotating element (E2), and a third rotating element (E3) are provided, wherein the first rotating element (E1) is drivingly connected to the input member (I), and the second rotating element (E1) is drivingly connected to the input member (I).
  • a distributing differential gear mechanism in which the rotating element (E2) is drivingly connected to the first output member (O1) and the third rotating element (E3) is drivingly connected to the first rotor (RT1); , a control device (10) that controls the internal combustion engine (EG) and the first rotating electric machine (MG1);
  • the rotational speeds of the first rotating element (E1), the second rotating element (E2), and the third rotating element (E3) are in the order of description.
  • the control device (10) is capable of executing specific acceleration control when accelerating the vehicle at an acceleration equal to or greater than a predetermined value
  • the rotation speed of the internal combustion engine (EG) is assumed to be a first rotation speed (Ne)
  • the rotation speed of the first electric rotating machine (MG1) is assumed to be a second rotation speed (Nm)
  • the output of the internal combustion engine (EG) is set in advance.
  • the first rotational speed (Ne) at which the output of the first rotating electrical machine (MG1) is equal to or higher than a predetermined value is defined as a first target rotational speed (Ne1)
  • the second rotational speed is equal to or higher than a predetermined value.
  • the specific acceleration control is The difference between the timing at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) and the timing at which the second rotation speed (Nm) reaches the second target rotation speed (Nm1) is determined in advance.
  • the first rotation speed (Ne) is gradually increased to the first target rotation speed (Ne1) so as to fall within a predetermined range, and the second rotation speed (Nm) is increased to the second target rotation speed ( A first control that gradually increases to Nm1); After the first control, at least the second rotational speed (Nm) is set to the and a second control for further increasing the second target rotational speed (Nm1).
  • the first control causes the internal combustion engine (EG) and the second
  • Each of the one-rotating electric machines (MG1) can have an output of a predetermined value or more.
  • the vehicle whose vehicle speed is in the low speed range can be appropriately accelerated.
  • the second control can increase the rotation speed of the first rotating electrical machine (MG1) while maintaining the relatively high output of the internal combustion engine (EG). As a result, the vehicle can be appropriately accelerated so that the vehicle speed reaches the high speed range.
  • the vehicle speed can be increased without switching the operation mode by controlling the engagement state of the engagement device.
  • the vehicle can be appropriately accelerated so as to reach the high speed range from the low speed range. Therefore, even when the vehicle is accelerated at a relatively high acceleration, it is possible to keep the discomfort felt by the driver small.
  • control device (10) performs control to maintain the first rotation speed (Ne) within a predetermined range including the first target rotation speed (Ne1) in the second control. and is suitable.
  • first target rotation speed (Ne1) is the first rotation speed (Ne) when the internal combustion engine (EG) has the maximum output
  • the second target rotation speed (Nm1) is preferably the second rotation speed (Nm) when the first rotating electric machine (MG1) has the maximum output.
  • the control device (10) adjusts the difference between the first rotation speed (Ne) and the second rotation speed (Nm) to be the same as the speed difference at maximum output ( ⁇ N).
  • the internal combustion engine (EG) and the first rotating electric machine (MG1) are controlled, and the difference between the first rotation speed (Ne) and the second rotation speed (Nm) is the speed difference at maximum output ( ⁇ N).
  • the difference between the first rotation speed (Ne) and the second rotation speed (Nm) is maintained at the same state as the speed difference at maximum output ( ⁇ N), and the first rotation speed (Ne) and the second rotational speed (Nm) are preferably controlled to increase.
  • the timing at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) and the timing at which the second rotation speed (Nm) reaches the second target rotation speed (Nm1) can be made to coincide with the time of reaching Therefore, the first control can be appropriately executed.
  • the control device (10) controls the speed at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) from the rotation speed at the start of the first control.
  • the first rotation speed is adjusted so that the time and the time required for the second rotation speed (Nm) to reach the second target rotation speed (Nm1) from the rotation speed at the start of the first control are the same. It is preferable to perform control to increase the speed (Ne) and the second rotation speed (Nm) at a constant rate of change.
  • the timing at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) and the timing at which the second rotation speed (Nm) reaches the second target rotation speed (Nm1) can be made to coincide with the time of reaching Therefore, the first control can be appropriately executed.
  • the gear ratio ( ⁇ ) of the distributing differential gear mechanism (SP) which is represented by the ratio of the rotational speed of the third rotating element (E3) to is equal to the ratio of the torque (Te1) of the internal combustion engine (EG) when the internal combustion engine (EG) is at its maximum output to the torque (Tm1) of the first rotary electric machine (MG1).
  • the rotation from the first rotating element (E1) to the second rotating element (E2) is performed.
  • the transmitted torque and the torque transmitted from the third rotating element (E3) to the second rotating element (E2) can be balanced. Therefore, in a state where the internal combustion engine (EG) has the maximum output and the first rotating electric machine (MG1) has the maximum output, the rotational speed of the first rotating element (E1) and the rotation of the third rotating element (E3) are The torque of the internal combustion engine (EG) and the torque of the first rotating electrical machine (MG1) can be stably transmitted to the first output member (O1) without significantly changing the relationship with the speed.
  • a second rotating electric machine (MG2) having a second rotor (RT2) is further provided,
  • the second rotor (RT2) is drivingly connected to the first rotating element (E1),
  • the control device (10) controls the internal combustion engine (EG) and the It is preferable to perform control to increase the negative torque of the second rotating electrical machine (MG2) so that the torque transmitted from the second rotating electrical machine (MG2) side to the first rotating element (E1) decreases. .
  • the torque transmitted to the element (E2) and the torque transmitted from the third rotating element (E3) to the second rotating element (E2) are prevented from being greatly out of balance, and the first rotation speed (Ne) is set to the second rotation speed (Ne). It becomes easy to maintain at 1 target rotational speed (Ne1).
  • the torque of the internal combustion engine (EG) can be used to cause the second rotating electric machine (MG2) to generate power.
  • a technology according to the present disclosure is a vehicle drive device that includes an output member that is drivingly connected to wheels of a vehicle, an input member that is drivingly connected to an internal combustion engine, a rotating electric machine, and a distribution differential gear mechanism. can be used for
  • 100 vehicle driving device, 10: control device, I: input member, O1: first output member, MG1: first rotating electric machine, RT1: first rotor, SP: distribution differential gear mechanism, E1: first Rotation element, E2: second rotation element, E3: third rotation element, Ne: first rotation speed, Nm: second rotation speed, Ne1: first target rotation speed, Nm1: second target rotation speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

This control device is capable of executing specific acceleration control in a case in which a vehicle is to be accelerated at an acceleration of a predetermined value or higher. The specific acceleration control includes: a first control in which a first rotational speed (Ne) is gradually increased to a first target rotational speed (Ne1) and a second rotational speed (Nm) is gradually increased to a second target rotational speed (Nm1) such that the second rotational speed (Nm) reaches the second target rotational speed (Nm1) at the same time that the first rotational speed (Ne) reaches a first rotational speed (Ne1) at maximum output; and a second control in which, after the first control, the second rotational speed (Nm) is further increased from the second target rotational speed (Nm1) while maintaining the first rotational speed (Ne) at the first target rotational speed (Ne1).

Description

車両用駆動装置Vehicle drive system
 本発明は、車両が備える車輪に駆動連結される出力部材と、内燃機関に駆動連結される入力部材と、回転電機と、分配用差動歯車機構と、を備えた車両用駆動装置に関する。 The present invention relates to a vehicle drive system comprising an output member drivingly connected to wheels of a vehicle, an input member drivingly connected to an internal combustion engine, a rotating electric machine, and a distribution differential gear mechanism.
 このような車両用駆動装置の一例が、下記の特許文献1に開示されている。以下、「背景技術」及び「発明が解決しようとする課題」の説明では、特許文献1における符号を括弧内に引用する。 An example of such a vehicle driving device is disclosed in Patent Document 1 below. In the following descriptions of "Background Art" and "Problems to be Solved by the Invention," reference numerals in Patent Document 1 are quoted in parentheses.
 特許文献1の車両用駆動装置は、入力部材(I)に駆動連結された第1回転電機(MG1)と、分配用差動歯車機構(P1)を介して出力部材(O)に駆動連結された第2回転電機(MG2)と、を備えている。 The vehicle drive device of Patent Document 1 has a first rotating electrical machine (MG1) drivingly connected to an input member (I) and a drivingly connected output member (O) via a distribution differential gear mechanism (P1). and a second rotating electric machine (MG2).
 特許文献1の車両用駆動装置では、分配用差動歯車機構(P1)は、第1ピニオンギヤに噛み合う第1サンギヤ(S1)と、第2ピニオンギヤに噛み合う第2サンギヤ(S2)と、第1ピニオンギヤ及び第2ピニオンギヤを支持するキャリヤ(CA)と、第1ピニオンギヤに噛み合うリングギヤ(R1)と、を備えた遊星歯車機構である。リングギヤ(R1)は、出力部材(O)に駆動連結されている。そして、第2サンギヤ(S2)は、第2回転電機(MG2)の第2ロータ(Ro2)に駆動連結されている。また、キャリヤ(CA)は、入力部材(I)に駆動連結されている。 In the vehicle drive device of Patent Document 1, the distribution differential gear mechanism (P1) includes a first sun gear (S1) that meshes with the first pinion gear, a second sun gear (S2) that meshes with the second pinion gear, and the first pinion gear. and a carrier (CA) that supports the second pinion gear, and a ring gear (R1) that meshes with the first pinion gear. A ring gear (R1) is drivingly connected to the output member (O). The second sun gear (S2) is drivingly connected to the second rotor (Ro2) of the second rotating electric machine (MG2). The carrier (CA) is also drivingly connected to the input member (I).
特開2014-117979号公報JP 2014-117979 A
 上記の車両用駆動装置は、複数の動作モードを備えており、車両に要求される駆動力や車速等に応じて、複数の係合装置(C,B1,B2)の係合の状態が制御されることにより、複数の動作モードのいずれかが選択される。このような車両用駆動装置では、例えば、車両を加速させる場合において、動作モードが切り替わる際に、タイムラグや、係合装置(C,B1,B2)により係合される回転部材間の回転速度差に起因する駆動力変動等が生じ、運転者が違和感を覚える場合があった。このような現象は、特に最大加速度等の比較的高い加速度で車両を加速させる場合に生じ易い。 The above vehicle drive system has a plurality of operation modes, and the states of engagement of the plurality of engagement devices (C, B1, B2) are controlled according to the driving force and vehicle speed required for the vehicle. By doing so, one of the plurality of operation modes is selected. In such a vehicle drive system, for example, when the vehicle is accelerated, a time lag and a rotational speed difference between the rotating members engaged by the engagement devices (C, B1, B2) occur when the operation mode is switched. Driving force fluctuations and the like caused by this may occur, and the driver may feel uncomfortable. Such a phenomenon tends to occur particularly when the vehicle is accelerated at relatively high acceleration such as maximum acceleration.
 そこで、車両を比較的高い加速度で加速させる場合であっても、運転者の違和感を小さく抑えることができる車両用駆動装置の実現が望まれる。 Therefore, it is desired to realize a vehicle drive system that can reduce the driver's sense of discomfort even when the vehicle is accelerated at a relatively high acceleration.
 上記に鑑みた、車両用駆動装置の特徴構成は、
 車両が備える第1車輪に駆動連結される第1出力部材と、
 内燃機関に駆動連結される入力部材と、
 第1ロータを備えた第1回転電機と、
 第1回転要素、第2回転要素、及び第3回転要素を備え、前記第1回転要素が前記入力部材に駆動連結され、前記第2回転要素が前記第1出力部材に駆動連結され、前記第3回転要素が前記第1ロータに駆動連結された分配用差動歯車機構と、
 前記内燃機関及び前記第1回転電機を制御する制御装置と、を備え、
 前記分配用差動歯車機構は、前記第1回転要素、前記第2回転要素、及び前記第3回転要素の回転速度の順が記載の順となるように構成され、
 前記制御装置は、前記車両を予め定められた値以上の加速度で加速させる場合に、特定加速制御を実行可能であり、
 前記内燃機関の回転速度を第1回転速度とし、前記第1回転電機の回転速度を第2回転速度とし、前記内燃機関の出力が予め定められた値以上となる前記第1回転速度を第1目標回転速度とし、前記第1回転電機の出力が予め定められた値以上となる前記第2回転速度を第2目標回転速度として、
 前記特定加速制御は、
 前記第1回転速度が前記第1目標回転速度に到達する時期と前記第2回転速度が前記第2目標回転速度に到達する時期との差が予め定められた範囲内となるように、前記第1回転速度を前記第1目標回転速度まで次第に上昇させると共に、前記第2回転速度を前記第2目標回転速度まで次第に上昇させる第1制御と、
 前記第1制御の後、前記第2回転速度の変化量が前記第1回転速度の変化量に比べて大きくなるように、少なくとも前記第2回転速度を、前記第2目標回転速度から更に上昇させる第2制御と、を含む点にある。
In view of the above, the characteristic configuration of the vehicle drive system is as follows.
a first output member drivingly connected to a first wheel included in the vehicle;
an input member drivingly connected to an internal combustion engine;
a first rotating electric machine having a first rotor;
a first rotating element, a second rotating element, and a third rotating element, wherein the first rotating element is drivingly connected to the input member; the second rotating element is drivingly connected to the first output member; a distributing differential gear mechanism in which three rotating elements are drivingly connected to the first rotor;
a control device that controls the internal combustion engine and the first rotating electric machine,
The distributing differential gear mechanism is configured so that the rotation speeds of the first rotating element, the second rotating element, and the third rotating element are in the order described,
The control device is capable of executing specific acceleration control when accelerating the vehicle at an acceleration equal to or greater than a predetermined value,
The rotation speed of the internal combustion engine is defined as a first rotation speed, the rotation speed of the first rotating electric machine is defined as a second rotation speed, and the first rotation speed at which the output of the internal combustion engine is equal to or higher than a predetermined value is the first rotation speed. as a target rotation speed, and as the second rotation speed at which the output of the first rotating electric machine is equal to or higher than a predetermined value, as the second target rotation speed,
The specific acceleration control is
The first rotation speed is controlled so that the difference between the timing at which the first rotation speed reaches the first target rotation speed and the timing at which the second rotation speed reaches the second target rotation speed is within a predetermined range. a first control for gradually increasing the first rotation speed to the first target rotation speed and gradually increasing the second rotation speed to the second target rotation speed;
After the first control, at least the second rotational speed is further increased from the second target rotational speed so that the amount of change in the second rotational speed is greater than the amount of change in the first rotational speed. and a second control.
 この特徴構成によれば、車両を予め定められた値以上の加速度で加速させる場合に実行可能な特定加速制御において、第1制御により、車速が低速域にある段階で、内燃機関及び第1回転電機のそれぞれを予め定められた値以上の出力とすることができる。これにより、車速が低速域にある車両を適切に加速させることができる。そして、第1制御の後は、第2制御により、内燃機関が比較的高い出力を維持した状態で、第1回転電機の回転速度を上昇させることができる。これにより、車速が高速域に到達するように、車両を適切に加速させることができる。
 このように、本特徴構成によれば、車両を予め定められた値以上の加速度で加速させる場合において、係合装置の係合の状態を制御することによる動作モードの切り替えを行うことなく、車速が低速域から高速域に到達するように、車両を適切に加速させることができる。したがって、車両を比較的高い加速度で加速させる場合であっても、運転者の違和感を小さく抑えることができる。
According to this characteristic configuration, in the specific acceleration control that can be executed when the vehicle is accelerated at a predetermined acceleration or more, the first control causes the internal combustion engine and the first rotation Each of the electric machines can be set to output a predetermined value or more. As a result, the vehicle whose vehicle speed is in the low speed range can be appropriately accelerated. After the first control, the second control can increase the rotation speed of the first rotating electric machine while maintaining a relatively high output of the internal combustion engine. As a result, the vehicle can be appropriately accelerated so that the vehicle speed reaches the high speed range.
As described above, according to this characteristic configuration, when the vehicle is accelerated at a predetermined acceleration or more, the vehicle speed is adjusted without switching the operation mode by controlling the engagement state of the engagement device. The vehicle can be appropriately accelerated so as to reach the high speed range from the low speed range. Therefore, even when the vehicle is accelerated at a relatively high acceleration, it is possible to keep the discomfort felt by the driver small.
第1の実施形態に係る車両用駆動装置の概略構成を示す図1 is a diagram showing a schematic configuration of a vehicle drive system according to a first embodiment; FIG. 第1の実施形態に係る車両用駆動装置の制御ブロック図1 is a control block diagram of a vehicle drive system according to a first embodiment; FIG. 第1の実施形態に係る車両用駆動装置の各動作モードにおける係合装置等の状態を示す図FIG. 2 is a diagram showing states of an engagement device and the like in each operation mode of the vehicle drive system according to the first embodiment; 内燃機関及び第1回転電機のそれぞれにおける回転速度に対するトルクの関係を示す図FIG. 4 is a diagram showing the relationship between the torque and the rotational speed of each of the internal combustion engine and the first rotating electric machine; 特定加速制御の第1制御の一例を示す分配用差動歯車機構の速度線図3 is a velocity diagram of the differential gear mechanism for distribution showing an example of the first control of the specific acceleration control; FIG. 特定加速制御の第2制御の一例を示す分配用差動歯車機構の速度線図3 is a velocity diagram of a distribution differential gear mechanism showing an example of second control of specific acceleration control; FIG. 特定加速制御の第1制御の一例を示す分配用差動歯車機構の速度線図3 is a velocity diagram of the differential gear mechanism for distribution showing an example of the first control of the specific acceleration control; FIG. 第1の実施形態に係る車両用駆動装置にて特定加速制御を実行中における、車速と各種の値との関係の一例を示す図FIG. 4 is a diagram showing an example of the relationship between vehicle speed and various values while specific acceleration control is being executed in the vehicle drive system according to the first embodiment; 第1の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment; FIG. 第1の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment; FIG. 第2の実施形態に係る車両用駆動装置の概略構成を示す図A diagram showing a schematic configuration of a vehicle drive system according to a second embodiment. 第2の実施形態に係る車両用駆動装置の制御ブロック図Control block diagram of a vehicle drive system according to a second embodiment 第2の実施形態に係る車両用駆動装置の各動作モードにおける係合装置等の状態を示す図FIG. 5 is a diagram showing states of an engagement device and the like in each operation mode of the vehicle drive system according to the second embodiment; 第2の実施形態に係る車両用駆動装置にて特定加速制御を実行中における、車速と各種の値との関係の一例を示す図FIG. 11 is a diagram showing an example of the relationship between vehicle speed and various values while specific acceleration control is being executed in the vehicle drive system according to the second embodiment; 第2の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図A skeleton diagram showing an example of the configuration of a vehicle drive system according to a second embodiment. 第2の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図A skeleton diagram showing an example of the configuration of a vehicle drive system according to a second embodiment. 第3の実施形態に係る車両用駆動装置の概略構成を示す図A diagram showing a schematic configuration of a vehicle drive system according to a third embodiment. 第3の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図A skeleton diagram showing an example of a configuration of a vehicle drive system according to a third embodiment. 第3の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図A skeleton diagram showing an example of a configuration of a vehicle drive system according to a third embodiment. 他の実施形態に係る車両用駆動装置の概略構成を示す図FIG. 4 is a diagram showing a schematic configuration of a vehicle drive system according to another embodiment; 他の実施形態に係る車両用駆動装置の概略構成を示す図FIG. 4 is a diagram showing a schematic configuration of a vehicle drive system according to another embodiment; 第1の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment; FIG. 減速ギヤ機構及び遊星歯車機構の速度線図の一例を示す図A diagram showing an example of a speed diagram of a reduction gear mechanism and a planetary gear mechanism 第3の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図A skeleton diagram showing an example of a configuration of a vehicle drive system according to a third embodiment. 第1の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図1 is a skeleton diagram showing an example of a configuration of a vehicle drive system according to a first embodiment; FIG. 第1遊星歯車機構及び第1減速機の速度線図の一例を示す図A diagram showing an example of a velocity diagram of the first planetary gear mechanism and the first reduction gear 第2の実施形態に係る車両用駆動装置の構成の一例を示すスケルトン図A skeleton diagram showing an example of the configuration of a vehicle drive system according to a second embodiment. 第1遊星歯車機構、第1減速機、及び第2減速機の速度線図の一例を示す図A diagram showing an example of a velocity diagram of the first planetary gear mechanism, the first reduction gear, and the second reduction gear
1.第1の実施形態
 以下では、第1の実施形態に係る車両用駆動装置100について、図面を参照して説明する。図1に示すように、車両用駆動装置100は、入力部材Iと、第1出力部材O1と、第1回転電機MG1と、分配用差動歯車機構SPと、を備えている。本実施形態では、車両用駆動装置100は、第2回転電機MG2と、変速機TMと、第1出力用差動歯車機構DF1と、第1係合装置CL1と、第2係合装置CL2と、を更に備えている。
1. First Embodiment Hereinafter, a vehicle drive system 100 according to a first embodiment will be described with reference to the drawings. As shown in FIG. 1, the vehicle drive device 100 includes an input member I, a first output member O1, a first rotating electric machine MG1, and a distribution differential gear mechanism SP. In this embodiment, the vehicle drive device 100 includes a second rotary electric machine MG2, a transmission TM, a first output differential gear mechanism DF1, a first engagement device CL1, and a second engagement device CL2. , is further provided.
 入力部材Iは、内燃機関EGに駆動連結されている。内燃機関EGは、第1車輪W1の駆動力源として機能する。内燃機関EGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。 The input member I is drivingly connected to the internal combustion engine EG. The internal combustion engine EG functions as a driving force source for the first wheels W1. The internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
 ここで、本願において「駆動連結」とは、2つの回転要素がトルクを伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介してトルクを伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及びトルクを選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、差動歯車機構の各回転要素について「駆動連結」という場合には、各回転要素が他の回転要素を介することなく駆動連結されている状態を指すものとする。 Here, in the present application, the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit torque, and the two rotating elements are connected so as to rotate integrally, or It includes a state in which two rotating elements are coupled to transmit torque via one or more transmission members. Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains. The transmission member may include an engagement device that selectively transmits rotation and torque, such as a friction engagement device and a mesh type engagement device. However, when each rotating element of the differential gear mechanism is referred to as "driving connection", it means a state in which each rotating element is drivingly connected without interposing another rotating element.
 第1出力部材O1は、車両が備える第1車輪W1に駆動連結されている。本実施形態では、第1出力部材O1は、変速機TMと第1出力用差動歯車機構DF1との間の動力伝達経路に配置されている。 The first output member O1 is drivingly connected to the first wheel W1 of the vehicle. In this embodiment, the first output member O1 is arranged in the power transmission path between the transmission TM and the first output differential gear mechanism DF1.
 第1回転電機MG1は、第1ステータST1と、第1ロータRT1と、を備えている(図9等参照)。第1ステータST1は、非回転部材NRに固定されている(図示を省略)。第1ロータRT1は、第1ステータST1に対して回転自在に支持されている。なお、本実施形態では、非回転部材NRは、第1回転電機MG1及び第2回転電機MG2等を収容するケースである。 The first rotating electric machine MG1 includes a first stator ST1 and a first rotor RT1 (see FIG. 9, etc.). The first stator ST1 is fixed to the non-rotating member NR (not shown). The first rotor RT1 is rotatably supported with respect to the first stator ST1. Note that, in the present embodiment, the non-rotating member NR is a case that accommodates the first rotating electric machine MG1, the second rotating electric machine MG2, and the like.
 第2回転電機MG2は、第2ステータST2と、第2ロータRT2と、を備えている(図9等参照)。第2ステータST2は、非回転部材NRに固定されている(図示を省略)。第2ロータRT2は、第2ステータST2に対して回転自在に支持されている。 The second rotating electrical machine MG2 includes a second stator ST2 and a second rotor RT2 (see FIG. 9, etc.). The second stator ST2 is fixed to the non-rotating member NR (not shown). The second rotor RT2 is rotatably supported with respect to the second stator ST2.
 第1回転電機MG1は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。第1回転電機MG1は、バッテリやキャパシタ等の蓄電装置BT(図2参照)との間で電力の授受を行うように、当該蓄電装置BTと電気的に接続されている。第1回転電機MG1は、第1車輪W1の駆動力源として機能する。本実施形態では、第2回転電機MG2も、第1車輪W1の駆動力源として機能する。 The first rotary electric machine MG1 has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. . The first rotating electric machine MG1 is electrically connected to a power storage device BT (see FIG. 2) such as a battery or a capacitor so as to transfer electric power to and from the power storage device BT. The first rotating electric machine MG1 functions as a driving force source for the first wheel W1. In this embodiment, the second rotating electric machine MG2 also functions as a driving force source for the first wheel W1.
 分配用差動歯車機構SPは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備えた差動歯車機構である。第1回転要素E1は、入力部材Iに駆動連結されている。第2回転要素E2は、第1出力部材O1に駆動連結されている。第3回転要素E3は、第1回転電機MG1の第1ロータRT1に駆動連結されている。 The distribution differential gear mechanism SP is a differential gear mechanism that includes a first rotary element E1, a second rotary element E2, and a third rotary element E3. The first rotating element E1 is drivingly connected to the input member I. As shown in FIG. The second rotating element E2 is drivingly connected to the first output member O1. The third rotating element E3 is drivingly connected to the first rotor RT1 of the first rotating electric machine MG1.
 分配用差動歯車機構SPは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成されている。本実施形態では、分配用差動歯車機構SPは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3を用いて構成された第1遊星歯車機構PG1(図9等参照)を備えている。 The distribution differential gear mechanism SP is configured so that the rotation speeds of the first rotation element E1, the second rotation element E2, and the third rotation element E3 are in the described order. In this embodiment, the distributing differential gear mechanism SP is a first planetary gear mechanism PG1 (see FIG. 9, etc.) that is configured using a first rotating element E1, a second rotating element E2, and a third rotating element E3. It has
 ここで、「回転速度の順」とは、各回転要素の回転状態における回転速度の順番のことである。各回転要素の回転速度は、遊星歯車機構の回転状態によって変化するが、各回転要素の回転速度の高低の並び順は、遊星歯車機構の構造によって定まるものであるため一定となる。なお、各回転要素の回転速度の順は、各回転要素の速度線図(図5等参照)における配置順に等しい。ここで、「各回転要素の速度線図における配置順」とは、速度線図における各回転要素に対応する軸が、当該軸に直交する方向に沿って配置される順番のことである。速度線図における各回転要素に対応する軸の配置方向は、速度線図の描き方によって異なるが、その配置順は遊星歯車機構の構造によって定まるものであるため一定となる。 Here, the "order of rotational speed" refers to the order of rotational speed in the rotating state of each rotating element. The rotation speed of each rotating element changes depending on the rotation state of the planetary gear mechanism, but the order of the rotation speed of each rotating element is fixed because it is determined by the structure of the planetary gear mechanism. Note that the order of rotation speed of each rotating element is the same as the order of arrangement in the velocity diagram (see FIG. 5, etc.) of each rotating element. Here, the “arrangement order of each rotating element in the velocity diagram” is the order in which the axes corresponding to each rotating element in the velocity diagram are arranged along the direction perpendicular to the axis. The arrangement direction of the shaft corresponding to each rotating element in the velocity diagram differs depending on how the velocity diagram is drawn, but the order of arrangement is fixed because it is determined by the structure of the planetary gear mechanism.
 本実施形態では、第2回転電機MG2の第2ロータRT2が、入力部材Iに駆動連結されている。更に、第2ロータRT2は、分配用差動歯車機構SPの第1回転要素E1に駆動連結されている。ここでは、第2ロータRT2は、入力部材I及び第2係合装置CL2を介して、第1回転要素E1に駆動連結されている。また、本実施形態では、動力伝達経路における第2係合装置CL2よりも第1回転要素E1側の部分には、第1係合装置CL1が設けられている。 In this embodiment, the second rotor RT2 of the second rotating electrical machine MG2 is drivingly connected to the input member I. Further, the second rotor RT2 is drivingly connected to the first rotary element E1 of the distribution differential gear mechanism SP. Here, the second rotor RT2 is drivingly connected to the first rotating element E1 via the input member I and the second engagement device CL2. Further, in the present embodiment, the first engagement device CL1 is provided in a portion of the power transmission path closer to the first rotating element E1 than the second engagement device CL2.
 第1係合装置CL1は、分配用差動歯車機構SPの第1回転要素E1を、非回転部材NRに選択的に固定する係合装置である。本実施形態では、第1係合装置CL1は、第1回転要素E1を非回転部材NRに選択的に固定する第1ブレーキB1である。 The first engagement device CL1 is an engagement device that selectively fixes the first rotating element E1 of the distribution differential gear mechanism SP to the non-rotating member NR. In this embodiment, the first engagement device CL1 is a first brake B1 that selectively fixes the first rotating element E1 to the non-rotating member NR.
 第2係合装置CL2は、入力部材Iと分配用差動歯車機構SPの第1回転要素E1との間の動力伝達を断接する係合装置である。本実施形態では、第2係合装置CL2は、入力部材Iと第1回転要素E1との間の動力伝達を断接する第1クラッチC1である。 The second engagement device CL2 is an engagement device that connects and disconnects power transmission between the input member I and the first rotary element E1 of the distribution differential gear mechanism SP. In this embodiment, the second engagement device CL2 is the first clutch C1 that connects and disconnects power transmission between the input member I and the first rotating element E1.
 変速機TMは、分配用差動歯車機構SPの側から伝達される回転を変速して、第1出力部材O1の側へ伝達するように構成されている。変速機TMとしては、複数の変速段に切り替え可能な有段自動変速機、変速比を無段階で変更可能な無段自動変速機、変速比が固定された変速機(減速機又は増速機)等を用いることができる。 The transmission TM is configured to change the speed of the rotation transmitted from the distribution differential gear mechanism SP side and transmit it to the first output member O1 side. As the transmission TM, there are a stepped automatic transmission capable of switching to a plurality of gear stages, a continuously variable automatic transmission capable of steplessly changing the gear ratio, and a transmission having a fixed gear ratio (reducer or speed increaser). ) etc. can be used.
 第1出力用差動歯車機構DF1は、第1出力部材O1の側から伝達される回転を、一対の第1車輪W1に分配する差動歯車機構である。 The first output differential gear mechanism DF1 is a differential gear mechanism that distributes the rotation transmitted from the first output member O1 side to the pair of first wheels W1.
 図2に示すように、車両用駆動装置100は、内燃機関EG及び第1回転電機MG1を制御する制御装置10を備えている。本実施形態では、制御装置10は、主制御部11と、内燃機関EGを制御する内燃機関制御部12と、第1回転電機MG1を制御する第1回転電機制御部13と、第2回転電機MG2を制御する第2回転電機制御部14と、第1係合装置CL1及び第2係合装置CL2の係合の状態を制御する係合制御部15と、を備えている。 As shown in FIG. 2, the vehicle drive system 100 includes a control system 10 that controls the internal combustion engine EG and the first rotating electric machine MG1. In this embodiment, the control device 10 includes a main control unit 11, an internal combustion engine control unit 12 that controls the internal combustion engine EG, a first rotating electric machine control unit 13 that controls the first rotating electric machine MG1, a second rotating electric machine A second rotary electric machine control section 14 that controls the MG2, and an engagement control section 15 that controls the state of engagement of the first engagement device CL1 and the second engagement device CL2.
 主制御部11は、内燃機関制御部12、第1回転電機制御部13、第2回転電機制御部14、及び係合制御部15のそれぞれに対して、各制御部が担当する装置を制御する指令を出力する。内燃機関制御部12は、内燃機関EGが、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように内燃機関EGを制御する。第1回転電機制御部13は、第1回転電機MG1が、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように第1回転電機MG1を制御する。第2回転電機制御部14は、第2回転電機MG2が、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように第2回転電機MG2を制御する。係合制御部15は、第1係合装置CL1及び第2係合装置CL2のそれぞれが、主制御部11から指令された係合の状態となるように、第1係合装置CL1及び第2係合装置CL2を動作させるためのアクチュエータ(図示を省略)を制御する。 The main control unit 11 controls the internal combustion engine control unit 12, the first rotating electrical machine control unit 13, the second rotating electrical machine control unit 14, and the engagement control unit 15, respectively. Output commands. The internal combustion engine control unit 12 controls the internal combustion engine EG so that the internal combustion engine EG outputs the target torque commanded by the main control unit 11 or achieves the target rotation speed commanded by the main control unit 11. do. The first rotating electrical machine control unit 13 controls the first rotating electrical machine MG1 to output the target torque commanded by the main control unit 11 or achieve the target rotational speed commanded by the main control unit 11. It controls the single-rotation electric machine MG1. The second rotating electrical machine control unit 14 controls the second rotating electrical machine MG2 to output the target torque commanded by the main control unit 11 or achieve the target rotational speed commanded by the main control unit 11. It controls the two-rotating electric machine MG2. The engagement control unit 15 controls the first engagement device CL1 and the second engagement device CL2 so that each of the first engagement device CL1 and the second engagement device CL2 enters the engagement state commanded by the main control unit 11 . It controls an actuator (not shown) for operating the engagement device CL2.
 また、主制御部11は、車両用駆動装置100が搭載される車両の各部の情報を取得するために、当該車両の各部に設けられたセンサからの情報を取得可能に構成されている。本実施形態では、主制御部11は、SOCセンサSe1、車速センサSe2、アクセル操作量センサSe3、ブレーキ操作量センサSe4、及びシフト位置センサSe5からの情報を取得可能に構成されている。 In addition, the main control unit 11 is configured to be able to acquire information from sensors provided in each part of the vehicle in order to acquire information of each part of the vehicle in which the vehicle drive device 100 is mounted. In this embodiment, the main control unit 11 is configured to be able to acquire information from the SOC sensor Se1, the vehicle speed sensor Se2, the accelerator operation amount sensor Se3, the brake operation amount sensor Se4, and the shift position sensor Se5.
 SOCセンサSe1は、第1回転電機MG1及び第2回転電機MG2と電気的に接続された蓄電装置BTの状態を検出するためのセンサである。SOCセンサSe1は、例えば、電圧センサや電流センサ等により構成されている。主制御部11は、SOCセンサSe1から出力される電圧値や電流値等の情報に基づいて、蓄電装置BTの充電量(SOC:State of Charge)を算出する。 The SOC sensor Se1 is a sensor for detecting the state of the power storage device BT electrically connected to the first rotating electrical machine MG1 and the second rotating electrical machine MG2. The SOC sensor Se1 is composed of, for example, a voltage sensor, a current sensor, or the like. The main control unit 11 calculates the state of charge (SOC) of the power storage device BT based on information such as a voltage value and a current value output from the SOC sensor Se1.
 車速センサSe2は、車両用駆動装置100が搭載される車両の走行速度である車速を検出するためのセンサである。本実施形態では、車速センサSe2は、第1出力部材O1の回転速度を検出するためのセンサである。主制御部11は、車速センサSe2の検出信号に基づいて、第1出力部材O1の回転速度(角速度)を算出する。第1出力部材O1の回転速度は車速に比例するため、主制御部11は、第1出力部材O1の回転速度に基づいて車速を算出することができる。 The vehicle speed sensor Se2 is a sensor for detecting the vehicle speed, which is the running speed of the vehicle in which the vehicle drive device 100 is mounted. In this embodiment, the vehicle speed sensor Se2 is a sensor for detecting the rotational speed of the first output member O1. The main control unit 11 calculates the rotational speed (angular speed) of the first output member O1 based on the detection signal of the vehicle speed sensor Se2. Since the rotation speed of the first output member O1 is proportional to the vehicle speed, the main control section 11 can calculate the vehicle speed based on the rotation speed of the first output member O1.
 アクセル操作量センサSe3は、車両用駆動装置100が搭載される車両に設けられたアクセルペダルの運転者による操作量を検出するためのセンサである。主制御部11は、アクセル操作量センサSe3の検出信号に基づいて、運転者によるアクセルペダルの操作量を算出する。 The accelerator operation amount sensor Se3 is a sensor for detecting the amount of operation by the driver of an accelerator pedal provided in the vehicle in which the vehicle drive device 100 is mounted. The main control unit 11 calculates the amount of operation of the accelerator pedal by the driver based on the detection signal of the accelerator operation amount sensor Se3.
 ブレーキ操作量センサSe4は、車両用駆動装置100が搭載される車両に設けられたブレーキペダルの運転者による操作量を検出するためのセンサである。主制御部11は、ブレーキ操作量センサSe4の検出信号に基づいて、運転者によるブレーキペダルの操作量を算出する。 The brake operation amount sensor Se4 is a sensor for detecting the amount of operation by the driver of the brake pedal provided in the vehicle in which the vehicle drive device 100 is mounted. The main control unit 11 calculates the amount of operation of the brake pedal by the driver based on the detection signal of the brake operation amount sensor Se4.
 シフト位置センサSe5は、車両用駆動装置100が搭載される車両の運転者により操作されるシフトレバーの選択位置(シフト位置)を検出するためのセンサである。主制御部11は、シフト位置センサSe5の検出信号に基づいてシフト位置を算出する。シフトレバーは、パーキングレンジ(Pレンジ)、後進走行レンジ(Rレンジ)、ニュートラルレンジ(Nレンジ)、前進走行レンジ(Dレンジ)等を選択可能に構成されている。 The shift position sensor Se5 is a sensor for detecting the selected position (shift position) of the shift lever operated by the driver of the vehicle in which the vehicle drive system 100 is mounted. The main control section 11 calculates the shift position based on the detection signal of the shift position sensor Se5. The shift lever is configured to select a parking range (P range), a reverse travel range (R range), a neutral range (N range), a forward travel range (D range), and the like.
 主制御部11は、上記のセンサSe1~Se5からの情報に基づいて、後述する複数の動作モードの選択を行う。主制御部11は、係合制御部15を介して、第1係合装置CL1及び第2係合装置CL2のそれぞれを、選択した動作モードに応じた係合の状態に制御することにより、当該選択した動作モードへの切り替えを行う。更に、主制御部11は、内燃機関制御部12、第1回転電機制御部13、及び第2回転電機制御部14を介して、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2の動作状態を協調制御することにより、選択した動作モードに応じた適切な車両の走行を可能とする。 The main control unit 11 selects a plurality of operation modes, which will be described later, based on the information from the sensors Se1 to Se5. The main control unit 11 controls, via the engagement control unit 15, each of the first engagement device CL1 and the second engagement device CL2 to be in an engagement state corresponding to the selected operation mode. Switch to the selected operating mode. Furthermore, the main control unit 11 controls the internal combustion engine EG, the first rotating electric machine MG1, and the second rotating electric machine MG2 via the internal combustion engine control unit 12, the first rotating electric machine control unit 13, and the second rotating electric machine control unit 14. By cooperatively controlling the operating states of the two, it is possible to drive the vehicle appropriately according to the selected operating mode.
 図3に示すように、本実施形態では、車両用駆動装置100は、動作モードとして、第1HVモードと、第2HVモードと、第1EVモードと、第2EVモードと、を備えている。 As shown in FIG. 3, in this embodiment, the vehicle drive system 100 has a first HV mode, a second HV mode, a first EV mode, and a second EV mode as operation modes.
 図3に、本実施形態の車両用駆動装置100の各動作モードにおける、第1係合装置CL1、第2係合装置CL2、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のそれぞれの状態を示す。なお、図3の第1係合装置CL1及び第2係合装置CL2の欄において、「〇」は対象の係合装置が係合状態であることを示し、「×」は対象の係合装置が解放状態であることを示している。 FIG. 3 shows the first engagement device CL1, the second engagement device CL2, the internal combustion engine EG, the first rotary electric machine MG1, and the second rotary electric machine MG2 in each operation mode of the vehicle drive system 100 of the present embodiment. Each state is indicated. In the columns of the first engagement device CL1 and the second engagement device CL2 in FIG. 3, "o" indicates that the target engagement device is in the engaged state, and "x" indicates the target engagement device. is in a released state.
 第1HVモードは、内燃機関EGのトルクと、第1回転電機MG1及び第2回転電機MG2の少なくとも一方のトルクとにより車両を走行させる動作モードである。本実施形態の第1HVモードは、第1回転電機MG1のトルクと、内燃機関EG及び第2回転電機MG2のうちの少なくとも内燃機関EGのトルクとを合わせて第1出力部材O1に伝達することで車両を走行させる動作モードである。 The first HV mode is an operation mode in which the vehicle is driven by the torque of the internal combustion engine EG and the torque of at least one of the first rotating electrical machine MG1 and the second rotating electrical machine MG2. In the first HV mode of the present embodiment, the torque of the first rotary electric machine MG1 and at least the torque of the internal combustion engine EG out of the internal combustion engine EG and the second rotary electric machine MG2 are combined and transmitted to the first output member O1. This is an operation mode in which the vehicle is driven.
 図3に示すように、本実施形態の第1HVモードでは、第1係合装置CL1としての第1ブレーキB1が解放状態とされると共に、第2係合装置CL2としての第1クラッチC1が係合状態とされる。そして、内燃機関EGが駆動状態とされる。また、第2回転電機MG2が、車速や蓄電装置BTの充電量等に応じて、力行状態及び発電状態のいずれかに制御される。そして、第1回転電機MG1が、内燃機関EG及び第2回転電機MG2から第1回転要素E1に伝達されるトルクの反力トルクを発生し、第3回転要素E3に伝達する。これにより、内燃機関EG及び第2回転電機MG2のトルクと第1回転電機MG1のトルクとが合わさって、第2回転要素E2に伝達され、当該第2回転要素E2から第1出力部材O1に伝達される。このように、本実施形態の第1HVモードは、第1係合装置CL1が解放状態とされ、内燃機関EG及び第2回転電機MG2のうちの少なくとも内燃機関EGのトルクが第1回転要素E1に伝達されると共に、第1回転電機MG1のトルクが第3回転要素E3に伝達される「第1モード」に相当する。 As shown in FIG. 3, in the first HV mode of the present embodiment, the first brake B1 as the first engagement device CL1 is released, and the first clutch C1 as the second engagement device CL2 is engaged. state. Then, the internal combustion engine EG is driven. In addition, the second rotating electric machine MG2 is controlled to either the power running state or the power generation state according to the vehicle speed, the amount of charge in the power storage device BT, and the like. Then, the first rotating electrical machine MG1 generates reaction torque of the torque transmitted from the internal combustion engine EG and the second rotating electrical machine MG2 to the first rotating element E1, and transmits the reaction torque to the third rotating element E3. As a result, the torque of the internal combustion engine EG and the second rotating electrical machine MG2 and the torque of the first rotating electrical machine MG1 are combined and transmitted to the second rotating element E2, and then transmitted from the second rotating element E2 to the first output member O1. be done. As described above, in the first HV mode of the present embodiment, the first engagement device CL1 is in the released state, and the torque of at least the internal combustion engine EG out of the internal combustion engine EG and the second rotating electric machine MG2 is applied to the first rotating element E1. It corresponds to the "first mode" in which the torque is transmitted and the torque of the first rotary electric machine MG1 is transmitted to the third rotary element E3.
 第2HVモードは、内燃機関EGのトルクにより第1回転電機MG1及び第2回転電機MG2のいずれか一方に発電を行わせつつ、第1回転電機MG1及び第2回転電機MG2のいずれか他方のトルクにより車両を走行させる動作モードである。本実施形態の第2HVモードは、内燃機関EGのトルクにより第2回転電機MG2に発電を行わせつつ、第1回転電機MG1のトルクにより車両を走行させる動作モードである。 In the second HV mode, one of the first rotary electric machine MG1 and the second rotary electric machine MG2 is caused to generate power by the torque of the internal combustion engine EG, and the torque of the other one of the first rotary electric machine MG1 and the second rotary electric machine MG2 is generated. This is an operation mode in which the vehicle is driven by The second HV mode of the present embodiment is an operation mode in which the torque of the first rotary electric machine MG1 is used to drive the vehicle while the second rotary electric machine MG2 is caused to generate electric power by the torque of the internal combustion engine EG.
 図3に示すように、本実施形態の第2HVモードでは、第1係合装置CL1としての第1ブレーキB1が係合状態とされると共に、第2係合装置CL2としての第1クラッチC1が解放状態とされる。そして、内燃機関EGが駆動状態とされる。また、第1回転電機MG1が力行状態に制御されると共に、第2回転電機MG2が発電状態に制御される。その結果、内燃機関EG及び第2回転電機MG2が分配用差動歯車機構SPから分離された状態で、内燃機関EGのトルクにより第2回転電機MG2が発電を行う。そして、第1回転電機MG1のトルクが分配用差動歯車機構SPを介して第1出力部材O1に伝達される。このように、本実施形態の第2HVモードは、第1係合装置CL1が係合状態、第2係合装置CL2が解放状態とされ、第1回転電機MG1のトルクが第3回転要素E3に伝達され、内燃機関EGのトルクが第2回転電機MG2に伝達されて第2回転電機MG2が発電する「第3モード」に相当する。 As shown in FIG. 3, in the second HV mode of the present embodiment, the first brake B1 as the first engagement device CL1 is engaged, and the first clutch C1 as the second engagement device CL2 is engaged. released. Then, the internal combustion engine EG is driven. Further, the first rotating electrical machine MG1 is controlled to the power running state, and the second rotating electrical machine MG2 is controlled to the power generation state. As a result, in a state in which the internal combustion engine EG and the second rotating electrical machine MG2 are separated from the distribution differential gear mechanism SP, the second rotating electrical machine MG2 generates power by the torque of the internal combustion engine EG. Then, the torque of the first rotary electric machine MG1 is transmitted to the first output member O1 via the distribution differential gear mechanism SP. Thus, in the second HV mode of the present embodiment, the first engagement device CL1 is in the engaged state, the second engagement device CL2 is in the disengaged state, and the torque of the first rotating electric machine MG1 is applied to the third rotating element E3. It corresponds to the "third mode" in which the torque of the internal combustion engine EG is transmitted to the second rotating electrical machine MG2 and the second rotating electrical machine MG2 generates power.
 第1EVモードは、第1回転電機MG1及び第2回転電機MG2のいずれか一方のトルクにより車両を走行させる動作モードである。本実施形態の第1EVモードは、内燃機関EG及び第2回転電機MG2を停止状態としつつ、第1回転電機MG1のトルクを第1出力部材O1に伝達することで車両を走行させる動作モードである。なお、本願において、内燃機関EGの「停止状態」とは、内燃機関EGが非駆動状態とされ、回転が停止している状態を指す。第1回転電機MG1及び第2回転電機MG2についても同様である。 The first EV mode is an operation mode in which the vehicle is driven by the torque of either the first rotating electric machine MG1 or the second rotating electric machine MG2. The first EV mode of the present embodiment is an operation mode in which the vehicle travels by transmitting the torque of the first rotating electrical machine MG1 to the first output member O1 while the internal combustion engine EG and the second rotating electrical machine MG2 are stopped. . In the present application, the "stopped state" of the internal combustion engine EG refers to a state in which the internal combustion engine EG is in a non-driving state and rotation is stopped. The same applies to the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
 図3に示すように、本実施形態の第1EVモードでは、第1係合装置CL1としての第1ブレーキB1が係合状態とされると共に、第2係合装置CL2としての第1クラッチC1が解放状態とされる。そして、内燃機関EG及び第2回転電機MG2の双方が停止状態とされると共に、第1回転電機MG1が力行状態とされる。その結果、内燃機関EG及び第2回転電機MG2が分配用差動歯車機構SPから分離され、第1回転電機MG1のトルクが分配用差動歯車機構SPを介して第1出力部材O1に伝達される。このように、本実施形態の第1EVモードは、第1係合装置CL1が係合状態とされ、第1回転電機MG1のトルクが第3回転要素E3に伝達され、内燃機関EG及び第2回転電機MG2がトルクを出力しない停止状態とされる「第2モード」に相当する。 As shown in FIG. 3, in the first EV mode of the present embodiment, the first brake B1 as the first engagement device CL1 is engaged, and the first clutch C1 as the second engagement device CL2 is engaged. released. Then, both the internal combustion engine EG and the second rotating electrical machine MG2 are brought into a stopped state, and the first rotating electrical machine MG1 is brought into a power running state. As a result, the internal combustion engine EG and the second rotary electric machine MG2 are separated from the distribution differential gear mechanism SP, and the torque of the first rotary electric machine MG1 is transmitted to the first output member O1 via the distribution differential gear mechanism SP. be. As described above, in the first EV mode of the present embodiment, the first engagement device CL1 is in the engaged state, the torque of the first rotating electric machine MG1 is transmitted to the third rotating element E3, and the internal combustion engine EG and the second rotation This corresponds to a "second mode" in which the electric machine MG2 is in a stopped state in which it does not output torque.
 なお、第1EVモードとして、上記の代わりに、第1ブレーキB1が解放状態とされると共に、第1クラッチC1が係合状態とされ、第2回転電機MG2が第1回転要素E1を回転させない(固定する)ように制御された状態で、第1回転電機MG1が力行状態とされても良い。 As the first EV mode, instead of the above, the first brake B1 is released, the first clutch C1 is engaged, and the second rotating electric machine MG2 does not rotate the first rotating element E1 ( fixed), the first rotating electric machine MG1 may be brought into the power running state.
 第2EVモードは、第1回転電機MG1及び第2回転電機MG2の双方のトルクにより車両を走行させる動作モードである。本実施形態の第2EVモードは、内燃機関EGを停止状態としつつ、第1回転電機MG1及び第2回転電機MG2の双方のトルクを第1出力部材O1に伝達することで車両を走行させる動作モードである。 The second EV mode is an operation mode in which the vehicle is driven by the torque of both the first rotating electrical machine MG1 and the second rotating electrical machine MG2. The second EV mode of the present embodiment is an operation mode in which the vehicle travels by transmitting the torque of both the first rotating electrical machine MG1 and the second rotating electrical machine MG2 to the first output member O1 while the internal combustion engine EG is stopped. is.
 図3に示すように、本実施形態の第2EVモードでは、第1係合装置CL1としての第1ブレーキB1が解放状態とされると共に、第2係合装置CL2としての第1クラッチC1が係合状態とされる。そして、内燃機関EGがトルクを発生させない非駆動状態とされると共に、第1回転電機MG1及び第2回転電機MG2の双方が力行状態とされる。その結果、第1回転電機MG1及び第2回転電機MG2の双方のトルクが分配用差動歯車機構SPを介して第1出力部材O1に伝達される。本実施形態では、第2EVモードで第2回転電機MG2が回転している状態では、内燃機関EGは第2回転電機MG2に連れ回る状態となる。なお、内燃機関EGと第2回転電機MG2との間にクラッチ等の動力伝達を遮断する係合装置を設け、第2EVモードにおいて当該係合装置を解放して内燃機関EGを第2回転電機MG2から切り離す構成としても好適である。 As shown in FIG. 3, in the second EV mode of the present embodiment, the first brake B1 as the first engagement device CL1 is released, and the first clutch C1 as the second engagement device CL2 is engaged. state. Then, the internal combustion engine EG is brought into a non-driving state in which no torque is generated, and both the first rotary electric machine MG1 and the second rotary electric machine MG2 are brought into a power running state. As a result, the torques of both the first rotating electric machine MG1 and the second rotating electric machine MG2 are transmitted to the first output member O1 via the distribution differential gear mechanism SP. In the present embodiment, when the second electric rotating machine MG2 is rotating in the second EV mode, the internal combustion engine EG rotates together with the second electric rotating machine MG2. An engagement device such as a clutch that interrupts power transmission is provided between the internal combustion engine EG and the second rotating electric machine MG2. It is also suitable as a configuration to separate from.
 図4に、内燃機関EG及び第1回転電機MG1のそれぞれにおける回転速度に対するトルクの関係(所謂、トルク曲線)を表すグラフを示す。 FIG. 4 shows a graph representing the relationship between the torque and the rotational speed (so-called torque curve) in each of the internal combustion engine EG and the first rotating electric machine MG1.
 図4に示すように、内燃機関EGについては、回転速度がゼロよりも大きい所定の値となった場合にトルクが生じる。そして、内燃機関EGのトルクは、内燃機関EGの回転速度が上昇するに伴って上昇し、更に内燃機関EGの回転速度が上昇するに伴って緩やかに下降する。 As shown in FIG. 4, with respect to the internal combustion engine EG, torque is generated when the rotational speed reaches a predetermined value greater than zero. The torque of the internal combustion engine EG increases as the rotational speed of the internal combustion engine EG increases, and then gently decreases as the rotational speed of the internal combustion engine EG increases.
 以下の説明では、内燃機関EGの回転速度を「第1回転速度Ne」とし、内燃機関EGの出力が予め定められた値以上となる第1回転速度Neを「第1目標回転速度Ne1」とする。例えば、第1目標回転速度Ne1は、内燃機関EGがその最大出力に対して-10%以内の範囲にある場合の第1回転速度Neである。本実施形態では、第1目標回転速度Ne1は、内燃機関EGが最大出力となる場合の第1回転速度Neである。また、内燃機関EGが最大出力となる場合の内燃機関EGのトルクを「第1最大出力時トルクTe1」とする。ここで、内燃機関EGの「最大出力」とは、内燃機関EGが、規定の時間(例えば、1時間)、安定的に連続駆動可能な出力の上限値である。 In the following description, the rotation speed of the internal combustion engine EG is referred to as "first rotation speed Ne", and the first rotation speed Ne at which the output of the internal combustion engine EG exceeds a predetermined value is referred to as "first target rotation speed Ne1". do. For example, the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG is within -10% of its maximum output. In the present embodiment, the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG has the maximum output. Further, the torque of the internal combustion engine EG when the internal combustion engine EG reaches its maximum output is defined as "first maximum output torque Te1". Here, the "maximum output" of the internal combustion engine EG is the upper limit of the output at which the internal combustion engine EG can be stably and continuously driven for a specified time (for example, one hour).
 図4に示すように、第1回転電機MG1については、回転速度がゼロから所定の値までの範囲内で、トルクが一定に維持される。そして、第1回転電機MG1の回転速度がその範囲を超えて上昇するに伴って、第1回転電機MG1のトルクが下降する。 As shown in FIG. 4, the torque of the first rotating electric machine MG1 is kept constant within the range of the rotation speed from zero to a predetermined value. Then, as the rotation speed of the first rotating electrical machine MG1 increases beyond that range, the torque of the first rotating electrical machine MG1 decreases.
 以下の説明では、第1回転電機MG1の回転速度を「第2回転速度Nm」とし、第1回転電機MG1の出力(ここでは、第1回転電機MG1の力行時の出力)が予め定められた値以上となる第2回転速度Nmを「第2目標回転速度Nm1」とする。例えば、第2目標回転速度Nm1は、第1回転電機MG1がその最大出力に対して-10%以内の範囲にある場合の第2回転速度Nmである。本実施形態では、第2目標回転速度Nm1は、第1回転電機MG1が最大出力となる場合の第2回転速度Nmである。更に、第1回転電機MG1が最大出力となる場合の第1回転電機MG1のトルクを「第2最大出力時トルクTm1」とする。また、第1回転電機MG1の最大回転速度を「最大回転速度Nm2」とする。図4に示す例では、第1回転電機MG1のトルクが一定に維持される回転速度の範囲の上限値、つまり、第1回転電機MG1のトルクが下降を開始する回転速度が第2目標回転速度Nm1である。そして、一定に維持されている場合における第1回転電機MG1のトルクが第2最大出力時トルクTm1である。ここで、第1回転電機MG1の「最大出力」とは、第1回転電機MG1が、規定の時間(例えば、1時間)、安定的に連続駆動可能な出力の上限値である。また、第1回転電機MG1の「最大回転速度」とは、第1回転電機MG1が、規定の時間(例えば、1時間)、安定的に連続駆動可能な回転速度の上限値である。 In the following description, the rotational speed of the first rotating electrical machine MG1 is defined as "second rotational speed Nm", and the output of the first rotating electrical machine MG1 (here, the output during power running of the first rotating electrical machine MG1) is predetermined. The second rotation speed Nm equal to or higher than the value is defined as "second target rotation speed Nm1". For example, the second target rotation speed Nm1 is the second rotation speed Nm when the first rotating electrical machine MG1 is within -10% of its maximum output. In the present embodiment, the second target rotation speed Nm1 is the second rotation speed Nm when the first rotating electric machine MG1 has the maximum output. Further, the torque of the first rotating electrical machine MG1 when the first rotating electrical machine MG1 reaches the maximum output is defined as "second maximum output torque Tm1". Also, the maximum rotational speed of the first rotating electrical machine MG1 is assumed to be "maximum rotational speed Nm2". In the example shown in FIG. 4, the upper limit of the rotation speed range in which the torque of the first rotating electric machine MG1 is maintained constant, that is, the rotation speed at which the torque of the first rotating electric machine MG1 starts to decrease is the second target rotation speed. Nm1. The torque of the first rotary electric machine MG1 when it is maintained constant is the second maximum output torque Tm1. Here, the "maximum output" of the first rotating electrical machine MG1 is the upper limit of the output at which the first rotating electrical machine MG1 can be stably and continuously driven for a specified time (for example, one hour). Further, the "maximum rotational speed" of the first rotating electric machine MG1 is the upper limit of the rotational speed at which the first rotating electric machine MG1 can be stably and continuously driven for a specified time (for example, one hour).
 制御装置10は、車両を予め定められた値以上の加速度で加速させる場合に、特定加速制御を実行可能である。本実施形態では、制御装置10は、動作モードが第1HVモードの状態で、特定加速制御を実行する。図5から図7に、本実施形態の特定加速制御における分配用差動歯車機構SPの速度線図を示す。図5から図7の速度線図において、並列配置された複数本の縦軸のそれぞれは、分配用差動歯車機構SPの各回転要素の回転速度に対応している。また、図5から図7の速度線図において、複数本の縦軸の上方に示された符号は、対応する回転要素の符号である。そして、複数本の縦軸の下方に示された符号は、上方に示された符号に対応する回転要素に駆動連結された要素の符号である。 The control device 10 can execute specific acceleration control when the vehicle is accelerated with an acceleration equal to or greater than a predetermined value. In the present embodiment, the control device 10 executes the specific acceleration control when the operation mode is the first HV mode. 5 to 7 show velocity diagrams of the distribution differential gear mechanism SP in the specific acceleration control of this embodiment. In the velocity diagrams of FIGS. 5 to 7, each of the plurality of vertical axes arranged in parallel corresponds to the rotational speed of each rotating element of the distribution differential gear mechanism SP. In the velocity diagrams of FIGS. 5 to 7, the symbols shown above the vertical axes are the symbols of the corresponding rotating elements. The symbols shown below the vertical axes are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above.
 また、図5及び図7において、「Ne」は、第1回転要素E1の回転速度に換算した、内燃機関EGの回転速度である第1回転速度Neを示している。そして、「No」は、第2回転要素E2の回転速度に換算した、第1出力部材O1の回転速度である出力回転速度Noを示している。また、「Nm」は、第3回転要素E3の回転速度に換算した、第1回転電機MG1の回転速度である第2回転速度Nmを示している。  In addition, in Figures 5 and 7, "Ne" indicates the first rotation speed Ne, which is the rotation speed of the internal combustion engine EG, converted into the rotation speed of the first rotation element E1. "No" indicates the output rotational speed No, which is the rotational speed of the first output member O1 converted to the rotational speed of the second rotational element E2. "Nm" indicates the second rotation speed Nm, which is the rotation speed of the first rotating electric machine MG1, converted into the rotation speed of the third rotating element E3.
 特定加速制御は、第1制御と、第2制御と、を含む。図5に示すように、第1制御は、第1回転速度Neが第1目標回転速度Ne1に到達する時期と第2回転速度Nmが第2目標回転速度Nm1に到達する時期との差が予め定められた範囲内となるように、第1回転速度Neを第1目標回転速度Ne1まで次第に上昇させると共に、第2回転速度Nmを第2目標回転速度Nm1まで次第に上昇させる制御である。本実施形態の第1制御では、第1回転速度Neが第1目標回転速度Ne1に到達するのと同時期に第2回転速度Nmが第2目標回転速度Nm1に到達するように、第1回転速度Neを第1目標回転速度Ne1まで次第に上昇させると共に、第2回転速度Nmを第2目標回転速度Nm1まで次第に上昇させる。図5に示す例では、第1回転速度Neが第1目標回転速度Ne1に到達すると共に、第2回転速度Nmが第2目標回転速度Nm1に到達した状態では、出力回転速度Noが第1出力回転速度No1となっている。 The specific acceleration control includes first control and second control. As shown in FIG. 5, in the first control, the difference between the timing at which the first rotation speed Ne reaches the first target rotation speed Ne1 and the timing at which the second rotation speed Nm reaches the second target rotation speed Nm1 is determined in advance. This control gradually increases the first rotation speed Ne to the first target rotation speed Ne1 and gradually increases the second rotation speed Nm to the second target rotation speed Nm1 so as to be within a predetermined range. In the first control of the present embodiment, the first rotation speed is controlled so that the second rotation speed Nm reaches the second target rotation speed Nm1 at the same time as the first rotation speed Ne reaches the first target rotation speed Ne1. The speed Ne is gradually increased to the first target rotation speed Ne1, and the second rotation speed Nm is gradually increased to the second target rotation speed Nm1. In the example shown in FIG. 5, when the first rotation speed Ne reaches the first target rotation speed Ne1 and the second rotation speed Nm reaches the second target rotation speed Nm1, the output rotation speed No is the first output The rotation speed is No.1.
 なお、2つのタイミングに関して、「同時期」とは、これらのタイミングが完全に同一であることに加えて、これらのタイミングが同一であると見なしても良い範囲として予め設定された範囲内であることも含む概念である。 Regarding two timings, "at the same time" means that these timings are completely the same, and that they are within a range that is set in advance as a range in which these timings can be regarded as being the same. It is a concept that also includes
 図6に示すように、第2制御は、第1制御の後、第2回転速度Nmの変化量が第1回転速度Neの変化量に比べて大きくなるように、少なくとも第2回転速度Nmを第2目標回転速度Nm1から更に上昇させる制御である。ここで、第2制御における「第1回転速度Neの変化量」は、第1回転速度Neが上昇する場合の変化量と下降する場合の変化量との双方を含む。一方、第2制御における「第2回転速度Nmの変化量」は、第2回転速度Nmが上昇する場合の変化量である。本実施形態の第2制御では、第1回転速度Neを、第1目標回転速度Ne1を含む予め定められた範囲内に維持する。図6に示す例では、第1回転速度Neを第1目標回転速度Ne1に維持しつつ、第2回転速度Nmを第2目標回転速度Nm1から最大回転速度Nm2まで上昇させている。このとき、第2回転速度Nmが最大回転速度Nm2に到達した状態では、出力回転速度Noが、第1出力回転速度No1よりも大きい第2出力回転速度No2となっている。なお、第2制御の後、更に別の制御を行っても良い。 As shown in FIG. 6, after the first control, the second control reduces at least the second rotational speed Nm so that the amount of change in the second rotational speed Nm is greater than the amount of change in the first rotational speed Ne. This is a control to further increase the second target rotational speed Nm1. Here, "the amount of change in the first rotational speed Ne" in the second control includes both the amount of change when the first rotational speed Ne increases and the amount of change when the first rotational speed Ne decreases. On the other hand, "the amount of change in the second rotational speed Nm" in the second control is the amount of change when the second rotational speed Nm increases. In the second control of the present embodiment, the first rotation speed Ne is maintained within a predetermined range including the first target rotation speed Ne1. In the example shown in FIG. 6, the second rotation speed Nm is increased from the second target rotation speed Nm1 to the maximum rotation speed Nm2 while maintaining the first rotation speed Ne at the first target rotation speed Ne1. At this time, when the second rotation speed Nm reaches the maximum rotation speed Nm2, the output rotation speed No is the second output rotation speed No2, which is higher than the first output rotation speed No1. Note that another control may be performed after the second control.
 以上のように、車両用駆動装置100は、
 車両が備える第1車輪W1に駆動連結される第1出力部材O1と、
 内燃機関EGに駆動連結される入力部材Iと、
 第1ロータRT1を備えた第1回転電機MG1と、
 第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備え、第1回転要素E1が入力部材Iに駆動連結され、第2回転要素E2が第1出力部材O1に駆動連結され、第3回転要素E3が第1ロータRT1に駆動連結された分配用差動歯車機構SPと、
 内燃機関EG及び第1回転電機MG1を制御する制御装置10と、を備え、
 分配用差動歯車機構SPは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成され、
 制御装置10は、車両を予め定められた値以上の加速度で加速させる場合に、特定加速制御を実行可能であり、
 内燃機関EGの回転速度を第1回転速度Neとし、第1回転電機MG1の回転速度を第2回転速度Nmとし、内燃機関EGの出力が予め定められた値以上となる第1回転速度Neを第1目標回転速度Ne1とし、第1回転電機MG1の出力が予め定められた値以上となる第2回転速度Nmを第2目標回転速度Nm1として、
 特定加速制御は、
 第1回転速度Neが第1目標回転速度Ne1に到達する時期と第2回転速度Nmが第2目標回転速度Nm1に到達する時期との差が予め定められた範囲内となるように、第1回転速度Neを第1目標回転速度Ne1まで次第に上昇させると共に、第2回転速度Nmを第2目標回転速度Nm1まで次第に上昇させる第1制御と、
 第1制御の後、第2回転速度Nmの変化量が第1回転速度Neの変化量に比べて大きくなるように、少なくとも第2回転速度Nmを第2目標回転速度Nm1から更に上昇させる第2制御と、を含む。
As described above, the vehicle drive system 100
a first output member O1 drivingly connected to a first wheel W1 of the vehicle;
an input member I drivingly connected to the internal combustion engine EG;
a first rotating electric machine MG1 having a first rotor RT1;
A first rotating element E1, a second rotating element E2 and a third rotating element E3 are provided, the first rotating element E1 being drivingly connected to the input member I and the second rotating element E2 being drivingly connected to the first output member O1. , a distributing differential gear mechanism SP in which the third rotating element E3 is drivingly connected to the first rotor RT1;
a control device 10 that controls the internal combustion engine EG and the first rotating electric machine MG1,
The distributing differential gear mechanism SP is configured so that the rotational speeds of the first rotating element E1, the second rotating element E2, and the third rotating element E3 are in the order described,
The control device 10 is capable of executing specific acceleration control when accelerating the vehicle with an acceleration equal to or greater than a predetermined value,
The rotation speed of the internal combustion engine EG is assumed to be a first rotation speed Ne, the rotation speed of the first rotary electric machine MG1 is assumed to be a second rotation speed Nm, and the first rotation speed Ne at which the output of the internal combustion engine EG is equal to or higher than a predetermined value is determined. A first target rotation speed Ne1 is set, and a second rotation speed Nm at which the output of the first rotary electric machine MG1 is equal to or higher than a predetermined value is set as a second target rotation speed Nm1,
Specific acceleration control is
The first rotational speed Ne is controlled so that the difference between the timing at which the first rotational speed Ne reaches the first target rotational speed Ne1 and the timing at which the second rotational speed Nm reaches the second target rotational speed Nm1 is within a predetermined range. a first control that gradually increases the rotation speed Ne to a first target rotation speed Ne1 and gradually increases the second rotation speed Nm to a second target rotation speed Nm1;
After the first control, at least the second rotational speed Nm is further increased from the second target rotational speed Nm1 so that the amount of change in the second rotational speed Nm is greater than the amount of change in the first rotational speed Ne. including control.
 この構成によれば、車両を予め定められた値以上の加速度で加速させる場合に実行可能な特定加速制御において、第1制御により、車速が低速域にある段階で、内燃機関EG及び第1回転電機MG1のそれぞれを予め定められた値以上の出力とすることができる。これにより、車速が低速域にある車両を適切に加速させることができる。そして、第1制御の後は、第2制御により、内燃機関EGが比較的高い出力を維持した状態で、第1回転電機MG1の回転速度を上昇させることができる。これにより、車速が高速域に到達するように、車両を適切に加速させることができる。
 このように、本構成によれば、車両を予め定められた値以上の加速度で加速させる場合において、係合装置の係合の状態を制御することによる動作モードの切り替えを行うことなく、車速が低速域から高速域に到達するように、車両を適切に加速させることができる。したがって、車両を比較的高い加速度で加速させる場合であっても、運転者の違和感を小さく抑えることができる。
According to this configuration, in the specific acceleration control that can be executed when the vehicle is accelerated at a predetermined acceleration or more, the first control causes the internal combustion engine EG and the first rotation Each of the electric machines MG1 can output a predetermined value or more. As a result, the vehicle whose vehicle speed is in the low speed range can be appropriately accelerated. After the first control, the second control can increase the rotation speed of the first rotary electric machine MG1 while maintaining a relatively high output of the internal combustion engine EG. As a result, the vehicle can be appropriately accelerated so that the vehicle speed reaches the high speed range.
As described above, according to this configuration, when the vehicle is accelerated with an acceleration equal to or greater than a predetermined value, the vehicle speed can be increased without switching the operation mode by controlling the engagement state of the engagement device. The vehicle can be appropriately accelerated so as to reach the high speed range from the low speed range. Therefore, even when the vehicle is accelerated at a relatively high acceleration, it is possible to keep the discomfort felt by the driver small.
 また、上述したように、本実施形態では、制御装置10は、第2制御において、第1回転速度Neを、第1目標回転速度Ne1を含む予め定められた範囲内に維持する制御を行う。 Also, as described above, in the present embodiment, in the second control, the control device 10 performs control to maintain the first rotation speed Ne within a predetermined range including the first target rotation speed Ne1.
 この構成によれば、第2制御において、内燃機関EGの出力を比較的高く維持し易い。 According to this configuration, it is easy to maintain the output of the internal combustion engine EG relatively high in the second control.
 また、上述したように、本実施形態では、第1目標回転速度Ne1は、内燃機関EGが最大出力となる場合の第1回転速度Neであり、
 第2目標回転速度Nm1は、第1回転電機MG1が最大出力となる場合の第2回転速度Nmである。
Further, as described above, in the present embodiment, the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG has the maximum output.
The second target rotation speed Nm1 is the second rotation speed Nm when the first rotary electric machine MG1 has the maximum output.
 この構成によれば、車両を最大加速度で加速させ易い。 According to this configuration, it is easy to accelerate the vehicle at maximum acceleration.
 また、本実施形態では、車両用駆動装置100は、
 入力部材Iに駆動連結された第2ロータRT2を備えた第2回転電機MG2と、
 第1回転要素E1を非回転部材NRに選択的に固定する第1係合装置CL1と、を更に備えている。
Further, in the present embodiment, the vehicle drive device 100
a second rotating electric machine MG2 having a second rotor RT2 drivingly connected to the input member I;
and a first engagement device CL1 for selectively securing the first rotating element E1 to the non-rotating member NR.
 この構成によれば、第2回転電機MG2のトルクを車両の走行に利用することができる。
 また、本構成によれば、内燃機関EG及び第2回転電機MG2が回転可能な状態と回転不能な状態とを適切に切り替えることができる。
According to this configuration, the torque of the second rotating electrical machine MG2 can be used for running the vehicle.
Further, according to this configuration, the internal combustion engine EG and the second rotary electric machine MG2 can be appropriately switched between the rotatable state and the non-rotatable state.
 また、本実施形態では、車両用駆動装置100は、動作モードとして、第1モード(ここでは、第1HVモード)と、第2モード(ここでは、第1EVモード)と、を備え、
 第1モードでは、第1係合装置CL1が解放状態とされ、内燃機関EG及び第2回転電機MG2のうちの少なくとも内燃機関EGのトルクが第1回転要素E1に伝達されると共に、第1回転電機MG1のトルクが第3回転要素E3に伝達され、
 第2モードでは、第1係合装置CL1が係合状態とされ、第1回転電機MG1のトルクが第3回転要素E3に伝達され、内燃機関EG及び第2回転電機MG2がトルクを出力しない停止状態とされ、
 制御装置10は、動作モードが第1モードの状態で、特定加速制御を実行する。
Further, in the present embodiment, the vehicle drive system 100 has a first mode (here, first HV mode) and a second mode (here, first EV mode) as operation modes,
In the first mode, the first engagement device CL1 is in the released state, and the torque of at least the internal combustion engine EG out of the internal combustion engine EG and the second rotating electric machine MG2 is transmitted to the first rotating element E1, and the first rotation The torque of the electric machine MG1 is transmitted to the third rotating element E3,
In the second mode, the first engagement device CL1 is engaged, the torque of the first rotating electrical machine MG1 is transmitted to the third rotating element E3, and the internal combustion engine EG and the second rotating electrical machine MG2 stop outputting torque. state and
The control device 10 executes the specific acceleration control when the operation mode is the first mode.
 この構成によれば、第1モードにおいて、第1回転電機MG1のトルクと、内燃機関EG及び第2回転電機MG2のうちの少なくとも内燃機関EGのトルクとを合わせて第1出力部材O1に伝達することができる。これにより、適切に特定加速制御を実行することができる。
 また、本構成によれば、第2モードにおいて、内燃機関EG及び第2回転電機MG2を停止状態としつつ、第1回転電機MG1のトルクを第1出力部材O1に伝達することができる。したがって、第2モードにおいて、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のうち、第1回転電機MG1のみのトルクにより、車両を走行させることができる。
According to this configuration, in the first mode, the torque of the first rotating electrical machine MG1 and the torque of at least the internal combustion engine EG out of the internal combustion engine EG and the second rotating electrical machine MG2 are combined and transmitted to the first output member O1. be able to. As a result, the specific acceleration control can be appropriately executed.
Further, according to this configuration, in the second mode, the torque of the first rotating electric machine MG1 can be transmitted to the first output member O1 while the internal combustion engine EG and the second rotating electric machine MG2 are stopped. Therefore, in the second mode, among the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2, the vehicle can be driven by the torque of only the first rotating electrical machine MG1.
 また、本実施形態では、車両用駆動装置100は、
 入力部材Iと第1回転要素E1との間の動力伝達を断接する第2係合装置CL2を更に備え、
 動作モードとして、第3モード(ここでは、第2HVモード)を更に備え、
 第3モードでは、第1係合装置CL1が係合状態、第2係合装置CL2が解放状態とされ、第1回転電機MG1のトルクが第3回転要素E3に伝達され、内燃機関EGのトルクが第2回転電機MG2に伝達されて第2回転電機MG2が発電する。
Further, in the present embodiment, the vehicle drive device 100
further comprising a second engagement device CL2 for connecting and disconnecting power transmission between the input member I and the first rotating element E1;
A third mode (here, second HV mode) is further provided as an operation mode,
In the third mode, the first engagement device CL1 is in the engaged state and the second engagement device CL2 is in the disengaged state, the torque of the first rotating electric machine MG1 is transmitted to the third rotating element E3, and the torque of the internal combustion engine EG is is transmitted to the second rotating electric machine MG2, and the second rotating electric machine MG2 generates electric power.
 この構成によれば、第3モードにおいて、内燃機関EGのトルクにより第2回転電機MG2に発電を行わせつつ、第1回転電機MG1のトルクにより車両を走行させることができる。 According to this configuration, in the third mode, the torque of the internal combustion engine EG can be used to cause the second rotating electric machine MG2 to generate power, while the torque of the first rotating electric machine MG1 can be used to drive the vehicle.
 図7に示すように、本実施形態では、制御装置10は、第1制御の初期において、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じになるように内燃機関EG及び第1回転電機MG1を制御する。ここで、最大出力時速度差ΔNは、第1目標回転速度Ne1と第2目標回転速度Nm1との差(図5参照)である。その後、制御装置10は、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じ状態を維持しつつ、第1回転速度Ne及び第2回転速度Nmの双方を上昇させる制御を行う。言い換えれば、制御装置10は、第1回転速度Neが第1目標回転速度Ne1となり、第2回転速度Nmが第2目標回転速度Nm1となった場合に速度線図に描かれる線分(図5参照)の傾きを維持しつつ、第1回転速度Ne及び第2回転速度Nmの双方を上昇させる制御を行う。なお、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じ状態を維持するように内燃機関EG及び第1回転電機MG1が制御されていれば良く、本制御中に第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNから僅かにずれることは許容される。 As shown in FIG. 7, in the present embodiment, the control device 10 controls the difference between the first rotation speed Ne and the second rotation speed Nm to be equal to the speed difference ΔN at maximum output at the beginning of the first control. control the internal combustion engine EG and the first rotating electric machine MG1. Here, the maximum output speed difference ΔN is the difference between the first target rotation speed Ne1 and the second target rotation speed Nm1 (see FIG. 5). After that, the control device 10 maintains the state where the difference between the first rotation speed Ne and the second rotation speed Nm is the same as the speed difference ΔN at maximum output, and adjusts both the first rotation speed Ne and the second rotation speed Nm. Control to raise. In other words, the control device 10 controls the line segment drawn on the velocity diagram when the first rotation speed Ne becomes the first target rotation speed Ne1 and the second rotation speed Nm becomes the second target rotation speed Nm1 (see FIG. 5). ) is maintained, control is performed to increase both the first rotation speed Ne and the second rotation speed Nm. It is sufficient that the internal combustion engine EG and the first rotating electric machine MG1 are controlled such that the difference between the first rotational speed Ne and the second rotational speed Nm is maintained at the same state as the maximum output speed difference ΔN. It is allowed that the difference between the first rotation speed Ne and the second rotation speed Nm deviates slightly from the maximum output speed difference ΔN.
 このように、本実施形態では、第1目標回転速度Ne1が、内燃機関EGが最大出力となる場合の第1回転速度Neであり、第2目標回転速度Nm1が、第1回転電機MG1が最大出力となる場合の第2回転速度Nmである構成において、
 第1目標回転速度Ne1と第2目標回転速度Nm1との差を最大出力時速度差ΔNとして、
 制御装置10は、第1制御において、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じになるように内燃機関EG及び第1回転電機MG1を制御し、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じになった後は、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じ状態を維持しつつ、第1回転速度Ne及び第2回転速度Nmの双方を上昇させる制御を行う。
Thus, in the present embodiment, the first target rotation speed Ne1 is the first rotation speed Ne when the internal combustion engine EG has the maximum output, and the second target rotation speed Nm1 is the first rotation speed Ne when the first rotating electrical machine MG1 has the maximum output. In the configuration that is the second rotation speed Nm in the case of output,
Assuming that the difference between the first target rotation speed Ne1 and the second target rotation speed Nm1 is the maximum output speed difference ΔN,
In the first control, the control device 10 controls the internal combustion engine EG and the first rotating electric machine MG1 such that the difference between the first rotation speed Ne and the second rotation speed Nm becomes equal to the speed difference ΔN at maximum output, After the difference between the first rotational speed Ne and the second rotational speed Nm becomes equal to the speed difference ΔN at maximum output, the difference between the first rotational speed Ne and the second rotational speed Nm becomes the speed difference ΔN at maximum output. While maintaining the same state as , control is performed to increase both the first rotation speed Ne and the second rotation speed Nm.
 この構成によれば、比較的簡易な制御により、第1回転速度Neが第1目標回転速度Ne1に到達する時期と第2回転速度Nmが第2目標回転速度Nm1に到達する時期とが同時期になるようにすることができる。したがって、適切に第1制御を実行することができる。 According to this configuration, the timing at which the first rotation speed Ne reaches the first target rotation speed Ne1 and the timing at which the second rotation speed Nm reaches the second target rotation speed Nm1 are synchronized by relatively simple control. can be made to be Therefore, the first control can be appropriately executed.
 なお、制御装置10は、第1制御において、上記の制御の代わりに、第1回転速度Neが第1制御の開始時の回転速度から第1目標回転速度Ne1に到達するまでの時間と、第2回転速度Nmが第1制御の開始時の回転速度から第2目標回転速度Nm1に到達するまでの時間とが同じになるように、第1回転速度Ne及び第2回転速度Nmをそれぞれ一定の変化率で上昇させる制御を行っても良い。この制御では、第1回転速度Neが第1目標回転速度Ne1となり、第2回転速度Nmが第2目標回転速度Nm1となった場合に速度線図に描かれる線分(図5参照)の傾きは維持されず、最終的に当該傾きとなるように経時的に変化する。また、この制御では、第1目標回転速度Ne1が、内燃機関EGが最大出力となる場合の第1回転速度Neでなく、第2目標回転速度Nm1が、第1回転電機MG1が最大出力となる場合の第2回転速度Nmでなくとも良い。 Note that in the first control, instead of the above control, the control device 10 controls the time required for the first rotation speed Ne to reach the first target rotation speed Ne1 from the rotation speed at the start of the first control, Each of the first rotation speed Ne and the second rotation speed Nm is set to a constant value so that the time required for the second rotation speed Nm to reach the second target rotation speed Nm1 from the rotation speed at the start of the first control is the same. You may perform the control which raises with a change rate. In this control, the slope of the line segment (see FIG. 5) drawn on the speed diagram when the first rotation speed Ne becomes the first target rotation speed Ne1 and the second rotation speed Nm becomes the second target rotation speed Nm1 is not maintained, and changes over time so as to finally reach the slope. Further, in this control, the first target rotation speed Ne1 is not the first rotation speed Ne when the internal combustion engine EG has the maximum output, but the second target rotation speed Nm1 has the maximum output of the first rotary electric machine MG1. It does not have to be the second rotational speed Nm in the case.
 この構成によれば、比較的簡易な制御により、第1回転速度Neが第1目標回転速度Ne1に到達する時期と第2回転速度Nmが第2目標回転速度Nm1に到達する時期とが同時期になるようにすることができる。したがって、適切に第1制御を実行することができる。 According to this configuration, the timing at which the first rotation speed Ne reaches the first target rotation speed Ne1 and the timing at which the second rotation speed Nm reaches the second target rotation speed Nm1 are synchronized by relatively simple control. can be made to be Therefore, the first control can be appropriately executed.
 ここで、分配用差動歯車機構SPのギヤ比λ(図5から図7参照)は、第2回転要素E2が停止し、第1回転要素E1及び第3回転要素E3が回転している状態での第1回転要素E1の回転速度に対する第3回転要素E3の回転速度の比で表すことができる。本実施形態では、分配用差動歯車機構SPのギヤ比λは、第1回転電機MG1が最大出力となる場合の第1回転電機MG1のトルク(第2最大出力時トルクTm1)に対する内燃機関EGが最大出力となる場合の内燃機関EGのトルク(第1最大出力時トルクTe1)の比と同等である。つまり、本実施形態では、以下の式が成立する。
 ギヤ比λ=第3回転要素E3の回転速度/第1回転要素E1の回転速度=第1最大出力時トルクTe1/第2最大出力時トルクTm1
Here, the gear ratio λ (see FIGS. 5 to 7) of the distributing differential gear mechanism SP is the state where the second rotating element E2 is stopped and the first rotating element E1 and the third rotating element E3 are rotating. can be expressed by the ratio of the rotation speed of the third rotation element E3 to the rotation speed of the first rotation element E1 at . In the present embodiment, the gear ratio λ of the distribution differential gear mechanism SP is the torque of the first rotary electric machine MG1 when the first rotary electric machine MG1 reaches its maximum output (second maximum output torque Tm1). is equal to the ratio of the torque of the internal combustion engine EG (first maximum output torque Te1) when the maximum output is achieved. That is, in this embodiment, the following formula holds.
Gear ratio λ=Rotational speed of the third rotating element E3/Rotational speed of the first rotating element E1=Torque at first maximum output Te1/Torque at second maximum output Tm1
 この構成によれば、内燃機関EGが最大出力となり、かつ、第1回転電機MG1が最大出力となった状態で、第1回転要素E1から第2回転要素E2に伝達されるトルクと第3回転要素E3から第2回転要素E2に伝達されるトルクとが釣り合うようにすることができる。したがって、内燃機関EGが最大出力となり、かつ、第1回転電機MG1が最大出力となった状態で、第1回転要素E1の回転速度と第3回転要素E3の回転速度との関係を大きく変化させることなく、安定的に、内燃機関EGのトルクと第1回転電機MG1のトルクとを第1出力部材O1に伝達することができる。 According to this configuration, the torque transmitted from the first rotating element E1 to the second rotating element E2 and the third rotation are The torque transmitted from the element E3 to the second rotating element E2 can be balanced. Therefore, the relationship between the rotation speed of the first rotating element E1 and the rotation speed of the third rotating element E3 is greatly changed in a state where the internal combustion engine EG has the maximum output and the first rotating electric machine MG1 has the maximum output. Therefore, the torque of the internal combustion engine EG and the torque of the first rotating electric machine MG1 can be stably transmitted to the first output member O1.
 なお、2つの数値に関して、「同等である」とは、これらの数値が完全に同一であることに加えて、これらの数値が同一であると見なしても良い範囲として、各数値の特性に応じて予め設定された範囲(例えば基準の値に対して±10%以内の範囲)内であることも含む概念である。 Regarding two numerical values, “equivalent” means that these numerical values are completely the same, and in addition, the range in which these numerical values can be considered to be the same is determined according to the characteristics of each numerical value. is within a preset range (for example, within ±10% of the reference value).
 図8に、本実施形態の車両用駆動装置100にて特定加速制御を実行中における、車速と各種の値との関係の一例を示す。具体的には、図8の上から順に、車速に対する出力の関係を表すグラフ(以下、「出力グラフ」と記す)と、車速に対する各回転要素の回転速度の関係を表すグラフ(以下、「回転速度グラフ」と記す)と、車速に対する各回転要素のトルクの関係を表すグラフ(以下、「トルクグラフ」と記す)と、車速に対する各回転要素の変速比の関係を表すグラフ(以下、「変速比グラフ」と記す)とが示されている。なお、図8に示す例では、動作モードが第1HVモードの状態で、第1回転電機MG1が力行状態とされ、第2回転電機MG2が内燃機関EGのトルクにより発電を行っている。 FIG. 8 shows an example of the relationship between the vehicle speed and various values while the specific acceleration control is being executed in the vehicle drive system 100 of this embodiment. Specifically, in order from the top of FIG. 8, a graph representing the relationship of output to vehicle speed (hereinafter referred to as "output graph") and a graph representing the relationship of rotational speed of each rotating element to vehicle speed (hereinafter referred to as "rotational ), a graph representing the relationship between the torque of each rotating element and the vehicle speed (hereinafter referred to as the ``torque graph''), and a graph representing the relationship between the gear ratio of each rotating element and the vehicle speed (hereinafter referred to as the ``transmission ratio graph”) is shown. In the example shown in FIG. 8, the operation mode is the first HV mode, the first rotating electrical machine MG1 is in the power running state, and the second rotating electrical machine MG2 is generating power using the torque of the internal combustion engine EG.
 図8の出力グラフにおいて、「Pt」は、内燃機関EGの出力と、蓄電装置BTの出力との合計を示している。なお、ここでは、蓄電装置BTの最大出力は、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のそれぞれの最大出力よりも小さいものとする。 In the output graph of FIG. 8, "Pt" indicates the sum of the output of the internal combustion engine EG and the output of the power storage device BT. Here, it is assumed that the maximum output of the power storage device BT is smaller than the maximum output of each of the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2.
 図8の回転速度グラフにおいて、「Ne」は、第1回転要素E1の回転速度に換算した、内燃機関EGの回転速度である第1回転速度Neを示している。そして、「Nm」は、第3回転要素E3の回転速度に換算した、第1回転電機MG1の回転速度である第2回転速度Nmを示している。また、「No」は、第2回転要素E2の回転速度に換算した、第1出力部材O1の回転速度である出力回転速度Noを示している。 In the rotation speed graph of FIG. 8, "Ne" indicates the first rotation speed Ne, which is the rotation speed of the internal combustion engine EG, converted into the rotation speed of the first rotation element E1. "Nm" indicates the second rotation speed Nm, which is the rotation speed of the first rotary electric machine MG1, converted into the rotation speed of the third rotating element E3. "No" indicates the output rotation speed No, which is the rotation speed of the first output member O1 converted to the rotation speed of the second rotation element E2.
 図8のトルクグラフにおいて、「Te」は、内燃機関EGに駆動連結された第1回転要素E1に伝達されるトルクである第1トルクTeを示している。そして、「Tm」は、第1回転電機MG1に駆動連結された第3回転要素E3に伝達されるトルクである第2トルクTmを示している。また、「To」は、第1出力部材O1に駆動連結された第2回転要素E2に伝達されるトルクである出力トルクToを示している。 In the torque graph of FIG. 8, "Te" indicates the first torque Te, which is the torque transmitted to the first rotating element E1 drivingly connected to the internal combustion engine EG. "Tm" indicates the second torque Tm, which is the torque transmitted to the third rotating element E3 drivingly connected to the first rotating electric machine MG1. "To" indicates the output torque To, which is the torque transmitted to the second rotating element E2 drivingly connected to the first output member O1.
 図8の変速比グラフにおいて、「Re」は、第1出力部材O1に駆動連結された第2回転要素E2の回転速度に対する、内燃機関EGに駆動連結された第1回転要素E1の回転速度の比である第1変速比Reを示している。そして、「Rm」は、第2回転要素E2の回転速度に対する、第1回転電機MG1に駆動連結された第3回転要素E3の回転速度の比である第2変速比Rmを示している。また、「Ro」は、第2回転要素E2の回転速度に対する、第2回転要素E2の回転速度の比(∴Ro=1)を示している。 In the gear ratio graph of FIG. 8, "Re" is the ratio of the rotational speed of the first rotating element E1 drivingly connected to the internal combustion engine EG to the rotational speed of the second rotating element E2 drivingly connected to the first output member O1. A first gear ratio Re is shown. "Rm" indicates a second gear ratio Rm, which is the ratio of the rotational speed of the third rotating element E3 drivingly connected to the first rotary electric machine MG1 to the rotational speed of the second rotating element E2. "Ro" indicates the ratio (∴Ro=1) of the rotation speed of the second rotation element E2 to the rotation speed of the second rotation element E2.
 図8に示す例では、車速がゼロの状態で、特定加速制御の第1制御が実行されることで、車速がV1となる。このとき、本例では、第1回転速度Ne、第2回転速度Nm、及び出力回転速度Noが、それぞれ、第1目標回転速度Ne1、第2目標回転速度Nm1、及び第1出力回転速度No1となるように、第1回転速度Neと第2回転速度Nmとの差が最大出力時速度差ΔNと同じ状態を維持しつつ、第1回転速度Ne及び第2回転速度Nmの双方を上昇させる制御が実行される(図7参照)。そのため、車速がゼロからV1までの範囲では、第1回転速度Ne、第2回転速度Nm、及び出力回転速度Noが一定の変化率で上昇する。これに伴い、車速がゼロからV1までの範囲では、第1変速比Re及び第2変速比Rmのそれぞれが一定に維持されている。また、車速がゼロからV1までの範囲では、第1トルクTe、第2トルクTm、及び出力トルクToのそれぞれも一定に維持されている。 In the example shown in FIG. 8, the vehicle speed becomes V1 by executing the first control of the specific acceleration control when the vehicle speed is zero. At this time, in this example, the first rotation speed Ne, the second rotation speed Nm, and the output rotation speed No are respectively the first target rotation speed Ne1, the second target rotation speed Nm1, and the first output rotation speed No1. Control to increase both the first rotation speed Ne and the second rotation speed Nm while maintaining the state where the difference between the first rotation speed Ne and the second rotation speed Nm is the same as the speed difference ΔN at maximum output so that is executed (see FIG. 7). Therefore, in the vehicle speed range from zero to V1, the first rotation speed Ne, the second rotation speed Nm, and the output rotation speed No increase at a constant rate of change. As a result, the first gear ratio Re and the second gear ratio Rm are maintained constant in the vehicle speed range from zero to V1. Moreover, each of the first torque Te, the second torque Tm, and the output torque To is maintained constant in the range of the vehicle speed from zero to V1.
 図8に示す例では、その後、特定加速制御の第2制御が実行される。第2制御では、第1回転速度Neが第1目標回転速度Ne1に維持された状態で、第2回転速度Nmが第2目標回転速度Nm1から上昇するため、車速がV1から更に上昇する。車速がV2となった際には、第1回転速度Ne、第2回転速度Nm、及び出力回転速度Noが同一となる。これに伴い、車速がV2となった際には、第1変速比Re及び第2変速比Rmのそれぞれが1となる。 In the example shown in FIG. 8, the second specific acceleration control is then executed. In the second control, the second rotation speed Nm increases from the second target rotation speed Nm1 while the first rotation speed Ne is maintained at the first target rotation speed Ne1, so the vehicle speed further increases from V1. When the vehicle speed becomes V2, the first rotation speed Ne, the second rotation speed Nm, and the output rotation speed No become the same. Accordingly, when the vehicle speed reaches V2, both the first gear ratio Re and the second gear ratio Rm are set to one.
 また、第2制御では、第2回転速度Nmの上昇に伴って第2トルクTm(ここでは第2トルクTmの出力可能な最大値)が減少する。これは、第1回転電機MG1の回転速度の上昇に伴って、第1回転電機MG1において生じる逆起電力が増加することに起因する。このとき、本実施形態では、制御装置10は、第2トルクTmの減少に応じて第1トルクTeが減少するように、第2回転電機MG2の負トルクを増加させる制御を行う。より具体的には、第1回転要素E1から第2回転要素E2に伝達される内燃機関EGのトルクと第2回転電機MG2のトルクとの合計である第1トルクTeと、第3回転要素E3から第2回転要素E2に伝達される第1回転電機MG1のトルクである第2トルクTmとが釣り合うように、第1トルクTeを制御する。この際、本例では、内燃機関EGが出力可能な最大トルクを出力する状態を維持しつつ、第2トルクTmの減少分に応じた負トルクを第2回転電機MG2が出力するように制御する。 Also, in the second control, the second torque Tm (here, the maximum outputtable value of the second torque Tm) decreases as the second rotation speed Nm increases. This is because the back electromotive force generated in the first rotating electrical machine MG1 increases as the rotation speed of the first rotating electrical machine MG1 increases. At this time, in the present embodiment, the control device 10 performs control to increase the negative torque of the second rotary electric machine MG2 so that the first torque Te decreases in accordance with the decrease in the second torque Tm. More specifically, a first torque Te, which is the sum of the torque of the internal combustion engine EG and the torque of the second rotating electrical machine MG2, which are transmitted from the first rotating element E1 to the second rotating element E2, and the third rotating element E3 The first torque Te is controlled so as to be balanced with the second torque Tm, which is the torque of the first rotary electric machine MG1 transmitted from to the second rotating element E2. At this time, in this example, while maintaining the state where the internal combustion engine EG outputs the maximum torque that can be output, the second rotary electric machine MG2 is controlled to output negative torque corresponding to the amount of decrease in the second torque Tm. .
 このように、本実施形態では、車両用駆動装置100は、第2ロータRT2を備えた第2回転電機MG2を更に備え、
 第2ロータRT2は、第1回転要素E1に駆動連結され、
 制御装置10は、第2制御において、第2回転速度Nmの上昇に伴って減少する第1回転電機MG1のトルクに応じて内燃機関EG及び第2回転電機MG2の側から第1回転要素E1に伝達されるトルク(第1トルクTe)が減少するように、第2回転電機MG2の負トルクを増加させる制御を行う。
Thus, in the present embodiment, the vehicle drive system 100 further includes the second rotating electric machine MG2 including the second rotor RT2,
The second rotor RT2 is drivingly connected to the first rotating element E1,
In the second control, the control device 10 rotates the first rotary element E1 from the internal combustion engine EG and the second rotary electric machine MG2 side according to the torque of the first rotary electric machine MG1 that decreases as the second rotation speed Nm increases. Control is performed to increase the negative torque of the second rotary electric machine MG2 so that the transmitted torque (first torque Te) is reduced.
 この構成によれば、第2制御において、車速の上昇に伴って第1回転電機MG1が出力可能なトルクが次第に減少した場合であっても、第1回転要素E1から第2回転要素E2に伝達されるトルクと第3回転要素E3から第2回転要素E2に伝達されるトルクとのバランスが大きく崩れることを回避し、第1回転速度Neを第1目標回転速度Ne1に維持することが容易となる。
 また、本構成によれば、第2制御において、内燃機関EGのトルクにより第2回転電機MG2に発電を行わせることができる。
According to this configuration, in the second control, even if the torque that can be output by the first rotary electric machine MG1 gradually decreases as the vehicle speed increases, the torque is transmitted from the first rotary element E1 to the second rotary element E2. and the torque transmitted from the third rotating element E3 to the second rotating element E2, and the first rotation speed Ne can be easily maintained at the first target rotation speed Ne1. Become.
Further, according to this configuration, in the second control, the torque of the internal combustion engine EG can be used to cause the second rotary electric machine MG2 to generate power.
 図8に示す例では、その後、第2制御において、第1回転速度Neが第1目標回転速度Ne1に維持された状態で、第2回転速度Nm及び出力回転速度Noが、それぞれ、最大回転速度Nm2及び第2出力回転速度No2となる。その結果、第2制御において、車速がV2から更に上昇し、最終的に最高車速であるV3に到達する。 In the example shown in FIG. 8, after that, in the second control, the second rotation speed Nm and the output rotation speed No are set to the maximum rotation speed while the first rotation speed Ne is maintained at the first target rotation speed Ne1. Nm2 and the second output rotation speed No2. As a result, in the second control, the vehicle speed further increases from V2 and finally reaches V3, which is the maximum vehicle speed.
 図9及び図10のそれぞれに、本実施形態に係る車両用駆動装置100の構成の一例を示す。なお、図9及び図10のそれぞれにおいて、車両用駆動装置100における回転部材(例えば、入力部材I、第1回転電機MG1の第1ロータRT1等)の回転軸心に沿う方向を「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側を「軸方向第2側L2」とする。ここでは、軸方向Lにおいて、内燃機関EGに対して入力部材Iが配置される側を軸方向第1側L1とし、その反対側を軸方向第2側L2としている。また、車両用駆動装置100における回転部材の回転軸心に直交する方向を、各回転軸心を基準とした「径方向R」とする。なお、どの回転軸心を基準とするかを区別する必要がない場合やどの回転軸心を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。 9 and 10 each show an example of the configuration of the vehicle drive device 100 according to this embodiment. 9 and 10, the direction along the rotation axis of the rotating member (for example, the input member I, the first rotor RT1 of the first rotating electric machine MG1, etc.) in the vehicle drive device 100 is referred to as the "axial direction L ”. One side in the axial direction L is referred to as "first axial side L1", and the other side in the axial direction L is referred to as "second axial side L2". Here, in the axial direction L, the side on which the input member I is arranged with respect to the internal combustion engine EG is defined as the first axial side L1, and the opposite side is defined as the second axial side L2. Further, the direction orthogonal to the rotation axis of the rotating member in the vehicle drive device 100 is defined as the "radial direction R" with respect to each rotation axis. In addition, when it is not necessary to distinguish which rotation axis is used as a reference, or when it is clear which rotation axis is used as a reference, it may simply be described as “radial direction R”.
 まず、図9に示す例に係る車両用駆動装置100の構成について説明する。なお、図9に示す例では、車両用駆動装置100は、第1係合装置CL1及び第2係合装置CL2を備えていない。そのため、本例では、車両用駆動装置100は、動作モードとして、第2HVモード及び第1EVモードを備えていない。 First, the configuration of the vehicle drive device 100 according to the example shown in FIG. 9 will be described. In the example shown in FIG. 9, the vehicle drive system 100 does not include the first engagement device CL1 and the second engagement device CL2. Therefore, in this example, the vehicle drive system 100 does not have the second HV mode and the first EV mode as operation modes.
 図9に示すように、本例では、入力部材Iと、第2回転電機MG2と、分配用差動歯車機構SPとが同軸上に配置されている。そして、第1回転電機MG1が、入力部材I、第2回転電機MG2、及び分配用差動歯車機構SPとは別軸上に配置されている。また、第1出力部材O1及び第1出力用差動歯車機構DF1が、入力部材I、第2回転電機MG2、分配用差動歯車機構SP、及び第1回転電機MG1とは別軸上に配置されている。 As shown in FIG. 9, in this example, the input member I, the second rotating electric machine MG2, and the distribution differential gear mechanism SP are coaxially arranged. The first rotating electric machine MG1 is arranged on a separate shaft from the input member I, the second rotating electric machine MG2, and the distribution differential gear mechanism SP. Also, the first output member O1 and the first output differential gear mechanism DF1 are arranged on a separate axis from the input member I, the second rotating electrical machine MG2, the distribution differential gear mechanism SP, and the first rotating electrical machine MG1. It is
 分配用差動歯車機構SPは、第1遊星歯車機構PG1を備えている。本例では、第1遊星歯車機構PG1は、第1ピニオンギヤP1を支持する第1キャリヤCA1と、第1ピニオンギヤP1に噛み合う第1サンギヤS1と、当該第1サンギヤS1に対して径方向Rの外側に配置されて第1ピニオンギヤP1に噛み合う第1リングギヤR1と、を備えたシングルピニオン型の遊星歯車機構である。本例では、第1サンギヤS1が第1回転要素E1として機能する。そして、第1キャリヤCA1が第2回転要素E2として機能する。また、第1リングギヤR1が第3回転要素E3として機能する。 The distribution differential gear mechanism SP includes a first planetary gear mechanism PG1. In this example, the first planetary gear mechanism PG1 includes a first carrier CA1 that supports the first pinion gear P1, a first sun gear S1 that meshes with the first pinion gear P1, and a radially outer side of the first sun gear S1. A single pinion type planetary gear mechanism provided with a first ring gear R1 that is arranged at and meshes with the first pinion gear P1. In this example, the first sun gear S1 functions as the first rotating element E1. Then, the first carrier CA1 functions as the second rotating element E2. Also, the first ring gear R1 functions as the third rotating element E3.
 第1サンギヤS1は、入力部材Iと一体的に回転するように連結されている。本例では、入力部材Iは、軸方向Lに沿って延在する入力軸1である。また、第1サンギヤS1は、第2回転電機MG2の第2ロータRT2と一体的に回転するように連結されている。本例では、第1サンギヤS1に対して、軸方向第1側L1に第2回転電機MG2が配置され、軸方向第2側L2に入力軸1が配置されている。 The first sun gear S1 is connected to the input member I so as to rotate integrally. In this example, the input member I is an input shaft 1 extending along the axial direction L. As shown in FIG. Further, the first sun gear S1 is coupled to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2. In this example, the second rotating electric machine MG2 is arranged on the first side L1 in the axial direction with respect to the first sun gear S1, and the input shaft 1 is arranged on the second side L2 in the axial direction.
 第1リングギヤR1は、第2ギヤ22と一体的に回転するように連結されている。第2ギヤ22は、第1リングギヤR1と同軸上であって、第1リングギヤR1に対して径方向Rの外側に配置されている。そして、第2ギヤ22は、第1アイドラギヤIG1を介して、第1ギヤ21と連動して回転するように連結されている。つまり、第2ギヤ22と第1ギヤ21とが、第1アイドラギヤIG1の周方向の互いに異なる位置において、第1アイドラギヤIG1に噛み合っている。第1ギヤ21は、第1回転電機MG1の第1ロータRT1と一体的に回転するように連結されている。本例では、第1ギヤ21は、第2ギヤ22よりも小径に形成されている。そのため、第1ギヤ21に対する第2ギヤ22の歯数比は、1よりも大きい。したがって、第1ロータRT1の回転が減速されて第2ギヤ22に伝達される。また、本例では、第1ギヤ21は、第1ロータRT1に対して軸方向第2側L2に配置されている。 The first ring gear R1 is connected to rotate integrally with the second gear 22. The second gear 22 is coaxial with the first ring gear R1 and arranged outside in the radial direction R with respect to the first ring gear R1. The second gear 22 is coupled to rotate in conjunction with the first gear 21 via the first idler gear IG1. That is, the second gear 22 and the first gear 21 mesh with the first idler gear IG1 at different positions in the circumferential direction of the first idler gear IG1. The first gear 21 is coupled to rotate integrally with the first rotor RT1 of the first rotating electric machine MG1. In this example, the first gear 21 is formed with a smaller diameter than the second gear 22 . Therefore, the gear ratio of the second gear 22 to the first gear 21 is greater than one. Therefore, the rotation of the first rotor RT<b>1 is decelerated and transmitted to the second gear 22 . Further, in this example, the first gear 21 is arranged on the second side L2 in the axial direction with respect to the first rotor RT1.
 第1キャリヤCA1は、分配出力ギヤ3と一体的に回転するように連結されている。分配出力ギヤ3は、第2アイドラギヤIG2を介して、第1差動入力ギヤ4と連動して回転するように連結されている。つまり、分配出力ギヤ3と第1差動入力ギヤ4とが、第2アイドラギヤIG2の周方向の互いに異なる位置において、第2アイドラギヤIG2に噛み合っている。本例では、分配出力ギヤ3は、分配用差動歯車機構SPに対して軸方向第2側L2に配置されている。 The first carrier CA1 is connected to the distribution output gear 3 so as to rotate integrally. The distribution output gear 3 is coupled to rotate in conjunction with the first differential input gear 4 via a second idler gear IG2. That is, the distribution output gear 3 and the first differential input gear 4 mesh with the second idler gear IG2 at different positions in the circumferential direction of the second idler gear IG2. In this example, the distribution output gear 3 is arranged on the second axial side L2 with respect to the distribution differential gear mechanism SP.
 第1差動入力ギヤ4は、第1出力用差動歯車機構DF1の入力要素である。本例では、第1差動入力ギヤ4が第1出力部材O1として機能する。 The first differential input gear 4 is an input element of the first output differential gear mechanism DF1. In this example, the first differential input gear 4 functions as the first output member O1.
 また、本例では、第1差動入力ギヤ4は、分配出力ギヤ3よりも大径に形成されている。そのため、分配出力ギヤ3に対する第1差動入力ギヤ4の歯数比は、1よりも大きい。したがって、分配出力ギヤ3の回転が減速されて第1差動入力ギヤ4に伝達される。このように、本例では、分配出力ギヤ3及び第1差動入力ギヤ4が、分配用差動歯車機構SPの側から伝達される回転を変速して第1出力部材O1の側へ伝達する変速機TM(ここでは減速機)として機能する。 Also, in this example, the first differential input gear 4 is formed to have a larger diameter than the distribution output gear 3 . Therefore, the gear ratio of the first differential input gear 4 to the distribution output gear 3 is greater than one. Therefore, the rotation of the distribution output gear 3 is decelerated and transmitted to the first differential input gear 4 . Thus, in this example, the distribution output gear 3 and the first differential input gear 4 change the speed of the rotation transmitted from the distribution differential gear mechanism SP and transmit it to the first output member O1. It functions as a transmission TM (here, a speed reducer).
 続いて、図10に示す例に係る車両用駆動装置100の構成について説明する。なお、図10に示す例においても、図9に示す例と同様に、車両用駆動装置100は、第1係合装置CL1及び第2係合装置CL2を備えていない。 Next, the configuration of the vehicle drive device 100 according to the example shown in FIG. 10 will be described. In the example shown in FIG. 10, the vehicle drive system 100 does not include the first engagement device CL1 and the second engagement device CL2, similarly to the example shown in FIG.
 図10に示すように、本例では、入力部材Iと、第1回転電機MG1と、第2回転電機MG2と、分配用差動歯車機構SPとが同軸上に配置されている。そして、軸方向第2側L2から、内燃機関EG、第2回転電機MG2、第1回転電機MG1、分配用差動歯車機構SPの順に、それらが配置されている。また、第1出力部材O1及び第1出力用差動歯車機構DF1は、それらの回転軸心が入力部材I等の回転軸心に対して直交するように配置されている。 As shown in FIG. 10, in this example, the input member I, the first rotating electrical machine MG1, the second rotating electrical machine MG2, and the distribution differential gear mechanism SP are coaxially arranged. Then, from the second side L2 in the axial direction, the internal combustion engine EG, the second rotating electrical machine MG2, the first rotating electrical machine MG1, and the distribution differential gear mechanism SP are arranged in that order. Further, the first output member O1 and the first output differential gear mechanism DF1 are arranged so that their rotation axes are orthogonal to the rotation axes of the input member I and the like.
 本例では、第1遊星歯車機構PG1は、第1リングギヤR1を備えていない。そして、第1遊星歯車機構PG1は、第1サンギヤS1の代わりに大径サンギヤS11及び小径サンギヤS12を備え、第1ピニオンギヤP1の代わりに内側ピニオンギヤP11及び外側ピニオンギヤP12を備えている。 In this example, the first planetary gear mechanism PG1 does not have the first ring gear R1. The first planetary gear mechanism PG1 includes a large sun gear S11 and a small sun gear S12 instead of the first sun gear S1, and an inner pinion gear P11 and an outer pinion gear P12 instead of the first pinion gear P1.
 大径サンギヤS11は、入力軸1、及び第2回転電機MG2の第2ロータRT2と一体的に回転するように連結されている。本例では、大径サンギヤS11が第1回転要素E1として機能する。 The large-diameter sun gear S11 is coupled to rotate integrally with the input shaft 1 and the second rotor RT2 of the second rotating electric machine MG2. In this example, the large-diameter sun gear S11 functions as the first rotating element E1.
 小径サンギヤS12は、大径サンギヤS11よりも小径に形成されている。小径サンギヤS12は、第1回転電機MG1の第1ロータRT1と一体的に回転するように連結されている。本例では、小径サンギヤS12が第3回転要素E3として機能する。また、本例では、小径サンギヤS12は、大径サンギヤS11に対して軸方向第2側L2に配置されている。 The small-diameter sun gear S12 is formed to have a smaller diameter than the large-diameter sun gear S11. The small-diameter sun gear S12 is coupled to rotate integrally with the first rotor RT1 of the first rotating electric machine MG1. In this example, the small sun gear S12 functions as the third rotating element E3. In this example, the small sun gear S12 is arranged on the second side L2 in the axial direction with respect to the large sun gear S11.
 内側ピニオンギヤP11は、小径サンギヤS12に噛み合っている。外側ピニオンギヤP12は、内側ピニオンギヤP11に対して径方向Rの外側に配置されている。外側ピニオンギヤP12は、内側ピニオンギヤP11及び大径サンギヤS11の双方に噛み合っている。 The inner pinion gear P11 meshes with the small diameter sun gear S12. The outer pinion gear P12 is arranged outside in the radial direction R with respect to the inner pinion gear P11. The outer pinion gear P12 meshes with both the inner pinion gear P11 and the large sun gear S11.
 本例では、第1キャリヤCA1は、内側ピニオンギヤP11及び外側ピニオンギヤP12を支持している。そして、第1キャリヤCA1が第2回転要素E2として機能する。 In this example, the first carrier CA1 supports the inner pinion gear P11 and the outer pinion gear P12. Then, the first carrier CA1 functions as the second rotating element E2.
 本例では、変速機TMは、第2遊星歯車機構PG2を備えている。本例では、第2遊星歯車機構PG2は、第2ピニオンギヤP2を支持する第2キャリヤCA2と、第2ピニオンギヤP2に噛み合う第2サンギヤS2と、当該第2サンギヤS2に対して径方向Rの外側に配置されて第2ピニオンギヤP2に噛み合う第2リングギヤR2と、を備えたシングルピニオン型の遊星歯車機構である。 In this example, the transmission TM includes a second planetary gear mechanism PG2. In this example, the second planetary gear mechanism PG2 includes a second carrier CA2 that supports the second pinion gear P2, a second sun gear S2 that meshes with the second pinion gear P2, and a radially outer side of the second sun gear S2. and a second ring gear R2 that is arranged in the second pinion gear P2 and meshes with the second pinion gear P2.
 本例では、第2サンギヤS2は、第1キャリヤCA1と一体的に回転するように連結されている。そして、第2リングギヤR2は、非回転部材NRに固定されている。したがって、第2サンギヤS2に伝達された第1キャリヤCA1の回転は、減速されて第2キャリヤCA2に伝達される。 In this example, the second sun gear S2 is connected to rotate integrally with the first carrier CA1. The second ring gear R2 is fixed to the non-rotating member NR. Therefore, the rotation of the first carrier CA1 transmitted to the second sun gear S2 is decelerated and transmitted to the second carrier CA2.
 また、本例では、第2キャリヤCA2は、軸方向Lに沿って延在するプロペラシャフト5を介して、駆動ピニオンギヤ6と一体的に回転するように連結されている。駆動ピニオンギヤ6は、当該駆動ピニオンギヤ6の回転軸心が軸方向Lに沿うように配置されている。駆動ピニオンギヤ6は、第1差動入力ギヤ4に噛み合っている。本例では、第1差動入力ギヤ4は、当該第1差動入力ギヤ4の回転軸心が駆動ピニオンギヤ6の回転軸心に直交するように配置されている。本例では、第1差動入力ギヤ4及び駆動ピニオンギヤ6は、ハイポイドギヤである。 In addition, in this example, the second carrier CA2 is connected to the driving pinion gear 6 via the propeller shaft 5 extending along the axial direction L so as to rotate integrally. The drive pinion gear 6 is arranged such that the rotation axis of the drive pinion gear 6 is along the axial direction L. As shown in FIG. The drive pinion gear 6 meshes with the first differential input gear 4 . In this example, the first differential input gear 4 is arranged so that the rotational axis of the first differential input gear 4 is perpendicular to the rotational axis of the drive pinion gear 6 . In this example, the first differential input gear 4 and the drive pinion gear 6 are hypoid gears.
 また、本例では、第1差動入力ギヤ4は、駆動ピニオンギヤ6よりも大径に形成されている。そのため、駆動ピニオンギヤ6に対する第1差動入力ギヤ4の歯数比は、1よりも大きい。したがって、駆動ピニオンギヤ6の回転が減速されて第1差動入力ギヤ4に伝達される。このように、本例では、駆動ピニオンギヤ6及び第1差動入力ギヤ4が、第2遊星歯車機構PG2と共に、変速機TM(ここでは減速機)として機能する。 Also, in this example, the first differential input gear 4 is formed to have a larger diameter than the driving pinion gear 6 . Therefore, the gear ratio of the first differential input gear 4 to the drive pinion gear 6 is greater than one. Therefore, the rotation of the driving pinion gear 6 is decelerated and transmitted to the first differential input gear 4 . Thus, in this example, the drive pinion gear 6 and the first differential input gear 4 function as a transmission TM (reducer here) together with the second planetary gear mechanism PG2.
2.第2の実施形態
 以下では、第2の実施形態に係る車両用駆動装置100について、図11から図16を参照して説明する。本実施形態では、第2回転電機MG2の位置、及び係合装置の構成が、上記第1の実施形態のもの(図1参照)とは異なっている。以下では、上記第1の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第1の実施形態と同様とする。
2. Second Embodiment Hereinafter, a vehicle drive system 100 according to a second embodiment will be described with reference to FIGS. 11 to 16. FIG. In this embodiment, the position of the second rotating electric machine MG2 and the configuration of the engaging device are different from those of the first embodiment (see FIG. 1). Differences from the first embodiment will be mainly described below. Note that points that are not particularly described are the same as those in the first embodiment.
 図11に示すように、本実施形態では、車両用駆動装置100は、第1係合装置CL1及び第2係合装置CL2の代わりに、第3係合装置CL3と、第4係合装置CL4と、第5係合装置CL5と、を備えている。 As shown in FIG. 11, in the present embodiment, the vehicle drive system 100 includes a third engagement device CL3 and a fourth engagement device CL4 instead of the first engagement device CL1 and the second engagement device CL2. and a fifth engaging device CL5.
 第3係合装置CL3は、第1出力部材O1と分配用差動歯車機構SPの第2回転要素E2との間の動力伝達を断接する係合装置である。本実施形態では、第3係合装置CL3は、第1出力部材O1と第2回転要素E2との間の動力伝達を断接する第2クラッチC2である。 The third engagement device CL3 is an engagement device that connects and disconnects power transmission between the first output member O1 and the second rotating element E2 of the distribution differential gear mechanism SP. In this embodiment, the third engagement device CL3 is the second clutch C2 that connects and disconnects power transmission between the first output member O1 and the second rotating element E2.
 第4係合装置CL4は、分配用差動歯車機構SPの第2回転要素E2を、非回転部材NRに選択的に固定する係合装置である。本実施形態では、第4係合装置CL4は、第2回転要素E2を非回転部材NRに選択的に固定する第2ブレーキB2である。 The fourth engagement device CL4 is an engagement device that selectively fixes the second rotating element E2 of the distribution differential gear mechanism SP to the non-rotating member NR. In this embodiment, the fourth engagement device CL4 is a second brake B2 that selectively fixes the second rotating element E2 to the non-rotating member NR.
 第5係合装置CL5は、分配用差動歯車機構SPの第1回転要素E1を、非回転部材NRに選択的に固定する係合装置である。本実施形態では、第5係合装置CL5は、第1回転要素E1を非回転部材NRに選択的に固定する第3ブレーキB3である。 The fifth engagement device CL5 is an engagement device that selectively fixes the first rotating element E1 of the distribution differential gear mechanism SP to the non-rotating member NR. In this embodiment, the fifth engagement device CL5 is a third brake B3 that selectively fixes the first rotating element E1 to the non-rotating member NR.
 本実施形態では、第2回転電機MG2の第2ロータRT2が、第1出力部材O1に駆動連結されている。本例では、第2ロータRT2は、変速機TMを介して第1出力部材O1に駆動連結されている。また、本実施形態では、第2ロータRT2は、分配用差動歯車機構SPと第1出力部材O1とを結ぶ動力伝達経路において、第2クラッチC2に対して分配用差動歯車機構SPの側とは反対側に配置されている。つまり、本実施形態では、第2クラッチC2は、第2ロータRT2と第2回転要素E2との間の動力伝達を断接する。なお、本実施形態では、第1出力部材O1が対象出力部材Otに相当する。 In this embodiment, the second rotor RT2 of the second rotating electric machine MG2 is drivingly connected to the first output member O1. In this example, the second rotor RT2 is drivingly connected to the first output member O1 via the transmission TM. In the present embodiment, the second rotor RT2 is positioned on the side of the distributing differential gear mechanism SP with respect to the second clutch C2 in the power transmission path connecting the distributing differential gear mechanism SP and the first output member O1. is placed on the opposite side. That is, in this embodiment, the second clutch C2 connects and disconnects power transmission between the second rotor RT2 and the second rotating element E2. Note that, in the present embodiment, the first output member O1 corresponds to the target output member Ot.
 図12に示すように、本実施形態では、係合制御部15は、第3係合装置CL3、第4係合装置CL4、及び第5係合装置CL5の係合の状態を制御する。 As shown in FIG. 12, in the present embodiment, the engagement control section 15 controls the engagement states of the third engagement device CL3, the fourth engagement device CL4, and the fifth engagement device CL5.
 図13に示すように、本実施形態においても、上記第1の実施形態と同様に、車両用駆動装置100は、動作モードとして、第1HVモードと、第2HVモードと、第1EVモードと、第2EVモードと、を備えている。 As shown in FIG. 13, also in this embodiment, as in the first embodiment, the vehicle drive system 100 has the first HV mode, the second HV mode, the first EV mode, and the first HV mode as operation modes. 2EV mode.
 図13に、本実施形態の車両用駆動装置100の各動作モードにおける、第3係合装置CL3、第4係合装置CL4、第5係合装置CL5、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のそれぞれの状態を示す。なお、図13の第3係合装置CL3、第4係合装置CL4、及び第5係合装置CL5の欄において、「〇」は対象の係合装置が係合状態であることを示し、「×」は対象の係合装置が解放状態であることを示している。 FIG. 13 shows the third engagement device CL3, the fourth engagement device CL4, the fifth engagement device CL5, the internal combustion engine EG, the first rotary electric machine MG1, , and the states of the second rotating electric machine MG2. In addition, in the columns of the third engagement device CL3, the fourth engagement device CL4, and the fifth engagement device CL5 in FIG. "x" indicates that the target engagement device is in the released state.
 図13に示すように、本実施形態の第1HVモードでは、第3係合装置CL3としての第2クラッチC2が係合状態とされ、第4係合装置CL4としての第2ブレーキB2、及び第5係合装置CL5としての第3ブレーキB3の双方が解放状態とされる。そして、内燃機関EGが駆動状態とされる。また、第1回転電機MG1が、内燃機関EGから第1回転要素E1に伝達されるトルクの反力トルクを発生し、第3回転要素E3に伝達する。これにより、内燃機関EGのトルクと第1回転電機MG1のトルクとが合わさって、第2回転要素E2に伝達され、当該第2回転要素E2から第1出力部材O1に伝達される。そして、第2回転電機MG2が必要に応じて力行状態となるように制御される。このように、本実施形態の第1HVモードは、第3係合装置CL3が係合状態とされ、内燃機関EGのトルクが第1回転要素E1に伝達されると共に、第1回転電機MG1のトルクが第3回転要素E3に伝達される「第4モード」に相当する。 As shown in FIG. 13, in the first HV mode of the present embodiment, the second clutch C2 as the third engagement device CL3 is engaged, the second brake B2 as the fourth engagement device CL4, and the second clutch C2 as the fourth engagement device CL4. Both of the third brake B3 as the 5-engagement device CL5 are released. Then, the internal combustion engine EG is driven. In addition, the first rotary electric machine MG1 generates a reaction torque of the torque transmitted from the internal combustion engine EG to the first rotating element E1, and transmits it to the third rotating element E3. As a result, the torque of the internal combustion engine EG and the torque of the first rotary electric machine MG1 are combined and transmitted to the second rotating element E2, and then transmitted from the second rotating element E2 to the first output member O1. Then, the second rotating electric machine MG2 is controlled to be in the power running state as necessary. As described above, in the first HV mode of the present embodiment, the third engagement device CL3 is engaged, the torque of the internal combustion engine EG is transmitted to the first rotating element E1, and the torque of the first rotating electric machine MG1 is transmitted. corresponds to the "fourth mode" in which is transmitted to the third rotating element E3.
 また、本実施形態の第1HVモードは、第1回転電機MG1が力行状態とされた場合においては、第5係合装置CL5が解放状態とされ、内燃機関EG及び第1回転電機MG1のトルクが第1出力部材O1に伝達されると共に、第2回転電機MG2のトルクが対象出力部材Ot(ここでは、第1出力部材O1)に伝達される「第8モード」に相当する。 Further, in the first HV mode of the present embodiment, when the first rotating electric machine MG1 is in the power running state, the fifth engagement device CL5 is put in the disengaged state, and the torque of the internal combustion engine EG and the first rotating electric machine MG1 is reduced to This corresponds to the "eighth mode" in which the torque is transmitted to the first output member O1 and the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot (here, the first output member O1).
 本実施形態の第2HVモードでは、第3係合装置CL3としての第2クラッチC2が解放状態とされ、第4係合装置CL4としての第2ブレーキB2が係合状態とされ、第5係合装置CL5としての第3ブレーキB3が解放状態とされる。そして、内燃機関EGが駆動状態とされる。また、第1回転電機MG1が発電状態に制御されると共に、第2回転電機MG2が力行状態に制御される。その結果、内燃機関EG及び第1回転電機MG1が第1出力部材O1から分離された状態で、内燃機関EGのトルクにより分配用差動歯車機構SPを介して第1回転電機MG1が発電を行う。そして、第2回転電機MG2のトルクが対象出力部材Ot(ここでは、第1出力部材O1)に伝達される。このように、本実施形態の第2HVモードは、第3係合装置CL3が解放状態、第4係合装置CL4が係合状態とされ、第2回転電機MG2のトルクが対象出力部材Otに伝達され、内燃機関EGのトルクが分配用差動歯車機構SPを介して第1回転電機MG1に伝達されて第1回転電機MG1が発電する「第6モード」に相当する。 In the second HV mode of the present embodiment, the second clutch C2 as the third engagement device CL3 is released, the second brake B2 as the fourth engagement device CL4 is engaged, and the fifth engagement device CL4 is engaged. The third brake B3 as the device CL5 is released. Then, the internal combustion engine EG is driven. Further, the first rotating electrical machine MG1 is controlled to the power generation state, and the second rotating electrical machine MG2 is controlled to the power running state. As a result, in a state in which the internal combustion engine EG and the first rotating electric machine MG1 are separated from the first output member O1, the torque of the internal combustion engine EG causes the first rotating electric machine MG1 to generate power via the distribution differential gear mechanism SP. . Then, the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot (here, the first output member O1). Thus, in the second HV mode of the present embodiment, the third engagement device CL3 is in the released state, the fourth engagement device CL4 is in the engaged state, and the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot. and corresponds to the "sixth mode" in which the torque of the internal combustion engine EG is transmitted to the first rotating electrical machine MG1 via the differential gear mechanism SP for distribution and the first rotating electrical machine MG1 generates power.
 本実施形態の第1EVモードでは、第3係合装置CL3としての第2クラッチC2、第4係合装置CL4としての第2ブレーキB2、及び第5係合装置CL5としての第3ブレーキB3の全てが解放状態とされる。そして、内燃機関EG及び第1回転電機MG1の双方が停止状態とされると共に、第2回転電機MG2が力行状態とされる。その結果、内燃機関EG及び第1回転電機MG1が第1出力部材O1から分離され、第2回転電機MG2のトルクが対象出力部材Ot(ここでは、第1出力部材O1)に伝達される。このように、本実施形態の第1EVモードは、第3係合装置CL3が解放状態とされ、第2回転電機MG2のトルクが対象出力部材Otに伝達され、前記内燃機関及び前記第1回転電機がトルクを出力しない停止状態とされる「第5モード」に相当する。 In the first EV mode of the present embodiment, all of the second clutch C2 as the third engagement device CL3, the second brake B2 as the fourth engagement device CL4, and the third brake B3 as the fifth engagement device CL5 is released. Then, both the internal combustion engine EG and the first rotating electrical machine MG1 are brought to a stopped state, and the second rotating electrical machine MG2 is brought to a power running state. As a result, the internal combustion engine EG and the first rotating electrical machine MG1 are separated from the first output member O1, and the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot (here, the first output member O1). Thus, in the first EV mode of the present embodiment, the third engagement device CL3 is in the released state, the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot, and the internal combustion engine and the first rotating electrical machine corresponds to the "fifth mode" in which the torque is not output.
 本実施形態の第2EVモードでは、第3係合装置CL3としての第2クラッチC2が係合状態とされ、第4係合装置CL4としての第2ブレーキB2が解放状態とされ、第5係合装置CL5としての第3ブレーキB3が係合状態とされる。そして、内燃機関EGが停止状態とされると共に、第1回転電機MG1及び第2回転電機MG2の双方が力行状態とされる。その結果、第1回転電機MG1のトルクが分配用差動歯車機構SPを介して第1出力部材O1に伝達されると共に、第2回転電機MG2のトルクが対象出力部材Ot(ここでは、第1出力部材O1)に伝達される。このように、本実施形態の第2EVモードは、第5係合装置CL5が係合状態とされ、第1回転電機MG1のトルクが第1出力部材O1に伝達されると共に、第2回転電機MG2のトルクが対象出力部材Otに伝達され、内燃機関EGがトルクを出力しない停止状態とされる「第7モード」に相当する。 In the second EV mode of the present embodiment, the second clutch C2 as the third engagement device CL3 is engaged, the second brake B2 as the fourth engagement device CL4 is released, and the fifth engagement device CL4 is released. A third brake B3 as the device CL5 is engaged. Then, the internal combustion engine EG is brought to a stopped state, and both the first rotary electric machine MG1 and the second rotary electric machine MG2 are brought to a power running state. As a result, the torque of the first rotating electrical machine MG1 is transmitted to the first output member O1 via the distribution differential gear mechanism SP, and the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot (here, the first It is transmitted to the output member O1). As described above, in the second EV mode of the present embodiment, the fifth engagement device CL5 is in the engaged state, the torque of the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is transmitted to the first output member O1. is transmitted to the target output member Ot, and the internal combustion engine EG is in a stopped state in which no torque is output.
 なお、本実施形態では、動作モードが第2EVモードの状態で、第5係合装置CL5としての第3ブレーキB3を係合状態から解放状態に変化させることで、動作モードを第8モードとしての第1HVモードに移行することができる。 In this embodiment, when the operation mode is the second EV mode, the operation mode is set to the eighth mode by changing the third brake B3 as the fifth engagement device CL5 from the engaged state to the released state. It is possible to shift to the first HV mode.
 図14に、本実施形態の車両用駆動装置100にて特定加速制御を実行中における、車速と各種の値との関係の一例を示す。具体的には、図8と同様に、図14の上から順に、出力グラフと、回転速度グラフと、トルクグラフと、変速比グラフとが示されている。なお、図14に示す例では、動作モードが第8モードとしての第1HVモードの状態で、車両が走行している。 FIG. 14 shows an example of the relationship between the vehicle speed and various values while the specific acceleration control is being executed in the vehicle drive system 100 of this embodiment. Specifically, similarly to FIG. 8, an output graph, a rotation speed graph, a torque graph, and a gear ratio graph are shown in order from the top of FIG. In the example shown in FIG. 14, the vehicle is running in the first HV mode, which is the eighth mode.
 図14の出力グラフにおいて、「Pe」は、内燃機関EGの出力を示している。また、「Pm」は、第1回転電機MG1の出力と、第2回転電機MG2の出力との合計を示している。そして、「Pt」は、内燃機関EGの出力と、第1回転電機MG1の出力と、第2回転電機MG2の出力との合計を示している。この図14の出力グラフに示すように、本実施形態の車両用駆動装置100では、第1回転電機MG1のトルクを第1出力部材O1に伝達すると共に、第2回転電機MG2のトルクを対象出力部材Ot(ここでは、第1出力部材O1)に伝達する第2EVモードから、第1HVモードに移行することで、第1回転電機MG1のトルクに加えて内燃機関EGのトルクを第1出力部材O1に伝達することができる。 In the output graph of FIG. 14, "Pe" indicates the output of the internal combustion engine EG. "Pm" indicates the sum of the output of the first rotating electrical machine MG1 and the output of the second rotating electrical machine MG2. "Pt" indicates the sum of the output of the internal combustion engine EG, the output of the first rotating electrical machine MG1, and the output of the second rotating electrical machine MG2. As shown in the output graph of FIG. 14, in the vehicle drive device 100 of the present embodiment, the torque of the first rotating electric machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electric machine MG2 is transferred to the target output. By shifting from the second EV mode in which the torque is transmitted to the member Ot (here, the first output member O1) to the first HV mode, the torque of the internal combustion engine EG is transmitted to the first output member O1 in addition to the torque of the first rotating electric machine MG1. can be transmitted to
 なお、図14の回転速度グラフ、トルクグラフ、及び変速比グラフについては、図8と同様であるため、それらの説明を省略する。 It should be noted that the rotation speed graph, torque graph, and gear ratio graph in FIG. 14 are the same as in FIG. 8, so description thereof will be omitted.
 図15及び図16のそれぞれに、本実施形態に係る車両用駆動装置100の構成の一例を示す。なお、図15及び図16それぞれにおいては、図9及び図10と同様に、「軸方向L」及び「径方向R」が定義されている。 15 and 16 each show an example of the configuration of the vehicle drive device 100 according to this embodiment. 15 and 16, similarly to FIGS. 9 and 10, "axial direction L" and "radial direction R" are defined.
 まず、図15に示す例に係る車両用駆動装置100の構成について説明する。なお、図15に示す例では、車両用駆動装置100は、第3係合装置CL3、第4係合装置CL4、及び第5係合装置CL5を備えていない。そのため、本例では、車両用駆動装置100は、動作モードとして、第2HVモード及び第2EVモードを備えていない。 First, the configuration of the vehicle drive device 100 according to the example shown in FIG. 15 will be described. In the example shown in FIG. 15, the vehicle drive system 100 does not include the third engagement device CL3, the fourth engagement device CL4, and the fifth engagement device CL5. Therefore, in this example, the vehicle drive system 100 does not have the second HV mode and the second EV mode as operation modes.
 図15に示す例では、分配用差動歯車機構SPに対する第1回転電機MG1及び第2回転電機MG2の連結態様が、図9に示す例のものと異なっている。 In the example shown in FIG. 15, the manner in which the first rotating electric machine MG1 and the second rotating electric machine MG2 are connected to the distribution differential gear mechanism SP is different from the example shown in FIG.
 図15に示すように、本例では、第1ギヤ21は、第2ギヤ22に噛み合っている。第1ギヤ21は、第1回転電機MG1の第1ロータRT1と一体的に回転するように連結されている。本例でも、第1ギヤ21は、第2ギヤ22よりも小径に形成されている。そのため、第1ギヤ21に対する第2ギヤ22の歯数比は、1よりも大きい。したがって、第1ロータRT1の回転が減速されて第2ギヤ22に伝達される。 As shown in FIG. 15, the first gear 21 meshes with the second gear 22 in this example. The first gear 21 is coupled to rotate integrally with the first rotor RT1 of the first rotating electric machine MG1. Also in this example, the first gear 21 is formed to have a smaller diameter than the second gear 22 . Therefore, the gear ratio of the second gear 22 to the first gear 21 is greater than one. Therefore, the rotation of the first rotor RT<b>1 is decelerated and transmitted to the second gear 22 .
 また、本例では、第1キャリヤCA1は、分配出力ギヤ3に加えて、第4ギヤ24とも一体的に回転するように連結されている。第4ギヤ24は、第3ギヤ23に噛み合っている。本例では、第4ギヤ24は、分配用差動歯車機構SPに対して軸方向第1側L1に配置されている。 Also, in this example, the first carrier CA1 is connected to the fourth gear 24 in addition to the distribution output gear 3 so as to rotate integrally. The fourth gear 24 meshes with the third gear 23 . In this example, the fourth gear 24 is arranged on the axial first side L1 with respect to the distribution differential gear mechanism SP.
 第3ギヤ23は、第2回転電機MG2の第2ロータRT2と一体的に回転するように連結されている。本例では、第3ギヤ23は、第4ギヤ24よりも小径に形成されている。そのため、第3ギヤ23に対する第4ギヤ24の歯数比は、1よりも大きい。したがって、第2ロータRT2の回転が減速されて第4ギヤ24に伝達される。また、本例では、第3ギヤ23は、第2ロータRT2に対して軸方向第2側L2に配置されている。 The third gear 23 is coupled to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2. In this example, the third gear 23 is formed with a smaller diameter than the fourth gear 24 . Therefore, the gear ratio of the fourth gear 24 to the third gear 23 is greater than one. Therefore, the rotation of the second rotor RT<b>2 is decelerated and transmitted to the fourth gear 24 . Further, in this example, the third gear 23 is arranged on the second axial side L2 with respect to the second rotor RT2.
 続いて、図16に示す例に係る車両用駆動装置100の構成について説明する。なお、図16に示す例においても、図15に示す例と同様に、車両用駆動装置100は、第3係合装置CL3、第4係合装置CL4、及び第5係合装置CL5を備えていない。 Next, the configuration of the vehicle drive system 100 according to the example shown in FIG. 16 will be described. 16, the vehicle drive system 100 includes a third engagement device CL3, a fourth engagement device CL4, and a fifth engagement device CL5, similarly to the example shown in FIG. do not have.
 図16に示す例では、分配用差動歯車機構SPの第1遊星歯車機構PG1の構成、及び分配用差動歯車機構SPに対する第2回転電機MG2の連結態様が、図10に示す例のものと異なっている。 In the example shown in FIG. 16, the configuration of the first planetary gear mechanism PG1 of the distribution differential gear mechanism SP and the connection manner of the second rotating electric machine MG2 to the distribution differential gear mechanism SP are those of the example shown in FIG. is different from
 本例では、第1遊星歯車機構PG1は、内側ピニオンギヤP11及び外側ピニオンギヤP12の代わりに小径ピニオンギヤP13及び大径ピニオンギヤP14を備えている。 In this example, the first planetary gear mechanism PG1 includes a small diameter pinion gear P13 and a large diameter pinion gear P14 instead of the inner pinion gear P11 and the outer pinion gear P12.
 小径ピニオンギヤP13及び大径ピニオンギヤP14は、第1キャリヤCA1に支持されている。小径ピニオンギヤP13は、大径サンギヤS11に噛み合っている。大径ピニオンギヤP14は、小径サンギヤS12に噛み合っている。大径ピニオンギヤP14は、小径ピニオンギヤP13よりも大径に形成されている。 The small pinion gear P13 and the large pinion gear P14 are supported by the first carrier CA1. The small pinion gear P13 meshes with the large sun gear S11. The large diameter pinion gear P14 meshes with the small diameter sun gear S12. The large-diameter pinion gear P14 is formed to have a larger diameter than the small-diameter pinion gear P13.
 本例では、第1キャリヤCA1は、入力軸1と一体的に回転するように連結されている。そして、大径サンギヤS11は、第2回転電機MG2の第2ロータRT2と一体的に回転するように連結されている。また、小径サンギヤS12は、第1回転電機MG1の第1ロータRT1と一体的に回転するように連結されている。したがって、本例では、第1キャリヤCA1が第1回転要素E1として機能する。そして、大径サンギヤS11が第2回転要素E2として機能する。また、小径サンギヤS12が第3回転要素E3として機能する。 In this example, the first carrier CA1 is connected to the input shaft 1 so as to rotate integrally. The large-diameter sun gear S11 is coupled to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2. Further, the small-diameter sun gear S12 is coupled to rotate integrally with the first rotor RT1 of the first rotary electric machine MG1. Therefore, in this example, the first carrier CA1 functions as the first rotating element E1. The large-diameter sun gear S11 functions as the second rotating element E2. Also, the small-diameter sun gear S12 functions as the third rotating element E3.
3.第3の実施形態
 以下では、第3の実施形態に係る車両用駆動装置100について、図17から図19を参照して説明する。本実施形態では、第2回転電機MG2の位置が、上記第2の実施形態のもの(図11参照)とは異なっている。以下では、上記第2の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第2の実施形態と同様とする。
3. 3rd Embodiment Below, the vehicle drive device 100 which concerns on 3rd Embodiment is demonstrated with reference to FIGS. 17-19. In this embodiment, the position of the second rotating electric machine MG2 is different from that in the second embodiment (see FIG. 11). The following description focuses on the differences from the second embodiment. Note that points that are not particularly described are the same as those in the second embodiment.
 図17に示すように、本実施形態では、車両用駆動装置100は、第1車輪W1とは異なる第2車輪W2に駆動連結される第2出力部材O2と、当該第2出力部材O2の側から伝達される回転を一対の第2車輪W2に分配する第2出力用差動歯車機構DF2と、を備えている。 As shown in FIG. 17, in the present embodiment, the vehicle drive system 100 includes a second output member O2 that is drivingly connected to a second wheel W2 different from the first wheel W1, and a side of the second output member O2. and a second output differential gear mechanism DF2 that distributes the rotation transmitted from the second wheel W2 to the pair of second wheels W2.
 そして、本実施形態では、第2回転電機MG2の第2ロータRT2が、第2出力部材O2に駆動連結されている。そのため、本実施形態では、第2出力部材O2が対象出力部材Otに相当する。 Further, in the present embodiment, the second rotor RT2 of the second rotating electric machine MG2 is drivingly connected to the second output member O2. Therefore, in this embodiment, the second output member O2 corresponds to the target output member Ot.
 なお、本実施形態の車両用駆動装置100の各動作モードにおける、第3係合装置CL3、第4係合装置CL4、第5係合装置CL5、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のそれぞれの状態は、上記第2の実施形態のもの(図13参照)と同様であるため、それらの詳細な説明は省略する。 In each operation mode of the vehicle drive system 100 of the present embodiment, the third engagement device CL3, the fourth engagement device CL4, the fifth engagement device CL5, the internal combustion engine EG, the first rotary electric machine MG1, and the third Each state of the two-rotating electric machine MG2 is the same as that of the second embodiment (see FIG. 13), so detailed description thereof will be omitted.
 図18及び図19のそれぞれに、本実施形態に係る車両用駆動装置100の構成の一例を示す。なお、図18及び図19においては、第2回転電機MG2、及び当該第2回転電機MG2の周囲の構成の図示が省略されている。また、図18及び図19それぞれにおいては、図15及び図16と同様に、「軸方向L」及び「径方向R」が定義されている。 18 and 19 each show an example of the configuration of the vehicle drive device 100 according to this embodiment. 18 and 19, illustration of the second rotating electrical machine MG2 and the configuration around the second rotating electrical machine MG2 is omitted. 18 and 19, similarly to FIGS. 15 and 16, "axial direction L" and "radial direction R" are defined.
 まず、図18に示す例に係る車両用駆動装置100の構成について説明する。なお、図18に示す例では、車両用駆動装置100は、第3係合装置CL3及び第4係合装置CL4を備え、第5係合装置CL5を備えていない。そのため、本例では、車両用駆動装置100は、動作モードとして、第2EVモードを備えていない。 First, the configuration of the vehicle drive device 100 according to the example shown in FIG. 18 will be described. In the example shown in FIG. 18, the vehicle drive system 100 includes the third engagement device CL3 and the fourth engagement device CL4, and does not include the fifth engagement device CL5. Therefore, in this example, the vehicle drive system 100 does not have the second EV mode as an operation mode.
 図18に示す例では、分配用差動歯車機構SPと第1出力部材O1との間の動力伝達経路の構成が、図15に示す例のものと異なっている。 In the example shown in FIG. 18, the configuration of the power transmission path between the distribution differential gear mechanism SP and the first output member O1 is different from the example shown in FIG.
 図18に示すように、本例では、第3係合装置CL3としての第2クラッチC2は、第2回転要素E2としての第1キャリヤCA1と分配出力ギヤ3との間の動力伝達を断接するように構成されている。また、本例では、第4係合装置CL4としての第2ブレーキB2は、第2回転要素E2としての第1キャリヤCA1を非回転部材NRに選択的に固定するように構成されている。また、本例では、分配出力ギヤ3は、分配用差動歯車機構SPに対して軸方向第1側L1に配置されている。 As shown in FIG. 18, in this example, the second clutch C2 as the third engagement device CL3 connects and disconnects power transmission between the first carrier CA1 as the second rotating element E2 and the distribution output gear 3. is configured as Further, in this example, the second brake B2 as the fourth engagement device CL4 is configured to selectively fix the first carrier CA1 as the second rotating element E2 to the non-rotating member NR. In this example, the distribution output gear 3 is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism SP.
 続いて、図19に示す例に係る車両用駆動装置100の構成について説明する。なお、図19に示す例においても、図18に示す例と同様に、車両用駆動装置100は、第3係合装置CL3及び第4係合装置CL4を備え、第5係合装置CL5を備えていない。 Next, the configuration of the vehicle drive system 100 according to the example shown in FIG. 19 will be described. 19, the vehicle drive system 100 includes a third engagement device CL3 and a fourth engagement device CL4, and a fifth engagement device CL5, similarly to the example illustrated in FIG. not
 図19に示すように、本例では、入力部材Iと、分配用差動歯車機構SPと、第1回転電機MG1とが同軸上に配置されている。そして、第1出力用差動歯車機構DF1が、入力部材I、分配用差動歯車機構SP、及び第1回転電機MG1とは別軸上に配置されている。 As shown in FIG. 19, in this example, the input member I, the distribution differential gear mechanism SP, and the first rotary electric machine MG1 are coaxially arranged. The first output differential gear mechanism DF1 is arranged on a separate axis from the input member I, the distribution differential gear mechanism SP, and the first rotary electric machine MG1.
 図19に示す例では、図16に示す例と同様に、第1遊星歯車機構PG1は、第1リングギヤR1を備えていない。そして、第1遊星歯車機構PG1は、第1サンギヤS1の代わりに大径サンギヤS11及び小径サンギヤS12を備え、第1ピニオンギヤP1の代わりに小径ピニオンギヤP13及び大径ピニオンギヤP14を備えている。 In the example shown in FIG. 19, as in the example shown in FIG. 16, the first planetary gear mechanism PG1 does not have the first ring gear R1. The first planetary gear mechanism PG1 includes a large-diameter sun gear S11 and a small-diameter sun gear S12 instead of the first sun gear S1, and a small-diameter pinion gear P13 and a large-diameter pinion gear P14 instead of the first pinion gear P1.
 本例では、分配出力ギヤ3が、分配用差動歯車機構SPに対して軸方向第1側L1に配置されている。そして、第2回転電機MG2が、分配出力ギヤ3に対して軸方向第1側L1に配置されている。 In this example, the distribution output gear 3 is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism SP. The second rotating electric machine MG2 is arranged on the first side L1 in the axial direction with respect to the distribution output gear 3 .
 本例では、車両用駆動装置100は、カウンタ入力ギヤ81及びカウンタ出力ギヤ82を備えたカウンタギヤ機構CGを備えている。カウンタ入力ギヤ81は、第3アイドラギヤIG3を介して、分配出力ギヤ3と連動して回転するように連結されている。つまり、カウンタ入力ギヤ81と分配出力ギヤ3とが、第3アイドラギヤIG3の周方向の互いに異なる位置において、第3アイドラギヤIG3に噛み合っている。カウンタ出力ギヤ82は、第1差動入力ギヤ4に噛み合っている。ここでは、カウンタ出力ギヤ82は、カウンタ入力ギヤ81よりも小径に形成されている。 In this example, the vehicle drive device 100 includes a counter gear mechanism CG including a counter input gear 81 and a counter output gear 82. The counter input gear 81 is coupled to rotate in conjunction with the distribution output gear 3 via a third idler gear IG3. That is, the counter input gear 81 and the distribution output gear 3 mesh with the third idler gear IG3 at different positions in the circumferential direction of the third idler gear IG3. The counter output gear 82 meshes with the first differential input gear 4 . Here, the counter output gear 82 is formed with a smaller diameter than the counter input gear 81 .
 本例では、カウンタ入力ギヤ81は、分配出力ギヤ3よりも大径に形成されている。そのため、分配出力ギヤ3に対するカウンタ入力ギヤ81の歯数比は、1よりも大きい。したがって、分配出力ギヤ3の回転が減速されてカウンタ入力ギヤ81に伝達される。また、第1差動入力ギヤ4は、カウンタ出力ギヤ82よりも大径に形成されている。そのため、カウンタ出力ギヤ82に対する第1差動入力ギヤ4の歯数比は、1よりも大きい。したがって、カウンタ出力ギヤ82の回転が減速されて第1差動入力ギヤ4に伝達される。このように、本例では、分配出力ギヤ3、カウンタ入力ギヤ81、カウンタ出力ギヤ82、及び第1差動入力ギヤ4が、分配用差動歯車機構SPの側から伝達される回転を変速して第1出力部材O1の側へ伝達する変速機TM(ここでは減速機)として機能する。 In this example, the counter input gear 81 is formed with a larger diameter than the distribution output gear 3 . Therefore, the gear ratio of the counter input gear 81 to the distribution output gear 3 is greater than one. Therefore, the rotation of the distribution output gear 3 is decelerated and transmitted to the counter input gear 81 . Also, the first differential input gear 4 is formed to have a larger diameter than the counter output gear 82 . Therefore, the gear ratio of the first differential input gear 4 to the counter output gear 82 is greater than one. Therefore, the rotation of the counter output gear 82 is decelerated and transmitted to the first differential input gear 4 . Thus, in this example, the distribution output gear 3, the counter input gear 81, the counter output gear 82, and the first differential input gear 4 speed up the rotation transmitted from the distribution differential gear mechanism SP. function as a transmission TM (reducer in this case) that transmits power to the side of the first output member O1.
 以上のように、第2の実施形態及び第3の実施形態では、車両用駆動装置100は、
 第1車輪W1とは異なる第2車輪W2に駆動連結される第2出力部材O2と、
 第1出力部材O1又は第2出力部材O2に駆動連結された第2ロータRT2を備えた第2回転電機MG2と、
 第1出力部材O1と第2回転要素E2との間の動力伝達を断接する第3係合装置CL3と、を更に備えている。
As described above, in the second embodiment and the third embodiment, the vehicle drive device 100
a second output member O2 drivingly connected to a second wheel W2 different from the first wheel W1;
a second rotating electric machine MG2 including a second rotor RT2 drivingly connected to the first output member O1 or the second output member O2;
A third engagement device CL3 for connecting and disconnecting power transmission between the first output member O1 and the second rotating element E2 is further provided.
 この構成によれば、第2回転電機MG2のトルクを第1出力部材O1又は第2出力部材O2に伝達することができる。したがって、第2回転電機MG2のトルクを利用して、車両を走行させることができる。
 また、本構成によれば、内燃機関EG及び第1回転電機MG1と第1出力部材O1との間において、動力伝達が可能な状態と動力伝達が遮断された状態とを適切に切り替えることができる。
According to this configuration, the torque of the second rotating electric machine MG2 can be transmitted to the first output member O1 or the second output member O2. Therefore, the vehicle can be run using the torque of the second rotating electric machine MG2.
Further, according to this configuration, between the internal combustion engine EG and the first rotating electric machine MG1 and the first output member O1, it is possible to appropriately switch between a state in which power transmission is possible and a state in which power transmission is interrupted. .
 また、第2の実施形態及び第3の実施形態では、車両用駆動装置100は、動作モードとして、第4モード(ここでは、第1HVモード)と、第5モード(ここでは、第1EVモード)と、を備え、
 第1出力部材O1及び第2出力部材O2のうちの第2ロータRT2に駆動連結された方を対象出力部材Otとし、
 第4モードでは、第3係合装置CL3が係合状態とされ、内燃機関EGのトルクが第1回転要素E1に伝達されると共に、第1回転電機MG1のトルクが第3回転要素E3に伝達され、
 第5モードでは、第3係合装置CL3が解放状態とされ、第2回転電機MG2のトルクが対象出力部材Otに伝達され、内燃機関EG及び第1回転電機MG1がトルクを出力しない停止状態とされ、
 制御装置10は、動作モードが第4モードの状態で、特定加速制御を実行する。
In addition, in the second embodiment and the third embodiment, the vehicle drive system 100 operates in the fourth mode (here, the first HV mode) and the fifth mode (here, the first EV mode). and
A target output member Ot is the one of the first output member O1 and the second output member O2 that is drivingly connected to the second rotor RT2, and
In the fourth mode, the third engagement device CL3 is engaged so that the torque of the internal combustion engine EG is transmitted to the first rotating element E1, and the torque of the first rotating electric machine MG1 is transmitted to the third rotating element E3. is,
In the fifth mode, the third engagement device CL3 is in the released state, the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot, and the internal combustion engine EG and the first rotating electrical machine MG1 are in a stopped state in which no torque is output. is,
The control device 10 executes the specific acceleration control when the operation mode is the fourth mode.
 この構成によれば、第4モードにおいて、第1回転電機MG1のトルクと、内燃機関EGのトルクとを合わせて第1出力部材O1に伝達することができる。これにより、適切に特定加速制御を実行することができる。
 また、本構成によれば、第5モードにおいて、内燃機関EG及び第1回転電機MG1を停止状態としつつ、第2回転電機MG2のトルクを対象出力部材Otに伝達することができる。したがって、第5モードにおいて、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のうち、第2回転電機MG2のみのトルクにより、車両を走行させることができる。
According to this configuration, in the fourth mode, the torque of the first rotary electric machine MG1 and the torque of the internal combustion engine EG can be combined and transmitted to the first output member O1. As a result, the specific acceleration control can be appropriately executed.
Further, according to this configuration, in the fifth mode, the torque of the second rotating electrical machine MG2 can be transmitted to the target output member Ot while the internal combustion engine EG and the first rotating electrical machine MG1 are brought into a stopped state. Therefore, in the fifth mode, among the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2, the vehicle can be driven by the torque of only the second rotating electrical machine MG2.
 また、第2の実施形態及び第3の実施形態では、車両用駆動装置100は、
 第2回転要素E2を非回転部材NRに選択的に固定する第4係合装置CL4を更に備え、
 動作モードとして、第6モード(ここでは、第2HVモード)を更に備え、
 第6モードでは、第3係合装置CL3が解放状態、第4係合装置CL4が係合状態とされ、第2回転電機MG2のトルクが対象出力部材Otに伝達され、内燃機関EGのトルクが分配用差動歯車機構SPを介して第1回転電機MG1に伝達されて第1回転電機MG1が発電する。
Further, in the second embodiment and the third embodiment, the vehicle drive device 100
further comprising a fourth engagement device CL4 for selectively fixing the second rotating element E2 to the non-rotating member NR;
A sixth mode (here, second HV mode) is further provided as an operation mode,
In the sixth mode, the third engagement device CL3 is in the disengaged state, the fourth engagement device CL4 is in the engaged state, the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot, and the torque of the internal combustion engine EG is It is transmitted to the first rotary electric machine MG1 via the distribution differential gear mechanism SP, and the first rotary electric machine MG1 generates electric power.
 この構成によれば、第6モードにおいて、内燃機関EGのトルクにより第1回転電機MG1に発電を行わせつつ、第2回転電機MG2のトルクにより車両を走行させることができる。 According to this configuration, in the sixth mode, the torque of the internal combustion engine EG is used to generate power by the first electric rotating machine MG1, while the torque of the second electric rotating machine MG2 is used to drive the vehicle.
 また、第2の実施形態及び第3の実施形態では、車両用駆動装置100は、
 第1車輪W1とは異なる第2車輪W2に駆動連結される第2出力部材O2と、
 第1出力部材O1又は第2出力部材O2に駆動連結された第2ロータRT2を備えた第2回転電機MG2と、
 第1回転要素E1を非回転部材NRに選択的に固定する第5係合装置CL5と、を更に備え、
 動作モードとして、第7モード(ここでは、第2EVモード)と、第8モード(ここでは、第1HVモード)と、を備え、
 第1出力部材O1及び第2出力部材O2のうちの第2ロータRT2に駆動連結された方を対象出力部材Otとし、
 第7モードでは、第5係合装置CL5が係合状態とされ、第1回転電機MG1のトルクが第1出力部材O1に伝達されると共に、第2回転電機MG2のトルクが対象出力部材Otに伝達され、内燃機関EGがトルクを出力しない停止状態とされ、
 第8モードでは、第5係合装置CL5が解放状態とされ、内燃機関EG及び第1回転電機MG1のトルクが第1出力部材O1に伝達されると共に、第2回転電機MG2のトルクが対象出力部材Otに伝達される。
Further, in the second embodiment and the third embodiment, the vehicle drive device 100
a second output member O2 drivingly connected to a second wheel W2 different from the first wheel W1;
a second rotating electric machine MG2 including a second rotor RT2 drivingly connected to the first output member O1 or the second output member O2;
a fifth engagement device CL5 for selectively fixing the first rotating element E1 to the non-rotating member NR;
As operation modes, a seventh mode (here, the second EV mode) and an eighth mode (here, the first HV mode) are provided,
A target output member Ot is the one of the first output member O1 and the second output member O2 that is drivingly connected to the second rotor RT2, and
In the seventh mode, the fifth engagement device CL5 is engaged, the torque of the first rotating electric machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electric machine MG2 is transmitted to the target output member Ot. is transmitted, and the internal combustion engine EG is brought into a stopped state in which it does not output torque,
In the eighth mode, the fifth engagement device CL5 is in the released state, the torque of the internal combustion engine EG and the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is the target output. It is transmitted to the member Ot.
 この構成によれば、第7モードにおいて、内燃機関EGを停止状態としつつ、第1回転電機MG1のトルクを第1出力部材O1に伝達すると共に、第2回転電機MG2のトルクを対象出力部材Otに伝達することができる。したがって、第7モードにおいて、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2のうち、第1回転電機MG1及び第2回転電機MG2のトルクにより、車両を走行させることができる。
 また、本構成によれば、第8モードにおいて、内燃機関EG及び第1回転電機MG1のトルクを第1出力部材O1に伝達すると共に、第2回転電機MG2のトルクを対象出力部材Otに伝達することができる。したがって、第8モードにおいて、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2の全てのトルクにより、車両を走行させることができる。
According to this configuration, in the seventh mode, while the internal combustion engine EG is stopped, the torque of the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is transferred to the target output member Ot. can be transmitted to Therefore, in the seventh mode, of the internal combustion engine EG, the first rotating electric machine MG1, and the second rotating electric machine MG2, the vehicle can be driven by the torque of the first rotating electric machine MG1 and the second rotating electric machine MG2.
Further, according to this configuration, in the eighth mode, the torque of the internal combustion engine EG and the first rotating electrical machine MG1 is transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 is transmitted to the target output member Ot. be able to. Therefore, in the eighth mode, the vehicle can be driven by all the torques of the internal combustion engine EG, the first rotating electrical machine MG1, and the second rotating electrical machine MG2.
図22に、上記第1の実施形態に係る車両用駆動装置100の構成の一例を示す。図22に示すように、車両用駆動装置100は、入力部材Iと、第1出力部材O1と、第1回転電機MG1と、第1遊星歯車機構PG1と、減速ギヤ機構RGと、を備えている。本実施形態では、車両用駆動装置100は、第2回転電機MG2と、第1出力用差動歯車機構DF1と、を更に備えている。 FIG. 22 shows an example of the configuration of the vehicle drive system 100 according to the first embodiment. As shown in FIG. 22, the vehicle drive device 100 includes an input member I, a first output member O1, a first rotating electric machine MG1, a first planetary gear mechanism PG1, and a reduction gear mechanism RG. there is In this embodiment, the vehicle drive device 100 further includes a second rotating electric machine MG2 and a first output differential gear mechanism DF1.
 入力部材Iは、内燃機関EGに駆動連結されている。本実施形態では、入力部材Iは、軸方向Lに沿って延在するように形成された入力軸1である。内燃機関EGは、第1車輪W1の駆動力源として機能する。内燃機関EGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。 The input member I is drivingly connected to the internal combustion engine EG. In this embodiment, the input member I is an input shaft 1 formed to extend along the axial direction L. As shown in FIG. The internal combustion engine EG functions as a driving force source for the first wheels W1. The internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
 ここで、本願において「駆動連結」とは、2つの回転要素がトルクを伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介してトルクを伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及びトルクを選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、遊星歯車機構の各回転要素について「駆動連結」という場合には、各回転要素が他の回転要素を介することなく駆動連結されている状態を指すものとする。 Here, in the present application, the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit torque, and the two rotating elements are connected so as to rotate integrally, or It includes a state in which two rotating elements are coupled to transmit torque via one or more transmission members. Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains. The transmission member may include an engagement device that selectively transmits rotation and torque, such as a friction engagement device and a mesh type engagement device. However, when each rotating element of the planetary gear mechanism is referred to as "driving connection", it means a state in which each rotating element is drivingly connected without intervening another rotating element.
 入力部材Iは、第1軸X1上に配置されている。本実施形態では、第2回転電機MG2も、第1軸X1上に配置されている。第1遊星歯車機構PG1は、第1軸X1に対して平行であって第1軸X1とは異なる第2軸X2上に配置されている。本実施形態では、第1回転電機MG1も、第2軸X2上に配置されている。また、本実施形態では、第1出力部材O1及び第1出力用差動歯車機構DF1は、第1軸X1及び第2軸X2とは異なる第3軸X3上に配置されている。 The input member I is arranged on the first axis X1. In this embodiment, the second rotating electric machine MG2 is also arranged on the first axis X1. The first planetary gear mechanism PG1 is arranged on a second axis X2 parallel to the first axis X1 and different from the first axis X1. In this embodiment, the first rotating electric machine MG1 is also arranged on the second axis X2. Further, in this embodiment, the first output member O1 and the first output differential gear mechanism DF1 are arranged on the third axis X3 different from the first axis X1 and the second axis X2.
 以下の説明では、第1軸X1及び第2軸X2に平行な方向を「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側を「軸方向第2側L2」とする。本実施形態では、軸方向Lにおいて、内燃機関EGに対して入力部材Iが配置される側を軸方向第1側L1とし、その反対側を軸方向第2側L2としている。また、上記の軸X1~X3のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。どの軸を基準とするかを区別する必要がない場合や、どの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。なお、本例では、第1軸X1、第2軸X2、及び第3軸X3は、互いに平行に配置されている。 In the following description, the direction parallel to the first axis X1 and the second axis X2 is defined as "axial direction L". One side in the axial direction L is referred to as "first axial side L1", and the other side in the axial direction L is referred to as "second axial side L2". In this embodiment, in the axial direction L, the side on which the input member I is arranged with respect to the internal combustion engine EG is defined as the first axial side L1, and the opposite side is defined as the second axial side L2. A direction perpendicular to each of the axes X1 to X3 is defined as a "radial direction R" with respect to each axis. When it is not necessary to distinguish which axis is used as a reference, or when it is clear which axis is used as a reference, it may simply be described as "radial direction R". In this example, the first axis X1, the second axis X2, and the third axis X3 are arranged parallel to each other.
 第1回転電機MG1は、第1ステータST1と、第1ロータRT1と、を備えている。第1ステータST1は、非回転部材NRに固定されている(図示を省略)。第1ロータRT1は、第1ステータST1に対して回転自在に支持されている。本実施形態では、非回転部材NRは、第1回転電機MG1等を収容するケースである。 The first rotating electric machine MG1 includes a first stator ST1 and a first rotor RT1. The first stator ST1 is fixed to the non-rotating member NR (not shown). The first rotor RT1 is rotatably supported with respect to the first stator ST1. In this embodiment, the non-rotating member NR is a case that accommodates the first rotating electric machine MG1 and the like.
 第2回転電機MG2は、第2ステータST2と、第2ロータRT2と、を備えている。第2ステータST2は、非回転部材NRに固定されている(図示を省略)。第2ロータRT2は、第2ステータST2に対して回転自在に支持されている。本実施形態では、第2ロータRT2は、入力部材Iと一体的に回転するように連結されている。 The second rotating electric machine MG2 includes a second stator ST2 and a second rotor RT2. The second stator ST2 is fixed to the non-rotating member NR (not shown). The second rotor RT2 is rotatably supported with respect to the second stator ST2. In this embodiment, the second rotor RT2 is connected to the input member I so as to rotate together.
 第1回転電機MG1及び第2回転電機MG2のそれぞれは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。第1回転電機MG1及び第2回転電機MG2のそれぞれは、バッテリやキャパシタ等の蓄電装置(図示を省略)との間で電力の授受を行うように、当該蓄電装置と電気的に接続されている。第1回転電機MG1は、第1車輪W1の駆動力源として機能する。本実施形態では、第2回転電機MG2も、第1車輪W1の駆動力源として機能する。 Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 functions as a motor (electric motor) that receives power supply and generates power, and functions as a generator (generator) that receives power supply and generates power. It has the function of Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 is electrically connected to a power storage device (not shown) such as a battery or a capacitor so as to transfer electric power to and from the power storage device. . The first rotating electric machine MG1 functions as a driving force source for the first wheel W1. In this embodiment, the second rotating electric machine MG2 also functions as a driving force source for the first wheel W1.
 第1遊星歯車機構PG1は、第1サンギヤS1、第1キャリヤCA1、及び第1リングギヤR1を備えたシングルピニオン型の遊星歯車機構である。本例では、第1サンギヤS1が第3回転要素E3として機能する。そして、第1キャリヤCA1が第2回転要素E2として機能する。また、第1リングギヤR1が第1回転要素E1として機能する。 The first planetary gear mechanism PG1 is a single pinion type planetary gear mechanism including a first sun gear S1, a first carrier CA1, and a first ring gear R1. In this example, the first sun gear S1 functions as the third rotating element E3. Then, the first carrier CA1 functions as the second rotating element E2. Also, the first ring gear R1 functions as the first rotating element E1.
 第1サンギヤS1は、第1ロータRT1に駆動連結されている。本実施形態では、第1サンギヤS1は、第1ロータRT1に対して軸方向第2側L2に配置されている。そして、第1サンギヤS1は、第1ロータRT1と一体的に回転するように連結されている。 The first sun gear S1 is drivingly connected to the first rotor RT1. In this embodiment, the first sun gear S1 is arranged on the second axial side L2 with respect to the first rotor RT1. The first sun gear S1 is connected to rotate integrally with the first rotor RT1.
 第1キャリヤCA1は、第1出力部材O1に駆動連結されている。第1キャリヤCA1は、第1サンギヤS1及び第1リングギヤR1に噛み合う第1ピニオンギヤP1を支持している。第1ピニオンギヤP1は、その軸心回りに回転(自転)すると共に、第1キャリヤCA1と共に第1サンギヤS1を中心として回転(公転)する。第1ピニオンギヤP1は、その公転軌跡に沿って、互いに間隔を空けて複数設けられている。 The first carrier CA1 is drivingly connected to the first output member O1. The first carrier CA1 supports a first pinion gear P1 that meshes with the first sun gear S1 and the first ring gear R1. The first pinion gear P1 rotates (revolves) around its axis, and rotates (revolves) around the first sun gear S1 together with the first carrier CA1. A plurality of first pinion gears P1 are provided at intervals along the revolution locus.
 第1リングギヤR1は、減速ギヤ機構RGを介して入力部材Iに駆動連結されている。第1リングギヤR1は、第1ピニオンギヤP1の公転軌跡に対して径方向Rの外側に配置され、第1ピニオンギヤP1に噛み合う内歯のギヤである。本実施形態では、第1リングギヤR1は、円筒状のギヤ形成部材20の内周面に形成されている。 The first ring gear R1 is drivingly connected to the input member I via a reduction gear mechanism RG. The first ring gear R1 is an internal tooth gear that is arranged outside in the radial direction R with respect to the revolution locus of the first pinion gear P1 and meshes with the first pinion gear P1. In this embodiment, the first ring gear R1 is formed on the inner peripheral surface of the cylindrical gear forming member 20. As shown in FIG.
 減速ギヤ機構RGは、入力部材Iの側から伝達された回転を減速して第1出力部材O1の側に伝達するように構成されている。本実施形態では、減速ギヤ機構RGは、入力部材Iの回転を減速して第1遊星歯車機構PG1の第1リングギヤR1に伝達する。 The reduction gear mechanism RG is configured to reduce the speed of the rotation transmitted from the input member I side and transmit it to the first output member O1 side. In this embodiment, the reduction gear mechanism RG reduces the speed of rotation of the input member I and transmits it to the first ring gear R1 of the first planetary gear mechanism PG1.
 第1出力用差動歯車機構DF1は、第1出力部材O1の回転を一対の第1車輪W1に分配するように構成されている。本実施形態では、第1出力用差動歯車機構DF1は、当該第1出力用差動歯車機構DF1の入力要素である第1差動入力ギヤ4を備えている。本実施形態では、第1差動入力ギヤ4は、第2アイドラギヤIG2を介して、分配出力ギヤ3と連動して回転するように連結されている。つまり、第1差動入力ギヤ4と分配出力ギヤ3とが、第2アイドラギヤIG2の周方向の互いに異なる位置において、第2アイドラギヤIG2に噛み合っている。分配出力ギヤ3は、第1遊星歯車機構PG1の出力要素である第1キャリヤCA1と一体的に回転するように連結されている。本実施形態では、分配出力ギヤ3は、第2軸X2上に配置されている。そして、分配出力ギヤ3は、第1遊星歯車機構PG1に対して軸方向第2側L2に配置されている。 The first output differential gear mechanism DF1 is configured to distribute the rotation of the first output member O1 to the pair of first wheels W1. In this embodiment, the first output differential gear mechanism DF1 includes a first differential input gear 4 that is an input element of the first output differential gear mechanism DF1. In this embodiment, the first differential input gear 4 is coupled to rotate in conjunction with the distribution output gear 3 via the second idler gear IG2. That is, the first differential input gear 4 and the distribution output gear 3 mesh with the second idler gear IG2 at different positions in the circumferential direction of the second idler gear IG2. The distribution output gear 3 is connected to rotate integrally with the first carrier CA1, which is the output element of the first planetary gear mechanism PG1. In this embodiment, the distribution output gear 3 is arranged on the second axis X2. The distribution output gear 3 is arranged on the second side L2 in the axial direction with respect to the first planetary gear mechanism PG1.
 第1出力部材O1は、第1車輪W1に駆動連結されている。本実施形態では、第1差動入力ギヤ4が第1出力部材O1として機能する。 The first output member O1 is drivingly connected to the first wheel W1. In this embodiment, the first differential input gear 4 functions as the first output member O1.
 減速ギヤ機構RGは、第1ギヤ21と、第2ギヤ22と、を備えている。 The reduction gear mechanism RG includes a first gear 21 and a second gear 22.
 第1ギヤ21は、入力部材Iと一体的に回転するように連結されている。本実施形態では、第1ギヤ21は、第1軸X1上に配置されている。また、本実施形態では、第1ギヤ21は、内燃機関EGと第2回転電機MG2との軸方向Lの間に配置されている。 The first gear 21 is connected to the input member I so as to rotate integrally. In this embodiment, the first gear 21 is arranged on the first axis X1. Further, in the present embodiment, the first gear 21 is arranged between the internal combustion engine EG and the second rotating electric machine MG2 in the axial direction L.
 第2ギヤ22は、第1遊星歯車機構PG1の第1リングギヤR1と一体的に回転するように連結されている。本実施形態では、第2ギヤ22は、第1アイドラギヤIG1を介して、第1ギヤ21と連動して回転するように連結された外歯のギヤである。つまり、第1ギヤ21と第2ギヤ22とが、第1アイドラギヤIG1の周方向の互いに異なる位置において、第1アイドラギヤIG1に噛み合っている。本実施形態では、第2ギヤ22は、ギヤ形成部材20の外周面に形成されている。また、本実施形態では、第2ギヤ22は、第2軸X2上に配置されている。 The second gear 22 is connected to rotate integrally with the first ring gear R1 of the first planetary gear mechanism PG1. In this embodiment, the second gear 22 is an externally toothed gear that is coupled to rotate in conjunction with the first gear 21 via the first idler gear IG1. That is, the first gear 21 and the second gear 22 mesh with the first idler gear IG1 at different positions in the circumferential direction of the first idler gear IG1. In this embodiment, the second gear 22 is formed on the outer peripheral surface of the gear forming member 20 . Further, in this embodiment, the second gear 22 is arranged on the second axis X2.
 第2ギヤ22は、第1ギヤ21よりも大径に形成されている。第1ギヤ21と第2ギヤ22との径の比に応じた減速比で第1ギヤ21の回転が減速されて第2ギヤ22に伝達されるように、第1ギヤ21と第2ギヤ22とが連結されている。上記の通り、本実施形態では、第1ギヤ21と第2ギヤ22とが、第1アイドラギヤIG1を介して連結されている。 The second gear 22 is formed with a larger diameter than the first gear 21 . The first gear 21 and the second gear 22 are arranged so that the rotation of the first gear 21 is reduced by a reduction ratio corresponding to the ratio of the diameters of the first gear 21 and the second gear 22 and transmitted to the second gear 22 . and are connected. As described above, in this embodiment, the first gear 21 and the second gear 22 are connected via the first idler gear IG1.
 また、図22から明らかなように、第1ギヤ21の軸方向Lの配置領域と、第2ギヤ22の軸方向Lの配置領域と、第1遊星歯車機構PG1の軸方向Lの配置領域とが互いに重なっている。 As is clear from FIG. 22, the arrangement area of the first gear 21 in the axial direction L, the arrangement area of the second gear 22 in the axial direction L, and the arrangement area of the first planetary gear mechanism PG1 in the axial direction L. overlap each other.
 以上のように、車両用駆動装置100は、
 内燃機関EGに駆動連結される入力部材Iと、
 第1車輪W1に駆動連結される第1出力部材O1と、
 第1ロータRT1を備えた第1回転電機MG1と、
 第1サンギヤS1、第1キャリヤCA1、及び第1リングギヤR1を備えたシングルピニオン型の第1遊星歯車機構PG1と、
 入力部材Iの側から伝達された回転を減速して第1出力部材O1の側に伝達する減速ギヤ機構RGと、を備え、
 第1サンギヤS1は、第1ロータRT1に駆動連結され、
 第1キャリヤCA1は、第1出力部材O1に駆動連結され、
 第1リングギヤR1は、減速ギヤ機構RGを介して入力部材Iに駆動連結され、
 入力部材Iは、第1軸X1上に配置され、
 第1遊星歯車機構PG1は、第1軸X1に対して平行であって第1軸X1とは異なる第2軸X2上に配置され、
 減速ギヤ機構RGは、入力部材Iと一体的に回転する第1ギヤ21と、第1リングギヤR1と一体的に回転する第2ギヤ22と、を備え、
 第2ギヤ22は、第1ギヤ21よりも大径であり、
 第1ギヤ21と第2ギヤ22との径の比に応じた減速比で第1ギヤ21の回転が減速されて第2ギヤ22に伝達されるように、第1ギヤ21と第2ギヤ22とが連結され、
 第1ギヤ21の軸方向Lの配置領域と、第2ギヤ22の軸方向Lの配置領域と、第1遊星歯車機構PG1の軸方向Lの配置領域とが互いに重なっている。
As described above, the vehicle drive system 100
an input member I drivingly connected to the internal combustion engine EG;
a first output member O1 drivingly connected to the first wheel W1;
a first rotating electric machine MG1 having a first rotor RT1;
a single-pinion first planetary gear mechanism PG1 including a first sun gear S1, a first carrier CA1, and a first ring gear R1;
a reduction gear mechanism RG that decelerates the rotation transmitted from the input member I side and transmits it to the first output member O1 side,
The first sun gear S1 is drivingly connected to the first rotor RT1,
the first carrier CA1 is drivingly connected to the first output member O1;
The first ring gear R1 is drivingly connected to the input member I via the reduction gear mechanism RG,
The input member I is arranged on the first axis X1,
The first planetary gear mechanism PG1 is arranged on a second axis X2 parallel to the first axis X1 and different from the first axis X1,
The reduction gear mechanism RG includes a first gear 21 that rotates integrally with the input member I, and a second gear 22 that rotates integrally with the first ring gear R1,
The second gear 22 has a larger diameter than the first gear 21,
The first gear 21 and the second gear 22 are arranged so that the rotation of the first gear 21 is reduced by a reduction ratio corresponding to the ratio of the diameters of the first gear 21 and the second gear 22 and transmitted to the second gear 22 . is concatenated with
The arrangement area of the first gear 21 in the axial direction L, the arrangement area of the second gear 22 in the axial direction L, and the arrangement area of the first planetary gear mechanism PG1 in the axial direction L overlap each other.
 この構成によれば、入力部材Iの側から伝達された回転が、減速ギヤ機構RGにおいて減速されて第1リングギヤR1に伝達される。そのため、内燃機関EGのトルクが増幅されて第1遊星歯車機構PG1に伝達される。そして、内燃機関EGのトルクと第1回転電機MG1のトルクとが、第1遊星歯車機構PG1において合算されて第1出力部材O1に伝達される。これにより、特に低中車速域において高出力化が可能となり、内燃機関EG等の駆動力源からの動力を効率良く第1車輪W1に伝達できる。
 また、本構成によれば、減速ギヤ機構RGは、入力部材Iと一体的に回転する第1ギヤ21と、当該第1ギヤ21よりも大径であり、第1リングギヤR1と一体的に回転する第2ギヤ22と、を備えている。そして、第1ギヤ21と第2ギヤ22との径の比に応じた減速比で第1ギヤ21の回転が減速されて第2ギヤ22に伝達されるように、それらが互いに連結されている。これにより、軸を別途追加することなく、減速ギヤ機構RGを適切に構成することができる。したがって、車両用駆動装置100の径方向Rの寸法を小さく抑えることができる。
 また、本構成によれば、第1ギヤ21の軸方向Lの配置領域と、第2ギヤ22の軸方向Lの配置領域と、第1遊星歯車機構PG1の軸方向Lの配置領域とが互いに重なっている。これにより、車両用駆動装置100の軸方向Lの寸法を小さく抑えることができる。
 以上のように、本構成によれば、車両用駆動装置100の大型化を抑制しつつ、第1出力部材O1に大きなトルクを伝達することができる。
According to this configuration, the rotation transmitted from the input member I side is reduced in speed by the reduction gear mechanism RG and transmitted to the first ring gear R1. Therefore, the torque of the internal combustion engine EG is amplified and transmitted to the first planetary gear mechanism PG1. Then, the torque of the internal combustion engine EG and the torque of the first rotating electric machine MG1 are added together in the first planetary gear mechanism PG1 and transmitted to the first output member O1. As a result, it becomes possible to increase the output, particularly in the low and medium vehicle speed range, and the power from the driving force source such as the internal combustion engine EG can be efficiently transmitted to the first wheels W1.
Further, according to this configuration, the reduction gear mechanism RG includes the first gear 21 that rotates integrally with the input member I, and the first gear 21 that has a larger diameter than the first gear 21 and rotates integrally with the first ring gear R1. and a second gear 22 that The first gear 21 and the second gear 22 are connected to each other so that the rotation of the first gear 21 is reduced by a reduction ratio corresponding to the diameter ratio of the first gear 21 and the second gear 22 and transmitted to the second gear 22. . As a result, the reduction gear mechanism RG can be appropriately configured without adding an additional shaft. Therefore, the dimension in the radial direction R of the vehicle drive device 100 can be kept small.
Further, according to this configuration, the arrangement area of the first gear 21 in the axial direction L, the arrangement area of the second gear 22 in the axial direction L, and the arrangement area of the first planetary gear mechanism PG1 in the axial direction L are mutually arranged. overlapping. As a result, the dimension of the vehicle drive device 100 in the axial direction L can be kept small.
As described above, according to this configuration, a large torque can be transmitted to the first output member O1 while suppressing an increase in the size of the vehicle drive device 100 .
 上述したように、本実施形態では、第2ロータRT2は、入力部材Iと一体的に回転するように連結されている。また、入力部材Iは、第1ギヤ21及び第2ギヤ22を備えた減速ギヤ機構RGを介して、第1リングギヤR1に駆動連結されている。 As described above, in this embodiment, the second rotor RT2 is connected to the input member I so as to rotate integrally. Further, the input member I is drivingly connected to the first ring gear R1 via a reduction gear mechanism RG including a first gear 21 and a second gear 22. As shown in FIG.
 このように、本実施形態では、車両用駆動装置100は、第2ロータRT2を備えた第2回転電機MG2を更に備え、
 第2ロータRT2は、第1ギヤ21及び第2ギヤ22を介して、第1リングギヤR1に駆動連結されている。
Thus, in the present embodiment, the vehicle drive system 100 further includes the second rotating electric machine MG2 including the second rotor RT2,
The second rotor RT2 is drivingly connected to the first ring gear R1 via the first gear 21 and the second gear 22 .
 この構成によれば、内燃機関EGのトルクと第1回転電機MG1のトルクと第2回転電機MG2のトルクとを、第1遊星歯車機構PG1により合算して第1出力部材O1に伝達することができる。したがって、特に低中車速域において高出力化が可能となり、内燃機関EG等の駆動力源からの動力を効率良く第1車輪W1に伝達できる。 According to this configuration, the torque of the internal combustion engine EG, the torque of the first rotating electrical machine MG1, and the torque of the second rotating electrical machine MG2 can be combined by the first planetary gear mechanism PG1 and transmitted to the first output member O1. can. Therefore, it becomes possible to increase the output, particularly in the low and medium vehicle speed range, and the power from the driving force source such as the internal combustion engine EG can be efficiently transmitted to the first wheels W1.
 また、本実施形態では、第2ギヤ22は、第1リングギヤR1に対して径方向Rの外側であって、径方向Rに沿う径方向視で第1リングギヤR1と重複する位置に配置された外歯のギヤである。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。 Further, in the present embodiment, the second gear 22 is arranged outside the first ring gear R1 in the radial direction R and at a position overlapping the first ring gear R1 when viewed in the radial direction R. It is a gear with external teeth. Here, regarding the arrangement of two elements, "overlapping in a particular direction view" means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is two It refers to the existence of at least a part of an area that intersects two elements.
 この構成によれば、第2ギヤ22を大径化し易いため、第1ギヤ21と第2ギヤ22との径方向Rの寸法差を大きく確保することができる。したがって、減速ギヤ機構RGの減速比を大きく確保することができる。 With this configuration, it is easy to increase the diameter of the second gear 22, so a large dimensional difference in the radial direction R between the first gear 21 and the second gear 22 can be ensured. Therefore, a large reduction gear ratio of the reduction gear mechanism RG can be ensured.
 また、本実施形態では、第1回転電機MG1は、第2軸X2上であって、第1遊星歯車機構PG1に対して軸方向Lにおける内燃機関EGの側とは反対側に配置されている。 Further, in the present embodiment, the first rotating electric machine MG1 is arranged on the second axis X2 on the opposite side of the internal combustion engine EG in the axial direction L with respect to the first planetary gear mechanism PG1. .
 この構成によれば、内燃機関EGと第1回転電機MG1との軸方向Lの間に、第1遊星歯車機構PG1を配置することができる。これにより、第1車輪W1に駆動連結される第1出力部材O1を、車両用駆動装置100における軸方向Lの中央部に寄せて配置することができる。したがって、例えば、第1出力部材O1の回転を一対の第1車輪W1に分配する第1出力用差動歯車機構DF1を備える場合に、当該第1出力用差動歯車機構DF1と一対の第1車輪W1のそれぞれとを連結するドライブシャフトの軸方向Lの寸法差を小さく抑えることができるため、当該寸法差に起因する車両の操舵性の悪化を抑制することができる。 According to this configuration, the first planetary gear mechanism PG1 can be arranged between the internal combustion engine EG and the first rotating electric machine MG1 in the axial direction L. As a result, the first output member O1 that is drivingly connected to the first wheel W1 can be arranged closer to the central portion in the axial direction L of the vehicle drive device 100 . Therefore, for example, when the first output differential gear mechanism DF1 that distributes the rotation of the first output member O1 to the pair of first wheels W1 is provided, the first output differential gear mechanism DF1 and the pair of first Since the dimensional difference in the axial direction L of the drive shafts connecting the wheels W1 can be kept small, deterioration of the steering performance of the vehicle caused by the dimensional difference can be suppressed.
 また、本実施形態では、第2回転電機MG2も、第1遊星歯車機構PG1に対して軸方向Lにおける内燃機関EGの側とは反対側に配置されている。そして、第1回転電機MG1の軸方向Lの配置領域と、第2回転電機MG2の軸方向Lの配置領域とが、互いに重なっている。 In addition, in the present embodiment, the second rotating electric machine MG2 is also arranged on the side opposite to the internal combustion engine EG side in the axial direction L with respect to the first planetary gear mechanism PG1. The arrangement area in the axial direction L of the first rotating electrical machine MG1 and the arrangement area in the axial direction L of the second rotating electrical machine MG2 overlap each other.
 図23に、本実施形態に係る減速ギヤ機構RG及び第1遊星歯車機構PG1の速度線図を示す。 FIG. 23 shows a velocity diagram of the reduction gear mechanism RG and the first planetary gear mechanism PG1 according to this embodiment.
 図23の速度線図において、縦線は、減速ギヤ機構RG及び第1遊星歯車機構PG1の各回転要素の回転速度に対応している。そして、並列配置された複数本の縦線のそれぞれは、減速ギヤ機構RG及び第1遊星歯車機構PG1の各回転要素に対応している。また、図23の速度線図において、複数本の縦線の上方に示された符号は、対応する回転要素の符号である。そして、複数本の縦線の下方に示された符号は、上方に示された符号に対応する回転要素に駆動連結された要素の符号である。 In the velocity diagram of FIG. 23, vertical lines correspond to the rotation speed of each rotating element of the reduction gear mechanism RG and the first planetary gear mechanism PG1. Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the reduction gear mechanism RG and the first planetary gear mechanism PG1. In the velocity diagram of FIG. 23, the symbols shown above the vertical lines are the symbols of the corresponding rotating elements. The symbols shown below the vertical lines are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above.
 図23に示すように、本実施形態では、入力部材Iから減速ギヤ機構RGの第1ギヤ21に伝達された回転は、第1ギヤ21と第2ギヤ22との径の比に応じた減速比で減速されて第2ギヤ22に伝達される。よって、内燃機関EG及び第2回転電機MG2のトルクは、増幅されて第2ギヤ22に伝達される。そして、第2ギヤ22から第1遊星歯車機構PG1の第1リングギヤR1に伝達されたトルクと、第1回転電機MG1から第1サンギヤS1に伝達されたトルクとが、第1遊星歯車機構PG1において合算されて、第1キャリヤCA1から出力される。 As shown in FIG. 23, in this embodiment, the rotation transmitted from the input member I to the first gear 21 of the reduction gear mechanism RG is reduced according to the diameter ratio between the first gear 21 and the second gear 22. ratio and transmitted to the second gear 22 . Therefore, the torques of the internal combustion engine EG and the second rotating electric machine MG2 are amplified and transmitted to the second gear 22 . Then, the torque transmitted from the second gear 22 to the first ring gear R1 of the first planetary gear mechanism PG1 and the torque transmitted from the first rotating electrical machine MG1 to the first sun gear S1 are combined in the first planetary gear mechanism PG1. They are added and output from the first carrier CA1.
図24に、上記第3の実施形態に係る車両用駆動装置100の構成の一例を示す。本例では、減速ギヤ機構RGの構成、及び、第1遊星歯車機構PG1と第1出力部材O1との間の動力伝達経路の構成が上記の例のもの(図22参照)と異なっている。また、本例では、第2回転電機MG2が第1車輪W1とは異なる第2車輪W2の駆動力源として機能する点で、上記の例と異なっている。 FIG. 24 shows an example of the configuration of the vehicle drive system 100 according to the third embodiment. In this example, the configuration of the reduction gear mechanism RG and the configuration of the power transmission path between the first planetary gear mechanism PG1 and the first output member O1 are different from those of the above example (see FIG. 22). Further, this example differs from the above example in that the second rotating electric machine MG2 functions as a driving force source for the second wheel W2, which is different from the first wheel W1.
 本実施形態では、第1ギヤ21と第2ギヤ22とが、第1アイドラギヤIG1を介することなく連結されている。つまり、本実施形態では、第1ギヤ21と第2ギヤ22とが、互いに噛み合っている。 In this embodiment, the first gear 21 and the second gear 22 are connected without interposing the first idler gear IG1. That is, in this embodiment, the first gear 21 and the second gear 22 are meshed with each other.
 本実施形態では、車両用駆動装置100は、第1カウンタギヤ機構CG1と、第1係合装置CL1と、第2係合装置CL2と、を更に備えている。 In this embodiment, the vehicle drive device 100 further includes a first counter gear mechanism CG1, a first engagement device CL1, and a second engagement device CL2.
 第1カウンタギヤ機構CG1は、第1カウンタ入力ギヤ51と、第1カウンタ出力ギヤ52と、を備えている。本実施形態では、第1カウンタギヤ機構CG1は、上記の軸X1~X3とは異なる第4軸X4上に配置されている。 The first counter gear mechanism CG1 includes a first counter input gear 51 and a first counter output gear 52. In this embodiment, the first counter gear mechanism CG1 is arranged on the fourth axis X4 different from the axes X1 to X3.
 第1カウンタ入力ギヤ51は、分配出力ギヤ3に噛み合っている。本実施形態では、分配出力ギヤ3は、第1遊星歯車機構PG1に対して軸方向第1側L1に配置されている。 The first counter input gear 51 meshes with the distribution output gear 3. In this embodiment, the distribution output gear 3 is arranged on the first side L1 in the axial direction with respect to the first planetary gear mechanism PG1.
 第1カウンタ出力ギヤ52は、第1差動入力ギヤ4に噛み合っている。本実施形態では、第1カウンタ出力ギヤ52は、第1カウンタ入力ギヤ51よりも小径に形成されている。また、第1カウンタ出力ギヤ52は、第1カウンタ入力ギヤ51よりも軸方向第2側L2に配置されている。また、本実施形態では、第1カウンタ出力ギヤ52の軸方向Lの配置領域が、第1遊星歯車機構PG1の軸方向Lの配置領域と重なっている。 The first counter output gear 52 meshes with the first differential input gear 4 . In this embodiment, the first counter output gear 52 is formed to have a smaller diameter than the first counter input gear 51 . Also, the first counter output gear 52 is arranged on the second side L2 in the axial direction from the first counter input gear 51 . Further, in the present embodiment, the arrangement area of the first counter output gear 52 in the axial direction L overlaps the arrangement area of the first planetary gear mechanism PG1 in the axial direction L. As shown in FIG.
 第1係合装置CL1は、第1遊星歯車機構PG1の第1キャリヤCA1と第1出力部材O1との間の動力伝達を断接する係合装置である。本実施形態では、第1係合装置CL1は、第1キャリヤCA1と一体的に回転する分配出力ギヤ3に噛み合う第1カウンタ入力ギヤ51と、第1出力部材O1としての第1差動入力ギヤ4に噛み合う第1カウンタ出力ギヤ52との間の動力伝達を断接するクラッチである。 The first engagement device CL1 is an engagement device that connects and disconnects power transmission between the first carrier CA1 of the first planetary gear mechanism PG1 and the first output member O1. In this embodiment, the first engagement device CL1 includes a first counter input gear 51 that meshes with the distribution output gear 3 rotating integrally with the first carrier CA1, and a first differential input gear as the first output member O1. It is a clutch that connects and disconnects power transmission with the first counter output gear 52 that meshes with 4.
 第2係合装置CL2は、第1遊星歯車機構PG1の第1キャリヤCA1を、非回転部材NRに選択的に固定する係合装置である。本実施形態では、第2係合装置CL2は、第1キャリヤCA1と一体的に回転する分配出力ギヤ3に噛み合う第1カウンタ入力ギヤ51を、非回転部材NRに選択的に固定するブレーキである。また、本実施形態では、第2係合装置CL2は、第1係合装置CL1に対して軸方向第2側L2に隣接して配置されている。そして、第1係合装置CL1及び第2係合装置CL2は、共通のアクチュエータにより係合の状態が変化するように構成されている。 The second engagement device CL2 is an engagement device that selectively fixes the first carrier CA1 of the first planetary gear mechanism PG1 to the non-rotating member NR. In this embodiment, the second engagement device CL2 is a brake that selectively fixes the first counter input gear 51, which meshes with the distribution output gear 3 that rotates integrally with the first carrier CA1, to the non-rotating member NR. . Further, in the present embodiment, the second engagement device CL2 is arranged adjacent to the first engagement device CL1 on the second side L2 in the axial direction. The first engagement device CL1 and the second engagement device CL2 are configured such that the state of engagement is changed by a common actuator.
 本実施形態では、第1係合装置CL1及び第2係合装置CL2は、第4軸X4上に配置されている。そして、第1係合装置CL1及び第2係合装置CL2は、第1カウンタギヤ機構CG1に対して軸方向第1側L1に配置されている。また、本実施形態では、第1係合装置CL1及び第2係合装置CL2の軸方向Lの配置領域が、第1回転電機MG1の軸方向Lの配置領域と重なっている。 In this embodiment, the first engagement device CL1 and the second engagement device CL2 are arranged on the fourth axis X4. The first engagement device CL1 and the second engagement device CL2 are arranged on the first side L1 in the axial direction with respect to the first counter gear mechanism CG1. Further, in the present embodiment, the arrangement area in the axial direction L of the first engagement device CL1 and the second engagement device CL2 overlaps the arrangement region in the axial direction L of the first rotating electric machine MG1.
 本実施形態では、車両用駆動装置100は、第2カウンタギヤ機構CG2と、第2出力用差動歯車機構DF2と、第2出力部材O2と、を更に備えている。 In this embodiment, the vehicle drive device 100 further includes a second counter gear mechanism CG2, a second output differential gear mechanism DF2, and a second output member O2.
 本実施形態では、第2回転電機MG2は、上記の軸X1~X4とは異なる第5軸X5上に配置されている。そして、第2回転電機MG2の第2ロータRT2が、第2カウンタギヤ機構CG2を介して第2出力部材O2に駆動連結されている。 In this embodiment, the second rotating electric machine MG2 is arranged on the fifth axis X5 different from the axes X1 to X4. A second rotor RT2 of the second rotary electric machine MG2 is drivingly connected to the second output member O2 via a second counter gear mechanism CG2.
 第2カウンタギヤ機構CG2は、第2カウンタ入力ギヤ71と、第2カウンタ出力ギヤ72と、を備えている。本実施形態では、第2カウンタギヤ機構CG2は、上記の軸X1~X5とは異なる第6軸X6上に配置されている。 The second counter gear mechanism CG2 includes a second counter input gear 71 and a second counter output gear 72. In this embodiment, the second counter gear mechanism CG2 is arranged on the sixth axis X6 different from the axes X1 to X5.
 第2カウンタ入力ギヤ71は、第2回転電機MG2の第2ロータRT2と一体的に回転するように連結された第3ギヤ23に噛み合っている。本実施形態では、第3ギヤ23は、第5軸X5上に配置されている。第2カウンタ出力ギヤ72は、第2カウンタ入力ギヤ71と一体的に回転するように連結されている。本実施形態では、第2カウンタ出力ギヤ72は、第2カウンタ入力ギヤ71よりも小径に形成されている。また、第2カウンタ出力ギヤ72は、第2カウンタ入力ギヤ71よりも軸方向第1側L1に配置されている。 The second counter input gear 71 meshes with the third gear 23 that is connected to rotate integrally with the second rotor RT2 of the second rotating electric machine MG2. In this embodiment, the third gear 23 is arranged on the fifth axis X5. The second counter output gear 72 is connected to rotate integrally with the second counter input gear 71 . In this embodiment, the second counter output gear 72 is formed with a smaller diameter than the second counter input gear 71 . Further, the second counter output gear 72 is arranged on the first side L1 in the axial direction from the second counter input gear 71 .
 第2出力用差動歯車機構DF2は、第2出力部材O2の回転を一対の第2車輪W2に分配するように構成されている。本実施形態では、第2出力用差動歯車機構DF2は、上記の軸X1~X6とは異なる第7軸X7上に配置されている。また、本実施形態では、第2出力用差動歯車機構DF2は、当該第2出力用差動歯車機構DF2の入力要素である第2差動入力ギヤ8を備えている。第2差動入力ギヤ8は、第2カウンタ出力ギヤ72に噛み合っている。 The second output differential gear mechanism DF2 is configured to distribute the rotation of the second output member O2 to the pair of second wheels W2. In this embodiment, the second output differential gear mechanism DF2 is arranged on the seventh axis X7 different from the axes X1 to X6. In this embodiment, the second output differential gear mechanism DF2 includes a second differential input gear 8 that is an input element of the second output differential gear mechanism DF2. The second differential input gear 8 meshes with the second counter output gear 72 .
 第2出力部材O2は、第2車輪W2に駆動連結されている。本実施形態では、第2差動入力ギヤ8が第2出力部材O2として機能する。そのため、本実施形態では、第2出力部材O2は、第7軸X7上に配置されている。 The second output member O2 is drivingly connected to the second wheel W2. In this embodiment, the second differential input gear 8 functions as the second output member O2. Therefore, in this embodiment, the second output member O2 is arranged on the seventh axis X7.
 本実施形態では、第1係合装置CL1が係合状態とされ、第2係合装置CL2が解放状態とされた場合、車両用駆動装置100の動作モードは、HVモードとなる。HVモードでは、内燃機関EGが駆動状態とされると共に、第1回転電機MG1が内燃機関EGから第1リングギヤR1に伝達されるトルクの反力を第1サンギヤS1に伝達するように力行状態とされる。これにより、内燃機関EGのトルクと第1回転電機MG1のトルクとが合わさって第1キャリヤCA1に伝達され、当該第1キャリヤCA1から第1出力部材O1に伝達される。なお、HVモードでは、第2回転電機MG2が必要に応じて力行状態となるように制御される。 In this embodiment, when the first engagement device CL1 is in the engaged state and the second engagement device CL2 is in the disengaged state, the operation mode of the vehicle drive device 100 is the HV mode. In the HV mode, the internal combustion engine EG is driven, and the first rotary electric machine MG1 is set to the power running state so that the reaction force of the torque transmitted from the internal combustion engine EG to the first ring gear R1 is transmitted to the first sun gear S1. be done. As a result, the torque of the internal combustion engine EG and the torque of the first rotary electric machine MG1 are combined and transmitted to the first carrier CA1, and then transmitted from the first carrier CA1 to the first output member O1. Note that in the HV mode, the second rotating electric machine MG2 is controlled to be in the power running state as necessary.
 また、第1係合装置CL1及び第2係合装置CL2の双方が解放状態とされた場合、車両用駆動装置100の動作モードは、EVモードとなる。EVモードでは、内燃機関EG及び第1回転電機MG1が停止状態とされる。更に、第2回転電機MG2が力行状態とされる。これにより、第2回転電機MG2のトルクが第2出力部材O2に伝達される。 Also, when both the first engagement device CL1 and the second engagement device CL2 are in the released state, the operation mode of the vehicle drive device 100 is the EV mode. In the EV mode, the internal combustion engine EG and the first rotating electrical machine MG1 are stopped. Furthermore, the second rotating electric machine MG2 is set to the power running state. Thereby, the torque of the second rotating electric machine MG2 is transmitted to the second output member O2.
 また、第1係合装置CL1が解放状態とされ、第2係合装置CL2が係合状態とされた場合、車両用駆動装置100の動作モードは、シリーズモードとなる。シリーズモードでは、内燃機関EGが駆動状態とされると共に、第1回転電機MG1が発電状態とされる。更に、第2回転電機MG2が力行状態とされる。これにより、内燃機関EG及び第1回転電機MG1が第1出力部材O1から分離された状態で、内燃機関EGのトルクにより第1遊星歯車機構PG1を介して第1回転電機MG1が発電を行う。そして、第2回転電機MG2のトルクが第2出力部材O2に伝達される。この際、第2回転電機MG2は、第1回転電機MG1が発電して得られた電力を利用して駆動される。 Further, when the first engagement device CL1 is in the released state and the second engagement device CL2 is in the engaged state, the operation mode of the vehicle drive device 100 becomes the series mode. In the series mode, the internal combustion engine EG is driven and the first rotating electrical machine MG1 is driven to generate power. Furthermore, the second rotating electric machine MG2 is set to the power running state. As a result, with the internal combustion engine EG and the first rotating electrical machine MG1 separated from the first output member O1, the torque of the internal combustion engine EG causes the first rotating electrical machine MG1 to generate power via the first planetary gear mechanism PG1. Then, the torque of the second rotating electric machine MG2 is transmitted to the second output member O2. At this time, the second rotating electric machine MG2 is driven using electric power generated by the first rotating electric machine MG1.
 このように、本実施形態では、車両用駆動装置100は、第2ロータRT2を備えた第2回転電機MG2と、第1車輪W1とは異なる第2車輪W2に駆動連結される第2出力部材O2と、第1キャリヤCA1と第1出力部材O1との間の動力伝達を断接する第1係合装置CL1と、第1キャリヤCA1を非回転部材NRに選択的に固定する第2係合装置CL2と、を更に備え、
 第2ロータRT2は、第2出力部材O2に駆動連結され、
 第1出力部材O1は、第1軸X1及び第2軸X2とは異なる第3軸X3上に配置され、
 第1係合装置CL1及び第2係合装置CL2は、第1軸X1、第2軸X2、及び第3軸X3とは異なる第4軸X4上に配置されている。
Thus, in the present embodiment, the vehicle drive device 100 includes the second rotating electric machine MG2 including the second rotor RT2 and the second output member drivingly connected to the second wheel W2 different from the first wheel W1. O2, a first engaging device CL1 for connecting and disconnecting power transmission between the first carrier CA1 and the first output member O1, and a second engaging device for selectively fixing the first carrier CA1 to the non-rotating member NR. CL2, further comprising
The second rotor RT2 is drivingly connected to the second output member O2,
The first output member O1 is arranged on a third axis X3 different from the first axis X1 and the second axis X2,
The first engagement device CL1 and the second engagement device CL2 are arranged on a fourth axis X4 different from the first axis X1, the second axis X2 and the third axis X3.
 この構成によれば、内燃機関EGのトルクと第1回転電機MG1のトルクとを、第1遊星歯車機構PG1により合算して第1出力部材O1に伝達することができると共に、第2回転電機MG2のトルクを第2出力部材O2に伝達することができる。したがって、特に低中車速域において高出力化が可能となり、内燃機関EG等の駆動力源からの動力を効率良く第1車輪W1及び第2車輪W2に伝達できる。
 また、本構成によれば、第1係合装置CL1を解放状態とすることにより、第2回転電機MG2の駆動力により車両を走行させるEVモードを実現できる。また、第2係合装置CL2を係合状態とすることにより、内燃機関EGのトルクにより第1回転電機MG1に発電を行わせる発電モード、或いは、当該発電モードにおいて発電した電力により第2回転電機MG2を駆動するシリーズモードを実現できる。
According to this configuration, the torque of the internal combustion engine EG and the torque of the first rotating electrical machine MG1 can be combined by the first planetary gear mechanism PG1 and transmitted to the first output member O1, and the torque of the second rotating electrical machine MG2 can be added. of torque can be transmitted to the second output member O2. Therefore, it becomes possible to increase the output, particularly in the low and medium vehicle speed range, and the power from the driving force source such as the internal combustion engine EG can be efficiently transmitted to the first wheel W1 and the second wheel W2.
Further, according to this configuration, by disengaging the first engagement device CL1, it is possible to realize the EV mode in which the vehicle is driven by the driving force of the second rotating electric machine MG2. Further, by engaging the second engagement device CL2, a power generation mode in which the first rotary electric machine MG1 generates power using the torque of the internal combustion engine EG, or the electric power generated in the power generation mode is used to generate the second rotary electric machine. A series mode for driving MG2 can be realized.
図25に、上記第1の実施形態に係る車両用駆動装置100の構成の一例を示す。図25に示すように、車両用駆動装置100は、入力部材Iと、第1出力部材O1と、第1回転電機MG1と、第1遊星歯車機構PG1と、第1減速機RG1と、を備えている。本実施形態では、車両用駆動装置100は、第2回転電機MG2と、第1出力用差動歯車機構DF1と、を更に備えている。 FIG. 25 shows an example of the configuration of the vehicle drive system 100 according to the first embodiment. As shown in FIG. 25, the vehicle drive device 100 includes an input member I, a first output member O1, a first rotating electric machine MG1, a first planetary gear mechanism PG1, and a first reduction gear RG1. ing. In this embodiment, the vehicle drive device 100 further includes a second rotating electric machine MG2 and a first output differential gear mechanism DF1.
 以下の説明では、入力部材Iの回転軸心に沿う方向を「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側を「軸方向第2側L2」とする。本実施形態では、軸方向Lにおいて、内燃機関EGに対して入力部材Iが配置される側を軸方向第1側L1とし、その反対側を軸方向第2側L2としている。また、軸方向Lに直交する方向を、「径方向R」とする。 In the following description, the direction along the rotation axis of the input member I will be referred to as "axial direction L". One side in the axial direction L is referred to as "first axial side L1", and the other side in the axial direction L is referred to as "second axial side L2". In this embodiment, in the axial direction L, the side on which the input member I is arranged with respect to the internal combustion engine EG is defined as the first axial side L1, and the opposite side is defined as the second axial side L2. A direction orthogonal to the axial direction L is defined as a "radial direction R".
 入力部材Iは、内燃機関EGに駆動連結されている。本実施形態では、入力部材Iは、軸方向Lに沿って延在するように形成された入力軸1である。内燃機関EGは、第1車輪W1の駆動力源として機能する。内燃機関EGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。 The input member I is drivingly connected to the internal combustion engine EG. In this embodiment, the input member I is an input shaft 1 formed to extend along the axial direction L. As shown in FIG. The internal combustion engine EG functions as a driving force source for the first wheels W1. The internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
 ここで、本願において「駆動連結」とは、2つの回転要素がトルクを伝達可能に接続された状態を指し、当該2つの回転要素が一体的に回転するように接続された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介してトルクを伝達可能に接続された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及びトルクを選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。 Here, in the present application, the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit torque, and the two rotating elements are connected so as to rotate integrally, or the two rotating elements are connected to rotate together. It includes a state in which two rotating elements are connected so as to be able to transmit torque via one or more transmission members. Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains. The transmission member may include an engagement device that selectively transmits rotation and torque, such as a friction engagement device and a mesh type engagement device.
 なお、2つの回転要素について、単に「連結」と記した場合には、当該2つの回転要素同士が、係合装置を介することなく、一体回転又は同期回転(常時一定の変速比で変速された状態で回転)するように接続された状態を指す。 It should be noted that when two rotating elements are simply described as "connected", the two rotating elements rotate integrally or synchronously (always at a constant gear ratio) without intervening an engagement device. It refers to a state connected so as to rotate in a state).
 第1回転電機MG1は、第1ステータST1と、第1ロータRT1と、を備えている。第1ステータST1は、非回転部材NRに固定されている(図示を省略)。第1ロータRT1は、第1ステータST1に対して回転自在に支持されている。本実施形態では、非回転部材NRは、第1回転電機MG1等を収容するケースである。 The first rotating electric machine MG1 includes a first stator ST1 and a first rotor RT1. The first stator ST1 is fixed to the non-rotating member NR (not shown). The first rotor RT1 is rotatably supported with respect to the first stator ST1. In this embodiment, the non-rotating member NR is a case that accommodates the first rotating electric machine MG1 and the like.
 第2回転電機MG2は、第2ステータST2と、第2ロータRT2と、を備えている。第2ステータST2は、非回転部材NRに固定されている(図示を省略)。第2ロータRT2は、第2ステータST2に対して回転自在に支持されている。本実施形態では、第2ロータRT2は、入力部材Iと一体的に回転するように連結されている。 The second rotating electric machine MG2 includes a second stator ST2 and a second rotor RT2. The second stator ST2 is fixed to the non-rotating member NR (not shown). The second rotor RT2 is rotatably supported with respect to the second stator ST2. In this embodiment, the second rotor RT2 is connected to the input member I so as to rotate together.
 第1回転電機MG1及び第2回転電機MG2のそれぞれは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。第1回転電機MG1及び第2回転電機MG2のそれぞれは、バッテリやキャパシタ等の蓄電装置(図示を省略)との間で電力の授受を行うように、当該蓄電装置と電気的に接続されている。第1回転電機MG1及び第2回転電機MG2のそれぞれは、第1車輪W1の駆動力源として機能する。 Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 functions as a motor (electric motor) that receives power supply and generates power, and functions as a generator (generator) that receives power supply and generates power. It has the function of Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 is electrically connected to a power storage device (not shown) such as a battery or a capacitor so as to transfer electric power to and from the power storage device. . Each of the first rotating electric machine MG1 and the second rotating electric machine MG2 functions as a driving force source for the first wheel W1.
 第1遊星歯車機構PG1は、第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備えている。第1遊星歯車機構PG1は、第1回転要素E1、第2回転要素E2、及び第3回転要素E3が、常時互いに独立して回転するように構成されている。そして、第1遊星歯車機構PG1は、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成されている。ここで、「回転速度の順」とは、各回転要素の回転状態における回転速度の順番のことである。各回転要素の回転速度は、差動歯車機構の回転状態によって変化するが、各回転要素の回転速度の高低の並び順は、差動歯車機構の構造によって定まるものであるため一定となる。なお、各回転要素の回転速度の順は、各回転要素の速度線図(図26等参照)における配置順に等しい。ここで、「各回転要素の速度線図における配置順」とは、速度線図における各回転要素に対応する軸が、当該軸に直交する方向に沿って配置される順番のことである。速度線図における各回転要素に対応する軸の配置方向は、速度線図の描き方によって異なるが、その配置順は差動歯車機構の構造によって定まるものであるため一定となる。 The first planetary gear mechanism PG1 includes a first rotating element E1, a second rotating element E2, and a third rotating element E3. The first planetary gear mechanism PG1 is configured such that the first rotating element E1, the second rotating element E2, and the third rotating element E3 always rotate independently of each other. The first planetary gear mechanism PG1 is configured such that the rotation speeds of the first rotation element E1, the second rotation element E2, and the third rotation element E3 are in the order described. Here, "the order of rotational speed" means the order of rotational speed in the rotating state of each rotating element. The rotational speed of each rotating element varies depending on the rotational state of the differential gear mechanism, but the order of the rotational speed of each rotating element is fixed because it is determined by the structure of the differential gear mechanism. The order of rotation speed of each rotating element is the same as the order of arrangement in the velocity diagram (see FIG. 26, etc.) of each rotating element. Here, the “arrangement order of each rotating element in the velocity diagram” is the order in which the axes corresponding to each rotating element in the velocity diagram are arranged along the direction perpendicular to the axis. The arrangement direction of the shaft corresponding to each rotating element in the velocity diagram differs depending on how the velocity diagram is drawn, but the order of arrangement is fixed because it is determined by the structure of the differential gear mechanism.
 本実施形態では、第1遊星歯車機構PG1は、第1サンギヤS1、第1キャリヤCA1、及び第1リングギヤR1を備えたシングルピニオン型の遊星歯車機構である。 In this embodiment, the first planetary gear mechanism PG1 is a single pinion planetary gear mechanism including a first sun gear S1, a first carrier CA1, and a first ring gear R1.
 第1回転要素E1は、入力部材Iに連結されている。本実施形態では、第1回転要素E1は、第1サンギヤS1である。第1サンギヤS1は、入力部材Iと一体的に回転するように連結されている。 The first rotating element E1 is connected to the input member I. In this embodiment, the first rotating element E1 is the first sun gear S1. The first sun gear S1 is connected to the input member I so as to rotate integrally therewith.
 第2回転要素E2は、第1出力部材O1に連結されている。本実施形態では、第2回転要素E2は、第1キャリヤCA1である。第1キャリヤCA1は、第1サンギヤS1及び第1リングギヤR1に噛み合う第1ピニオンギヤP1を支持している。第1ピニオンギヤP1は、その軸心回りに回転(自転)すると共に、第1キャリヤCA1と共に第1サンギヤS1を中心として回転(公転)する。第1ピニオンギヤP1は、その公転軌跡に沿って、互いに間隔を空けて複数設けられている。 The second rotating element E2 is connected to the first output member O1. In this embodiment, the second rotating element E2 is the first carrier CA1. The first carrier CA1 supports a first pinion gear P1 that meshes with the first sun gear S1 and the first ring gear R1. The first pinion gear P1 rotates (revolves) around its axis, and rotates (revolves) around the first sun gear S1 together with the first carrier CA1. A plurality of first pinion gears P1 are provided at intervals along the revolution locus.
 第3回転要素E3は、第1減速機RG1を介して第1ロータRT1に連結されている。本実施形態では、第3回転要素E3は、第1リングギヤR1である。第1リングギヤR1は、第1回転要素E1(ここでは、第1サンギヤS1)及び第2回転要素E2(ここでは、第1キャリヤCA1)に対して径方向Rの外側に配置された内歯のギヤである。本実施形態では、第1リングギヤR1は、軸方向Lに沿う軸心を有する筒状のギヤ形成部材20の内周面に形成されている。 The third rotating element E3 is connected to the first rotor RT1 via the first speed reducer RG1. In this embodiment, the third rotating element E3 is the first ring gear R1. The first ring gear R1 has internal teeth arranged outside in the radial direction R with respect to the first rotating element E1 (here, the first sun gear S1) and the second rotating element E2 (here, the first carrier CA1). Gear. In this embodiment, the first ring gear R1 is formed on the inner peripheral surface of a cylindrical gear forming member 20 having an axis along the axial direction L. As shown in FIG.
 第1減速機RG1は、第1ロータRT1の回転を、常時一定の減速比で減速して、第1遊星歯車機構PG1の第3回転要素E3(ここでは、第1リングギヤR1)に伝達するように構成されている。本実施形態では、第1減速機RG1は、第2遊星歯車機構PG2を備えている。 The first reduction gear RG1 always reduces the rotation of the first rotor RT1 at a constant reduction ratio, and transmits the rotation to the third rotating element E3 (here, the first ring gear R1) of the first planetary gear mechanism PG1. is configured to In this embodiment, the first reduction gear RG1 includes a second planetary gear mechanism PG2.
 第2遊星歯車機構PG2は、第4回転要素E4、第5回転要素E5、及び第6回転要素E6を備えている。第2遊星歯車機構PG2は、第4回転要素E4、第5回転要素E5、及び第6回転要素E6の回転速度の順が記載の順となるように構成されている。本実施形態では、第2遊星歯車機構PG2は、第2サンギヤS2、第2キャリヤCA2、及び第2リングギヤR2を備えたシングルピニオン型の遊星歯車機構である。 The second planetary gear mechanism PG2 includes a fourth rotating element E4, a fifth rotating element E5, and a sixth rotating element E6. The second planetary gear mechanism PG2 is configured such that the rotational speeds of the fourth rotating element E4, the fifth rotating element E5, and the sixth rotating element E6 are arranged in the described order. In this embodiment, the second planetary gear mechanism PG2 is a single pinion planetary gear mechanism that includes a second sun gear S2, a second carrier CA2, and a second ring gear R2.
 第4回転要素E4は、第1ロータRT1に連結されている。本実施形態では、第4回転要素E4は、第2サンギヤS2である。第2サンギヤS2は、第1ロータRT1と一体的に回転するように連結されている。 The fourth rotating element E4 is connected to the first rotor RT1. In this embodiment, the fourth rotating element E4 is the second sun gear S2. The second sun gear S2 is coupled to rotate integrally with the first rotor RT1.
 第5回転要素E5は、非回転部材NRに固定されている。本実施形態では、第5回転要素E5は、第2キャリヤCA2である。第2キャリヤCA2は、第2サンギヤS2及び第2リングギヤR2に噛み合う第2ピニオンギヤP2を支持している。第2ピニオンギヤP2は、その軸心回りに回転(自転)する。第2ピニオンギヤP2は、第2サンギヤS2及び第2リングギヤR2の周方向に沿って、互いに間隔を空けて複数設けられている。 The fifth rotating element E5 is fixed to the non-rotating member NR. In this embodiment, the fifth rotating element E5 is the second carrier CA2. The second carrier CA2 supports a second pinion gear P2 that meshes with the second sun gear S2 and the second ring gear R2. The second pinion gear P2 rotates (rotates) about its axis. A plurality of second pinion gears P2 are provided at intervals along the circumferential direction of the second sun gear S2 and the second ring gear R2.
 第6回転要素E6は、第3回転要素E3と一体的に回転するように連結されている。本実施形態では、第6回転要素E6は、第2リングギヤR2である。そのため、第2リングギヤR2は、第1リングギヤR1と一体的に回転するように連結されている。第2リングギヤR2は、第4回転要素E4(ここでは、第2サンギヤS2)及び第5回転要素E5(ここでは、第2キャリヤCA2)に対して径方向Rの外側に配置された内歯のギヤである。本実施形態では、第2リングギヤR2は、上記のギヤ形成部材20の内周面に形成されている。そして、第2リングギヤR2は、第1リングギヤR1に対して軸方向第2側L2に配置されている。 The sixth rotating element E6 is connected to rotate integrally with the third rotating element E3. In this embodiment, the sixth rotating element E6 is the second ring gear R2. Therefore, the second ring gear R2 is connected to rotate integrally with the first ring gear R1. The second ring gear R2 has internal teeth arranged outside in the radial direction R with respect to the fourth rotating element E4 (here, the second sun gear S2) and the fifth rotating element E5 (here, the second carrier CA2). Gear. In this embodiment, the second ring gear R2 is formed on the inner peripheral surface of the gear forming member 20 described above. The second ring gear R2 is arranged on the second side L2 in the axial direction with respect to the first ring gear R1.
 第1出力用差動歯車機構DF1は、第1出力部材O1の回転を一対の第1車輪W1に分配するように構成されている。本実施形態では、第1出力用差動歯車機構DF1は、当該第1出力用差動歯車機構DF1の入力要素である第1差動入力ギヤ4を備えている。第1差動入力ギヤ4は、駆動ピニオンギヤ6に噛み合っている。駆動ピニオンギヤ6は、軸方向Lに沿って延在するプロペラシャフト5を介して、第1遊星歯車機構PG1の第1キャリヤCA1と一体的に回転するように連結されている。駆動ピニオンギヤ6は、当該駆動ピニオンギヤ6の回転軸心が軸方向Lに沿うように配置されている。本実施形態では、駆動ピニオンギヤ6は、当該駆動ピニオンギヤ6の回転軸心が第1差動入力ギヤ4の回転軸心に直交するように配置されている。本例では、第1差動入力ギヤ4及び駆動ピニオンギヤ6は、ハイポイドギヤである。 The first output differential gear mechanism DF1 is configured to distribute the rotation of the first output member O1 to the pair of first wheels W1. In this embodiment, the first output differential gear mechanism DF1 includes a first differential input gear 4 that is an input element of the first output differential gear mechanism DF1. The first differential input gear 4 meshes with the drive pinion gear 6 . The drive pinion gear 6 is coupled to the first carrier CA1 of the first planetary gear mechanism PG1 via a propeller shaft 5 extending along the axial direction L so as to rotate integrally. The drive pinion gear 6 is arranged such that the rotation axis of the drive pinion gear 6 is along the axial direction L. As shown in FIG. In this embodiment, the drive pinion gear 6 is arranged so that the rotation axis of the drive pinion gear 6 is orthogonal to the rotation axis of the first differential input gear 4 . In this example, the first differential input gear 4 and the drive pinion gear 6 are hypoid gears.
 第1出力部材O1は、第1車輪W1に駆動連結されている。本実施形態では、第1差動入力ギヤ4が第1出力部材O1として機能する。 The first output member O1 is drivingly connected to the first wheel W1. In this embodiment, the first differential input gear 4 functions as the first output member O1.
 以上のように、車両用駆動装置100は、
 内燃機関EGに駆動連結される入力部材Iと、
 第1車輪W1に駆動連結される第1出力部材O1と、
 第1ロータRT1を備えた第1回転電機MG1と、
 第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備え、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成された第1遊星歯車機構PG1と、
 第1減速機RG1と、を備えた車両用駆動装置100であって、
 第1回転要素E1が、入力部材Iに連結され、
 第2回転要素E2が、第1出力部材O1に連結され、
 第3回転要素E3が、第1減速機RG1を介して第1ロータRT1に連結され、
 第1減速機RG1は、第1ロータRT1の回転を、常時一定の減速比で減速して第3回転要素E3に伝達するように構成され、
 第1遊星歯車機構PG1は、第1回転要素E1、第2回転要素E2、及び第3回転要素E3が、常時互いに独立して回転するように構成されている。
As described above, the vehicle drive system 100
an input member I drivingly connected to the internal combustion engine EG;
a first output member O1 drivingly connected to the first wheel W1;
a first rotating electric machine MG1 having a first rotor RT1;
A first rotating element E1, a second rotating element E2, and a third rotating element E3 are provided. a first planetary gear mechanism PG1 configured as
A vehicle drive device 100 including a first reduction gear RG1,
A first rotating element E1 is connected to the input member I,
the second rotating element E2 is connected to the first output member O1,
The third rotating element E3 is connected to the first rotor RT1 via the first speed reducer RG1,
The first reduction gear RG1 is configured to always reduce the rotation of the first rotor RT1 at a constant reduction ratio and transmit it to the third rotating element E3,
The first planetary gear mechanism PG1 is configured such that the first rotating element E1, the second rotating element E2, and the third rotating element E3 always rotate independently of each other.
 この構成によれば、内燃機関EGのトルクが伝達される第1回転要素E1の反力を受ける第3回転要素E3に、第1回転電機MG1のトルクを第1減速機RG1により増幅して伝達することができる。したがって、第3回転要素E3に伝達することが必要なトルクを確保しつつ、第1回転電機MG1の小型化を図り易い。
 また、本構成によれば、第1遊星歯車機構PG1の3つの回転要素E1,E2,E3の連結関係を変更するための係合装置が不要であり、第1減速機RG1の減速比を変更するための係合装置も不要である。したがって、車両用駆動装置100の動力伝達機構の簡素化及び小型化を図り易い。
 以上のように、本構成によれば、第1遊星歯車機構PG1を備えた構成において、第1出力部材O1に伝達可能なトルクを大きく確保しつつ、車両用駆動装置100の簡素化及び小型化を図り易い。
According to this configuration, the torque of the first rotating electrical machine MG1 is amplified by the first reduction gear RG1 and transmitted to the third rotating element E3, which receives the reaction force of the first rotating element E1 to which the torque of the internal combustion engine EG is transmitted. can do. Therefore, it is easy to reduce the size of the first rotary electric machine MG1 while ensuring the torque required to be transmitted to the third rotating element E3.
Further, according to this configuration, an engagement device for changing the connection relationship between the three rotating elements E1, E2, and E3 of the first planetary gear mechanism PG1 is not required, and the reduction ratio of the first reduction gear RG1 is changed. No engagement device is required. Therefore, it is easy to achieve simplification and size reduction of the power transmission mechanism of the vehicle drive device 100 .
As described above, according to this configuration, in the configuration including the first planetary gear mechanism PG1, the vehicle drive device 100 can be simplified and miniaturized while ensuring a large torque that can be transmitted to the first output member O1. easy to plan.
 また、上述したように、本実施形態では、第1減速機RG1は、第2遊星歯車機構PG2を備え、
 第2遊星歯車機構PG2は、第4回転要素E4、第5回転要素E5、及び第6回転要素E6を備え、第4回転要素E4、第5回転要素E5、及び第6回転要素E6の回転速度の順が記載の順となるように構成され、
 第4回転要素E4が、第1ロータRT1に連結され、
 第5回転要素E5が、非回転部材NRに固定され、
 第6回転要素E6が、第3回転要素E3と一体的に回転するように連結され、
 第3回転要素E3が、第1回転要素E1及び第2回転要素E2に対して径方向Rの外側に配置された内歯の第1リングギヤR1であり、第6回転要素E6が、第4回転要素E4及び第5回転要素E5に対して径方向Rの外側に配置された内歯の第2リングギヤR2である。
Further, as described above, in the present embodiment, the first reduction gear RG1 includes the second planetary gear mechanism PG2,
The second planetary gear mechanism PG2 includes a fourth rotary element E4, a fifth rotary element E5, and a sixth rotary element E6, and the rotational speeds of the fourth rotary element E4, the fifth rotary element E5, and the sixth rotary element E6 are is configured so that the order of
A fourth rotating element E4 is coupled to the first rotor RT1,
A fifth rotating element E5 is fixed to the non-rotating member NR,
the sixth rotating element E6 is coupled to rotate integrally with the third rotating element E3;
The third rotating element E3 is an internal toothed first ring gear R1 arranged outside in the radial direction R with respect to the first rotating element E1 and the second rotating element E2, and the sixth rotating element E6 is the fourth rotating element E6. A second ring gear R2 having internal teeth is arranged radially outwardly of the element E4 and the fifth rotating element E5.
 この構成によれば、共に内歯のリングギヤである第3回転要素E3と第6回転要素E6とが、互いに一体的に回転するように連結されている。これにより、第3回転要素E3及び第6回転要素E6の構成及び支持構造の簡素化及び小型化を図り易い。したがって、車両用駆動装置100の簡素化及び小型化を図り易い。 According to this configuration, the third rotating element E3 and the sixth rotating element E6, both of which are ring gears with internal teeth, are connected so as to rotate integrally with each other. This facilitates simplification and miniaturization of the configuration and support structure of the third rotating element E3 and the sixth rotating element E6. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
 本実施形態では、入力部材Iと、第1ロータRT1と、第1遊星歯車機構PG1と、第1減速機RG1(第2遊星歯車機構PG2)とが同軸上に配置されている。そして、内燃機関EG及び第1ロータRT1に対して軸方向第1側L1に、第1遊星歯車機構PG1及び第1減速機RG1が配置されている。 In this embodiment, the input member I, the first rotor RT1, the first planetary gear mechanism PG1, and the first reduction gear RG1 (second planetary gear mechanism PG2) are coaxially arranged. A first planetary gear mechanism PG1 and a first reduction gear RG1 are arranged on the first side L1 in the axial direction with respect to the internal combustion engine EG and the first rotor RT1.
 この構成によれば、内燃機関EG及び第1ロータRT1に対して軸方向Lの一方側(軸方向第1側L1)に、第1遊星歯車機構PG1及び第1減速機RG1をまとめて配置できる。これにより、第1遊星歯車機構PG1を構成するギヤと、第1減速機RG1を構成するギヤとの連結構造の簡素化及び小型化を図り易い。したがって、車両用駆動装置100の簡素化及び小型化を図り易い。 According to this configuration, the first planetary gear mechanism PG1 and the first reduction gear RG1 can be collectively arranged on one side in the axial direction L (first side L1 in the axial direction) with respect to the internal combustion engine EG and the first rotor RT1. . This facilitates simplification and miniaturization of the connecting structure between the gears forming the first planetary gear mechanism PG1 and the gears forming the first reduction gear RG1. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
 また、本実施形態では、第2ロータRT2も、入力部材I等と同軸上に配置されている。そして、第2ロータRT2は、内燃機関EGと第1ロータRT1との軸方向Lの間に配置されている。図25に示す例では、軸方向第2側L2から軸方向第1側L1に向けて、内燃機関EG、第2ロータRT2、第1ロータRT1、第2遊星歯車機構PG2、及び第1遊星歯車機構PG1が、記載の順となるように配置されている。 In addition, in this embodiment, the second rotor RT2 is also arranged coaxially with the input member I and the like. The second rotor RT2 is arranged between the internal combustion engine EG and the first rotor RT1 in the axial direction L. In the example shown in FIG. 25, the internal combustion engine EG, the second rotor RT2, the first rotor RT1, the second planetary gear mechanism PG2, and the first planetary gear are arranged from the second axial side L2 toward the first axial side L1. Mechanism PG1 is arranged in the order of description.
 このように、本実施形態では、車両用駆動装置100は、第2ロータRT2を備えた第2回転電機MG2を更に備え、
 第2ロータRT2は、入力部材Iと一体的に回転するように連結され、
 入力部材Iと、第1ロータRT1と、第2ロータRT2と、第1遊星歯車機構PG1と、第1減速機RG1とが同軸上に配置され、
 内燃機関EGと第1ロータRT1との軸方向Lの間に、第2ロータRT2が配置され、
 内燃機関EG、第1ロータRT1、及び第2ロータRT2に対して軸方向第1側L1に、第1遊星歯車機構PG1及び第1減速機RG1が配置されている。
Thus, in the present embodiment, the vehicle drive system 100 further includes the second rotating electric machine MG2 including the second rotor RT2,
The second rotor RT2 is coupled to rotate integrally with the input member I,
The input member I, the first rotor RT1, the second rotor RT2, the first planetary gear mechanism PG1, and the first reduction gear RG1 are coaxially arranged,
A second rotor RT2 is arranged between the internal combustion engine EG and the first rotor RT1 in the axial direction L,
A first planetary gear mechanism PG1 and a first reduction gear RG1 are arranged on the first axial side L1 with respect to the internal combustion engine EG, the first rotor RT1, and the second rotor RT2.
 この構成によれば、2つの回転電機MG1,MG2を備えたハイブリッド車両用の駆動装置100において、第1車輪W1の駆動力源である内燃機関EG、第1回転電機MG1、及び第2回転電機MG2に対して軸方向Lの一方側に、第1遊星歯車機構PG1及び第1減速機RG1をまとめて配置できる。これにより、第1遊星歯車機構PG1を構成するギヤと、第1減速機RG1を構成するギヤとの連結構造の簡素化及び小型化を図り易い。したがって、車両用駆動装置100の簡素化及び小型化を図り易い。 According to this configuration, in the hybrid vehicle drive device 100 including the two rotating electrical machines MG1 and MG2, the internal combustion engine EG, which is the driving force source for the first wheel W1, the first rotating electrical machine MG1, and the second rotating electrical machine. The first planetary gear mechanism PG1 and the first reduction gear RG1 can be collectively arranged on one side in the axial direction L with respect to MG2. This facilitates simplification and miniaturization of the connecting structure between the gears forming the first planetary gear mechanism PG1 and the gears forming the first reduction gear RG1. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
 図26に、本実施形態に係る、第1遊星歯車機構PG1、及び第1減速機RG1の第2遊星歯車機構PG2の速度線図を示す。 FIG. 26 shows a velocity diagram of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 of the first reduction gear RG1 according to this embodiment.
 図26の速度線図において、縦線は、第1遊星歯車機構PG1及び第2遊星歯車機構PG2の各回転要素の回転速度に対応している。そして、並列配置された複数本の縦線のそれぞれは、第1遊星歯車機構PG1及び第2遊星歯車機構PG2の各回転要素に対応している。また、図26の速度線図において、複数本の縦線の上方に示された符号は、対応する回転要素の符号である。そして、複数本の縦線の下方に示された符号は、上方に示された符号に対応する回転要素に駆動連結された要素の符号である。このような速度線図の記載方法は、図28においても同様である。 In the velocity diagram of FIG. 26, the vertical lines correspond to the rotation speed of each rotating element of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. Also, in the velocity diagram of FIG. 26, the symbols shown above the multiple vertical lines are the symbols of the corresponding rotating elements. The symbols shown below the vertical lines are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above. The method of describing such a velocity diagram is the same for FIG. 28 as well.
 図26に示すように、本実施形態では、第1回転電機MG1から第2サンギヤS2に伝達された回転は、第2遊星歯車機構PG2において反転すると共に減速されて、第2リングギヤR2に伝達される。その結果、第1回転電機MG1のトルクは、増幅されて第2リングギヤR2に伝達される。そして、第2遊星歯車機構PG2の第2リングギヤR2から第1遊星歯車機構PG1の第1リングギヤR1に伝達されたトルクと、入力部材Iを介して第1サンギヤS1に伝達された内燃機関EG及び第2回転電機MG2のトルクとが、第1遊星歯車機構PG1において合算されて、第1キャリヤCA1から出力される。 As shown in FIG. 26, in this embodiment, the rotation transmitted from the first rotating electric machine MG1 to the second sun gear S2 is reversed and decelerated in the second planetary gear mechanism PG2, and transmitted to the second ring gear R2. be. As a result, the torque of the first rotating electrical machine MG1 is amplified and transmitted to the second ring gear R2. The torque transmitted from the second ring gear R2 of the second planetary gear mechanism PG2 to the first ring gear R1 of the first planetary gear mechanism PG1, the internal combustion engine EG transmitted to the first sun gear S1 via the input member I, and The torque of the second rotating electric machine MG2 is added together in the first planetary gear mechanism PG1 and output from the first carrier CA1.
図27に、上記第2の実施形態に係る車両用駆動装置100の構成の一例を示す。本例では、第2回転電機MG2の配置が、上記の例のもの(図25参照)と異なっている。また、本例では、車両用駆動装置100が第2減速機RG2を備えている点で、上記の例と異なっている。 FIG. 27 shows an example of the configuration of the vehicle drive system 100 according to the second embodiment. In this example, the arrangement of the second rotating electric machine MG2 is different from that in the above example (see FIG. 25). Further, this example differs from the above example in that the vehicle drive system 100 includes a second reduction gear RG2.
 図27に示すように、本実施形態では、車両用駆動装置100は、第2減速機RG2を更に備えている。第2減速機RG2は、第2ロータRT2の回転を、常時一定の減速比で減速して第1出力部材O1に伝達するように構成されている。本実施形態では、第2減速機RG2は、第3遊星歯車機構PG3を備えている。 As shown in FIG. 27, in this embodiment, the vehicle drive system 100 further includes a second reduction gear RG2. The second reduction gear RG2 is configured to always reduce the rotation of the second rotor RT2 at a constant reduction ratio and transmit it to the first output member O1. In this embodiment, the second speed reducer RG2 includes a third planetary gear mechanism PG3.
 本実施形態では、第3遊星歯車機構PG3は、第3サンギヤS3、第3キャリヤCA3、及び第3リングギヤR3を備えたシングルピニオン型の遊星歯車機構である。 In this embodiment, the third planetary gear mechanism PG3 is a single pinion type planetary gear mechanism including a third sun gear S3, a third carrier CA3, and a third ring gear R3.
 第3サンギヤS3は、第2ロータRT2と一体的に回転するように連結されている。第3キャリヤCA3は、第1遊星歯車機構PG1の第1キャリヤCA1と一体的に回転するように連結されている。更に、第3キャリヤCA3は、プロペラシャフト5を介して駆動ピニオンギヤ6と一体的に回転するように連結されている。また、第3キャリヤCA3は、第3サンギヤS3及び第3リングギヤR3に噛み合う第3ピニオンギヤP3を支持している。第3ピニオンギヤP3は、その軸心回りに回転(自転)すると共に、第3キャリヤCA3と共に第3サンギヤS3を中心として回転(公転)する。第3ピニオンギヤP3は、その公転軌跡に沿って、互いに間隔を空けて複数設けられている。第3リングギヤR3は、非回転部材NRに固定されている。このように、本実施形態では、第2ロータRT2が、第2減速機RG2を介して第1出力部材O1に連結されている。 The third sun gear S3 is connected to rotate integrally with the second rotor RT2. The third carrier CA3 is coupled to rotate integrally with the first carrier CA1 of the first planetary gear mechanism PG1. Furthermore, the third carrier CA3 is connected to the drive pinion gear 6 via the propeller shaft 5 so as to rotate integrally therewith. The third carrier CA3 also supports a third pinion gear P3 that meshes with the third sun gear S3 and the third ring gear R3. The third pinion gear P3 rotates (revolves) around its axis, and rotates (revolves) around the third sun gear S3 together with the third carrier CA3. A plurality of third pinion gears P3 are provided at intervals along the orbit of the revolution. The third ring gear R3 is fixed to the non-rotating member NR. Thus, in this embodiment, the second rotor RT2 is connected to the first output member O1 via the second speed reducer RG2.
 本実施形態では、内燃機関EG及び第1ロータRT1に対して軸方向第1側L1に、第2ロータRT2が配置されている。そして、第1ロータRT1と第2ロータRT2との軸方向Lの間に、第1遊星歯車機構PG1、第1減速機RG1、及び第2減速機RG2が配置されている。図27に示す例では、軸方向第2側L2から軸方向第1側L1に向けて、内燃機関EG、第1ロータRT1、第2遊星歯車機構PG2、第1遊星歯車機構PG1、第3遊星歯車機構PG3、及び第2ロータRT2が、記載の順となるように配置されている。 In this embodiment, the second rotor RT2 is arranged on the first side L1 in the axial direction with respect to the internal combustion engine EG and the first rotor RT1. A first planetary gear mechanism PG1, a first reduction gear RG1, and a second reduction gear RG2 are arranged between the first rotor RT1 and the second rotor RT2 in the axial direction L. In the example shown in FIG. 27, the internal combustion engine EG, the first rotor RT1, the second planetary gear mechanism PG2, the first planetary gear mechanism PG1, and the third planetary gear are arranged from the second axial side L2 toward the first axial side L1. The gear mechanism PG3 and the second rotor RT2 are arranged in the order described.
 このように、本実施形態では、車両用駆動装置100は、第2ロータRT2を備えた第2回転電機MG2と、第2減速機RG2と、を更に備え、
 第2ロータRT2は、第2減速機RG2を介して第1出力部材O1に連結され、
 第2減速機RG2は、第2ロータRT2の回転を、常時一定の減速比で減速して第1出力部材O1に伝達するように構成され、
 入力部材Iと、第1ロータRT1と、第2ロータRT2と、第1遊星歯車機構PG1と、第1減速機RG1と、第2減速機RG2とが同軸上に配置され、
 内燃機関EG及び第1ロータRT1に対して軸方向第1側L1に、第2ロータRT2が配置され、
 第1ロータRT1と第2ロータRT2との軸方向Lの間に、第1遊星歯車機構PG1、第1減速機RG1、及び第2減速機RG2が配置されている。
Thus, in the present embodiment, the vehicle drive device 100 further includes the second rotating electric machine MG2 including the second rotor RT2 and the second speed reducer RG2,
The second rotor RT2 is connected to the first output member O1 via the second speed reducer RG2,
The second speed reducer RG2 is configured to always reduce the rotation of the second rotor RT2 at a constant reduction ratio and transmit it to the first output member O1,
The input member I, the first rotor RT1, the second rotor RT2, the first planetary gear mechanism PG1, the first reduction gear RG1, and the second reduction gear RG2 are coaxially arranged,
A second rotor RT2 is arranged on the first side L1 in the axial direction with respect to the internal combustion engine EG and the first rotor RT1,
A first planetary gear mechanism PG1, a first reduction gear RG1, and a second reduction gear RG2 are arranged between the first rotor RT1 and the second rotor RT2 in the axial direction L.
 この構成によれば、2つの回転電機MG1,MG2を備えたハイブリッド車両用の駆動装置100において、内燃機関EG及び第1回転電機MG1と第2回転電機MG2との軸方向Lの間に、第1遊星歯車機構PG1、第1減速機RG1、及び第2減速機RG2をまとめて配置できる。これにより、第1遊星歯車機構PG1を構成するギヤと、第1減速機RG1を構成するギヤと、第2減速機RG2を構成するギヤとの連結構造の簡素化及び小型化を図り易い。したがって、車両用駆動装置100の簡素化及び小型化を図り易い。 According to this configuration, in the hybrid vehicle drive device 100 including the two rotating electrical machines MG1 and MG2, the second rotating electrical machine MG2 is positioned between the internal combustion engine EG and the first rotating electrical machine MG1 and the second rotating electrical machine MG2 in the axial direction L. 1 Planetary gear mechanism PG1, 1st reduction gear RG1, and 2nd reduction gear RG2 can be collectively arranged. This facilitates simplification and miniaturization of the connecting structure of the gears that form the first planetary gear mechanism PG1, the gears that form the first reduction gear RG1, and the gears that form the second reduction gear RG2. Therefore, it is easy to achieve simplification and miniaturization of the vehicle drive device 100 .
 図28に、本実施形態に係る、第1遊星歯車機構PG1、第1減速機RG1の第2遊星歯車機構PG2、第2減速機RG2の第3遊星歯車機構PG3の速度線図を示す。 FIG. 28 shows velocity diagrams of the first planetary gear mechanism PG1, the second planetary gear mechanism PG2 of the first reduction gear RG1, and the third planetary gear mechanism PG3 of the second reduction gear RG2, according to the present embodiment.
 図28に示すように、本実施形態においても、上記第1の実施形態と同様に、第1回転電機MG1から第2サンギヤS2に伝達された回転は、第2遊星歯車機構PG2において反転すると共に減速されて、第2リングギヤR2に伝達される。その結果、第1回転電機MG1のトルクは、増幅されて第2リングギヤR2に伝達される。また、本実施形態では、第2回転電機MG2から第3サンギヤS3に伝達された回転は、第3遊星歯車機構PG3において減速されて、第3キャリヤCA3に伝達される。そして、第2遊星歯車機構PG2の第2リングギヤR2から第1遊星歯車機構PG1の第1リングギヤR1に伝達された第1回転電機MG1のトルクと、入力部材Iを介して第1サンギヤS1に伝達された内燃機関EGのトルクとが、第1遊星歯車機構PG1において合算され、それに第3遊星歯車機構PG3の第3キャリヤCA3に伝達された第2回転電機MG2のトルクが加わって、第1キャリヤCA1から出力される。 As shown in FIG. 28, also in this embodiment, as in the first embodiment, the rotation transmitted from the first rotating electric machine MG1 to the second sun gear S2 is reversed in the second planetary gear mechanism PG2. It is decelerated and transmitted to the second ring gear R2. As a result, the torque of the first rotating electrical machine MG1 is amplified and transmitted to the second ring gear R2. Further, in the present embodiment, the rotation transmitted from the second rotating electrical machine MG2 to the third sun gear S3 is reduced in the third planetary gear mechanism PG3 and transmitted to the third carrier CA3. Then, the torque of the first rotary electric machine MG1 transmitted from the second ring gear R2 of the second planetary gear mechanism PG2 to the first ring gear R1 of the first planetary gear mechanism PG1 is transmitted to the first sun gear S1 via the input member I. is added to the torque of the internal combustion engine EG in the first planetary gear mechanism PG1, and the torque of the second rotating electric machine MG2 transmitted to the third carrier CA3 of the third planetary gear mechanism PG3 is added to the torque of the first carrier Output from CA1.
4.その他の実施形態
(1)上記第1の実施形態(図1参照)では、第1係合装置CL1としての第1ブレーキB1と、第2係合装置CL2としての第1クラッチC1とを備えた構成を例として説明した。しかし、そのような構成に限定されることなく、図20に示すように、第2係合装置CL2を備えず、第1係合装置CL1として第1ワンウェイクラッチOWC1を備えた構成としても良い。第1ワンウェイクラッチOWC1は、一対の係合部材間の相対回転の方向が第1方向の場合に一対の係合部材同士を係合し、相対回転の方向が第1方向とは反対の第2方向の場合に一対の係合部材同士の係合を解除する係合装置である。図20に示す例では、第1ワンウェイクラッチOWC1は、入力部材Iが正方向に回転する(回転速度が零より大きくなる)場合に解放状態となり、入力部材Iが負方向に回転しようとした(回転速度が零未満になろうとした)場合に係合状態となって入力部材Iを非回転部材NRに固定するように構成されている。
4. Other Embodiments (1) In the first embodiment (see FIG. 1), the first brake B1 as the first engagement device CL1 and the first clutch C1 as the second engagement device CL2 are provided. The configuration has been described as an example. However, without being limited to such a configuration, as shown in FIG. 20, a configuration may be employed in which the first one-way clutch OWC1 is provided as the first engagement device CL1 without the second engagement device CL2. The first one-way clutch OWC1 engages the pair of engaging members when the direction of relative rotation between the pair of engaging members is the first direction, and the second clutch OWC1 engages the pair of engaging members in the direction of relative rotation opposite to the first direction. It is an engaging device for releasing the engagement between a pair of engaging members in the case of direction. In the example shown in FIG. 20, the first one-way clutch OWC1 is released when the input member I rotates in the positive direction (the rotation speed becomes greater than zero), and the input member I attempts to rotate in the negative direction ( The input member I is configured to be engaged and fixed to the non-rotating member NR when the rotational speed is about to become less than zero.
(2)上記第2の実施形態(図11参照)では、第5係合装置CL5としての第3ブレーキB3を備えた構成を例として説明した。しかし、そのような構成に限定されることなく、図21に示すように、第5係合装置CL5として第2ワンウェイクラッチOWC2を備えた構成としても良い。第2ワンウェイクラッチOWC2は、一対の係合部材間の相対回転の方向が第1方向の場合に一対の係合部材同士を係合し、相対回転の方向が第1方向とは反対の第2方向の場合に一対の係合部材同士の係合を解除する係合装置である。図21に示す例では、第2ワンウェイクラッチOWC2は、入力部材Iが正方向に回転する(回転速度が零より大きくなる)場合に解放状態となり、入力部材Iが負方向に回転しようとした(回転速度が零未満になろうとした)場合に係合状態となって入力部材Iを非回転部材NRに固定するように構成されている。 (2) In the second embodiment (see FIG. 11), the configuration including the third brake B3 as the fifth engagement device CL5 has been described as an example. However, without being limited to such a configuration, as shown in FIG. 21, a configuration including the second one-way clutch OWC2 as the fifth engagement device CL5 may be employed. The second one-way clutch OWC2 engages the pair of engaging members when the direction of relative rotation between the pair of engaging members is in the first direction, and the second one-way clutch OWC2 engages the pair of engaging members in the direction of relative rotation opposite to the first direction. It is an engaging device for releasing the engagement between a pair of engaging members in the case of direction. In the example shown in FIG. 21, the second one-way clutch OWC2 is released when the input member I rotates in the positive direction (the rotation speed becomes greater than zero), and the input member I attempts to rotate in the negative direction ( The input member I is configured to be engaged and fixed to the non-rotating member NR when the rotational speed is about to become less than zero.
(3)上記第1の実施形態(図1参照)では、第2制御において、第2回転速度Nmの上昇に伴って減少する第1回転電機MG1のトルクに応じて内燃機関EG及び第2回転電機MG2の側から第1回転要素E1に伝達されるトルク(第1トルクTe)が減少するように、第2回転電機MG2の負トルクを増加させる構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第2制御において、第2回転速度Nmの上昇に伴って減少する第1回転電機MG1のトルクに応じて内燃機関EG及び第2回転電機MG2の側から第1回転要素E1に伝達されるトルク(第1トルクTe)が減少するように、内燃機関EGのトルクを減少させても良い。 (3) In the above-described first embodiment (see FIG. 1), in the second control, the internal combustion engine EG and the second rotation speed are controlled in accordance with the torque of the first rotary electric machine MG1 that decreases as the second rotation speed Nm increases. A configuration has been described as an example in which the negative torque of the second rotating electric machine MG2 is increased so that the torque (first torque Te) transmitted from the electric machine MG2 side to the first rotating element E1 decreases. However, without being limited to such a configuration, for example, in the second control, the internal combustion engine EG and the second rotating electric machine are controlled according to the torque of the first rotating electric machine MG1 that decreases as the second rotation speed Nm increases. The torque of the internal combustion engine EG may be reduced so that the torque (first torque Te) transmitted from the MG2 side to the first rotating element E1 is reduced.
(4)上記の実施形態では、第2回転電機MG2を備えた構成を例として説明した。しかし、そのような構成に限定されることなく、第2回転電機MG2を備えていない構成としても良い。 (4) In the above embodiment, the configuration including the second rotating electric machine MG2 has been described as an example. However, without being limited to such a configuration, a configuration without the second rotating electric machine MG2 may be employed.
(5)上記第1の実施形態(図1参照)では、第1係合装置CL1及び第2係合装置CL2を備え、上記第2の実施形態(図11参照)では、第3係合装置CL3、第4係合装置CL4、及び第5係合装置CL5を備えた構成を例として説明した。しかし、そのような構成に限定されることなく、実現する動作モードの種類に応じて、適宜、各種係合装置の有無を選択可能である。 (5) The first embodiment (see FIG. 1) includes the first engagement device CL1 and the second engagement device CL2, and the second embodiment (see FIG. 11) includes the third engagement device. A configuration including CL3, fourth engagement device CL4, and fifth engagement device CL5 has been described as an example. However, without being limited to such a configuration, the presence or absence of various engagement devices can be appropriately selected according to the type of operation mode to be implemented.
(6)上記の実施形態(図22,23参照)では、第2ギヤ22が径方向Rに沿う径方向視で第1リングギヤR1と重複する位置に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、第2ギヤ22が径方向Rに沿う径方向視で第1リングギヤR1と重複しない位置に配置されていても良い。ただし、この場合においても、第2ギヤ22は、当該第2ギヤ22の軸方向Lの配置領域が、第1遊星歯車機構PG1の軸方向Lの配置領域の少なくとも一部(例えば、第1キャリヤCA1の軸方向Lの配置領域)と重なるように配置される。 (6) In the above embodiment (see FIGS. 22 and 23), the configuration in which the second gear 22 overlaps the first ring gear R1 when viewed in the radial direction R has been described as an example. However, without being limited to such a configuration, the second gear 22 may be arranged at a position that does not overlap with the first ring gear R1 when viewed in the radial direction R. However, even in this case, the arrangement area of the second gear 22 in the axial direction L is at least part of the arrangement area in the axial direction L of the first planetary gear mechanism PG1 (for example, the first carrier). CA1 in the axial direction L).
(7)上記の実施形態(図22,23参照)では、第1回転電機MG1が第1遊星歯車機構PG1に対して軸方向Lにおける内燃機関EGの側とは反対側に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、第1回転電機MG1が第1遊星歯車機構PG1に対して軸方向Lにおける内燃機関EGの側と同じ側に配置されていても良い。 (7) In the above embodiment (see FIGS. 22 and 23), the first rotating electrical machine MG1 is arranged on the opposite side of the internal combustion engine EG in the axial direction L with respect to the first planetary gear mechanism PG1. explained as an example. However, without being limited to such a configuration, the first rotating electric machine MG1 may be arranged on the same side as the internal combustion engine EG side in the axial direction L with respect to the first planetary gear mechanism PG1.
(8)上記の実施形態(図25,27参照)では、第1減速機RG1が第2遊星歯車機構PG2を備えた構成を例として説明したが、第1減速機RG1が第2遊星歯車機構PG2以外の機構を更に備えていても良い。例えば、第1減速機RG1が、第2遊星歯車機構PG2に加えて、平行軸の減速ギヤ機構等の別のギヤ機構を備えていても良い。なお、第3遊星歯車機構PG3を備えた第2減速機RG2についても同様である。 (8) In the above embodiment (see FIGS. 25 and 27), the first reduction gear RG1 includes the second planetary gear mechanism PG2. A mechanism other than PG2 may be further provided. For example, in addition to the second planetary gear mechanism PG2, the first reduction gear RG1 may include another gear mechanism such as a parallel shaft reduction gear mechanism. The same applies to the second speed reducer RG2 including the third planetary gear mechanism PG3.
(9)上記の実施形態(図25,27参照)では、第1減速機RG1の第2遊星歯車機構PG2において、第2サンギヤS2が第1ロータRT1に連結され、第2キャリヤCA2が非回転部材NRに固定され、第2リングギヤR2が第1遊星歯車機構PG1の第1リングギヤR1と一体的に回転するように連結された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第2サンギヤS2が第1ロータRT1に連結され、第2キャリヤCA2が第1リングギヤR1と一体的に回転するように連結され、第2リングギヤR2が非回転部材NRに固定されていても良い。 (9) In the above embodiment (see FIGS. 25 and 27), in the second planetary gear mechanism PG2 of the first reduction gear RG1, the second sun gear S2 is connected to the first rotor RT1, and the second carrier CA2 is non-rotating. The configuration in which the second ring gear R2 is fixed to the member NR and is connected to the first ring gear R1 of the first planetary gear mechanism PG1 so as to rotate integrally has been described as an example. However, without being limited to such a configuration, for example, the second sun gear S2 is coupled to the first rotor RT1, the second carrier CA2 is coupled to rotate integrally with the first ring gear R1, and the second carrier CA2 is coupled to the first ring gear R1. The ring gear R2 may be fixed to the non-rotating member NR.
(10)上記の実施形態(図25,27参照)では、入力部材Iと第1ロータRT1と第2ロータRT2と第1遊星歯車機構PG1と第1減速機RG1とが同軸上に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、それらが互いに別軸上に配置されていても良い。或いは、それらの一部のみが同軸上に配置されていても良い。 (10) In the above embodiment (see FIGS. 25 and 27), the input member I, the first rotor RT1, the second rotor RT2, the first planetary gear mechanism PG1, and the first reduction gear RG1 are arranged coaxially. The configuration has been described as an example. However, they may be arranged on separate axes without being limited to such a configuration. Alternatively, only some of them may be arranged coaxially.
(11)上記の実施形態(図25参照)では、軸方向第2側L2から軸方向第1側L1に向けて、内燃機関EG、第2ロータRT2、第1ロータRT1、第2遊星歯車機構PG2、及び第1遊星歯車機構PG1が、記載の順となるように配置された構成を例として説明した。また、別の実施形態(図27参照)では、軸方向第2側L2から軸方向第1側L1に向けて、内燃機関EG、第1ロータRT1、第2遊星歯車機構PG2、第1遊星歯車機構PG1、第3遊星歯車機構PG3、及び第2ロータRT2が、記載の順となるように配置された構成を例として説明した。しかし、車両用駆動装置100の構成要素の軸方向Lの位置は、それらに限定されず、適宜変更可能である。 (11) In the above embodiment (see FIG. 25), the internal combustion engine EG, the second rotor RT2, the first rotor RT1, and the second planetary gear mechanism are arranged from the second axial side L2 toward the first axial side L1. The configuration in which the PG2 and the first planetary gear mechanism PG1 are arranged in the order described has been described as an example. In another embodiment (see FIG. 27), the internal combustion engine EG, the first rotor RT1, the second planetary gear mechanism PG2, and the first planetary gear are arranged from the second axial side L2 toward the first axial side L1. A configuration in which the mechanism PG1, the third planetary gear mechanism PG3, and the second rotor RT2 are arranged in the order described has been described as an example. However, the positions of the constituent elements of the vehicle drive system 100 in the axial direction L are not limited thereto, and can be changed as appropriate.
(12)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。したがって、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (12) It should be noted that the configurations disclosed in the respective embodiments described above can be applied in combination with configurations disclosed in other embodiments as long as there is no contradiction. Regarding other configurations, the embodiments disclosed in this specification are merely examples in all respects. Therefore, various modifications can be made as appropriate without departing from the scope of the present disclosure.
〔上記実施形態の概要〕
 以下では、上記において説明した車両用駆動装置(100)の概要について説明する。
[Overview of the above embodiment]
Below, the outline|summary of the vehicle drive device (100) demonstrated above is demonstrated.
 車両用駆動装置(100)は、
 車両が備える第1車輪(W1)に駆動連結される第1出力部材(O1)と、
 内燃機関(EG)に駆動連結される入力部材(I)と、
 第1ロータ(RT1)を備えた第1回転電機(MG1)と、
 第1回転要素(E1)、第2回転要素(E2)、及び第3回転要素(E3)を備え、前記第1回転要素(E1)が前記入力部材(I)に駆動連結され、前記第2回転要素(E2)が前記第1出力部材(O1)に駆動連結され、前記第3回転要素(E3)が前記第1ロータ(RT1)に駆動連結された分配用差動歯車機構(SP)と、
 前記内燃機関(EG)及び前記第1回転電機(MG1)を制御する制御装置(10)と、を備え、
 前記分配用差動歯車機構(SP)は、前記第1回転要素(E1)、前記第2回転要素(E2)、及び前記第3回転要素(E3)の回転速度の順が記載の順となるように構成され、
 前記制御装置(10)は、前記車両を予め定められた値以上の加速度で加速させる場合に、特定加速制御を実行可能であり、
 前記内燃機関(EG)の回転速度を第1回転速度(Ne)とし、前記第1回転電機(MG1)の回転速度を第2回転速度(Nm)とし、前記内燃機関(EG)の出力が予め定められた値以上となる前記第1回転速度(Ne)を第1目標回転速度(Ne1)とし、前記第1回転電機(MG1)の出力が予め定められた値以上となる前記第2回転速度(Nm)を第2目標回転速度(Nm1)として、
 前記特定加速制御は、
 前記第1回転速度(Ne)が前記第1目標回転速度(Ne1)に到達する時期と前記第2回転速度(Nm)が前記第2目標回転速度(Nm1)に到達する時期との差が予め定められた範囲内となるように、前記第1回転速度(Ne)を前記第1目標回転速度(Ne1)まで次第に上昇させると共に、前記第2回転速度(Nm)を前記第2目標回転速度(Nm1)まで次第に上昇させる第1制御と、
 前記第1制御の後、前記第2回転速度(Nm)の変化量が前記第1回転速度(Ne)の変化量に比べて大きくなるように、少なくとも前記第2回転速度(Nm)を、前記第2目標回転速度(Nm1)から更に上昇させる第2制御と、を含む。
The vehicle drive system (100) includes:
a first output member (O1) drivingly connected to a first wheel (W1) of the vehicle;
an input member (I) drivingly connected to an internal combustion engine (EG);
a first rotating electric machine (MG1) including a first rotor (RT1);
A first rotating element (E1), a second rotating element (E2), and a third rotating element (E3) are provided, wherein the first rotating element (E1) is drivingly connected to the input member (I), and the second rotating element (E1) is drivingly connected to the input member (I). a distributing differential gear mechanism (SP) in which the rotating element (E2) is drivingly connected to the first output member (O1) and the third rotating element (E3) is drivingly connected to the first rotor (RT1); ,
a control device (10) that controls the internal combustion engine (EG) and the first rotating electric machine (MG1);
In the distributing differential gear mechanism (SP), the rotational speeds of the first rotating element (E1), the second rotating element (E2), and the third rotating element (E3) are in the order of description. configured as
The control device (10) is capable of executing specific acceleration control when accelerating the vehicle at an acceleration equal to or greater than a predetermined value,
The rotation speed of the internal combustion engine (EG) is assumed to be a first rotation speed (Ne), the rotation speed of the first electric rotating machine (MG1) is assumed to be a second rotation speed (Nm), and the output of the internal combustion engine (EG) is set in advance. The first rotational speed (Ne) at which the output of the first rotating electrical machine (MG1) is equal to or higher than a predetermined value is defined as a first target rotational speed (Ne1), and the second rotational speed is equal to or higher than a predetermined value. (Nm) as the second target rotation speed (Nm1),
The specific acceleration control is
The difference between the timing at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) and the timing at which the second rotation speed (Nm) reaches the second target rotation speed (Nm1) is determined in advance. The first rotation speed (Ne) is gradually increased to the first target rotation speed (Ne1) so as to fall within a predetermined range, and the second rotation speed (Nm) is increased to the second target rotation speed ( A first control that gradually increases to Nm1);
After the first control, at least the second rotational speed (Nm) is set to the and a second control for further increasing the second target rotational speed (Nm1).
 この構成によれば、車両を予め定められた値以上の加速度で加速させる場合に実行可能な特定加速制御において、第1制御により、車速が低速域にある段階で、内燃機関(EG)及び第1回転電機(MG1)のそれぞれを予め定められた値以上の出力とすることができる。これにより、車速が低速域にある車両を適切に加速させることができる。そして、第1制御の後は、第2制御により、内燃機関(EG)が比較的高い出力を維持した状態で、第1回転電機(MG1)の回転速度を上昇させることができる。これにより、車速が高速域に到達するように、車両を適切に加速させることができる。
 このように、本構成によれば、車両を予め定められた値以上の加速度で加速させる場合において、係合装置の係合の状態を制御することによる動作モードの切り替えを行うことなく、車速が低速域から高速域に到達するように、車両を適切に加速させることができる。したがって、車両を比較的高い加速度で加速させる場合であっても、運転者の違和感を小さく抑えることができる。
According to this configuration, in the specific acceleration control that can be executed when the vehicle is accelerated at a predetermined acceleration or more, the first control causes the internal combustion engine (EG) and the second Each of the one-rotating electric machines (MG1) can have an output of a predetermined value or more. As a result, the vehicle whose vehicle speed is in the low speed range can be appropriately accelerated. After the first control, the second control can increase the rotation speed of the first rotating electrical machine (MG1) while maintaining the relatively high output of the internal combustion engine (EG). As a result, the vehicle can be appropriately accelerated so that the vehicle speed reaches the high speed range.
As described above, according to this configuration, when the vehicle is accelerated with an acceleration equal to or greater than a predetermined value, the vehicle speed can be increased without switching the operation mode by controlling the engagement state of the engagement device. The vehicle can be appropriately accelerated so as to reach the high speed range from the low speed range. Therefore, even when the vehicle is accelerated at a relatively high acceleration, it is possible to keep the discomfort felt by the driver small.
 ここで、前記制御装置(10)は、前記第2制御において、前記第1回転速度(Ne)を、前記第1目標回転速度(Ne1)を含む予め定められた範囲内に維持する制御を行うと好適である。 Here, the control device (10) performs control to maintain the first rotation speed (Ne) within a predetermined range including the first target rotation speed (Ne1) in the second control. and is suitable.
 この構成によれば、第2制御において、内燃機関(EG)の出力を比較的高く維持し易い。 According to this configuration, it is easy to maintain the output of the internal combustion engine (EG) relatively high in the second control.
 また、前記第1目標回転速度(Ne1)は、前記内燃機関(EG)が最大出力となる場合の前記第1回転速度(Ne)であり、
 前記第2目標回転速度(Nm1)は、前記第1回転電機(MG1)が最大出力となる場合の前記第2回転速度(Nm)であると好適である。
Further, the first target rotation speed (Ne1) is the first rotation speed (Ne) when the internal combustion engine (EG) has the maximum output,
The second target rotation speed (Nm1) is preferably the second rotation speed (Nm) when the first rotating electric machine (MG1) has the maximum output.
 この構成によれば、車両を最大加速度で加速させ易い。 According to this configuration, it is easy to accelerate the vehicle at maximum acceleration.
 上記の構成において、
 前記第1目標回転速度(Ne1)と前記第2目標回転速度(Nm1)との差を最大出力時速度差(ΔN)として、
 前記制御装置(10)は、前記第1制御において、前記第1回転速度(Ne)と前記第2回転速度(Nm)との差が前記最大出力時速度差(ΔN)と同じになるように前記内燃機関(EG)及び前記第1回転電機(MG1)を制御し、前記第1回転速度(Ne)と前記第2回転速度(Nm)との差が前記最大出力時速度差(ΔN)と同じになった後は、前記第1回転速度(Ne)と前記第2回転速度(Nm)との差が前記最大出力時速度差(ΔN)と同じ状態を維持しつつ、前記第1回転速度(Ne)及び前記第2回転速度(Nm)の双方を上昇させる制御を行うと好適である。
In the above configuration,
Assuming that the difference between the first target rotation speed (Ne1) and the second target rotation speed (Nm1) is the speed difference at maximum output (ΔN),
In the first control, the control device (10) adjusts the difference between the first rotation speed (Ne) and the second rotation speed (Nm) to be the same as the speed difference at maximum output (ΔN). The internal combustion engine (EG) and the first rotating electric machine (MG1) are controlled, and the difference between the first rotation speed (Ne) and the second rotation speed (Nm) is the speed difference at maximum output (ΔN). After becoming the same, the difference between the first rotation speed (Ne) and the second rotation speed (Nm) is maintained at the same state as the speed difference at maximum output (ΔN), and the first rotation speed (Ne) and the second rotational speed (Nm) are preferably controlled to increase.
 この構成によれば、比較的簡易な制御により、第1回転速度(Ne)が第1目標回転速度(Ne1)に到達する時期と第2回転速度(Nm)が第2目標回転速度(Nm1)に到達する時期とが同時期になるようにすることができる。したがって、適切に第1制御を実行することができる。 According to this configuration, by relatively simple control, the timing at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) and the timing at which the second rotation speed (Nm) reaches the second target rotation speed (Nm1) can be made to coincide with the time of reaching Therefore, the first control can be appropriately executed.
 また、前記制御装置(10)は、前記第1制御において、前記第1回転速度(Ne)が前記第1制御の開始時の回転速度から前記第1目標回転速度(Ne1)に到達するまでの時間と、前記第2回転速度(Nm)が前記第1制御の開始時の回転速度から前記第2目標回転速度(Nm1)に到達するまでの時間とが同じになるように、前記第1回転速度(Ne)及び前記第2回転速度(Nm)をそれぞれ一定の変化率で上昇させる制御を行うと好適である。 Further, in the first control, the control device (10) controls the speed at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) from the rotation speed at the start of the first control. The first rotation speed is adjusted so that the time and the time required for the second rotation speed (Nm) to reach the second target rotation speed (Nm1) from the rotation speed at the start of the first control are the same. It is preferable to perform control to increase the speed (Ne) and the second rotation speed (Nm) at a constant rate of change.
 この構成によれば、比較的簡易な制御により、第1回転速度(Ne)が第1目標回転速度(Ne1)に到達する時期と第2回転速度(Nm)が第2目標回転速度(Nm1)に到達する時期とが同時期になるようにすることができる。したがって、適切に第1制御を実行することができる。 According to this configuration, by relatively simple control, the timing at which the first rotation speed (Ne) reaches the first target rotation speed (Ne1) and the timing at which the second rotation speed (Nm) reaches the second target rotation speed (Nm1) can be made to coincide with the time of reaching Therefore, the first control can be appropriately executed.
 また、前記第2回転要素(E2)が停止し、前記第1回転要素(E1)及び前記第3回転要素(E3)が回転している状態での前記第1回転要素(E1)の回転速度に対する前記第3回転要素(E3)の回転速度の比で表される前記分配用差動歯車機構(SP)のギヤ比(λ)が、前記第1回転電機(MG1)が最大出力となる場合の前記第1回転電機(MG1)のトルク(Tm1)に対する前記内燃機関(EG)が最大出力となる場合の前記内燃機関(EG)のトルク(Te1)の比と同等であると好適である。 Further, the rotational speed of the first rotating element (E1) in a state where the second rotating element (E2) is stopped and the first rotating element (E1) and the third rotating element (E3) are rotating When the gear ratio (λ) of the distributing differential gear mechanism (SP), which is represented by the ratio of the rotational speed of the third rotating element (E3) to is equal to the ratio of the torque (Te1) of the internal combustion engine (EG) when the internal combustion engine (EG) is at its maximum output to the torque (Tm1) of the first rotary electric machine (MG1).
 この構成によれば、内燃機関(EG)が最大出力となり、かつ、第1回転電機(MG1)が最大出力となった状態で、第1回転要素(E1)から第2回転要素(E2)に伝達されるトルクと第3回転要素(E3)から第2回転要素(E2)に伝達されるトルクとが釣り合うようにすることができる。したがって、内燃機関(EG)が最大出力となり、かつ、第1回転電機(MG1)が最大出力となった状態で、第1回転要素(E1)の回転速度と第3回転要素(E3)の回転速度との関係を大きく変化させることなく、安定的に、内燃機関(EG)のトルクと第1回転電機(MG1)のトルクとを第1出力部材(O1)に伝達することができる。 According to this configuration, in a state in which the internal combustion engine (EG) has the maximum output and the first rotating electric machine (MG1) has the maximum output, the rotation from the first rotating element (E1) to the second rotating element (E2) is performed. The transmitted torque and the torque transmitted from the third rotating element (E3) to the second rotating element (E2) can be balanced. Therefore, in a state where the internal combustion engine (EG) has the maximum output and the first rotating electric machine (MG1) has the maximum output, the rotational speed of the first rotating element (E1) and the rotation of the third rotating element (E3) are The torque of the internal combustion engine (EG) and the torque of the first rotating electrical machine (MG1) can be stably transmitted to the first output member (O1) without significantly changing the relationship with the speed.
 また、第2ロータ(RT2)を備えた第2回転電機(MG2)を更に備え、
 前記第2ロータ(RT2)は、前記第1回転要素(E1)に駆動連結され、
 前記制御装置(10)は、前記第2制御において、前記第2回転速度(Nm)の上昇に伴って減少する前記第1回転電機(MG1)のトルクに応じて前記内燃機関(EG)及び前記第2回転電機(MG2)の側から前記第1回転要素(E1)に伝達されるトルクが減少するように、前記第2回転電機(MG2)の負トルクを増加させる制御を行うと好適である。
Further, a second rotating electric machine (MG2) having a second rotor (RT2) is further provided,
The second rotor (RT2) is drivingly connected to the first rotating element (E1),
In the second control, the control device (10) controls the internal combustion engine (EG) and the It is preferable to perform control to increase the negative torque of the second rotating electrical machine (MG2) so that the torque transmitted from the second rotating electrical machine (MG2) side to the first rotating element (E1) decreases. .
 この構成によれば、第2制御において、車速の上昇に伴って第1回転電機(MG1)が出力可能なトルクが次第に減少した場合であっても、第1回転要素(E1)から第2回転要素(E2)に伝達されるトルクと第3回転要素(E3)から第2回転要素(E2)に伝達されるトルクとのバランスが大きく崩れることを回避し、第1回転速度(Ne)を第1目標回転速度(Ne1)に維持することが容易となる。
 また、本構成によれば、第2制御において、内燃機関(EG)のトルクにより第2回転電機(MG2)に発電を行わせることができる。
According to this configuration, in the second control, even if the torque that can be output by the first rotary electric machine (MG1) gradually decreases as the vehicle speed increases, The torque transmitted to the element (E2) and the torque transmitted from the third rotating element (E3) to the second rotating element (E2) are prevented from being greatly out of balance, and the first rotation speed (Ne) is set to the second rotation speed (Ne). It becomes easy to maintain at 1 target rotational speed (Ne1).
Further, according to this configuration, in the second control, the torque of the internal combustion engine (EG) can be used to cause the second rotating electric machine (MG2) to generate power.
 本開示に係る技術は、車両が備える車輪に駆動連結される出力部材と、内燃機関に駆動連結される入力部材と、回転電機と、分配用差動歯車機構と、を備えた車両用駆動装置に利用することができる。 A technology according to the present disclosure is a vehicle drive device that includes an output member that is drivingly connected to wheels of a vehicle, an input member that is drivingly connected to an internal combustion engine, a rotating electric machine, and a distribution differential gear mechanism. can be used for
100:車両用駆動装置、10:制御装置、I:入力部材、O1:第1出力部材、MG1:第1回転電機、RT1:第1ロータ、SP:分配用差動歯車機構、E1:第1回転要素、E2:第2回転要素、E3:第3回転要素、Ne:第1回転速度、Nm:第2回転速度、Ne1:第1目標回転速度、Nm1:第2目標回転速度 100: vehicle driving device, 10: control device, I: input member, O1: first output member, MG1: first rotating electric machine, RT1: first rotor, SP: distribution differential gear mechanism, E1: first Rotation element, E2: second rotation element, E3: third rotation element, Ne: first rotation speed, Nm: second rotation speed, Ne1: first target rotation speed, Nm1: second target rotation speed

Claims (7)

  1.  車両が備える第1車輪に駆動連結される第1出力部材と、
     内燃機関に駆動連結される入力部材と、
     第1ロータを備えた第1回転電機と、
     第1回転要素、第2回転要素、及び第3回転要素を備え、前記第1回転要素が前記入力部材に駆動連結され、前記第2回転要素が前記第1出力部材に駆動連結され、前記第3回転要素が前記第1ロータに駆動連結された分配用差動歯車機構と、
     前記内燃機関及び前記第1回転電機を制御する制御装置と、を備え、
     前記分配用差動歯車機構は、前記第1回転要素、前記第2回転要素、及び前記第3回転要素の回転速度の順が記載の順となるように構成され、
     前記制御装置は、前記車両を予め定められた値以上の加速度で加速させる場合に、特定加速制御を実行可能であり、
     前記内燃機関の回転速度を第1回転速度とし、前記第1回転電機の回転速度を第2回転速度とし、前記内燃機関の出力が予め定められた値以上となる前記第1回転速度を第1目標回転速度とし、前記第1回転電機の出力が予め定められた値以上となる前記第2回転速度を第2目標回転速度として、
     前記特定加速制御は、
     前記第1回転速度が前記第1目標回転速度に到達する時期と前記第2回転速度が前記第2目標回転速度に到達する時期との差が予め定められた範囲内となるように、前記第1回転速度を前記第1目標回転速度まで次第に上昇させると共に、前記第2回転速度を前記第2目標回転速度まで次第に上昇させる第1制御と、
     前記第1制御の後、前記第2回転速度の変化量が前記第1回転速度の変化量に比べて大きくなるように、少なくとも前記第2回転速度を、前記第2目標回転速度から更に上昇させる第2制御と、を含む、車両用駆動装置。
    a first output member drivingly connected to a first wheel included in the vehicle;
    an input member drivingly connected to an internal combustion engine;
    a first rotating electric machine having a first rotor;
    a first rotating element, a second rotating element, and a third rotating element, wherein the first rotating element is drivingly connected to the input member; the second rotating element is drivingly connected to the first output member; a distributing differential gear mechanism in which three rotating elements are drivingly connected to the first rotor;
    a control device that controls the internal combustion engine and the first rotating electric machine,
    The distributing differential gear mechanism is configured so that the rotation speeds of the first rotating element, the second rotating element, and the third rotating element are in the order described,
    The control device is capable of executing specific acceleration control when accelerating the vehicle at an acceleration equal to or greater than a predetermined value,
    The rotation speed of the internal combustion engine is defined as a first rotation speed, the rotation speed of the first rotating electric machine is defined as a second rotation speed, and the first rotation speed at which the output of the internal combustion engine is equal to or higher than a predetermined value is the first rotation speed. as a target rotation speed, and as the second rotation speed at which the output of the first rotating electric machine is equal to or higher than a predetermined value, as the second target rotation speed,
    The specific acceleration control is
    The first rotation speed is controlled so that the difference between the timing at which the first rotation speed reaches the first target rotation speed and the timing at which the second rotation speed reaches the second target rotation speed is within a predetermined range. a first control for gradually increasing the first rotation speed to the first target rotation speed and gradually increasing the second rotation speed to the second target rotation speed;
    After the first control, at least the second rotational speed is further increased from the second target rotational speed so that the amount of change in the second rotational speed is greater than the amount of change in the first rotational speed. and a second control.
  2.  前記制御装置は、前記第2制御において、前記第1回転速度を、前記第1目標回転速度を含む予め定められた範囲内に維持する制御を行う、請求項1に記載の車両用駆動装置。 The vehicle driving device according to claim 1, wherein in the second control, the control device maintains the first rotation speed within a predetermined range including the first target rotation speed.
  3.  前記第1目標回転速度は、前記内燃機関が最大出力となる場合の前記第1回転速度であり、
     前記第2目標回転速度は、前記第1回転電機が最大出力となる場合の前記第2回転速度である、請求項1又は2に記載の車両用駆動装置。
    The first target rotation speed is the first rotation speed when the internal combustion engine has a maximum output,
    3. The vehicle drive device according to claim 1, wherein said second target rotation speed is said second rotation speed when said first rotating electric machine has a maximum output.
  4.  前記第1目標回転速度と前記第2目標回転速度との差を最大出力時速度差として、
     前記制御装置は、前記第1制御において、前記第1回転速度と前記第2回転速度との差が前記最大出力時速度差と同じになるように前記内燃機関及び前記第1回転電機を制御し、前記第1回転速度と前記第2回転速度との差が前記最大出力時速度差と同じになった後は、前記第1回転速度と前記第2回転速度との差が前記最大出力時速度差と同じ状態を維持しつつ、前記第1回転速度及び前記第2回転速度の双方を上昇させる制御を行う、請求項3に記載の車両用駆動装置。
    The difference between the first target rotation speed and the second target rotation speed is the speed difference at maximum output,
    In the first control, the control device controls the internal combustion engine and the first rotating electric machine such that a difference between the first rotation speed and the second rotation speed is equal to the speed difference at maximum output. , after the difference between the first rotation speed and the second rotation speed becomes equal to the speed difference at maximum output, the difference between the first rotation speed and the second rotation speed becomes the speed at maximum output 4. The vehicle driving device according to claim 3, wherein control is performed to increase both the first rotation speed and the second rotation speed while maintaining the same state as the difference.
  5.  前記制御装置は、前記第1制御において、前記第1回転速度が前記第1制御の開始時の回転速度から前記第1目標回転速度に到達するまでの時間と、前記第2回転速度が前記第1制御の開始時の回転速度から前記第2目標回転速度に到達するまでの時間とが同じになるように、前記第1回転速度及び前記第2回転速度をそれぞれ一定の変化率で上昇させる制御を行う、請求項1から3のいずれか一項に記載の車両用駆動装置。 The control device controls, in the first control, the time required for the first rotation speed to reach the first target rotation speed from the rotation speed at the start of the first control, and the time required for the second rotation speed to reach the first rotation speed. Control to increase the first rotation speed and the second rotation speed at a constant rate of change so that the time from the rotation speed at the start of the first control to the time to reach the second target rotation speed is the same. 4. The vehicle drive system according to any one of claims 1 to 3, wherein:
  6.  前記第2回転要素が停止し、前記第1回転要素及び前記第3回転要素が回転している状態での前記第1回転要素の回転速度に対する前記第3回転要素の回転速度の比で表される前記分配用差動歯車機構のギヤ比が、前記第1回転電機が最大出力となる場合の前記第1回転電機のトルクに対する前記内燃機関が最大出力となる場合の前記内燃機関のトルクの比と同等である、請求項1から5のいずれか一項に記載の車両用駆動装置。 It is expressed by the ratio of the rotation speed of the third rotation element to the rotation speed of the first rotation element when the second rotation element is stopped and the first rotation element and the third rotation element are rotating. is the ratio of the torque of the internal combustion engine when the internal combustion engine is at its maximum output to the torque of the first rotating electric machine when the first rotating electric machine is at its maximum output. 6. A vehicle drive system as claimed in any one of claims 1 to 5 which is equivalent to
  7.  第2ロータを備えた第2回転電機を更に備え、
     前記第2ロータは、前記第1回転要素に駆動連結され、
     前記制御装置は、前記第2制御において、前記第2回転速度の上昇に伴って減少する前記第1回転電機のトルクに応じて前記内燃機関及び前記第2回転電機の側から前記第1回転要素に伝達されるトルクが減少するように、前記第2回転電機の負トルクを増加させる制御を行う、請求項1から6のいずれか一項に記載の車両用駆動装置。
    further comprising a second rotating electric machine having a second rotor;
    The second rotor is drivingly connected to the first rotating element,
    In the second control, the control device rotates the first rotary element from the internal combustion engine and the second rotary electric machine according to torque of the first rotary electric machine that decreases as the second rotation speed increases. 7. The vehicle drive system according to any one of claims 1 to 6, wherein control is performed to increase the negative torque of said second rotating electric machine so that the torque transmitted to said second rotating electric machine is reduced.
PCT/JP2022/042849 2021-11-19 2022-11-18 Drive device for vehicle WO2023090420A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021188937 2021-11-19
JP2021-188938 2021-11-19
JP2021188935 2021-11-19
JP2021188938 2021-11-19
JP2021-188937 2021-11-19
JP2021-188935 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090420A1 true WO2023090420A1 (en) 2023-05-25

Family

ID=86397009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042849 WO2023090420A1 (en) 2021-11-19 2022-11-18 Drive device for vehicle

Country Status (1)

Country Link
WO (1) WO2023090420A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050751A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Battery power compensation controller of hybrid vehicle
WO2010067413A1 (en) * 2008-12-09 2010-06-17 トヨタ自動車株式会社 Power transmission device for front and rear wheel drive vehicle
WO2012144280A1 (en) * 2011-04-18 2012-10-26 アイシン・エィ・ダブリュ株式会社 Vehicle driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050751A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Battery power compensation controller of hybrid vehicle
WO2010067413A1 (en) * 2008-12-09 2010-06-17 トヨタ自動車株式会社 Power transmission device for front and rear wheel drive vehicle
WO2012144280A1 (en) * 2011-04-18 2012-10-26 アイシン・エィ・ダブリュ株式会社 Vehicle driving device

Similar Documents

Publication Publication Date Title
US9216641B2 (en) Driving device for hybrid vehicle
JP3614409B2 (en) Hybrid transmission
US7491144B2 (en) Single mode, compound-split transmission with dual mechanical paths and fixed reduction ratio
WO2008007611A1 (en) Hybrid driver
JP2003247613A (en) Hybrid transmission
JP2019081438A (en) Device for controlling hybrid vehicle
JP6743617B2 (en) Power transmission device
EP3375651B1 (en) Drive unit for hybrid vehicles
WO2023090420A1 (en) Drive device for vehicle
US11807104B2 (en) Vehicle drive device
JP7268799B2 (en) Vehicle drive system
JP3929382B2 (en) Shift control device for hybrid transmission
JP2015020725A (en) Drive apparatus for hybrid vehicle
JP7400709B2 (en) Vehicle drive system
JP2023076310A (en) Vehicular driving device
JP7363848B2 (en) Vehicle drive system
JP5083632B2 (en) Hybrid drive device
WO2024128198A1 (en) Vehicle drive device
JP2010234903A (en) Hybrid drive device
JP2022154301A (en) Vehicle driving system
JP2021091385A (en) Vehicle drive device
JP2022073265A (en) Vehicular drive device
JP2023080705A (en) Vehicular driving device
JP2024084485A (en) Vehicle drive device
JP2011105101A (en) Hybrid drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895701

Country of ref document: EP

Kind code of ref document: A1