WO2023090387A1 - Mushroom sheet and method for producing same - Google Patents

Mushroom sheet and method for producing same Download PDF

Info

Publication number
WO2023090387A1
WO2023090387A1 PCT/JP2022/042671 JP2022042671W WO2023090387A1 WO 2023090387 A1 WO2023090387 A1 WO 2023090387A1 JP 2022042671 W JP2022042671 W JP 2022042671W WO 2023090387 A1 WO2023090387 A1 WO 2023090387A1
Authority
WO
WIPO (PCT)
Prior art keywords
mushroom
fibers
fiber
sheet
wet
Prior art date
Application number
PCT/JP2022/042671
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 三鴨
直文 寺田
Original Assignee
株式会社伯耆のきのこ
地方独立行政法人鳥取県産業技術センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社伯耆のきのこ, 地方独立行政法人鳥取県産業技術センター filed Critical 株式会社伯耆のきのこ
Priority to JP2023549973A priority Critical patent/JP7456577B2/en
Publication of WO2023090387A1 publication Critical patent/WO2023090387A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/28Organic non-cellulose fibres from natural polymers

Definitions

  • the present invention relates to a mushroom sheet and its manufacturing method.
  • the "mushroom sheet” in the present invention means a sheet-like body containing fibers derived from mushrooms, and is not used in the sense of limiting properties such as thickness, strength, and elasticity.
  • fake leather which is a material that resembles natural leather (genuine leather) without using animal skins, and includes synthetic leather and artificial leather. Furthermore, in recent years, plant-derived fake leather has also attracted attention from the viewpoint of animal protection and environmental consideration. Fake leather is also called vegan leather.
  • Patent Document 1 describes a step of aerated and liquid-cultivating filamentous fungi containing chitin and/or chitosan in their cell walls, and crushing and/or papermaking of the cultured filamentous fungi to produce a crushed fungus or A leather-like material is disclosed which is produced through a step of deacetylating a bacterial cell paper product and a step of plasticizing the treated product obtained in the step.
  • the above-mentioned leather-like material has a problem in terms of production efficiency because filamentous fungi need to be aerated and liquid cultured to produce it. For example, special culture equipment is required. In addition, it takes time and labor to collect a large amount of filamentous fungi as raw materials, and it seems unsuitable for mass production.
  • the present invention has been made in view of such circumstances, and provides a mushroom sheet that can be efficiently manufactured by a simpler method and a method for manufacturing the same.
  • One aspect of the present invention relates to a mushroom sheet containing mushroom fibers extracted from mushroom fruiting bodies.
  • Another aspect of the present invention relates to a method for producing the mushroom sheet.
  • the fruiting body in order to obtain a swollen fruiting body in which the spaces between the mushroom fibers in the fruiting body of the mushroom are swollen, the fruiting body is treated with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and 13.6 or less at room temperature.
  • FIG. 4 is a flow chart showing a method for manufacturing a mushroom sheet according to the first embodiment. It is a figure which shows the mushroom sheet in 1st embodiment. 4 is a flow chart showing a method for manufacturing a mushroom sheet according to the second embodiment.
  • FIG. 10 shows micrographs of two kinds of mushroom sheets in Example 3.
  • FIG. 10 is a graph showing infrared absorption spectra of mushroom sheets produced from maitake mushroom stems and shiitake mushroom stems in Example 4.
  • FIG. 10 is a flow chart showing a method for manufacturing a mushroom sheet in Example 6.
  • FIG. 6 is a graph showing the results of a tensile test of each sample of Examples 6-1, 7-1, 7-4 and 8, and a comparative example.
  • the mushroom sheet in this embodiment contains mushroom fibers extracted from mushroom fruiting bodies.
  • fruiting body of mushroom means the part of the fruiting body when mushrooms are considered to be composed of the fruiting body that points to the cap, folds, and stalk, and the mycelium that exists in the soil and trees.
  • the fruiting body itself is often called a "mushroom”.
  • raw shiitake mushrooms and raw maitake mushrooms are harvested and then packed in a pack container or the like during the commercialization process, and the ends of the stalks and the like are cut off and discarded.
  • the Standard Tables of Food Composition in Japan states that the rate of discarding raw shiitake mushrooms is 5% (only the base of the stem), and even raw shiitake mushrooms alone will result in a discard amount of several thousand tons.
  • the mushroom sheet according to the present embodiment has merits in terms of production efficiency and production equipment, even when compared with the conventional technology that requires aeration and liquid culture of filamentous fungi.
  • the raw material used for the mushroom sheet of the present invention is not limited to waste discarded in the process of commercialization of edible mushrooms, but broadly includes mushroom fruiting bodies.
  • FIG. 1 is a flow chart showing a method for manufacturing a mushroom sheet according to the first embodiment.
  • a method for manufacturing a mushroom sheet according to the first embodiment (hereinafter referred to as the first manufacturing method) will be described below with reference to FIG.
  • the first manufacturing method first, a mushroom fruiting body, which is a raw material for the mushroom sheet, is prepared (S10).
  • This step (S10) can also be called a pre-process (preparatory step) for manufacturing the mushroom sheet.
  • the fruiting body to be prepared may be the cap or fold of the mushroom, or the stalk (including the end of the stalk).
  • the mushroom species of the fruiting body to be prepared is not particularly limited.
  • fruiting bodies of edible mushrooms such as shiitake, maitake, mushrooms, wood ear mushrooms, shimeji mushrooms, king oyster mushrooms, enoki mushrooms, nameko mushrooms, and matsutake mushrooms are used.
  • fruiting bodies of multiple kinds of mushrooms may be prepared in a mixed state.
  • the fruiting body may be in a dry state, may be in a non-dried raw state, or may be in a wet state by being soaked in water. Further, the fruiting body may be shredded. However, since the mushroom sheet in the present embodiment contains mushroom fibers, it is desired that the mushroom fibers are shredded to the extent that they are not too fine.
  • the prepared fruiting body may also be the end of the mushroom stalk that has been cut off in the edible mushroom product.
  • the ends of the stalks of mushrooms which are usually cut and discarded in the process of harvesting and commercializing edible mushrooms, can be collected from mushroom producers, mushroom sellers, etc., and used as raw materials.
  • the fruiting bodies of mushrooms can be efficiently collected, and this leads to effective utilization of resources.
  • mushroom producers, mushroom sellers, and the like can reduce disposal work and reduce disposal costs.
  • an alkali treatment step (S12), a fiber extraction step (S14), and a drying step (S16) are performed in order.
  • the alkali treatment step (S12) the mushroom fruiting body is treated with a low-concentration alkaline aqueous solution at room temperature in order to obtain a swollen fruiting body in which the spaces between the mushroom fibers are swollen.
  • the term "swollen fruiting body” means a product obtained by swelling a fiber-adhesive component such as a polysaccharide component, a protein component, or a glycoprotein component present between mushroom fibers in the fruiting body of a mushroom, or at least the swollen fiber-adhesive component.
  • Normal temperature means a room temperature that is not specially controlled, for example, the temperature range specified as normal temperature by Japanese Industrial Standards (JIS Z 8703-1983) etc. 5 ° C. to 35 ° C. 18° C. or higher and 33° C. or lower is preferable.
  • "treating with a low-concentration alkaline aqueous solution” means immersing the fruiting body in a low-concentration alkaline aqueous solution. At this time, it is preferable to weakly stir the fruiting body while immersed in the low-concentration alkaline aqueous solution. Immediately after the fruiting body is placed in the low-concentration alkaline aqueous solution, the fruiting body floats, but by stirring the fruiting body, the low-concentration alkaline aqueous solution can be more easily permeated throughout the fruiting body. The speed or strength of this stirring is desired to be such a speed or strength as not to damage the mushroom fibers.
  • the low-concentration alkaline aqueous solution preferably has a hydrogen ion index of pH 12.20 or more and pH 13.60 or less, more preferably pH 12.25 or more and pH 13.55 or less, and pH 12.30 or more and pH 13. More preferably, it has a hydrogen ion exponent of 0.50 or less.
  • the sodium hydroxide aqueous solution preferably has a concentration of 0.07% by weight or more and 8% by weight or less, and 0.08% by weight or more and 7% by weight or less. and more preferably 0.09% by weight or more and 6% by weight or less.
  • the alkaline aqueous solution is not limited to the sodium hydroxide aqueous solution, and other alkaline aqueous solutions such as a sodium bicarbonate aqueous solution and a potassium hydroxide aqueous solution may be used. If an alkaline aqueous solution with a pH of less than 12.2 or a sodium hydroxide aqueous solution with a content of less than 0.07% by weight is used, the mushroom fibers may not be properly extracted (see Examples). The reason for this is considered to be that the fiber adhesive component present between mushroom fibers cannot be sufficiently dissolved due to the too low alkali concentration.
  • the mushroom fibers may not be properly extracted (see Examples). This is probably because the alkali concentration is too high, and water permeation between the mushroom fibers is suppressed due to factors such as the osmotic pressure at room temperature, which makes it difficult for the mushroom fibers to swell.
  • the mushroom fibers are damaged due to molecular weight reduction or deacetylation.
  • the present inventors minimized damage such as demolecularization and deacetylation to the mushroom fibers themselves.
  • the hydrogen ion exponent (pH 12.2 or more and 13.6 or less) of an alkaline aqueous solution was found that swells between fibers, promotes dissolution of the fiber adhesive component present between the mushroom fibers, and facilitates dissolution of the mushroom fibers in the fruiting body. be.
  • the fiber adhesion component present between the mushroom fibers is swollen and part or all of it is dissolved, thereby dissolving the mushroom fiber in the fruiting body. and succeeded in extracting mushroom fibers suitable for manufacturing mushroom sheets.
  • the alkali treatment step (S12) may further include a step of immersing the fruiting body in a low-concentration alkaline aqueous solution and then filtering the alkali-treated liquid containing the swollen fruiting body to obtain the swollen fruiting body. Therefore, in the alkali treatment step (S12), an alkali-treated liquid containing swollen fruit bodies may be obtained, or the swollen fruit bodies after the filtration step may be obtained.
  • the "alkaline-treated liquid containing swollen fruiting bodies” includes the swollen fruiting bodies after the fruiting bodies are immersed in a low-concentration alkaline aqueous solution in the alkali treatment step (S12) to turn the fruiting bodies into swollen fruiting bodies.
  • aqueous alkaline solution means an aqueous alkaline solution.
  • wet mushroom fibers are extracted by filtering the swollen fruit bodies obtained in the alkali treatment step (S12).
  • the alkali-treated liquid containing swollen fruit bodies is filtered, and when swollen fruit bodies are obtained in the alkali treatment step (S12), can filter the swollen fruiting bodies.
  • the swollen fruiting body itself is in a state where the mushroom fibers are swollen and has high viscosity, it takes time to filter.
  • an additional operation is required to convert the wet mushroom fibers extracted in the fiber extraction step (S14) from alkaline to neutral.
  • the fiber extraction step (S14) it is more preferable to extract wet mushroom fibers by diluting and neutralizing the swollen fruit bodies obtained in the alkali treatment step (S12) before filtering.
  • an alkali-treated solution containing swollen fruit bodies is obtained in the alkali treatment step (S12)
  • the alkali-treated solution containing swollen fruit bodies is diluted and neutralized, and the swollen fruit bodies are diluted in the alkali treatment step (S12).
  • dilution and neutralization may be performed by pouring some liquid (such as a diluent) onto the swollen fruiting body.
  • the dilution is preferably carried out with a diluent (such as water) in an amount sufficient to dissolve the water-soluble component in the swollen fruiting body.
  • a diluent such as water
  • the water-soluble component as used herein refers to a component that exists between mushroom fibers, is not dissolved in the alkali treatment step described above, and can be dissolved by a diluent such as water.
  • the neutralization is carried out by adding an acid such as hydrochloric acid until the liquid containing the swollen fruit body obtained in the process of dilution and neutralization reaches a neutral range (for example, pH 6.0 or more and pH 8.0 or less).
  • the acid to be added is not limited as long as the liquid containing the swollen fruiting body can be made neutral. In this way, the safety and efficiency of the manufacturing process involved in the extraction of wet mushroom fibers can be improved.
  • Filtration is a treatment for removing alkali-soluble components and water-soluble components contained in the swollen fruit bodies or the liquid containing the swollen fruit bodies using a net material. Therefore, the filtration in the fiber extraction step (S14) is intended to separate and extract the wet mushroom fibers by removing the alkali-soluble components and water-soluble components together with the water, so it can also be referred to as filtering. .
  • the mesh material used for filtration preferably has a mesh size of 30 or more and 150 or less and an opening of 0.1 mm or more and 0.5 mm or less.
  • the mesh is the number of meshes (holes) present in a length of 1 inch (25.4 mm), and the mesh opening indicates the top-to-bottom width or left-right width of one mesh (hole). If the individual meshes are too small, the size of the mushroom fibers will vary too much, which can lead to problems with the stability of the mushroom sheet. In addition, if the individual meshes are too large, short mushroom fibers cannot be collected, resulting in an excessive decrease in yield of mushroom fibers. According to the first production method, it is possible to extract mushroom fibers having a relatively large width and length that can be papered using a mesh material with a relatively coarse mesh as described above, and thus, , a mushroom sheet with a certain degree of strength and stability can be obtained.
  • the mushroom fibers in the fruiting body of the mushroom can be efficiently extracted without damage. It should be noted that fibers having a fiber length of 0.1 mm or less or a polymer solution cannot be made into paper using a netting material as in the present embodiment.
  • the mushroom sheet in the present embodiment is mushroom fibers extracted from the fruiting body of the mushroom, and has an average fiber width of 50 ⁇ m or more and 500 ⁇ m or less. and mushroom fibers having an average fiber length of 0.5 mm or more and 5 mm or less.
  • the fiber extraction step (S14) may further include a step of weakly stirring the liquid containing the swollen fruiting body for a predetermined time in the process of dilution and neutralization. Also in this step, it is desired that the mushroom fibers contained in the swollen fruiting bodies be stirred at a slow speed (strength) so as not to be damaged.
  • the step of dilution, neutralization and filtration may be performed multiple times. By doing so, alkali-soluble components and water-soluble components other than the mushroom fibers in the swollen fruiting body can be efficiently removed.
  • the drying step (S16) is a step of drying the wet mushroom fibers in an overlapping state to obtain a sheet-like body.
  • the wet mushroom fibers may be sheeted in the drying step (S16), or the sheeted wet mushroom fibers may be obtained in the fiber extraction step (S14).
  • a mesh sheet (mesh sheet material) is used as a net material for filtration in the fiber extraction step (S14), and the swollen fruit bodies are uniformly dispersed on the surface of the mesh sheet for filtration and sheet formation. can be done. Drying of the wet mushroom fibers may be performed at room temperature or in a drying room or the like, and the drying temperature is not particularly limited as long as the temperature does not degrade the mushroom fibers.
  • FIG. 2 is a diagram showing the mushroom sheet in the first embodiment. According to the drying step (S16), a thin sheet-like body (mushroom sheet) formed by mutually overlapping mushroom fibers as shown in FIG. 2 is obtained. Although FIG. 2 is not colored due to limitations of patent drawings, light brown mushroom sheets are produced.
  • a plasticizing step may be further performed before the drying step (S16).
  • a plasticizer such as glycerin is added to the wet mushroom fibers.
  • the plasticizer utilized is not limited.
  • a washing step of washing away the plasticizer from the obtained sheet-like body may be further performed.
  • a tanning process may be further performed before or after the drying process (S16).
  • the tanning agent used in the tanning process is chrome tanning, tannin tanning, etc., and is not particularly limited. By adding this tanning process, the durability of the mushroom sheet can be improved.
  • a mushroom sheet containing mushroom fibers extracted from the fruiting body of a mushroom contains a plasticizer or a tanning agent in addition to the mushroom fibers as the main raw material. exemplified that it can be added.
  • a mushroom sheet further containing non-mushroom-derived fibers in addition to mushroom fibers extracted from mushroom fruiting bodies is exemplified.
  • This "non-mushroom-derived fiber” may be one type of fiber not derived from mushrooms, or may be two or more types of fibers, and preferably has a higher strength than the mushroom fiber.
  • the mushroom sheet according to the second embodiment further contains non-mushroom-derived fibers, and therefore has a higher strength compared to a case where the sheet is formed only from mushroom fibers extracted from mushroom fruiting bodies. .
  • non-mushroom-derived fibers contained in the mushroom sheet according to the second embodiment are preferably non-mushroom-derived cellulose fibers.
  • Non-mushroom-derived cellulose fibers are fibers mainly composed of non-mushroom-derived cellulose, and can also be referred to as non-mushroom-derived cellulose fibers.
  • Non-mushroom-derived cellulose fibers include non-mushroom-derived plant fibers (kozo fiber, hemp fiber, softwood fiber, hardwood fiber, linter fiber, bagasse fiber, mitsumata fiber, gampi fiber, etc.), regenerated fibers (rayon, cupra , lyocell, etc.), semi-synthetic fibers (acetate, viscose rayon, cupra, etc.), cellulose nanofibers, chitin nanofibers, and the like. According to this, since cellulose is a natural material like the mushroom fiber described above, an environmentally friendly mushroom sheet can be obtained. Non-mushroom-derived cellulose fibers are preferably stronger than mushroom fibers extracted from mushroom fruiting bodies.
  • kozo/hemp fibers are preferred over cellulose fibers because they have higher strength than hardwood fibers, straw fibers, bagasse fibers, and the like.
  • the non-mushroom-derived fibers are not cellulose fibers but synthetic fibers such as polyester, nylon, acrylic, and polyurethane. good too.
  • the weight ratio of the mushroom fibers to the non-mushroom-derived cellulose fibers is It is preferably in the range of 99:1 to 50:50, more preferably in the range of 90:10 to 60:40, even more preferably in the range of 80:20 to 65:35.
  • the said weight ratio is a solid content weight ratio of mushroom fiber and non-mushroom-derived cellulose fiber. In the weight ratio of mushroom fibers to non-mushroom-derived cellulose fibers, if the ratio of non-mushroom-derived cellulose fibers is high, the texture of the mushroom sheet is deteriorated.
  • the strength of the mushroom sheet tends to decrease.
  • the mushroom sheet according to the second embodiment contains mushroom fibers and non-mushroom-derived cellulose fibers in the weight ratio as described above, thereby increasing the strength and realizing a soft and smooth feel like leather. .
  • the strength of the mushroom sheet indicates the difficulty of breaking, and one measure of the quality of the texture of the mushroom sheet is indicated by leather-like flexibility or smooth touch.
  • FIG. 3 is a flow chart showing the mushroom sheet manufacturing method according to the second embodiment.
  • a method for manufacturing a mushroom sheet according to the second embodiment (hereinafter referred to as a second manufacturing method) will be described below with reference to FIG.
  • the second production method includes a step of preparing a mushroom fruiting body (S30), an alkali treatment step (S32), a fiber extraction step (S34), a mixing step (S36) and a drying step (S38). Since the steps (S30) and (S32) may be the same as the steps (S10) and (S12) in the first manufacturing method, descriptions thereof are omitted here.
  • the fiber extraction step (S34) in the second production method may be the same as the step (S14) in the first production method, but the swollen fruiting body obtained in the alkali treatment step (S32) is diluted, neutralized, filtered and moistened. Extraction of mushroom fibers is preferred.
  • the methods of dilution, neutralization and filtration here are as described in the first embodiment. By doing so, impurities such as alkali-soluble components and water-soluble components contained in the swollen fruiting body or the liquid containing the swollen fruiting body and unnecessary water can be removed appropriately, so that a strange color and smell can be removed.
  • a mushroom sheet that does not remain and is resistant to corrosion can be produced, and the quality of the finally produced mushroom sheet can be improved.
  • the dilution and neutralization may be performed in the later-described mixing step (S36) or after that step (S36).
  • the impurities are more likely to remain than in the above method, and the final quality of the mushroom sheet may be slightly reduced.
  • the mixing step (S36) and the drying step (S8) are performed after the fiber extraction step (S34).
  • the mixing step (S36) the non-mushroom-derived fibers, the wet mushroom fibers extracted in the fiber extraction step (S34), and the liquid dispersion medium are stirred and mixed, thereby dispersing and mixing the non-mushroom-derived fibers and the mushroom fibers.
  • This is a step of obtaining a mixed liquid.
  • Liquid dispersion medium here means a liquid medium for dispersing non-mushroom-derived fibers and mushroom fibers.
  • water may be used, an organic solvent other than water that is compatible with water may be used, or a plurality of such solvents may be mixed and used. Examples of organic solvents compatible with water include acetone and ethanol.
  • a dispersion liquid in which non-mushroom-derived fibers are dispersed in a liquid dispersion medium and the wet mushroom fibers extracted in the fiber extraction step (S34) may be stirred and mixed. Then, the dispersion in which the non-mushroom-derived fibers are dispersed in the liquid dispersion medium and the dispersion in which the wet mushroom fibers are dispersed in the liquid dispersion medium may be stirred and mixed, or the wet mushroom fibers may be mixed in the liquid dispersion medium.
  • Non-mushroom-derived fibers may be added to the dispersion dispersed in the liquid dispersion and stirred and mixed, or a liquid dispersion may be added to the non-mushroom-derived fibers or the dispersion containing the same and the wet mushroom fiber or the dispersion containing the same.
  • a medium may be further added and stirred and mixed.
  • the stirring here is at a strength or speed that does not damage the mushroom fibers and non-mushroom-derived fibers as much as possible, and the non-mushroom-derived fibers and mushroom fibers are appropriately dispersed and mixed in the liquid.
  • non-mushroom-derived cellulose fibers are used as non-mushroom-derived fibers
  • a dispersion in which non-mushroom-derived cellulose fibers are dispersed in a liquid dispersion medium is prepared, and the dispersion and the fibers are It is preferable to stir and mix the wet mushroom fibers extracted in the extraction step (S34).
  • a dispersion in which the non-mushroom-derived cellulose fibers are dispersed in a liquid dispersion medium and the moist mushroom fibers are placed in a container having a predetermined capacity and mixed (for example, by a mixer) for a predetermined period of time.
  • the solid content concentration of the non-mushroom-derived cellulose fibers in the dispersion is not particularly limited as long as the non-mushroom-derived cellulose fibers are contained in a dispersed state. However, in order to properly mix the non-mushroom-derived fibers and the mushroom fibers, it is desirable that the dispersion has high fluidity. For example, the solid content concentration of non-mushroom-derived cellulose fibers in the dispersion is set to 5% by weight or less. On the other hand, when the solid content concentration of non-mushroom-derived cellulose fibers in the dispersion is high and the fluidity of the dispersion is low, a liquid dispersion medium may be additionally added during stirring. By doing so, the non-mushroom-derived cellulose fibers are unraveled and dispersed in the dispersion, and the mushroom fibers are also in a state of being unraveled to some extent as wet mushroom fibers. can be mixed.
  • the weight of the dispersion administered in the mixing step (S36) is such that the weight ratio (solid content weight ratio) of mushroom fibers and non-mushroom-derived cellulose fibers in the fiber mixture is 99: 1 to 50.
  • the weight ratio of mushroom fibers and non-mushroom-derived cellulose fibers in the fiber mixture is more preferably in the range of 90:10 to 60:40, more preferably in the range of 80:20 to 65:35. More preferably within.
  • the solid concentration of mushroom fibers in the wet mushroom fibers extracted in the fiber extraction step (S34) and the solid concentration of non-mushroom-derived cellulose fibers in the dispersion can be measured. For example, by measuring the water content of the wet mushroom fiber and the dispersion with a moisture meter and subtracting the water weight from those weights, the solid content weight of the mushroom fiber and the non-mushroom-derived cellulose fiber can be calculated. Further, by sufficiently drying a predetermined weight of wet mushroom fiber and measuring the weight of the dried mushroom fiber obtained, the solid content concentration of mushroom fiber in the wet mushroom fiber can be calculated.
  • the weight of the non-mushroom-derived cellulose fibers in the dispersion can be known in the process of generating the dispersion, it is also possible to calculate the solid content concentration of the non-mushroom-derived cellulose fibers in the dispersion. Thereby, the weight of the dispersion is determined such that the weight ratio of both fibers to the weight of the wet mushroom fiber to be mixed is a predetermined value within the range of 99:1 to 50:50. be able to.
  • the solid content concentration of mushroom fibers in the wet mushroom fibers extracted in the fiber extraction step (S34) may differ depending on the size, growth state, etc. of the mushroom fruiting body that is the raw material.
  • the state of the mushroom fruiting body prepared in the step (S30) is determined, and the solid content concentration of the wet mushroom fiber extracted in the fiber extraction step (S34) is switched according to this state.
  • the weight of the dispersion liquid to be administered may be switched with respect to the weight of the wet mushroom fiber to be mixed.
  • the mixing step (S36) preferably includes a plasticizing step of adding a plasticizer so that the liquid dispersion medium, the non-mushroom-derived fibers, and the wet mushroom fibers are stirred and mixed together.
  • the plasticizer may be stirred and mixed with the wet mushroom fibers after being added to the dispersion liquid in which the non-mushroom-derived fibers are dispersed in the liquid dispersion medium, or may be added to the wet mushroom fibers. After that, it may be stirred and mixed with the dispersion liquid, or may be added to the liquid mixture of the non-mushroom-derived fibers, the moist mushroom fibers, and the liquid dispersion medium.
  • the plasticizer may be added in a state dissolved in water as an aqueous solution.
  • the type of plasticizer is not particularly limited as long as it can give flexibility to the mushroom sheet, such as glycerin, ethylene glycol and polyethylene glycol. However, naturally derived plasticizers such as natural glycerin are more preferred. Moreover, the amount of the plasticizer to be added may be adjusted according to the thickness, strength, flexibility, texture, etc. of the finally produced mushroom sheet, and is not particularly limited. By adding the plasticizer so that it is stirred and mixed together with the liquid dispersion medium, the non-mushroom-derived fiber, and the wet mushroom fiber, the plasticizer is easily dispersed and penetrated between the fibers, so that the entire mushroom sheet has a moderate flexibility. You can give it character.
  • the wet mixed fibers separated by filtering the fiber mixture obtained in the mixing step (S36) are dried into a sheet. That is, in the drying step (S38), first, the fiber mixed liquid obtained in the mixing step (S36) is filtered to remove the liquid, and the wet mixed fibers dispersed and mixed in the fiber mixed liquid are separated.
  • the separated wet-blended fibers are wet-state fibers in which mushroom fibers and non-mushroom-derived fibers are blended. Filtration here can also be referred to as filtration because the purpose is to remove the liquid from the fiber mixture to separate the wet mixed fibers.
  • the same mesh material as that used in the filtration in the fiber extraction step (S34) is used. That is, a mesh material having a mesh size of 30 or more and 150 or less and an opening of 0.1 mm or more and 0.5 mm or less is used.
  • the wet mixed fibers separated as described above are then dried into a sheet. That is, a sheet-like mushroom sheet is obtained by drying the mushroom fibers and the non-mushroom-derived fibers in a state in which they are dispersed and mixed and overlapped.
  • a mesh sheet (mesh sheet material) is used as a net material for filtration, and the fiber mixture obtained in the mixing step (S36) is uniformly dispersed on the mesh sheet surface. Filtration and sheeting can be performed. Then, the wet-mixed fibers remaining in the form of a sheet on the surface of the mesh sheet can be allowed to stand until the liquid disappears, and further dried as it is.
  • the drying here may be performed at room temperature or in a drying room or the like, and the drying temperature is not particularly limited as long as the temperature does not degrade the mushroom fibers and non-mushroom-derived fibers.
  • a tanning agent is added to the mushroom sheet obtained in the drying step (S38).
  • the mushroom sheet obtained in the drying step (S38) is immersed in a tanning solution containing a tanning agent for a predetermined period of time, then taken out and dried, which is repeated once or more.
  • the tanning agent is not particularly limited as long as it can increase cross-linking between fibers, such as chrome tanning and tannin tanning.
  • a drying process may be further performed after the tanning process, in which the sheet is dried until the water content reaches a predetermined amount.
  • the mixing step (S36) may further include a step of adding a paper strength agent so as to be stirred and mixed together with the dispersion and the wet mushroom fibers.
  • the paper strength agent may be an agent that improves the adhesive strength between fibers, and general paper strength agents such as polyvinyl alcohol-based paper strength agents and polyacrylamide-based paper strength agents may be used. .
  • the strength of the mushroom sheet can be increased.
  • a surface treatment step may be performed.
  • a surface treatment agent such as a water-repellent coating agent, a surface coating agent, or a leather paint is applied to the surface of the mushroom sheet obtained through the drying step (S38) or the subsequent tanning step. be.
  • the resistance to water wetting can be improved, and the strength of the mushroom sheet can be increased.
  • the mushroom sheet may contain a resin instead of the non-mushroom-derived fibers or together with the non-mushroom-derived fibers.
  • Example 1 In Example 1, a specific example of the first manufacturing method described above will be described with reference to FIG. First, a portion of the stalk of an undried shiitake mushroom (hereinafter referred to as shiitake stem) was prepared as a mushroom fruiting body (S10). The prepared shiitake mushroom stem weighed 53 g. Subsequently, the shiitake mushroom stem was placed in a plastic container, to which 147 g of pure water and 100 g of an 8% by weight sodium hydroxide (NaOH) aqueous solution were added (S12).
  • NaOH sodium hydroxide
  • the weight ratio of the solid content of the prepared shiitake mushroom stem is 18.6%, and assuming that it is about 10 g (9.86 g), the total water content is about 290 g. is 2.76% by weight.
  • the shiitake mushroom stems were immersed in the NaOH aqueous solution having the concentration described above while gently stirring the inside of the container in such a state for 48 hours (S12). As a result, an alkali-treated liquid containing swollen fruiting bodies of shiitake mushrooms was obtained.
  • the contents of the container are transferred to a large container with a total volume of 2 L, and 200 g of pure water is added for dilution.
  • An aqueous solution was added to neutralize (S14).
  • about 400 ml of aqueous hydrochloric acid was added.
  • the aqueous solution containing the swollen fruit bodies of shiitake mushroom stems in the large container was filtered through a 40-mesh net (S14). Then, the filtered material was returned to the large container, 1 liter (L) of pure water was added, the mixture was gently stirred for 10 minutes, and the washing process was performed three times (S14). .
  • Example 1 a sheet manufacturing method using a mesh sheet was adopted in (S14) and (S16).
  • the method of making a sheet using a mesh sheet is a method of forming a sheet from fibers. Fibers (swollen fruit bodies) having a fiber length and fiber width greater than the opening of the mesh sheet are uniformly dispersed on the surface of the mesh sheet, formed into a sheet, and dried.
  • This method is a method of sheeting pulp, which is a fiber extracted from plants in the paper industry, and is called papermaking when pulp is used as a raw material.
  • pulp instead of pulp, mushroom fibers are formed into a sheet on a mesh sheet, so the method is referred to as "mesh sheet production method.”
  • the fiber is 0.1 mm or less, or if it is a polymer solution or polymer emulsion (aqueous solution, organic solvent solution, W/O emulsion, etc.), it is not possible to form a sheet by this "method for producing a sheet using a mesh sheet.”
  • Example 2 in addition to the manufacturing method of Example 1, a plasticizing step was further performed. Specifically, the same steps as in Example 1 were performed up to the fiber extraction step (S14), and the sheet-like wet mushroom fibers obtained in the fiber extraction step (S14) were subjected to the following plasticization. A conversion step was performed. That is, about twice the amount of glycerin as the solid content (9.86 g) of the sheet-like wet mushroom fiber is added, then dried at room temperature, and the dried sheet-like mushroom fiber is washed with water to remove excess glycerin. was done. Then, the sheet-like mushroom fibers from which the glycerin was removed were dried again (S16) to obtain a mushroom sheet. According to Example 2, it was demonstrated that the flexibility of the mushroom sheet can be controlled. However, it has also been demonstrated that the manufacturing method of Example 1, which does not include the plasticizing step, can also manufacture a mushroom sheet having sufficient flexibility.
  • Example 3 Two types of mushroom sheets were produced in the same manner as in Example 1 except for the alkali treatment step (S12), and designated Examples 3-1 and 3-2, respectively.
  • Examples 3-1 and 3-2 each have a hydrogen ion exponent in the range of pH 12.20 or more and pH 13.60 or less, and using a sodium hydroxide aqueous solution different from the hydrogen ion exponent of Example 1 Alkaline treatment was performed. At this time, the sodium hydroxide aqueous solutions used in Examples 3-1 and 3-2 were adjusted to have different hydrogen ion exponents.
  • 4 is a diagram showing micrographs of two types of mushroom sheets in Example 3.
  • FIG. 4(1) shows a micrograph of Example 3-1
  • FIG. 4(2) shows a micrograph of Example 3-2.
  • the fiber width and fiber length were actually measured for mushroom fibers randomly selected from the obtained micrographs.
  • the fiber length of the mushroom sheet of Example 3-1 measured as described above was in the range of 796 ⁇ m to 1380 ⁇ m, and the fiber width was in the range of 111 ⁇ m to 140 ⁇ m.
  • the average fiber length obtained by arithmetically averaging these measured values was about 1150 ⁇ m, and the average fiber width was about 126 ⁇ m.
  • the fiber length of the mushroom sheet of Example 3-2 measured as described above was in the range of 1172 ⁇ m to 3408 ⁇ m, and the fiber width was in the range of 397 ⁇ m to 493 ⁇ m.
  • the average fiber length obtained by arithmetically averaging these measured values was about 2167 ⁇ m, and the average fiber width was about 445 ⁇ m.
  • the mushroom sheet obtained by this production method can be composed of mushroom fibers having an average fiber width of 50 ⁇ m or more and 500 ⁇ m or less and an average fiber length of 0.5 mm or more and 5 mm or less. rice field. Furthermore, it can be said that the mushroom sheet obtained by this production method can be composed of mushroom fibers having an average fiber width of 100 ⁇ m or more and 500 ⁇ m or less and an average fiber length of 1 mm or more and 3 mm or less.
  • Example 4 a mushroom sheet was produced in the same manner as in Example 1 except that the ends of maitake mushroom stems (hereinafter referred to as maitake mushroom stems) were used instead of the shiitake mushroom stems.
  • maitake mushroom stems hereinafter referred to as maitake mushroom stems
  • FIG. 5 is a graph showing infrared absorption spectra of mushroom sheets produced from maitake stems and shiitake stems.
  • FIG. 5 (1) is a graph showing the infrared absorption spectrum of the mushroom sheet derived from the maitake mushroom stem of Example 4
  • FIG. 5 (2) is the infrared absorption spectrum of the mushroom sheet derived from the shiitake mushroom stem of Example 1.
  • FIG. 5(1) and FIG. 5(2) there is a peak near 1360 cm ⁇ 1 in both FIGS. 5(1) and 5(2). From the above, it was demonstrated that the mushroom sheet derived from the mushroom fiber of the fruiting body of the mushroom can be similarly produced with both the maitake pattern and the shiitake pattern.
  • Example 5 In Example 5, the relationship between the alkali concentration of the alkaline aqueous solution used in the alkali treatment step (S12) and the extraction of mushroom fibers from shiitake stems as mushroom fruiting bodies was demonstrated. Specifically, mushroom sheets were produced in the same manner as in Example 1, except that the alkali concentration and hydrogen ion exponent pH of the aqueous sodium hydroxide solution used in the alkali treatment step (S12) were changed to the values shown in Table 1. and Examples 5-1 to 5-4.
  • a mushroom sheet was prepared in the same manner as in Example 1, except that the alkali concentration and hydrogen ion exponent pH of the aqueous sodium hydroxide solution used in the alkali treatment step (S12) were changed to the values shown in Table 1. Comparative Examples 1 and 2 were produced.
  • Table 1 shows the alkali concentration and mushroom fiber of the alkali aqueous solution used in the alkali treatment step of Example 5-1, Example 5-2, Example 5-3, Example 5-4, Comparative Example 1 and Comparative Example 2. shows the relationship with the extraction result of
  • Example 5-1 an alkali treatment step using a 3% by weight sodium hydroxide aqueous solution was performed at room temperature of 30.2 degrees.
  • Example 5-2 an alkali treatment step was performed using a 5% by weight sodium hydroxide aqueous solution at room temperature of 31.1 degrees.
  • Example 5-3 an alkali treatment step was performed using a 0.5% by weight sodium hydroxide aqueous solution at room temperature of 27.1 degrees.
  • Example 5-4 an alkali treatment step was performed using a 0.1% by weight sodium hydroxide aqueous solution at room temperature of 27.0 degrees.
  • Comparative Example 1 an alkali treatment step was performed using a 0.05% by weight sodium hydroxide aqueous solution at room temperature of 19.0° C. in the laboratory.
  • Comparative Example 2 an alkali treatment step using a 30% by weight sodium hydroxide aqueous solution was performed at room temperature in the laboratory, although no measurement was performed.
  • Example 5-1 and Example 5-2 formed a swollen fruiting body in about 4 hours, whereas in Examples 5-3 and 5-4 it took a longer time to become a swollen fruiting body. . Specifically, it took about 18 hours in Example 5-3 and about 24 hours in Example 5-4.
  • mushroom fibers could be appropriately extracted in Examples 5-1, 5-2, 5-3 and 5-4.
  • the hydrogen ion exponent is pH 12.20 or higher
  • the dissociation constant of the hydroxyl group of the polysaccharide contained between the mushroom fibers promotes ionization (OH - conversion) and causes swelling between the mushroom fibers.
  • OH - conversion ionization
  • water-soluble substances acidic polysaccharides
  • low-concentration alkaline aqueous solution-soluble substances proteins, polysaccharides, etc.
  • the degree of dissociation of OH ⁇ is low, so swelling takes time.
  • the viscosity of the sodium hydroxide aqueous solution increases, inhibiting the penetration of the aqueous solution between the mushroom fibers and the swelling between the mushroom fibers does not progress, or the aqueous solution around the mushroom fibers contains high concentrations of Na + and OH - . It is assumed that this is because the water molecules are prevented from penetrating between the mushroom fibers, and the swelling between the mushroom fibers does not proceed.
  • the low-concentration alkaline aqueous solution has an alkaline concentration of pH 12.2 or more and 13.6 or less, and when sodium hydroxide aqueous solution is used as the alkaline aqueous solution , it was demonstrated that the concentration of the aqueous sodium hydroxide solution is preferably 0.07% by weight or more and 8% by weight or less.
  • FIG. 6 is a flow chart showing a method for manufacturing a mushroom sheet in Example 6.
  • the method for producing a mushroom sheet in Example 6 is a specific example of the second production method described above, and in addition to the steps of the second production method described above, the tanning step (S61) and the surface treatment step (S63) are further included.
  • the tanning step (S61) and the surface treatment step (S63) are further included.
  • kozo/hemp fibers which are a mixture of kozo fibers and hemp fibers, were used as the non-mushroom-derived fibers. Kozo and hemp fibers correspond to non-mushroom-derived cellulose fibers.
  • shiitake stem a portion of the stalk of an undried shiitake mushroom (hereinafter referred to as shiitake stem) was prepared as a mushroom fruiting body (S30). Subsequently, the same alkali treatment step as in Example 5-1 was performed on the shiitake mushroom stem (S32). That is, an alkali treatment step using a 3% by weight aqueous sodium hydroxide solution was carried out at room temperature of 30.2° C. to obtain an alkali-treated solution containing swollen fruiting bodies of shiitake mushrooms.
  • This measurement was performed by measuring 20 g out of 525 g of wet mushroom fiber using a moisture meter (infrared moisture meter FD-610 manufactured by Ketsuto Kagaku Kenkyusho Co., Ltd.). This gives about 23.6 g of solids (mushroom fiber) in 525 g of wet mushroom fiber.
  • a dispersion containing dispersed kozo/hemp fibers was prepared. Specifically, 500 g of a dispersion was obtained by adding a slurry of kozo/hemp fibers for adjusting Japanese paper having a solid content (kozo/hemp fibers) weight of 7.1 g to pure water and stirring. 500 g of this dispersion was then placed in a 2 liter (L) plastic container along with 525 g of wet mushroom fibers obtained in step (S34). In Example 6, 100 ml of a 1% by weight PVA (polyvinyl alcohol) aqueous solution (Nippon Synthetic Chemical Industry Co., Ltd.
  • PVA polyvinyl alcohol
  • glycerin aqueous solution 100 ml was added and stirred for 30 seconds with a commercially available mixer to obtain 1125 g of fiber mixed liquid.
  • the PVA aqueous solution is added as a paper strength agent, and the glycerin aqueous solution is added as a plasticizer.
  • This fiber mixture contains about 23.6 g of shiitake-patterned mushroom fiber and 7.1 g of kozo/hemp fiber, so the weight ratio of mushroom fiber to non-mushroom-derived fiber is approximately 77:23. ing.
  • step (S38) 1125 g of the fiber mixture liquid obtained in the step (S36) is evenly sprinkled on the surface of a 40-mesh mesh sheet and filtered, and the wet sheet-like liquid filtered on the surface of the mesh sheet is filtered.
  • the mixed fibers were dried at ambient temperature.
  • Example 6 a tanning step (S61) was further performed in which a tanning treatment was applied to the sheet-like dry mixed fibers obtained in the drying step (S38).
  • a tanning treatment was applied to the sheet-like dry mixed fibers obtained in the drying step (S38).
  • the dry blended fiber was immersed in 5 L of a 5% by weight vegetable tannin aqueous solution for 30 seconds, then allowed to stand on a polyethylene plate and dried at normal temperature for 30 minutes, which was repeated three times.
  • Mimosa was used here as a vegetable tannin. Then, drying at room temperature was performed until the final water content was about 5% by weight to 12% by weight.
  • Example 6 a surface treatment step (S63) was further performed after the above-described tanning step (S61).
  • the surface treatment step (S63) the surface of the mushroom sheet obtained in the tanning step (S61) was coated with a water-repellent coating agent (Asahiguard manufactured by Meisei Chemical Industry Co., Ltd.). By applying this water-repellent coating agent, the strength of the mushroom sheet can be increased and the resistance to water wetting can be improved.
  • a water-repellent coating agent Asahiguard manufactured by Meisei Chemical Industry Co., Ltd.
  • Example 6 four samples were produced as the final mushroom sheet by changing only the drying time in the tanning step (S61).
  • Example 6-1 shows a mushroom sheet obtained with a drying time of 24 hours
  • Example 6-2 shows a mushroom sheet obtained with a drying time of 2 hours
  • Example 6-3 shows a dried mushroom sheet.
  • the mushroom sheets obtained with drying time of 4 hours are shown
  • Example 6-4 shows the mushroom sheets obtained with drying time of 8 hours.
  • the drying time in each example is the drying time in an environment of 80°C. The results demonstrate that the drying time can vary the thickness and basis weight of the mushroom sheets in the final form. The strength of the mushroom sheets tended to increase with longer drying time.
  • Example 7 [Example 8]
  • the weight of wet mushroom fiber and the weight of non-mushroom-derived fiber used in the mixing step (S36), the number of tanning treatments in the tanning step (S61), and the surface treatment in the surface treatment step (S63) 6 samples (Examples 7-1 to 7-6) were produced as the final mushroom sheet by carrying out the same manufacturing method as in Example 6 above except that the number of times was changed to that shown in Table 3. was done.
  • the tanning step (S61) and the surface treatment step (S63) were not performed.
  • a mushroom sheet containing no non-mushroom-derived fibers was also produced.
  • the method for producing a mushroom sheet of Example 8 includes the step (S30), step (S32) and step (S34) of Example 6, and 350 g of wet mushroom fiber extracted in step (S34) (solid content (mushroom fiber ) about 15.8 g) was dried into a sheet at room temperature in the same manner as in the step (S16) of Example 1 to obtain a mushroom sheet containing no non-mushroom-derived fibers.
  • the tanning step (S61) and the surface treatment step (S63) were not performed in the same manner as in Examples 7-5 and 7-6.
  • the weight of wet mushroom fiber and the weight of non-mushroom-derived fiber are sometimes referred to as the weight of ingredients.
  • Table 3 shows the manufacturing conditions for manufacturing six samples (Examples 7-1 to 7-6), the sample of Example 6-1, and the sample of Example 8, as well as measurement results and evaluation results. It is a table.
  • the strength shown in Table 3 was obtained by evaluating the tear resistance of the mushroom sheet when a force was applied to tear one edge of the mushroom sheet of about 5 cm x 5 cm in a direction intersecting the sheet surface. Specifically, the magnitude of tear resistance (tear resistance) was evaluated as S0 ⁇ S1 ⁇ S2 ⁇ S3 ⁇ S4 in relative order. The tensile strength in Table 3 was measured based on JISP8113:2006 (ISO1924-2:1994).
  • a material strength tester manufactured by Shimadzu Corporation (Autograph AG-1) was used as the tester, and obtained in Examples 6-1, 7-1, 7-4, and 8, respectively.
  • a part of the mushroom sheet was cut and used as a test piece.
  • the width of the test piece was 15 ⁇ 0.1 mm
  • the position of the gripper was adjusted so that the test length (average distance between grip lines) was 180 ⁇ 1 mm
  • the tensile speed was 20 ⁇ 5 mm/min.
  • the texture (tactile sensation) in Table 3 indicates the result of sensory evaluation of the tactile sensation of the mushroom sheet.
  • multiple testers confirmed the tactile sensation of each sample, and felt any of the following: "smooth and moist/smooth and dry/rough".
  • Example 7-1 to 7-3 and the sample of Example 6-1 were approximately 77:23. They are substantially the same, 67:33 in the sample of Example 7-4, 91:9 in the sample of Example 7-5, and 91:9 in the sample of Example 7-6. The ratio is 83:17, and the sample of Example 8 is 100:0.
  • FIG. 7 is a graph showing the results of a tensile test of each sample of Examples 6-1, 7-1, 7-4 and 8, and Comparative Example.
  • Common copy paper plain paper
  • the maximum test force (N), stroke (mm) and tensile strength (kN/m) when each sample broke were as follows.
  • the mushroom sheet in each example had a higher tensile strength with non-mushroom-derived fibers than without, and that the higher the weight ratio of non-mushroom-derived fibers, the higher the tensile strength. .
  • This result is the same for the strength (tear resistance) shown in Table 3. That is, the strength (S0) of the sample of Example 8, which does not contain non-mushroom-derived fibers, is the lowest, and the strength (S4) of the sample of Example 7-4, which has a large weight ratio of non-mushroom-derived fibers, is the highest. . Further, there is a tendency that the higher the weight ratio of non-mushroom-derived fibers, the higher the strength.
  • Example 7-1 and Example 7-2 differ in the number of tanning treatments.
  • the strength of each sample is stronger in Example 7-2 than in Example 7-1, and the texture of each sample is moist and smooth in Example 7-1, and Example 7-2 It has a smooth and silky feel to the touch.
  • the thickness and basis weight of Example 7-1 are larger than those of Example 7-2. From the above, when the number of tanning treatments is large, the strength increases, but the thickness and basis weight decrease, and the moist feeling can be reduced to control the smooth feel. It can be seen that the thickness and the basis weight increased while the moist feeling also increased.
  • Example 7-2 and Example 6-1 differ in the amount of raw materials (wet mushroom fiber and non-mushroom derived fiber weight).
  • the strength of each sample is approximately the same between Example 6-1 and Example 7-2, and the texture of each sample is moist in Example 6-1 and moist in Example 7-2. It has a smooth feel. Further, the thickness of Example 6-1 is larger than that of Example 7-2, and the basis weight of Example 7-2 is larger than that of Example 6-1.
  • Example 7-1 ⁇ Comparison between Example 7-1 and Example 7-4>
  • the sample of Example 7-1 and the sample of Example 7-4 differed in the amounts of raw materials (wet mushroom fiber and non-mushroom derived fiber weight) and weight ratio of both fibers.
  • the strength and tensile strength of each sample are stronger in Example 7-4 than in Example 7-1, and the texture of each sample is moist and smooth in Example 7-1.
  • 7-4 shows a light and smooth touch.
  • the thickness of Example 7-4 is larger than that of Example 7-1
  • the basis weight of Example 7-1 is larger than that of Example 7-4.
  • Example 7-1, Example 7-5, Example 7-6, and Example 8 Each sample of Example 7-1, Example 7-5, Example 7-6, and Example 8 had the same weight of wet mushroom fiber, but different weight ratios of non-mushroom-derived fiber and mushroom fiber. There is The intensity of each sample is stronger in Example 7-6 (S1) than in Examples 7-5 and 8 (S0), and in Example 7-1 (S2) than in Example 7-6 (S1). is stronger, and becomes stronger as the weight ratio of non-mushroom-derived fibers increases. The texture of each sample indicates a moist and smooth feel.
  • Example 7-2 and Example 6-1 Comparison results between Example 7-2 and Example 6-1, comparison results between Example 7-1 and Example 7-4, and Example 7-1, Example 7-5, and Example 7-6 According to the comparison results of Example 8, when the weight ratio of non-mushroom-derived fibers increases, the tensile strength and strength increase, but the moist feeling decreases, and when the weight ratio of non-mushroom-derived fibers decreases, the tensile strength and strength decrease. On the other hand, it can be seen that the moist feeling increases. Moreover, when the weight ratio of non-mushroom-derived fibers is 9% or less, the difference in strength shown in Table 3 is not so large. It can be seen that when the weight ratio of the non-mushroom-derived fibers is about 23%, it has a moist and smooth feel.
  • the mushroom sheet contains the mushroom fiber extracted from the fruiting body of the mushroom, so that it has a leather-like soft and smooth texture and is suitable as a sheet. It has been demonstrated that it can have strength. Furthermore, according to Examples 7 and 8, it was demonstrated that the mushroom sheet can improve the tensile strength and strength of the sheet by containing non-mushroom-derived fibers. In addition, in order for the mushroom sheet to have a soft and smooth texture like leather while having appropriate tensile strength and strength, the weight ratio of mushroom fibers to non-mushroom-derived fibers should be 83:17 rather than 91:9. 77:23 was found to be more preferable than 83:17 or 67:33.
  • the weight ratio of mushroom fibers to non-mushroom-derived fibers is more preferably in the range of 90:10 to 60:40, and more preferably in the range of 80:20 to 65:35. Proven. It was also demonstrated that the number of tanning treatments and the amount of raw material (wet mushroom fiber and non-mushroom derived fiber weight) can increase or decrease the thickness and basis weight to change the strength and texture.
  • the above content can also be specified as follows.
  • Appendix 1 A mushroom sheet containing mushroom fibers extracted from a mushroom fruiting body.
  • Appendix 2 The mushroom sheet according to Appendix 1, further containing non-mushroom-derived fibers.
  • Appendix 3 The non-mushroom-derived fibers are non-mushroom-derived cellulose fibers, The weight ratio of the mushroom fiber to the non-mushroom-derived cellulose fiber is from 99:1 to 50:50.
  • (Appendix 4) A method for producing a mushroom sheet according to Appendix 1, an alkali treatment step of treating the fruiting body with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and pH 13.6 or less at room temperature in order to obtain a swollen fruiting body in which mushroom fibers in the fruiting body of the mushroom are swollen; a fiber extraction step of extracting wet mushroom fibers by filtering the swollen fruit bodies obtained in the alkali treatment step; a drying step of drying the wet mushroom fibers extracted in the fiber extraction step into a sheet;
  • a method for producing a mushroom sheet comprising: (Appendix 5) A method for producing a mushroom sheet according to Appendix 2 or 3, an alkali treatment step of treating the fruiting body with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and pH 13.6 or less at room temperature in order to obtain a swollen fruiting body in which mushroom fibers in the fruiting
  • a method for producing a mushroom sheet according to appendix 5 includes a plasticizing step of adding a plasticizer so that the liquid dispersion medium, the non-mushroom-derived fibers, and the wet mushroom fibers are stirred and mixed together.
  • a method for producing a mushroom sheet according to appendix 5 or 6. Appendix 8) 8. The method for producing a mushroom sheet according to any one of appendices 5 to 7, further comprising a tanning step of adding a tanning agent to the mushroom sheet obtained by the drying step.
  • the non-mushroom-derived fibers are non-mushroom-derived cellulose fibers
  • the mixing step the dispersion liquid in which the non-mushroom-derived cellulose fibers are dispersed in the liquid dispersion medium and the wet mushroom fibers are stirred and mixed
  • the weight of the dispersion administered in the mixing step is such that the weight ratio of the mushroom fibers and the non-mushroom-derived cellulose fibers in the fiber mixture is a predetermined value within the range of 99:1 to 50:50.
  • a method for producing a mushroom sheet according to any one of Appendices 5 to 8. The fruiting body is the end of the mushroom stalk that is excised in an edible mushroom product.
  • a method for producing a mushroom sheet according to any one of Appendices 4 to 9. The low-concentration alkaline aqueous solution used in the alkali treatment step is a sodium hydroxide aqueous solution of 0.07% by weight or more and 8% by weight or less.

Landscapes

  • Preparation Of Fruits And Vegetables (AREA)

Abstract

In order to obtain swollen fruiting bodies in which mushroom fibers in a mushroom fruiting body are swollen, a method for producing a mushroom sheet includes an alkali treatment step for treating the fruiting bodies with a low-concentration alkaline aqueous solution having a pH of 12.2-13.6 inclusive at room temperature, a fiber extraction step for filtering the swollen fruiting bodies obtained through the alkali treatment step to thereby extract wet mushroom fibers, and a drying step in which the wet mushroom fibers extracted in the fiber extraction step are dried into sheet form.

Description

キノコシート及びその製造方法Mushroom sheet and its manufacturing method
 本発明は、キノコシート及びその製造方法に関する。本発明における「キノコシート」とは、キノコ由来の繊維を含有してなるシート状体を意味し、その厚みや強度、弾性等の性質を限定する意味では用いられない。 The present invention relates to a mushroom sheet and its manufacturing method. The "mushroom sheet" in the present invention means a sheet-like body containing fibers derived from mushrooms, and is not used in the sense of limiting properties such as thickness, strength, and elasticity.
 様々な業界においてSDGs達成のために持続可能な(サステナブルな)製品や材料が積極的に採用されはじめている。その一つがフェイクレザーであり、フェイクレザーは、動物の皮を使用することなく天然皮革(本革)に似せた素材であり、合成皮革、人工皮革がある。
 更に、近年では、動物保護や環境配慮の面から植物由来のフェイクレザーも注目されている。なお、フェイクレザーは、ヴィーガンレザーとも呼ばれている。
Various industries are actively adopting sustainable products and materials to achieve SDGs. One of them is fake leather, which is a material that resembles natural leather (genuine leather) without using animal skins, and includes synthetic leather and artificial leather.
Furthermore, in recent years, plant-derived fake leather has also attracted attention from the viewpoint of animal protection and environmental consideration. Fake leather is also called vegan leather.
 下記特許文献1には、細胞壁にキチン及び/又はキトサンを含む糸状菌類を通気かつ液体培養する工程と、培養された糸状菌類の菌体を破砕及び/又は抄造して得られる菌体破砕物又は菌体抄造物を脱アセチル化処理する工程と、その工程で得られた処理物を可塑化処理する工程とを経て製造される皮革様材料が開示されている。 Patent Document 1 below describes a step of aerated and liquid-cultivating filamentous fungi containing chitin and/or chitosan in their cell walls, and crushing and/or papermaking of the cultured filamentous fungi to produce a crushed fungus or A leather-like material is disclosed which is produced through a step of deacetylating a bacterial cell paper product and a step of plasticizing the treated product obtained in the step.
特開2021-52698号公報Japanese Patent Application Laid-Open No. 2021-52698
 しかしながら、上述の皮革様材料は、それを製造するために糸状菌類を通気かつ液体培養する必要があるため、製造効率の面で問題がある。例えば、特別な培養装置が必要となる。また、原料となる糸状菌類を大量に集めるには時間と労力が必要となり、大量生産には不向きのように思われる。 However, the above-mentioned leather-like material has a problem in terms of production efficiency because filamentous fungi need to be aerated and liquid cultured to produce it. For example, special culture equipment is required. In addition, it takes time and labor to collect a large amount of filamentous fungi as raw materials, and it seems unsuitable for mass production.
 本発明は、このような事情に鑑みてなされたものであり、より簡易な方法で効率よく製造可能なキノコシート及びその製造方法を提供する。 The present invention has been made in view of such circumstances, and provides a mushroom sheet that can be efficiently manufactured by a simpler method and a method for manufacturing the same.
 本発明の一側面は、キノコの子実体から抽出されたキノコ繊維を含有したキノコシートに関する。
 また、本発明の他の側面は上記キノコシートの製造方法に関する。この製造方法は、キノコの子実体内のキノコ繊維間を膨潤させた膨潤子実体を得るために、その子実体を常温にてpH12.2以上pH13.6以下の低濃度アルカリ水溶液で処理するアルカリ処理工程と、このアルカリ処理工程により得られた膨潤子実体を濾過することで湿潤キノコ繊維を抽出する繊維抽出工程と、この繊維抽出工程で抽出された湿潤キノコ繊維をシート状に乾燥させる乾燥工程と、を含む。
One aspect of the present invention relates to a mushroom sheet containing mushroom fibers extracted from mushroom fruiting bodies.
Another aspect of the present invention relates to a method for producing the mushroom sheet. In this production method, in order to obtain a swollen fruiting body in which the spaces between the mushroom fibers in the fruiting body of the mushroom are swollen, the fruiting body is treated with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and 13.6 or less at room temperature. a fiber extraction step of extracting wet mushroom fibers by filtering the swollen fruit bodies obtained in the alkali treatment step; and a drying step of drying the wet mushroom fibers extracted in the fiber extraction step into a sheet. ,including.
 本発明によれば、より簡易な方法で効率よく製造可能なキノコシート及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a mushroom sheet that can be efficiently manufactured by a simpler method and a manufacturing method thereof.
第一実施形態におけるキノコシートの製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a mushroom sheet according to the first embodiment. 第一実施形態におけるキノコシートを示す図である。It is a figure which shows the mushroom sheet in 1st embodiment. 第二実施形態におけるキノコシートの製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a mushroom sheet according to the second embodiment. 実施例3における2種類のキノコシートの顕微鏡写真を示す図である。FIG. 10 shows micrographs of two kinds of mushroom sheets in Example 3. FIG. 実施例4におけるマイタケ柄及びシイタケ柄から製造されたキノコシートの赤外吸収スペクトルを示すグラフである。10 is a graph showing infrared absorption spectra of mushroom sheets produced from maitake mushroom stems and shiitake mushroom stems in Example 4. FIG. 実施例6におけるキノコシートの製造方法を示すフローチャートである。10 is a flow chart showing a method for manufacturing a mushroom sheet in Example 6. FIG. 実施例6-1、実施例7-1、実施例7-4及び実施例8、並びに比較例の各サンプルの引張試験の結果を示すグラフである。6 is a graph showing the results of a tensile test of each sample of Examples 6-1, 7-1, 7-4 and 8, and a comparative example.
 以下、本発明の実施形態について図面を用いて説明する。以下に挙げる実施形態は例示であり、本発明は以下の実施形態の構成に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments listed below are examples, and the present invention is not limited to the configurations of the following embodiments.
 本実施形態におけるキノコシートは、キノコの子実体から抽出されたキノコ繊維を含有する。
 ここで「キノコの子実体」とは、キノコが傘やひだ、柄の部分を指し示す子実体と土中や木中に存在する菌糸体とから構成されると考えた場合の、その子実体の部分を意味し、子実体自体が「キノコ」と呼ばれることも多い。
 ところで、生椎茸や生舞茸は、収穫されてからパック容器等に包装される商品化過程において、柄の端部等は切除され廃棄される。日本食品標準成分表において生椎茸廃棄率は5%(柄の基部のみ)と記載されており、生椎茸だけでも数千トン単位の廃棄量が出ることになる。
 本発明者らは、このような現状に着目して、キノコの子実体を原材料とするキノコシートを製造することで、食用キノコの商品化過程で廃棄されていたものを有効利用することができるという新たな着想を得た。
 本実施形態におけるキノコシートは、糸状菌類を通気かつ液体培養する必要のある従来技術と比較しても、製造効率の面や製造設備の面においてメリットがある。但し、上記着想は本発明を何ら限定するものではない。本発明のキノコシートに用いられる原材料は、食用キノコの商品化過程で廃棄された廃棄物に限定されず、広くキノコの子実体を包含する。
The mushroom sheet in this embodiment contains mushroom fibers extracted from mushroom fruiting bodies.
Here, "fruiting body of mushroom" means the part of the fruiting body when mushrooms are considered to be composed of the fruiting body that points to the cap, folds, and stalk, and the mycelium that exists in the soil and trees. The fruiting body itself is often called a "mushroom".
By the way, raw shiitake mushrooms and raw maitake mushrooms are harvested and then packed in a pack container or the like during the commercialization process, and the ends of the stalks and the like are cut off and discarded. The Standard Tables of Food Composition in Japan states that the rate of discarding raw shiitake mushrooms is 5% (only the base of the stem), and even raw shiitake mushrooms alone will result in a discard amount of several thousand tons.
Focusing on such a situation, the inventors of the present invention produced a mushroom sheet using mushroom fruiting bodies as a raw material, thereby making it possible to effectively utilize materials that were discarded during the commercialization process of edible mushrooms. I got a new idea.
The mushroom sheet according to the present embodiment has merits in terms of production efficiency and production equipment, even when compared with the conventional technology that requires aeration and liquid culture of filamentous fungi. However, the above idea does not limit the present invention. The raw material used for the mushroom sheet of the present invention is not limited to waste discarded in the process of commercialization of edible mushrooms, but broadly includes mushroom fruiting bodies.
[第一実施形態]
 図1は、第一実施形態におけるキノコシートの製造方法を示すフローチャートである。
 以下、図1を用いながら、第一実施形態におけるキノコシートの製造方法(以降、第一製造方法と表記する)について説明する。
 第一製造方法では、まず、キノコシートの原材料となるキノコの子実体が準備される(S10)。この工程(S10)は、キノコシート製造の前工程(準備工程)と呼ぶこともできる。
 準備される子実体は、キノコの傘やひだの部分であってもよいし、柄の部分(柄の端部も含む)であってもよい。
 また、準備される子実体のキノコ種は、特に限定されない。例えば、シイタケ、マイタケ、マッシュルーム、キクラゲ、シメジ、エリンギ、エノキダケ、ナメコ、マツタケ等のような食用キノコの子実体が用いられる。また、複数種のキノコの子実体が混在状態で準備されてもよい。
[First embodiment]
FIG. 1 is a flow chart showing a method for manufacturing a mushroom sheet according to the first embodiment.
A method for manufacturing a mushroom sheet according to the first embodiment (hereinafter referred to as the first manufacturing method) will be described below with reference to FIG.
In the first manufacturing method, first, a mushroom fruiting body, which is a raw material for the mushroom sheet, is prepared (S10). This step (S10) can also be called a pre-process (preparatory step) for manufacturing the mushroom sheet.
The fruiting body to be prepared may be the cap or fold of the mushroom, or the stalk (including the end of the stalk).
Moreover, the mushroom species of the fruiting body to be prepared is not particularly limited. For example, fruiting bodies of edible mushrooms such as shiitake, maitake, mushrooms, wood ear mushrooms, shimeji mushrooms, king oyster mushrooms, enoki mushrooms, nameko mushrooms, and matsutake mushrooms are used. Moreover, fruiting bodies of multiple kinds of mushrooms may be prepared in a mixed state.
 また、当該子実体は、乾燥した状態であってもよいし、乾燥していない生の状態であってもよいし、水に浸けられて湿潤状態とされていてもよい。
 更に、当該子実体は、細断されていてもよい。但し、本実施形態におけるキノコシートは、キノコ繊維を含有するものであるため、当該キノコ繊維が細かくなり過ぎない程度に細断されていることが望まれる。
In addition, the fruiting body may be in a dry state, may be in a non-dried raw state, or may be in a wet state by being soaked in water.
Further, the fruiting body may be shredded. However, since the mushroom sheet in the present embodiment contains mushroom fibers, it is desired that the mushroom fibers are shredded to the extent that they are not too fine.
 また、準備される子実体は、食用キノコ商品において切除されているキノコの柄の端部であってもよい。
 このようにすれば、食用キノコを収穫し商品化するまでの過程で通常では切除し廃棄されているキノコの柄の端部をキノコ生産業者やキノコ販売業者等から収集することで、原材料となるキノコの子実体を効率よく集めることができる共に、資源の有効利用に繋がる。加えて、キノコ生産業者やキノコ販売業者等にとっては廃棄作業を減らし、廃棄にかかる費用を抑制することができる。
The prepared fruiting body may also be the end of the mushroom stalk that has been cut off in the edible mushroom product.
In this way, the ends of the stalks of mushrooms, which are usually cut and discarded in the process of harvesting and commercializing edible mushrooms, can be collected from mushroom producers, mushroom sellers, etc., and used as raw materials. The fruiting bodies of mushrooms can be efficiently collected, and this leads to effective utilization of resources. In addition, mushroom producers, mushroom sellers, and the like can reduce disposal work and reduce disposal costs.
 第一製造方法では、続いて、アルカリ処理工程(S12)、繊維抽出工程(S14)、乾燥工程(S16)が順に行われる。
 アルカリ処理工程(S12)では、キノコ繊維間を膨潤させた膨潤子実体を得るために、キノコの子実体を常温にて低濃度アルカリ水溶液で処理する。
 「膨潤子実体」とは、キノコの子実体内のキノコ繊維間に存在する多糖類成分、タンパク質成分、或いは糖タンパク成分等の繊維接着成分を膨潤させたもの、或いは膨潤した繊維接着成分の少なくとも一部が低濃度アルカリ水溶液に溶解した残りのものを意味する。当該繊維接着成分を膨潤させることによって、アルカリ可溶成分及び水可溶成分を低濃度アルカリ水溶液に溶解させ易くすることが可能である。
 「常温」とは、特別に温度調節をしていない室内温度を意味し、例えば、日本工業規格(JIS Z 8703-1983)等で常温として規定されている温度範囲5℃以上35℃以下であればよく、18℃以上33℃以下であることが好ましい。
In the first production method, subsequently, an alkali treatment step (S12), a fiber extraction step (S14), and a drying step (S16) are performed in order.
In the alkali treatment step (S12), the mushroom fruiting body is treated with a low-concentration alkaline aqueous solution at room temperature in order to obtain a swollen fruiting body in which the spaces between the mushroom fibers are swollen.
The term "swollen fruiting body" means a product obtained by swelling a fiber-adhesive component such as a polysaccharide component, a protein component, or a glycoprotein component present between mushroom fibers in the fruiting body of a mushroom, or at least the swollen fiber-adhesive component. It means the remaining one partly dissolved in the low-concentration alkaline aqueous solution. By swelling the fiber bonding component, it is possible to facilitate dissolving the alkali-soluble component and the water-soluble component in the low-concentration alkaline aqueous solution.
"Normal temperature" means a room temperature that is not specially controlled, for example, the temperature range specified as normal temperature by Japanese Industrial Standards (JIS Z 8703-1983) etc. 5 ° C. to 35 ° C. 18° C. or higher and 33° C. or lower is preferable.
 また、「低濃度アルカリ水溶液で処理する」とは、子実体を低濃度アルカリ水溶液に浸漬させることを意味する。
 このとき、子実体を低濃度アルカリ水溶液に浸漬させた状態で弱攪拌することが好ましい。子実体を低濃度アルカリ水溶液に入れた直後では子実体が浮いてしまうところ、攪拌することで、子実体全体に低濃度アルカリ水溶液をより浸透させ易くすることができる。
 この攪拌の速さ或いは強さは、キノコ繊維を傷つけない程度の速さ或いは強さとされることが望まれる。
Moreover, "treating with a low-concentration alkaline aqueous solution" means immersing the fruiting body in a low-concentration alkaline aqueous solution.
At this time, it is preferable to weakly stir the fruiting body while immersed in the low-concentration alkaline aqueous solution. Immediately after the fruiting body is placed in the low-concentration alkaline aqueous solution, the fruiting body floats, but by stirring the fruiting body, the low-concentration alkaline aqueous solution can be more easily permeated throughout the fruiting body.
The speed or strength of this stirring is desired to be such a speed or strength as not to damage the mushroom fibers.
 低濃度アルカリ水溶液は、pH12.20以上pH13.60以下の水素イオン指数とされることが好ましく、pH12.25以上pH13.55以下の水素イオン指数とされることがより好ましく、pH12.30以上pH13.50以下の水素イオン指数とされることが更に好ましい。アルカリ水溶液として水酸化ナトリウム水溶液が利用される場合には、水酸化ナトリウム水溶液は、0.07重量%以上8重量%以下の濃度とされることが好ましく、0.08重量%以上7重量%以下の濃度されることがより好ましく、0.09重量%以上6重量%以下の濃度とされることが更に好ましい。
 但し、アルカリ水溶液は、水酸化ナトリウム水溶液に限定されず、例えば、炭酸水素ナトリウム水溶液、水酸化カリウム水溶液等の他のアルカリ水溶液が利用されてもよい。
 pH12.2未満のアルカリ水溶液、或いは0.07重量%未満の水酸化ナトリウム水溶液が利用された場合には、キノコ繊維を適切に抽出できない場合がある(実施例参照)。これは、アルカリ濃度が低過ぎることから、キノコ繊維間に存在する繊維接着成分を十分に溶解できないことが原因と考えられる。
 また、アルカリ水溶液の水素イオン指数がpH13.6より高い場合、或いは水酸化ナトリウム水溶液の濃度が8重量%より高い場合にも、キノコ繊維を適切に抽出できない場合がある(実施例参照)。これは、アルカリ濃度が高過ぎ、常温での浸透圧の関係等によりキノコ繊維間への水の浸透が抑制されることから、キノコ繊維間の膨潤が生じ難くなることが原因と考えられる。
 また、上記特許文献1に記載されるような高濃度のアルカリ水溶液(30%の水酸化ナトリウム水溶液)を用いた処理では、低分子化或いは脱アセチル化によってキノコ繊維が損傷してしまう。
The low-concentration alkaline aqueous solution preferably has a hydrogen ion index of pH 12.20 or more and pH 13.60 or less, more preferably pH 12.25 or more and pH 13.55 or less, and pH 12.30 or more and pH 13. More preferably, it has a hydrogen ion exponent of 0.50 or less. When a sodium hydroxide aqueous solution is used as the alkaline aqueous solution, the sodium hydroxide aqueous solution preferably has a concentration of 0.07% by weight or more and 8% by weight or less, and 0.08% by weight or more and 7% by weight or less. and more preferably 0.09% by weight or more and 6% by weight or less.
However, the alkaline aqueous solution is not limited to the sodium hydroxide aqueous solution, and other alkaline aqueous solutions such as a sodium bicarbonate aqueous solution and a potassium hydroxide aqueous solution may be used.
If an alkaline aqueous solution with a pH of less than 12.2 or a sodium hydroxide aqueous solution with a content of less than 0.07% by weight is used, the mushroom fibers may not be properly extracted (see Examples). The reason for this is considered to be that the fiber adhesive component present between mushroom fibers cannot be sufficiently dissolved due to the too low alkali concentration.
Also, when the hydrogen ion exponent of the alkaline aqueous solution is higher than pH 13.6, or when the concentration of the sodium hydroxide aqueous solution is higher than 8% by weight, the mushroom fibers may not be properly extracted (see Examples). This is probably because the alkali concentration is too high, and water permeation between the mushroom fibers is suppressed due to factors such as the osmotic pressure at room temperature, which makes it difficult for the mushroom fibers to swell.
Moreover, in the treatment using a high-concentration alkaline aqueous solution (30% sodium hydroxide aqueous solution) as described in Patent Document 1, the mushroom fibers are damaged due to molecular weight reduction or deacetylation.
 このように、本発明者らは、アルカリ処理を経て当該子実体からダメージなくキノコ繊維を抽出するために、キノコ繊維自体への低分子化や脱アセチル化等のダメージを最小限にしつつ、キノコ繊維間を膨潤させてキノコ繊維間に存在する繊維接着成分の溶解を促し子実体内のキノコ繊維を解し易くするアルカリ水溶液の水素イオン指数(pH12.2以上13.6以下)を見出したのである。
 このような低濃度アルカリ水溶液でキノコの子実体を処理することで、キノコ繊維間に存在する繊維接着成分を膨潤させ、その一部または全部を溶解させることで、子実体内のキノコ繊維を解し、キノコシートを製造するために好適なキノコ繊維を抽出することに成功した。
Thus, in order to extract mushroom fibers from the fruiting body without damage through alkali treatment, the present inventors minimized damage such as demolecularization and deacetylation to the mushroom fibers themselves, The hydrogen ion exponent (pH 12.2 or more and 13.6 or less) of an alkaline aqueous solution was found that swells between fibers, promotes dissolution of the fiber adhesive component present between the mushroom fibers, and facilitates dissolution of the mushroom fibers in the fruiting body. be.
By treating the mushroom fruiting body with such a low-concentration alkaline aqueous solution, the fiber adhesion component present between the mushroom fibers is swollen and part or all of it is dissolved, thereby dissolving the mushroom fiber in the fruiting body. and succeeded in extracting mushroom fibers suitable for manufacturing mushroom sheets.
 ここでアルカリ処理工程(S12)は、子実体を低濃度アルカリ水溶液に浸漬させた後、当該膨潤子実体を含むアルカリ処理液を濾過して膨潤子実体を取得する工程を更に含んでもよい。
 このため、アルカリ処理工程(S12)では、膨潤子実体を含むアルカリ処理液が得られてもよいし、上述の濾過工程後の膨潤子実体が得られてもよい。
 「膨潤子実体を含むアルカリ処理液」とは、アルカリ処理工程(S12)において当該子実体を低濃度アルカリ水溶液に浸漬させて子実体を膨潤子実体にさせた後における、その膨潤子実体を含むアルカリ水溶液を意味する。
Here, the alkali treatment step (S12) may further include a step of immersing the fruiting body in a low-concentration alkaline aqueous solution and then filtering the alkali-treated liquid containing the swollen fruiting body to obtain the swollen fruiting body.
Therefore, in the alkali treatment step (S12), an alkali-treated liquid containing swollen fruit bodies may be obtained, or the swollen fruit bodies after the filtration step may be obtained.
The "alkaline-treated liquid containing swollen fruiting bodies" includes the swollen fruiting bodies after the fruiting bodies are immersed in a low-concentration alkaline aqueous solution in the alkali treatment step (S12) to turn the fruiting bodies into swollen fruiting bodies. means an aqueous alkaline solution.
 次の繊維抽出工程(S14)では、アルカリ処理工程(S12)により得られる膨潤子実体を濾過することで湿潤キノコ繊維を抽出する。
 アルカリ処理工程(S12)で膨潤子実体を含むアルカリ処理液が得られる場合には、膨潤子実体を含むアルカリ処理液を濾過し、アルカリ処理工程(S12)で膨潤子実体が取得される場合には、その膨潤子実体を濾過すればよい。
 但し、膨潤子実体自体は、キノコ繊維間が膨潤された状態であり粘度が高いこと等から、濾過に時間を要する。また、安全性の観点から、繊維抽出工程(S14)で抽出された湿潤キノコ繊維をアルカリ性から中性にする操作が別途必要になる。
In the next fiber extraction step (S14), wet mushroom fibers are extracted by filtering the swollen fruit bodies obtained in the alkali treatment step (S12).
When an alkali-treated liquid containing swollen fruit bodies is obtained in the alkali treatment step (S12), the alkali-treated liquid containing swollen fruit bodies is filtered, and when swollen fruit bodies are obtained in the alkali treatment step (S12), can filter the swollen fruiting bodies.
However, since the swollen fruiting body itself is in a state where the mushroom fibers are swollen and has high viscosity, it takes time to filter. In addition, from the viewpoint of safety, an additional operation is required to convert the wet mushroom fibers extracted in the fiber extraction step (S14) from alkaline to neutral.
 そこで、繊維抽出工程(S14)では、アルカリ処理工程(S12)により得られる膨潤子実体を希釈及び中和してから濾過することで湿潤キノコ繊維を抽出するようにすることがより好ましい。アルカリ処理工程(S12)で膨潤子実体を含むアルカリ処理液が得られる場合には、膨潤子実体を含むアルカリ処理液に対して希釈及び中和を行い、アルカリ処理工程(S12)で膨潤子実体が取得される場合には、その膨潤子実体に対して何らかの液体(希釈液等)を注ぐことで希釈及び中和を行えばよい。
 当該希釈は、膨潤子実体内の水可溶性成分を十分に溶解させ得る量の希釈液(水など)で行われることが好ましい。例えば、アルカリ処理液の3倍以上の水が希釈に利用される。ここでいう水可溶性成分とは、キノコ繊維間に存在し、上述するアルカリ処理工程において溶解されず、水などの希釈液によって溶解され得る成分を指す。
 当該中和は、希釈及び中和の過程で得られる膨潤子実体を含む液体が中性域(例えばpH6.0以上pH8.0以下)になるまで塩酸等の酸の添加により行われる。膨潤子実体を含む液体を中性域にすることができるのであれば、添加される酸は限定されない。
 このようにすれば、湿潤キノコ繊維の抽出にかかる製造工程の安全性及び効率性を向上させることができる。
Therefore, in the fiber extraction step (S14), it is more preferable to extract wet mushroom fibers by diluting and neutralizing the swollen fruit bodies obtained in the alkali treatment step (S12) before filtering. When an alkali-treated solution containing swollen fruit bodies is obtained in the alkali treatment step (S12), the alkali-treated solution containing swollen fruit bodies is diluted and neutralized, and the swollen fruit bodies are diluted in the alkali treatment step (S12). is obtained, dilution and neutralization may be performed by pouring some liquid (such as a diluent) onto the swollen fruiting body.
The dilution is preferably carried out with a diluent (such as water) in an amount sufficient to dissolve the water-soluble component in the swollen fruiting body. For example, at least three times as much water as the alkaline treatment liquid is used for dilution. The water-soluble component as used herein refers to a component that exists between mushroom fibers, is not dissolved in the alkali treatment step described above, and can be dissolved by a diluent such as water.
The neutralization is carried out by adding an acid such as hydrochloric acid until the liquid containing the swollen fruit body obtained in the process of dilution and neutralization reaches a neutral range (for example, pH 6.0 or more and pH 8.0 or less). The acid to be added is not limited as long as the liquid containing the swollen fruiting body can be made neutral.
In this way, the safety and efficiency of the manufacturing process involved in the extraction of wet mushroom fibers can be improved.
 濾過は、網材を用いて、膨潤子実体或いはその膨潤子実体を含む液体に含有するアルカリ可溶性成分及び水可溶性成分を取り除く処理である。このため、繊維抽出工程(S14)における濾過は、アルカリ可溶成分及び水可溶成分を水分と共に除去して湿潤キノコ繊維を分離抽出することを目的とするため、濾別と表記することもできる。
 濾過に用いられる網材は、メッシュが30以上150以下で目開きが0.1mm以上0.5mm以下であることが好ましい。メッシュは1インチ(25.4mm)の長さの間に存在する網目(孔)の数であり、目開きは網目(孔)1個当たりの天地幅又は左右幅を示す。
 個々の網目が小さ過ぎると、キノコ繊維のサイズのバラつきが大きくなり過ぎるため、キノコシートの安定性に問題が生じる恐れがある。また、個々の網目が大き過ぎると、短いキノコ繊維が採取できないため、キノコ繊維の収率が低下し過ぎてしまう。
 第一製造方法によれば、上述のような網目が比較的粗い網材を用いて抄き上げることができるような、比較的大きな幅及び長さを持つキノコ繊維を抽出することができ、ひいては、或る程度の強度及び安定性を有するキノコシートを得ることができる。また、上述のような網材を用いることで、キノコの子実体内のキノコ繊維をダメージなく効率的に抽出することができる。なお、繊維長が0.1mm以下の繊維或いは高分子溶液は、本実施形態のような網材で抄き上げることはできない。
Filtration is a treatment for removing alkali-soluble components and water-soluble components contained in the swollen fruit bodies or the liquid containing the swollen fruit bodies using a net material. Therefore, the filtration in the fiber extraction step (S14) is intended to separate and extract the wet mushroom fibers by removing the alkali-soluble components and water-soluble components together with the water, so it can also be referred to as filtering. .
The mesh material used for filtration preferably has a mesh size of 30 or more and 150 or less and an opening of 0.1 mm or more and 0.5 mm or less. The mesh is the number of meshes (holes) present in a length of 1 inch (25.4 mm), and the mesh opening indicates the top-to-bottom width or left-right width of one mesh (hole).
If the individual meshes are too small, the size of the mushroom fibers will vary too much, which can lead to problems with the stability of the mushroom sheet. In addition, if the individual meshes are too large, short mushroom fibers cannot be collected, resulting in an excessive decrease in yield of mushroom fibers.
According to the first production method, it is possible to extract mushroom fibers having a relatively large width and length that can be papered using a mesh material with a relatively coarse mesh as described above, and thus, , a mushroom sheet with a certain degree of strength and stability can be obtained. Moreover, by using the mesh material as described above, the mushroom fibers in the fruiting body of the mushroom can be efficiently extracted without damage. It should be noted that fibers having a fiber length of 0.1 mm or less or a polymer solution cannot be made into paper using a netting material as in the present embodiment.
 上述のような網材により抽出された湿潤キノコ繊維を用いることで、本実施形態におけるキノコシートは、キノコの子実体から抽出されたキノコ繊維であって、平均繊維幅が50μm以上500μm以下であり、かつ平均繊維長が0.5mm以上5mm以下のキノコ繊維を含むものとすることができる。 By using the wet mushroom fibers extracted by the net material as described above, the mushroom sheet in the present embodiment is mushroom fibers extracted from the fruiting body of the mushroom, and has an average fiber width of 50 μm or more and 500 μm or less. and mushroom fibers having an average fiber length of 0.5 mm or more and 5 mm or less.
 繊維抽出工程(S14)では、希釈及び中和の過程において、膨潤子実体を含む液体を所定時間弱攪拌する工程を更に含んでもよい。この工程においても、膨潤子実体に含まれるキノコ繊維がダメージを受けないようにゆっくりとした速度(強さ)で攪拌されることが望まれる。
 また、繊維抽出工程(S14)では、希釈、中和及び濾過の順で行われる工程を複数回行うようにしてもよい。このようにすれば、膨潤子実体内におけるキノコ繊維以外のアルカリ可溶性成分及び水可溶性成分を効率よく取り除くことができる。
The fiber extraction step (S14) may further include a step of weakly stirring the liquid containing the swollen fruiting body for a predetermined time in the process of dilution and neutralization. Also in this step, it is desired that the mushroom fibers contained in the swollen fruiting bodies be stirred at a slow speed (strength) so as not to be damaged.
In addition, in the fiber extraction step (S14), the step of dilution, neutralization and filtration may be performed multiple times. By doing so, alkali-soluble components and water-soluble components other than the mushroom fibers in the swollen fruiting body can be efficiently removed.
 乾燥工程(S16)では、繊維抽出工程(S14)で抽出された湿潤キノコ繊維をシート状に乾燥させる。言い換えれば、乾燥工程(S16)は、湿潤キノコ繊維が互いに重なり合った状態で乾燥させてシート状体を得る工程である。
 第一製造方法では、乾燥工程(S16)で湿潤キノコ繊維のシート化を行ってもよいし、繊維抽出工程(S14)でシート化された湿潤キノコ繊維を取得することもできる。後者の場合、繊維抽出工程(S14)での濾過の際に網材としてメッシュシート(網シート材)を用い、膨潤子実体をこのメッシュシート表面に均一分散させることで濾過及びシート化を行うことができる。
 湿潤キノコ繊維の乾燥は、常温で行われてもよいし、乾燥室等で行われてもよく、キノコ繊維を変質させない温度であれば、乾燥温度は特に限定されない。
In the drying step (S16), the wet mushroom fibers extracted in the fiber extraction step (S14) are dried into a sheet. In other words, the drying step (S16) is a step of drying the wet mushroom fibers in an overlapping state to obtain a sheet-like body.
In the first production method, the wet mushroom fibers may be sheeted in the drying step (S16), or the sheeted wet mushroom fibers may be obtained in the fiber extraction step (S14). In the latter case, a mesh sheet (mesh sheet material) is used as a net material for filtration in the fiber extraction step (S14), and the swollen fruit bodies are uniformly dispersed on the surface of the mesh sheet for filtration and sheet formation. can be done.
Drying of the wet mushroom fibers may be performed at room temperature or in a drying room or the like, and the drying temperature is not particularly limited as long as the temperature does not degrade the mushroom fibers.
 図2は、第一実施形態におけるキノコシートを示す図である。
 乾燥工程(S16)によれば、図2に示されるような、キノコ繊維が互いに重なり合って形成する薄厚みのシート状体(キノコシート)が得られる。図2は、特許図面の制約から着色されていないが、薄茶色のキノコシートが製造される。
FIG. 2 is a diagram showing the mushroom sheet in the first embodiment.
According to the drying step (S16), a thin sheet-like body (mushroom sheet) formed by mutually overlapping mushroom fibers as shown in FIG. 2 is obtained. Although FIG. 2 is not colored due to limitations of patent drawings, light brown mushroom sheets are produced.
[第一実施形態の変形例]
 上述の第一製造方法は、適宜変形可能である。
 例えば、乾燥工程(S16)の前に、可塑化工程が更に行われてもよい。この可塑化工程では、グリセリン等の可塑剤が湿潤キノコ繊維に添加される。利用される可塑剤は限定されない。
 この場合、乾燥工程(S16)の後に、得られたシート状体から可塑剤を洗い流す洗浄工程が更に実行されてもよい。
[Modification of First Embodiment]
The first manufacturing method described above can be modified as appropriate.
For example, a plasticizing step may be further performed before the drying step (S16). In this plasticizing step, a plasticizer such as glycerin is added to the wet mushroom fibers. The plasticizer utilized is not limited.
In this case, after the drying step (S16), a washing step of washing away the plasticizer from the obtained sheet-like body may be further performed.
 また、乾燥工程(S16)の前又は後に、なめし工程が更に行われてもよい。なめし工程で用いられるなめし剤は、クロムなめし、タンニンなめし等であり、特に限定されない。このなめし工程を加えることで、キノコシートの耐久性を向上させることができる。 In addition, a tanning process may be further performed before or after the drying process (S16). The tanning agent used in the tanning process is chrome tanning, tannin tanning, etc., and is not particularly limited. By adding this tanning process, the durability of the mushroom sheet can be improved.
[第二実施形態]
 第一実施形態では、キノコの子実体から抽出されたキノコ繊維を含有するキノコシートの一例が示され、そのキノコシートには、主原料としての当該キノコ繊維に加えて、可塑剤或いはなめし剤が添加され得ることを例示した。
 第二実施形態では、キノコの子実体から抽出されたキノコ繊維に加えて、非キノコ由来繊維を更に含有するキノコシートが例示される。
 この「非キノコ由来繊維」は、キノコ由来ではない一種の繊維であってもよいし、二種以上の繊維であってもよく、当該キノコ繊維よりも強度の高い繊維であることが好ましい。
 このように第二実施形態に係るキノコシートは、非キノコ由来繊維を更に含んでいるため、キノコの子実体から抽出されたキノコ繊維のみで形成される場合に比べて、強度が高くなっている。
[Second embodiment]
In the first embodiment, an example of a mushroom sheet containing mushroom fibers extracted from the fruiting body of a mushroom is shown, and the mushroom sheet contains a plasticizer or a tanning agent in addition to the mushroom fibers as the main raw material. exemplified that it can be added.
In the second embodiment, a mushroom sheet further containing non-mushroom-derived fibers in addition to mushroom fibers extracted from mushroom fruiting bodies is exemplified.
This "non-mushroom-derived fiber" may be one type of fiber not derived from mushrooms, or may be two or more types of fibers, and preferably has a higher strength than the mushroom fiber.
As described above, the mushroom sheet according to the second embodiment further contains non-mushroom-derived fibers, and therefore has a higher strength compared to a case where the sheet is formed only from mushroom fibers extracted from mushroom fruiting bodies. .
 また、第二実施形態に係るキノコシートに含まれる「非キノコ由来繊維」は、非キノコ由来セルロース繊維であることが好ましい。非キノコ由来セルロース繊維は、非キノコ由来のセルロースを主成分とする繊維であり、非キノコ由来セルロース系繊維と呼ぶこともできる。非キノコ由来セルロース繊維には、非キノコ由来を前提とした植物繊維(楮繊維、麻繊維、針葉樹繊維、広葉樹繊維、リンター繊維、バガス繊維、ミツマタ繊維、雁皮繊維等)、再生繊維(レーヨン、キュプラ、リヨセル等)、半合成繊維(アセテート、ビスコースレーヨン、キュプラ等)、セルロースナノファイバ、キチンナノファイバ等がある。
 これによれば、セルロースが上述のキノコ繊維と同様に天然素材であるため、環境に優しいキノコシートとすることができる。
 非キノコ由来セルロース繊維は、キノコの子実体から抽出されたキノコ繊維よりも強度が高いものであることが好ましい。例えば、楮・麻繊維は、広葉樹繊維、わら繊維、バガス繊維等よりも強度が高いため、それらのセルロース繊維よりも好ましい。
 一方、材料の調達が容易であり、また強度の調整が行い易いという観点からは、当該非キノコ由来繊維は、セルロース繊維ではなく、ポリエステルやナイロン、アクリル、ポリウレタンなどのような合成繊維であってもよい。
Moreover, the "non-mushroom-derived fibers" contained in the mushroom sheet according to the second embodiment are preferably non-mushroom-derived cellulose fibers. Non-mushroom-derived cellulose fibers are fibers mainly composed of non-mushroom-derived cellulose, and can also be referred to as non-mushroom-derived cellulose fibers. Non-mushroom-derived cellulose fibers include non-mushroom-derived plant fibers (kozo fiber, hemp fiber, softwood fiber, hardwood fiber, linter fiber, bagasse fiber, mitsumata fiber, gampi fiber, etc.), regenerated fibers (rayon, cupra , lyocell, etc.), semi-synthetic fibers (acetate, viscose rayon, cupra, etc.), cellulose nanofibers, chitin nanofibers, and the like.
According to this, since cellulose is a natural material like the mushroom fiber described above, an environmentally friendly mushroom sheet can be obtained.
Non-mushroom-derived cellulose fibers are preferably stronger than mushroom fibers extracted from mushroom fruiting bodies. For example, kozo/hemp fibers are preferred over cellulose fibers because they have higher strength than hardwood fibers, straw fibers, bagasse fibers, and the like.
On the other hand, from the viewpoint of easy procurement of materials and easy adjustment of strength, the non-mushroom-derived fibers are not cellulose fibers but synthetic fibers such as polyester, nylon, acrylic, and polyurethane. good too.
 このように第二実施形態に係るキノコシートがキノコ子実体から抽出されたキノコ繊維及び非キノコ由来セルロース繊維を主成分として含有する場合には、キノコ繊維と非キノコ由来セルロース繊維との重量比が99:1から50:50の範囲内であることが好ましく、90:10から60:40の範囲内であることがより好ましく、80:20から65:35の範囲内であることが更に好ましい。なお、当該重量比は、キノコ繊維及び非キノコ由来セルロース繊維の固形分重量比である。
 キノコ繊維と非キノコ由来セルロース繊維との重量比において、非キノコ由来セルロース繊維の割合が高いと、キノコシートの質感が低下してしまい、逆に、非キノコ由来セルロース繊維の重量比が低いと、キノコシートの強度が低下してしまう傾向にある。
 第二実施形態に係るキノコシートは、上述のような重量比でキノコ繊維と非キノコ由来セルロース繊維を含有することで、強度を高めつつ皮革のような柔軟で滑らかな触感を実現することができる。
 本明細書におけるキノコシートの強度は、破断のし難さを示し、キノコシートの質感の良し悪しの一つの尺度は、皮革のような柔軟性或いは滑らかな触感で示される。
Thus, when the mushroom sheet according to the second embodiment contains mushroom fibers extracted from mushroom fruiting bodies and non-mushroom-derived cellulose fibers as main components, the weight ratio of the mushroom fibers to the non-mushroom-derived cellulose fibers is It is preferably in the range of 99:1 to 50:50, more preferably in the range of 90:10 to 60:40, even more preferably in the range of 80:20 to 65:35. In addition, the said weight ratio is a solid content weight ratio of mushroom fiber and non-mushroom-derived cellulose fiber.
In the weight ratio of mushroom fibers to non-mushroom-derived cellulose fibers, if the ratio of non-mushroom-derived cellulose fibers is high, the texture of the mushroom sheet is deteriorated. The strength of the mushroom sheet tends to decrease.
The mushroom sheet according to the second embodiment contains mushroom fibers and non-mushroom-derived cellulose fibers in the weight ratio as described above, thereby increasing the strength and realizing a soft and smooth feel like leather. .
In this specification, the strength of the mushroom sheet indicates the difficulty of breaking, and one measure of the quality of the texture of the mushroom sheet is indicated by leather-like flexibility or smooth touch.
 図3は、第二実施形態におけるキノコシートの製造方法を示すフローチャートである。
 以下、図3を用いながら、第二実施形態におけるキノコシートの製造方法(以降、第二製造方法と表記する)について説明する。
 第二製造方法は、キノコの子実体を準備する工程(S30)、アルカリ処理工程(S32)、繊維抽出工程(S34)、混合工程(S36)及び乾燥工程(S38)を含む。
 工程(S30)及び工程(S32)は、第一製造方法における工程(S10)及び工程(S12)と同様でよいため、ここでは説明を省略する。
FIG. 3 is a flow chart showing the mushroom sheet manufacturing method according to the second embodiment.
A method for manufacturing a mushroom sheet according to the second embodiment (hereinafter referred to as a second manufacturing method) will be described below with reference to FIG.
The second production method includes a step of preparing a mushroom fruiting body (S30), an alkali treatment step (S32), a fiber extraction step (S34), a mixing step (S36) and a drying step (S38).
Since the steps (S30) and (S32) may be the same as the steps (S10) and (S12) in the first manufacturing method, descriptions thereof are omitted here.
 第二製造方法における繊維抽出工程(S34)は、第一製造方法の工程(S14)と同様でもよいが、アルカリ処理工程(S32)により得られる膨潤子実体を希釈及び中和並びに濾過して湿潤キノコ繊維を抽出することが好ましい。ここでの希釈、中和及び濾過の手法については、第一実施形態で述べたとおりである。
 このようにすることで、膨潤子実体或いはその膨潤子実体を含む液体に含有するアルカリ可溶性成分や水可溶性成分等の不純物や不要な水分を適切に取り除くことができるため、変な色や匂いが残らずかつ腐食し難いキノコシートを生成することができ、最終的に生成されるキノコシートの品質を高めることができる。
 但し、希釈及び中和は、後述する混合工程(S36)内或いはその工程(S36)の後に実施されるようにしてもよい。この場合には、上述の方法に較べて当該不純物が残存する可能性が高まり、キノコシートの最終品質は少し低下する可能性がある。
The fiber extraction step (S34) in the second production method may be the same as the step (S14) in the first production method, but the swollen fruiting body obtained in the alkali treatment step (S32) is diluted, neutralized, filtered and moistened. Extraction of mushroom fibers is preferred. The methods of dilution, neutralization and filtration here are as described in the first embodiment.
By doing so, impurities such as alkali-soluble components and water-soluble components contained in the swollen fruiting body or the liquid containing the swollen fruiting body and unnecessary water can be removed appropriately, so that a strange color and smell can be removed. A mushroom sheet that does not remain and is resistant to corrosion can be produced, and the quality of the finally produced mushroom sheet can be improved.
However, the dilution and neutralization may be performed in the later-described mixing step (S36) or after that step (S36). In this case, the impurities are more likely to remain than in the above method, and the final quality of the mushroom sheet may be slightly reduced.
 第二製造方法では、このような繊維抽出工程(S34)の後に、混合工程(S36)及び乾燥工程(S8)が行われる。
 混合工程(S36)は、非キノコ由来繊維と繊維抽出工程(S34)で抽出された湿潤キノコ繊維と液状分散媒とを攪拌混合することで、非キノコ由来繊維とキノコ繊維とが分散混合する繊維混合液を得る工程である。
 ここでの液状分散媒は、非キノコ由来繊維及びキノコ繊維を分散させるための液状媒体を意味する。液状分散媒としては、水が利用されてもよいし、水以外の水と相溶性のある有機溶媒等が利用されてもよいし、それら複数種が混ぜ合わされて利用されてもよい。水と相溶性のある有機溶媒としては、例えば、アセトン、エタノール等が例示される。
In the second manufacturing method, the mixing step (S36) and the drying step (S8) are performed after the fiber extraction step (S34).
In the mixing step (S36), the non-mushroom-derived fibers, the wet mushroom fibers extracted in the fiber extraction step (S34), and the liquid dispersion medium are stirred and mixed, thereby dispersing and mixing the non-mushroom-derived fibers and the mushroom fibers. This is a step of obtaining a mixed liquid.
Liquid dispersion medium here means a liquid medium for dispersing non-mushroom-derived fibers and mushroom fibers. As the liquid dispersion medium, water may be used, an organic solvent other than water that is compatible with water may be used, or a plurality of such solvents may be mixed and used. Examples of organic solvents compatible with water include acetone and ethanol.
 より具体的には、混合工程(S36)では、非キノコ由来繊維が液状分散媒に分散している分散液と繊維抽出工程(S34)で抽出された湿潤キノコ繊維とが攪拌混合されてもよいし、非キノコ由来繊維が液状分散媒に分散している分散液と当該湿潤キノコ繊維が液状分散媒に分散している分散液とが攪拌混合されてもよいし、湿潤キノコ繊維が液状分散媒に分散している分散液に非キノコ由来繊維が添加され攪拌混合されてもよいし、非キノコ由来繊維若しくはそれを含む分散液と、湿潤キノコ繊維若しくはそれを含む分散液とに対して液状分散媒を更に投入して攪拌混合されてもよい。
 ここでの撹拌は、キノコ繊維及び非キノコ由来繊維を可能な限り損傷させない程度の強さ又は速さであり、かつ非キノコ由来繊維とキノコ繊維とが液体中に適度に分散して混合されるのに必要な撹拌時間で行われる。
More specifically, in the mixing step (S36), a dispersion liquid in which non-mushroom-derived fibers are dispersed in a liquid dispersion medium and the wet mushroom fibers extracted in the fiber extraction step (S34) may be stirred and mixed. Then, the dispersion in which the non-mushroom-derived fibers are dispersed in the liquid dispersion medium and the dispersion in which the wet mushroom fibers are dispersed in the liquid dispersion medium may be stirred and mixed, or the wet mushroom fibers may be mixed in the liquid dispersion medium. Non-mushroom-derived fibers may be added to the dispersion dispersed in the liquid dispersion and stirred and mixed, or a liquid dispersion may be added to the non-mushroom-derived fibers or the dispersion containing the same and the wet mushroom fiber or the dispersion containing the same. A medium may be further added and stirred and mixed.
The stirring here is at a strength or speed that does not damage the mushroom fibers and non-mushroom-derived fibers as much as possible, and the non-mushroom-derived fibers and mushroom fibers are appropriately dispersed and mixed in the liquid. The stirring time required for
 非キノコ由来繊維として非キノコ由来セルロース繊維が利用される場合には、混合工程(S36)では、非キノコ由来セルロース繊維が液状分散媒に分散している分散液を準備し、その分散液と繊維抽出工程(S34)で抽出された湿潤キノコ繊維とを攪拌混合することが好ましい。例えば、当該非キノコ由来セルロース繊維が液状分散媒に分散している分散液及び湿潤キノコ繊維を所定容量の容器に入れ、ミキサーにより所定時間ミキシング(例えば乱回転)する。
 当該分散液中の非キノコ由来セルロース繊維の固形分濃度は、非キノコ由来セルロース繊維が分散状態で含有されていれば、特に制限されない。但し、非キノコ由来繊維とキノコ繊維とを適切に混合させるためには、当該分散液は、流動性の高い状態となっていることが望ましい。例えば、当該分散液内の非キノコ由来セルロース繊維の固形分濃度は5重量%以下とされる。一方で、当該分散液内の非キノコ由来セルロース繊維の固形分濃度が高く、当該分散液の流動性が低い場合には、撹拌の際に、別途、液状分散媒を追加投入すればよい。
 このようにすることで、非キノコ由来セルロース繊維は分散液中で解れて分散しており、キノコ繊維も湿潤キノコ繊維として或る程度解れた状態となっているため、攪拌により両繊維を適切に混合させることができる。
When non-mushroom-derived cellulose fibers are used as non-mushroom-derived fibers, in the mixing step (S36), a dispersion in which non-mushroom-derived cellulose fibers are dispersed in a liquid dispersion medium is prepared, and the dispersion and the fibers are It is preferable to stir and mix the wet mushroom fibers extracted in the extraction step (S34). For example, a dispersion in which the non-mushroom-derived cellulose fibers are dispersed in a liquid dispersion medium and the moist mushroom fibers are placed in a container having a predetermined capacity and mixed (for example, by a mixer) for a predetermined period of time.
The solid content concentration of the non-mushroom-derived cellulose fibers in the dispersion is not particularly limited as long as the non-mushroom-derived cellulose fibers are contained in a dispersed state. However, in order to properly mix the non-mushroom-derived fibers and the mushroom fibers, it is desirable that the dispersion has high fluidity. For example, the solid content concentration of non-mushroom-derived cellulose fibers in the dispersion is set to 5% by weight or less. On the other hand, when the solid content concentration of non-mushroom-derived cellulose fibers in the dispersion is high and the fluidity of the dispersion is low, a liquid dispersion medium may be additionally added during stirring.
By doing so, the non-mushroom-derived cellulose fibers are unraveled and dispersed in the dispersion, and the mushroom fibers are also in a state of being unraveled to some extent as wet mushroom fibers. can be mixed.
 上述の場合に、混合工程(S36)で投与される当該分散液の重量は、繊維混合液内のキノコ繊維と非キノコ由来セルロース繊維との重量比(固形分重量比)が99:1から50:50の範囲内の所定値となるように、当該分散液中の非キノコ由来セルロース繊維の濃度(固形分濃度)及び湿潤キノコ繊維中のキノコ繊維の濃度(固形分濃度)並びに湿潤キノコ繊維の重量に応じて決められる。
 当該繊維混合液内のキノコ繊維と非キノコ由来セルロース繊維との重量比は、上述したとおり、90:10から60:40の範囲内であることがより好ましく、80:20から65:35の範囲内であることが更に好ましい。
In the above case, the weight of the dispersion administered in the mixing step (S36) is such that the weight ratio (solid content weight ratio) of mushroom fibers and non-mushroom-derived cellulose fibers in the fiber mixture is 99: 1 to 50. : The concentration of non-mushroom-derived cellulose fibers in the dispersion (solid content concentration) and the concentration of mushroom fibers in the wet mushroom fibers (solid content concentration) and the concentration of wet mushroom fibers so that the predetermined value is within the range of 50 determined according to weight.
As described above, the weight ratio of mushroom fibers and non-mushroom-derived cellulose fibers in the fiber mixture is more preferably in the range of 90:10 to 60:40, more preferably in the range of 80:20 to 65:35. More preferably within.
 繊維抽出工程(S34)で抽出された湿潤キノコ繊維におけるキノコ繊維の固形分濃度及び分散液における非キノコ由来セルロース繊維の固形分濃度は測定可能である。
 例えば、水分計により湿潤キノコ繊維及び分散液の水分量を測定し、それらの重量から水分重量を減算することで、キノコ繊維及び非キノコ由来セルロース繊維の固形分重量を算出することができる。また、所定重量の湿潤キノコ繊維を十分に乾燥させて得られる乾燥キノコ繊維の重量を測定することで、当該湿潤キノコ繊維におけるキノコ繊維の固形分濃度を算出可能である。また、分散液の生成過程においてその分散液内の非キノコ由来セルロース繊維の重量を知ることができるため、当該分散液における非キノコ由来セルロース繊維の固形分濃度を算出することも可能である。
 これにより、混合対象とされる湿潤キノコ繊維の重量に対して、両繊維の重量比が99:1から50:50の範囲内の予め決められた所定値となるような分散液の重量を定めることができる。
 結果、繊維抽出工程(S34)で抽出される湿潤キノコ繊維の固形分濃度及び分散液の固形分濃度を予め想定しておくことにより、繊維抽出工程(S34)で湿潤キノコ繊維が抽出される度にその湿潤キノコ繊維の固形分濃度を算出するという作業を必要とせず、混合対象となる湿潤キノコ繊維の重量に応じて適切な分散液の投入量を得ることができ、製造工程を簡易化することができる。
The solid concentration of mushroom fibers in the wet mushroom fibers extracted in the fiber extraction step (S34) and the solid concentration of non-mushroom-derived cellulose fibers in the dispersion can be measured.
For example, by measuring the water content of the wet mushroom fiber and the dispersion with a moisture meter and subtracting the water weight from those weights, the solid content weight of the mushroom fiber and the non-mushroom-derived cellulose fiber can be calculated. Further, by sufficiently drying a predetermined weight of wet mushroom fiber and measuring the weight of the dried mushroom fiber obtained, the solid content concentration of mushroom fiber in the wet mushroom fiber can be calculated. In addition, since the weight of the non-mushroom-derived cellulose fibers in the dispersion can be known in the process of generating the dispersion, it is also possible to calculate the solid content concentration of the non-mushroom-derived cellulose fibers in the dispersion.
Thereby, the weight of the dispersion is determined such that the weight ratio of both fibers to the weight of the wet mushroom fiber to be mixed is a predetermined value within the range of 99:1 to 50:50. be able to.
As a result, by presuming the solid content concentration of the wet mushroom fiber extracted in the fiber extraction step (S34) and the solid content concentration of the dispersion liquid, every time the wet mushroom fiber is extracted in the fiber extraction step (S34) It is possible to obtain an appropriate amount of dispersion liquid input according to the weight of the wet mushroom fiber to be mixed without the need to calculate the solid content concentration of the wet mushroom fiber, thereby simplifying the manufacturing process. be able to.
 ところで、原料となるキノコ子実体の大きさや生育状態等に応じて、繊維抽出工程(S34)で抽出される湿潤キノコ繊維におけるキノコ繊維の固形分濃度が異なる可能性がある。このような場合には、工程(S30)で準備されたキノコ子実体の状態を判定し、この状態に応じて、繊維抽出工程(S34)で抽出される湿潤キノコ繊維の固形分濃度を切り替えるようにしてもよい。そして、混合対象とされる湿潤キノコ繊維の重量に対して投与される分散液の重量が切り替えられるようにしてもよい。 By the way, the solid content concentration of mushroom fibers in the wet mushroom fibers extracted in the fiber extraction step (S34) may differ depending on the size, growth state, etc. of the mushroom fruiting body that is the raw material. In such a case, the state of the mushroom fruiting body prepared in the step (S30) is determined, and the solid content concentration of the wet mushroom fiber extracted in the fiber extraction step (S34) is switched according to this state. can be Then, the weight of the dispersion liquid to be administered may be switched with respect to the weight of the wet mushroom fiber to be mixed.
 また、混合工程(S36)は、当該液状分散媒と非キノコ由来繊維と湿潤キノコ繊維と共に撹拌混合されるように、可塑剤を添加する可塑化工程を含むことが好ましい。
 この可塑化工程において、可塑剤は、非キノコ由来繊維が液状分散媒に分散している分散液に添加された後、湿潤キノコ繊維と撹拌混合されてもよいし、湿潤キノコ繊維に添加された後、当該分散液と撹拌混合されてもよいし、非キノコ由来繊維と湿潤キノコ繊維と液状分散媒との混合液に対して添加されてもよい。また、可塑剤は、水溶液として水に溶解された状態で添加されてもよい。
Moreover, the mixing step (S36) preferably includes a plasticizing step of adding a plasticizer so that the liquid dispersion medium, the non-mushroom-derived fibers, and the wet mushroom fibers are stirred and mixed together.
In this plasticization step, the plasticizer may be stirred and mixed with the wet mushroom fibers after being added to the dispersion liquid in which the non-mushroom-derived fibers are dispersed in the liquid dispersion medium, or may be added to the wet mushroom fibers. After that, it may be stirred and mixed with the dispersion liquid, or may be added to the liquid mixture of the non-mushroom-derived fibers, the moist mushroom fibers, and the liquid dispersion medium. Also, the plasticizer may be added in a state dissolved in water as an aqueous solution.
 可塑剤としては、グリセリン、エチレングリコール、ポリエチレングリコール等、キノコシートに対し柔軟性を与え得ることができれば、その種類は何ら限定されない。但し、天然グリセリンのような天然由来の可塑剤がより好ましい。
 また、添加される可塑剤の量は、最終的に生成されるキノコシートの厚み、強度、柔軟性、質感等に応じて調整されればよく、特に制限されない。
 このように液状分散媒と非キノコ由来繊維と湿潤キノコ繊維と共に撹拌混合されるように可塑剤を添加することにより、繊維間に可塑剤が分散浸透し易くなるため、キノコシート全体に適度な柔軟性を付与することができる。
The type of plasticizer is not particularly limited as long as it can give flexibility to the mushroom sheet, such as glycerin, ethylene glycol and polyethylene glycol. However, naturally derived plasticizers such as natural glycerin are more preferred.
Moreover, the amount of the plasticizer to be added may be adjusted according to the thickness, strength, flexibility, texture, etc. of the finally produced mushroom sheet, and is not particularly limited.
By adding the plasticizer so that it is stirred and mixed together with the liquid dispersion medium, the non-mushroom-derived fiber, and the wet mushroom fiber, the plasticizer is easily dispersed and penetrated between the fibers, so that the entire mushroom sheet has a moderate flexibility. You can give it character.
 乾燥工程(S38)では、混合工程(S36)で得られた繊維混合液を濾過して分離された湿潤混合繊維をシート状に乾燥させる。
 即ち、乾燥工程(S38)では、まず、混合工程(S36)で得られた繊維混合液を濾過して液体を取り除き、繊維混合液内で分散混合されていた湿潤混合繊維を分離させる。このため、分離された湿潤混合繊維は、キノコ繊維及び非キノコ由来繊維が混合された湿潤状態の繊維である。ここでの濾過も、繊維混合液から液体を取り除いて湿潤混合繊維を分離させることを目的とするため、濾別と表記できる。
 乾燥工程(S38)における濾過においても、繊維抽出工程(S34)の濾過で用いられる網材と同様の網材が用いられる。即ち、メッシュが30以上150以下で目開きが0.1mm以上0.5mm以下の網材が用いられる。
In the drying step (S38), the wet mixed fibers separated by filtering the fiber mixture obtained in the mixing step (S36) are dried into a sheet.
That is, in the drying step (S38), first, the fiber mixed liquid obtained in the mixing step (S36) is filtered to remove the liquid, and the wet mixed fibers dispersed and mixed in the fiber mixed liquid are separated. Thus, the separated wet-blended fibers are wet-state fibers in which mushroom fibers and non-mushroom-derived fibers are blended. Filtration here can also be referred to as filtration because the purpose is to remove the liquid from the fiber mixture to separate the wet mixed fibers.
Also in the filtration in the drying step (S38), the same mesh material as that used in the filtration in the fiber extraction step (S34) is used. That is, a mesh material having a mesh size of 30 or more and 150 or less and an opening of 0.1 mm or more and 0.5 mm or less is used.
 乾燥工程(S38)では、次に、上述のように分離された湿潤混合繊維をシート状に乾燥させる。即ち、キノコ繊維及び非キノコ由来繊維が分散混合して重なり合った状態で乾燥させることでシート状のキノコシートが得られる。
 例えば、乾燥工程(S38)において、濾過の際に網材としてメッシュシート(網シート材)を用い、混合工程(S36)で得られた繊維混合液をこのメッシュシート表面に均一に分散させることで濾過及びシート化を行うことができる。そして、メッシュシート表面上でシート状に残った湿潤混合繊維を液体がなくなるまで静置し、更にそのまま乾燥させることができる。
 ここでの乾燥は、常温で行われてもよいし、乾燥室等で行われてもよく、キノコ繊維及び非キノコ由来繊維を変質させない温度であれば、乾燥温度は特に限定されない。
In the drying step (S38), the wet mixed fibers separated as described above are then dried into a sheet. That is, a sheet-like mushroom sheet is obtained by drying the mushroom fibers and the non-mushroom-derived fibers in a state in which they are dispersed and mixed and overlapped.
For example, in the drying step (S38), a mesh sheet (mesh sheet material) is used as a net material for filtration, and the fiber mixture obtained in the mixing step (S36) is uniformly dispersed on the mesh sheet surface. Filtration and sheeting can be performed. Then, the wet-mixed fibers remaining in the form of a sheet on the surface of the mesh sheet can be allowed to stand until the liquid disappears, and further dried as it is.
The drying here may be performed at room temperature or in a drying room or the like, and the drying temperature is not particularly limited as long as the temperature does not degrade the mushroom fibers and non-mushroom-derived fibers.
[第二実施形態の変形例]
 上述の第二製造方法は、適宜変形可能である。
 例えば、上述の第二製造方法では明示していないが、乾燥工程(S38)の後に、なめし工程が更に実行されてもよい。
[Modification of Second Embodiment]
The second manufacturing method described above can be modified as appropriate.
For example, although not explicitly stated in the above-described second manufacturing method, a tanning process may be further performed after the drying process (S38).
 なめし工程では、乾燥工程(S38)で得られたキノコシートに対してなめし剤が添加される。具体的には、なめし工程では、乾燥工程(S38)で得られたキノコシートをなめし剤を含むなめし溶液に所定時間浸漬させた後、取り出して乾燥させるなめし処理を1回又は複数回繰り返し行う。
 なめし剤は、クロムなめし、タンニンなめし等のように、繊維間の架橋を増加させることができる剤であればよく、特に制限されない。
 なめし工程が行われる場合には、なめし工程の後に、含水量が所定量となるまでシート状に乾燥させる乾燥工程を更に行えばよい。
 このようななめし工程を加えることで、最終的に生成されるキノコシートの耐久性を向上させることができる上に、柔軟性など皮革らしい質感を得ることができる。
In the tanning step, a tanning agent is added to the mushroom sheet obtained in the drying step (S38). Specifically, in the tanning step, the mushroom sheet obtained in the drying step (S38) is immersed in a tanning solution containing a tanning agent for a predetermined period of time, then taken out and dried, which is repeated once or more.
The tanning agent is not particularly limited as long as it can increase cross-linking between fibers, such as chrome tanning and tannin tanning.
When a tanning process is performed, a drying process may be further performed after the tanning process, in which the sheet is dried until the water content reaches a predetermined amount.
By adding such a tanning process, it is possible to improve the durability of the mushroom sheet that is finally produced, and also to obtain a leather-like texture such as flexibility.
 また、混合工程(S36)は、当該分散液と湿潤キノコ繊維と共に撹拌混合されるように、紙力増強剤を添加する工程を更に含んでもよい。
 紙力増強剤は、繊維間の接着力を向上させる剤であればよく、ポリビニルアルコール系紙力増強剤、ポリアクリルアミド系紙力増強剤等、一般的な紙力増強剤が利用されればよい。
 この工程を更に含むことで、キノコシートの強度を高めることができる。
Moreover, the mixing step (S36) may further include a step of adding a paper strength agent so as to be stirred and mixed together with the dispersion and the wet mushroom fibers.
The paper strength agent may be an agent that improves the adhesive strength between fibers, and general paper strength agents such as polyvinyl alcohol-based paper strength agents and polyacrylamide-based paper strength agents may be used. .
By further including this step, the strength of the mushroom sheet can be increased.
 更に、表面処理工程が実行されてもよい。表面処理工程では、乾燥工程(S38)又はその後に実行されるなめし工程を経て得られたキノコシートの表面に撥水コート剤、表面コーティング剤、皮用塗料等のような表面処理剤が塗布される。
 この工程を更に含むことで、水濡れに対する耐性を向上させたり、キノコシートの強度を上げたりすることができる。
Additionally, a surface treatment step may be performed. In the surface treatment step, a surface treatment agent such as a water-repellent coating agent, a surface coating agent, or a leather paint is applied to the surface of the mushroom sheet obtained through the drying step (S38) or the subsequent tanning step. be.
By further including this step, the resistance to water wetting can be improved, and the strength of the mushroom sheet can be increased.
 また、上述の実施形態とは異なるが、キノコの子実体から抽出されたキノコ繊維と共に、天然樹脂や合成樹脂のような樹脂を含有するキノコシートも生成可能である。この場合、当該キノコシートには、非キノコ由来繊維に替えて或いは非キノコ由来繊維と共に、樹脂が含まれていてもよい。 In addition, although different from the above-described embodiments, it is possible to produce a mushroom sheet containing resin such as natural resin or synthetic resin together with mushroom fibers extracted from mushroom fruiting bodies. In this case, the mushroom sheet may contain a resin instead of the non-mushroom-derived fibers or together with the non-mushroom-derived fibers.
 以下に実施例を挙げ、上述の実施形態を更に詳細に説明する。上述の実施形態及び変形例の内容は、以下の内容に限定されない。 Examples will be given below to describe the above embodiments in more detail. The contents of the above embodiments and modifications are not limited to the following contents.
[実施例1]
 実施例1では、上述の第一製造方法の一具体例を図1を用いて説明する。
 まず、未乾燥のシイタケの柄の一部(以降、シイタケ柄と表記する)がキノコの子実体として準備された(S10)。準備されたシイタケ柄は53gであった。
 続いて、プラスチック製の容器にそのシイタケ柄を入れ、それに対して純水147g及び8重量%の水酸化ナトリウム(NaOH)水溶液100gが添加された(S12)。
 ここで、準備されたシイタケ柄の固形分の重量比率は、18.6%であり、約10g(9.86g)とみなすと、全水分量は約290gであることから、容器内のNaOH水溶液の濃度は、2.76重量%である。
 このような状態の容器内を48時間かけて弱攪拌しながら、上述のような濃度のNaOH水溶液にシイタケ柄を浸漬させた(S12)。これにより、シイタケ柄の膨潤子実体を含むアルカリ処理液を得た。
[Example 1]
In Example 1, a specific example of the first manufacturing method described above will be described with reference to FIG.
First, a portion of the stalk of an undried shiitake mushroom (hereinafter referred to as shiitake stem) was prepared as a mushroom fruiting body (S10). The prepared shiitake mushroom stem weighed 53 g.
Subsequently, the shiitake mushroom stem was placed in a plastic container, to which 147 g of pure water and 100 g of an 8% by weight sodium hydroxide (NaOH) aqueous solution were added (S12).
Here, the weight ratio of the solid content of the prepared shiitake mushroom stem is 18.6%, and assuming that it is about 10 g (9.86 g), the total water content is about 290 g. is 2.76% by weight.
The shiitake mushroom stems were immersed in the NaOH aqueous solution having the concentration described above while gently stirring the inside of the container in such a state for 48 hours (S12). As a result, an alkali-treated liquid containing swollen fruiting bodies of shiitake mushrooms was obtained.
 その後、その容器の内容物を全量2Lの大容器に移し替えて、純水200gを添加して希釈すると共に、大容器内がpH6.5になるまで、0.5重量%の塩酸(HCL)水溶液を添加して中和した(S14)。最終的に塩酸水溶液は約400ml添加された。
 続いて、40メッシュの網材でその大容器内におけるシイタケ柄の膨潤子実体を含む水溶液が濾過された(S14)。
 そして、濾別されたものを大容器に戻し、1リットル(L)の純水を加えて、10分間、弱攪拌し、上記網材で濾過するという洗浄工程が3回行われた(S14)。
After that, the contents of the container are transferred to a large container with a total volume of 2 L, and 200 g of pure water is added for dilution. An aqueous solution was added to neutralize (S14). Finally about 400 ml of aqueous hydrochloric acid was added.
Subsequently, the aqueous solution containing the swollen fruit bodies of shiitake mushroom stems in the large container was filtered through a 40-mesh net (S14).
Then, the filtered material was returned to the large container, 1 liter (L) of pure water was added, the mixture was gently stirred for 10 minutes, and the washing process was performed three times (S14). .
 これによりシイタケ柄の湿潤キノコ繊維が抽出され(S14)、それを常温でシート状に乾燥させることによりキノコシートが取得された(S16)。
 結果、シイタケ柄の固形分9.86gからキノコシート5.69gが回収されたので、収率は、57.82%となった。
 実施例1では、(S14)及び(S16)においてメッシュシートによるシート作製法が採用された。メッシュシートによるシート作製法は、繊維をシート化する方法のことで、メッシュシートの目開き以上の繊維長、繊維幅をもつ繊維(膨潤子実体)をメッシュシート表面に均一分散させシート化、乾燥させる方法である。この方法は、製紙工業で植物から取り出した繊維であるパルプをシート化する方法であり、パルプを原料にする場合は抄紙と呼ばれる。ここではパルプの代わりにキノコ繊維をメッシュシート上でシート化するため、「メッシュシートによるシート作製法」と表記する。
 繊維が0.1mm以下、高分子溶液、又は高分子エマルジョン(水溶液や有機溶媒溶液、W/Oエマルジョン等)の場合は、この「メッシュシートによるシート作製法」ではシート化が不可能である。
As a result, wet mushroom fibers with a shiitake mushroom pattern were extracted (S14), and dried into a sheet at room temperature to obtain a mushroom sheet (S16).
As a result, 5.69 g of mushroom sheets were recovered from 9.86 g of the solid content of the shiitake stem, and the yield was 57.82%.
In Example 1, a sheet manufacturing method using a mesh sheet was adopted in (S14) and (S16). The method of making a sheet using a mesh sheet is a method of forming a sheet from fibers. Fibers (swollen fruit bodies) having a fiber length and fiber width greater than the opening of the mesh sheet are uniformly dispersed on the surface of the mesh sheet, formed into a sheet, and dried. It is a method to let This method is a method of sheeting pulp, which is a fiber extracted from plants in the paper industry, and is called papermaking when pulp is used as a raw material. In this case, instead of pulp, mushroom fibers are formed into a sheet on a mesh sheet, so the method is referred to as "mesh sheet production method."
If the fiber is 0.1 mm or less, or if it is a polymer solution or polymer emulsion (aqueous solution, organic solvent solution, W/O emulsion, etc.), it is not possible to form a sheet by this "method for producing a sheet using a mesh sheet."
[実施例2]
 実施例2では、実施例1の製造方法に加えて、可塑化工程が更に行われた。具体的には、繊維抽出工程(S14)までは、実施例1と同様の工程を実施し、繊維抽出工程(S14)により得られたシート状の湿潤キノコ繊維に対して、次のような可塑化工程が実施された。
 即ち、シート状の湿潤キノコ繊維の固形分(9.86g)の約2倍量のグリセリンを添加し、その後、室温で乾燥させ、乾燥したシート状のキノコ繊維を水洗して余剰のグリセリンが除去された。
 そして、グリセリンが除去されたシート状のキノコ繊維を再度乾燥させることで(S16)キノコシートが得られた。
 実施例2によれば、キノコシートの柔軟性を制御し得ることが実証された。但し、可塑化工程を含まない実施例1の製造方法でも、十分な柔軟性を有するキノコシートが製造可能であることも実証されている。
[Example 2]
In Example 2, in addition to the manufacturing method of Example 1, a plasticizing step was further performed. Specifically, the same steps as in Example 1 were performed up to the fiber extraction step (S14), and the sheet-like wet mushroom fibers obtained in the fiber extraction step (S14) were subjected to the following plasticization. A conversion step was performed.
That is, about twice the amount of glycerin as the solid content (9.86 g) of the sheet-like wet mushroom fiber is added, then dried at room temperature, and the dried sheet-like mushroom fiber is washed with water to remove excess glycerin. was done.
Then, the sheet-like mushroom fibers from which the glycerin was removed were dried again (S16) to obtain a mushroom sheet.
According to Example 2, it was demonstrated that the flexibility of the mushroom sheet can be controlled. However, it has also been demonstrated that the manufacturing method of Example 1, which does not include the plasticizing step, can also manufacture a mushroom sheet having sufficient flexibility.
[実施例3]
 アルカリ処理工程(S12)以外は実施例1と同様の方法で、2種類のキノコシートを製造し、それぞれ実施例3-1及び実施例3-2とした。実施例3-1及び実施例3-2は、それぞれ水素イオン指数がpH12.20以上pH13.60以下の範囲であって、かつ実施例1の水素イオン指数とは異なる水酸化ナトリウム水溶液を用いてアルカリ処理を実施した。このとき、実施例3-1及び実施例3-2それぞれに用いる水酸化ナトリウム水溶液の水素イオン指数が異なるよう調整した。
 図4は、実施例3における2種類のキノコシートの顕微鏡写真を示す図である。
 上述のとおり得た実施例3-1及び実施例3-2のキノコシートをそれぞれ、実体顕微鏡(倍率50倍)にて観察し、図4に示される顕微鏡写真を撮影した。図4(1)は実施例3-1の顕微鏡写真を示し、図4(2)は実施例3-2の顕微鏡写真を示す。
 得られた顕微鏡写真から無作為に選択したキノコ繊維について、繊維幅および繊維長を実測した。
[Example 3]
Two types of mushroom sheets were produced in the same manner as in Example 1 except for the alkali treatment step (S12), and designated Examples 3-1 and 3-2, respectively. Examples 3-1 and 3-2 each have a hydrogen ion exponent in the range of pH 12.20 or more and pH 13.60 or less, and using a sodium hydroxide aqueous solution different from the hydrogen ion exponent of Example 1 Alkaline treatment was performed. At this time, the sodium hydroxide aqueous solutions used in Examples 3-1 and 3-2 were adjusted to have different hydrogen ion exponents.
4 is a diagram showing micrographs of two types of mushroom sheets in Example 3. FIG.
The mushroom sheets of Examples 3-1 and 3-2 obtained as described above were each observed with a stereoscopic microscope (magnification of 50 times), and the micrograph shown in FIG. 4 was taken. FIG. 4(1) shows a micrograph of Example 3-1, and FIG. 4(2) shows a micrograph of Example 3-2.
The fiber width and fiber length were actually measured for mushroom fibers randomly selected from the obtained micrographs.
 上述のとおり実測された実施例3-1のキノコシートの繊維長は、796μm~1380μmの範囲であり、繊維幅が111μm~140μmの範囲であった。これらの実測値を算術平均して得られた平均繊維長は約1150μm、平均繊維幅は約126μmであった。
 また、上述のとおり実測された実施例3-2のキノコシートの繊維長は、1172μm~3408μmの範囲であり、繊維幅が397μm~493μmの範囲であった。これらの実測値を算術平均して得られた平均繊維長は約2167μm、平均繊維幅は約445μmであった。
 以上の結果から、本製造方法により得られたキノコシートは、平均繊維幅が50μm以上500μm以下であり、かつ平均繊維長が0.5mm以上5mm以下であるキノコ繊維から構成され得ることが確認された。更に言えば、本製造方法により得られたキノコシートは、平均繊維幅が100μm以上500μm以下であり、かつ平均繊維長が1mm以上3mm以下であるキノコ繊維から構成可能であるということもできる。
The fiber length of the mushroom sheet of Example 3-1 measured as described above was in the range of 796 μm to 1380 μm, and the fiber width was in the range of 111 μm to 140 μm. The average fiber length obtained by arithmetically averaging these measured values was about 1150 μm, and the average fiber width was about 126 μm.
The fiber length of the mushroom sheet of Example 3-2 measured as described above was in the range of 1172 μm to 3408 μm, and the fiber width was in the range of 397 μm to 493 μm. The average fiber length obtained by arithmetically averaging these measured values was about 2167 μm, and the average fiber width was about 445 μm.
From the above results, it was confirmed that the mushroom sheet obtained by this production method can be composed of mushroom fibers having an average fiber width of 50 μm or more and 500 μm or less and an average fiber length of 0.5 mm or more and 5 mm or less. rice field. Furthermore, it can be said that the mushroom sheet obtained by this production method can be composed of mushroom fibers having an average fiber width of 100 μm or more and 500 μm or less and an average fiber length of 1 mm or more and 3 mm or less.
[実施例4]
 実施例4では、シイタケ柄の代わりにマイタケの柄の端部(以降、マイタケ柄と表記)を用い、それ以外は実施例1と同様の方法でキノコシートを製造した。
[Example 4]
In Example 4, a mushroom sheet was produced in the same manner as in Example 1 except that the ends of maitake mushroom stems (hereinafter referred to as maitake mushroom stems) were used instead of the shiitake mushroom stems.
 実施例1のキノコシート及び実施例4のキノコシートそれぞれについて、フーリエ変換赤外分光(FTIR)分析法を用いて、キノコシートの赤外吸収スペクトルがそれぞれ取得された。
 図5は、マイタケ柄及びシイタケ柄から製造されたキノコシートの赤外吸収スペクトルを示すグラフである。図5(1)は、実施例4のマイタケ柄由来のキノコシートの赤外吸収スペクトルを示すグラフであり、図5(2)は、実施例1のシイタケ柄由来のキノコシートの赤外吸収スペクトルを示すグラフである。
 1660cm-1付近及び1560cm-1付近を含む破線円で囲むスペクトル形状は、キチン由来の二位の炭素に結合しているアセトアミド基、タンパク質のアミド結合(ペプチド結合)に由来するアミド基、又は糖タンパク質のアセトアミド基若しくはアミド結合に相当すると考えられるところ、図5(1)及び図5(2)の双方においてそのスペクトル形状が同様であることが分かる。また、図5(1)及び図5(2)のいずれにおいても1360cm-1付近にピークがある。
 以上より、マイタケ柄でもシイタケ柄でも同様に、キノコの子実体のキノコ繊維由来のキノコシートを製造可能であることが実証された。
For each of the mushroom sheet of Example 1 and the mushroom sheet of Example 4, an infrared absorption spectrum of the mushroom sheet was obtained using Fourier transform infrared spectroscopy (FTIR) analysis.
FIG. 5 is a graph showing infrared absorption spectra of mushroom sheets produced from maitake stems and shiitake stems. FIG. 5 (1) is a graph showing the infrared absorption spectrum of the mushroom sheet derived from the maitake mushroom stem of Example 4, and FIG. 5 (2) is the infrared absorption spectrum of the mushroom sheet derived from the shiitake mushroom stem of Example 1. is a graph showing
The spectrum shape surrounded by a dashed circle including around 1660 cm −1 and 1560 cm −1 is an acetamide group bound to the carbon at the second position derived from chitin, an amide bond derived from a protein amide bond (peptide bond), or a sugar. It can be seen that the spectrum shape is similar in both FIG. 5(1) and FIG. Moreover, there is a peak near 1360 cm −1 in both FIGS. 5(1) and 5(2).
From the above, it was demonstrated that the mushroom sheet derived from the mushroom fiber of the fruiting body of the mushroom can be similarly produced with both the maitake pattern and the shiitake pattern.
[実施例5]
 実施例5では、アルカリ処理工程(S12)で用いられるアルカリ水溶液のアルカリ濃度と、キノコ子実体としてのシイタケ柄からのキノコ繊維の抽出との関係が実証された。
 具体的には、アルカリ処理工程(S12)で用いられる水酸化ナトリウム水溶液のアルカリ濃度と水素イオン指数pHが表1に示す値に変更されたこと以外は、実施例1と同様にキノコシートを製造し、実施例5-1~実施例5-4とした。また、比較実験として、アルカリ処理工程(S12)において用いられる水酸化ナトリウム水溶液のアルカリ濃度と水素イオン指数pHが表1に示す値に変更されたこと以外は、実施例1と同様にキノコシートを製造し、比較例1及び比較例2とした。
[Example 5]
In Example 5, the relationship between the alkali concentration of the alkaline aqueous solution used in the alkali treatment step (S12) and the extraction of mushroom fibers from shiitake stems as mushroom fruiting bodies was demonstrated.
Specifically, mushroom sheets were produced in the same manner as in Example 1, except that the alkali concentration and hydrogen ion exponent pH of the aqueous sodium hydroxide solution used in the alkali treatment step (S12) were changed to the values shown in Table 1. and Examples 5-1 to 5-4. In addition, as a comparative experiment, a mushroom sheet was prepared in the same manner as in Example 1, except that the alkali concentration and hydrogen ion exponent pH of the aqueous sodium hydroxide solution used in the alkali treatment step (S12) were changed to the values shown in Table 1. Comparative Examples 1 and 2 were produced.
Figure JPOXMLDOC01-appb-T000001
 表1は、実施例5-1、実施例5-2、実施例5-3、実施例5-4、比較例1及び比較例2のアルカリ処理工程で用いられるアルカリ水溶液のアルカリ濃度とキノコ繊維の抽出結果との関係を示す。
 実施例5-1では、30.2度の室温内において3重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施された。
 実施例5-2では、31.1度の室温内において5重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施された。
 実施例5-3では、27.1度の室温内において0.5重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施された。
 実施例5-4では、27.0度の室温内において0.1重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施された。
 比較例1では、19.0度の実験室内常温において0.05重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施された。
 比較例2では、計測はされなかったが実験室内常温において30重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施された。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the alkali concentration and mushroom fiber of the alkali aqueous solution used in the alkali treatment step of Example 5-1, Example 5-2, Example 5-3, Example 5-4, Comparative Example 1 and Comparative Example 2. shows the relationship with the extraction result of
In Example 5-1, an alkali treatment step using a 3% by weight sodium hydroxide aqueous solution was performed at room temperature of 30.2 degrees.
In Example 5-2, an alkali treatment step was performed using a 5% by weight sodium hydroxide aqueous solution at room temperature of 31.1 degrees.
In Example 5-3, an alkali treatment step was performed using a 0.5% by weight sodium hydroxide aqueous solution at room temperature of 27.1 degrees.
In Example 5-4, an alkali treatment step was performed using a 0.1% by weight sodium hydroxide aqueous solution at room temperature of 27.0 degrees.
In Comparative Example 1, an alkali treatment step was performed using a 0.05% by weight sodium hydroxide aqueous solution at room temperature of 19.0° C. in the laboratory.
In Comparative Example 2, an alkali treatment step using a 30% by weight sodium hydroxide aqueous solution was performed at room temperature in the laboratory, although no measurement was performed.
 JIS Z8802のpH測定方法により各例のアルカリ処理工程で用いられた水酸化ナトリウム水溶液の水素イオン指数を計測したところ、実施例5-1ではpH13.31であり、実施例5-2ではpH13.41であり、実施例5-3ではpH12.89であり、実施例5-4ではpH12.34であり、比較例1ではpH12.18であった。なお、比較例2の水素イオン指数は、アルカリ濃度がpHガラス電極を溶解する濃度域であることから、測定不能であった。なお、正確なpH測定にはガラス電極を使用するが(JIS Z8802に準拠したpH測定)、10重量%以上のアルカリ濃度ではガラス表面が溶解することが知られている。 When the hydrogen ion exponent of the sodium hydroxide aqueous solution used in the alkali treatment step of each example was measured by the pH measurement method of JIS Z8802, it was pH 13.31 in Example 5-1 and pH 13.31 in Example 5-2. 41, pH 12.89 in Example 5-3, pH 12.34 in Example 5-4, and pH 12.18 in Comparative Example 1. The hydrogen ion exponent of Comparative Example 2 could not be measured because the alkali concentration was in the concentration range that dissolved the pH glass electrode. A glass electrode is used for accurate pH measurement (pH measurement conforming to JIS Z8802), but it is known that the glass surface dissolves at an alkali concentration of 10% by weight or more.
 結果、実施例5-1、実施例5-2、実施例5-3及び実施例5-4のアルカリ処理工程を経た場合には、キノコ繊維が抽出されたが、比較例1及び比較例2の場合には、キノコ繊維が適切に抽出されなかった。
 また、実施例5-1、実施例5-2、実施例5-3及び実施例5-4のアルカリ処理工程において子実体から膨潤子実体となるまでの経過を目視観察したところ、実施例5-1及び実施例5-2では4時間程度で膨潤子実体となっていたのに対して、実施例5-3及び実施例5-4では膨潤子実体になるまでにより長い時間要していた。具体的には、実施例5-3では18時間程度、実施例5-4では24時間程度要していた。
As a result, mushroom fibers were extracted through the alkali treatment steps of Examples 5-1, 5-2, 5-3 and 5-4, but Comparative Examples 1 and 2 In the case of , mushroom fibers were not properly extracted.
In addition, when the progress from the fruit body to the swollen fruit body in the alkali treatment steps of Examples 5-1, 5-2, 5-3 and 5-4 was visually observed, Example 5 -1 and Example 5-2 formed a swollen fruiting body in about 4 hours, whereas in Examples 5-3 and 5-4 it took a longer time to become a swollen fruiting body. . Specifically, it took about 18 hours in Example 5-3 and about 24 hours in Example 5-4.
 実施例5-1、実施例5-2、実施例5-3及び実施例5-4でキノコ繊維を適切に抽出できた理由は次のように考察される。水素イオン指数がpH12.20以上だとキノコの繊維間に含まれる多糖類の水酸基の解離定数に起因してイオン化(OH化)が進みキノコ繊維間で膨潤が起こる。結果としてキノコ繊維間を接着している水可溶性物質(酸性多糖類)や低濃度アルカリ水溶液可溶物質(たんぱく質、多糖類等)が溶解し易くなるからである。
 但し、実施例5-3及び実施例5-4のような低濃度アルカリ水溶液ではOHの解離度が低いため膨潤に時間を要することになる。
The reason why mushroom fibers could be appropriately extracted in Examples 5-1, 5-2, 5-3 and 5-4 is considered as follows. When the hydrogen ion exponent is pH 12.20 or higher, the dissociation constant of the hydroxyl group of the polysaccharide contained between the mushroom fibers promotes ionization (OH - conversion) and causes swelling between the mushroom fibers. This is because, as a result, water-soluble substances (acidic polysaccharides) and low-concentration alkaline aqueous solution-soluble substances (proteins, polysaccharides, etc.) bonding between mushroom fibers are easily dissolved.
However, in the case of low-concentration alkaline aqueous solutions such as those of Examples 5-3 and 5-4, the degree of dissociation of OH is low, so swelling takes time.
 一方、比較例1の0.05重量%水酸化ナトリウム水溶液でキノコ繊維が適切に抽出されなかった理由は次のように考察される。キノコの子実体に含まれる酸性多糖類が溶解する影響でアルカリ水溶液の水素イオン指数が低下してしまうと推測され、結果として、低濃度アルカリ水溶液可溶物質(たんぱく質、、多糖類等)が十分に溶解できずキノコ繊維が抽出できないからである。
 比較例2の30重量%水酸化ナトリウム水溶液でキノコ繊維が適切に抽出されなかった理由は次のように考察される。水酸化ナトリウム水溶液の粘度が高くなり、キノコ繊維間への水溶液の浸透を阻害してキノコ繊維間の膨潤が進行しない、或いは、キノコ繊維周辺の水溶液は高濃度のNaとOHが存在しているため水分子がキノコ繊維間に浸透することを阻害してキノコ繊維間の膨潤が進行しないからであると予想される。
 従って、本実施例により、アルカリ処理工程(S12)において、低濃度アルカリ水溶液がpH12.2以上13.6以下のアルカリ濃度とされることが好ましく、アルカリ水溶液として水酸化ナトリウム水溶液が利用される場合には、水酸化ナトリウム水溶液は0.07重量%以上8重量%以下の濃度とされることが好ましいことが実証された。
On the other hand, the reason why mushroom fibers were not properly extracted with the 0.05% by weight sodium hydroxide aqueous solution of Comparative Example 1 is considered as follows. It is presumed that the hydrogen ion index of the alkaline aqueous solution decreases due to the effect of dissolution of the acidic polysaccharides contained in the fruiting bodies of mushrooms. This is because the mushroom fiber cannot be extracted because it cannot be dissolved in
The reason why the mushroom fibers were not properly extracted with the 30% by weight sodium hydroxide aqueous solution of Comparative Example 2 is considered as follows. The viscosity of the sodium hydroxide aqueous solution increases, inhibiting the penetration of the aqueous solution between the mushroom fibers and the swelling between the mushroom fibers does not progress, or the aqueous solution around the mushroom fibers contains high concentrations of Na + and OH - . It is assumed that this is because the water molecules are prevented from penetrating between the mushroom fibers, and the swelling between the mushroom fibers does not proceed.
Therefore, according to this embodiment, in the alkali treatment step (S12), it is preferable that the low-concentration alkaline aqueous solution has an alkaline concentration of pH 12.2 or more and 13.6 or less, and when sodium hydroxide aqueous solution is used as the alkaline aqueous solution , it was demonstrated that the concentration of the aqueous sodium hydroxide solution is preferably 0.07% by weight or more and 8% by weight or less.
[実施例6]
 次に、上述の第二製造方法の一具体例として、実施例6におけるキノコシートの製造方法について図6を用いて説明する。
 図6は、実施例6におけるキノコシートの製造方法を示すフローチャートである。
 実施例6におけるキノコシートの製造方法は、上述の第二製造方法の一具体例であり、上述の第二製造方法の工程に加えて、なめし工程(S61)及び表面処理工程(S63)を更に含む。
 実施例6では、非キノコ由来繊維として楮繊維と麻繊維とが混合する楮・麻繊維が用いられた。楮・麻繊維は非キノコ由来セルロース繊維に該当する。
[Example 6]
Next, as a specific example of the above-described second manufacturing method, a method for manufacturing a mushroom sheet in Example 6 will be described with reference to FIG.
FIG. 6 is a flow chart showing a method for manufacturing a mushroom sheet in Example 6. FIG.
The method for producing a mushroom sheet in Example 6 is a specific example of the second production method described above, and in addition to the steps of the second production method described above, the tanning step (S61) and the surface treatment step (S63) are further included. include.
In Example 6, kozo/hemp fibers, which are a mixture of kozo fibers and hemp fibers, were used as the non-mushroom-derived fibers. Kozo and hemp fibers correspond to non-mushroom-derived cellulose fibers.
 まず、未乾燥のシイタケの柄の一部(以降、シイタケ柄と表記する)がキノコの子実体として準備された(S30)。
 続いて、そのシイタケ柄に対して上述の実施例5-1と同様のアルカリ処理工程が実施された(S32)。即ち、30.2度の室温内において3重量%の水酸化ナトリウム水溶液を用いたアルカリ処理工程が実施され、シイタケ柄の膨潤子実体を含むアルカリ処理液が得られた。
First, a portion of the stalk of an undried shiitake mushroom (hereinafter referred to as shiitake stem) was prepared as a mushroom fruiting body (S30).
Subsequently, the same alkali treatment step as in Example 5-1 was performed on the shiitake mushroom stem (S32). That is, an alkali treatment step using a 3% by weight aqueous sodium hydroxide solution was carried out at room temperature of 30.2° C. to obtain an alkali-treated solution containing swollen fruiting bodies of shiitake mushrooms.
 繊維抽出工程(S34)では、工程(S32)で得られたアルカリ処理液に純水を添加して希釈すると共に、塩酸(HCL)水溶液を添加して中和し、40メッシュの網材でシイタケ柄の膨潤子実体を含む水溶液を濾過した。そして、濾別されたものに対して純水を加えて、弱攪拌し、当該網材で濾過するという洗浄工程が3回行われた。
 これにより、シイタケ柄の湿潤キノコ繊維が525g抽出された(S34)。ここで抽出された湿潤キノコ繊維の固形分濃度を測定したところ、4.5%であった。この測定は、525gの湿潤キノコ繊維のうちの20gに対して水分計(株式会社ケツト科学研究所製の赤外線水分計FD-610)を用いて測定することで行われた。これにより、525gの湿潤キノコ繊維に含まれる固形分(キノコ繊維)は約23.6gとなる。
In the fiber extraction step (S34), pure water is added to the alkali-treated liquid obtained in the step (S32) to dilute it, and an aqueous solution of hydrochloric acid (HCL) is added to neutralize it. The aqueous solution containing the stalk-swollen fruiting bodies was filtered. Then, a washing process was performed three times in which pure water was added to the filtered material, weakly stirred, and filtered through the net material.
As a result, 525 g of wet mushroom fibers with shiitake stems were extracted (S34). When the solid content concentration of the wet mushroom fiber extracted here was measured, it was 4.5%. This measurement was performed by measuring 20 g out of 525 g of wet mushroom fiber using a moisture meter (infrared moisture meter FD-610 manufactured by Ketsuto Kagaku Kenkyusho Co., Ltd.). This gives about 23.6 g of solids (mushroom fiber) in 525 g of wet mushroom fiber.
 混合工程(S36)では、まず、楮・麻繊維を分散含有する500gの分散液が準備された。具体的には、固形分(楮・麻繊維)重量が7.1gとなる和紙調整用の楮・麻繊維のスラリーを純水に添加して攪拌することで500gの分散液が得られた。そして、この500gの分散液が、工程(S34)で得られた525gの湿潤キノコ繊維と共に、2リットル(L)のプラスチック容器に入れられた。
 実施例6では、ここで更に、1重量%PVA(ポリビニルアルコール)水溶液(日本合成化学工業株式会社(現:三菱ケミカル株式会社)製ゴーセノール(登録商標)N-300)100mlと1重量%グリセリン水溶液100mlとが添加され、市販ミキサーにより30秒攪拌することで、1125gの繊維混合液が得られた。PVA水溶液は紙力増強剤として添加されており、グリセリン水溶液は可塑剤として添加されている。
 この繊維混合液には、シイタケ柄のキノコ繊維が約23.6g、楮・麻繊維が7.1g含有しているため、キノコ繊維と非キノコ由来繊維との重量比はおおよそ77:23となっている。
In the mixing step (S36), first, 500 g of a dispersion containing dispersed kozo/hemp fibers was prepared. Specifically, 500 g of a dispersion was obtained by adding a slurry of kozo/hemp fibers for adjusting Japanese paper having a solid content (kozo/hemp fibers) weight of 7.1 g to pure water and stirring. 500 g of this dispersion was then placed in a 2 liter (L) plastic container along with 525 g of wet mushroom fibers obtained in step (S34).
In Example 6, 100 ml of a 1% by weight PVA (polyvinyl alcohol) aqueous solution (Nippon Synthetic Chemical Industry Co., Ltd. (currently: Mitsubishi Chemical Corporation) Gosenol (registered trademark) N-300) and 1% by weight glycerin aqueous solution 100 ml was added and stirred for 30 seconds with a commercially available mixer to obtain 1125 g of fiber mixed liquid. The PVA aqueous solution is added as a paper strength agent, and the glycerin aqueous solution is added as a plasticizer.
This fiber mixture contains about 23.6 g of shiitake-patterned mushroom fiber and 7.1 g of kozo/hemp fiber, so the weight ratio of mushroom fiber to non-mushroom-derived fiber is approximately 77:23. ing.
 乾燥工程(S38)では、工程(S36)で得られた1125gの繊維混合液を40メッシュのメッシュシート表面に均一に散布することで濾過し、メッシュシート表面上で濾別されたシート状の湿潤混合繊維を常温で乾燥させた。 In the drying step (S38), 1125 g of the fiber mixture liquid obtained in the step (S36) is evenly sprinkled on the surface of a 40-mesh mesh sheet and filtered, and the wet sheet-like liquid filtered on the surface of the mesh sheet is filtered. The mixed fibers were dried at ambient temperature.
 実施例6では、乾燥工程(S38)で得られたシート状の乾燥混合繊維に対してなめし処理を適用するなめし工程(S61)が更に行われた。このなめし処理では、当該乾燥混合繊維を5重量%植物タンニン水溶液5Lに30秒間浸漬させた後、ポリエチレンプレートに静置して常温で30分間乾燥させるという工程が3回繰り返し行われた。ここでは植物タンニンとしてミモザが用いられた。
 そして、最終的に含水量が5重量%から12重量%程度になるまで、常温での乾燥が行われた。
In Example 6, a tanning step (S61) was further performed in which a tanning treatment was applied to the sheet-like dry mixed fibers obtained in the drying step (S38). In this tanning treatment, the dry blended fiber was immersed in 5 L of a 5% by weight vegetable tannin aqueous solution for 30 seconds, then allowed to stand on a polyethylene plate and dried at normal temperature for 30 minutes, which was repeated three times. Mimosa was used here as a vegetable tannin.
Then, drying at room temperature was performed until the final water content was about 5% by weight to 12% by weight.
 実施例6では、上述のなめし工程(S61)の後、更に、表面処理工程(S63)が行われた。
 表面処理工程(S63)では、なめし工程(S61)で得られたキノコシートの表面に撥水コート剤(明成化学工業株式会社製アサヒガード)が塗布された。
 この撥水コート剤を塗布することで、キノコシートの強度を上げ、水濡れに対する耐性を向上させることができる。
In Example 6, a surface treatment step (S63) was further performed after the above-described tanning step (S61).
In the surface treatment step (S63), the surface of the mushroom sheet obtained in the tanning step (S61) was coated with a water-repellent coating agent (Asahiguard manufactured by Meisei Chemical Industry Co., Ltd.).
By applying this water-repellent coating agent, the strength of the mushroom sheet can be increased and the resistance to water wetting can be improved.
 実施例6では、なめし工程(S61)での乾燥時間のみを変えて、最終のキノコシートとして4つのサンプルが製造された。
 実施例6-1は、乾燥時間を24時間として得られたキノコシートを示し、実施例6-2は、乾燥時間を2時間として得られたキノコシートを示し、実施例6-3は、乾燥時間を4時間として得られたキノコシートを示し、実施例6-4は、乾燥時間を8時間として得られたキノコシートを示している。各実施例の上記乾燥時間は、80℃の環境下における乾燥時間である。
 結果、乾燥時間によって、最終形態のキノコシートにおいて厚み及び坪量を変えることができることが実証された。キノコシートの強度については乾燥時間が長いほど強度が高くなる傾向を示した。
Figure JPOXMLDOC01-appb-T000002
In Example 6, four samples were produced as the final mushroom sheet by changing only the drying time in the tanning step (S61).
Example 6-1 shows a mushroom sheet obtained with a drying time of 24 hours, Example 6-2 shows a mushroom sheet obtained with a drying time of 2 hours, and Example 6-3 shows a dried mushroom sheet. The mushroom sheets obtained with drying time of 4 hours are shown, and Example 6-4 shows the mushroom sheets obtained with drying time of 8 hours. The drying time in each example is the drying time in an environment of 80°C.
The results demonstrate that the drying time can vary the thickness and basis weight of the mushroom sheets in the final form. The strength of the mushroom sheets tended to increase with longer drying time.
Figure JPOXMLDOC01-appb-T000002
[実施例7][実施例8]
 実施例7では、混合工程(S36)で利用される湿潤キノコ繊維の重量及び非キノコ由来繊維の重量、並びになめし工程(S61)でのなめし処理の回数及び表面処理工程(S63)での表面処理の回数を表3に示す内容に変えて上述の実施例6と同様の製造方法を実施することで、最終のキノコシートとして6つのサンプル(実施例7-1から実施例7-6)が製造された。なお、実施例7-5及び実施例7-6では、なめし工程(S61)及び表面処理工程(S63)は行われていない。
 更に実施例8として、非キノコ由来繊維を含まないキノコシートも製造された。実施例8のキノコシートの製造方法は、実施例6の工程(S30)、工程(S32)及び工程(S34)を含み、工程(S34)で抽出された湿潤キノコ繊維350g(固形分(キノコ繊維)約15.8g)を実施例1の工程(S16)と同様にして常温でシート状に乾燥させることで非キノコ由来繊維を含まないキノコシートを得た。実施例8においても実施例7-5及び実施例7-6と同様になめし工程(S61)及び表面処理工程(S63)は行われていない
 以下の説明では、混合工程(S36)で利用される湿潤キノコ繊維の重量及び非キノコ由来繊維の重量を原料の重量と表記する場合もある。
[Example 7] [Example 8]
In Example 7, the weight of wet mushroom fiber and the weight of non-mushroom-derived fiber used in the mixing step (S36), the number of tanning treatments in the tanning step (S61), and the surface treatment in the surface treatment step (S63) 6 samples (Examples 7-1 to 7-6) were produced as the final mushroom sheet by carrying out the same manufacturing method as in Example 6 above except that the number of times was changed to that shown in Table 3. was done. In Examples 7-5 and 7-6, the tanning step (S61) and the surface treatment step (S63) were not performed.
Furthermore, as Example 8, a mushroom sheet containing no non-mushroom-derived fibers was also produced. The method for producing a mushroom sheet of Example 8 includes the step (S30), step (S32) and step (S34) of Example 6, and 350 g of wet mushroom fiber extracted in step (S34) (solid content (mushroom fiber ) about 15.8 g) was dried into a sheet at room temperature in the same manner as in the step (S16) of Example 1 to obtain a mushroom sheet containing no non-mushroom-derived fibers. In Example 8, the tanning step (S61) and the surface treatment step (S63) were not performed in the same manner as in Examples 7-5 and 7-6. The weight of wet mushroom fiber and the weight of non-mushroom-derived fiber are sometimes referred to as the weight of ingredients.
Figure JPOXMLDOC01-appb-T000003
 表3は、6つのサンプル(実施例7-1から実施例7-6)と実施例6-1のサンプルと実施例8のサンプルとを製造するための製造条件並びに測定結果及び評価結果を示す表である。
 表3における強度は、約5cm×5cmのキノコシートの一つの縁辺をシート面に対して交差する方向に引裂くように力を加えたときの当該キノコシートの引裂き耐性を評価したものである。具体的には、引裂き耐性(引裂き難さ)の大きさを相対的な順にS0<S1<S2<S3<S4として評価した。
 表3における引張強さは、JISP8113:2006(ISO1924-2:1994)に基づいて測定された。試験機には株式会社島津製作所製材料強度試験機(オートグラフAG-1)が用いられ、実施例6-1、実施例7-1、実施例7-4、実施例8でそれぞれ得られたキノコシートの一部を裁断して試験片として用いた。試験片の幅は15±0.1mmであり、試験長さ(つかみ線の平均間隔)が180±1mmとなるようにつかみ具の位置を調整し、引張速度は、20±5mm/minとした。
 表3における質感(触感)は、キノコシートの触感の官能評価の結果を示している。具体的には、複数の試験者が、それぞれサンプルの触感を確認し、「しっとり滑らか(smooth and moist)/さらっと滑らか(smooth and dry)/ごわつき感(rough)有り」のいずれかの感触を選択する官能評価をそれぞれ行い、最終的に当該試験者の総意として決められた感触を表3の質感(触感)に示した。表3の「しっとり」表記は「しっとり滑らか」な評価を示し、「さらっと」表記は「さらっと滑らか」な評価を示している。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the manufacturing conditions for manufacturing six samples (Examples 7-1 to 7-6), the sample of Example 6-1, and the sample of Example 8, as well as measurement results and evaluation results. It is a table.
The strength shown in Table 3 was obtained by evaluating the tear resistance of the mushroom sheet when a force was applied to tear one edge of the mushroom sheet of about 5 cm x 5 cm in a direction intersecting the sheet surface. Specifically, the magnitude of tear resistance (tear resistance) was evaluated as S0<S1<S2<S3<S4 in relative order.
The tensile strength in Table 3 was measured based on JISP8113:2006 (ISO1924-2:1994). A material strength tester manufactured by Shimadzu Corporation (Autograph AG-1) was used as the tester, and obtained in Examples 6-1, 7-1, 7-4, and 8, respectively. A part of the mushroom sheet was cut and used as a test piece. The width of the test piece was 15±0.1 mm, the position of the gripper was adjusted so that the test length (average distance between grip lines) was 180±1 mm, and the tensile speed was 20±5 mm/min. .
The texture (tactile sensation) in Table 3 indicates the result of sensory evaluation of the tactile sensation of the mushroom sheet. Specifically, multiple testers confirmed the tactile sensation of each sample, and felt any of the following: "smooth and moist/smooth and dry/rough". A sensory evaluation was performed for each of the selected samples, and the feeling finally determined as a consensus of the testers is shown in Table 3 as the texture (feel). The "moist" notation in Table 3 indicates an evaluation of "moist and smooth", and the "light" notation indicates an evaluation of "light and smooth."
 以下、表3を参照しながら、各サンプルを比較する。
 キノコ繊維と非キノコ由来繊維との重量比(両繊維重量比)については、実施例7-1から実施例7-3の3つのサンプルと実施例6-1のサンプルとがおおよそ77:23であり実質的に同一となっており、実施例7-4のサンプルでは67:33となっており、実施例7-5のサンプルでは91:9となっており、実施例7-6のサンプルでは83:17となっており、実施例8のサンプルでは100:0となっている。
Each sample is compared below with reference to Table 3.
Regarding the weight ratio of mushroom fibers and non-mushroom-derived fibers (both fiber weight ratios), the three samples of Examples 7-1 to 7-3 and the sample of Example 6-1 were approximately 77:23. They are substantially the same, 67:33 in the sample of Example 7-4, 91:9 in the sample of Example 7-5, and 91:9 in the sample of Example 7-6. The ratio is 83:17, and the sample of Example 8 is 100:0.
<引張強さの比較>
 上述したとおり、実施例6-1、実施例7-1、実施例7-4及び実施例8の各サンプル(キノコシート)に関して、JISP8113に基づいて引張強さが測定された。
 図7は、実施例6-1、実施例7-1、実施例7-4及び実施例8、並びに比較例の各サンプルの引張試験の結果を示すグラフである。図7における比較例のサンプルには一般的なコピー用紙(普通紙)が用いられた。
 結果、各サンプルが破断した際の最大試験力(N)及びストローク(mm)並びに引張強さ(kN/m)は次のようになった。
・比較例:最大試験力=23.038N、ストローク=約8mm、引張強さ=1.536kN/m
・実施例6-1:最大試験力=21.019N、ストローク=約31mm、引張強さ=1.401kN/m
・実施例7-1:最大試験力=19.323N、ストローク=約26mm、引張強さ=1.288kN/m
・実施例7-4:最大試験力=57.284N、ストローク=約11mm、引張強さ=3.819kN/m
・実施例8:最大試験力=1.867N、ストローク=約23mm、引張強さ=0.124kN/m
<Comparison of tensile strength>
As described above, the tensile strength of each sample (mushroom sheet) of Examples 6-1, 7-1, 7-4 and 8 was measured according to JISP8113.
FIG. 7 is a graph showing the results of a tensile test of each sample of Examples 6-1, 7-1, 7-4 and 8, and Comparative Example. Common copy paper (plain paper) was used for the sample of the comparative example in FIG.
As a result, the maximum test force (N), stroke (mm) and tensile strength (kN/m) when each sample broke were as follows.
・Comparative example: maximum test force = 23.038 N, stroke = about 8 mm, tensile strength = 1.536 kN / m
・Example 6-1: Maximum test force = 21.019 N, stroke = about 31 mm, tensile strength = 1.401 kN / m
・Example 7-1: Maximum test force = 19.323 N, stroke = about 26 mm, tensile strength = 1.288 kN / m
・Example 7-4: Maximum test force = 57.284 N, stroke = about 11 mm, tensile strength = 3.819 kN / m
・Example 8: Maximum test force = 1.867 N, stroke = about 23 mm, tensile strength = 0.124 kN / m
 このように各実施例におけるキノコシートでは、非キノコ由来繊維を含まないよりは含むほうが引張強さが増すこと、及び非キノコ由来繊維の重量割合が大きいほど引張強さが増すことが実証された。
 この結果は、表3に示される強度(引裂き耐性)についても同様となっている。即ち、非キノコ由来繊維を含まない実施例8のサンプルの強度(S0)が最も小さく、非キノコ由来繊維の重量割合が大きい実施例7-4のサンプルの強度(S4)が最も高くなっている。そして、非キノコ由来繊維の重量割合が大きくなるほど、強度が高くなる傾向を示している。
In this way, it was demonstrated that the mushroom sheet in each example had a higher tensile strength with non-mushroom-derived fibers than without, and that the higher the weight ratio of non-mushroom-derived fibers, the higher the tensile strength. .
This result is the same for the strength (tear resistance) shown in Table 3. That is, the strength (S0) of the sample of Example 8, which does not contain non-mushroom-derived fibers, is the lowest, and the strength (S4) of the sample of Example 7-4, which has a large weight ratio of non-mushroom-derived fibers, is the highest. . Further, there is a tendency that the higher the weight ratio of non-mushroom-derived fibers, the higher the strength.
<実施例7-1と実施例7-2との比較>
 実施例7-1のサンプルと実施例7-2のサンプルとは、なめし処理回数が異なっている。
 各サンプルの強度は、実施例7-2のほうが実施例7-1よりも強くなっており、各サンプルの質感は、実施例7-1がしっとり滑らかな触感を示し、実施例7-2がさらっと滑らかな触感を示している。
 また、厚み及び坪量は、実施例7-1のほうが実施例7-2よりも大きくなっている。
 以上より、なめし処理の回数が多いと、強度が上がる一方で、厚み及び坪量が減り、しっとり感を減少させさらっとした感触に制御することができ、なめし処理の回数が少ないと、強度が下がる一方で、厚み及び坪量が増加ししっとり感も増すことが分かる。
 これは、なめし処理によって架橋点を増やすことによる強度アップや、繊維間の可塑剤(グリセリン)をなめし処理剤の水溶性分に溶出させる制御に伴う水素結合増加による強度アップや、質感をしっとり(moist)からさらっと(dry)した触感となるように制御可能であることを示す。
<Comparison between Example 7-1 and Example 7-2>
The sample of Example 7-1 and the sample of Example 7-2 differ in the number of tanning treatments.
The strength of each sample is stronger in Example 7-2 than in Example 7-1, and the texture of each sample is moist and smooth in Example 7-1, and Example 7-2 It has a smooth and silky feel to the touch.
Further, the thickness and basis weight of Example 7-1 are larger than those of Example 7-2.
From the above, when the number of tanning treatments is large, the strength increases, but the thickness and basis weight decrease, and the moist feeling can be reduced to control the smooth feel. It can be seen that the thickness and the basis weight increased while the moist feeling also increased.
This is achieved by increasing the strength of the tanning process by increasing the cross-linking points, increasing the strength by increasing the hydrogen bonding associated with controlling the elution of the plasticizer (glycerin) between the fibers into the water-soluble portion of the tanning agent, and moistening the texture ( It shows that it is possible to control the texture from moist to dry.
<実施例7-2と実施例6-1との比較>
 実施例7-2のサンプルと実施例6-1のサンプルとは、原料の量(湿潤キノコ繊維及び非キノコ由来繊維の重量)が異なっている。
 各サンプルの強度は、実施例6-1と実施例7-2とでおおよそ同じになっており、各サンプルの質感は、実施例6-1がしっとり感を有し、実施例7-2がさらっとした感触を有している。
 また、厚みは実施例6-1のほうが実施例7-2よりも大きくなっており、坪量は実施例7-2のほうが実施例6-1よりも大きくなっている。
<Comparison between Example 7-2 and Example 6-1>
The sample of Example 7-2 and the sample of Example 6-1 differ in the amount of raw materials (wet mushroom fiber and non-mushroom derived fiber weight).
The strength of each sample is approximately the same between Example 6-1 and Example 7-2, and the texture of each sample is moist in Example 6-1 and moist in Example 7-2. It has a smooth feel.
Further, the thickness of Example 6-1 is larger than that of Example 7-2, and the basis weight of Example 7-2 is larger than that of Example 6-1.
<実施例7-1と実施例7-4との比較>
 実施例7-1のサンプルと実施例7-4のサンプルとは、原料の量(湿潤キノコ繊維及び非キノコ由来繊維の重量)及び両繊維重量比が異なっている。
 各サンプルの強度及び引張強さは、実施例7-4のほうが実施例7-1よりも強くなっており、各サンプルの質感は、実施例7-1がしっとり滑らかな触感を示し、実施例7-4がさらっと滑らかな触感を示している。
 また、厚みは実施例7-4のほうが実施例7-1よりも大きくなっており、坪量は実施例7-1のほうが実施例7-4よりも大きくなっている。
<Comparison between Example 7-1 and Example 7-4>
The sample of Example 7-1 and the sample of Example 7-4 differed in the amounts of raw materials (wet mushroom fiber and non-mushroom derived fiber weight) and weight ratio of both fibers.
The strength and tensile strength of each sample are stronger in Example 7-4 than in Example 7-1, and the texture of each sample is moist and smooth in Example 7-1. 7-4 shows a light and smooth touch.
Further, the thickness of Example 7-4 is larger than that of Example 7-1, and the basis weight of Example 7-1 is larger than that of Example 7-4.
<実施例7-1と実施例7-5と実施例7-6と実施例8との比較>
 実施例7-1、実施例7-5、実施例7-6及び実施例8の各サンプルは、湿潤キノコ繊維の重量が同じであるが非キノコ由来繊維とキノコ繊維との重量比が異なっている。
 各サンプルの強度は、実施例7-5及び実施例8(S0)よりも実施例7-6(S1)のほうが強く、実施例7-6(S1)よりも実施例7-1(S2)のほうが強くなっており、非キノコ由来繊維の重量割合が大きくなるほど強くなっている。
 各サンプルの質感はいずれもしっとり滑らかな触感を示している。
<Comparison between Example 7-1, Example 7-5, Example 7-6, and Example 8>
Each sample of Example 7-1, Example 7-5, Example 7-6, and Example 8 had the same weight of wet mushroom fiber, but different weight ratios of non-mushroom-derived fiber and mushroom fiber. there is
The intensity of each sample is stronger in Example 7-6 (S1) than in Examples 7-5 and 8 (S0), and in Example 7-1 (S2) than in Example 7-6 (S1). is stronger, and becomes stronger as the weight ratio of non-mushroom-derived fibers increases.
The texture of each sample indicates a moist and smooth feel.
 実施例7-2と実施例6-1との比較結果及び実施例7-1と実施例7-4との比較結果並びに実施例7-1と実施例7-5と実施例7-6と実施例8の比較結果により、非キノコ由来繊維の重量割合が高まると引張強さ及び強度が上がる一方でしっとり感が減少し、非キノコ由来繊維の重量割合が下がると引張強さ及び強度が下がる一方でしっとり感が増すことが分かる。
 また、非キノコ由来繊維の重量割合が9%以下の場合には、表3に示される強度の差はそれほど大きくないことが分かる。非キノコ由来繊維の重量割合が23%程度であれば、しっとり滑らかな触感を有することが分かる。
Comparison results between Example 7-2 and Example 6-1, comparison results between Example 7-1 and Example 7-4, and Example 7-1, Example 7-5, and Example 7-6 According to the comparison results of Example 8, when the weight ratio of non-mushroom-derived fibers increases, the tensile strength and strength increase, but the moist feeling decreases, and when the weight ratio of non-mushroom-derived fibers decreases, the tensile strength and strength decrease. On the other hand, it can be seen that the moist feeling increases.
Moreover, when the weight ratio of non-mushroom-derived fibers is 9% or less, the difference in strength shown in Table 3 is not so large. It can be seen that when the weight ratio of the non-mushroom-derived fibers is about 23%, it has a moist and smooth feel.
 このように実施例7及び8によれば、キノコシートは、キノコの子実体から抽出されたキノコ繊維を含有していることで、皮革のような柔軟性のある滑らかな質感及びシートとして適度な強度を有することができることが実証された。
 更に、実施例7及び8によれば、キノコシートは、非キノコ由来繊維を含有することでシートの引張強さ及び強度を向上させることができることも実証された。
 また、キノコシートが適度な引張強さ及び強度を持ちながら皮革のような柔軟で滑らかな触感を有するには、キノコ繊維と非キノコ由来繊維との重量比が91:9よりも83:17のほうがより好ましく、83:17或いは67:33よりも77:23のほうがより好ましいことが分かった。即ち、キノコ繊維と非キノコ由来繊維との重量比は、90:10から60:40の範囲内であることがより好ましく、80:20から65:35の範囲内であることが更に好ましいことが実証された。
 また、なめし処理の回数や原料の量(湿潤キノコ繊維及び非キノコ由来繊維の重量)によって、厚みや坪量を増減させ、強度及び質感を変えることができることが実証された。
Thus, according to Examples 7 and 8, the mushroom sheet contains the mushroom fiber extracted from the fruiting body of the mushroom, so that it has a leather-like soft and smooth texture and is suitable as a sheet. It has been demonstrated that it can have strength.
Furthermore, according to Examples 7 and 8, it was demonstrated that the mushroom sheet can improve the tensile strength and strength of the sheet by containing non-mushroom-derived fibers.
In addition, in order for the mushroom sheet to have a soft and smooth texture like leather while having appropriate tensile strength and strength, the weight ratio of mushroom fibers to non-mushroom-derived fibers should be 83:17 rather than 91:9. 77:23 was found to be more preferable than 83:17 or 67:33. That is, the weight ratio of mushroom fibers to non-mushroom-derived fibers is more preferably in the range of 90:10 to 60:40, and more preferably in the range of 80:20 to 65:35. Proven.
It was also demonstrated that the number of tanning treatments and the amount of raw material (wet mushroom fiber and non-mushroom derived fiber weight) can increase or decrease the thickness and basis weight to change the strength and texture.
 上述の内容は、次のように特定することもできる。
(付記1)
 キノコの子実体から抽出されたキノコ繊維を含有したキノコシート。
(付記2)
 非キノコ由来繊維を更に含有した付記1に記載のキノコシート。
(付記3)
 前記非キノコ由来繊維は、非キノコ由来セルロース繊維であり、
 前記キノコ繊維と前記非キノコ由来セルロース繊維との重量比が99:1から50:50である、
 付記2に記載のキノコシート。
(付記4)
 付記1に記載のキノコシートの製造方法であって、
 キノコの子実体内のキノコ繊維間を膨潤させた膨潤子実体を得るために、該子実体を常温にてpH12.2以上pH13.6以下の低濃度アルカリ水溶液で処理するアルカリ処理工程と、
 前記アルカリ処理工程により得られた前記膨潤子実体を濾過することで湿潤キノコ繊維を抽出する繊維抽出工程と、
 前記繊維抽出工程で抽出された湿潤キノコ繊維をシート状に乾燥させる乾燥工程と、
 を含むキノコシートの製造方法。
(付記5)
 付記2又は3に記載のキノコシートの製造方法であって、
 キノコの子実体内のキノコ繊維間を膨潤させた膨潤子実体を得るために、該子実体を常温にてpH12.2以上pH13.6以下の低濃度アルカリ水溶液で処理するアルカリ処理工程と、
 前記アルカリ処理工程により得られた前記膨潤子実体を濾過することにより湿潤キノコ繊維を抽出する繊維抽出工程と、
 非キノコ由来繊維と前記繊維抽出工程で抽出された湿潤キノコ繊維と液状分散媒とを攪拌混合することで、該非キノコ由来繊維と前記キノコ繊維とが分散混合する繊維混合液を得る混合工程と、
 前記混合工程で得られた繊維混合液を濾過して分離された湿潤混合繊維をシート状に乾燥させる乾燥工程と、
 を含むキノコシートの製造方法。
(付記6)
 前記繊維抽出工程では、前記膨潤子実体を希釈及び中和並びに濾過することにより前記湿潤キノコ繊維を抽出し、
 前記混合工程では、前記繊維抽出工程で前記膨潤子実体を希釈及び中和並びに濾過することで得られた前記湿潤キノコ繊維と前記非キノコ由来繊維と前記液状分散媒とを攪拌混合する、
 付記5に記載のキノコシートの製造方法。
(付記7)
 前記混合工程は、前記液状分散媒と前記非キノコ由来繊維と前記湿潤キノコ繊維と共に攪拌混合されるように、可塑剤を添加する可塑化工程を含む、
 付記5又は6に記載のキノコシートの製造方法。
(付記8)
 前記乾燥工程により得られたキノコシートに対してなめし剤を添加するなめし工程
 更に含む付記5から7のいずれか一つに記載のキノコシートの製造方法。
(付記9)
 前記非キノコ由来繊維は、非キノコ由来セルロース繊維であり、
 前記混合工程では、前記非キノコ由来セルロース繊維が前記液状分散媒に分散している分散液と前記湿潤キノコ繊維とを攪拌混合し、
 前記混合工程で投与される前記分散液の重量は、前記繊維混合液内の前記キノコ繊維と前記非キノコ由来セルロース繊維との重量比が99:1から50:50の範囲内の所定値となるように、前記分散液中の前記非キノコ由来セルロース繊維の濃度及び前記湿潤キノコ繊維中の前記キノコ繊維の濃度並びに前記湿潤キノコ繊維の重量に応じて決められる、
 付記5から8のいずれか一つに記載のキノコシートの製造方法。
(付記10)
 前記子実体は、食用キノコ商品において切除されているキノコの柄の端部である、
 付記4から9のいずれか一つに記載のキノコシートの製造方法。
(付記11)
 前記アルカリ処理工程で用いられる低濃度アルカリ水溶液は、0.07重量%以上8重量%以下の水酸化ナトリウム水溶液である、
 付記4から10のいずれか一つに記載のキノコシートの製造方法。
(付記12)
 前記繊維抽出工程では、メッシュが30以上150以下で目開きが0.1mm以上0.5mm以下の網材を用いて濾過する、
 付記4から11のいずれか一つに記載のキノコシートの製造方法。
(付記13)
 前記キノコ繊維は、平均繊維幅が50μm以上500μm以下であり、かつ平均繊維長が0.5mm以上5mm以下である、
 付記1から3のいずれか一つに記載のキノコシート。
(付記14)
 前記子実体は、食用キノコ商品において切除されているキノコの柄の端部である、
 付記1から3のいずれか一つ又は付記12に記載のキノコシート。
The above content can also be specified as follows.
(Appendix 1)
A mushroom sheet containing mushroom fibers extracted from a mushroom fruiting body.
(Appendix 2)
The mushroom sheet according to Appendix 1, further containing non-mushroom-derived fibers.
(Appendix 3)
The non-mushroom-derived fibers are non-mushroom-derived cellulose fibers,
The weight ratio of the mushroom fiber to the non-mushroom-derived cellulose fiber is from 99:1 to 50:50.
The mushroom sheet according to appendix 2.
(Appendix 4)
A method for producing a mushroom sheet according to Appendix 1,
an alkali treatment step of treating the fruiting body with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and pH 13.6 or less at room temperature in order to obtain a swollen fruiting body in which mushroom fibers in the fruiting body of the mushroom are swollen;
a fiber extraction step of extracting wet mushroom fibers by filtering the swollen fruit bodies obtained in the alkali treatment step;
a drying step of drying the wet mushroom fibers extracted in the fiber extraction step into a sheet;
A method for producing a mushroom sheet comprising:
(Appendix 5)
A method for producing a mushroom sheet according to Appendix 2 or 3,
an alkali treatment step of treating the fruiting body with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and pH 13.6 or less at room temperature in order to obtain a swollen fruiting body in which mushroom fibers in the fruiting body of the mushroom are swollen;
a fiber extraction step of extracting wet mushroom fibers by filtering the swollen fruit bodies obtained in the alkali treatment step;
A mixing step of obtaining a fiber mixed liquid in which the non-mushroom-derived fibers and the mushroom fibers are dispersed and mixed by stirring and mixing the non-mushroom-derived fibers, the wet mushroom fibers extracted in the fiber extraction step, and a liquid dispersion medium;
a drying step of filtering the fiber mixture obtained in the mixing step and drying the separated wet mixed fibers into a sheet;
A method for producing a mushroom sheet comprising:
(Appendix 6)
In the fiber extraction step, the wet mushroom fiber is extracted by diluting, neutralizing, and filtering the swollen fruiting body,
In the mixing step, the wet mushroom fibers obtained by diluting, neutralizing, and filtering the swollen fruiting bodies in the fiber extraction step, the non-mushroom-derived fibers, and the liquid dispersion medium are stirred and mixed.
A method for producing a mushroom sheet according to appendix 5.
(Appendix 7)
The mixing step includes a plasticizing step of adding a plasticizer so that the liquid dispersion medium, the non-mushroom-derived fibers, and the wet mushroom fibers are stirred and mixed together.
A method for producing a mushroom sheet according to appendix 5 or 6.
(Appendix 8)
8. The method for producing a mushroom sheet according to any one of appendices 5 to 7, further comprising a tanning step of adding a tanning agent to the mushroom sheet obtained by the drying step.
(Appendix 9)
The non-mushroom-derived fibers are non-mushroom-derived cellulose fibers,
In the mixing step, the dispersion liquid in which the non-mushroom-derived cellulose fibers are dispersed in the liquid dispersion medium and the wet mushroom fibers are stirred and mixed,
The weight of the dispersion administered in the mixing step is such that the weight ratio of the mushroom fibers and the non-mushroom-derived cellulose fibers in the fiber mixture is a predetermined value within the range of 99:1 to 50:50. determined according to the concentration of the non-mushroom-derived cellulose fibers in the dispersion and the concentration of the mushroom fibers in the wet mushroom fibers and the weight of the wet mushroom fibers,
A method for producing a mushroom sheet according to any one of Appendices 5 to 8.
(Appendix 10)
The fruiting body is the end of the mushroom stalk that is excised in an edible mushroom product.
A method for producing a mushroom sheet according to any one of Appendices 4 to 9.
(Appendix 11)
The low-concentration alkaline aqueous solution used in the alkali treatment step is a sodium hydroxide aqueous solution of 0.07% by weight or more and 8% by weight or less.
A method for producing a mushroom sheet according to any one of Appendices 4 to 10.
(Appendix 12)
In the fiber extraction step, filtration is performed using a mesh material having a mesh size of 30 or more and 150 or less and an opening of 0.1 mm or more and 0.5 mm or less.
A method for producing a mushroom sheet according to any one of Appendices 4 to 11.
(Appendix 13)
The mushroom fibers have an average fiber width of 50 μm or more and 500 μm or less and an average fiber length of 0.5 mm or more and 5 mm or less.
4. The mushroom sheet according to any one of Appendices 1 to 3.
(Appendix 14)
The fruiting body is the end of the mushroom stalk that is excised in an edible mushroom product.
The mushroom sheet according to any one of appendices 1 to 3 or appendix 12.
 本出願は、2021年11月18日に出願された日本出願(特願2021-188228号)を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 
This application claims priority based on the Japanese application (Japanese Patent Application No. 2021-188228) filed on November 18, 2021, and incorporates all of its disclosure herein.

Claims (14)

  1.  キノコの子実体から抽出されたキノコ繊維を含有したキノコシート。 A mushroom sheet containing mushroom fibers extracted from mushroom fruiting bodies.
  2.  非キノコ由来繊維を更に含有した請求項1に記載のキノコシート。 The mushroom sheet according to claim 1, further containing non-mushroom-derived fibers.
  3.  前記非キノコ由来繊維は、非キノコ由来セルロース繊維であり、
     前記キノコ繊維と前記非キノコ由来セルロース繊維との重量比が99:1から50:50である、
     請求項2に記載のキノコシート。
    The non-mushroom-derived fibers are non-mushroom-derived cellulose fibers,
    The weight ratio of the mushroom fiber to the non-mushroom-derived cellulose fiber is from 99:1 to 50:50.
    The mushroom sheet according to claim 2.
  4.  請求項1に記載のキノコシートの製造方法であって、
     キノコの子実体内のキノコ繊維間を膨潤させた膨潤子実体を得るために、該子実体を常温にてpH12.2以上pH13.6以下の低濃度アルカリ水溶液で処理するアルカリ処理工程と、
     前記アルカリ処理工程により得られた前記膨潤子実体を濾過することで湿潤キノコ繊維を抽出する繊維抽出工程と、
     前記繊維抽出工程で抽出された湿潤キノコ繊維をシート状に乾燥させる乾燥工程と、
     を含むキノコシートの製造方法。
    A method for producing a mushroom sheet according to claim 1,
    an alkali treatment step of treating the fruiting body with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and pH 13.6 or less at room temperature in order to obtain a swollen fruiting body in which mushroom fibers in the fruiting body of the mushroom are swollen;
    a fiber extraction step of extracting wet mushroom fibers by filtering the swollen fruit bodies obtained in the alkali treatment step;
    a drying step of drying the wet mushroom fibers extracted in the fiber extraction step into a sheet;
    A method for producing a mushroom sheet comprising:
  5.  請求項2又は3に記載のキノコシートの製造方法であって、
     キノコの子実体内のキノコ繊維間を膨潤させた膨潤子実体を得るために、該子実体を常温にてpH12.2以上pH13.6以下の低濃度アルカリ水溶液で処理するアルカリ処理工程と、
     前記アルカリ処理工程により得られた前記膨潤子実体を濾過することにより湿潤キノコ繊維を抽出する繊維抽出工程と、
     非キノコ由来繊維と前記繊維抽出工程で抽出された湿潤キノコ繊維と液状分散媒とを攪拌混合することで、該非キノコ由来繊維と前記キノコ繊維とが分散混合する繊維混合液を得る混合工程と、
     前記混合工程で得られた繊維混合液を濾過して分離された湿潤混合繊維をシート状に乾燥させる乾燥工程と、
     を含むキノコシートの製造方法。
    A method for producing a mushroom sheet according to claim 2 or 3,
    an alkali treatment step of treating the fruiting body with a low-concentration alkaline aqueous solution having a pH of 12.2 or more and pH 13.6 or less at room temperature in order to obtain a swollen fruiting body in which mushroom fibers in the fruiting body of the mushroom are swollen;
    a fiber extraction step of extracting wet mushroom fibers by filtering the swollen fruit bodies obtained in the alkali treatment step;
    A mixing step of obtaining a fiber mixed liquid in which the non-mushroom-derived fibers and the mushroom fibers are dispersed and mixed by stirring and mixing the non-mushroom-derived fibers, the wet mushroom fibers extracted in the fiber extraction step, and a liquid dispersion medium;
    a drying step of filtering the fiber mixture obtained in the mixing step and drying the separated wet mixed fibers into a sheet;
    A method for producing a mushroom sheet comprising:
  6.  前記繊維抽出工程では、前記膨潤子実体を希釈及び中和並びに濾過することにより前記湿潤キノコ繊維を抽出し、
     前記混合工程では、前記繊維抽出工程で前記膨潤子実体を希釈及び中和並びに濾過することで得られた前記湿潤キノコ繊維と前記非キノコ由来繊維と前記液状分散媒とを攪拌混合する、
     請求項5に記載のキノコシートの製造方法。
    In the fiber extraction step, the wet mushroom fiber is extracted by diluting, neutralizing, and filtering the swollen fruiting body,
    In the mixing step, the wet mushroom fibers obtained by diluting, neutralizing, and filtering the swollen fruiting bodies in the fiber extraction step, the non-mushroom-derived fibers, and the liquid dispersion medium are stirred and mixed.
    The method for producing the mushroom sheet according to claim 5.
  7.  前記混合工程は、前記液状分散媒と前記非キノコ由来繊維と前記湿潤キノコ繊維と共に攪拌混合されるように、可塑剤を添加する可塑化工程を含む、
     請求項5又は6に記載のキノコシートの製造方法。
    The mixing step includes a plasticizing step of adding a plasticizer so that the liquid dispersion medium, the non-mushroom-derived fibers, and the wet mushroom fibers are stirred and mixed together.
    The method for producing the mushroom sheet according to claim 5 or 6.
  8.  前記乾燥工程により得られたキノコシートに対してなめし剤を添加するなめし工程
     更に含む請求項5から7のいずれか一項に記載のキノコシートの製造方法。
    The method for producing a mushroom sheet according to any one of claims 5 to 7, further comprising a tanning step of adding a tanning agent to the mushroom sheet obtained by the drying step.
  9.  前記非キノコ由来繊維は、非キノコ由来セルロース繊維であり、
     前記混合工程では、前記非キノコ由来セルロース繊維が前記液状分散媒に分散している分散液と前記湿潤キノコ繊維とを攪拌混合し、
     前記混合工程で投与される前記分散液の重量は、前記繊維混合液内の前記キノコ繊維と前記非キノコ由来セルロース繊維との重量比が99:1から50:50の範囲内の所定値となるように、前記分散液中の前記非キノコ由来セルロース繊維の濃度及び前記湿潤キノコ繊維中の前記キノコ繊維の濃度並びに前記湿潤キノコ繊維の重量に応じて決められる、
     請求項5から8のいずれか一項に記載のキノコシートの製造方法。
    The non-mushroom-derived fibers are non-mushroom-derived cellulose fibers,
    In the mixing step, the dispersion liquid in which the non-mushroom-derived cellulose fibers are dispersed in the liquid dispersion medium and the wet mushroom fibers are stirred and mixed,
    The weight of the dispersion administered in the mixing step is such that the weight ratio of the mushroom fibers and the non-mushroom-derived cellulose fibers in the fiber mixture is a predetermined value within the range of 99:1 to 50:50. determined according to the concentration of the non-mushroom-derived cellulose fibers in the dispersion and the concentration of the mushroom fibers in the wet mushroom fibers and the weight of the wet mushroom fibers,
    A method for producing a mushroom sheet according to any one of claims 5 to 8.
  10.  前記子実体は、食用キノコ商品において切除されているキノコの柄の端部である、
     請求項4から9のいずれか一項に記載のキノコシートの製造方法。
    The fruiting body is the end of the mushroom stalk that is excised in an edible mushroom product.
    A method for producing the mushroom sheet according to any one of claims 4 to 9.
  11.  前記アルカリ処理工程で用いられる低濃度アルカリ水溶液は、0.07重量%以上8重量%以下の水酸化ナトリウム水溶液である、
     請求項4から10のいずれか一項に記載のキノコシートの製造方法。
    The low-concentration alkaline aqueous solution used in the alkali treatment step is a sodium hydroxide aqueous solution of 0.07% by weight or more and 8% by weight or less.
    A method for producing a mushroom sheet according to any one of claims 4 to 10.
  12.  前記繊維抽出工程では、メッシュが30以上150以下で目開きが0.1mm以上0.5mm以下の網材を用いて濾過する、
     請求項4から11のいずれか一項に記載のキノコシートの製造方法。
    In the fiber extraction step, filtration is performed using a mesh material having a mesh size of 30 or more and 150 or less and an opening of 0.1 mm or more and 0.5 mm or less.
    A method for producing a mushroom sheet according to any one of claims 4 to 11.
  13.  前記キノコ繊維は、平均繊維幅が50μm以上500μm以下であり、かつ平均繊維長が0.5mm以上5mm以下である、
     請求項1から3のいずれか一項に記載のキノコシート。
    The mushroom fibers have an average fiber width of 50 μm or more and 500 μm or less and an average fiber length of 0.5 mm or more and 5 mm or less.
    The mushroom sheet according to any one of claims 1 to 3.
  14.  前記子実体は、食用キノコ商品において切除されているキノコの柄の端部である、
     請求項1から3のいずれか一項又は請求項12に記載のキノコシート。
     
    The fruiting body is the end of the mushroom stalk that is excised in an edible mushroom product.
    13. The mushroom sheet according to any one of claims 1 to 3 or claim 12.
PCT/JP2022/042671 2021-11-18 2022-11-17 Mushroom sheet and method for producing same WO2023090387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023549973A JP7456577B2 (en) 2021-11-18 2022-11-17 Mushroom sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188228 2021-11-18
JP2021-188228 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023090387A1 true WO2023090387A1 (en) 2023-05-25

Family

ID=86397151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042671 WO2023090387A1 (en) 2021-11-18 2022-11-17 Mushroom sheet and method for producing same

Country Status (2)

Country Link
JP (1) JP7456577B2 (en)
WO (1) WO2023090387A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279088A (en) * 1994-03-30 1995-10-24 Fukuoka Pref Gov Fibrous material obtained from mushroom and its production
CN108677593A (en) * 2018-04-28 2018-10-19 句容市东山纸品厂 A kind of preparation method of Edible package paper
JP2021052698A (en) * 2019-09-30 2021-04-08 株式会社Biomaterial in Tokyo Leather-like material and manufacturing method thereof
KR20220054076A (en) * 2020-10-23 2022-05-02 숙명여자대학교산학협력단 Bacteria Cellulose-Mushroom Derive Particle Complex and Artificial Leather Manufactured by Using the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279088A (en) * 1994-03-30 1995-10-24 Fukuoka Pref Gov Fibrous material obtained from mushroom and its production
CN108677593A (en) * 2018-04-28 2018-10-19 句容市东山纸品厂 A kind of preparation method of Edible package paper
JP2021052698A (en) * 2019-09-30 2021-04-08 株式会社Biomaterial in Tokyo Leather-like material and manufacturing method thereof
KR20220054076A (en) * 2020-10-23 2022-05-02 숙명여자대학교산학협력단 Bacteria Cellulose-Mushroom Derive Particle Complex and Artificial Leather Manufactured by Using the Same

Also Published As

Publication number Publication date
JPWO2023090387A1 (en) 2023-05-25
JP7456577B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
Robles et al. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials
Fareez et al. Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching
Ramesh Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties
Reddy et al. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose
dos Santos et al. The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications
Rebouillat et al. State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications
JP5690387B2 (en) Method for imparting water repellency and oil resistance using cellulose nanofibers
AT511624B1 (en) CELLULOSE II SUSPENSION, THEIR PREPARATION AND STRUCTURES MADE THEREFROM
CN113924336B (en) Natural composition comprising alginate and cellulose nanofibers derived from brown seaweed
CA3016587A1 (en) Lignocellulosic composites prepared with aqueous alkaline and urea solutions in cold temperatures systems and methods
WO2017103328A1 (en) Bimodal cellulose composition
WO2023090387A1 (en) Mushroom sheet and method for producing same
Salim et al. Cellulosic biocomposite foam papers impregnated by crosslinked starch/poly (vinyl alcohol) biopolymers
CN109897194B (en) Preparation method of high-strength hydrogel imitating insect epidermis structure
Senthilkumar et al. Extraction of cellulosic fibres from agricultural waste and its applications
KR101971890B1 (en) Method of sheet for mask pack using red algae nanocellulose and sheet for mask pack prepared therefrom
Hasan et al. Organic and inorganic fillers’ role on the amelioration of Kappaphycus spp.-based biopolymer films’ performance
CH704766A1 (en) A process for preparing a cellulose-containing material for producing a composite material.
Das et al. Cellulose nanofibers: synthesis, properties and applications
EP2673135A1 (en) Method for forming cellulose carbamate and products produced by said method
Siddique et al. Coir fiber-based nanocomposites: Synthesis and application
Cheng et al. Aloe vera rind nanofibers: effect of isolation process on the tensile properties of nanofibre films
US20220073865A1 (en) Mycelium-containing hybrid materials
Abdel-Maksoud et al. Biopolymer applications for different treatments of the historical paper manuscripts and leather bindings: A Review
Köhnlein Preparation of films and nonwoven composites from fungal microfibers grown in bread waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549973

Country of ref document: JP