WO2023090385A1 - Plant cells, plant tissue, plant body, and glycyrrhizin production method - Google Patents

Plant cells, plant tissue, plant body, and glycyrrhizin production method Download PDF

Info

Publication number
WO2023090385A1
WO2023090385A1 PCT/JP2022/042660 JP2022042660W WO2023090385A1 WO 2023090385 A1 WO2023090385 A1 WO 2023090385A1 JP 2022042660 W JP2022042660 W JP 2022042660W WO 2023090385 A1 WO2023090385 A1 WO 2023090385A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
synthesis pathway
triterpene
glycyrrhizin
Prior art date
Application number
PCT/JP2022/042660
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 千代
俊哉 村中
光 關
Original Assignee
住友化学株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人大阪大学 filed Critical 住友化学株式会社
Publication of WO2023090385A1 publication Critical patent/WO2023090385A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present disclosure relates to plant cells, plant tissues, plant bodies, methods for producing glycyrrhizin, and the like.
  • Glycyrrhizin is a component contained in plants of the genus Glycyrrhiza of the legume family. Glycyrrhizin, which is one of the important herbal medicines, is used in sweeteners, cosmetics and the like because of its properties. Glycyrrhizin is usually produced by extraction and purification from collected licorice. However, it takes a long time (generally three years or more) to harvest licorice, and the demand for glycyrrhizin is high. was
  • a plant tissue culture method is known as a method for producing useful substances derived from plants. It has been reported that the content of glycyrrhizin contained in the glycyrrhizin-like roots or stolones (delivering branches) is extremely low compared to the underground parts of wild Glycyrrhiza plants, and cannot be put to practical use for the production of glycyrrhizin.
  • An object of the present disclosure is to provide a technique for improving the glycyrrhizin content in plant tissues or plants.
  • the present inventors focused on the betulinic acid synthetic pathway, the soyasaponin synthetic pathway, and the oleanolic acid synthetic pathway among the synthetic pathways of various components that partially overlap with the glycyrrhizin synthetic pathway. Arrived. As a result of further intensive research, a gene encoding an enzyme on the betulinic acid synthesis pathway, a gene encoding an enzyme on the soyasaponin synthesis pathway, and a gene encoding an enzyme on the oleanolic acid synthesis pathway are selected.
  • the present inventors have found that the above problems can be solved by modifying at least two or more types of target genes, which are modified to eliminate or reduce the function and/or expression of the target genes. Based on this knowledge, the inventor of the present invention has completed the invention of the present disclosure as a result of further research. That is, the present disclosure includes the following aspects.
  • Section 1 At least two or more target genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway.
  • the target gene includes a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, a gene encoding a triterpene 28-position carbon oxidase, and lupeol synthesis.
  • Item 3 The plant cell according to Item 1 or 2, comprising at least two genes selected from the group consisting of enzyme-encoding genes.
  • Section 3 wherein the target gene comprises at least two or more genes selected from the group consisting of genes encoding enzymes on the soyasaponin synthesis pathway.
  • Item 4 The plant cell according to Item 1 or 2, wherein the target gene comprises a gene encoding a triterpene 24-position carbon hydroxylase and a gene encoding a triterpene 22-position carbon hydroxylase.
  • the target gene includes at least two genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and enzymes on the oleanolic acid synthesis pathway.
  • Item 4. The plant cell of any one of items 1 to 3, comprising the encoding gene.
  • the target gene includes a gene encoding lupeol synthase, a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, and a triterpene 28-position carbon.
  • the plant cell according to any one of items 1 to 5, comprising a gene encoding an oxidase of
  • Item 7 Items 1 to 6, wherein a gene encoding at least one glycyrrhizin biosynthetic enzyme has been introduced.
  • Item 8 Any one of items 1 to 7, wherein the index value of the function and/or expression of the target gene is 10% or less relative to 100% of the index value of the function and/or expression when the target gene is not modified. plant cell according to .
  • Item 9. The plant cell according to any one of Items 1 to 8, which is a plant cell of a leguminous plant.
  • Item 10 A plant tissue or plant body containing the plant cell according to any one of Items 1 to 9.
  • Item 11 Item 10, wherein the plant tissue or plant body according to Item 10 has a higher content of glycyrrhizin or at least one glycyrrhizin derivative than the plant tissue or plant body that does not contain plant cells.
  • Item 12 Item 10. Item 10 or 11, which is a hairy root of Glycyrrhiza genus.
  • Item 13 A seed generated in the plant body according to any one of Items 10 to 12.
  • Item 14 At least two or more selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway in plant cells.
  • Item 15 A method for producing glycyrrhizin or a glycyrrhizin derivative, comprising extracting glycyrrhizin or at least one glycyrrhizin derivative from the plant tissue or plant body according to any one of items 10 to 12.
  • FIG. A to N are the results of using separate hairy root samples as templates for PCR.
  • the upper row shows the PCR sample of the CYP93E3 gene, and the lower row shows the PCR sample of the CYP72A566 gene.
  • FIG. 4 shows quantitative PCR results of CYP88D6 mRNA in hairy roots of Test Example 5.
  • FIG. #21-26 each show separately generated hairy roots (CYP93E3/CYP72A566-double knockout + CYP88D6 overexpressing hairy roots).
  • the others (wild-type) each show a separate wild-type licorice root hairy root.
  • 2 shows the analysis results of triterpenoids by LC-MS in Test Example 6.
  • Top row wild-type hairy roots
  • second row from top CYP93E3/ CYP72A566-double knockout hairy roots
  • Test Example 1 CYP716A179
  • Test Example 2 shows the analysis results of hairy roots with CYP93E3/CYP72A566-double knockout + CYP88D6 overexpression
  • Test Example 5 shows the analysis results of triterpenoids by LC-MS in Test Example 6.
  • FIG. 1 shows a diagram of the triterpenoid biosynthetic pathway.
  • Identity of amino acid sequences refers to the degree of matching of two or more comparable amino acid sequences to each other. Therefore, the higher the identity or similarity between two amino acid sequences, the higher the identity or similarity of those sequences.
  • the level of amino acid sequence identity is determined, for example, using the sequence analysis tool FASTA, using default parameters. or Algorithm BLAST by Karlin S, Altschul SF. "Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes" Proc Natl Acad Sci USA. ul SF "Applications and statistics for multiple high-scoring segments in molecular sequences.” Proc Natl Acad Sci USA. 90:5873-7 (1993)).
  • BLASTP based on such a BLAST algorithm has been developed. Specific methods of these analysis methods are known, and the website of the National Center of Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) can be referred to. "Identity" of base sequences is also defined according to the above.
  • conservative substitution means that an amino acid residue is replaced with an amino acid residue having a similar side chain.
  • substitutions between amino acid residues having basic side chains such as lysine, arginine, and histidine correspond to conservative substitutions.
  • amino acid residues having acidic side chains such as aspartic acid and glutamic acid
  • amino acid residues having uncharged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine and cysteine
  • Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine, tryptophan
  • amino acid residues with ⁇ -branched side chains such as threonine, valine, isoleucine
  • aromatic side chains such as tyrosine, phenylalanine, tryptophan, histidine. Substitutions between amino acid residues are also conservative substitutions.
  • plant cells are selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway.
  • a plant cell in which at least two or more selected target genes have been modified, and the function and/or expression of the target gene is lost or reduced due to the modification herein, "plant cell of the present disclosure ). This will be explained below.
  • the plant cell is derived from a plant having at least one of the betulinic acid synthesis pathway, the soyasaponin synthesis pathway, and the oleanolic acid pathway, and is endogenously or exogenously introduced to biosyntheize glycyrrhizin.
  • Plants include a wide range of plants including, for example, the angiosperms magnolias, monocotyledons, eudicotyledons (roses I, roses II, chrysanthemums I, chrysanthemums II and outgroups thereof). can be done.
  • plants include eggplants such as liverwort, tomatoes, green peppers, hot peppers, eggplants and tobacco; gourds such as cucumbers, pumpkins, melons and watermelons; vegetables such as cabbages, broccoli and Chinese cabbage; Raw and spicy vegetables such as celery, parsley, and lettuce; Green onions such as green onions, onions, and garlic; Other fruit vegetables such as strawberries and melons; Tap roots such as radishes, turnips, carrots, and burdock; Taro, cassava, and potatoes , potatoes, sweet potatoes, Chinese yams, etc.; grains, such as rice, corn, wheat, sorghum, barley, rye, seaweed, and buckwheat; Legumes; Soft vegetables such as asparagus, spinach, and Japanese honeysuckle; Flowers such as gentian, rose, bindweed, buttercup, bellflower, stock, carnation, and chrysanthemum; Oil crops such as rapeseed; Textile crops such as cotton and rush; Feed crops such as clover, dent
  • leguminous plants e.g., licorice, soybean, Lotus japonicus, Astragalus membranaceus, fenugreek, Astragalus, Medicago, etc.
  • Araliaceae e.g., Panax ginseng
  • Umbelliferae e.g., Panax ginseng, etc.
  • Umbelliferae e.g., radish Centella asiatica, etc.
  • Cucurbitaceous plants e.g., Jiaogulan, etc.
  • Ericaceous plants e.g., Arctic japonicum, bearberry, etc.
  • Betulaceae plants e.g., Betula oleracea, etc.
  • Gentianaceous plants e.g., Safflower assembly, etc.
  • Rosaceae Plants e.g., hawthorn, apple, Japanese quince, etc.
  • Myrtaceous plants e.g., eucalypt
  • leguminous plants particularly preferred are plants of the genus Glycyrrhiza. Glycyrrhiza plants include, for example, Ural licorice, Spanish licorice, and Xinjiang licorice.
  • the plant cell is a plant having at least one of the betulinic acid synthetic pathway, the soyasaponin synthetic pathway, or the oleanolic acid pathway, and is endogenously or exogenously introduced to express the glycyrrhizin biosynthetic enzyme.
  • a suitable plant cell it is not particularly limited, and can be cells of various plant tissues. Plant tissues include, for example, roots, stems, leaves, flowers, reproductive organs, and undifferentiated cells and tissues that differentiate into them.
  • Glycyrrhizin biosynthetic enzymes include oxidase at position 11 or 30 of the triterpene skeleton, glucuronyltransferase 1, glucuronyltransferase 2, and the like (see FIG. 5).
  • Examples of the 11-position oxidase include CYP88D6 (an enzyme having activity to convert ⁇ -amyrin into 11-oxo- ⁇ -amyrin).
  • Examples of the 30-position oxidase include CYP72A154 (enzyme having activity to convert 11-oxo- ⁇ -amyrin into glycyrrhetinic acid), CYP72A63 (30-position oxidase derived from Lotus japonicus), and the like.
  • Examples of glucuronyltransferase 1 include GuCSyGT (an enzyme that converts glycyrrhetinic acid into glycyrrhetinic acid monoglucuronide), spinach-derived CsyGT (an enzyme that converts medicagenic acid into yososside V), and the like.
  • glucuronyltransferase 2 examples include UGT73P12 (enzyme having activity to convert glycyrrhetinic acid monoglucuronide into glycyrrhizin) and the like.
  • the plant cell is a cell into which a gene encoding at least one glycyrrhizin biosynthetic enzyme has been introduced.
  • a gene encoding an enzyme on the betulinic acid synthesis pathway is not particularly limited as long as it is a gene encoding an enzyme on the pathway for synthesizing betulinic acid from 2,3-oxidosqualene.
  • Enzymes on the betulinic acid synthesis pathway include, for example, lupeol synthase and triterpene 28-position oxidase.
  • Lupeol synthase is an enzyme that has the activity of converting 2,3-oxide squalene into lupeol on the betulinic acid synthesis pathway.
  • the nucleotide sequence and amino acid sequence of the gene encoding lupeol synthase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding lupeol synthase (for example, identity analysis with these etc.) can be easily determined.
  • An example of a gene encoding lupeol synthase is the LUS1 gene. Its amino acid sequence is shown in SEQ ID NO:1 and its coding base sequence is shown in SEQ ID NO:5.
  • Triterpene 28-hydroxylase is an enzyme that has the activity of converting lupeol to betulinic acid on the betulinic acid synthesis pathway.
  • the nucleotide sequence and amino acid sequence of the gene encoding triterpene 28-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 28-hydroxylase (for example, It can be easily determined by identity analysis with these).
  • An example of a gene encoding triterpene position 28 oxidase is the CYP716A179 gene. Its amino acid sequence is shown in SEQ ID NO:4 and its coding base sequence is shown in SEQ ID NO:8.
  • a gene encoding an enzyme on the soyasaponin synthesis pathway is not particularly limited as long as it is a gene encoding an enzyme on the pathway for synthesizing soyasaponin from 2,3-oxidosqualene.
  • Enzymes on the soyasaponin synthetic pathway include, for example, triterpene 24-hydroxylase, triterpene 22-hydroxylase, triterpene 21-hydroxylase, triterpene 3-glycosylase, triterpene 22-hydroxylase and the like.
  • Triterpene 24-hydroxylase is an enzyme that has the activity of converting ⁇ -amyrin to 24-OH- ⁇ -amyrin and the activity of converting sophoradiol to Soyasapogenol B on the soyasaponin synthesis pathway.
  • the nucleotide sequence and amino acid sequence of the gene encoding triterpene 24-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 24-hydroxylase (for example, It can be easily determined by identity analysis with these).
  • An example of a gene encoding triterpene 24-hydroxylase is the CYP93E3 gene. Its amino acid sequence is shown in SEQ ID NO:2 and its coding base sequence is shown in SEQ ID NO:6.
  • Triterpene 22-hydroxylase is a gene for an enzyme that converts ⁇ -amyrin to sophoradiol and 24-OH- ⁇ -amyrin to Soyasapogenol B on the soyasaponin synthesis pathway.
  • the nucleotide sequence and amino acid sequence of the gene encoding triterpene 22-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 22-hydroxylase (for example, It can be easily determined by identity analysis with these).
  • An example of a gene encoding triterpene 22-hydroxylase is the CYP72A566 gene. Its amino acid sequence is shown in SEQ ID NO:3 and its coding base sequence is shown in SEQ ID NO:7.
  • Triterpene 21-hydroxylase is an enzyme that converts ⁇ -amyrin to 21-hydroxy- ⁇ -amyrin, sophoradiol to cantoniensistriol, and soyasapogenol B to soyasapogenol A in the soyasaponin synthesis pathway. is the gene for In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 21-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 21-hydroxylase (for example, It can be easily determined by identity analysis with these).
  • An example of a gene encoding soybean triterpene 21-hydroxylase is the CYP72A69 gene. Its amino acid sequence is shown in SEQ ID NO:42 and its coding base sequence is shown in SEQ ID NO:43.
  • Triterpene 3-glycosidase has the activity of adding the primary sugar to the 3-position of soyasapogenol A or soyasapogenol B on the soyasaponin synthetic pathway, the activity of adding the secondary sugar to the primary glycoside at the 3-position, or 3 It is an enzyme presumed to have the activity of adding a tertiary sugar to a secondary glycoside.
  • the nucleotide sequence and amino acid sequence of the gene encoding triterpene 3-glycosidase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 3-glycosidase (for example, It can be easily determined by identity analysis with these).
  • An example is the GuCSyGT gene, which encodes a triterpene-3-glycosyltransferase. Its amino acid sequence is shown in SEQ ID NO:40 and its coding base sequence is shown in SEQ ID NO:41.
  • Triterpene 22-position glycosidase has the activity of adding the primary sugar to the 22nd position of soyasapogenol A and the activity of adding the secondary sugar to the primary glycoside at the 22nd position of soyasapogenol A on the soyasaponin synthesis pathway. is the estimated enzyme.
  • the nucleotide sequence and amino acid sequence of the gene encoding the triterpene 22-position glycosidase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding the triterpene 22-position glycosidase (for example, It can be easily determined by identity analysis with these).
  • An example of a gene encoding a triterpene 22-position glycosidase is the UGT73F4 gene. Its amino acid sequence is shown in SEQ ID NO:44 and its coding base sequence is shown in SEQ ID NO:45.
  • a gene encoding an enzyme on the oleanolic acid synthesis pathway is not particularly limited as long as it is a gene encoding an enzyme on the pathway for synthesizing oleanolic acid from 2,3-oxidosqualene.
  • Enzymes on the oleanolic acid synthesis pathway include, for example, triterpene 28-oxidase.
  • Triterpene 28-oxidase is a gene for an enzyme that converts ⁇ -amyrin to oleanolic acid on the oleanolic acid synthesis pathway.
  • the nucleotide sequence and amino acid sequence of the gene encoding triterpene 28 oxidase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 28 oxidase (for example, can be easily determined by identity analysis, etc.).
  • An example of a gene encoding a triterpene position 28 oxidase is the CYP716A179 gene, as described above. Its amino acid sequence is shown in SEQ ID NO:4 and its coding base sequence is shown in SEQ ID NO:8.
  • the target gene for modification can be an ortholog or paralog of the gene indicated by the amino acid sequence or base sequence indicated by the above SEQ ID NO.
  • the target gene for modification is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and furthermore It may be a gene having an identity of preferably 98% or more, particularly preferably 99% or more, and having the above enzymatic activity.
  • the genes to be modified are at least two selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. more than seeds.
  • the target gene preferably includes a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, and a triterpene 28-position carbon oxidase. It contains at least two or more genes selected from the group consisting of the encoding gene and the gene encoding lupeol synthase.
  • the target gene preferably contains at least two or more genes selected from the group consisting of genes encoding enzymes on the soyasaponin synthetic pathway, and particularly preferably encodes triterpene 24-hydroxylase. It contains a gene and a gene encoding triterpene 22-hydroxylase. In one embodiment, the target gene is preferably at least two or more genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and oleanol.
  • a gene encoding an enzyme on the acid synthesis pathway particularly preferably a gene encoding lupeol synthase, a gene encoding triterpene 24-hydroxylase, a gene encoding triterpene 22-hydroxylase, and a triterpene 28-position Contains genes encoding oxidases.
  • the target genes for modification include functionally normal mutants that can occur in nature.
  • the gene to be modified may have base mutations such as substitutions, deletions, additions, and insertions as long as the activity of the encoding enzyme is not significantly impaired.
  • the mutation is preferably a mutation that does not cause amino acid substitution or a mutation that causes conservative amino acid substitution in the protein translated from the mRNA.
  • the target gene for modification for example, the amino acid sequence of the protein encoded by it is, for example, 95% or more, preferably 98% or more, more preferably 98% or more of the amino acid sequence of the protein encoded by the wild-type target gene of the homologous plant A gene with 99% or more identity.
  • the target gene for example, the amino acid sequence of the protein encoded by it is the same as the amino acid sequence of the protein encoded by the wild-type target gene of the same kind of plant, or one or more amino acid sequences relative to the amino acid sequence (eg, 2-10, preferably 2-5, more preferably 2-3, even more preferably 2) are genes whose amino acid sequences are substituted, deleted, added, or inserted.
  • the target gene is modified, and the function and/or expression of the target gene is lost or reduced due to the modification (the mutation introduced by the modification).
  • the "function" of the target gene indicates the enzymatic activity of the target gene described above.
  • “Expression” of a gene of interest includes both expression of the mRNA of the gene of interest and expression of the protein of the gene of interest, preferably expression of the protein of the interest gene.
  • “Deficient” indicates that the activity of the target gene protein and/or the expression level of the target gene is below the detection limit in samples obtained from the plant cells of the present disclosure.
  • the term "decrease” refers to the activity of the target gene protein and/or the expression level of the target gene (index value of the function and/or expression of the target gene) in the sample obtained from the plant cells of the present disclosure. It is less than 100% (e.g., 70% or less , 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, 2% or less, 1% or less, 0.5% or less, 0.2% or less, 0.1% or less, 0.05 %, 0.02% or less, or 0.01% or less).
  • the activity of the target gene protein and/or the expression level of the target gene can be measured according to known methods.
  • Mutations to be introduced into the target gene are not particularly limited as long as they are mutations that impair or reduce the function and/or expression of the target gene.
  • Such mutations include, for example, gene disruption, mutations in protein coding regions, mutations in splicing regulatory regions, mutations in expression control regions (eg, promoters, activators, enhancers, etc.).
  • mutations in protein coding regions are preferred.
  • Plant cells of the present disclosure preferably have the mutation of the gene of interest on both chromosomes of the pair.
  • the present disclosure includes plant tissue or plant body (herein, “plant tissue or plant body of the present disclosure”, “plant tissue or plant body of the present disclosure”, “plant cell of the present disclosure”, (also referred to as “plant tissue,” “plant body of the present disclosure”). Moreover, in one aspect, the present disclosure relates to seeds (in this specification, sometimes referred to as “seeds of the present disclosure”) generated in the plant body of the present disclosure. These will be described below.
  • Plant body means the entire plant, including all plant tissues (roots, stems, leaves, etc.).
  • the plant tissue is not particularly limited as long as it is composed of part of the plant body, or undifferentiated tissue generated in part or the whole of the plant body, such as roots, stems, leaves, flowers, reproductive organs, and at least one selected from the group consisting of cells or tissues that differentiate into them.
  • Seeds contain plant cells of the disclosure and can develop into plants of the disclosure. The seed can be obtained, for example, from a plant of the present disclosure in which the plant cells of the present disclosure have been integrated into germ cells.
  • the plant tissue of the present disclosure preferably contains at least one selected from the group consisting of roots and stems. From the viewpoint of glycyrrhizin production efficiency, the plant tissue of the present disclosure preferably contains underground parts of the plant (for example, roots (hairy roots, etc.), rhizomes, etc.).
  • the plant species of the plant tissue or plant body of the present disclosure are the same as the plants from which the plant cells of the present disclosure are derived.
  • the plant cells of the present disclosure have enhanced glycyrrhizin production efficiency due to lack or reduction in the function and/or expression of the target gene. Therefore, the plant tissue or plant body of the present disclosure containing this has enhanced glycyrrhizin production efficiency. Therefore, in one aspect, the plant tissue or plant body of the present disclosure (for example, by culturing or cultivating for a period in which glycyrrhizin is sufficiently accumulated) is transformed into a plant tissue or plant body that does not contain the plant cells of the present disclosure.
  • the content of glycyrrhizin or at least one glycyrrhizin derivative is higher than that of
  • the content of glycyrrhizin or at least one glycyrrhizin derivative in the plant tissue or plant body of the present disclosure is relative to the content of glycyrrhizin or at least one glycyrrhizin derivative in the plant tissue or plant body that does not contain plant cells of the present disclosure. , for example 1.5x, 2x, 5x, 10x, 20x, 50x, 100x or 150x.
  • glycyrrhizin derivatives include, but are not limited to, glycyrrhetinic acid monoglucuronide, licorice-saponin (LS)-A3, LS-B2, LS-C2, LS-D3, LS-E2, LS-F3, LS-G2, LS -H2, LS-J2, LS-K2, LS-L3, 18 ⁇ -glycyrrhizin, apioglycyrrhizin, araboglycyrrhizin, periandrin I, periandrin II, periandrin III, periandrin IV and the like.
  • a plant cell, a plant tissue or a plant body containing the plant cell of the present disclosure, a plant tissue or a plant body of the present disclosure, for example, a gene encoding an enzyme on the betulinic acid synthesis pathway, soyasaponin synthesis in the plant cell Introduce mutations that eliminate or reduce the function and/or expression of at least two or more target genes selected from the group consisting of genes encoding enzymes on the pathway and genes encoding enzymes on the oleanolic acid synthesis pathway.
  • the present disclosure provides, in plant cells, genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway.
  • the method of introducing mutations is not particularly limited, but from the viewpoint of production efficiency, a target-specific nuclease, an expression cassette of the nuclease, and an introduction containing at least one selected from the group consisting of mRNA of the nuclease is introduced into cells. There is a method of introduction.
  • the target-specific nuclease is not particularly limited as long as it can specifically cleave a specific site on genomic DNA and induce mutation.
  • Target-specific nucleases include, for example, Cas proteins, TALEN proteins, ZFN proteins and the like.
  • the CRISPR/Cas system using Cas protein uses Cas protein, which is a nuclease (RGN; RNA-guided nuclease), and guide RNA.
  • RGN nuclease
  • guide RNA By introducing the system into cells, the guide RNA binds to the target site, and the DNA can be cleaved by the Cas protein called into the binding site.
  • the TALEN system using TALEN proteins uses artificial nucleases (TALENs) that contain DNA-binding domains of transcriptional activator-like (TAL) effectors in addition to DNA-cleaving domains (eg, FokI domains).
  • TALENs DNA-binding domains of transcriptional activator-like effectors
  • DNA-cleaving domains eg, FokI domains
  • TALENs bind to target sites via their DNA-binding domains and cleave DNA there.
  • a DNA-binding domain that binds to a target site can be designed according to known schemes (e.g., Zhang F et al. (2011) Nature Biotechnology 29 (2); this paper is incorporated herein by reference). .
  • a ZFN system using ZFN proteins uses an artificial nuclease (ZFN) containing a nucleic acid cleavage domain conjugated to a DNA binding domain containing a zinc finger array. By introducing the system into cells, the ZFN binds to the target site via its DNA binding domain and cleaves the DNA there.
  • ZFN artificial nuclease
  • a DNA-binding domain that binds to a target site can be designed according to known schemes.
  • the Cas protein is preferable from the viewpoint that the cleavage site can be determined more freely.
  • Cas protein preferably includes Cas9 protein.
  • the target-specific nuclease expression cassette is not particularly limited as long as it is DNA capable of expressing the target-specific nuclease in the cells of the object of the plant production method of the present disclosure.
  • a typical example of a target-specific nuclease expression cassette includes a DNA comprising a promoter and a target-specific nuclease coding sequence placed under the control of that promoter.
  • the target-specific nuclease expression cassette alone or together with other sequences may constitute a vector.
  • the type of vector is not particularly limited.
  • the introduced material in the plant production method of the present disclosure further contains at least one selected from the group consisting of guide RNA expression cassettes and guide RNAs.
  • the guide RNA is not particularly limited as long as it is used in the CRISPR/Cas system.
  • the guide RNA can guide the Cas protein to the target site of the genomic DNA by binding to the target site of the genomic DNA and binding to the Cas protein.
  • Various things can be used.
  • the 12 bases on the 3' side of the sequence that binds to the target sequence in the crRNA sequence are important for the binding of the guide RNA to the target site. Therefore, if the sequence that binds to the target sequence in the crRNA sequence is not completely identical to the target strand, the nucleotides that differ from the target strand are the 12 bases on the 3' side of the sequence that binds to the target sequence in the It is preferable to exist other than
  • the introduced material in the plant production method of the present disclosure can contain donor DNA.
  • donor DNA allows more precise introduction of desired mutations.
  • the introduction target is not particularly limited, and may be an undifferentiated plant tissue (e.g., callus), a part of a seed (e.g., hypocotyl, shoot apex, etc.), or a part of an adult ( For example, the stem apex, etc.) may be used.
  • undifferentiated plant tissue e.g., callus
  • a part of a seed e.g., hypocotyl, shoot apex, etc.
  • a part of an adult e.g., the stem apex, etc.
  • the method of introduction is not particularly limited as long as it allows the substance to be introduced into the plant cells, and can be appropriately selected according to the type of substance to be introduced and the target of introduction.
  • introduction methods include floral dip method, floral spray method, Agrobacterium method, particle gun method, infiltration method, toothpick inoculation method, suction injection method, leaf disk method, inflorescence infiltration method, and vacuum filtration method. , viral-mediated nucleic acid delivery, and the like.
  • the Agrobacterium method is preferred from the viewpoint of convenience, safety, and the like.
  • a step of preparing a plasmid containing a promoter e.g., T7 promoter, T3 promoter, 35S promoter, etc.
  • a sequence containing an expression cassette downstream thereof step a1
  • a step of obtaining plant virus genomic RNA from the plasmid obtained in step a1 by in vitro transcription step b1
  • inoculating a plant with the genomic RNA (active ingredient) obtained in step b1 for example, rubbing inoculation method, particle gun inoculation method, etc.
  • the plasmid obtained in step a1 is a Ti plasmid containing a promoter capable of activating transcription in plant cells, such as the 35S promoter
  • steps b1 and c1 for example, A step of introducing the plasmid obtained into Agrobacteria and culturing it (step b2), and inoculating the culture solution (culture solution containing the active ingredient) obtained in step b2 into plants (e.g., infiltration method, toothpick inoculation method , suction injection method, etc.) (step c2).
  • a method comprising a step (step c3) of inoculating a plant with the plasmid (active ingredient) obtained in step a1 (e.g., grinding inoculation method, particle gun inoculation method, etc.) It can be carried out.
  • step c2 for example, a method including a step (step c4) of performing a leaf disk method, an inflorescence infiltration method, a vacuum filtration method, or the like can be used. Desired proteins and peptides are produced from genomic RNA, plasmids, T-DNA, etc. introduced into plants by these methods.
  • a step of collecting the virus from a plant containing the plant virus (obtained, for example, in Introduction Example 1 above) (step d1), and in step d1
  • a method comprising the step of inoculating a plant with the collected virus (virus containing an active ingredient) (step e1).
  • the collection in step d1 can be performed, for example, by recovering a virus fluid obtained by grinding a part of a plant containing a plant virus (eg, leaves, etc.).
  • the inoculation in step e1 can be carried out by, for example, using an abrasive such as silicon carbide to scratch the site of the plant to be inoculated (eg, leaves) and contacting the site with the virus.
  • the plant cell, plant tissue, or plant body of the present disclosure can be obtained by growing the obtained plant or plant cell, or by growing the obtained plant through callus.
  • the introduced cells, tissues, etc. can be sorted with a drug, if necessary.
  • the target gene is amplified from the introduced cells, tissues, etc. by PCR, and the size of the amplified gene fragment is analyzed by heteroduplex mobility analysis to narrow down the cells, tissues, etc. into which the desired mutation has been introduced. be able to. It can also be narrowed down by performing an ELISA method using an anti-glycyrrhizin antibody and analyzing the glycyrrhizin content of cells, tissues, and the like. After narrowing down, it is possible to perform sequence analysis of the target gene and select cells, tissues, etc. into which the desired mutation has been introduced.
  • a method for producing Glycyrrhizin or a Glycyrrhizin derivative comprising extracting Glycyrrhizin or at least one type of Glycyrrhizin derivative from the plant tissue or body of the present disclosure (this specification In the book, it may be indicated as "the method for producing glycyrrhizin of the present disclosure”.). This will be explained below.
  • the part to be extracted is not particularly limited. is mentioned. Among these, roots and rhizomes are preferred.
  • the extraction solvent is not particularly limited.
  • extraction solvents include water; alcohols such as methanol, ethanol, propanol and butanol; alkyl acetates such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; supercritical carbon dioxide and the like.
  • water, alcohol (especially ethanol) and the like are preferred.
  • the extraction solvent may be used singly or in combination of two or more.
  • the temperature of the solvent during extraction is not particularly limited, but is, for example, 0-100°C.
  • the extraction time varies depending on the extraction method, solvent, temperature, etc., and is not particularly limited.
  • the obtained extract can be used as it is as glycyrrhizin or a glycyrrhizin derivative, or it can be used as glycyrrhizin or a glycyrrhizin derivative after being subjected to treatments such as dilution, concentration, drying and purification.
  • Reference example 1 Determination of target sequences for introducing mutations into target genes
  • a gene encoding an enzyme on the betulinic acid synthesis pathway in Glycyrrhiza uralensis (LUS1 gene (amino acid sequence: SEQ ID NO: 1, coding base sequence: SEQ ID NO: 5) )
  • genes encoding enzymes in the soyasaponin synthesis pathway (CYP93E3 gene (amino acid sequence: SEQ ID NO: 2, coding nucleotide sequence: SEQ ID NO: 6) and CYP72A566 gene (amino acid sequence: SEQ ID NO: 3, coding nucleotide sequence: SEQ ID NO: 7 )
  • genes encoding enzymes on the oleanolic acid synthesis pathway (CYP716A179 gene (amino acid sequence: SEQ ID NO: 4, coding base sequence: SEQ ID NO: 8)) were selected as target genes, and mutations were introduced into them.
  • a target sequence was designed. Specifically, we use a web tool (CRISPR direct) to list candidate target sequences, and select two sequences for each gene that are close to the start codon and highly specific to the target gene. Selected. Selected target sequences (SEQ ID NOS: 9-16) are shown in Table 1.
  • Test example 1 Generation of CYP93E3/CYP72A566-double-knockout hairy roots and CYP72A566 single-knockout hairy roots
  • gRNAs two of each gene
  • gRNA was cloned downstream of Arabidopsis thaliana-derived U6 promoter
  • Cas9 nuclease was cloned downstream of cauliflower mosaic virus-derived 35S promoter into the T-DNA region of the vector. This vector was transformed into Agrobacterium Rhizogenes ATCC 15834 strain.
  • the hypocotyl of licorice was infected with Agrobacterium to induce hairy roots. After about 6 weeks, hairy roots were isolated and lysated according to the method described in the literature (Biotechniques 19:394-7, 1994).
  • Heteroduplex mobility analysis was performed to confirm the introduction of mutations into the target sequence of the target gene. Specifically, using the lysate as a template, a gene of about several 100 bp including the target sequence was amplified by PCR using target gene-specific primers. The PCR product was subjected to Multina (Shimadzu Corporation) and heteroduplex mobility analysis was performed. Those whose electrophoretic mobility of the PCR product was different from that of the wild type were selected as double knockout hairy root candidates (Fig. 1).
  • Hairy root F is a CYP93E3/ CYP72A566-double knockout
  • hairy root M is a CYP72A566 single knockout
  • Test example 2 Generation of quadruple-knockout hairy roots (CYP93E3/ CYP72A566/LUS1/CYP716A179) To knockout the CYP93E3, CYP72A566, LUS1 and CYP716A179 genes, 8 gRNAs (2 for each gene) that bind to target sequences, and S A binary vector was constructed to co-express Cas9 nuclease from .pyogenes.
  • a lysate was prepared by inducing hairy roots in the same manner as in Test Example 1.
  • the hairy root lysate was subjected to competitive ELISA (Anal. Chem. 2001, 73, 5784-5790), glycyrrhizin in the lysate was quantified, and quadruple knockout candidate hairy roots were selected (Table 4, #1).
  • Test example 3 Generation of CYP716A179 single-knockout hairy roots
  • Four gRNAs (two for each gene) that bind to the target sequences of the LUS1 and CYP716A179 genes, and a binary vector that co-expresses Cas9 nuclease from S.pyogenes were constructed. Subsequent steps were carried out in the same manner as for the generation of CYP93E3/CYP72A566-double knockout hairy roots. As a result, only CYP716A179 single knockout was obtained (Table 6: The first sequence (10 bp or more) in the table is shown in SEQ ID NO: 37 in the Sequence Listing).
  • Test example 4 Generation of CYP93E3 Knockout Hairy Roots (Single Knockout)
  • one target sequence was selected.
  • a binary vector was constructed to co-express CYP93E3, three gRNAs that bind to gene target sequences, and the Cas9 nuclease from S. pyogenes.
  • Subsequent steps were carried out in the same manner as for the generation of CYP93E3/CYP72A566-double knockout hairy roots.
  • Table 7 Sequences (10 bp or more) appearing first in the table are shown in SEQ ID NOs: 38-39 in the sequence listing).
  • Test example 5 Generation of CYP93E3/CYP72A566-double knockout + CYP88D6 overexpression hairy roots
  • four types of gRNAs that bind to target sequences express Cas9 nuclease from S. pyogenes codon-optimized for Arabidopsis codon usage bias, and CYP88D6 from G. uralensis (amino acid sequence: SEQ ID NO: 46; coding sequence: SEQ ID NO: 47)
  • a binary vector was generated.
  • gRNA was cloned downstream of Arabidopsis thaliana-derived U6 promoter, and Cas9 nuclease and CYP88D6 were cloned downstream of cauliflower mosaic virus-derived 35S promoter, respectively, in the T-DNA region of the vector.
  • This vector was transformed into Agrobacterium rhizogenes ATCC 15834 strain.
  • a lysate was prepared by inducing hairy roots in the same manner as in Test Example 1.
  • the glycyrrhizin content of hairy roots was evaluated by the same method as Test Example 2, and candidate hairy roots with double knockout + CYP88D6 overexpression were selected.
  • Test example 6 Analysis of Triterpenoids by LC-MS Wild-type hairy roots and knockout hairy roots (Test Examples 1 to 5) were lyophilized, crushed with a multi-bead shocker (Yasui Kikai Co., Ltd.) and pulverized. Methanol was added to the hairy root powder, and triterpenoids were eluted by sonication. The filtered (0.2 um) solution was used as a triterpenoid solution and subjected to an LC-MS system, Aquity UPLC/MS system (Waters), to determine the triterpenoid composition.
  • LC-MS system Aquity UPLC/MS system
  • Test example 7 Production of multiple knockout stolons
  • Shoot tips are prepared from licorice stems or stolons.
  • a vector carrying gRNA and a Cas9 nuclease gene that bind to the target sequences of at least two or more target genes selected from the group, or a gRNA/Cas9 nuclease protein complex is introduced into the shoot apex.
  • the shoot tips are transferred to an agar medium to form shoots.
  • stem parts containing axillary buds are differentiated into underground stems in a liquid medium by the method described in the literature (Plant biotechnology27, 59-66, 2010). By the same method as in Test Example 2, underground stems containing multiple knockout cells are identified.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention provides a technology for increasing glycyrrhizin content in a plant tissue or a plant body. The present invention pertains to: plant cells which have a modification in at least two target genes selected from the group consisting of genes encoding enzymes in a betulinic acid synthesis pathway, genes encoding enzymes in a soyasaponin synthesis pathway, and genes encoding enzymes in an oleanolic acid synthesis pathway, and in which the function and/or the expression of said target genes is deficient or reduced because of the modification; and a plant tissue or a plant body including the plant cells.

Description

植物細胞、植物組織、植物体、及びグリチルリチンの製造方法Plant cell, plant tissue, plant body, and method for producing glycyrrhizin
 本開示は、植物細胞、植物組織、植物体、グリチルリチンの製造方法等に関する。 The present disclosure relates to plant cells, plant tissues, plant bodies, methods for producing glycyrrhizin, and the like.
 グリチルリチンは、マメ科カンゾウ属の植物に含まれる成分である。、カンゾウ属植物の地下部は、一般に甘草と称され、重要な生薬の一つであるグリチルリチンは、その性質から、甘味料、化粧品等に利用されている。グリチルリチンは、通常は、採取した甘草から抽出精製することにより製造される。しかし、甘草の収穫までには長い期間(一般的に3年以上)を要すること、グリチルリチンの高い需要量等の要因から、甘草資源の枯渇が懸念されており、代替となる製造法が求められていた。 Glycyrrhizin is a component contained in plants of the genus Glycyrrhiza of the legume family. Glycyrrhizin, which is one of the important herbal medicines, is used in sweeteners, cosmetics and the like because of its properties. Glycyrrhizin is usually produced by extraction and purification from collected licorice. However, it takes a long time (generally three years or more) to harvest licorice, and the demand for glycyrrhizin is high. was
 植物由来の有用物質の生産方法として、植物組織培養法が知られているが、非特許文献1、非特許文献2及び非特許文献3には、組織培養法により増殖させたカンゾウ属植物の毛状根又はストロン(送出枝)に含まれるグリチルリチン含有量は、野生カンゾウ属植物の地下部と比べて極めて少ないことが報告されており、グリチルリチンの生産に実用化できない。 A plant tissue culture method is known as a method for producing useful substances derived from plants. It has been reported that the content of glycyrrhizin contained in the glycyrrhizin-like roots or stolones (delivering branches) is extremely low compared to the underground parts of wild Glycyrrhiza plants, and cannot be put to practical use for the production of glycyrrhizin.
 本開示は、植物組織又は植物体におけるグリチルリチン含有量を向上させる技術を提供することを課題とする。 An object of the present disclosure is to provide a technique for improving the glycyrrhizin content in plant tissues or plants.
 本発明者は上記課題に鑑みて鋭意研究を進めた結果、グリチルリチン合成経路と一部重複する各種成分の合成経路の中でも、ベツリン酸合成経路、ソヤサポニン合成経路、及びオレアノール酸合成経路に着目するに至った。そして、さらに鋭意研究を進めた結果、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子を改変して、前記改変により前記対象遺伝子の機能及び/又は発現を欠損又は低下させることにより、上記課題を解決できることを見出した。本発明者は、この知見に基づいてさらに研究を進めた結果、本開示の発明を完成させた。即ち、本開示は、下記の態様を包含する。 As a result of intensive research in view of the above problems, the present inventors focused on the betulinic acid synthetic pathway, the soyasaponin synthetic pathway, and the oleanolic acid synthetic pathway among the synthetic pathways of various components that partially overlap with the glycyrrhizin synthetic pathway. Arrived. As a result of further intensive research, a gene encoding an enzyme on the betulinic acid synthesis pathway, a gene encoding an enzyme on the soyasaponin synthesis pathway, and a gene encoding an enzyme on the oleanolic acid synthesis pathway are selected. The present inventors have found that the above problems can be solved by modifying at least two or more types of target genes, which are modified to eliminate or reduce the function and/or expression of the target genes. Based on this knowledge, the inventor of the present invention has completed the invention of the present disclosure as a result of further research. That is, the present disclosure includes the following aspects.
 項1. ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子が改変されており、前記改変により前記対象遺伝子の機能及び/又は発現が欠損又は低下している、植物細胞。 Section 1. At least two or more target genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. A plant cell that has been modified such that the function and/or expression of the gene of interest is lost or reduced due to the modification.
 項2. 前記対象遺伝子が、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子、トリテルペン22位の炭素の水酸化酵素をコードする遺伝子、トリテルペンの28位の炭素の酸化酵素をコードする遺伝子、及びルペオール合成酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を含む、項1又は2に記載の植物細胞。 Section 2. The target gene includes a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, a gene encoding a triterpene 28-position carbon oxidase, and lupeol synthesis. Item 3. The plant cell according to Item 1 or 2, comprising at least two genes selected from the group consisting of enzyme-encoding genes.
 項3. 前記対象遺伝子が、ソヤサポニン合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を含む、項1に記載の植物細胞。 Section 3. Item 1, wherein the target gene comprises at least two or more genes selected from the group consisting of genes encoding enzymes on the soyasaponin synthesis pathway.
 項4. 前記対象遺伝子が、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子及びトリテルペン22位の炭素の水酸化酵素をコードする遺伝子を含む、項1又は2に記載の植物細胞。 Item 4. The plant cell according to Item 1 or 2, wherein the target gene comprises a gene encoding a triterpene 24-position carbon hydroxylase and a gene encoding a triterpene 22-position carbon hydroxylase.
 項5. 前記対象遺伝子が、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子を含む、項1~3のいずれかに記載の植物細胞。 Item 5. The target gene includes at least two genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and enzymes on the oleanolic acid synthesis pathway. Item 4. The plant cell of any one of items 1 to 3, comprising the encoding gene.
 項6. 前記対象遺伝子が、ルペオール合成酵素をコードする遺伝子遺伝子、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子遺伝子、トリテルペン22位の炭素の水酸化酵素をコードする遺伝子遺伝子、及びトリテルペン28位の炭素の酸化酵素をコードする遺伝子遺伝子を含む、項1~5のいずれかに記載の植物細胞。 Item 6. The target gene includes a gene encoding lupeol synthase, a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, and a triterpene 28-position carbon. Item 6. The plant cell according to any one of items 1 to 5, comprising a gene encoding an oxidase of
 項7. 少なくとも1種類のグリチルリチン生合成酵素をコードする遺伝子が導入された、項1~6のいずれかに記載の植物細胞。 Item 7. Items 1 to 6, wherein a gene encoding at least one glycyrrhizin biosynthetic enzyme has been introduced.
 項8. 前記対象遺伝子の機能及び/又は発現の指標値が、前記対象遺伝子が改変されていない場合の機能及び/又は発現の指標値100%に対して10%以下である、項1~7のいずれかに記載の植物細胞。 Item 8. Any one of items 1 to 7, wherein the index value of the function and/or expression of the target gene is 10% or less relative to 100% of the index value of the function and/or expression when the target gene is not modified. plant cell according to .
 項9. マメ科植物の植物細胞である、項1~8のいずれかに記載の植物細胞。 Item 9. Item 8. The plant cell according to any one of Items 1 to 8, which is a plant cell of a leguminous plant.
 項10. 項1~9のいずれかに記載の植物細胞を含む、植物組織又は植物体。 Item 10. A plant tissue or plant body containing the plant cell according to any one of Items 1 to 9.
 項11. 前記植物細胞を含まない植物組織又は植物体に比べてグリチルリチン又は少なくとも1種類のグリチルリチン誘導体の含有量が高い、項10に記載の植物組織又は植物体。 Item 11. Item 10, wherein the plant tissue or plant body according to Item 10 has a higher content of glycyrrhizin or at least one glycyrrhizin derivative than the plant tissue or plant body that does not contain plant cells.
 項12. カンゾウ属の毛状根である、項10又は11に記載の植物組織。 Item 12. Item 10 or 11, which is a hairy root of Glycyrrhiza genus.
 項13. 項10~12のいずれかに記載の植物体に発生する、種子。 Item 13. A seed generated in the plant body according to any one of Items 10 to 12.
 項14. 植物細胞において、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子の機能及び/又は発現が欠損又は低下する変異を導入することを含む、改変植物細胞又はそれを含む植物組織若しくは植物体を製造する方法。 Item 14. At least two or more selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway in plant cells A method for producing a modified plant cell or a plant tissue or plant body containing the modified plant cell, comprising introducing a mutation that eliminates or reduces the function and/or expression of the target gene.
 項15. 項10~12のいずれかに記載の植物組織又は植物体からグリチルリチン又は少なくとも1種類のグリチルリチン誘導体を抽出することを含む、グリチルリチン又はグリチルリチン誘導体の製造方法。 Item 15. A method for producing glycyrrhizin or a glycyrrhizin derivative, comprising extracting glycyrrhizin or at least one glycyrrhizin derivative from the plant tissue or plant body according to any one of items 10 to 12.
 本開示によれば、植物組織又は植物体におけるグリチルリチン含有量を向上させる技術を提供することができる。 According to the present disclosure, it is possible to provide a technique for improving the glycyrrhizin content in plant tissues or plants.
試験例1のヘテロ二重鎖移動度解析の電気泳動結果を示す。A~NはPCRの鋳型としてそれぞれ別々の毛状根サンプルを使用した結果である。上段は、CYP93E3遺伝子のPCRサンプルを示し、下段はCYP72A566遺伝子のPCRサンプルを示す。2 shows the electrophoresis results of heteroduplex mobility analysis in Test Example 1. FIG. A to N are the results of using separate hairy root samples as templates for PCR. The upper row shows the PCR sample of the CYP93E3 gene, and the lower row shows the PCR sample of the CYP72A566 gene. 試験例5の毛状根のCYP88D6 mRNAの定量PCR結果を示す。#21~26はそれぞれ別々に作製された毛状根(CYP93E3/ CYP72A566-2重ノックアウト+CYP88D6過剰発現毛状根)を示す。それ以外(野生型)は、それぞれ別々の野生型ウラルカンゾウの毛状根を示す。FIG. 4 shows quantitative PCR results of CYP88D6 mRNA in hairy roots of Test Example 5. FIG. #21-26 each show separately generated hairy roots (CYP93E3/CYP72A566-double knockout + CYP88D6 overexpressing hairy roots). The others (wild-type) each show a separate wild-type licorice root hairy root. 試験例6のLC-MSによるトリテルペノイドの分析結果を示す。最上段は野生型毛状根、上から2段目はCYP93E3/ CYP72A566-二重ノックアウト毛状根(試験例1)、上から3段目は四重ノックアウト毛状根(CYP93E3/ CYP72A566/LUS1/CYP716A179) (試験例2)、最下段はCYP93E3/ CYP72A566-二重ノックアウト+CYP88D6過剰発現の毛状根(試験例5)の分析結果を示す。2 shows the analysis results of triterpenoids by LC-MS in Test Example 6. FIG. Top row: wild-type hairy roots, second row from top: CYP93E3/ CYP72A566-double knockout hairy roots (Test Example 1) CYP716A179) (Test Example 2), and the bottom shows the analysis results of hairy roots with CYP93E3/CYP72A566-double knockout + CYP88D6 overexpression (Test Example 5). 試験例6のLC-MSによるトリテルペノイドの分析結果を示す。上段はCYP93E3シングルノックアウト毛状根(試験例4)、中段はCYP72A566シングルノックアウト毛状根(試験例1)、下段はCYP716A179シングルノックアウト毛状根(試験例3)の分析結果を示す。2 shows the analysis results of triterpenoids by LC-MS in Test Example 6. FIG. The upper row shows the analysis results of CYP93E3 single knockout hairy roots (Test Example 4), the middle row shows the analysis results of CYP72A566 single knockout hairy roots (Test Example 1), and the lower row shows the analysis results of CYP716A179 single knockout hairy roots (Test Example 3). トリテルペノイド生合成経路図を示す。FIG. 1 shows a diagram of the triterpenoid biosynthetic pathway.
 1.定義
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
1. Definitions As used herein, the expressions "contain" and "include" include the concepts "contain", "include", "consist essentially of" and "consist only of".
 アミノ酸配列の「同一性」とは、2以上の対比可能なアミノ酸配列の、お互いに対するアミノ酸配列の一致の程度をいう。従って、ある2つのアミノ酸配列の一致性が高いほど、それらの配列の同一性又は類似性は高い。アミノ酸配列の同一性のレベルは、例えば、配列分析用ツールであるFASTAを用い、デフォルトパラメータを用いて決定される。若しくは、Karlin及びAltschulによるアルゴリズムBLAST(KarlinS,Altschul SF.“Methods for assessing the statistical significance of molecular sequence features by using general scoringschemes” Proc Natl Acad Sci USA.87:2264-2268(1990)、Karlin S,Altschul SF.“Applications and statistics for multiple high-scoring segments in molecular sequences.”Proc Natl Acad Sci USA.90:5873-7(1993))を用いて決定できる。このようなBLASTのアルゴリズムに基づいたBLASTPと呼ばれるプログラムが開発されている。これらの解析方法の具体的な手法は公知であり、National Center of Biotechnology Information(NCBI)のウェエブサイト(http://www.ncbi.nlm.nih.gov/)を参照すればよい。また、塩基配列の『同一性』も上記に準じて定義される。 "Identity" of amino acid sequences refers to the degree of matching of two or more comparable amino acid sequences to each other. Therefore, the higher the identity or similarity between two amino acid sequences, the higher the identity or similarity of those sequences. The level of amino acid sequence identity is determined, for example, using the sequence analysis tool FASTA, using default parameters. or Algorithm BLAST by Karlin S, Altschul SF. "Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes" Proc Natl Acad Sci USA. ul SF "Applications and statistics for multiple high-scoring segments in molecular sequences." Proc Natl Acad Sci USA. 90:5873-7 (1993)). A program called BLASTP based on such a BLAST algorithm has been developed. Specific methods of these analysis methods are known, and the website of the National Center of Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) can be referred to. "Identity" of base sequences is also defined according to the above.
 本明細書中において、「保存的置換」とは、アミノ酸残基が類似の側鎖を有するアミノ酸残基に置換されることを意味する。例えば、リジン、アルギニン、ヒスチジンといった塩基性側鎖を有するアミノ酸残基同士で置換されることが、保存的な置換にあたる。その他、アスパラギン酸、グルタミン酸といった酸性側鎖を有するアミノ酸残基;グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システインといった非帯電性極性側鎖を有するアミノ酸残基;アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファンといった非極性側鎖を有するアミノ酸残基;スレオニン、バリン、イソロイシンといったβ-分枝側鎖を有するアミノ酸残基;チロシン、フェニルアラニン、トリプトファン、ヒスチジンといった芳香族側鎖を有するアミノ酸残基同士での置換も同様に、保存的な置換にあたる。 As used herein, "conservative substitution" means that an amino acid residue is replaced with an amino acid residue having a similar side chain. For example, substitutions between amino acid residues having basic side chains such as lysine, arginine, and histidine correspond to conservative substitutions. In addition, amino acid residues having acidic side chains such as aspartic acid and glutamic acid; amino acid residues having uncharged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine and cysteine; alanine, valine, leucine, isoleucine, Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine, tryptophan; amino acid residues with β-branched side chains such as threonine, valine, isoleucine; aromatic side chains such as tyrosine, phenylalanine, tryptophan, histidine. Substitutions between amino acid residues are also conservative substitutions.
 2.植物細胞
 本開示は、その一態様において、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子が改変されており、前記改変により前記対象遺伝子の機能及び/又は発現が欠損又は低下している、植物細胞(本明細書において、「本開示の植物細胞」と示すこともある。)に関する。以下、これについて説明する。
2. In one aspect of the present disclosure, plant cells are selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. A plant cell in which at least two or more selected target genes have been modified, and the function and/or expression of the target gene is lost or reduced due to the modification (herein, "plant cell of the present disclosure ). This will be explained below.
 植物細胞の由来植物としては、ベツリン酸合成経路、ソヤサポニン合成経路、又はオレアノール酸経路の少なくともいずれか1つを有する植物であって、内在的に、或いは外来的に遺伝子導入されて、グリチルリチン生合成酵素を発現可能な植物である限り、特に制限されない。植物としては、例えば被子植物のモクレン類、単子葉類、真正双子葉類(バラ類I、バラ類II、キク類I、キク類II及びそれらの外群)を含む広い範囲の植物を挙げることができる。植物のより具体的な例としては、ゼニゴケ、トマト、ピーマン、トウガラシ、ナス、タバコ等のナス類; キュウリ、カボチャ、メロン、スイカ等のウリ類; キャベツ、ブロッコリー、ハクサイ等の菜類; シソ、セルリー、パセリー、レタス等の生菜・香辛菜類; ネギ、タマネギ、ニンニク等のネギ類; イチゴ、メロン等のその他果菜類; ダイコン、カブ、ニンジン、ゴボウ等の直根類; サトイモ、キャッサバ、ジャガイモ、バレイショ、サツマイモ、ナガイモ等のイモ類; イネ、トウモロコシ、コムギ、ソルガム、オオムギ、ライムギ、ミナトカモジグサ、ソバ等の穀類; カンゾウ、ダイズ、アズキ、リョクトウ、ササゲ、インゲンマメ、ラッカセイ、エンドウ、ソラマメ等のマメ類; アスパラガス、ホウレンソウ、ミツバ等の柔菜類; リンドウ、バラ、ヒルガオ、キンポウゲ、キキョウ、ストック、カーネーション、キク等の花卉類; ベントグラス、コウライシバ等の芝類; ナタネ、ラッカセイ、セイヨウアブラナ、ナンヨウアブラギリ等の油料作物類; ワタ、イグサ等の繊維料作物類; クローバー、デントコーン、タルウマゴヤシ等の飼料作物類; フトモモ、カキノキ、リンゴ、ナシ、ブドウ、モモ等の落葉性果樹類; ミカン、オレンジ、レモン、グレープフルーツ等の柑橘類; サツキ、ツツジ、キョウチクトウ、モクセイ、カバノキ、スズカケノキ、ビャクダン、シクンシ、ヤマグルマ、モチノキ、スギ、ポプラ、パラゴムノキ等の木本類; レンプクソウ等の草本類等が挙げられる。 The plant cell is derived from a plant having at least one of the betulinic acid synthesis pathway, the soyasaponin synthesis pathway, and the oleanolic acid pathway, and is endogenously or exogenously introduced to biosyntheize glycyrrhizin. There are no particular restrictions as long as the plant can express the enzyme. Plants include a wide range of plants including, for example, the angiosperms magnolias, monocotyledons, eudicotyledons (roses I, roses II, chrysanthemums I, chrysanthemums II and outgroups thereof). can be done. More specific examples of plants include eggplants such as liverwort, tomatoes, green peppers, hot peppers, eggplants and tobacco; gourds such as cucumbers, pumpkins, melons and watermelons; vegetables such as cabbages, broccoli and Chinese cabbage; Raw and spicy vegetables such as celery, parsley, and lettuce; Green onions such as green onions, onions, and garlic; Other fruit vegetables such as strawberries and melons; Tap roots such as radishes, turnips, carrots, and burdock; Taro, cassava, and potatoes , potatoes, sweet potatoes, Chinese yams, etc.; grains, such as rice, corn, wheat, sorghum, barley, rye, seaweed, and buckwheat; Legumes; Soft vegetables such as asparagus, spinach, and Japanese honeysuckle; Flowers such as gentian, rose, bindweed, buttercup, bellflower, stock, carnation, and chrysanthemum; Oil crops such as rapeseed; Textile crops such as cotton and rush; Feed crops such as clover, dent corn, and alfalfa; Deciduous fruit trees such as myrtle, persimmon, apple, pear, grape, and peach; Citrus fruits such as oranges, lemons and grapefruits; Woody plants such as satsuki, azalea, oleander, osmanthus, birch, sycamore, sandalwood, sykunshi, yamaguruma, ilex, cedar, poplar and para rubber tree;
 植物としては、これらの中でも、好ましくはマメ科植物(例えば、カンゾウ、ダイズ、ミヤコグサ、キバナオウギ、フェヌグリーク、ゲンゲ、ウマゴヤシ等)、ウコギ科植物(例えば、オタネニンジン等)、セリ科植物(例えば、ミシマサイコ、ツボクサ等)、ウリ科植物(例えば、アマチャヅル等)、ツツジ科植物(例えば、ウワウルシ、クマコケモモ等)、カバノキ科植物(例えば、ヨーロッパダケカンバ等)、リンドウ科植物(例えば、ベニバナセンブリ等)、バラ科植物(例えば、サンザシ、リンゴ、ボケ等)、フトモモ科植物(例えば、ユーカリ、チョウジ等)、シソ科植物(例えば、ラベンダー、レモンバーム、マジョラム、ローズマリー、セージ、ウィンターサボリー、立麝香草、ネコノヒゲ、ニンジンボク等)、ウルシ科植物(例えば、マンゴー等)、ナス科植物(例えば、アシュワガンダ等)、キョウチクトウ科植物(例えば、キョウチクトウ等)、モクセイ科植物(例えば、オリーブ等)、ニシキギ科植物(例えば、タイワンクロヅル等)、スズカケノキ科植物(例えば、モミジバスズカケノキ等)、レンプクソウ科植物(例えば、セイヨウニワトコ等)、ビャクダン科植物(例えば、ヤドリギ等)、シクンシ科植物(例えば、シクンシ、サケーナー等)、ヤマグルマ科植物(例えば、スイセイジュ等)、モチノキ科植物(例えば、アオハダ等)、ヒルガオ科植物(例えば、グンバイヒルガオ等)、カキノキ科植物、キンポウゲ科植物(例えば、アズマイチゲ等)等が挙げられ、より好ましくはマメ科植物が挙げられる。マメ科植物の中でも、特に好ましくはカンゾウ属植物が挙げられる。カンゾウ属植物としては、例えばウラルカンゾウ、スペインカンゾウ、新疆カンゾウ等が挙げられる。 Among these plants, leguminous plants (e.g., licorice, soybean, Lotus japonicus, Astragalus membranaceus, fenugreek, Astragalus, Medicago, etc.), Araliaceae (e.g., Panax ginseng), Umbelliferae (e.g., Panax ginseng, etc.), Umbelliferae (e.g., radish) Centella asiatica, etc.), Cucurbitaceous plants (e.g., Jiaogulan, etc.), Ericaceous plants (e.g., Arctic japonicum, bearberry, etc.), Betulaceae plants (e.g., Betula oleracea, etc.), Gentianaceous plants (e.g., Safflower assembly, etc.), Rosaceae Plants (e.g., hawthorn, apple, Japanese quince, etc.), Myrtaceous plants (e.g., eucalyptus, cloves, etc.), Labiatae plants (e.g., lavender, lemon balm, marjoram, rosemary, sage, winter savory, musk grass, cat's mustache, carrots, etc.), Anacardiaceae plants (e.g., mangoes, etc.), Solanaceae plants (e.g., Ashwagandha, etc.), Apocynaceae plants (e.g., Apocynaceae, etc.), Oleaceae plants (e.g., olives, etc.), Euonymus plants (e.g., , Taiwan black crane, etc.), sycamore family plants (e.g., maple leaf sycamore, etc.), sycamore family plants (e.g., elderberry), sandalwood family plants (e.g., mistletoe, etc.), sykundiaceae plants (e.g., sykunshi, salmon, etc.), yamaguruma family plants (e.g. Apothecary japonicum etc.), Ilexaceae plants (e.g. Aohada etc.), Convolvulaceae plants (e.g. Gumbai bindweed etc.), Kakinokiaceae plants, Ranunculaceae plants (e.g. Azuma Tage etc.) and the like, more preferably include leguminous plants. Among leguminous plants, particularly preferred are plants of the genus Glycyrrhiza. Glycyrrhiza plants include, for example, Ural licorice, Spanish licorice, and Xinjiang licorice.
 植物細胞は、ベツリン酸合成経路、ソヤサポニン合成経路、又はオレアノール酸経路の少なくともいずれか1つを有する植物であって、内在的に、或いは外来的に遺伝子導入されて、グリチルリチン生合成酵素を発現可能な植物細胞である限り、特に制限されず、各種植物組織の細胞であることができる。植物組織としては、例えば根、茎、葉、花、生殖器官等、或いはそれらに分化する未分化細胞・組織等が挙げられる。グリチルリチン生合成酵素としては、トリテルペン骨格の11位あるいは30位の酸化酵素、グルクロン酸転移酵素1、グルクロン酸転移酵素2等が挙げられる(図5参照)。11位酸化酵素の例としては、CYP88D6(β-amyrinを11-oxo-β-amyrinに変換する活性を有する酵素)等が挙げられる。30位酸化酵素の例としてはCYP72A154(11-oxo-β-amyrinをグリチルレチン酸に変換する活性を有する酵素)、CYP72A63(ミヤコグサ由来30位の酸化酵素)等が挙げられる。グルクロン酸転移酵素1の例としては、GuCSyGT(グリチルレチン酸をGlycyrrhetinic acid monoglucuronideに変換する活性を有する酵素)、ホウレンソウ由来CsyGT(medicagenic acidをyososside Vに変換する活性を有する酵素)等が挙げられる。グルクロン酸転移酵素2の例としては、UGT73P12(Glycyrrhetinic acid monoglucuronideをグリチルリチンに変換する活性を有する酵素)等が挙げられる。一実施形態において、植物細胞は、少なくとも1種類のグリチルリチン生合成酵素をコードする遺伝子が導入された細胞である。 The plant cell is a plant having at least one of the betulinic acid synthetic pathway, the soyasaponin synthetic pathway, or the oleanolic acid pathway, and is endogenously or exogenously introduced to express the glycyrrhizin biosynthetic enzyme. As long as it is a suitable plant cell, it is not particularly limited, and can be cells of various plant tissues. Plant tissues include, for example, roots, stems, leaves, flowers, reproductive organs, and undifferentiated cells and tissues that differentiate into them. Glycyrrhizin biosynthetic enzymes include oxidase at position 11 or 30 of the triterpene skeleton, glucuronyltransferase 1, glucuronyltransferase 2, and the like (see FIG. 5). Examples of the 11-position oxidase include CYP88D6 (an enzyme having activity to convert β-amyrin into 11-oxo-β-amyrin). Examples of the 30-position oxidase include CYP72A154 (enzyme having activity to convert 11-oxo-β-amyrin into glycyrrhetinic acid), CYP72A63 (30-position oxidase derived from Lotus japonicus), and the like. Examples of glucuronyltransferase 1 include GuCSyGT (an enzyme that converts glycyrrhetinic acid into glycyrrhetinic acid monoglucuronide), spinach-derived CsyGT (an enzyme that converts medicagenic acid into yososside V), and the like. Examples of glucuronyltransferase 2 include UGT73P12 (enzyme having activity to convert glycyrrhetinic acid monoglucuronide into glycyrrhizin) and the like. In one embodiment, the plant cell is a cell into which a gene encoding at least one glycyrrhizin biosynthetic enzyme has been introduced.
 ベツリン酸合成経路上の酵素をコードする遺伝子(ベツリン酸合成経路遺伝子)は、2,3-オキシドスクワレンからベツリン酸を合成する経路上の酵素をコードする遺伝子である限り、特に制限されない。ベツリン酸合成経路上の酵素としては、例えばルペオール合成酵素、トリテルペン28位酸化酵素等が挙げられる。 A gene encoding an enzyme on the betulinic acid synthesis pathway (betulinic acid synthesis pathway gene) is not particularly limited as long as it is a gene encoding an enzyme on the pathway for synthesizing betulinic acid from 2,3-oxidosqualene. Enzymes on the betulinic acid synthesis pathway include, for example, lupeol synthase and triterpene 28-position oxidase.
 ルペオール合成酵素は、ベツリン酸合成経路上、2,3-オキシドスクワレンをルペオールに変換する活性を有する酵素である。植物各種において、ルペオール合成酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のルペオール合成酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、ルペオール合成酵素をコードする遺伝子としては、LUS1遺伝子が挙げられる。そのアミノ酸配列は配列番号1で示され、そのコード塩基配列は配列番号5で示される。 Lupeol synthase is an enzyme that has the activity of converting 2,3-oxide squalene into lupeol on the betulinic acid synthesis pathway. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding lupeol synthase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding lupeol synthase (for example, identity analysis with these etc.) can be easily determined. An example of a gene encoding lupeol synthase is the LUS1 gene. Its amino acid sequence is shown in SEQ ID NO:1 and its coding base sequence is shown in SEQ ID NO:5.
 トリテルペン28位水酸化酵素は、ベツリン酸合成経路上、ルペオールをベツリン酸に変換する活性を有する酵素である。植物各種において、トリテルペン28位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン28位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、トリテルペン28位酸化酵素をコードする遺伝子としては、CYP716A179遺伝子が挙げられる。そのアミノ酸配列は配列番号4で示され、そのコード塩基配列は配列番号8で示される。  Triterpene 28-hydroxylase is an enzyme that has the activity of converting lupeol to betulinic acid on the betulinic acid synthesis pathway. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 28-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 28-hydroxylase (for example, It can be easily determined by identity analysis with these). An example of a gene encoding triterpene position 28 oxidase is the CYP716A179 gene. Its amino acid sequence is shown in SEQ ID NO:4 and its coding base sequence is shown in SEQ ID NO:8.
 ソヤサポニン合成経路上の酵素をコードする遺伝子(ソヤサポニン合成経路遺伝子)は、2,3-オキシドスクワレンからソヤサポニンを合成する経路上の酵素をコードする遺伝子である限り、特に制限されない。ソヤサポニン合成経路上の酵素としては、例えばトリテルペン24位水酸化酵素、トリテルペン22位水酸化酵素、トリテルペン21位水酸化酵素、トリテルペン3位配糖化酵素、トリテルペン22位配糖化酵素等が挙げられる。 A gene encoding an enzyme on the soyasaponin synthesis pathway (soyasaponin synthesis pathway gene) is not particularly limited as long as it is a gene encoding an enzyme on the pathway for synthesizing soyasaponin from 2,3-oxidosqualene. Enzymes on the soyasaponin synthetic pathway include, for example, triterpene 24-hydroxylase, triterpene 22-hydroxylase, triterpene 21-hydroxylase, triterpene 3-glycosylase, triterpene 22-hydroxylase and the like.
 トリテルペン24位水酸化酵素は、ソヤサポニン合成経路上、β-amyrinを24-OH-β-amyrinに変換する活性、及びsophoradiolをSoyasapogenol Bに変換する活性を有する酵素である。植物各種において、トリテルペン24位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン24位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、トリテルペン24位水酸化酵素をコードする遺伝子としてはCYP93E3遺伝子が挙げられる。そのアミノ酸配列は配列番号2で示され、そのコード塩基配列は配列番号6で示される。 Triterpene 24-hydroxylase is an enzyme that has the activity of converting β-amyrin to 24-OH-β-amyrin and the activity of converting sophoradiol to Soyasapogenol B on the soyasaponin synthesis pathway. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 24-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 24-hydroxylase (for example, It can be easily determined by identity analysis with these). An example of a gene encoding triterpene 24-hydroxylase is the CYP93E3 gene. Its amino acid sequence is shown in SEQ ID NO:2 and its coding base sequence is shown in SEQ ID NO:6.
 トリテルペン22位水酸化酵素は、ソヤサポニン合成経路上、β-amyrinをsophoradiolに変換する活性、及び24-OH-β-amyrinをSoyasapogenol Bに変換する活性を有する酵素の遺伝子である。植物各種において、トリテルペン22位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン22位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、トリテルペン22位水酸化酵素をコードする遺伝子としてはCYP72A566遺伝子が挙げられる。そのアミノ酸配列は配列番号3で示され、そのコード塩基配列は配列番号7で示される。 Triterpene 22-hydroxylase is a gene for an enzyme that converts β-amyrin to sophoradiol and 24-OH-β-amyrin to Soyasapogenol B on the soyasaponin synthesis pathway. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 22-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 22-hydroxylase (for example, It can be easily determined by identity analysis with these). An example of a gene encoding triterpene 22-hydroxylase is the CYP72A566 gene. Its amino acid sequence is shown in SEQ ID NO:3 and its coding base sequence is shown in SEQ ID NO:7.
 トリテルペン21位水酸化酵素は、ソヤサポニン合成経路上、β-amyrinを21-hydroxy-β-amyrinに変換する活性、sophoradiolをcantoniensistriolに変換する活性、及びsoyasapogenol Bをsoyasapogenol Aに変換する活性を有する酵素の遺伝子である。植物各種において、トリテルペン21位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン21位水酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、ダイズのトリテルペン21位水酸化酵素をコードする遺伝子としては、CYP72A69遺伝子が挙げられる。そのアミノ酸配列は配列番号42で示され、そのコード塩基配列は配列番号43で示される。 Triterpene 21-hydroxylase is an enzyme that converts β-amyrin to 21-hydroxy-β-amyrin, sophoradiol to cantoniensistriol, and soyasapogenol B to soyasapogenol A in the soyasaponin synthesis pathway. is the gene for In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 21-hydroxylase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 21-hydroxylase (for example, It can be easily determined by identity analysis with these). An example of a gene encoding soybean triterpene 21-hydroxylase is the CYP72A69 gene. Its amino acid sequence is shown in SEQ ID NO:42 and its coding base sequence is shown in SEQ ID NO:43.
 トリテルペン3位配糖化酵素は、ソヤサポニン合成経路上、soyasapogenol A又はsoyasapogenol Bの3位に第一糖を付加する活性、3位の第一糖配糖体に第二糖を付加する活性、又は3位の第二糖配糖体に第三糖を付加する活性を有することが推定される酵素である。植物各種において、トリテルペン3位配糖化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン3位配糖化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、トリテルペン3位配糖化酵素をコードする遺伝子としてGuCSyGT遺伝子が挙げられる。そのアミノ酸配列は配列番号40で示され、そのコード塩基配列は配列番号41で示される。 Triterpene 3-glycosidase has the activity of adding the primary sugar to the 3-position of soyasapogenol A or soyasapogenol B on the soyasaponin synthetic pathway, the activity of adding the secondary sugar to the primary glycoside at the 3-position, or 3 It is an enzyme presumed to have the activity of adding a tertiary sugar to a secondary glycoside. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 3-glycosidase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 3-glycosidase (for example, It can be easily determined by identity analysis with these). An example is the GuCSyGT gene, which encodes a triterpene-3-glycosyltransferase. Its amino acid sequence is shown in SEQ ID NO:40 and its coding base sequence is shown in SEQ ID NO:41.
 トリテルペン22位配糖化酵素は、ソヤサポニン合成経路上、soyasapogenol Aの22位に第一糖を付加する活性、soyasapogenol Aの22位の第一糖配糖体に第二糖を付加する活性を有することが推定される酵素である。植物各種において、トリテルペン22位配糖化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン22位配糖化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、トリテルペン22位配糖化酵素をコードする遺伝子としては、UGT73F4遺伝子が挙げられる。そのアミノ酸配列は配列番号44で示され、そのコード塩基配列は配列番号45で示される。 Triterpene 22-position glycosidase has the activity of adding the primary sugar to the 22nd position of soyasapogenol A and the activity of adding the secondary sugar to the primary glycoside at the 22nd position of soyasapogenol A on the soyasaponin synthesis pathway. is the estimated enzyme. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding the triterpene 22-position glycosidase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding the triterpene 22-position glycosidase (for example, It can be easily determined by identity analysis with these). An example of a gene encoding a triterpene 22-position glycosidase is the UGT73F4 gene. Its amino acid sequence is shown in SEQ ID NO:44 and its coding base sequence is shown in SEQ ID NO:45.
 オレアノール酸合成経路上の酵素をコードする遺伝子(オレアノール酸合成経路遺伝子)は、2,3-オキシドスクワレンからオレアノール酸を合成する経路上の酵素をコードする遺伝子である限り、特に制限されない。オレアノール酸合成経路上の酵素としては、例えばトリテルペン28位酸化酵素等が挙げられる。 A gene encoding an enzyme on the oleanolic acid synthesis pathway (oleanolic acid synthesis pathway gene) is not particularly limited as long as it is a gene encoding an enzyme on the pathway for synthesizing oleanolic acid from 2,3-oxidosqualene. Enzymes on the oleanolic acid synthesis pathway include, for example, triterpene 28-oxidase.
 トリテルペン28位酸化酵素は、オレアノール酸合成経路上、β-amyrinをオレアノール酸に変換する活性を有する酵素の遺伝子である。植物各種において、トリテルペン28位酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列は公知である、或いは公知のトリテルペン28位酸化酵素をコードする遺伝子の塩基配列及びアミノ酸配列に基づいて(例えば、これらとの同一性解析等により)容易に決定することができる。一例として、トリテルペン28位酸化酵素をコードする遺伝子としては、先述の通り、CYP716A179遺伝子が挙げられる。そのアミノ酸配列は配列番号4で示され、そのコード塩基配列は配列番号8で示される。  Triterpene 28-oxidase is a gene for an enzyme that converts β-amyrin to oleanolic acid on the oleanolic acid synthesis pathway. In various plants, the nucleotide sequence and amino acid sequence of the gene encoding triterpene 28 oxidase are known, or based on the nucleotide sequence and amino acid sequence of the known gene encoding triterpene 28 oxidase (for example, can be easily determined by identity analysis, etc.). An example of a gene encoding a triterpene position 28 oxidase is the CYP716A179 gene, as described above. Its amino acid sequence is shown in SEQ ID NO:4 and its coding base sequence is shown in SEQ ID NO:8.
 改変の対象遺伝子は、上記配列番号で示されるアミノ酸配列又は塩基配列で示される遺伝子のオーソログ又はパラログであることができる。例えば、改変の対象遺伝子は、上記配列番号で示されるアミノ酸配列又は塩基配列に対して、例えば70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、よりさらに好ましくは98%以上、とりわけ好ましくは99%以上の同一性を有し、且つ上記酵素活性を有する、遺伝子、であることができる。 The target gene for modification can be an ortholog or paralog of the gene indicated by the amino acid sequence or base sequence indicated by the above SEQ ID NO. For example, the target gene for modification is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and furthermore It may be a gene having an identity of preferably 98% or more, particularly preferably 99% or more, and having the above enzymatic activity.
 改変の対象遺伝子は、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上である。一実施形態において、対象遺伝子は、好ましくは、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子、トリテルペン22位の炭素の水酸化酵素をコードする遺伝子、トリテルペンの28位の炭素の酸化酵素をコードする遺伝子、及びルペオール合成酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を含む。一実施形態において、対象遺伝子は、好ましくは、ソヤサポニン合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を含み、特に好ましくはトリテルペン24位水酸化酵素をコードする遺伝子及びトリテルペン22位水酸化酵素をコードする遺伝子を含む。一実施形態において、対象遺伝子は、好ましくは、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子を含み、特に好ましくはルペオール合成酵素をコードする遺伝子、トリテルペン24位水酸化酵素をコードする遺伝子、トリテルペン22位水酸化酵素をコードする遺伝子、及びトリテルペン28位酸化酵素をコードする遺伝子を含む。 The genes to be modified are at least two selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. more than seeds. In one embodiment, the target gene preferably includes a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, and a triterpene 28-position carbon oxidase. It contains at least two or more genes selected from the group consisting of the encoding gene and the gene encoding lupeol synthase. In one embodiment, the target gene preferably contains at least two or more genes selected from the group consisting of genes encoding enzymes on the soyasaponin synthetic pathway, and particularly preferably encodes triterpene 24-hydroxylase. It contains a gene and a gene encoding triterpene 22-hydroxylase. In one embodiment, the target gene is preferably at least two or more genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and oleanol. A gene encoding an enzyme on the acid synthesis pathway, particularly preferably a gene encoding lupeol synthase, a gene encoding triterpene 24-hydroxylase, a gene encoding triterpene 22-hydroxylase, and a triterpene 28-position Contains genes encoding oxidases.
 改変の対象遺伝子には、自然界において生じ得る機能正常の変異体も含まれる。改変の対象遺伝子は、コードする酵素の活性が著しく損なわれない限りにおいて、置換、欠失、付加、挿入等の塩基変異を有していてもよい。変異としては、該mRNAから翻訳されるタンパク質においてアミノ酸置換が生じない変異やアミノ酸の保存的置換が生じる変異が好ましい。 The target genes for modification include functionally normal mutants that can occur in nature. The gene to be modified may have base mutations such as substitutions, deletions, additions, and insertions as long as the activity of the encoding enzyme is not significantly impaired. The mutation is preferably a mutation that does not cause amino acid substitution or a mutation that causes conservative amino acid substitution in the protein translated from the mRNA.
 改変の対象遺伝子は、例えば、それによりコードされるタンパク質のアミノ酸配列が、同種植物の野生型対象遺伝子によりコードされるタンパク質のアミノ酸配列と、例えば95%以上、好ましくは98%以上、より好ましくは99%以上の同一性を有する、遺伝子である。また、対象遺伝子は、例えば、それによりコードされるタンパク質のアミノ酸配列が、同種植物の野生型対象遺伝子によりコードされるタンパク質のアミノ酸配列と同一であるか又は該アミノ酸配列に対して1もしくは複数個(例えば2~10、好ましくは2~5、より好ましくは2~3個、さらに好ましくは2個)が置換、欠失、付加、又は挿入されたアミノ酸配列である、遺伝子である。 The target gene for modification, for example, the amino acid sequence of the protein encoded by it is, for example, 95% or more, preferably 98% or more, more preferably 98% or more of the amino acid sequence of the protein encoded by the wild-type target gene of the homologous plant A gene with 99% or more identity. In addition, the target gene, for example, the amino acid sequence of the protein encoded by it is the same as the amino acid sequence of the protein encoded by the wild-type target gene of the same kind of plant, or one or more amino acid sequences relative to the amino acid sequence (eg, 2-10, preferably 2-5, more preferably 2-3, even more preferably 2) are genes whose amino acid sequences are substituted, deleted, added, or inserted.
 本開示の植物細胞においては、対象遺伝子が改変されており、前記改変(により導入された変異)により前記対象遺伝子の機能及び/又は発現が欠損又は低下している。ここで、対象遺伝子の「機能」は、上記した対象遺伝子の酵素活性を示す。また、対象遺伝子の「発現」は、対象遺伝子 mRNAの発現、及び対象遺伝子タンパク質の発現の両方を包含するが、好ましくは対象遺伝子タンパク質の発現である。「欠損」とは、本開示の植物細胞から得られたサンプルについて、対象遺伝子タンパク質の活性及び/又は対象遺伝子の発現量が検出限界以下であることを示す。また、「低下」とは、本開示の植物細胞から得られたサンプルについて、対象遺伝子タンパク質の活性及び/又は対象遺伝子の発現量(対象遺伝子の機能及び/又は発現の指標値)が、変異導入前の対象遺伝子タンパク質の活性及び/又は対象遺伝子の発現量(対象遺伝子が改変されていない場合の機能及び/又は発現の指標値)100%に対して、100%未満である(例えば70%以下、60%以下、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下、2%以下、1%以下、0.5%以下、0.2%以下、0.1%以下、0.05%以下、0.02%以下、又は0.01%以下である)ことを示す。なお、対象遺伝子タンパク質の活性及び/又は対象遺伝子の発現量は、公知の方法に従って測定することが可能である。 In the plant cell of the present disclosure, the target gene is modified, and the function and/or expression of the target gene is lost or reduced due to the modification (the mutation introduced by the modification). Here, the "function" of the target gene indicates the enzymatic activity of the target gene described above. "Expression" of a gene of interest includes both expression of the mRNA of the gene of interest and expression of the protein of the gene of interest, preferably expression of the protein of the interest gene. "Deficient" indicates that the activity of the target gene protein and/or the expression level of the target gene is below the detection limit in samples obtained from the plant cells of the present disclosure. In addition, the term "decrease" refers to the activity of the target gene protein and/or the expression level of the target gene (index value of the function and/or expression of the target gene) in the sample obtained from the plant cells of the present disclosure. It is less than 100% (e.g., 70% or less , 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, 2% or less, 1% or less, 0.5% or less, 0.2% or less, 0.1% or less, 0.05 %, 0.02% or less, or 0.01% or less). The activity of the target gene protein and/or the expression level of the target gene can be measured according to known methods.
 対象遺伝子に導入される変異としては、対象遺伝子の機能及び/又は発現が欠損又は低下する変異である限り特に制限されるものではない。当該変異としては、例えば遺伝子破壊、タンパク質コード領域における変異、スプライシング調節領域における変異、発現制御領域(例えば、プロモーター、アクチベーター、エンハンサー等)における変異等が挙げられる。これらの中でも、好ましくはタンパク質コード領域における変異が挙げられる。本開示の植物細胞においては、好ましくは、対象遺伝子の変異を、対の染色体の両方において有する。 Mutations to be introduced into the target gene are not particularly limited as long as they are mutations that impair or reduce the function and/or expression of the target gene. Such mutations include, for example, gene disruption, mutations in protein coding regions, mutations in splicing regulatory regions, mutations in expression control regions (eg, promoters, activators, enhancers, etc.). Among these, mutations in protein coding regions are preferred. Plant cells of the present disclosure preferably have the mutation of the gene of interest on both chromosomes of the pair.
 3.植物組織、植物体、種子
 本開示は、その一態様において、本開示の植物細胞を含む、植物組織又は植物体(本明細書において、「本開示の植物組織又は植物体」、「本開示の植物組織、」、「本開示の植物体」と示すこともある。)に関する。また、本開示は、その一態様において、本開示の植物体に発生する、種子(本明細書において、「本開示の種子」と示すこともある。)に関する。以下、これらについて説明する。
3. Plant tissue, plant body, seed In one aspect, the present disclosure includes plant tissue or plant body (herein, “plant tissue or plant body of the present disclosure”, “plant tissue or plant body of the present disclosure”, “plant cell of the present disclosure”, (also referred to as “plant tissue,” “plant body of the present disclosure”). Moreover, in one aspect, the present disclosure relates to seeds (in this specification, sometimes referred to as “seeds of the present disclosure”) generated in the plant body of the present disclosure. These will be described below.
 植物体は、植物の各組織(根、茎、葉等)を全て含む植物全体を意味する。植物組織は、植物体の一部、又は植物体の一部若しくは全体に発生する未分化組織、から構成される限りにおいて得に制限されず、例えば、根、茎、葉、花、生殖器官、及びそれらに分化する細胞又は組織からなる群より選択される少なくとも1種を含む。種子は、本開示の植物細胞を含んでおり、本開示の植物体へと発生することができる。当該種子は、例えば本開示の植物細胞が生殖細胞に組み込まれている本開示の植物体から、得ることができる。 "Plant body" means the entire plant, including all plant tissues (roots, stems, leaves, etc.). The plant tissue is not particularly limited as long as it is composed of part of the plant body, or undifferentiated tissue generated in part or the whole of the plant body, such as roots, stems, leaves, flowers, reproductive organs, and at least one selected from the group consisting of cells or tissues that differentiate into them. Seeds contain plant cells of the disclosure and can develop into plants of the disclosure. The seed can be obtained, for example, from a plant of the present disclosure in which the plant cells of the present disclosure have been integrated into germ cells.
 本開示の植物組織は、グリチルリチン産生効率の観点から、好ましくは根及び茎からなる群より選択される少なくとも1種を含む。本開示の植物組織は、グリチルリチン産生効率の観点から、植物の地下部(例えば根(毛状根等)、地下茎等)を含むことが好ましい。 From the viewpoint of glycyrrhizin production efficiency, the plant tissue of the present disclosure preferably contains at least one selected from the group consisting of roots and stems. From the viewpoint of glycyrrhizin production efficiency, the plant tissue of the present disclosure preferably contains underground parts of the plant (for example, roots (hairy roots, etc.), rhizomes, etc.).
 本開示の植物組織又は植物体の植物種については、本開示の植物細胞の由来植物と同様である。 The plant species of the plant tissue or plant body of the present disclosure are the same as the plants from which the plant cells of the present disclosure are derived.
 本開示の植物細胞は、対象遺伝子の機能及び/又は発現が欠損又は低下していることにより、グリチルリチンの産生効率が高められている。よって、これを含む本開示の植物組織又は植物体は、グリチルリチンの産生効率が高められている。このため、本開示の植物組織又は植物体は、その一態様において(例えば、グリチルリチンの蓄積が十分に起こる期間培養又は栽培することにより)、本開示の植物細胞を含まない植物組織又は植物体に比べて、グリチルリチン又は少なくとも1種類のグリチルリチン誘導体の含有量が高い。本開示の植物組織又は植物体におけるグリチルリチン又は少なくとも1種類のグリチルリチン誘導体の含有量は、本開示の植物細胞を含まない植物組織又は植物体のグリチルリチン又は少なくとも1種類のグリチルリチン誘導体の含有量に対して、例えば1.5倍、2倍、5倍、10倍、20倍、50倍、100倍、又は150倍である。 The plant cells of the present disclosure have enhanced glycyrrhizin production efficiency due to lack or reduction in the function and/or expression of the target gene. Therefore, the plant tissue or plant body of the present disclosure containing this has enhanced glycyrrhizin production efficiency. Therefore, in one aspect, the plant tissue or plant body of the present disclosure (for example, by culturing or cultivating for a period in which glycyrrhizin is sufficiently accumulated) is transformed into a plant tissue or plant body that does not contain the plant cells of the present disclosure. The content of glycyrrhizin or at least one glycyrrhizin derivative is higher than that of The content of glycyrrhizin or at least one glycyrrhizin derivative in the plant tissue or plant body of the present disclosure is relative to the content of glycyrrhizin or at least one glycyrrhizin derivative in the plant tissue or plant body that does not contain plant cells of the present disclosure. , for example 1.5x, 2x, 5x, 10x, 20x, 50x, 100x or 150x.
 グリチルリチン誘導体としては、特に制限されないが、例えばグリチルレチン酸モノグルクロニド、licorice-saponin(LS)-A3, LS-B2, LS-C2, LS-D3, LS-E2, LS-F3, LS-G2, LS-H2, LS-J2, LS-K2, LS-L3, 18α-グリチルリチン、アピオグリチルリチン、アラボグリチルリチン、ペリアンドリンI、ペリアンドリンII、ペリアンドリンIII、ペリアンドリンIV等が挙げられる。 Examples of glycyrrhizin derivatives include, but are not limited to, glycyrrhetinic acid monoglucuronide, licorice-saponin (LS)-A3, LS-B2, LS-C2, LS-D3, LS-E2, LS-F3, LS-G2, LS -H2, LS-J2, LS-K2, LS-L3, 18α-glycyrrhizin, apioglycyrrhizin, araboglycyrrhizin, periandrin I, periandrin II, periandrin III, periandrin IV and the like.
 4.植物細胞又はそれを含む植物組織若しくは植物体の製造方法
 本開示の植物細胞、本開示の植物組織又は植物体は、例えば、植物細胞において、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子の機能及び/又は発現が欠損又は低下する変異を導入することを含む方法により、得ることができる。この観点から、本開示は、その一態様において、植物細胞において、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子の機能及び/又は発現が欠損又は低下する変異を導入することを含む、改変植物細胞又はそれを含む植物組織若しくは植物体を製造する方法(本明細書において、「本開示の植物製造方法」と示すこともある。)に関する。以下、これについて説明する。
Four. A plant cell, a plant tissue or a plant body containing the plant cell of the present disclosure, a plant tissue or a plant body of the present disclosure, for example, a gene encoding an enzyme on the betulinic acid synthesis pathway, soyasaponin synthesis in the plant cell Introduce mutations that eliminate or reduce the function and/or expression of at least two or more target genes selected from the group consisting of genes encoding enzymes on the pathway and genes encoding enzymes on the oleanolic acid synthesis pathway. can be obtained by a method comprising From this point of view, in one aspect, the present disclosure provides, in plant cells, genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. A modified plant cell, or a plant tissue or plant body containing the modified plant cell, comprising introducing a mutation that eliminates or reduces the function and/or expression of at least two or more target genes selected from the group consisting of genes that It relates to a method (in this specification, it may be indicated as a “plant production method of the present disclosure”). This will be explained below.
 対象遺伝子の機能及び/又は発現が欠損又は低下する変異については、「2.植物細胞」における説明と同様である。 Mutations in which the function and/or expression of the target gene are lost or reduced are the same as the explanation in "2. Plant cells".
 変異の導入方法は、特に制限されないが、製造効率の観点から、標的特異的ヌクレアーゼ、該ヌクレアーゼの発現カセット、及び該ヌクレアーゼのmRNAからなる群より選択される少なくとも1種を含む導入物を細胞に導入する方法が挙げられる。 The method of introducing mutations is not particularly limited, but from the viewpoint of production efficiency, a target-specific nuclease, an expression cassette of the nuclease, and an introduction containing at least one selected from the group consisting of mRNA of the nuclease is introduced into cells. There is a method of introduction.
 標的特異的ヌクレアーゼは、ゲノムDNA上の特定部位を特異的に切断して、変異を誘導できるヌクレアーゼである限り特に制限されない。標的特異的ヌクレアーゼとしては、例えばCasタンパク質、TALENタンパク質、ZFNタンパク質などが挙げられる。 The target-specific nuclease is not particularly limited as long as it can specifically cleave a specific site on genomic DNA and induce mutation. Target-specific nucleases include, for example, Cas proteins, TALEN proteins, ZFN proteins and the like.
 Casタンパク質を用いるCRISPR/Casシステムは、ヌクレアーゼ(RGN;RNA-guided nuclease)であるCasタンパク質とガイドRNAを使用する。該システムを細胞内に導入することにより、ガイドRNAが標的部位に結合し、該結合部位に呼び込まれたCasタンパク質によってDNAを切断することができる。 The CRISPR/Cas system using Cas protein uses Cas protein, which is a nuclease (RGN; RNA-guided nuclease), and guide RNA. By introducing the system into cells, the guide RNA binds to the target site, and the DNA can be cleaved by the Cas protein called into the binding site.
 TALENタンパク質を用いるTALENシステムは、DNA切断ドメイン(例えばFokIドメイン)に加えて転写活性化因子様(TAL)エフェクターのDNA結合ドメインを含む人工ヌクレアーゼ(TALEN)を使用する。該システムを細胞内に導入することにより、TALENがDNA結合ドメインを介して標的部位に結合し、そこでDNAを切断する。標的部位に結合するDNA結合ドメインは、公知のスキーム(例えばZhang F et al. (2011) Nature Biotechnology 29 (2);この論文は、本明細書に参考として援用される)に従って設計することができる。 The TALEN system using TALEN proteins uses artificial nucleases (TALENs) that contain DNA-binding domains of transcriptional activator-like (TAL) effectors in addition to DNA-cleaving domains (eg, FokI domains). By introducing the system into cells, TALENs bind to target sites via their DNA-binding domains and cleave DNA there. A DNA-binding domain that binds to a target site can be designed according to known schemes (e.g., Zhang F et al. (2011) Nature Biotechnology 29 (2); this paper is incorporated herein by reference). .
 ZFNタンパク質を用いるZFNシステムは、ジンクフィンガーアレイを含むDNA結合ドメインにコンジュゲートした核酸切断ドメインを含む人工ヌクレアーゼ(ZFN)を使用する。該システムを細胞内に導入することにより、ZFNがDNA結合ドメインを介して標的部位に結合し、そこでDNAを切断する。標的部位に結合するDNA結合ドメインは、公知のスキームに従って設計することができる。 A ZFN system using ZFN proteins uses an artificial nuclease (ZFN) containing a nucleic acid cleavage domain conjugated to a DNA binding domain containing a zinc finger array. By introducing the system into cells, the ZFN binds to the target site via its DNA binding domain and cleaves the DNA there. A DNA-binding domain that binds to a target site can be designed according to known schemes.
 標的特異的ヌクレアーゼの中でも、切断部位をより自由に決定できるという観点から、Casタンパク質が好ましい。Casタンパク質としては好ましくはCas9タンパク質が挙げられる。 Among the target-specific nucleases, the Cas protein is preferable from the viewpoint that the cleavage site can be determined more freely. Cas protein preferably includes Cas9 protein.
 標的特異的ヌクレアーゼ発現カセットは、本開示の植物製造方法の対象物の細胞内で標的特異的ヌクレアーゼを発現可能なDNAである限り特に制限されない。標的特異的ヌクレアーゼ発現カセットの典型例としては、プロモーター、及びそのプロモーターの制御下に配置された標的特異的ヌクレアーゼコード配列を含むDNAが挙げられる。また、標的特異的ヌクレアーゼ発現カセットは、これのみで、或いは他の配列(例えば薬剤耐性遺伝子、複製起点等)と共にベクターを構成していてもよい。ベクターの種類は、特に制限されない。 The target-specific nuclease expression cassette is not particularly limited as long as it is DNA capable of expressing the target-specific nuclease in the cells of the object of the plant production method of the present disclosure. A typical example of a target-specific nuclease expression cassette includes a DNA comprising a promoter and a target-specific nuclease coding sequence placed under the control of that promoter. In addition, the target-specific nuclease expression cassette alone or together with other sequences (eg, drug resistance gene, replication origin, etc.) may constitute a vector. The type of vector is not particularly limited.
 標的特異的ヌクレアーゼがCasタンパク質である場合、本開示の植物製造方法における導入物は、さらに、ガイドRNA発現カセット及びガイドRNAからなる群より選択される少なくとも1種を含む。 When the target-specific nuclease is a Cas protein, the introduced material in the plant production method of the present disclosure further contains at least one selected from the group consisting of guide RNA expression cassettes and guide RNAs.
 ガイドRNAは、CRISPR/Casシステムにおいて用いられるものであれば特に制限されず、例えばゲノムDNAの標的部位に結合し、且つCasタンパク質と結合することにより、Casタンパク質をゲノムDNAの標的部位に誘導可能なものを各種使用することができる。 The guide RNA is not particularly limited as long as it is used in the CRISPR/Cas system. For example, the guide RNA can guide the Cas protein to the target site of the genomic DNA by binding to the target site of the genomic DNA and binding to the Cas protein. Various things can be used.
 なお、ガイドRNAの標的部位への結合には、crRNA配列の内、標的配列に結合する配列の3’側の12塩基が重要であるといわれている。このため、crRNA配列の内、標的配列に結合する配列が、標的鎖と完全同一ではない場合、標的鎖と異なる塩基は、crRNA配列の内、標的配列に結合する配列の3’側の12塩基以外に存在することが好ましい。 It is said that the 12 bases on the 3' side of the sequence that binds to the target sequence in the crRNA sequence are important for the binding of the guide RNA to the target site. Therefore, if the sequence that binds to the target sequence in the crRNA sequence is not completely identical to the target strand, the nucleotides that differ from the target strand are the 12 bases on the 3' side of the sequence that binds to the target sequence in the It is preferable to exist other than
 また、本開示の植物製造方法における導入物は、ドナーDNAを含むことができる。ドナーDNAの使用により、目的の変異をより正確に導入することができる。 In addition, the introduced material in the plant production method of the present disclosure can contain donor DNA. The use of donor DNA allows more precise introduction of desired mutations.
 導入対象は特に制限されず、未分化状態の植物組織(例えばカルス)であってもよいし、種子の一部(例えば胚軸、茎頂等)であってもよいし、成体の一部(例えば茎頂等)であってもよい。 The introduction target is not particularly limited, and may be an undifferentiated plant tissue (e.g., callus), a part of a seed (e.g., hypocotyl, shoot apex, etc.), or a part of an adult ( For example, the stem apex, etc.) may be used.
 導入方法は、植物細胞内に導入物が到達できる態様であれば、特に制限されず、導入する物の種類や導入対象に応じて、適宜選択することができる。導入方法としては、例えばフローラル・ディップ法、フローラル・スプレー法、アグロバクテリウム法、パーティクル・ガン法、インフィルトレーション法、爪楊枝接種法、吸引注入法、リーフディスク法、花序浸潤法、減圧濾過法、ウイルス媒介性核酸送達等が挙げられる。これらの中でも、簡便性や安全性等の観点から、好ましくはアグロバクテリウム法が挙げられる。 The method of introduction is not particularly limited as long as it allows the substance to be introduced into the plant cells, and can be appropriately selected according to the type of substance to be introduced and the target of introduction. Examples of introduction methods include floral dip method, floral spray method, Agrobacterium method, particle gun method, infiltration method, toothpick inoculation method, suction injection method, leaf disk method, inflorescence infiltration method, and vacuum filtration method. , viral-mediated nucleic acid delivery, and the like. Among these, the Agrobacterium method is preferred from the viewpoint of convenience, safety, and the like.
 導入方法のより具体的な例を以下に示す。 A more specific example of the introduction method is shown below.
 導入方法の1つ目の具体例(導入例1)としては、プロモーター(例えばT7プロモーター、T3プロモーター、35Sプロモーター等)、及びその下流に発現カセットを含む配列を含むプラスミドを準備する工程(工程a1)、工程a1で得られたプラスミドから、試験管内転写により、植物ウイルスのゲノムRNAを得る工程(工程b1)、及び工程b1で得られたゲノムRNA(有効成分)を植物に接種(例えば、摩擦接種法、パーティクルガン接種法等)する工程(工程c1)を含む方法によって行うことができる。或いは、工程a1で得られたプラスミドが35Sプロモーター等の植物細胞内で転写活性化能を持つプロモーターを含むTiプラスミドである場合であれば、上記工程b1及びc1に代えて、例えば工程a1で得られたプラスミドをアグロバクテリアに導入して培養する工程(工程b2)、及び工程b2で得られた培養液(有効成分を含む培養液)を植物に接種(例えば、インフィルトレーション法、爪楊枝接種法、吸引注入法等)する工程(工程c2)を含む方法によって行うことができる。或いは、上記工程b1及びc1に代えて、例えば工程a1で得られたプラスミド(有効成分)を植物に接種(例えば磨砕接種法、パーティクルガン接種法等)する工程(工程c3)を含む方法によって行うことができる。或いは、上記工程c2に代えて、例えばリーフディスク法や花序浸潤法、減圧濾過法等を行う工程(工程c4)を含む方法によって行うことができる。これらの方法により植物内に導入されたゲノムRNAやプラスミド、T-DNA等から、所望のタンパク質やペプチドが産生される。 As a first specific example of the introduction method (Introduction example 1), a step of preparing a plasmid containing a promoter (e.g., T7 promoter, T3 promoter, 35S promoter, etc.) and a sequence containing an expression cassette downstream thereof (step a1 ), a step of obtaining plant virus genomic RNA from the plasmid obtained in step a1 by in vitro transcription (step b1), and inoculating a plant with the genomic RNA (active ingredient) obtained in step b1 (for example, rubbing inoculation method, particle gun inoculation method, etc.) (step c1). Alternatively, if the plasmid obtained in step a1 is a Ti plasmid containing a promoter capable of activating transcription in plant cells, such as the 35S promoter, instead of steps b1 and c1 above, for example, A step of introducing the plasmid obtained into Agrobacteria and culturing it (step b2), and inoculating the culture solution (culture solution containing the active ingredient) obtained in step b2 into plants (e.g., infiltration method, toothpick inoculation method , suction injection method, etc.) (step c2). Alternatively, instead of the above steps b1 and c1, for example, a method comprising a step (step c3) of inoculating a plant with the plasmid (active ingredient) obtained in step a1 (e.g., grinding inoculation method, particle gun inoculation method, etc.) It can be carried out. Alternatively, instead of step c2, for example, a method including a step (step c4) of performing a leaf disk method, an inflorescence infiltration method, a vacuum filtration method, or the like can be used. Desired proteins and peptides are produced from genomic RNA, plasmids, T-DNA, etc. introduced into plants by these methods.
 導入方法の2つ目の具体例(導入例2)としては、(例えば上記導入例1によって得られた)植物ウイルスを含む植物から、該ウイルスを採取する工程(工程d1)、及び工程d1で採取された該ウイルス(有効成分を含むウイルス)を植物に接種する工程(工程e1)を含む方法が挙げられる。工程d1における採取は、例えば植物ウイルスを含む植物の一部(例えば、葉等)を磨砕することにより得られるウイルス液を回収することにより行うことができる。工程e1における接種は、例えば炭化ケイ素等の研磨剤を用いて植物の接種対象部位(例えば、葉等)に傷をつけ、そこにウイルスを接触させることにより行うことができる。 As a second specific example of the introduction method (Introduction Example 2), a step of collecting the virus from a plant containing the plant virus (obtained, for example, in Introduction Example 1 above) (step d1), and in step d1 A method comprising the step of inoculating a plant with the collected virus (virus containing an active ingredient) (step e1). The collection in step d1 can be performed, for example, by recovering a virus fluid obtained by grinding a part of a plant containing a plant virus (eg, leaves, etc.). The inoculation in step e1 can be carried out by, for example, using an abrasive such as silicon carbide to scratch the site of the plant to be inoculated (eg, leaves) and contacting the site with the virus.
 導入後は、得られた植物又は植物細胞を成長させることにより、或いは得られた植物からカルスを経て成長させることにより、本開示の植物細胞、本開示の植物組織又は植物体を得ることができる。また、導入後は、必要に応じて、導入された細胞、組織等を、薬剤で選別することができる。 After the introduction, the plant cell, plant tissue, or plant body of the present disclosure can be obtained by growing the obtained plant or plant cell, or by growing the obtained plant through callus. . In addition, after the introduction, the introduced cells, tissues, etc. can be sorted with a drug, if necessary.
 目的の変異が入った細胞、組織等の選別方法を以下に示す。 The method for selecting cells, tissues, etc. containing the desired mutation is shown below.
 導入された細胞、組織等から対象遺伝子をPCR法で増幅し、ヘテロ二重鎖移動度解析により増幅した遺伝子断片のサイズを分析することにより、目的の変異が導入された細胞、組織等を絞り込むことができる。また、抗グリチルリチン抗体を用いてELISA法を行い、細胞、組織等のグリチルリチン含有量を分析することによっても、絞り込むことができる。絞り込み後は、対象遺伝子のシークエンス解析を行い、目的の変異が導入された細胞、組織等を選別することができる。 The target gene is amplified from the introduced cells, tissues, etc. by PCR, and the size of the amplified gene fragment is analyzed by heteroduplex mobility analysis to narrow down the cells, tissues, etc. into which the desired mutation has been introduced. be able to. It can also be narrowed down by performing an ELISA method using an anti-glycyrrhizin antibody and analyzing the glycyrrhizin content of cells, tissues, and the like. After narrowing down, it is possible to perform sequence analysis of the target gene and select cells, tissues, etc. into which the desired mutation has been introduced.
 5.グリチルリチン又はグリチルリチン誘導体の製造方法
 本開示は、その一態様において、本開示の植物組織又は植物体からグリチルリチン又は少なくとも1種類のグリチルリチン誘導体を抽出することを含む、グリチルリチン又はグリチルリチン誘導体の製造方法(本明細書において、「本開示のグリチルリチン製造方法」と示すこともある。)に関する。以下、これについて説明する。
Five. Method for Producing Glycyrrhizin or a Glycyrrhizin Derivative In one aspect of the present disclosure, a method for producing Glycyrrhizin or a Glycyrrhizin derivative comprising extracting Glycyrrhizin or at least one type of Glycyrrhizin derivative from the plant tissue or body of the present disclosure (this specification In the book, it may be indicated as "the method for producing glycyrrhizin of the present disclosure".). This will be explained below.
 抽出部位としては、特に制限されず、例えば、葉部、枝部、樹皮部、幹部、茎部、果実部、種子部、花部等の地上部、根部、根茎部又はこれらの部位の混合物などが挙げられる。これらの中でも、根部、根茎部が好ましい。 The part to be extracted is not particularly limited. is mentioned. Among these, roots and rhizomes are preferred.
 抽出に供される植物組織又は植物体は、必要に応じて裁断しておくことが好ましい。 It is preferable to cut the plant tissue or plant body to be extracted as necessary.
 抽出溶媒は、特に制限されない。抽出溶媒としては、例えば水; メタノール、エタノール、プロパノール、ブタノール等アルコール; 酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸アルキルエステル; 超臨界二酸化炭素等が挙げられる。これらの中でも、好ましくは水、アルコール(中でもエタノール)等が挙げられる。抽出溶媒は1種単独でもよいし、2種以上の組合せであってもよい。 The extraction solvent is not particularly limited. Examples of extraction solvents include water; alcohols such as methanol, ethanol, propanol and butanol; alkyl acetates such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; supercritical carbon dioxide and the like. Among these, water, alcohol (especially ethanol) and the like are preferred. The extraction solvent may be used singly or in combination of two or more.
 抽出時の溶媒の温度は、特に制限されないが、例えば0~100℃である。 抽出時間は、抽出方法、溶媒、温度等によって異なり、特に制限されない。 The temperature of the solvent during extraction is not particularly limited, but is, for example, 0-100°C. The extraction time varies depending on the extraction method, solvent, temperature, etc., and is not particularly limited.
 得られた抽出物は、そのままグリチルリチン又はグリチルリチン誘導体として使用することもできるし、さらに希釈、濃縮、乾燥、精製などの処理を施したものをグリチルリチン又はグリチルリチン誘導体として使用することもできる。 The obtained extract can be used as it is as glycyrrhizin or a glycyrrhizin derivative, or it can be used as glycyrrhizin or a glycyrrhizin derivative after being subjected to treatments such as dilution, concentration, drying and purification.
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be described in detail below based on examples, but the present invention is not limited by these examples.
 参考例1.標的遺伝子に変異を導入するための標的配列の決定
 ウラルカンゾウ(Glycyrrhiza uralensis)における、ベツリン酸合成経路上の酵素をコードする遺伝子(LUS1遺伝子(アミノ酸配列:配列番号1、コード塩基配列:配列番号5))、ソヤサポニン合成経路上の酵素をコードする遺伝子(CYP93E3遺伝子(アミノ酸配列:配列番号2、コード塩基配列:配列番号6)及びCYP72A566遺伝子(アミノ酸配列:配列番号3、コード塩基配列:配列番号7))、及びオレアノール酸合成経路上の酵素をコードする遺伝子(CYP716A179遺伝子(アミノ酸配列:配列番号4、コード塩基配列:配列番号8))を標的遺伝子として選定し、これらに変異を導入するための標的配列を設計した。具体的には、ウェブツール(CRISPR direct)を利用して、標的配列の候補をリスト化し、その中からスタートコドンに近く、かつ、標的遺伝子に特異性の高い配列を、各遺伝子につき2種類ずつ選択した。選択した標的配列(配列番号9~16)を表1に示す。
Reference example 1. Determination of target sequences for introducing mutations into target genes A gene encoding an enzyme on the betulinic acid synthesis pathway in Glycyrrhiza uralensis (LUS1 gene (amino acid sequence: SEQ ID NO: 1, coding base sequence: SEQ ID NO: 5) )), genes encoding enzymes in the soyasaponin synthesis pathway (CYP93E3 gene (amino acid sequence: SEQ ID NO: 2, coding nucleotide sequence: SEQ ID NO: 6) and CYP72A566 gene (amino acid sequence: SEQ ID NO: 3, coding nucleotide sequence: SEQ ID NO: 7 )), and genes encoding enzymes on the oleanolic acid synthesis pathway (CYP716A179 gene (amino acid sequence: SEQ ID NO: 4, coding base sequence: SEQ ID NO: 8)) were selected as target genes, and mutations were introduced into them. A target sequence was designed. Specifically, we use a web tool (CRISPR direct) to list candidate target sequences, and select two sequences for each gene that are close to the start codon and highly specific to the target gene. Selected. Selected target sequences (SEQ ID NOS: 9-16) are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例1.CYP93E3/ CYP72A566-二重ノックアウト毛状根およびCYP72A566シングルノックアウト毛状根の作出
 CYP93E3およびCYP72A566遺伝子をノックアウトするため、標的配列に結合する4種類のgRNA(各遺伝子2種類ずつ)およびシロイヌナズナのコドン使用バイアスにコドンを最適化したS.pyogenes由来Cas9ヌクレアーゼ、を発現するバイナリーベクターを作製した。具体的には、ベクターのT-DNA領域内に、シロイヌナズナ由来U6プロモータの下流にgRNA、カリフラワーモザイクウイルス由来35Sプロモータの下流にCas9ヌクレアーゼをそれぞれクローニングした。このベクターをAgrobacterium Rhizogenes ATCC 15834株に形質転換した。
Test example 1. Generation of CYP93E3/CYP72A566-double-knockout hairy roots and CYP72A566 single-knockout hairy roots Four gRNAs (two of each gene) that bind to target sequences and Arabidopsis codon usage bias to knockout the CYP93E3 and CYP72A566 genes A binary vector expressing Cas9 nuclease from S. pyogenes, codon-optimized for . Specifically, gRNA was cloned downstream of Arabidopsis thaliana-derived U6 promoter, and Cas9 nuclease was cloned downstream of cauliflower mosaic virus-derived 35S promoter into the T-DNA region of the vector. This vector was transformed into Agrobacterium Rhizogenes ATCC 15834 strain.
 甘草の胚軸にアグロバクテリウムを感染させ、毛状根を誘発した。約6週間後に毛状根を単離し、文献(Biotechniques 19:394-7, 1994)の方法に沿って毛状根をライセート化した。 The hypocotyl of licorice was infected with Agrobacterium to induce hairy roots. After about 6 weeks, hairy roots were isolated and lysated according to the method described in the literature (Biotechniques 19:394-7, 1994).
 標的遺伝子の標的配列への変異導入を確認するため、ヘテロ二重鎖移動度解析を実施した。具体的には、ライセートを鋳型として、標的遺伝子に特異的なプライマーにより、標的配列を含む数100bp程度の遺伝子をPCR法により増幅した。PCR産物をMultina(島津製作所)に供し、ヘテロ二重鎖移動度解析を実施した。PCR産物の電気泳動の移動度が野生型と異なるものを二重ノックアウト毛状根候補として選抜した(図1)。 Heteroduplex mobility analysis was performed to confirm the introduction of mutations into the target sequence of the target gene. Specifically, using the lysate as a template, a gene of about several 100 bp including the target sequence was amplified by PCR using target gene-specific primers. The PCR product was subjected to Multina (Shimadzu Corporation) and heteroduplex mobility analysis was performed. Those whose electrophoretic mobility of the PCR product was different from that of the wild type were selected as double knockout hairy root candidates (Fig. 1).
 二重ノックアウト候補のPCR産物をクローン化し、シークエンス解析を実施した。標的遺伝子の標的配列に欠失/置換を確認し、二重ノックアウト毛状根を特定した。毛状根FはCYP93E3/ CYP72A566-二重ノックアウトであり、毛状根MはCYP72A566シングルノックアウトである(表2及び表3:表中の初出の配列(10bp以上)は、配列表の配列番号17~25に示される。)。 The PCR product of the double knockout candidate was cloned and sequence analysis was performed. Deletions/substitutions were confirmed in the target sequence of the target gene and double knockout hairy roots were identified. Hairy root F is a CYP93E3/ CYP72A566-double knockout, and hairy root M is a CYP72A566 single knockout (Tables 2 and 3: The first sequence (10 bp or more) in the table is SEQ ID NO: 17 in the sequence listing. ~25).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験例2.四重ノックアウト毛状根(CYP93E3/ CYP72A566/LUS1/CYP716A179)の作出
 CYP93E3, CYP72A566, LUS1およびCYP716A179遺伝子をノックアウトするため、標的配列に結合する8種類のgRNA(各遺伝子につき2種類ずつ)、およびS.pyogenes由来Cas9ヌクレアーゼを共発現させるバイナリーベクターを作製した。
Test example 2. Generation of quadruple-knockout hairy roots (CYP93E3/ CYP72A566/LUS1/CYP716A179) To knockout the CYP93E3, CYP72A566, LUS1 and CYP716A179 genes, 8 gRNAs (2 for each gene) that bind to target sequences, and S A binary vector was constructed to co-express Cas9 nuclease from .pyogenes.
 試験例1と同じ方法で毛状根を誘発し、ライセートを調製した。 A lysate was prepared by inducing hairy roots in the same manner as in Test Example 1.
 毛状根のライセートを競合ELISA(Anal. Chem. 2001, 73, 5784-5790)に供し、ライセート中のグリチルリチンを定量し、四重ノックアウト候補毛状根を選抜した(表4、#1)。 The hairy root lysate was subjected to competitive ELISA (Anal. Chem. 2001, 73, 5784-5790), glycyrrhizin in the lysate was quantified, and quadruple knockout candidate hairy roots were selected (Table 4, #1).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 選抜した毛状根のライセートを鋳型として、試験例1と同じの方法でシークエンス解析を実施した。標的遺伝子の標的配列内に欠失/挿入を確認し、四重ノックアウト毛状根を特定した(表5:表中の初出の配列(10bp以上)は、配列表の配列番号26~36に示される。)。 Using the selected hairy root lysate as a template, sequence analysis was performed in the same manner as in Test Example 1. Deletions/insertions within the target sequence of the target gene were confirmed and quadruple knockout hairy roots were identified (Table 5: Sequences first appearing in the table (>10 bp) are shown in SEQ ID NOs: 26-36 in the Sequence Listing). be done.).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試験例3.CYP716A179シングルノックアウト毛状根の作出
 LUS1およびCYP716A179遺伝子の標的配列に結合する4種類のgRNA(各遺伝子につき2種類ずつ)、およびS.pyogenes由来Cas9ヌクレアーゼを共発現させるバイナリーベクターを作製した。以降は、CYP93E3/CYP72A566-二重ノックアウト毛状根の作出と同様に実施した。その結果、CYP716A179シングルノックアウトのみ得られた(表6:表中の初出の配列(10bp以上)は、配列表の配列番号37に示される。)。
Test example 3. Generation of CYP716A179 single-knockout hairy roots Four gRNAs (two for each gene) that bind to the target sequences of the LUS1 and CYP716A179 genes, and a binary vector that co-expresses Cas9 nuclease from S.pyogenes were constructed. Subsequent steps were carried out in the same manner as for the generation of CYP93E3/CYP72A566-double knockout hairy roots. As a result, only CYP716A179 single knockout was obtained (Table 6: The first sequence (10 bp or more) in the table is shown in SEQ ID NO: 37 in the Sequence Listing).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験例4.CYP93E3ノックアウト毛状根 (シングルノックアウト)の作出
 試験例1で選択した2種類の標的配列に加えて、1種類の標的配列を選択した。CYP93E3、遺伝子の標的配列に結合する3種類のgRNA、およびS.pyogenes由来Cas9ヌクレアーゼを共発現させるバイナリーベクターを作製した。以降は、CYP93E3/CYP72A566-二重ノックアウト毛状根の作出と同様に実施した。(表7:表中の初出の配列(10bp以上)は、配列表の配列番号38~39に示される。)。
Test example 4. Generation of CYP93E3 Knockout Hairy Roots (Single Knockout) In addition to the two target sequences selected in Test Example 1, one target sequence was selected. A binary vector was constructed to co-express CYP93E3, three gRNAs that bind to gene target sequences, and the Cas9 nuclease from S. pyogenes. Subsequent steps were carried out in the same manner as for the generation of CYP93E3/CYP72A566-double knockout hairy roots. (Table 7: Sequences (10 bp or more) appearing first in the table are shown in SEQ ID NOs: 38-39 in the sequence listing).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験例5.CYP93E3/ CYP72A566-2重ノックアウト+CYP88D6過剰発現毛状根の作出
 CYP93E3およびCYP72A566遺伝子をノックアウトし、かつCYP88D6遺伝子を過剰発現させた毛状根を作出するため、標的配列に結合する4種類のgRNA(各遺伝子2種類ずつ)、シロイヌナズナのコドン使用バイアスにコドンを最適化したS.pyogenes由来Cas9ヌクレアーゼ、およびG.uralensis由来CYP88D6(アミノ酸配列:配列番号46、コード塩基配列:配列番号47)を発現するバイナリーベクターを作製した。具体的には、ベクターのT-DNA領域内に、シロイヌナズナ由来U6プロモータの下流にgRNA、カリフラワーモザイクウイルス由来35Sプロモータの下流にCas9ヌクレアーゼおよびCYP88D6をそれぞれクローニングした。このベクターをAgrobacterium rhizogenes ATCC 15834株に形質転換した。
Test example 5. Generation of CYP93E3/CYP72A566-double knockout + CYP88D6 overexpression hairy roots In order to generate hairy roots with knockout of CYP93E3 and CYP72A566 genes and overexpression of CYP88D6 gene, four types of gRNAs that bind to target sequences ( express Cas9 nuclease from S. pyogenes codon-optimized for Arabidopsis codon usage bias, and CYP88D6 from G. uralensis (amino acid sequence: SEQ ID NO: 46; coding sequence: SEQ ID NO: 47) A binary vector was generated. Specifically, gRNA was cloned downstream of Arabidopsis thaliana-derived U6 promoter, and Cas9 nuclease and CYP88D6 were cloned downstream of cauliflower mosaic virus-derived 35S promoter, respectively, in the T-DNA region of the vector. This vector was transformed into Agrobacterium rhizogenes ATCC 15834 strain.
 試験例1と同じ方法で毛状根を誘発し、ライセートを調製した。 A lysate was prepared by inducing hairy roots in the same manner as in Test Example 1.
 試験例2と同じ方法で毛状根のグリチルリチン含有量を評価し、2重ノックアウト+CYP88D6過剰発現候補毛状根を選抜した The glycyrrhizin content of hairy roots was evaluated by the same method as Test Example 2, and candidate hairy roots with double knockout + CYP88D6 overexpression were selected.
 CYP88D6の発現量を評価するため、定量PCRを行い、野生型と比べてCYP88D6の転写レベルが高い毛状根を選抜した(図2)。 In order to evaluate the expression level of CYP88D6, quantitative PCR was performed to select hairy roots with higher transcription levels of CYP88D6 compared to the wild type (Fig. 2).
 選抜した毛状根のライセートを鋳型として、試験例1と同じの方法でシークエンス解析を実施した。標的遺伝子の標的配列内に欠失/挿入を確認し、CYP93E3/ CYP72A566-2重ノックアウト+CYP88D6過剰発現毛状根を特定した(表8:表中の初出の配列(10bp以上)は、配列表の配列番号48~53に示される。)。 Using the selected hairy root lysate as a template, sequence analysis was performed in the same manner as in Test Example 1. Deletion/insertion within the target sequence of the target gene was confirmed, and CYP93E3/ CYP72A566-double knockout + CYP88D6 overexpressing hairy roots were identified (Table 8: The first sequence (10 bp or more) in the table is the sequence listing. (SEQ ID NOS: 48-53).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試験例6.LC-MSによるトリテルペノイドの分析
 野生型毛状根及びノックアウト毛状根(試験例1~5)を凍結乾燥後、マルチビーズショッカー(安井器械)で破砕し粉末化した。毛状根粉末にメタノールを添加し、超音波処理によりトリテルペノイドを溶出した。フィルターろ過(0.2um)した溶液をトリテルペノイド溶液として、LC-MSシステム Aquity UPLC/MS system(Waters)に供し、トリテルペノイドの組成を決定した。
Test example 6. Analysis of Triterpenoids by LC-MS Wild-type hairy roots and knockout hairy roots (Test Examples 1 to 5) were lyophilized, crushed with a multi-bead shocker (Yasui Kikai Co., Ltd.) and pulverized. Methanol was added to the hairy root powder, and triterpenoids were eluted by sonication. The filtered (0.2 um) solution was used as a triterpenoid solution and subjected to an LC-MS system, Aquity UPLC/MS system (Waters), to determine the triterpenoid composition.
 結果を図3及び4に示す。ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を破壊することにより、グリチルリチン含有量が上昇することが分かった。また、グリチルリチン誘導体の一種である11-デオキソ-グリチルリチン(licorice-saponin-B2)含有量についても上昇することが分かった。 The results are shown in Figures 3 and 4. Disruption of at least two genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. It was found that the glycyrrhizin content was increased by It was also found that the content of 11-deoxo-glycyrrhizin (licorice-saponin-B2), a kind of glycyrrhizin derivative, also increased.
 試験例7.多重ノックアウトストロンの作出
 甘草の茎又はストロンより茎頂を調製する。特開2017-205104号公報に記載の方法で、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子の標的配列に結合するgRNA及びCas9ヌクレアーゼ遺伝子、を搭載したベクター、又はgRNA/Cas9ヌクレアーゼ蛋白質複合体を茎頂へ導入する。この茎頂を寒天培地に移しシュートを形成させる。外来遺伝子を含むシュートを選抜後、文献に記載の方法で、腋芽を含む茎部分を液体培地中で地下茎に分化させる(Plant biotechnology27, 59-66, 2010)。試験例2と同様の方法により、多重ノックアウトされた細胞を含む地下茎を特定する。
Test example 7. Production of multiple knockout stolons Shoot tips are prepared from licorice stems or stolons. The method described in JP-A-2017-205104, consisting of a gene encoding an enzyme on the betulinic acid synthesis pathway, a gene encoding an enzyme on the soyasaponin synthesis pathway, and a gene encoding an enzyme on the oleanolic acid synthesis pathway A vector carrying gRNA and a Cas9 nuclease gene that bind to the target sequences of at least two or more target genes selected from the group, or a gRNA/Cas9 nuclease protein complex is introduced into the shoot apex. The shoot tips are transferred to an agar medium to form shoots. After selecting shoots containing foreign genes, stem parts containing axillary buds are differentiated into underground stems in a liquid medium by the method described in the literature (Plant biotechnology27, 59-66, 2010). By the same method as in Test Example 2, underground stems containing multiple knockout cells are identified.

Claims (15)

  1. ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子が改変されており、前記改変により前記対象遺伝子の機能及び/又は発現が欠損又は低下している、植物細胞。 At least two or more target genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway. A plant cell that has been modified such that the function and/or expression of the gene of interest is lost or reduced due to the modification.
  2. 前記対象遺伝子が、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子、トリテルペン22位の炭素の水酸化酵素をコードする遺伝子、トリテルペンの28位の炭素の酸化酵素をコードする遺伝子、及びルペオール合成酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を含む、請求項1又は2に記載の植物細胞。 The target gene includes a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, a gene encoding a triterpene 28-position carbon oxidase, and lupeol synthesis. 3. The plant cell according to claim 1, comprising at least two genes selected from the group consisting of enzyme-encoding genes.
  3. 前記対象遺伝子が、ソヤサポニン合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子を含む、請求項1に記載の植物細胞。 2. The plant cell according to claim 1, wherein said target gene comprises at least two or more genes selected from the group consisting of genes encoding enzymes on the soyasaponin synthesis pathway.
  4. 前記対象遺伝子が、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子及びトリテルペン22位の炭素の水酸化酵素をコードする遺伝子を含む、請求項1又は2に記載の植物細胞。 3. The plant cell according to claim 1 or 2, wherein said gene of interest comprises a gene encoding a triterpene 24-position carbon hydroxylase and a gene encoding a triterpene 22-position carbon hydroxylase.
  5. 前記対象遺伝子が、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子を含む、請求項1~3のいずれかに記載の植物細胞。 The target gene includes at least two genes selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and enzymes on the oleanolic acid synthesis pathway. A plant cell according to any one of claims 1 to 3, comprising an encoding gene.
  6. 前記対象遺伝子が、ルペオール合成酵素をコードする遺伝子遺伝子、トリテルペン24位の炭素の水酸化酵素をコードする遺伝子遺伝子、トリテルペン22位の炭素の水酸化酵素をコードする遺伝子遺伝子、及びトリテルペン28位の炭素の酸化酵素をコードする遺伝子遺伝子を含む、請求項1~5のいずれかに記載の植物細胞。 The target gene includes a gene encoding lupeol synthase, a gene encoding a triterpene 24-position carbon hydroxylase, a gene encoding a triterpene 22-position carbon hydroxylase, and a triterpene 28-position carbon. The plant cell according to any one of claims 1 to 5, comprising a gene encoding an oxidase of
  7. 少なくとも1種類のグリチルリチン生合成酵素をコードする遺伝子が導入された、請求項1~6のいずれかに記載の植物細胞。 7. The plant cell according to any one of claims 1 to 6, into which a gene encoding at least one glycyrrhizin biosynthetic enzyme has been introduced.
  8. 前記対象遺伝子の機能及び/又は発現の指標値が、前記対象遺伝子が改変されていない場合の機能及び/又は発現の指標値100%に対して10%以下である、請求項1~7のいずれかに記載の植物細胞。 8. Any one of claims 1 to 7, wherein the index value of the function and/or expression of the target gene is 10% or less relative to 100% of the index value of the function and/or expression when the target gene is not modified. The plant cell of claim 1.
  9. マメ科植物の植物細胞である、請求項1~8のいずれかに記載の植物細胞。 The plant cell according to any one of claims 1 to 8, which is a plant cell of a leguminous plant.
  10. 請求項1~9のいずれかに記載の植物細胞を含む、植物組織又は植物体。 A plant tissue or plant comprising the plant cell according to any one of claims 1 to 9.
  11. 前記植物細胞を含まない植物組織又は植物体に比べてグリチルリチン又は少なくとも1種類のグリチルリチン誘導体の含有量が高い、請求項10に記載の植物組織又は植物体。 11. The plant tissue or plant according to claim 10, which has a higher content of glycyrrhizin or at least one glycyrrhizin derivative than the plant tissue or plant without the plant cells.
  12. カンゾウ属の毛状根である、請求項10又は11に記載の植物組織。 12. The plant tissue according to claim 10 or 11, which is a hairy root of Glycyrrhiza genus.
  13. 請求項10~12のいずれかに記載の植物体に発生する、種子。 A seed generated in the plant according to any one of claims 10 to 12.
  14. 植物細胞において、ベツリン酸合成経路上の酵素をコードする遺伝子、ソヤサポニン合成経路上の酵素をコードする遺伝子、及びオレアノール酸合成経路上の酵素をコードする遺伝子からなる群より選択される少なくとも2種以上の対象遺伝子の機能及び/又は発現が欠損又は低下する変異を導入することを含む、改変植物細胞又はそれを含む植物組織若しくは植物体を製造する方法。 At least two or more selected from the group consisting of genes encoding enzymes on the betulinic acid synthesis pathway, genes encoding enzymes on the soyasaponin synthesis pathway, and genes encoding enzymes on the oleanolic acid synthesis pathway in plant cells A method for producing a modified plant cell or a plant tissue or plant body containing the modified plant cell, comprising introducing a mutation that eliminates or reduces the function and/or expression of the target gene.
  15. 請求項10~12のいずれかに記載の植物組織又は植物体からグリチルリチン又は少なくとも1種類のグリチルリチン誘導体を抽出することを含む、グリチルリチン又はグリチルリチン誘導体の製造方法。 A method for producing glycyrrhizin or a glycyrrhizin derivative, comprising extracting glycyrrhizin or at least one glycyrrhizin derivative from the plant tissue or plant body according to any one of claims 10 to 12.
PCT/JP2022/042660 2021-11-19 2022-11-17 Plant cells, plant tissue, plant body, and glycyrrhizin production method WO2023090385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188430 2021-11-19
JP2021-188430 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090385A1 true WO2023090385A1 (en) 2023-05-25

Family

ID=86397145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042660 WO2023090385A1 (en) 2021-11-19 2022-11-17 Plant cells, plant tissue, plant body, and glycyrrhizin production method

Country Status (1)

Country Link
WO (1) WO2023090385A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150290A (en) * 1988-11-30 1990-06-08 Mitsui Toatsu Chem Inc Production of glycyrrhizin
JPH0347072A (en) * 1989-07-14 1991-02-28 Babcock Hitachi Kk Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell
JP2012115261A (en) * 2010-11-09 2012-06-21 National Institute Of Biomedical Innovation Glycyrrhiza plant strain and method for proliferating glycyrrhiza plant
JP2021108633A (en) * 2020-01-15 2021-08-02 国立大学法人大阪大学 Plant transformant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150290A (en) * 1988-11-30 1990-06-08 Mitsui Toatsu Chem Inc Production of glycyrrhizin
JPH0347072A (en) * 1989-07-14 1991-02-28 Babcock Hitachi Kk Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell
JP2012115261A (en) * 2010-11-09 2012-06-21 National Institute Of Biomedical Innovation Glycyrrhiza plant strain and method for proliferating glycyrrhiza plant
JP2021108633A (en) * 2020-01-15 2021-08-02 国立大学法人大阪大学 Plant transformant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAMURA KEITA; SEKI HIKARU; SUZUKI HIDEYUKI; KOJOMA MARESHIGE; SAITO KAZUKI; MURANAKA TOSHIYA: "CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons ofGlycyrrhiza uralensis", PLANT CELL REPORTS, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 36, no. 3, 22 December 2016 (2016-12-22), Berlin/Heidelberg, pages 437 - 445, XP036162817, ISSN: 0721-7714, DOI: 10.1007/s00299-016-2092-x *

Similar Documents

Publication Publication Date Title
Dawid et al. Bioactive C17-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives
CA2939981C (en) Bhlh25 transcription factors for increased plant secondary metabolite production
Pyankov et al. Occurrence of C 3 and C 4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae)
Zhang et al. The phylogeny and expression profiles of the lipoxygenase (LOX) family genes in the melon (Cucumis melo L.) genome
CN108699559A (en) Include the composition and application thereof of CYP76AD1- β clade polypeptides
Park et al. Triterpene and flavonoid biosynthesis and metabolic profiling of hairy roots, adventitious roots, and seedling roots of Astragalus membranaceus
WO2013167751A1 (en) Triterpenoid sapogenin production in plant and microbial cultures
Tsurumaru et al. An aromatic prenyltransferase-like gene HlPT-1 preferentially expressed in lupulin glands of hop
Iijima et al. Biosynthesis of geranial, a potent aroma compound in ginger rhizome (Zingiber officinale): molecular cloning and characterization of geraniol dehydrogenase
Hattan et al. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars
Yu et al. Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato
CN108138199B (en) Plants containing low copy number of RI gene
Yadav et al. Biochemical variability of eggplant peel among Indian cultivars
Millar et al. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids
CN104232655A (en) Method for regulating volatile oil content of plant by using MicroRNA156 and its target gene
Fujita et al. Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of Japanese pepper (Zanthoxylum piperitum): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes
WO2023090385A1 (en) Plant cells, plant tissue, plant body, and glycyrrhizin production method
Uchida et al. Triterpenoid levels are reduced during Euphorbia tirucalli L. callus formation
El-Fiki et al. Morphological, molecular, and organosulphur compounds characterization in irradiated garlic (Allium sativum) by GC–MS and SCoT markers
Akiyama et al. Tandem gene duplication of dioxygenases drives the structural diversity of steroidal glycoalkaloids in the tomato clade
Cook et al. Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borage Δ 6-desaturase
Shi et al. Prohibitin StPHB3 affects the browning of fresh-cut potatoes via influencing antioxidant capacity and polyphenol oxidase activation
CN118265778A (en) Method for preparing plant cell, plant tissue, plant body, and glycyrrhizin
JP6018915B2 (en) Method for producing pentacyclic triterpene compound wherein position 28 is a hydroxymethyl group or a carboxyl group
US20100130623A1 (en) Production of stilbenes in plant hairy root cultures and other root cultures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562395

Country of ref document: JP

Kind code of ref document: A