WO2023090366A1 - Anticancer agent and cardiac-function-improving agent - Google Patents

Anticancer agent and cardiac-function-improving agent Download PDF

Info

Publication number
WO2023090366A1
WO2023090366A1 PCT/JP2022/042585 JP2022042585W WO2023090366A1 WO 2023090366 A1 WO2023090366 A1 WO 2023090366A1 JP 2022042585 W JP2022042585 W JP 2022042585W WO 2023090366 A1 WO2023090366 A1 WO 2023090366A1
Authority
WO
WIPO (PCT)
Prior art keywords
klf5
compound
formula
compounds
protein
Prior art date
Application number
PCT/JP2022/042585
Other languages
French (fr)
Japanese (ja)
Inventor
良三 永井
丈雄 仲矢
健一 相澤
弘行 小路
政次 河西
洋文 中野
Original Assignee
株式会社 PRISM BioLab
学校法人自治医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 PRISM BioLab, 学校法人自治医科大学 filed Critical 株式会社 PRISM BioLab
Publication of WO2023090366A1 publication Critical patent/WO2023090366A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines having two or more nitrogen atoms in the same ring, e.g. oxadiazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a novel cardiac function-improving agent, particularly to a cardiac function-improving agent having anticancer activity.
  • the present invention also relates to a novel anticancer agent, and particularly to an anticancer agent having an effect of improving cardiac function.
  • transcription factors are attractive cancer therapeutic targets because of their frequent overactivation and dysfunction.
  • Therapeutic regulation of transcription factors has been successful with nuclear receptors.
  • most transcription factors are intrinsically disordered proteins (IDPs) and lack rigid small-molecule binding pockets, making them more difficult to target.
  • IDPs intrinsically disordered proteins
  • target searches for oncogenic transcription factors using low-molecular-weight compounds have been conducted in order to disrupt the underlying oncogenic pathway.
  • Kruppel-like factor 5 belongs to the zinc finger-containing transcription factor family responsible for various cellular functions and mediates various cellular functions (Non-Patent Document 1).
  • the present inventors have previously used mice in which Wnt-induced tumorigenesis was blocked by intestinal stem cell-specific ablation of the KLF5 gene, and found that KLF5 is an essential regulator of intestinal carcinogenesis at the stem cell level. have reported that (Non-Patent Document 2).
  • the present inventors have elucidated that KLF5 plays an important role in inflammatory diseases such as heart failure, arteriosclerosis, obesity and cancer (Patent Document 1). From this, it was expected that KLF5 inhibitors would be effective in treating cardiovascular diseases and the like.
  • Non-Patent Documents 3-5 disclose several low-molecular-weight compounds with ⁇ -helix-like structures to inhibit disease-related molecules.
  • KLF5 is an essential regulatory factor for intestinal carcinogenesis at the stem cell level. It has been shown that genetic ablation of the KLF5 gene completely inhibits Wnt signal-driven tumorigenesis in mouse intestinal stem cells (Non-Patent Document 2). In addition, it has been clarified that KLF5 expression is increased in human colorectal cancer compared to normal colorectal epithelium, and that genomic amplification of the KLF5 gene is also accumulated in human colorectal cancer. (Non-Patent Document 2, Non-Patent Document 6). These results suggested that the development of a KLF5 inhibitor could serve as a therapeutic target for colorectal cancer.
  • Non-Patent Document 5 Non-Patent Document 7
  • the purpose of the present invention is to provide a compound that effectively suppresses the proliferation of cancer cells, and to provide a compound that improves cardiac function.
  • VAIF four amino acid sequence
  • a pyrazinooxadiazine-4,7-dione derivative is (i) inhibit the proliferation and survival of human colon cancer cells and other cancer cells, but not the proliferation and survival of non-cancer cells; (ii) decrease protein levels of the Wnt signaling pathway as well as KLF5 protein; and (iii) inhibiting the interaction of KLF5 with Ubiquitin-specific peptidase 3 (USP3), which is known to stabilize KLF5; and (iii) in vivo, without apparent side effects.
  • Ubiquitin-specific peptidase 3 USP3
  • an anticancer agent and/or an agent for improving cardiac function comprising a substance that inhibits the binding of Kruppel-like factor 5 (KLF5) and Ubiquitin-specific peptidase 3 (USP3).
  • KLF5 Kruppel-like factor 5
  • USP3 Ubiquitin-specific peptidase 3
  • the substance that inhibits the binding of KLF5 and USP3 has the following formulas (I) to (III):
  • the agent according to [1] above which is a compound represented by any of or a pharmaceutically acceptable salt thereof.
  • a method for screening an anticancer agent and/or a cardiac function improving agent comprising the steps of measuring the KLF5-USP3 binding inhibitory activity of a test substance, and selecting compounds having the binding inhibitory activity.
  • a pharmaceutical composition comprising a compound represented by any of or a pharmaceutically acceptable salt thereof.
  • the pharmaceutical composition of [7] above, wherein the agent for improving cardiac function is a therapeutic agent for heart failure.
  • a method for preventing and/or treating cancer eg, colon cancer
  • a method for improving cardiac function which comprises administering an effective amount of a substance that inhibits the binding of KLF5 and USP3 to a subject in need thereof.
  • the substance that inhibits the binding of KLF5 and USP3 has the following formulas (I) to (III):
  • the compound of the present invention suppresses the proliferation and survival of cancer cells in vivo and in vitro, but does not suppress the proliferation and survival of non-cancer cells; it has cardiac function improving action. Therefore, the compounds of the present invention or pharmaceutically acceptable salts thereof are useful as anticancer agents or cardiac function improving agents.
  • FIG. 1 is a graph showing the results of selective suppression of proliferation of human colon cancer cells by the compound of the present invention.
  • the compounds of the present invention inhibited the growth of human colon cancer cells (SW480 and HCT116) without affecting the growth of non-cancer cells (CCD841).
  • the score indicated in each graph indicates the IC50 concentration ( ⁇ M) in SW480 cells examined 72 hours after treatment.
  • the compound of formula (I) inhibited the proliferation of SW480 cells at the lowest concentration.
  • ICG-001 showed growth inhibitory effects on both cancer cells and non-cancer cells.
  • FIG. 2 is a graph showing the result that the compound of the present invention inhibited cell proliferation of 3D spheroids of HCT116 cells, which are human colon cancer cells.
  • FIG. 3 shows the results of examining the effects of the compounds of the present invention on KLF5 and Wnt proteins.
  • FIG. 1 The compounds of the present invention decreased the protein levels of KLF5 and Survivin in SW480 cells after 24 hours treatment at 10 ⁇ M, but did not change in normal human cell line CCD841 after the same treatment.
  • FIG. 4 shows the results of examining the effects of the compounds of the present invention on KLF5 and Wnt proteins.
  • Cyclin D1 and KLF5 protein levels and ⁇ -catenin phosphorylation at Ser675 were examined in SW480 cells treated with the compound of the present invention (compound of formula (I)) for 0, 6, 12, 18 and 24 hours.
  • Treatment with the compound of the present invention decreased the phosphorylation of Cyclin D1 and KLF5, and Ser 675 of ⁇ -catenin.
  • treatment with the compounds of the present invention for 24 hours did not significantly reduce protein levels and phosphorylation.
  • FIG. 5 shows the results of examining the effects of the compounds of the present invention on KLF5 and Wnt proteins.
  • FIG. 7 is a graph showing the results of examining the effects of the compounds of the present invention on KLF5 mRNA.
  • FIG. 8 shows that compounds of formula (I) inhibit USP3-KLF5 protein complex formation.
  • A Using HEK293T cells overexpressing Myc-tag-USP3 protein and FLAG/HA-KLF5 protein, the Myc-tag-USP3 protein complex was purified by immunoprecipitation using an anti-Myc-tag antibody. Immunoprecipitation-Western blotting confirmed that the Myc-tag-USP3 protein complex contained co-precipitated KLF5 protein.
  • B Graph showing the relative amount of KLF5 protein per Myc tag-USP3 protein in the Myc tag-USP3 protein complex.
  • (A) 13 nude mice were subcutaneously implanted with HT29 human colon cancer cells (5 ⁇ 10 6 ) and treated with compound of formula (I) (ip, 2 mg ⁇ 2/day). The effect of the compound of formula (I) on implanted cancer cells was evaluated by measuring tumor volume. Tumor volume was calculated as 2 ⁇ major axis/2. Tumor size was significantly smaller than in untreated mice (n 13) and no side effects were observed.
  • FIG. 1 shows the results of hematoxylin-eosin staining and immunohistological staining of KLF5 and Ki67 in the large intestine. It was shown that the intestinal tissue of mice treated with compounds of formula (I) did not show significant cellular damage.
  • the upper graph is a graph showing the results of examining changes in left ventricular ejection fraction values by administering the compound of formula (I) at varying doses. The compound of formula (I) was varied at three concentrations including 25, 50 and 100 mg/kg (***: p ⁇ 0.0001).
  • the lower panel is a graph showing the results of varying doses confirming the effect of the compound of formula (I) on hypertrophic changes in the heart in mice receiving TAC.
  • Compounds of formula (I) were varied at four concentrations including 12.5, 25, 50, 100 mg/kg. Cardiac hypertrophy is indicated by an increase in heart weight/body weight ratio (HW/BW) (*: p ⁇ 0.05).
  • HW/BW heart weight/body weight ratio
  • 1 is a graph showing the cardiac function-improving action of the compound of formula (I). Treatment with compounds of formula (I) improved left ventricular ejection fraction values and significantly improved left ventricular ejection fraction in mice with established left ventricular pressure overload-induced heart failure (*** : p ⁇ 0.0001).
  • 1 is a graph showing the cardiac function-improving action of the compound of formula (I).
  • FIG. 10 is a graph showing that compounds of formula (I) inhibit hypertrophic changes in the heart in mice subjected to TAC. Cardiac hypertrophy is indicated by an increase in heart weight/body weight ratio (HW/BW) 4 weeks after TAC (**: p ⁇ 0.01).
  • Figure 2 is a graph showing that compounds of formula (I) ameliorate cardiac fibrosis induced by pressure overload (***: p ⁇ 0.0001).
  • FIG. 2 shows the protocol of the mouse survival study.
  • Fig. 3 is a graph showing survival curves using pressure-overloaded heart failure model mice. Administration of the compound of formula (I) was confirmed to prolong survival.
  • the present invention provides an anticancer agent and/or cardiac function improving agent containing a substance that inhibits the binding of Kruppel-like factor 5 (KLF5) and interacting protein (especially USP3).
  • KLF5 Kruppel-like factor 5
  • USP3 interacting protein
  • KLF5 is a transcription factor and is involved in cell proliferation and cell cycle control. In pathological conditions, it is known to be expressed in activated smooth muscle cells and fibroblasts in damaged defects and atherosclerotic lesions, suggesting involvement in cardiovascular remodeling. It is KLF5 is involved in tissue fibrosis through proliferation and activation of fibroblasts. USP3 is known to stabilize KLF5 by binding to and deubiquitinating KLF5 (Wu Y, et al. (2019) USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 294(47 ): 17837-17847).
  • the "substance that inhibits the binding of KLF5 and USP3" is a substance that can inhibit (control) the interaction between KLF5 and USP3, and its origin is particularly limited. It may be a low-molecular-weight compound or a high-molecular-weight compound.
  • the low-molecular-weight compound is a compound having a molecular weight of less than about 1000, and includes, for example, organic compounds and derivatives thereof that can be commonly used as pharmaceuticals. It refers to organic compounds and derivatives thereof that can be preferably used as pharmaceuticals.
  • the polymer compound is a compound having a molecular weight of about 1000 or more, and includes proteins, polynucleic acids, polysaccharides, and combinations thereof.
  • a KLF5 inhibitor may be a pharmaceutically acceptable salt thereof.
  • “Pharmaceutically acceptable” means generally safe, non-toxic, and useful for the preparation of pharmaceutical compositions that are not biologically or otherwise undesirable, and This includes being acceptable for veterinary use as well as for pharmaceutical use.
  • “Pharmaceutically acceptable salt” means a salt of a compound of the invention, as defined above, that is pharmaceutically acceptable and that possesses the desired pharmacological activity.
  • Such salts include inorganic acids such as, for example, hydrochloric, hydrobromic, sulfuric, nitric and phosphoric acids; Acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, o-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfone acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, p-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo [2.
  • inorganic acids such as, for example, hydrochloric, hydrobromic, sulfuric, nitric and phosphoric acids
  • Acid lactic
  • Pharmaceutically acceptable salts also include base addition salts which may be formed when acidic protons present are capable of reacting with inorganic or organic bases.
  • Acceptable inorganic bases include sodium hydroxide, sodium carbonate, potassium hydroxide, aluminum hydroxide and calcium hydroxide.
  • Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.
  • any one isomer or a mixture of isomers can be used as a KLF5 inhibitor in the present invention. Available.
  • “Isomers” means any compounds that have identical molecular formulas but differ in the nature or order of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that are not mirror images of one another are termed “diastereomers”, and stereoisomers that are non-superimposable mirror images are termed “enantiomers”, or sometimes termed “optical isomers”. A carbon atom bonded to four different substituents is termed a "chiral center”. A compound with one chiral center has two enantiomeric forms of opposite chirality. A mixture of two enantiomeric forms is called a "racemic mixture”.
  • a compound with more than one chiral center has 2 n ⁇ 1 enantiomeric pairs, where n is the number of chiral centers.
  • Compounds with more than one chiral center may exist as individual diastereomers, ethers, or as mixtures of diastereomers (termed “diastereomeric mixtures").
  • stereoisomers can be characterized by the absolute configuration of that chiral center. Absolute configuration refers to the spatial arrangement of the substituents attached to the chiral center.
  • Enantiomers are characterized by the absolute configuration of their chiral centers and are dictated by the R- and S-ranking rules of Cahn, Ingold and Prelog.
  • the KLF5 inhibitor may be crystalline or amorphous.
  • the KLF5 inhibitor is a crystal, it can be used as the KLF5 inhibitor in the present invention whether it is a single crystal form or a mixture of crystal forms. Crystals can be produced by applying a crystallization method known per se to crystallize.
  • the KLF5 inhibitor may be a solvate (eg, hydrate, etc.) or a non-solvate, both of which can be used as the KLF5 inhibitor of the present invention.
  • the KLF5 inhibitor may be labeled with an isotope (eg, 3 H, 14 C, 35 S, 125 I, etc.).
  • an isotope eg, 3 H, 14 C, 35 S, 125 I, etc.
  • KLF5 inhibitor used in the present invention preferably the following formulas (I) to (III)
  • the compounds of the present invention are novel compounds and can be prepared, for example, by the methods described in Examples 1-3.
  • a derivative of the compound of the present invention can be used as the KLF5 inhibitor of the present invention.
  • a derivative is an organic compound that has been modified by introduction of functional groups, oxidation, reduction, substitution or addition of atoms, etc., to the extent that the structure or properties of the base are not significantly changed. It means a compound that
  • a KLF5 inhibitor can inhibit the KLF5-USP3 interaction by inhibiting the binding of KLF5 to USP3. Therefore, KLF5 inhibitors show various pharmacological effects on mammals (e.g., humans, monkeys, cats, pigs, horses, cows, mice, rats, guinea pigs, dogs, rabbits, etc.), and KLF5-USP3 interaction is associated with diseases such as cancer and cardiovascular diseases, and is useful as a preventive and/or therapeutic drug and a cardiac function improving agent (hereinafter collectively referred to as "the drug of the present invention").
  • Treatment of cancer is understood to include reducing or eliminating cancer progression (eg, cancer growth and metastasis).
  • Prevention of cancer is understood to include preventing or delaying the onset of cancer.
  • cancers can be treated or prevented by the present invention. They include lung cancer, breast cancer, colon cancer (colorectal cancer), stomach cancer, pancreatic cancer, liver cancer, uterine cancer, ovarian cancer, glioma, melanoma, lymphoma, and leukemia. but not limited to these.
  • the target cancer is preferably colon cancer.
  • a subject in need of treatment may be a mammal, particularly a non-human primate or other animal, with various types of cancer.
  • a preventive and/or therapeutic agent for cancer is synonymous with an anticancer agent.
  • the term "cardiovascular disease” refers to diseases that affect the heart or blood vessels, or both.
  • cardiovascular diseases include arrhythmia (atrial or ventricular, or both); atherosclerosis and its sequelae; angina pectoris; cardiac rhythm disturbances; myocardial ischemia; vasculitis, stroke; peripheral occlusive arteriopathy of limbs, organs, or tissues; post-ischemic reperfusion injury of the brain, heart, kidneys, or other organs or tissues; endotoxin, surgical, or trauma hypertension, valvular heart disease, heart failure, abnormal blood pressure; shock; vascular stenosis (including those associated with migraine); vascular abnormalities, inflammation, failure confined to a single organ or tissue.
  • Treatment of cardiovascular disease is understood to include reducing or eliminating progression of the disease.
  • Prevention of cardiovascular disease is understood to include preventing or delaying the onset of said disease.
  • Cardiovascular disease to be targeted is preferably heart failure.
  • a therapeutically effective amount or a prophylactically effective amount of the compound of the present invention can be administered to a subject.
  • An effective amount for treatment means an amount sufficient to achieve such treatment for a disease when administered to an animal to treat the disease.
  • Effective amount for prevention means an amount sufficient to achieve such prevention for the disease when administered to an animal to prevent the disease.
  • Effective amount is the same as “effective amount for treatment” and “effective amount for prevention”.
  • Treatment means any administration of a compound of the invention and includes: (1) prevention of disease development in animals that may be susceptible to the disease but have not yet experienced or exhibited the pathology or symptomatology of the disease; (2) inhibition of the disease (i.e., halting further progression of the pathology and/or symptomatology) in animals experiencing or exhibiting disease pathology or symptomatology; or (3) disease pathology or symptomatology. Amelioration of the disease (ie, reversal of pathology and/or symptomatology) in animals experiencing or exhibiting symptomatology.
  • the present invention provides a method of screening a library for biological activity (in the present invention, activity that inhibits the KLF5-USP3 interaction) and isolating biologically active library members.
  • the present invention provides screening for anticancer agents and/or cardiac function improving agents, which comprises the step of measuring the activity of a test substance to inhibit the KLF5-USP3 interaction, that is, the activity of inhibiting the binding of KLF5 and USP3. provide a way.
  • bioactivity data can be determined by binding assays.
  • the method can comprise, for example, providing a composition comprising KLF5, the KLF5 interacting protein USP3, and a test substance.
  • the method further comprises detecting changes in binding between KLF5 and USP3 due to the presence of the test agent, and then characterizing the effect of the test agent on binding.
  • Assays may be performed by any method that can measure the effect of a test substance on the binding between two proteins. Many such assays are known in the art.
  • Test substances to be screened are not particularly limited, and examples thereof include proteins, nucleic acids, peptides, polypeptides, synthetic compounds, or libraries thereof. Libraries include synthetic compound libraries, peptide libraries, cDNA libraries, and the like.
  • the test substance can be tested at a number of different concentrations, with the concentrations chosen depending in part on the assay conditions. Examples of assay conditions are the concentrations of KLF5 and USP3. Concentrations in the range of about 0.1 to 100 ⁇ M may be used.
  • the assay evaluates the relative utility of two compounds to affect binding interactions between two proteins, wherein at least one of the two compounds is a compound of the present invention. is a compound of A more effective compound can serve as a reference compound to study the relationship between compound structure and compound activity.
  • the present invention also relates to prodrugs using the compounds of the present invention.
  • Prodrugs are typically designed to release the active drug in the body during or after absorption by enzymatic and/or chemical hydrolysis.
  • the prodrug approach is an effective way to enhance oral bioavailability or intravenous (i.v.) administration of poorly water-soluble drugs by chemical derivatization to more water-soluble compounds. It is a means.
  • esters containing ionizable groups e.g., phosphate, carboxylate, alkylamino groups
  • the invention provides pharmaceutical compositions containing the compounds of the invention or pharmaceutically acceptable salts thereof. These compositions can be used in various methods of the invention (eg, treatment of cancer, cardiovascular disease), which are described in detail below.
  • the pharmaceutical composition of the present invention can be formulated according to the intended administration route.
  • routes of administration include parenteral (eg, intravenous), intradermal, subcutaneous, oral (eg, inhalation), transdermal (topical), transmucosal, and rectal administration.
  • Solutions or suspensions for parenteral, intradermal or subcutaneous administration may contain the following components: sterile diluents such as water for injection, saline, fixed oils, polyethylene glycols, glycerin, propylene glycol.
  • antibacterial agents e.g., benzyl alcohol or methylparaben
  • antioxidants e.g., ascorbic acid or sodium bisulfite
  • chelating agents e.g., ethylenediaminetetraacetic acid
  • buffering agents acetate, citric acid salts, or phosphates
  • tonicity agents eg, sodium chloride or dextrose
  • pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • Parenterals can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
  • compositions suitable for injection include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASE, Parsippany, NJ) or phosphate buffered saline (PBS).
  • the composition must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved free from contamination by microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyols (eg, glycerol, propylene glycol, liquid-phase polyethylene glycol, etc.), and suitable mixtures thereof.
  • polyols eg, glycerol, propylene glycol, liquid-phase polyethylene glycol, etc.
  • suitable mixtures thereof Proper fluidity can be maintained, for example, by the use of coatings such as lecithin, by maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • Prevention of microbial action can be achieved with various antibacterial and antifungal agents (eg, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, etc.).
  • isotonic agents such as sugars, polyalcohols (eg, mannitol, sorbitol), sodium chloride in the composition.
  • Prolonged absorption of an injectable composition can be effected by including in the composition an agent that delays absorption, such as aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared, for example, by incorporating the compound of the present invention in the required amount in an appropriate solvent with the above-described ingredients, alone or in combination, as required, followed by sterilization by filtration.
  • dispersions are prepared by incorporating the active compound into a sterile vehicle that contains the required other ingredients from those enumerated above and the dispersion medium.
  • the preferred method of preparation is vacuum drying and lyophilization to prepare a powder of the active ingredient plus any desired additional ingredients from a previously sterile-filtered solution.
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets.
  • the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules.
  • Oral compositions can also be prepared using a liquid carrier for use as a mouthwash, wherein the compound in the liquid carrier is applied orally and swished or expectorated. or swallowed.
  • Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. Tablets, pills, capsules, troches and the like may contain any of the following ingredients or compounds of similar nature: binders (such as microcrystalline cellulose, tragacanth, or gelatin), excipients. (e.g. starch, lactose), disintegrants (e.g. alginic acid, Primogel, or corn starch), lubricants (e.g. magnesium stearate or Sterotes), glidants (e.g. colloidal silicon dioxide), Sweetening agents such as sucrose, saccharin, or flavoring agents such as peppermint, methyl salicylate, or orange flavoring may be included.
  • binders such as microcrystalline cellulose, tragacanth, or gelatin
  • the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser that contains a suitable propellant (eg, a gas such as carbon dioxide) or propellant.
  • a suitable propellant eg, a gas such as carbon dioxide
  • propellant e.g, a gas such as carbon dioxide
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the dosage form.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are generally formulated into ointments, salves, gels, or creams known in the art.
  • the compounds can also be prepared in the form of suppositories (eg, with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
  • suppositories eg, with conventional suppository bases such as cocoa butter and other glycerides
  • retention enemas for rectal delivery.
  • Dosage unit form refers to physically discrete units suitable as unitary dosages for the subject to be treated, each unit containing the desired therapeutic effect to produce the desired therapeutic effect. It contains a predetermined amount of active compound calculated in association with the required pharmaceutical carrier.
  • the specifics of the dosage unit forms of the present invention are determined by the unique characteristics of the active compound, the particular therapeutic effect sought to be achieved, and the limitations inherent in the art of combining such active compounds for individual therapy. and directly depend on them.
  • preferred pharmaceutical compositions of the invention are those suitable for oral administration in unit doses, eg, tablets or capsules containing from about 1 mg to about 1 g of a compound of the invention.
  • the pharmaceutical compositions of the invention are suitable for intravenous, subcutaneous or intramuscular injection.
  • a patient may receive, for example, from about 1 ⁇ g/kg to about 1 g/kg of a compound of the invention intravenously, subcutaneously or intramuscularly.
  • Intravenous, subcutaneous and intramuscular doses may be given by means of bolus injection. Alternatively, the intravenous dose may be given by continuous infusion over a period of time.
  • the patient receives a daily oral dose approximately equivalent to the daily parenteral dose and the composition is administered 1 to 4 times per day.
  • the compounds of the present invention can be administered to mammals, including humans, parenterally (particularly preferably by continuous infusion or rapid intravenous administration).
  • the dosage is appropriately selected depending on various factors such as the weight and/or age of the patient, and/or the degree of symptoms and route of administration.
  • doses of the compounds of the present invention for parenteral administration range from 1 to 10,000 mg/day/m 2 of human body surface area, preferably from 1 to 5,000 mg/day/m 2 of human body surface area, by continuous infusion. /day/m 2 and more preferably 10-5000 mg/day/m 2 of human body surface area.
  • a pharmaceutical composition containing the compound of the present invention or a pharmaceutically acceptable salt thereof can be used to treat diseases regulated by the KLF5-USP3 interaction, specifically cancer and cardiovascular diseases.
  • Reagents and reaction conditions used in each step a) NaBH(OAc) 3 , dichloroethane; b) HATU, DIPEA , CH2Cl2 (DCM); c) DEA, DCM; d) BnBr, Cs2CO3 , CH3CN ; e) Ph3P , DIAD, DCM; f) hydrazine hydrate, DCM; g) DMAP, DCM; h) H2 , Pd/C, MeOH; i) HATU, DIEA, DCM; j) HCO2H
  • the synthesis of the compound of formula (I) is as follows.
  • Amine moiety (6) was prepared by condensing Fmoc-Ile (4) with amine (3) derived from benzaldehyde (1) and amine (2) and deprotecting the Fmoc group. Hydroxylcarboxylic acid (7) was esterified, Mitsunobu reaction and deprotected to obtain hydroxylamine (11). The hydroxylamine (11) was converted to the acid moiety (14) by reaction with isobutyl chloroformate and hydrogenolysis. Amine moiety (6) was coupled with acid moiety (14) using a condensing reagent and treated with formic acid to give the desired compound of formula (I).
  • N-benzyl-2,2-diethoxyethan-1-amine (3) Benzaldehyde in 2,2-diethoxyethan-1-amine (2) (10.3 mL, 70.5 mmol, 1.5 eq)
  • a solution of (1) (5.0 g, 47.0 mmol) was stirred at room temperature for 30 minutes.
  • the reaction mixture was diluted with dichloroethane (110 mL), triacetoxyborohydride (NaBH(OAc) 3 , 30.0 g, 141.0 mmol, 3.0 eq) was added portionwise and stirred at room temperature for 3 hours. .
  • the reaction mixture was then washed with saturated aqueous NaHCO3 , water and brine.
  • the collected organic phases were dried over Na2SO4 and filtered.
  • the filtrate was concentrated in vacuo and the residue was washed with petroleum ether to give N-benzyl-2,2-diethoxyethan-1-amine (3) (7.9 g, 75%) as a white solid.
  • Test Example 1 Anticancer action (material and method)
  • Cell culture experiments included human colon cancer cell lines SW480 (ATCC, RIKEN), HT29 (JCRB) and HCT116 (RIKEN), and human non-cancer cell lines CCD841CoN (ATCC) and HEK293T. was used. CCD841CoN that had been passaged 10 times or more after purchase was not used.
  • Anti- rat anti-KLF5 antibody used was a monoclonal rat anti-KLF5 antibody produced jointly with Kyowa Kirin (Japan).
  • the following primary antibodies were also used.
  • the following secondary antibodies were used.
  • ECL anti-rabbit IgG HRP GE Healthcare
  • anti-mouse IgG HRP GE Healthcare
  • anti-rat IgG HRP Santa Cruz, Cell Signaling
  • Proteins were subjected to electrophoresis in Bolt 4-12% Bis-Tris Plus gels (Invitrogen). After electrophoresis, proteins in the gel were transferred to Immobilon membrane (Millipore). Membranes were incubated in TBS supplemented with 0.05% Tween 20 containing primary antibody and 4% skimmed milk (Snow Brand). Membranes were washed with TBS containing 0.05% Tween 20. Membranes were incubated in TBS with 0.05% Tween 20 and 4% skimmed milk containing anti-rabbit/mouse/rat IgG HRP conjugated (GE healthcare) or anti-rat IgG HRP conjugated (Santa Cruz) secondary antibodies.
  • Membranes were washed with TBS containing 0.05% Tween 20 and soaked in Immobilon Forte Western HRP Substrate (Millipore). Signals were detected and evaluated with an ImageQuant LAS (GE Healthcare) or ChemiDoc (BioRad).
  • RT-PCR Total RNA was extracted from the cells using Isogen (Nippon Gene), and cDNA was prepared from the total RNA using Prime Script (Takara Bio). cDNA was subjected to PCR using the LightCycler 96 system (Roche).
  • the primer sequences for KLF5 are 5'-ctgcctccagaggacctg-3' (SEQ ID NO: 1) and 5'-tctgtctatactttatgctggaat-3' (SEQ ID NO: 2).
  • the primer sequences for GAPDH are 5'-agccacatcgctcagac-3' (SEQ ID NO:3) and 5'-gcccaatacgacaatcc-3' (SEQ ID NO:4).
  • HCT116 cells Human Colon Cancer Cell Spheroid Formation and Measurement HCT116 cells were plated on PrimeSurface low-adhesion tissue culture plates (Sumitomo Bakelite). The size of spheroids was measured with Cell3iMager duos (Screen).
  • Tissues were fixed in neutral buffered formalin. Fixed tissues were embedded in paraffin. Paraffin-embedded tissues were sliced and subjected to hematoxylin and eosin staining or subsequent immunohistochemistry.
  • Immunohistochemistry was performed using neutral buffered formalin-fixed mouse intestinal sections and human post-operative specimens.
  • the anti-KLF5 mouse or rat monoclonal antibody was cloned jointly by the present inventors and Kyowa Kirin Co., Ltd. and purified.
  • Immunohistochemistry for Ki67 was performed using an anti-Ki67 antibody (Gene Tex).
  • Antigen retrieval was performed by autoclaving the sections in 10 mM sodium citrate (pH 6.0) at 121° C. for 15 minutes. After washing with PBS, sections were incubated with primary antibody. Thereafter, immunohistochemical staining was performed using an LSAB kit (DAKO) using 3,3'-diaminobenzidine as a chromogenic substrate, followed by counter staining with hematoxylin.
  • pPyCAG-IP vector expressing FLAG/HA-hKLF5 and pPyCAG-IP vector expressing Myc-tag-hUSP3 were generated (H. Niwa, et al., Mol Cell Biol 22 , 1526-1536 (2002)).
  • the pPyCAG-IP vector expressing FLAG/HA-hKLF5 and the pPyCAG-IP vector expressing Myc-tag-hUSP3 were co-transfected into HEK293T cells using Hilymax reagent (Dojindo, Japan).
  • HEK293T cells expressing FLAG/HA-hKLF5 and HEK293T cells expressing Myc-tag-hUSP3 were treated with the compound of formula (I) (20 ⁇ M) or DMSO (control) for 4 hours.
  • Cell pellets were suspended in modified RIPA buffer using cOmplete tablets (Roche).
  • the suspended cell pellet was homogenized using Tenbrroeck homogenizers (Wheaton). The homogenized mixture was centrifuged at 15000 rpm for 30 minutes at 4° C. and the supernatant was obtained as a cell lysate.
  • Cell lysates were mixed with anti-Myc-tagged mAb magnetic beads (MBL, Japan) at 4°C for 4 hours.
  • the magnetic beads were washed with bead wash buffer (100 mM KCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl 2 , 0.1% NP-40, and 10% glycerol). The magnetic beads were then mixed and spun using a modified RIPA buffer containing Myc-tagged peptides (MBL, Japan) to obtain an eluate of protein complexes bound to the anti-Myc-tagged mAb-magnetic beads. This eluate contained immunoprecipitated protein complexes of Myc-tag-USP3. The immunoprecipitated UPS3 protein complex and co-immunoprecipitated KLF5 protein were estimated by Western blotting.
  • bead wash buffer 100 mM KCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl 2 , 0.1% NP-40, and 10% glycerol.
  • MBL Myc-tagged peptides
  • a FLAG/HA-hKLF5 expressing pMxs-Puro vector was prepared by inserting the FLAG/HA-hKLF5 sequence into an empty pMxs-Puro vector. This vector was transfected into Plat-A cells using Fugene reagent (Roche). Supernatant containing retrovirus was harvested from Plat-A cells transfected with the FLAG/HA-hKLF5 expression vector. The supernatant was added to SW480 cells and SW480 cells stably expressing FLAG/HA-KLF5 were selected by puromycin resistance.
  • SW480 cells expressing FLAG/HA-hKLF5 were treated with compound of formula (I) (10 ⁇ M) or DMSO (control) for 24 hours.
  • Cell pellets were suspended in modified RIPA buffer using cOmplete tablets (Roche).
  • the suspended cell pellet was homogenized using Tenbrroeck homogenizers (Wheaton).
  • the homogenized mixture was centrifuged at 15000 rpm for 30 minutes at 4° C. and the supernatant was obtained as a cell lysate.
  • Cell lysates were mixed with anti-FLAG-tagged mAb magnetic beads (MBL, Japan) at 4° C. for 4 hours.
  • the magnetic beads were washed with bead wash buffer (100 mM KCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl 2 , 0.1% NP-40, and 10% glycerol). The magnetic beads were then mixed and spun using a modified RIPA buffer containing 3x FLAG-tagged peptide (Sigma) to obtain an eluate of protein complexes bound to the anti-FLAG-tagged mAb-magnetic beads. This eluate contained immunoprecipitated protein complexes of FLAG/HA-tag-KLF5.
  • bead wash buffer 100 mM KCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl 2 , 0.1% NP-40, and 10% glycerol.
  • the magnetic beads were then mixed and spun using a modified RIPA buffer containing 3x FLAG-tagged peptide (Sigma) to obtain an eluate of protein complexes bound to the anti-FLAG-tagged mAb-m
  • FLAG peptide eluate was subjected to sequential immunoprecipitation with anti-HA tagged mAb magnetic beads (MBL, Japan) and HA-tag peptide elution (MBL). Immunoprecipitation using HA tag was performed in the same manner as immunoprecipitation using FLAG tag.
  • the HA bead eluate eluted after tandem affinity purification contained higher purity FLAG/HA-KLF5 protein complexes.
  • Western blotting suggested that the KLF5 protein complex contained the immunoprecipitated FLAG/HA-KLF5 protein complex and the co-immunoprecipitated ⁇ -catenin protein.
  • Eluted proteins were subjected to LC/MS/MS analysis using Orbitrap (ThermoFisher) to identify proteins significantly enriched with compound of formula (I) covalently attached beads compared to control beads.
  • Orbitrap ThermoFisher
  • a Tandem Mass Tag TM stem Thermo Fisher was used for protein quantification.
  • JFCR39 cancer cell panel JFCR Japanese Foundation for Cancer Research 39 Analysis using cancer cell panel has been reported (e.g., Nagai R, Friedman SL, & Kasuga M (2009) The biology of Kruppel-like factors (Springer Verlag) ).
  • the compounds of the invention reduce KLF5 and Wnt signaling proteins in colon cancer cells.
  • the compounds of the present invention formula (II) compound, formula (III) compound
  • KLF5 TCF4
  • Survivin ⁇ -catenin phosphorylated at Ser552 was significantly reduced (Fig. 3, Fig. 5).
  • Compounds of formula (I) also reduced protein levels of Cyclin D1, a key cell cycle promoter whose transcription is regulated by KLF5 (Fig. 4).
  • the phosphorylation of ⁇ -catenin at positions 552 or 675 which is a hallmark of Wnt signaling activation, was decreased by the compounds of the present invention (FIGS. 4 and 5).
  • the protein level of ⁇ -catenin contained in the purified FLAG/HA-KLF5 protein complex was reduced by treatment with the compounds of the present invention (Fig. 6).
  • the compounds of the present invention did not decrease intracellular KLF5 mRNA levels (FIG. 7).
  • a decrease in Wnt signal-related proteins by administration of the compounds of the present invention was observed in cancer cells, but had almost no effect on CCD841, a human non-cancer cell line (FIGS. 3 and 4).
  • the anti-tumor profile of the compounds of the present invention was examined using the JFCR39 human cancer cell line.
  • compound of formula (I) was administered to nude mice subcutaneously implanted with HT-29 human colon cancer cells. was administered intraperitoneally. As shown in Figure 9A, administration of the compound of formula (I) resulted in a significant reduction in tumor volume. Remarkably, the compound of formula (I) did not cause overt side effects, including intestinal and colonic histological abnormalities (Fig. 9B).
  • Test Example 2 Cardiac Function Improving Action (Materials and Methods)
  • mice Eight-week-old male C57BL/6 mice were bred under temperature- and humidity-controlled conditions and used for experiments. Mice had free access to food and water in a room under a 12 hour light/dark cycle. Transverse aortic constriction surgery (TAC) was used to induce pressure overload in mice. Mice were randomly assigned to either the TAC group or the sham-operated group. Aortic diameter was narrowed when ligated with a 27-gauge needle on the aortic arch of TAC mice and the needle was removed with 6-0 silk after ligation. The needle was quickly removed, leaving a stenosis in the transverse aorta. The sham-treated group underwent a similar surgical procedure without ligation.
  • TAC Transverse aortic constriction surgery
  • Echocardiography was performed before TAC and 4 weeks after TAC. Briefly, echocardiography was performed using a Vevo2100 equipped with a 30 MHz linear transducer. Left ventricular end-systolic diameter (LVESd), left ventricular end-diastolic diameter (LVEDd), end-diastolic interventricular septal thickness (IVSd), end-systolic interventricular septal thickness (IVS), end-diastolic left Posterior ventricular wall thickness (LVPWd), end-systolic LV posterior wall thickness (LVPW), heart rate (HR), and left ventricular ejection fraction (EF) were measured. Images were acquired to calculate left ventricular ejection fraction and measure wall thickness. Mice were then euthanized and blood and heart tissue were collected.
  • LVESd Left ventricular end-systolic diameter
  • LVEDd left ventricular end-diastolic diameter
  • IVSd end-diastolic interventricular septal
  • mice were also randomly assigned to three groups containing TAC treated with the vehicle group (negative control) and the compound of formula (I) administration group.
  • the compound of formula (I) (50 mg/kg/day) was administered intraperitoneally for 10 days (twice daily; 25 mg/kg/day).
  • Vehicle (DMSO) was administered intraperitoneally to sham and wild type groups.
  • hearts and blood were collected and heart weights were checked to compare heart weight/body weight (HW/BW, mg/g).
  • Left ventricular (LV) tissue was then collected for subsequent experiments.
  • Hearts were collected 4 weeks after TAC surgery.
  • Heart tissue was embedded in paraffin and sectioned at a thickness of 5 ⁇ m.
  • Sections were transferred to microscope slides and stained with hematoxylin and eosin (HE) to assess cardiomyocyte cross-sectional area and with Masson and trichrome (MT) to assess the degree of fibrosis.
  • Histopathological features of each slice were examined under a microscope (Keyence BZ-9000) to observe global changes in heart size and fibrosis. Areas of fibrosis were analyzed by Image-J.
  • RNA extraction and quantitative real-time PCR Cardiac tissue was collected after TAC.
  • RNA was extracted from mouse LV tissue using the RNeasy Mini Kit® (QIAGEN) and DNA contamination was removed by RNase-free DNase digestion (QIAGEN, cat#79254) according to the manufacturer's protocol.
  • cDNA was synthesized by ReverTraAce® Reverse Transcriptase (Toyobo) according to the manufacturer's protocol.
  • Real-time PCR was performed using the SYBR Premix Ex Taq II kit (Takara Biotechnology) and performed using the qPCR system (Stratagene Mx3005P). Relative expression levels of target genes were determined after normalization to the GAPDH gene and quantified using the comparative threshold cycle method.
  • Proteins were extracted from heart tissue using Western Blotting T-PER® Tissue Protein Extraction Reagent (Thermo Scientific). Protein concentration was then quantified by the Pierce TM BCA Protein Assay Kit® (Thermo Scientific) according to the manufacturer's protocol. Equal amounts of protein from each sample were fractionated by SDS-PAGE. Proteins were transferred from gel SDS-PAGE to membrane by a gel transfer apparatus. Membranes were then incubated with various primary antibodies for 1 hour at room temperature and secondary antibodies for 1 hour at room temperature. Protein expression levels were normalized to corresponding GAPDH (Thermo Scientific) levels.
  • the compound of formula (I) enhances the left ventricular ejection fraction of TAC mice and improves cardiac function From 10 days to 1 month after TAC, few TAC mice died.
  • the compound of formula (I) (50 mg/kg/day) was administered intraperitoneally for 10 days (twice daily) in a group of TAC mice treated with compound of formula (I).
  • Treatment with compounds of formula (I) greatly improved survival in mice with established left ventricular pressure overload-induced heart failure.
  • left ventricular ejection fraction was significantly decreased in the vehicle group compared to the Formula (I) compound-treated TAC mouse group. This means that the compound of formula (I) improved left ventricular ejection fraction values (Figure 11).
  • end-systolic left ventricular dimension LVID
  • end-diastolic left ventricular dimension LVIDd
  • left ventricular mass was compared with the compound of formula (I) in the treated TAC mouse group.
  • LV mass correction was shown.
  • Quantitative real-time reverse transcriptase-polymerase chain reaction qRT-PCR also revealed that brain natriuretic peptide (BNP) levels, a marker of heart failure, were significantly higher in TAC mice treated with compound of formula (I) compared to TAC. decreased (Fig. 12).
  • the compound of the present invention has the following characteristics. (i) inhibit the growth and survival of cancer cells, but not the growth and survival of non-cancer cells; (ii) reducing not only KLF5 protein levels but also protein levels of the Wnt signaling pathway, and inhibiting the interaction of KLF5 with Ubiquitin-specific peptidase 3 (USP3), which is known to stabilize KLF5; (iii) effectively inhibits transplanted colon cancer cells in vivo without apparent side effects; (iv) have a cardiac function-improving effect; Therefore, the compounds of the present invention or pharmaceutically acceptable salts thereof are useful as anticancer agents or cardiac function improving agents.
  • USP3 Ubiquitin-specific peptidase 3

Abstract

The present invention addresses the problem of providing an anticancer agent and/or a cardiac-function-improving agent having a novel action mechanism. A pharmaceutical composition containing, as an active ingredient, a substance that inhibits binding between a Kruppel-like factor 5 (KLF5) and a ubiquitin-specific peptidase 3 (USP3), in particular, any one of the compounds represented by formulas (I)-(III) or a pharmaceutically acceptable salt thereof, is useful as an anticancer agent and/or a cardiac-function-improving agent.

Description

抗がん剤および心機能改善剤Anticancer agents and cardiac function improving agents
 本発明は新規な心機能改善剤に関し、特に、抗がん作用を有する心機能改善剤に関する。また、本発明は新規な抗がん剤に関し、特に、心機能改善作用を有する抗がん剤に関する。 The present invention relates to a novel cardiac function-improving agent, particularly to a cardiac function-improving agent having anticancer activity. The present invention also relates to a novel anticancer agent, and particularly to an anticancer agent having an effect of improving cardiac function.
 多くのがんは、転写因子を含む主要なタンパク質の遺伝的及びエピジェネティックな不安定性によって引き起こされる。転写因子は、その過剰な活性化や機能障害が頻発していることから、魅力的ながん治療のターゲットとなっている。転写因子の治療的制御は、核内受容体では成功している。しかし、ほとんどの転写因子は天然変性タンパク質(intrinsically disordered protein:IDP)であり、リジッドな低分子結合ポケットを持たないため、標的とすることはより困難であった。
 このような背景から、内在するがん化経路を破壊する為に、低分子化合物を用いたがん化転写因子のターゲット探索が行われている。
Many cancers are caused by genetic and epigenetic instability of key proteins, including transcription factors. Transcription factors are attractive cancer therapeutic targets because of their frequent overactivation and dysfunction. Therapeutic regulation of transcription factors has been successful with nuclear receptors. However, most transcription factors are intrinsically disordered proteins (IDPs) and lack rigid small-molecule binding pockets, making them more difficult to target.
Against this background, target searches for oncogenic transcription factors using low-molecular-weight compounds have been conducted in order to disrupt the underlying oncogenic pathway.
 クルッペル様因子(Kruppel-like factor 5; KLF5)は、様々な細胞機能を担うジンクフィンガー含有転写因子ファミリーに属し、多様な細胞機能を媒介する(非特許文献1)。本発明者らは、これまでにKLF5遺伝子を腸管幹細胞特異的にアブレーションすることで、Wntシグナルによる腫瘍形成が阻止されたマウスを用いて、KLF5が幹細胞レベルでの腸管発癌の必須制御因子であることを報告している(非特許文献2)。さらに本発明者らは、KLF5が心不全、動脈硬化、肥満、がん等の炎症性疾患において重要な役割を果たすことを解明してきた(特許文献1)。ここから、KLF5阻害剤が心血管系疾患等の治療に有効であることが予想された。KLF5阻害剤の開発において重要なハードルとなっているのは、このクラスのタンパク質が本来的に不規則な性質(天然変性)を有するため、3次元(3D)構造に関する情報が不足していることである。しかしながら、多くの天然変性タンパク質(IDP)は、分子認識機能(MoRF)と呼ばれるタンパク質パートナーとの結合時にdisorder-to-order転移を起こすと考えられている。IDP中のαヘリックスは、タンパク質-タンパク質相互作用(PPI)に関与していることをさらに示唆している。 Kruppel-like factor 5 (KLF5) belongs to the zinc finger-containing transcription factor family responsible for various cellular functions and mediates various cellular functions (Non-Patent Document 1). The present inventors have previously used mice in which Wnt-induced tumorigenesis was blocked by intestinal stem cell-specific ablation of the KLF5 gene, and found that KLF5 is an essential regulator of intestinal carcinogenesis at the stem cell level. have reported that (Non-Patent Document 2). Furthermore, the present inventors have elucidated that KLF5 plays an important role in inflammatory diseases such as heart failure, arteriosclerosis, obesity and cancer (Patent Document 1). From this, it was expected that KLF5 inhibitors would be effective in treating cardiovascular diseases and the like. A key hurdle in the development of KLF5 inhibitors is the lack of information about the three-dimensional (3D) structure of this class of proteins due to their inherent disordered nature (native denaturation). is. However, many naturally occurring proteins (IDPs) are thought to undergo disorder-to-order transitions upon binding protein partners called molecular recognition functions (MoRFs). It further suggests that the α-helices in the IDP are involved in protein-protein interactions (PPI).
 PPI阻害剤は近年、創薬において注目を集めている。PPI阻害剤の標的の一つは、タンパク質の表面に露出したαヘリックスが他のタンパク質と頻繁に相互作用するため、タンパク質の二次構造の大規模なクラスを構成するαヘリックスである。典型的な低分子量-αヘリックス模倣化合物は、αヘリックスの一面に位置するアミノ酸残基i、i+4、i+7を模倣したものである。これに基づき、疾患関連分子を阻害するために、αヘリックスに類似した構造を持つ低分子化合物がいくつか開発されている(非特許文献3~5)。 In recent years, PPI inhibitors have attracted attention in drug discovery. One of the targets of PPI inhibitors is α-helices, which constitute a large class of protein secondary structure, since surface-exposed α-helices of proteins frequently interact with other proteins. Typical low molecular weight-α-helix mimetic compounds mimic amino acid residues i, i+4, i+7 located on one side of the α-helix. Based on this, several low-molecular-weight compounds with α-helix-like structures have been developed to inhibit disease-related molecules (Non-Patent Documents 3-5).
 本発明者らは、特にKLF5が過剰に活性化された条件下では、KLF5に発生するPPIの薬理学的干渉が創薬のターゲットになるのではないかと仮説を立てたが、このアプローチには大きな困難があった。KLF5の3D構造がない状況下では、直接構造に基づいたKLF5の設計は不可能である。また、核内因子の有効な阻害剤の開発は、細胞質と核膜の両方を通過しなければならないので、細胞質分子の阻害剤に比べて困難である。そのため、KLF5に代表されるようなIDP構造を持つ転写因子を標的とした化合物を同定するための新たなアプローチが必要とされている。 The present inventors hypothesized that the pharmacological interference of PPIs occurring in KLF5 might be a drug discovery target, especially under conditions in which KLF5 is overactivated. I had a big problem. In the absence of the 3D structure of KLF5, direct structure-based design of KLF5 is not possible. Also, the development of effective inhibitors of nuclear factors is more difficult than inhibitors of cytoplasmic molecules, since they must pass through both the cytoplasm and the nuclear membrane. Therefore, there is a need for a new approach to identify compounds that target transcription factors having an IDP structure such as KLF5.
 本発明者らは、以前、KLF5が幹細胞レベルでの腸管発がんに必須の制御因子であることを明らかにした。KLF5遺伝子を遺伝子的に除去することで、マウスの腸管幹細胞におけるWntシグナル主導の腫瘍形成が完全に抑制されることを明らかにしている(非特許文献2)。また、ヒト大腸がんでは、正常大腸上皮と比較してKLF5発現が増加していることが明らかになっており、KLF5遺伝子のゲノム増幅もヒト大腸がんに集積していることが明らかになっている(非特許文献2、非特許文献6)。これらの結果から、KLF5阻害剤の開発が大腸がんの治療標的となりうることが示唆された。
 本発明者らは、KLF5の低分子模倣体がタンパク質-タンパク質相互作用を阻害し、新たな抗がん剤となる可能性があるとの仮説のもと(非特許文献5、非特許文献7)、がん細胞の増殖を効果的に抑制する化合物の探索を試みた。
The present inventors previously demonstrated that KLF5 is an essential regulatory factor for intestinal carcinogenesis at the stem cell level. It has been shown that genetic ablation of the KLF5 gene completely inhibits Wnt signal-driven tumorigenesis in mouse intestinal stem cells (Non-Patent Document 2). In addition, it has been clarified that KLF5 expression is increased in human colorectal cancer compared to normal colorectal epithelium, and that genomic amplification of the KLF5 gene is also accumulated in human colorectal cancer. (Non-Patent Document 2, Non-Patent Document 6). These results suggested that the development of a KLF5 inhibitor could serve as a therapeutic target for colorectal cancer.
The present inventors hypothesized that a low-molecular-weight KLF5 mimic inhibits protein-protein interaction and may serve as a new anticancer agent (Non-Patent Document 5, Non-Patent Document 7 ), and attempted to search for compounds that effectively suppress the proliferation of cancer cells.
WO2005/010185WO2005/010185
 本発明は、がん細胞の増殖を効果的に抑制する化合物の提供、心機能改善作用を有する化合物の提供を目的とする。 The purpose of the present invention is to provide a compound that effectively suppresses the proliferation of cancer cells, and to provide a compound that improves cardiac function.
 本発明者らは、上記課題に鑑み、鋭意研究を行った結果、KLF5の4つのアミノ酸の配列(V-A-I-F)の主鎖構造と4つの側鎖構造を模倣した二環式ピラジノオキサジアジン-4,7-ジオン誘導体が、
(i)ヒト大腸がん細胞やその他のがん細胞の増殖と生存を抑制するが、非がん細胞の増殖と生存は抑制しないこと;
(ii)KLF5タンパク質だけでなくWntシグナル伝達経路のタンパク質レベルを減少させる。さらにKLF5を安定化することが知られているユビキチン特異的ペプチダーゼ(Ubiquitin-specific peptidase 3; USP3)とKLF5との相互作用を阻害すること;及び
(iii)明らかな副作用を伴わずに、in vivoで移植された大腸がん細胞を効果的に抑制すること;
を見出した。
 さらに、これらの化合物に、心機能改善作用があることを見出して本発明を完成するに至った。
 即ち、本発明は、以下を提供する。
[1]Kruppel-like factor 5(KLF5)とUbiquitin-specific peptidase 3(USP3)との結合を阻害する物質を含む、抗がん剤及び/又は心機能改善剤。
[2]KLF5とUSP3との結合を阻害する物質が、下記式(I)~(III):
In view of the above problems, the present inventors have conducted intensive research and found that a bicyclic structure mimicking the main chain structure and four side chain structures of the four amino acid sequence (VAIF) of KLF5 A pyrazinooxadiazine-4,7-dione derivative is
(i) inhibit the proliferation and survival of human colon cancer cells and other cancer cells, but not the proliferation and survival of non-cancer cells;
(ii) decrease protein levels of the Wnt signaling pathway as well as KLF5 protein; and (iii) inhibiting the interaction of KLF5 with Ubiquitin-specific peptidase 3 (USP3), which is known to stabilize KLF5; and (iii) in vivo, without apparent side effects. effectively suppressing colon cancer cells transplanted in;
I found
Furthermore, the present inventors have completed the present invention by finding that these compounds have an effect of improving cardiac function.
That is, the present invention provides the following.
[1] An anticancer agent and/or an agent for improving cardiac function, comprising a substance that inhibits the binding of Kruppel-like factor 5 (KLF5) and Ubiquitin-specific peptidase 3 (USP3).
[2] The substance that inhibits the binding of KLF5 and USP3 has the following formulas (I) to (III):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
のいずれかで表される化合物又はその医薬上許容され得る塩である、上記[1]記載の剤。
[3]被検物質の、KLF5とUSP3との結合阻害活性を測定する工程、及び結合阻害活性を有する化合物を選抜する工程を含む、抗がん剤及び/又は心機能改善剤のスクリーニング方法。
[4]下記式(I)~(III):
The agent according to [1] above, which is a compound represented by any of or a pharmaceutically acceptable salt thereof.
[3] A method for screening an anticancer agent and/or a cardiac function improving agent, comprising the steps of measuring the KLF5-USP3 binding inhibitory activity of a test substance, and selecting compounds having the binding inhibitory activity.
[4] Formulas (I) to (III) below:
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
のいずれかで表される化合物又はその医薬上許容され得る塩。
[5]下記式(I)~(III):
A compound represented by any of or a pharmaceutically acceptable salt thereof.
[5] Formulas (I) to (III) below:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
のいずれかで表される化合物又はその医薬上許容され得る塩を含む医薬組成物。
[6]KLF5阻害剤である上記[5]記載の医薬組成物。
[7]抗がん剤及び/又は心機能改善剤である上記[5]又は[6]記載の医薬組成物。
[8]抗がん剤が、大腸がんに対するものである、上記[7]記載の医薬組成物。
[9]心機能改善剤が、心不全治療薬である、上記[7]記載の医薬組成物。
[10]KLF5とUSP3との結合を阻害する物質の有効量を、それを必要とする対象に投与することを含む、がん(例、大腸がん)の予防及び/又は治療方法。
[11]KLF5とUSP3との結合を阻害する物質の有効量を、それを必要とする対象に投与することを含む、心機能の改善(例、心不全治療)方法。
[12]KLF5とUSP3との結合を阻害する物質が、下記式(I)~(III):
A pharmaceutical composition comprising a compound represented by any of or a pharmaceutically acceptable salt thereof.
[6] The pharmaceutical composition according to [5] above, which is a KLF5 inhibitor.
[7] The pharmaceutical composition according to [5] or [6] above, which is an anticancer agent and/or an agent for improving cardiac function.
[8] The pharmaceutical composition of [7] above, wherein the anticancer agent is for colorectal cancer.
[9] The pharmaceutical composition of [7] above, wherein the agent for improving cardiac function is a therapeutic agent for heart failure.
[10] A method for preventing and/or treating cancer (eg, colon cancer), which comprises administering an effective amount of a substance that inhibits the binding of KLF5 and USP3 to a subject in need thereof.
[11] A method for improving cardiac function (eg, treating heart failure), which comprises administering an effective amount of a substance that inhibits the binding of KLF5 and USP3 to a subject in need thereof.
[12] The substance that inhibits the binding of KLF5 and USP3 has the following formulas (I) to (III):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
のいずれかで表される化合物又はその医薬上許容され得る塩である、上記[10]又は[11]記載の方法。 The method according to [10] or [11] above, which is a compound represented by any of or a pharmaceutically acceptable salt thereof.
 本発明化合物は、in vivo及びin vitroにおいてがん細胞の増殖と生存を抑制するが、非がん細胞の増殖と生存は抑制せず;心機能改善作用を有する。
 従って、本発明化合物又はその医薬上許容され得る塩は、抗がん剤又は心機能改善剤として有用である。
The compound of the present invention suppresses the proliferation and survival of cancer cells in vivo and in vitro, but does not suppress the proliferation and survival of non-cancer cells; it has cardiac function improving action.
Therefore, the compounds of the present invention or pharmaceutically acceptable salts thereof are useful as anticancer agents or cardiac function improving agents.
図1は、本発明化合物によるヒト大腸がん細胞の増殖の選択的抑制の結果を示したグラフである。本発明化合物は、非がん細胞(CCD841)の増殖に影響を与えることなく、ヒト大腸がん細胞(SW480およびHCT116)の増殖を抑制した。各グラフ中に示したスコアは、処理後72時間で調べたSW480細胞におけるIC50濃度(μM)を示す。化合物の中では、式(I)化合物が最も低い濃度でSW480細胞の増殖を阻害した。ICG-001は、がん細胞及び非がん細胞の両方に対し増殖抑制効果を示した。FIG. 1 is a graph showing the results of selective suppression of proliferation of human colon cancer cells by the compound of the present invention. The compounds of the present invention inhibited the growth of human colon cancer cells (SW480 and HCT116) without affecting the growth of non-cancer cells (CCD841). The score indicated in each graph indicates the IC50 concentration (μM) in SW480 cells examined 72 hours after treatment. Among the compounds, the compound of formula (I) inhibited the proliferation of SW480 cells at the lowest concentration. ICG-001 showed growth inhibitory effects on both cancer cells and non-cancer cells. 図2は、本発明化合物が、ヒト大腸がん細胞であるHCT116細胞の3Dスフェロイドの細胞増殖を抑制した結果を示すグラフである。本発明化合物として式(II)化合物、及び式(III)化合物を用いた。測定には、Cell3iMager Duosシステム(SCREEN)を用いた。FIG. 2 is a graph showing the result that the compound of the present invention inhibited cell proliferation of 3D spheroids of HCT116 cells, which are human colon cancer cells. Formula (II) compounds and formula (III) compounds were used as the compounds of the present invention. A Cell3iMager Duos system (SCREEN) was used for the measurement. 図3は、KLF5及びWntタンパク質における本発明化合物の影響を調べた結果を示す。上段(A):本発明化合物は、10μMで24時間処理した後のSW480細胞ではKLF5とSurvivinのタンパク質レベルを低下させたが、ヒト正常細胞株CCD841では低下させなかった。下段(B):本発明化合物は、10μMで24時間処理した後のSW480細胞ではTCF4のタンパク質レベルを減少させたが、ヒト正常細胞株CCD841では同じ処理をしても変化しなかった。FIG. 3 shows the results of examining the effects of the compounds of the present invention on KLF5 and Wnt proteins. Top (A): The compounds of the present invention decreased the protein levels of KLF5 and Survivin in SW480 cells after 24 hours treatment at 10 μM, but not in human normal cell line CCD841. Bottom (B): The compound of the present invention decreased the protein level of TCF4 in SW480 cells after 24 hours treatment at 10 μM, but did not change in normal human cell line CCD841 after the same treatment. 図4は、KLF5及びWntタンパク質における本発明化合物の影響を調べた結果を示す。本発明化合物(式(I)化合物)を0、6、12、18、24時間処理したSW480細胞におけるCyclin D1とKLF5のタンパク質レベルおよびβ-カテニンのSer675でのリン酸化を調べた。本発明化合物での処理によって、Cyclin D1とKLF5、およびβ-カテニンの675番目のSerのリン酸化が減少した。一方、CCD841細胞では、本発明化合物を24時間処理しても、タンパク質レベルとリン酸化は有意に減少しなかった。FIG. 4 shows the results of examining the effects of the compounds of the present invention on KLF5 and Wnt proteins. Cyclin D1 and KLF5 protein levels and β-catenin phosphorylation at Ser675 were examined in SW480 cells treated with the compound of the present invention (compound of formula (I)) for 0, 6, 12, 18 and 24 hours. Treatment with the compound of the present invention decreased the phosphorylation of Cyclin D1 and KLF5, and Ser 675 of β-catenin. In contrast, in CCD841 cells, treatment with the compounds of the present invention for 24 hours did not significantly reduce protein levels and phosphorylation. 図5は、KLF5及びWntタンパク質における本発明化合物の影響を調べた結果を示す。上段(A):本発明化合物(10μM)で24時間処理したSW480細胞において、β-カテニンの552番目のSerのリン酸化が抑制された。しかし、これらの化合物は、SW480細胞におけるβ-カテニンのレベルを減少させることはなかった。下段(B):本発明化合物(10μM)で24時間処理することにより、KLF5、Survivin、TCF4のタンパク質レベルが低下し、β-カテニンのSer552でのリン酸化が抑制された。特に式(I)化合物が最も効果的な抑制効果を示した。FIG. 5 shows the results of examining the effects of the compounds of the present invention on KLF5 and Wnt proteins. Upper row (A): In SW480 cells treated with the compound of the present invention (10 μM) for 24 hours, phosphorylation of Ser 552 of β-catenin was suppressed. However, these compounds did not decrease the levels of β-catenin in SW480 cells. Bottom (B): Treatment with the compound of the present invention (10 μM) for 24 hours decreased the protein levels of KLF5, Survivin, and TCF4, and inhibited the phosphorylation of β-catenin at Ser552. In particular, the compound of formula (I) showed the most effective inhibitory effect. 図6は、式(I)化合物がFLAG/HA-KLF5タンパク質複合体の形成を阻害することを示す図である。(A)FLAG/HA-KLF5タンパク質を発現するSW480細胞を用いて、抗FLAGタグ抗体と抗HAタグ抗体を順次用いた免疫沈降によりFLAG/HAタグKLF5タンパク質複合体を精製した。FLAG/HAタグ-KLF5タンパク質複合体には、共沈したβ-カテニンタンパク質が含まれていることが免疫沈降-ウエスタンブロッティングで確認された。オリジナルライセート(左)の各レーンに10μgのタンパク質ライセートをアプライした。FLAGタグ Ab免疫沈降法では、4200μgのオリジナルライセートから沈殿した溶出物を各レーンに適用した(中央)。FLAGとそれに続くHA免疫沈降によるタンデムアフィニティ精製では、16800μgのオリジナルライセートから沈殿した溶出液を各レーンにアプライした(右)。(B)FLAG/HAタグKLF5タンパク質複合体におけるFLAG/HAタグKLF5タンパク質あたりのβ-カテニンタンパク質の相対量を調べた結果を示すグラフ。10μMの式(I)化合物で24時間処理すると、FLAG/HA-KLF5タンパク質複合体中のβ-カテニンのタンパク質レベルが減少した。定量化は、共免疫沈降したβ-カテニンタンパク質がブロッティングで確認された条件で行った。Figure 6 shows that compounds of formula (I) inhibit the formation of FLAG/HA-KLF5 protein complexes. (A) Using SW480 cells expressing FLAG/HA-KLF5 protein, the FLAG/HA-tagged KLF5 protein complex was purified by immunoprecipitation using sequential anti-FLAG tag antibody and anti-HA tag antibody. Immunoprecipitation-Western blotting confirmed that the FLAG/HA tag-KLF5 protein complex contained co-precipitated β-catenin protein. 10 µg of protein lysate was applied to each lane of the original lysate (left). For FLAG-tagged Ab immunoprecipitation, precipitated eluate from 4200 μg of original lysate was applied to each lane (middle). For tandem affinity purification by FLAG followed by HA immunoprecipitation, precipitated eluate from 16800 μg of original lysate was applied to each lane (right). (B) Graph showing the results of examining the relative amount of β-catenin protein per FLAG/HA-tagged KLF5 protein in the FLAG/HA-tagged KLF5 protein complex. Treatment with 10 μM compound of formula (I) for 24 hours decreased the protein level of β-catenin in the FLAG/HA-KLF5 protein complex. Quantification was performed under conditions where co-immunoprecipitated β-catenin protein was confirmed by blotting. 図7は、KLF5mRNAにおける本発明化合物の影響を調べた結果を示すグラフである。本発明化合物は、SW480細胞を10μMで24時間処理しても、KLF5のmRNAレベルを減少させなかった。FIG. 7 is a graph showing the results of examining the effects of the compounds of the present invention on KLF5 mRNA. Compounds of the present invention did not decrease KLF5 mRNA levels when SW480 cells were treated at 10 μM for 24 hours. 図8は、式(I)化合物がUSP3-KLF5タンパク質複合体形成を阻害することを示した図である。(A)Mycタグ-USP3タンパク質とFLAG/HA-KLF5タンパク質を過剰発現させたHEK293T細胞を用いて、抗Mycタグ抗体を用いた免疫沈降によりMycタグ-USP3タンパク質複合体を精製した。Mycタグ-USP3タンパク質複合体には、共沈したKLF5タンパク質が含まれていることが、免疫沈降-ウエスタンブロット法により確認された。(B)Mycタグ-USP3タンパク質複合体におけるMycタグ-USP3タンパク質あたりのKLF5タンパク質の相対量を示すグラフである。式(I)化合物を20μMで4時間処理すると、USP3タンパク質複合体中のKLF5のタンパク質レベルが低下した。定量化は、ブロッティングでKLF5タンパク質が確認された条件で行った。同じ条件(20μM、4時間)で式(I)化合物処理を行っても、KLF5のタンパク質レベルは抑制されなかった。Figure 8 shows that compounds of formula (I) inhibit USP3-KLF5 protein complex formation. (A) Using HEK293T cells overexpressing Myc-tag-USP3 protein and FLAG/HA-KLF5 protein, the Myc-tag-USP3 protein complex was purified by immunoprecipitation using an anti-Myc-tag antibody. Immunoprecipitation-Western blotting confirmed that the Myc-tag-USP3 protein complex contained co-precipitated KLF5 protein. (B) Graph showing the relative amount of KLF5 protein per Myc tag-USP3 protein in the Myc tag-USP3 protein complex. Treatment with compound of formula (I) at 20 μM for 4 hours decreased the protein level of KLF5 in the USP3 protein complex. Quantification was performed under conditions where KLF5 protein was confirmed by blotting. Formula (I) compound treatment under the same conditions (20 μM, 4 hours) did not suppress KLF5 protein levels. (A)13匹のヌードマウスにHT29ヒト結腸がん細胞(5×10)を皮下移植し、式(I)化合物で処理(腹腔内投与、2mg×2/日)した。移植したがん細胞に対する式(I)化合物の効果を腫瘍体積を測定することにより評価した。腫瘍体積は、短径×長径/2として算出した。腫瘍の大きさは、未処置マウス(n=13)に比べて有意に小さく、副作用は観察されなかった。(B)ヘマトキシリン・エオシン染色および大腸のKLF5およびKi67の免疫組織学的染色の結果を示す図である。式(I)化合物で処置したマウスの腸組織が有意な細胞損傷を示さなかったことが示された。(A) 13 nude mice were subcutaneously implanted with HT29 human colon cancer cells (5×10 6 ) and treated with compound of formula (I) (ip, 2 mg×2/day). The effect of the compound of formula (I) on implanted cancer cells was evaluated by measuring tumor volume. Tumor volume was calculated as 2 ×major axis/2. Tumor size was significantly smaller than in untreated mice (n=13) and no side effects were observed. (B) shows the results of hematoxylin-eosin staining and immunohistological staining of KLF5 and Ki67 in the large intestine. It was shown that the intestinal tissue of mice treated with compounds of formula (I) did not show significant cellular damage. 上段は、式(I)化合物の用量を変動させて投与し、左室駆出率の値の変化を調べた結果を示すグラフである。式(I)化合物は、25、50、100mg/kgを含む3つの濃度で変化させた(****:p<0.0001)。下段は、TACを受けたマウスにおける心臓の肥大性変化に対する式(I)化合物の効果を、用量を変動させて確認した結果を示すグラフである。式(I)化合物は、12.5、25、50、100mg/kgを含む4つの濃度で変化させた。心臓肥大は、心臓重量/体重比(HW/BW)の増加によって示される(*:p<0.05)。The upper graph is a graph showing the results of examining changes in left ventricular ejection fraction values by administering the compound of formula (I) at varying doses. The compound of formula (I) was varied at three concentrations including 25, 50 and 100 mg/kg (***: p<0.0001). The lower panel is a graph showing the results of varying doses confirming the effect of the compound of formula (I) on hypertrophic changes in the heart in mice receiving TAC. Compounds of formula (I) were varied at four concentrations including 12.5, 25, 50, 100 mg/kg. Cardiac hypertrophy is indicated by an increase in heart weight/body weight ratio (HW/BW) (*: p<0.05). 式(I)化合物の心機能改善作用を示したグラフである。式(I)化合物での治療は、左室駆出率の値が改善され、左心室圧過負荷誘発性心不全が確立されたマウスの左室駆出率を大幅に改善した(****:p<0.0001)。1 is a graph showing the cardiac function-improving action of the compound of formula (I). Treatment with compounds of formula (I) improved left ventricular ejection fraction values and significantly improved left ventricular ejection fraction in mice with established left ventricular pressure overload-induced heart failure (*** : p<0.0001). 式(I)化合物の心機能改善作用を示したグラフである。心不全のマーカーの脳性ナトリウム利尿ペプチド(BNP)レベルが式(I)化合物で治療したTACマウスで有意に減少した(****:p<0.0001)。1 is a graph showing the cardiac function-improving action of the compound of formula (I). Brain natriuretic peptide (BNP) levels, a marker of heart failure, were significantly decreased in TAC mice treated with compound of formula (I) (***: p<0.0001). TACを受けたマウスにおける心臓の肥大性変化を、式(I)化合物が抑制することを示したグラフである。心臓肥大は、TACの4週間後に心臓重量/体重比(HW/BW)の増加によって示される(**:p<0.01)。Figure 10 is a graph showing that compounds of formula (I) inhibit hypertrophic changes in the heart in mice subjected to TAC. Cardiac hypertrophy is indicated by an increase in heart weight/body weight ratio (HW/BW) 4 weeks after TAC (**: p<0.01). 式(I)化合物が圧力過負荷によって誘発される心臓線維症を改善することを示したグラフである(****:p<0.0001)。Figure 2 is a graph showing that compounds of formula (I) ameliorate cardiac fibrosis induced by pressure overload (***: p<0.0001). マウス生存試験のプロトコルを示す図である。FIG. 2 shows the protocol of the mouse survival study. 圧負荷心不全モデルマウスを用いた生存曲線を示すグラフである。式(I)化合物の投与により生存期間の延長が確認された。Fig. 3 is a graph showing survival curves using pressure-overloaded heart failure model mice. Administration of the compound of formula (I) was confirmed to prolong survival.
 本発明は、Kruppel-like factor 5(KLF5)と相互作用タンパク質(特にUSP3)との結合を阻害する物質を含む、抗がん剤及び/又は心機能改善剤を提供するものである。以下、詳細に説明する。 The present invention provides an anticancer agent and/or cardiac function improving agent containing a substance that inhibits the binding of Kruppel-like factor 5 (KLF5) and interacting protein (especially USP3). A detailed description will be given below.
(KLF5とUSP3との結合を阻害する物質)
 KLF5は転写因子であり、細胞増殖や細胞周期の制御に関与している。病的状態においては、障害を受けた欠陥や動脈硬化病変の活性化された平滑筋細胞や線維芽細胞に発現していることが知られており、心血管系のリモデリングへの関与が示唆されている。KLF5は線維芽細胞の増殖や活性化を介して組織の線維化に関与している。
 USP3はKLF5と結合して脱ユビキチン化することでKLF5を安定化することが知られている(Wu Y, et al. (2019) USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 294(47):17837-17847)。
 本発明において「KLF5とUSP3との結合を阻害する物質」(以下、単にKLF5阻害剤とも称する)とは、KLF5とUSP3との相互作用を阻害(制御)できる物質であれば特にその由来は限定されず、低分子化合物であっても高分子化合物であってもかまわない。ここで低分子化合物とは分子量1000未満程度の化合物であって、例えば医薬品として通常使用し得る有機化合物及びその誘導体が挙げられ、有機合成法等を駆使して製造される化合物やその誘導体、天然由来の化合物やその誘導体等であり、望ましくは医薬品として使用し得る有機化合物及びその誘導体をいう。また、高分子化合物としては分子量1000以上程度の化合物であって、タンパク質、ポリ核酸類、多糖類、及びこれらを組み合わせたものなどが挙げられる。
(Substance that inhibits binding between KLF5 and USP3)
KLF5 is a transcription factor and is involved in cell proliferation and cell cycle control. In pathological conditions, it is known to be expressed in activated smooth muscle cells and fibroblasts in damaged defects and atherosclerotic lesions, suggesting involvement in cardiovascular remodeling. It is KLF5 is involved in tissue fibrosis through proliferation and activation of fibroblasts.
USP3 is known to stabilize KLF5 by binding to and deubiquitinating KLF5 (Wu Y, et al. (2019) USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 294(47 ): 17837-17847).
In the present invention, the "substance that inhibits the binding of KLF5 and USP3" (hereinafter also simply referred to as a KLF5 inhibitor) is a substance that can inhibit (control) the interaction between KLF5 and USP3, and its origin is particularly limited. It may be a low-molecular-weight compound or a high-molecular-weight compound. Here, the low-molecular-weight compound is a compound having a molecular weight of less than about 1000, and includes, for example, organic compounds and derivatives thereof that can be commonly used as pharmaceuticals. It refers to organic compounds and derivatives thereof that can be preferably used as pharmaceuticals. Moreover, the polymer compound is a compound having a molecular weight of about 1000 or more, and includes proteins, polynucleic acids, polysaccharides, and combinations thereof.
 KLF5阻害剤はその医薬上許容され得る塩であってもよい。
 「医薬上許容され得る」とは、一般に安全で無毒性であり、そして生物学的にもそれ以外にも望ましくないものではない医薬組成物の調製に有用であることを意味し、且つヒトの医薬的用途のみならず獣医学的用途にも許容され得ることを含む。
 「医薬上許容され得る塩」とは、上で定義したように、医薬上許容され、且つ所望の薬理学的活性を有する本発明化合物の塩を意味する。このような塩としては、例えば、塩酸、臭化水素酸、硫酸、硝酸及びリン酸等の無機酸;又は例えば、酢酸、プロピオン酸、ヘキサン酸、ヘプタン酸、シクロペンタンプロピオン酸、グリコール酸、ピルビン酸、乳酸、マロン酸、コハク酸、リンゴ酸、マレイン酸、フマル酸、酒石酸、クエン酸、安息香酸、o-(4-ヒドロキシベンゾイル)安息香酸、桂皮酸、マンデル酸、メタンスルホン酸、エタンスルホン酸、1,2-エタンジスルホン酸、2-ヒドロキシエタンスルホン酸、ベンゼンスルホン酸、p-クロロベンゼンスルホン酸、2-ナフタレンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸、4-メチルビシクロ[2.2.2]オクト-2-エン-1-カルボン酸、グルコヘプトン酸、4,4’-メチレンビス(3-ヒドロキシ-2-エン-1-カルボン酸)、3-フェニルプロピオン酸、トリメチル酢酸、tert-ブチル酢酸、ラウリル硫酸、グルコン酸、グルタミン酸、ヒドロキシナフトエ酸、サリチル酸、ステアリン酸及びムコン酸等の有機酸で形成された酸付加塩が挙げられる。
A KLF5 inhibitor may be a pharmaceutically acceptable salt thereof.
"Pharmaceutically acceptable" means generally safe, non-toxic, and useful for the preparation of pharmaceutical compositions that are not biologically or otherwise undesirable, and This includes being acceptable for veterinary use as well as for pharmaceutical use.
"Pharmaceutically acceptable salt" means a salt of a compound of the invention, as defined above, that is pharmaceutically acceptable and that possesses the desired pharmacological activity. Such salts include inorganic acids such as, for example, hydrochloric, hydrobromic, sulfuric, nitric and phosphoric acids; Acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, o-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfone acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, p-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo [2. 2.2] Oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4′-methylenebis(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tert- Acid addition salts formed with organic acids such as butylacetate, laurylsulphate, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid and muconic acid are included.
 医薬上許容され得る塩としては、存在する酸性プロトンが無機又は有機の塩基と反応できる場合に形成され得る、塩基付加塩も挙げられる。許容され得る無機塩基としては、水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム、水酸化アルミニウム及び水酸化カルシウムが挙げられる。許容され得る有機塩基としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トロメタミン及びN-メチルグルカミン等が挙げられる。 Pharmaceutically acceptable salts also include base addition salts which may be formed when acidic protons present are capable of reacting with inorganic or organic bases. Acceptable inorganic bases include sodium hydroxide, sodium carbonate, potassium hydroxide, aluminum hydroxide and calcium hydroxide. Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.
 KLF5阻害剤が、光学異性体、立体異性体、位置異性体、回転異性体等の異性体を有する場合には、いずれか一方の異性体も、異性体の混合物も本発明においてKLF5阻害剤として使用できる。 When a KLF5 inhibitor has isomers such as optical isomers, stereoisomers, positional isomers and rotational isomers, any one isomer or a mixture of isomers can be used as a KLF5 inhibitor in the present invention. Available.
 「異性体」とは、同一の分子式を有するが、それらの原子の結合の性質又は順序が異なるか、或いはそれらの原子の空間配置が異なる任意の化合物を意味する。それらの原子の空間配置が異なる異性体は、「立体異性体」と呼ばれる。互いに鏡像でない立体異性体は「ジアステレオマー」と呼ばれ、重ね合わせられない鏡像である立体異性体は「エナンチオマー」と呼ばれるか、又は「光学異性体」と呼ばれる場合もある。4つの異なる置換基に結合した炭素原子は「キラル中心」と呼ばれる。1つのキラル中心を有する化合物は、反対のキラリティーを有する2つのエナンチオマー形態を有する。2つのエナンチオマー形態の混合物は「ラセミ混合物」と呼ばれる。1個よりも多くのキラル中心を有する化合物は、2n-1個のエナンチオマー対を有する(式中、nは、キラル中心の数である)。1個よりも多くのキラル中心を有する化合物は、個々のジアステレオマーであるエーテルとして、或いはジアステレオマーの混合物(「ジアステレオマー混合物」と呼ばれる)として存在してもよい。キラル中心が1個存在する場合、立体異性体は、そのキラル中心の絶対配置により特徴づけることができる。絶対配置とは、キラル中心に結合した置換基の空間配置をいう。エナンチオマーは、それらのキラル中心の絶対配置により特徴づけられ、Cahn、Ingold及びPrelogのR-及びS-順位則によって示される。立体化学命名法に関する規定、立体化学の決定に関する方法及び立体異性体の分離法は、当該技術分野で周知である(例えば、"Advanced Organic Chemistry", 4th edition, March, Jerry, John Wiley & Sons, New York,1992を参照)。 "Isomers" means any compounds that have identical molecular formulas but differ in the nature or order of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed "stereoisomers". Stereoisomers that are not mirror images of one another are termed "diastereomers", and stereoisomers that are non-superimposable mirror images are termed "enantiomers", or sometimes termed "optical isomers". A carbon atom bonded to four different substituents is termed a "chiral center". A compound with one chiral center has two enantiomeric forms of opposite chirality. A mixture of two enantiomeric forms is called a "racemic mixture". A compound with more than one chiral center has 2 n−1 enantiomeric pairs, where n is the number of chiral centers. Compounds with more than one chiral center may exist as individual diastereomers, ethers, or as mixtures of diastereomers (termed "diastereomeric mixtures"). When one chiral center is present, stereoisomers can be characterized by the absolute configuration of that chiral center. Absolute configuration refers to the spatial arrangement of the substituents attached to the chiral center. Enantiomers are characterized by the absolute configuration of their chiral centers and are dictated by the R- and S-ranking rules of Cahn, Ingold and Prelog. Rules for stereochemical nomenclature, methods for determination of stereochemistry and methods for separating stereoisomers are well known in the art (see, for example, "Advanced Organic Chemistry", 4th edition, March, Jerry, John Wiley & Sons, New York, 1992).
 KLF5阻害剤は、結晶であっても無晶形であってもよい。KLF5阻害剤が結晶である場合、結晶形が単一であっても結晶形混合物であっても本発明においてKLF5阻害剤として使用できる。結晶は、自体公知の結晶化法を適用して、結晶化することによって製造することができる。 The KLF5 inhibitor may be crystalline or amorphous. When the KLF5 inhibitor is a crystal, it can be used as the KLF5 inhibitor in the present invention whether it is a single crystal form or a mixture of crystal forms. Crystals can be produced by applying a crystallization method known per se to crystallize.
 KLF5阻害剤は、溶媒和物(例えば、水和物等)であっても、無溶媒和物であってもよく、いずれも本発明のKLF5阻害剤として使用できる。 The KLF5 inhibitor may be a solvate (eg, hydrate, etc.) or a non-solvate, both of which can be used as the KLF5 inhibitor of the present invention.
 KLF5阻害剤は、同位元素(例、H,14C,35S,125I等)等で標識されていてもよい。 The KLF5 inhibitor may be labeled with an isotope (eg, 3 H, 14 C, 35 S, 125 I, etc.).
 本発明において使用するKLF5阻害剤として、好ましくは下記式(I)~(III) As the KLF5 inhibitor used in the present invention, preferably the following formulas (I) to (III)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表される化合物又はその医薬上許容され得る塩である(以下、それらを「本発明化合物」とも総称する)。
 本発明化合物は新規な化合物であり、例えば実施例1~3に記載の方法によって製造することができる。
 本発明化合物は、その誘導体を本発明のKLF5阻害剤として用いることができる。ここで、誘導体とは、ある有機化合物を母体として考えたとき、官能基の導入、酸化、還元、または原子の置換もしくは付加等によって、母体の構造や性質を大幅に変えない程度の改変がなされた化合物のことを意味する。
or a pharmaceutically acceptable salt thereof (hereinafter collectively referred to as "the compounds of the present invention").
The compounds of the present invention are novel compounds and can be prepared, for example, by the methods described in Examples 1-3.
A derivative of the compound of the present invention can be used as the KLF5 inhibitor of the present invention. Here, a derivative is an organic compound that has been modified by introduction of functional groups, oxidation, reduction, substitution or addition of atoms, etc., to the extent that the structure or properties of the base are not significantly changed. It means a compound that
 KLF5阻害剤は、KLF5とUSP3との結合を阻害することによってKLF5-USP3相互作用を阻害することができる。従って、KLF5阻害剤は、哺乳動物(例、ヒト、サル、ネコ、ブタ、ウマ、ウシ、マウス、ラット、モルモット、イヌ、ウサギ等)に対し、種々の薬理効果を示し、KLF5-USP3相互作用が関与する疾患、例えば、がんや心血管系疾患の予防及び/又は治療薬、心機能改善剤(以下、これらを「本発明の薬剤」とも総称する)として有用である。
 がんの治療はがんの進行(例えば、がんの成長及び転移)を減少または除去することを含むものと理解される。がんの予防は、がんの発症を防止又は遅延することを含むものと理解される。様々な類型のがんが、本発明によって治療又は予防され得る。それらとしては、肺がん、乳がん、大腸がん(直腸結腸がん)、胃がん、膵がん、肝がん、子宮がん、卵巣がん、神経膠腫、黒色腫、リンパ腫、及び白血病が挙げられるが、これらに限定されない。対象となるがんとして好ましくは、大腸がんである。治療を必要とする被験体は、様々な類型のがんに罹った哺乳動物、特に非ヒト霊長類或いは他の動物であってもよい。がんの予防及び/又は治療薬は抗がん剤と同義である。
 本明細書で使用される用語「心血管系疾患」は、心臓もしくは血管、又は双方に影響を及ぼす疾患を指す。特に、心血管系疾患としては、不整脈(心房性もしくは心室性のもの、又は双方);アテローム性動脈硬化症及びその続発症;狭心症;心調律障害;心筋虚血;心筋梗塞;心臓又は血管瘤;血管炎、卒中;手足、器官、又は組織の末梢閉塞性動脈症;脳、心臓、腎臓、又は他の器官もしくは組織の虚血後の再灌流傷害;内毒素、外科的、もしくは外傷性ショック;高血圧症、心臓弁膜症、心不全、異常血圧;ショック;血管狭窄(片頭痛に関連するものを含む);血管異常、炎症、単一の器官又は組織に限定された不全症が挙げられる。心血管系疾患の治療は該疾患の進行を減少または除去することを含むものと理解される。心血管系疾患の予防は、該疾患の発症を防止又は遅延することを含むものと理解される。対象となる心血管系疾患としては好ましくは心不全である。
A KLF5 inhibitor can inhibit the KLF5-USP3 interaction by inhibiting the binding of KLF5 to USP3. Therefore, KLF5 inhibitors show various pharmacological effects on mammals (e.g., humans, monkeys, cats, pigs, horses, cows, mice, rats, guinea pigs, dogs, rabbits, etc.), and KLF5-USP3 interaction is associated with diseases such as cancer and cardiovascular diseases, and is useful as a preventive and/or therapeutic drug and a cardiac function improving agent (hereinafter collectively referred to as "the drug of the present invention").
Treatment of cancer is understood to include reducing or eliminating cancer progression (eg, cancer growth and metastasis). Prevention of cancer is understood to include preventing or delaying the onset of cancer. Various types of cancer can be treated or prevented by the present invention. They include lung cancer, breast cancer, colon cancer (colorectal cancer), stomach cancer, pancreatic cancer, liver cancer, uterine cancer, ovarian cancer, glioma, melanoma, lymphoma, and leukemia. but not limited to these. The target cancer is preferably colon cancer. A subject in need of treatment may be a mammal, particularly a non-human primate or other animal, with various types of cancer. A preventive and/or therapeutic agent for cancer is synonymous with an anticancer agent.
As used herein, the term "cardiovascular disease" refers to diseases that affect the heart or blood vessels, or both. In particular, cardiovascular diseases include arrhythmia (atrial or ventricular, or both); atherosclerosis and its sequelae; angina pectoris; cardiac rhythm disturbances; myocardial ischemia; vasculitis, stroke; peripheral occlusive arteriopathy of limbs, organs, or tissues; post-ischemic reperfusion injury of the brain, heart, kidneys, or other organs or tissues; endotoxin, surgical, or trauma hypertension, valvular heart disease, heart failure, abnormal blood pressure; shock; vascular stenosis (including those associated with migraine); vascular abnormalities, inflammation, failure confined to a single organ or tissue. . Treatment of cardiovascular disease is understood to include reducing or eliminating progression of the disease. Prevention of cardiovascular disease is understood to include preventing or delaying the onset of said disease. Cardiovascular disease to be targeted is preferably heart failure.
 がん及び/又は心血管系疾患の治療のために、治療するための有効量あるいは予防するための有効量の本発明化合物が被検体に投与され得る。 For the treatment of cancer and/or cardiovascular disease, a therapeutically effective amount or a prophylactically effective amount of the compound of the present invention can be administered to a subject.
 「治療するための有効量」は、疾患を治療するために動物に投与された場合に、当該疾患について、そのような治療を達成するのに十分な量を意味する。 "An effective amount for treatment" means an amount sufficient to achieve such treatment for a disease when administered to an animal to treat the disease.
 「予防するための有効量」は、疾患を予防するために動物に投与された場合に、当該疾患について、そのような予防を達成するのに十分な量を意味する。 "Effective amount for prevention" means an amount sufficient to achieve such prevention for the disease when administered to an animal to prevent the disease.
 「有効量」は「治療するための有効量」及び「予防するための有効量」と同じである。 "Effective amount" is the same as "effective amount for treatment" and "effective amount for prevention".
 「治療」又は「治療する」とは、本発明の化合物の任意の投与を意味し、以下を含む:
(1)疾患に罹りやすい可能性があるが、当該疾患の病理又は総体症状をまだ経験していない又は示していない動物における、疾患の発生の予防、
(2)疾患の病理又は総体症状を経験している又は示している動物における、当該疾患の阻害(即ち、病理及び/又は総体症状の更なる進行の停止)、或いは
(3)疾患の病理又は総体症状を経験している又は示している動物における、当該疾患の改善(即ち、病理及び/又は総体症状の逆転)。
"Treatment" or "treating" means any administration of a compound of the invention and includes:
(1) prevention of disease development in animals that may be susceptible to the disease but have not yet experienced or exhibited the pathology or symptomatology of the disease;
(2) inhibition of the disease (i.e., halting further progression of the pathology and/or symptomatology) in animals experiencing or exhibiting disease pathology or symptomatology; or (3) disease pathology or symptomatology. Amelioration of the disease (ie, reversal of pathology and/or symptomatology) in animals experiencing or exhibiting symptomatology.
 本発明の更なる態様においては、本発明は、生物活性(本発明においては、KLF5-USP3相互作用を阻害する活性)についてライブラリーをスクリーニングする方法及び生物活性のあるライブラリーのメンバーを単離する方法を提供する。従って、本発明は、被検物質のKLF5-USP3相互作用を阻害する活性、即ち、KLF5とUSP3との結合阻害活性を測定する工程を含む、抗がん剤及び/又は心機能改善剤のスクリーニング方法を提供する。 In a further aspect of the invention, the present invention provides a method of screening a library for biological activity (in the present invention, activity that inhibits the KLF5-USP3 interaction) and isolating biologically active library members. provide a way to Therefore, the present invention provides screening for anticancer agents and/or cardiac function improving agents, which comprises the step of measuring the activity of a test substance to inhibit the KLF5-USP3 interaction, that is, the activity of inhibiting the binding of KLF5 and USP3. provide a way.
 一つの実施形態においては、生理活性のデータは結合アッセイによって決定され得る。当該方法は、例えば、KLF5、KLF5の相互作用タンパク質であるUSP3、及び被験物質を含めた組成物を提供することを含み得る。この方法は、被験物質の存在に起因するKLF5とUSP3との間の結合の変化を検出することと、その後、被験物質の結合への影響を特徴づけることを更に含む。アッセイは、被験物質が2つのタンパク質間の結合に及ぼす影響を測定できる方法であれば、いずれの方法で行われてもよい。このようなアッセイが当該技術分野で多く知られている。 In one embodiment, bioactivity data can be determined by binding assays. The method can comprise, for example, providing a composition comprising KLF5, the KLF5 interacting protein USP3, and a test substance. The method further comprises detecting changes in binding between KLF5 and USP3 due to the presence of the test agent, and then characterizing the effect of the test agent on binding. Assays may be performed by any method that can measure the effect of a test substance on the binding between two proteins. Many such assays are known in the art.
 スクリーニングに供される被験物質としては、特に限定されず、例えばタンパク質、核酸、ペプチド、ポリペプチド、合成化合物、あるいはそれらのライブラリーが挙げられる。ライブラリーとしては、合成化合物ライブラリー、ペプチドライブラリー、cDNAライブラリーなどが挙げられる。
 被験物質は、いく通りかの異なる濃度において検討され得るが、これらの濃度は、部分的にはアッセイ条件に応じて選択される。アッセイ条件の例を挙げると、KLF5及びUSP3の濃度である。約0.1から100μM範囲の濃度が用いられ得る。ある態様においては、このアッセイは、二つのタンパク質間の結合相互作用に影響を及ぼす、二つの化合物の相対的な効用を評価するということであるが、この二つの化合物の少なくとも一つは本発明の化合物である。より有効な化合物が、化合物構造と化合物活性との間の関係を研究するのに参照化合物となり得る。
Test substances to be screened are not particularly limited, and examples thereof include proteins, nucleic acids, peptides, polypeptides, synthetic compounds, or libraries thereof. Libraries include synthetic compound libraries, peptide libraries, cDNA libraries, and the like.
The test substance can be tested at a number of different concentrations, with the concentrations chosen depending in part on the assay conditions. Examples of assay conditions are the concentrations of KLF5 and USP3. Concentrations in the range of about 0.1 to 100 μM may be used. In one embodiment, the assay evaluates the relative utility of two compounds to affect binding interactions between two proteins, wherein at least one of the two compounds is a compound of the present invention. is a compound of A more effective compound can serve as a reference compound to study the relationship between compound structure and compound activity.
 本発明は、また、本発明化合物を用いるプロドラッグに関する。プロドラッグは、典型的には、酵素的及び/又は化学的加水分解によって、吸収の途中又は後に体内に活性薬物を放出するように設計される。プロドラッグアプローチは、水に溶解性がより高い化合物へ化学的誘導体化することによって、水への溶解性が低い薬物の経口生体利用性又は静脈(i.v.)投与を向上させる効果的な手段である。ヒドロキシル基を有する薬物の水溶性を増加させるために最もよく用いられるプロドラッグアプローチは、イオン化可能な基、例えば、リン酸基、カルボキシレート基、アルキルアミノ基を含むエステルを製造するものである(Fleisher et al., Advanced Drug Delivery Reviews, 115-130, 1996;Davis et al., Cancer Res., 7247-7253)。 The present invention also relates to prodrugs using the compounds of the present invention. Prodrugs are typically designed to release the active drug in the body during or after absorption by enzymatic and/or chemical hydrolysis. The prodrug approach is an effective way to enhance oral bioavailability or intravenous (i.v.) administration of poorly water-soluble drugs by chemical derivatization to more water-soluble compounds. It is a means. The most commonly used prodrug approach to increase the water solubility of drugs with hydroxyl groups is to prepare esters containing ionizable groups, e.g., phosphate, carboxylate, alkylamino groups ( Fleisher et al., Advanced Drug Delivery Reviews, 115-130, 1996; Davis et al., Cancer Res., 7247-7253).
 他の態様においては、本発明は、本発明化合物又はその医薬上許容され得る塩を含有する医薬組成物を提供する。これらの組成物は、詳細を後述する本発明の様々な方法(例、がん、心血管系疾患の治療)に用いられ得る。 In another aspect, the invention provides pharmaceutical compositions containing the compounds of the invention or pharmaceutically acceptable salts thereof. These compositions can be used in various methods of the invention (eg, treatment of cancer, cardiovascular disease), which are described in detail below.
 本発明の医薬組成物は、目的とする投与経路に即して剤形化することができる。投与経路の例としては、非経口(例、静脈内)、皮内、皮下、経口(例、吸入)、経皮(局所)、経粘膜、及び直腸投与等が挙げられる。非経口、皮内又は皮下投与に用いられる液剤又は懸濁剤としては、以下の成分を含み得る:滅菌希釈液(例えば、注射用水、生理食塩水、固定油、ポリエチレングリコール類、グリセリン、プロピレングリコール、又はその他の合成溶媒)、抗菌剤(例えば、ベンジルアルコール又はメチルパラベン)、抗酸化剤(例えば、アスコルビン酸又は亜硫酸水素ナトリウム)、キレート剤(例えば、エチレンジアミン四酢酸)、緩衝剤(酢酸塩、クエン酸塩、又はリン酸塩)、及び等張化剤(例えば、塩化ナトリウム又はデキストロース)。更に、pHは、酸又は塩基(例えば、塩酸又は水酸化ナトリウム)で調節することができる。非経口剤は、アンプル、使い捨て注射器、或いはガラス又はプラスチック製複数回投与バイアルに封入することができる。 The pharmaceutical composition of the present invention can be formulated according to the intended administration route. Examples of routes of administration include parenteral (eg, intravenous), intradermal, subcutaneous, oral (eg, inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions for parenteral, intradermal or subcutaneous administration may contain the following components: sterile diluents such as water for injection, saline, fixed oils, polyethylene glycols, glycerin, propylene glycol. , or other synthetic solvents), antibacterial agents (e.g., benzyl alcohol or methylparaben), antioxidants (e.g., ascorbic acid or sodium bisulfite), chelating agents (e.g., ethylenediaminetetraacetic acid), buffering agents (acetate, citric acid salts, or phosphates), and tonicity agents (eg, sodium chloride or dextrose). Additionally, pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. Parenterals can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
 注射用に適した医薬組成物としては、滅菌水溶液(水溶性の場合)又は分散液と、滅菌注射溶液又は分散液の即時調整用製剤のための滅菌粉末が挙げられる。静脈内投与の場合、適切な担体としては、生理食塩水、静菌水、クレモフォア(Cremophor)EL(商標)(BASE,Parsippany,NJ)又はリン酸緩衝生理食塩水(PBS)が挙げられる。いかなる場合でも、前記組成物は、滅菌状態でなければならず、また容易に注射可能な程度に流動性がなければならない。製造及び貯蔵の状態下で安定でなければならず、バクテリア及び真菌などの微生物に汚染されずに保存されなければならない。前記担体としては、例えば、水、エタノール、ポリオール(例えば、グリセロール、プロピレングリコール、及び液相ポリエチレングリコールなど)、そしてこれらの好適な混合物を含有する溶媒又は分散媒体であり得る。適切な流動性は、例えば、レシチンなどの被覆物の使用により、分散液の場合に必要な粒径の維持により、また界面活性剤の使用により維持することができる。微生物作用の予防は、様々な抗菌剤及び抗真菌剤(例えば、パラベン、クロロブタノール、フェノール、アスコルビン酸、チメロサール等)により達成することができる。多くの場合、組成物中に等張化剤(例えば、糖、ポリアルコール(例えば、マニトール、ソルビトール)、塩化ナトリウム)を含有することが好ましい。注射用組成物の持続的吸収は、吸収を遅らせる薬剤(例えば、モノステアリン酸アルミニウム及びゼラチン)を前記組成物に含有させることにより行われ得る。 Pharmaceutical compositions suitable for injection include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASE, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved free from contamination by microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyols (eg, glycerol, propylene glycol, liquid-phase polyethylene glycol, etc.), and suitable mixtures thereof. Proper fluidity can be maintained, for example, by the use of coatings such as lecithin, by maintenance of the required particle size in the case of dispersions, and by the use of surfactants. Prevention of microbial action can be achieved with various antibacterial and antifungal agents (eg, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, etc.). In many cases, it will be preferable to include isotonic agents, such as sugars, polyalcohols (eg, mannitol, sorbitol), sodium chloride in the composition. Prolonged absorption of an injectable composition can be effected by including in the composition an agent that delays absorption, such as aluminum monostearate and gelatin.
 滅菌注射溶液は、必要に応じて、上述した成分の単独又は組合せと共に、適切な溶媒中に、必要な量で、例えば本発明化合物を混入させた後、濾過による滅菌により調製することができる。一般に、分散液は、上述したものから必要な他の成分と分散媒体とを含有する滅菌ビヒクル中に活性化合物を混入することによって調製する。滅菌注射溶液の調製のための滅菌粉末の場合、好ましい調製方法は、真空乾燥及び凍結乾燥させて、予め滅菌-濾過された溶液からの所望の任意の追加成分及び活性成分の粉末を調製するものである。経口組成物は、一般に、不活性希釈剤又は食用担体を含有する。これらは、ゼラチンカプセル中に封止され得、或いは錠剤中に圧縮され得る。経口投与の治療目的のために、活性化合物は、賦形剤と共に取り入れられ得、錠剤、トローチ、又はカプセルの形態で用いられ得る。 Sterile injectable solutions can be prepared, for example, by incorporating the compound of the present invention in the required amount in an appropriate solvent with the above-described ingredients, alone or in combination, as required, followed by sterilization by filtration. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains the required other ingredients from those enumerated above and the dispersion medium. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred method of preparation is vacuum drying and lyophilization to prepare a powder of the active ingredient plus any desired additional ingredients from a previously sterile-filtered solution. is. Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules.
 経口組成物はまた、うがい薬として用いるための液体担体を用いて調製することができ、ここで、液体担体中の前記化合物は、経口的に適用され、ヒュっと音を出したり、吐かれたり又は飲み込まれたりする。医薬的に適合性のある結合剤及び/又は補助剤物質は、組成物の一部として含まれ得る。錠剤、丸薬、カプセル、トローチ等は、以下の成分又は類似性質の化合物のいずれかのものを含有することができる:結合剤(例えば、微結晶性セルロース、トラガカント、又はゼラチン等)、賦形剤(例えば、デンプン、ラクトース)、崩壊剤(例えば、アルギン酸、プリモゲル(Primogel)、又はコーンスターチ)、滑剤(例えば、ステアリン酸マグネシウム又はステロッツ(Sterotes))、流動促進剤(例えば、コロイド状二酸化ケイ素)、甘味剤(例えば、スクロース、サッカリン)、又は香料添加剤(例えば、ペパーミント、サリチル酸メチル、又はオレンジ香味料)を含有することができる。 Oral compositions can also be prepared using a liquid carrier for use as a mouthwash, wherein the compound in the liquid carrier is applied orally and swished or expectorated. or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. Tablets, pills, capsules, troches and the like may contain any of the following ingredients or compounds of similar nature: binders (such as microcrystalline cellulose, tragacanth, or gelatin), excipients. (e.g. starch, lactose), disintegrants (e.g. alginic acid, Primogel, or corn starch), lubricants (e.g. magnesium stearate or Sterotes), glidants (e.g. colloidal silicon dioxide), Sweetening agents such as sucrose, saccharin, or flavoring agents such as peppermint, methyl salicylate, or orange flavoring may be included.
 吸入投与の場合、化合物は、好適な噴射剤(例えば、二酸化炭素などのガス)又は噴霧剤を含有する、加圧容器又はディスペンサーからエアゾールスプレーの形態で送達される。 For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser that contains a suitable propellant (eg, a gas such as carbon dioxide) or propellant.
 全身投与はまた、経粘膜又は経皮手段によることができる。経粘膜又は経皮投与の場合、浸透しようとするバリアに適切な浸透剤が剤形に用いられる。このような浸透剤は、一般に当該分野において公知であり、また例えば、経粘膜投与の場合、界面活性剤、胆汁塩、フシジン酸誘導体類を含む。経粘膜投与は、鼻腔用スプレー又は座薬の使用により達成され得る。経皮投与の場合、活性化合物は、一般に当該技術分野において公知の軟膏、膏薬、ゲル又はクリームに剤形化される。 Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the dosage form. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are generally formulated into ointments, salves, gels, or creams known in the art.
 化合物はまた、座薬(例えば、カカオ脂及び他のグリセリドなどの従来の座薬の基剤とともに)又は直腸送達のための停留浣腸剤の形態に調製することもできる。 The compounds can also be prepared in the form of suppositories (eg, with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
 投与の容易性及び用量の均一性のために、投与量単位の形態で経口的又は非経口的組成物を剤形化することが更に有利であり得る。ここで用いられる投与量単位の形態とは、治療する被験体のための単一容量に好適な物理的に区別された単位を意味し、それぞれの単位は、所望の治療効果をもたらすために、必要な医薬的担体と関連して計算された所定量の活性化合物を含有する。本発明の用量単位の形態についての明細は、前記活性化合物の独特な特徴、達成しようとする特別な治療効果、及び個人の治療のためそのような活性化合物を混合する技術に固有な制限により決定され、またこれらに直接依存する。 It may be advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form, as used herein, refers to physically discrete units suitable as unitary dosages for the subject to be treated, each unit containing the desired therapeutic effect to produce the desired therapeutic effect. It contains a predetermined amount of active compound calculated in association with the required pharmaceutical carrier. The specifics of the dosage unit forms of the present invention are determined by the unique characteristics of the active compound, the particular therapeutic effect sought to be achieved, and the limitations inherent in the art of combining such active compounds for individual therapy. and directly depend on them.
 例えば、ある実施形態において、本発明の好適な医薬組成物は、単位用量で経口投与に好適なもの、例えば、約1mg~約1gの本発明の化合物を含有する錠剤又はカプセル剤である。他のいくつかの実施形態において、本発明の医薬組成物は、静脈内注射、皮下注射又は筋肉内注射に好適なものである。患者は、例えば、約1μg/kg~約1g/kgの本発明の化合物の静脈内用量、皮下用量又は筋肉内用量を受け得る。静脈内用量、皮下用量及び筋肉内用量は、大量注射の手段により、与えられ得る。或いは、この静脈内用量は、一定時間にわたる連続注入により、与えられ得る。或いは、患者は、毎日非経口用量にほぼ等しい毎日経口用量を受け、その組成物は、1日あたり、1~4回で、投与される。 For example, in certain embodiments, preferred pharmaceutical compositions of the invention are those suitable for oral administration in unit doses, eg, tablets or capsules containing from about 1 mg to about 1 g of a compound of the invention. In some other embodiments, the pharmaceutical compositions of the invention are suitable for intravenous, subcutaneous or intramuscular injection. A patient may receive, for example, from about 1 μg/kg to about 1 g/kg of a compound of the invention intravenously, subcutaneously or intramuscularly. Intravenous, subcutaneous and intramuscular doses may be given by means of bolus injection. Alternatively, the intravenous dose may be given by continuous infusion over a period of time. Alternatively, the patient receives a daily oral dose approximately equivalent to the daily parenteral dose and the composition is administered 1 to 4 times per day.
 好ましくは、本発明化合物は、非経口的に(特に好ましくは、持続点滴又は急速静脈内投与により)、ヒトを含む哺乳動物に投与し得る。 Preferably, the compounds of the present invention can be administered to mammals, including humans, parenterally (particularly preferably by continuous infusion or rapid intravenous administration).
 その場合は、投与量は、患者の体重及び/又は年齢、並びに/或いは症状の程度及び投与経路等の種々の要因に依存して適切に選択される。例えば一般的には、非経口投与のための本発明化合物の投与量は持続点滴投与による、ヒト体表面積あたり1~10000mg/day/mの範囲であり、好ましくはヒト体表面積あたり1~5000mg/day/mの範囲であり、そしてより好ましくはヒト体表面積あたり10~5000mg/day/mである。 In that case, the dosage is appropriately selected depending on various factors such as the weight and/or age of the patient, and/or the degree of symptoms and route of administration. For example, in general, doses of the compounds of the present invention for parenteral administration range from 1 to 10,000 mg/day/m 2 of human body surface area, preferably from 1 to 5,000 mg/day/m 2 of human body surface area, by continuous infusion. /day/m 2 and more preferably 10-5000 mg/day/m 2 of human body surface area.
 本発明化合物又はその医薬上許容され得る塩を含有する医薬組成物は、KLF5-USP3相互作用により調節される疾患、具体的に、がんや心血管系疾患の治療に用いられ得る。 A pharmaceutical composition containing the compound of the present invention or a pharmaceutically acceptable salt thereof can be used to treat diseases regulated by the KLF5-USP3 interaction, specifically cancer and cardiovascular diseases.
 以下に本発明を実施例及び試験例により、更に具体的に説明するが、本発明は、これに限定されるものではない。 The present invention will be described in more detail below with examples and test examples, but the present invention is not limited to these.
実施例1
式(I)化合物の合成
Example 1
Synthesis of compounds of formula (I)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 各工程で用いた試薬と反応条件。
a) NaBH(OAc)3, dichloroethane;
b) HATU, DIPEA, CH2Cl2(DCM);
c) DEA, DCM;
d) BnBr, Cs2CO3, CH3CN;
e) Ph3P, DIAD, DCM;
f) hydrazine hydrate, DCM;
g) DMAP, DCM;
h) H2, Pd/C, MeOH;
i) HATU, DIEA, DCM;
j) HCO2
Reagents and reaction conditions used in each step.
a) NaBH(OAc) 3 , dichloroethane;
b) HATU, DIPEA , CH2Cl2 (DCM);
c) DEA, DCM;
d) BnBr, Cs2CO3 , CH3CN ;
e) Ph3P , DIAD, DCM;
f) hydrazine hydrate, DCM;
g) DMAP, DCM;
h) H2 , Pd/C, MeOH;
i) HATU, DIEA, DCM;
j) HCO2H
 式(I)化合物の合成は以下の通りである。ベンズアルデヒド(1)及びアミン(2)に由来するアミン(3)とFmoc-Ile(4)を縮合させ、Fmoc基を脱保護することによりアミン部(6)を調製した。ヒドロキシカルボン酸(7)をエステル化、光延反応、脱保護してヒドロキシルアミン(11)を得た。このヒドロキシルアミン(11)をクロロギ酸イソブチルと反応させ、水素化分解することにより酸部(14)に変換した。アミン部(6)を、縮合試薬を用いて酸部(14)と結合させ、ギ酸で処理して、所望の式(I)化合物を得た。 The synthesis of the compound of formula (I) is as follows. Amine moiety (6) was prepared by condensing Fmoc-Ile (4) with amine (3) derived from benzaldehyde (1) and amine (2) and deprotecting the Fmoc group. Hydroxylcarboxylic acid (7) was esterified, Mitsunobu reaction and deprotected to obtain hydroxylamine (11). The hydroxylamine (11) was converted to the acid moiety (14) by reaction with isobutyl chloroformate and hydrogenolysis. Amine moiety (6) was coupled with acid moiety (14) using a condensing reagent and treated with formic acid to give the desired compound of formula (I).
 式(I)化合物の合成の詳細は以下の通りである。
 すべての出発物質及び試薬は、市販の供給者から購入した。薄層クロマトグラフィー(TLC)を0.2mmシリカゲル60 F254プレート(Merck)上で行った。分析HPLC/MSデータをWaters 2795装置上で収集した;LC/MS条件は、5%CHCNから0.1%ギ酸を含むCHCN/HOのグラジエント、次いで100%CHCNをDevelosil C30-UG-5カラム(50x4.6mm、野村化学株式会社)上で1.0mL/minの流速で5分間のグラジエントであった。H-NMRスペクトルをBruker Biospin AVANCE III HD 500分光計(500 MHz)で記録した。化学シフトは、内部標準としてTMSを用いてppmで報告した。
Details of the synthesis of compounds of formula (I) are as follows.
All starting materials and reagents were purchased from commercial suppliers. Thin layer chromatography (TLC) was performed on 0.2 mm silica gel 60 F254 plates (Merck). Analytical HPLC/MS data were collected on a Waters 2795 instrument; LC/MS conditions were a gradient of CH3CN / H2O from 5% CH3CN to 0.1% formic acid, then 100% CH3CN . The gradient was 5 minutes at a flow rate of 1.0 mL/min on a Develosil C30-UG-5 column (50×4.6 mm, Nomura Chemical Co., Ltd.). 1 H-NMR spectra were recorded on a Bruker Biospin AVANCE III HD 500 spectrometer (500 MHz). Chemical shifts are reported in ppm using TMS as internal standard.
N-ベンジル-2,2-ジエトキシエタン-1-アミン(3)の調製
 2,2-ジエトキシエタン-1-アミン(2)(10.3mL,70.5mmol,1.5eq)中のベンズアルデヒド(1)(5.0g,47.0mmol)の溶液を室温で30分間撹拌した。反応混合物をジクロロエタン(110mL)で希釈し、トリアセトキシボロハイドライド(NaBH(OAc),30.0g,141.0mmol,3.0eq)を何回かにわけて添加し、室温で3時間撹拌した。次いで、反応混合物を飽和NaHCO水溶液、水及び食塩水で洗浄した。集められた有機相をNaSO上で乾燥させ、濾過した。濾液を真空中で濃縮し、残渣を石油エーテルで洗浄して、白色固体としてN-ベンジル-2,2-ジエトキシエタン-1-アミン(3)(7.9g,75%)を得た。
Preparation of N-benzyl-2,2-diethoxyethan-1-amine (3) Benzaldehyde in 2,2-diethoxyethan-1-amine (2) (10.3 mL, 70.5 mmol, 1.5 eq) A solution of (1) (5.0 g, 47.0 mmol) was stirred at room temperature for 30 minutes. The reaction mixture was diluted with dichloroethane (110 mL), triacetoxyborohydride (NaBH(OAc) 3 , 30.0 g, 141.0 mmol, 3.0 eq) was added portionwise and stirred at room temperature for 3 hours. . The reaction mixture was then washed with saturated aqueous NaHCO3 , water and brine. The collected organic phases were dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo and the residue was washed with petroleum ether to give N-benzyl-2,2-diethoxyethan-1-amine (3) (7.9 g, 75%) as a white solid.
(9H-フルオレン-9-イル)メチル((2S,3S)-1-(ベンジル(2,2-ジエトキシエチル)アミノ)-3-メチル-1-オキソペンタン-2-イル)カルバメート(5)の調製
 化合物(3)(2.5g,11.0mmol,1.1eq)を、ジクロロメタン(DCM,100mL)中の(((9H-フルオレン-9-イル)メトキシ)カルボニル)-L-イソロイシン(4)(3.5g,10.0mmol)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスフェート(HATU,4.6g,12.0mmol,1.2eq)及びジイソプロピルエチルアミン(DIPEA,3.5mL,20.0mmol,2.0eq)の溶液に添加した。混合物を室温で3時間撹拌した。次いで、溶液を水で洗浄し、有機相をNaSO上で乾燥し、濾過した。濾液を真空中で濃縮し、残渣をカラムクロマトグラフィー(石油エーテル:AcOEt=10:1)で精製して、(9H-フルオレン-9-イル)メチル((2S,3S)-1-(ベンジル(2,2-ジエトキシエチル)アミノ)-3-メチル-1-オキソペンタン-2-イル)カルバメート(5)(4.5g,81%)を淡黄色油として得た。
(9H-fluoren-9-yl)methyl ((2S,3S)-1-(benzyl(2,2-diethoxyethyl)amino)-3-methyl-1-oxopentan-2-yl)carbamate (5) Preparation of compound (3) (2.5 g, 11.0 mmol, 1.1 eq) was treated with (((9H-fluoren-9-yl)methoxy)carbonyl)-L-isoleucine (4 ) (3.5 g, 10.0 mmol), 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU, 4. 6 g, 12.0 mmol, 1.2 eq) and diisopropylethylamine (DIPEA, 3.5 mL, 20.0 mmol, 2.0 eq). The mixture was stirred at room temperature for 3 hours. The solution was then washed with water and the organic phase was dried over Na2SO4 and filtered. The filtrate is concentrated in vacuo and the residue is purified by column chromatography (petroleum ether:AcOEt=10:1) to give (9H-fluoren-9-yl)methyl ((2S,3S)-1-(benzyl ( 2,2-diethoxyethyl)amino)-3-methyl-1-oxopentan-2-yl)carbamate (5) (4.5 g, 81%) was obtained as a pale yellow oil.
(2S,3S)-2-アミノ-N-ベンジル-N-(2,2-ジエトキシエチル)-3-メチルペンタンアミド(6)の調製
 ジクロロメタン(5mL)中の化合物(5)(280.0mg,0.5mmol)の溶液にジエチルアミン(DEA,2mL)を加え、室温で2時間攪拌した。反応の終了をTLCで確認した後、DCMを減圧下で留去した。得られた生成物をカラムクロマトグラフィー(DCM:MeOH=30:1)で精製し、(2S,3S)-2-アミノ-N-ベンジル-N-(2,2-ジエトキシエチル)-3-メチルペンタンアミド(6)(150mg,89%)を淡黄色油として得た。
Preparation of (2S,3S)-2-amino-N-benzyl-N-(2,2-diethoxyethyl)-3-methylpentanamide (6) Compound ( 5) (280.0 mg) in dichloromethane (5 mL) , 0.5 mmol) was added with diethylamine (DEA, 2 mL) and stirred at room temperature for 2 hours. After confirming the completion of the reaction by TLC, DCM was distilled off under reduced pressure. The resulting product was purified by column chromatography (DCM:MeOH=30:1) to give (2S,3S)-2-amino-N-benzyl-N-(2,2-diethoxyethyl)-3- Methylpentanamide (6) (150 mg, 89%) was obtained as a pale yellow oil.
ベンジル(S)-2-ヒドロキシ-3-メチルブタノエート(8)の調製
 炭酸セシウム(CsCO,6.89g,21.2mmol,0.5eq)を、CHCN(30mL)中の(S)-2-ヒドロキシ-3-メチルブタン酸(7)(5.0g,42.3mmol)の溶液に0℃で添加し、得られた混合物を40分間撹拌した。臭化ベンジル(BnBr,7.97g,46.6mmol,1.1eq)を加え、反応混合物を室温で15時間撹拌した。反応混合物を濾過し、濾液をAcOEtで希釈した。有機層を飽和NHCl溶液、飽和NaHCO溶液及び生理食塩水で洗浄した後、NaSO上で乾燥し、溶媒を真空中で除去した。粗生成物を石油エーテル:AcOEt(10:1)を溶離液として用いるフラッシュカラムクロマトグラフィーで精製し、無色油としてベンジル(S)-2-ヒドロキシ-3-メチルブタノエート(8)(7.9g,90%)を得た。
Preparation of benzyl (S)-2-hydroxy-3-methylbutanoate (8) Cesium carbonate (Cs 2 CO 3 , 6.89 g, 21.2 mmol, 0.5 eq) was dissolved in CH 3 CN (30 mL). A solution of (S)-2-hydroxy-3-methylbutanoic acid (7) (5.0 g, 42.3 mmol) was added at 0° C. and the resulting mixture was stirred for 40 minutes. Benzyl bromide (BnBr, 7.97 g, 46.6 mmol, 1.1 eq) was added and the reaction mixture was stirred at room temperature for 15 hours. The reaction mixture was filtered and the filtrate was diluted with AcOEt. After the organic layer was washed with saturated NH 4 Cl solution, saturated NaHCO 3 solution and brine, it was dried over Na 2 SO 4 and the solvent was removed in vacuo. The crude product was purified by flash column chromatography using petroleum ether:AcOEt (10:1) as eluent to give benzyl (S)-2-hydroxy-3-methylbutanoate (8) (7. 9 g, 90%).
ベンジル(R)-2-((1,3-ジオキソインドリン-2-イル)オキシ)-3-メチルブタノエート(10)の調製
 DCM(180mL)中の化合物(8)(7.9g,38.2mmol)、トリフェニルホスフィン(PPh,23.0g,87.8mmol,2.3eq)及びN-ヒドロキシフタルイミド(9)(13.1g,80.2mmol,2.1eq)の撹拌溶液に、ジイソプロピルアゾジカルボキシレート(DIAD,17.8g,87.8mmol,2.3eq)を-20℃から-40℃で加えた。同温度で40分後、反応混合物を濃縮し、溶離液として石油エーテル:AcOEt(10:1~6:1)を用いたフラッシュカラムクロマトグラフィーで直接精製し、ベンジル(R)-2-((1,3-ジオキソインドリン-2-イル)オキシ)-3-メチルブタノエート(10)(11.9g,88%)を無色油として得た。
Preparation of benzyl (R)-2-((1,3-dioxoindolin-2-yl)oxy)-3-methylbutanoate (10) Compound ( 8) (7.9 g, 38.2 mmol), triphenylphosphine (PPh 3 , 23.0 g, 87.8 mmol, 2.3 eq) and N-hydroxyphthalimide (9) (13.1 g, 80.2 mmol, 2.1 eq). Diisopropyl azodicarboxylate (DIAD, 17.8 g, 87.8 mmol, 2.3 eq) was added at -20°C to -40°C. After 40 minutes at the same temperature, the reaction mixture was concentrated and directly purified by flash column chromatography using petroleum ether:AcOEt (10:1 to 6:1) as eluent to give benzyl (R)-2-(( 1,3-dioxoindolin-2-yl)oxy)-3-methylbutanoate (10) (11.9 g, 88%) was obtained as a colorless oil.
ベンジル(R)-2-(アミノオキシ)-3-メチルブタノエート(11)の調製
 ヒドラジン一水和物(2.08mL,42.9mmol,1.1eq)を氷冷浴中、DCM(150mL)中の化合物(10)(13.78g,39.0mmol)に加え、反応が完了するまで同温度で2時間撹拌した。反応混合物を濾過し、濾液をDCMで希釈した。有機層を食塩水で洗浄した後、NaSO上で乾燥させ、溶媒を真空中で除去した。粗生成物を石油エーテル:AcOEtを溶離液として用いたフラッシュカラムクロマトグラフィーで精製し、ベンジル(R)-2-(アミノオキシ)-3-メチルブタノエート(11)(8.03g,95%)を無色油として得た。
Preparation of benzyl (R)-2-(aminooxy)-3-methylbutanoate (11) Hydrazine monohydrate (2.08 mL, 42.9 mmol, 1.1 eq) was dissolved in DCM (150 mL) in an ice bath. ) and stirred at the same temperature for 2 hours until the reaction was completed. The reaction mixture was filtered and the filtrate diluted with DCM. After washing the organic layer with brine, it was dried over Na 2 SO 4 and the solvent was removed in vacuo. The crude product was purified by flash column chromatography using petroleum ether:AcOEt as eluent to give benzyl (R)-2-(aminooxy)-3-methylbutanoate (11) (8.03 g, 95% ) as a colorless oil.
ベンジル(R)-2-(((イソブトキシカルボニル)アミノ)オキシ)-3-メチルブタノエート(13)の調製
 氷冷浴中、DCM(900mL)中で撹拌した化合物(11)(20.0g,89.7mmol,2.0eq)と4-ジメチルアミノピリジン(DMAP,1.67g,13.5mmol,0.15eq)にクロロギ酸イソブチル(12)(22.6mL,179.4mmol,2.0eq)を加え、反応が完了するまで同温度で2時間撹拌した。
 反応混合物を濃縮し、溶離液として石油エーテル:AcOEtを用いたフラッシュカラムクロマトグラフィーで直接精製し、ベンジル(R)-2-(((イソブトキシカルボニル)アミノ)オキシ)-3-メチルブタノエート(13)(27g,93%)を無色油として得た。
Preparation of benzyl (R)-2-(((isobutoxycarbonyl)amino)oxy)-3-methylbutanoate (13) Compound (11) (20. 0 g, 89.7 mmol, 2.0 eq) and 4-dimethylaminopyridine (DMAP, 1.67 g, 13.5 mmol, 0.15 eq) to isobutyl chloroformate (12) (22.6 mL, 179.4 mmol, 2.0 eq). ) was added and stirred at the same temperature for 2 hours until the reaction was completed.
The reaction mixture was concentrated and purified directly by flash column chromatography using petroleum ether:AcOEt as eluent to afford benzyl (R)-2-(((isobutoxycarbonyl)amino)oxy)-3-methylbutanoate. (13) (27 g, 93%) was obtained as a colorless oil.
(R)-2-(((イソブトキシカルボニル)アミノ)オキシ)-3-メチルブタン酸(14)の調製
 MeOH(150mL)中の化合物(13)(22g,68.1mmol)の撹拌溶液に10%パラジウム-炭素触媒(Pd/C,2.2g)を添加し、水素を3回置換した。混合物を反応終了まで室温で撹拌した。反応混合物を濃縮し、石油エーテル:AcOEtを溶離液として用いたフラッシュカラムクロマトグラフィーで直接精製することにより、(R)-2-(((イソブトキシカルボニル)アミノ)オキシ)-3-メチルブタン酸(14)(14.5g,91%)を白色固体として得た。
Preparation of (R)-2-(((isobutoxycarbonyl)amino)oxy)-3-methylbutanoic acid (14) To a stirred solution of compound (13) (22 g, 68.1 mmol) in MeOH (150 mL) 10%. A palladium-carbon catalyst (Pd/C, 2.2 g) was added and hydrogen was displaced three times. The mixture was stirred at room temperature until completion of the reaction. (R)-2-(((isobutoxycarbonyl)amino)oxy)-3-methylbutanoic acid ( 14) (14.5 g, 91%) was obtained as a white solid.
イソブチル(((R)-1-(((2S,3S)-1-(ベンジル(2,2-ジエトキシエチル)アミノ)-3-メチル-1-オキソペンタン-2-イル)アミノ)-3-メチル-1-オキソブタン-2-イル)オキシ)カルバメート(15)の調製
 乾燥DCM(40mL)中の化合物(14)(1.886g,8mmol)の溶液に、化合物(6)(2.691g,8mmol,1.0eq)、DIPEA(3mL,2.2eq)及びHATU(3.34g,8.8mmol,1.1eq)を加えた。反応混合物を室温で一晩撹拌した。溶媒を除去した後、反応混合物をAcOEt(150mL)に溶解し、食塩水で洗浄した。有機相をNaSO上で乾燥し、濾過した。濾液を真空中で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(n-Hex:AcOEt=95:5~65:35)で精製し、イソブチル(((R)-1-(((2S,3S)-1-(ベンジル(2,2-ジエトキシエチル)アミノ)-3-メチル-1-オキソペンタン-2-イル)アミノ)-3-メチル-1-オキソブタン-2-イル)オキシ)カルバメート(15)(3.82g,87%)を無色油として得た。展開溶媒、n-Hex:AcOEt=2:1;発色剤、ホスホモリブデン酸;Rf=0.51
isobutyl (((R)-1-(((2S,3S)-1-(benzyl(2,2-diethoxyethyl)amino)-3-methyl-1-oxopentan-2-yl)amino)-3 -methyl-1-oxobutan-2-yl)oxy)carbamate (15) To a solution of compound (14) (1.886 g, 8 mmol) in dry DCM (40 mL) was added compound (6) (2.691 g, 8 mmol, 1.0 eq), DIPEA (3 mL, 2.2 eq) and HATU (3.34 g, 8.8 mmol, 1.1 eq) were added. The reaction mixture was stirred overnight at room temperature. After removing the solvent, the reaction mixture was dissolved in AcOEt (150 mL) and washed with brine. The organic phase was dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo, the residue was purified by silica gel column chromatography (n-Hex:AcOEt=95:5-65:35), isobutyl (((R)-1-(((2S,3S)- 1-(benzyl(2,2-diethoxyethyl)amino)-3-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)oxy)carbamate (15) (3.82 g, 87%) was obtained as a colorless oil. Developing solvent, n-Hex:AcOEt=2:1; color former, phosphomolybdic acid; Rf=0.51
イソブチル(3R,6S,9aS)-8-ベンジル-6-((S)-sec-ブチル)-3-イソプロピル-4,7-ジオキソヘキサヒドロピラジノ[2,1-c][1,2,4]オキサジアジン-1(6H)-カルボキシレート(式(I)化合物)の調製
 化合物(15)(3.82g,6.92mmol)をHCOH(50mL)に溶解した。反応混合物を45℃で一晩加熱した。HCOHを除去した後、残渣をシリカゲルカラムクロマトグラフィー(n-Hex:AcOEt=75:25)で精製し、イソブチル(3R,6S,9aS)-8-ベンジル-6-((S)-sec-ブチル)-3-イソプロピル-4,7-ジオキソヘキサヒドロピラジノ[2,1-c][1,2,4]オキサジアジン-1(6H)-カルボキシレート、式(I)化合物(3.07g,97%)を無色粘性油として得た。展開溶媒、n-Hex:AcOEt=4:1;発色剤、ホスホモリブデン酸;Rf=0.35
1H-NMR (CDCl3)δ: 0.84(d, 3H, J=5.6Hz), 0.95(t, 3H, J=5.9Hz), 0.96(d, 6H, J=5.4Hz), 1.08(d, 3H, J=5.7Hz), 1.12(d, 3H, J=5.4Hz), 1.26(m, 1H), 1.56(m, 1H), 1.98(m, 1H), 2.20(m, 1H), 2.53(m, 1H), 3.32(dd, 1H, J=9.2, 3.5Hz), 3.69(t, 1H, J=8.9Hz), 4.01(d, 2H, J=5.2 Hz), 4.45(br s, 1H), 4.59(d, 1H, J=11.7Hz), 4.68(d, 1H, J=11.7Hz), 5.07(d, 1H, J=5.1Hz), 5.86(br d, 1H, J=5.7Hz), 7.22(d, 2H, J=5.4Hz), 7.27-7.35(m, 3H). MS (ESI): [M+H]+m/z 460.3.
isobutyl (3R,6S,9aS)-8-benzyl-6-((S)-sec-butyl)-3-isopropyl-4,7-dioxohexahydropyrazino[2,1-c][1,2 ,4] Preparation of oxadiazine-1(6H)-carboxylate (compound of formula (I)) Compound (15) (3.82 g, 6.92 mmol) was dissolved in HCO 2 H (50 mL). The reaction mixture was heated at 45° C. overnight. After removing HCO 2 H, the residue was purified by silica gel column chromatography (n-Hex:AcOEt=75:25) and isobutyl (3R,6S,9aS)-8-benzyl-6-((S)-sec -butyl)-3-isopropyl-4,7-dioxohexahydropyrazino[2,1-c][1,2,4]oxadiazine-1(6H)-carboxylate, compound of formula (I) (3. 07 g, 97%) as a colorless viscous oil. Developing solvent, n-Hex:AcOEt=4:1; color former, phosphomolybdic acid; Rf=0.35
1 H-NMR (CDCl 3 ) δ: 0.84(d, 3H, J=5.6Hz), 0.95(t, 3H, J=5.9Hz), 0.96(d, 6H, J=5.4Hz), 1.08(d, 3H, J=5.7Hz), 1.12(d, 3H, J=5.4Hz), 1.26(m, 1H), 1.56(m, 1H), 1.98(m, 1H), 2.20(m, 1H), 2.53( m, 1H), 3.32(dd, 1H, J=9.2, 3.5Hz), 3.69(t, 1H, J=8.9Hz), 4.01(d, 2H, J=5.2Hz), 4.45(br s, 1H) , 4.59(d, 1H, J=11.7Hz), 4.68(d, 1H, J=11.7Hz), 5.07(d, 1H, J=5.1Hz), 5.86(br d, 1H, J=5.7Hz), 7.22(d, 2H, J=5.4Hz), 7.27-7.35(m, 3H). MS (ESI): [M+H] + m/z 460.3.
実施例2
式(II)化合物の合成
 実施例1と同様にして式(II)化合物を合成した。
Example 2
Synthesis of Formula (II) Compound The formula (II) compound was synthesized in the same manner as in Example 1.
実施例3
式(III)化合物の合成
 実施例1と同様にして式(III)化合物を合成した。
Example 3
Synthesis of Formula (III) Compound The formula (III) compound was synthesized in the same manner as in Example 1.
試験例1:抗がん作用
(材料と方法)
Test Example 1: Anticancer action (material and method)
1.細胞培養
 実験には、ヒト大腸がん細胞株であるSW480(ATCC、理化学研究所)、HT29(JCRB)並びにHCT116(理化学研究所)、及びヒト非がん細胞株であるCCD841CoN(ATCC)並びにHEK293Tを用いた。CCD841CoNは購入後10回以上継代したものを用いなかった。
1. Cell culture experiments included human colon cancer cell lines SW480 (ATCC, RIKEN), HT29 (JCRB) and HCT116 (RIKEN), and human non-cancer cell lines CCD841CoN (ATCC) and HEK293T. was used. CCD841CoN that had been passaged 10 times or more after purchase was not used.
2.抗体
 ラット抗KLF5抗体は、協和キリン(日本)と共同で作製したモノクローナルラット抗KLF5抗体を使用した。また、以下の一次抗体も使用した。Survivin(Novus)、GAPDH(Millipore)、TCF4(Cell signaling)、β-Catenin(Cell signaling)、phospho-β-Catenin(Ser 552)(Cell signaling)、Cyclin D1(Cell signaling)、phospho-β-Catenin(Ser 675)(Cell signaling)、β-Actin(Cell signaling),Ki67(DAKO)、USP3(Abcam)。二次抗体は以下のものを使用した。ECL抗ウサギIgG HRP(GEヘルスケア社)、抗マウスIgG HRP(GEヘルスケア社)、抗ラットIgG HRP(サンタクルス社、Cell signaling)を用いた。
2. Anti- rat anti-KLF5 antibody used was a monoclonal rat anti-KLF5 antibody produced jointly with Kyowa Kirin (Japan). The following primary antibodies were also used. Survivin (Novus), GAPDH (Millipore), TCF4 (Cell signaling), β-Catenin (Cell signaling), phospho-β-Catenin (Ser 552) (Cell signaling), Cyclin D1 (Cell signaling), phos pho-β-catenin (Ser 675) (Cell signaling), β-Actin (Cell signaling), Ki67 (DAKO), USP3 (Abcam). The following secondary antibodies were used. ECL anti-rabbit IgG HRP (GE Healthcare), anti-mouse IgG HRP (GE Healthcare), and anti-rat IgG HRP (Santa Cruz, Cell Signaling) were used.
3.相対的な細胞生存率の測定
 細胞を、96ウェル組織培養プレート(Falcon/Corning)中で、1ウェルあたり1×10細胞/100μLの密度で播種した。細胞播種から約1~2日後に、各濃度の化合物またはコントロール(DMSO)を含む培地に培地交換した。化合物処理の72時間後に、Cell Counting Kit8またはCell Counting Kit(同仁堂、日本)の試薬をウェルあたり10μL添加し、450nmでの吸光度を吸収計で測定した。各濃度における細胞の相対的な生存率を、DMSO(和光)を用いた0μM対照と比較して算出した。
3. Determination of Relative Cell Viability Cells were seeded at a density of 1×10 4 cells/100 μL per well in 96-well tissue culture plates (Falcon/Corning). Approximately 1-2 days after seeding the cells, the medium was changed to medium containing each concentration of compound or control (DMSO). After 72 hours of compound treatment, 10 μL of Cell Counting Kit 8 or Cell Counting Kit (Dojindo, Japan) reagent was added per well, and the absorbance at 450 nm was measured with an absorbance meter. The relative viability of cells at each concentration was calculated relative to a 0 μM control with DMSO (Wako).
4.ウエスタンブロッティング
 タンパク質ライセートを、改変RIPA緩衝液(50mM Tris-HCl pH7.5,150mM KCl,5mM EDTA,0.1%NP-40,0.1%Triton-X,10%グリセロール)中で、cOmplete錠剤(Roche)を用いて、Bioraputor(Sonic Bio)を用いた超音波洗浄により、またはTenbroeck homogenizer(Wheaton)を用いたハンドホモジナイゼーションにより抽出した。タンパク質濃度は、Protein Assay Rapid Kit(Wako)を用いて測定し、タンパク質量を同濃度に調整した。タンパク質ライセートを2-ME(Wako)とBolt LDS Sample Buffer(×4)(Novex,Life Technologies)と混合し、95℃で5分間インキュベートした。
 タンパク質をBolt 4-12% Bis-Tris Plusゲル(Invitrogen)中で電気泳動に供した。電気泳動後、ゲル中のタンパク質をImmobilon membrane(Millipore)に転写した。膜は、一次抗体と4%スキムミルク(雪印)を含む0.05%Tween 20を添加したTBS中でインキュベートした。膜を0.05% Tween 20を含むTBSで洗浄した。膜を、抗ウサギ/マウス/ラットIgG HRP conjugated(GE healthcare)または抗ラットIgG HRP conjugated(Santa Cruz)二次抗体を含む0.05% Tween 20と4%スキムミルクを含むTBS中でインキュベートした。
 膜を0.05% Tween 20を含むTBSで洗浄し、Immobilon Forte Western HRP Substrate(Millipore)に浸した。シグナルをImageQuant LAS(GE Healthcare)又はChemiDoc (BioRad)で検出し、評価した。
4. Western blotting protein lysates were added to cOmplete tablets in modified RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM KCl, 5 mM EDTA, 0.1% NP-40, 0.1% Triton-X, 10% glycerol). (Roche), by ultrasonic washing with a Bioraptor (Sonic Bio) or by hand homogenization with a Tenbroeck homogenizer (Wheaton). The protein concentration was measured using Protein Assay Rapid Kit (Wako), and the protein amount was adjusted to the same concentration. The protein lysate was mixed with 2-ME (Wako) and Bolt LDS Sample Buffer (x4) (Novex, Life Technologies) and incubated at 95°C for 5 minutes.
Proteins were subjected to electrophoresis in Bolt 4-12% Bis-Tris Plus gels (Invitrogen). After electrophoresis, proteins in the gel were transferred to Immobilon membrane (Millipore). Membranes were incubated in TBS supplemented with 0.05% Tween 20 containing primary antibody and 4% skimmed milk (Snow Brand). Membranes were washed with TBS containing 0.05% Tween 20. Membranes were incubated in TBS with 0.05 % Tween 20 and 4% skimmed milk containing anti-rabbit/mouse/rat IgG HRP conjugated (GE healthcare) or anti-rat IgG HRP conjugated (Santa Cruz) secondary antibodies.
Membranes were washed with TBS containing 0.05% Tween 20 and soaked in Immobilon Forte Western HRP Substrate (Millipore). Signals were detected and evaluated with an ImageQuant LAS (GE Healthcare) or ChemiDoc (BioRad).
5.RT-PCR
 Isogen(ニッポンジーン)を用いて細胞からトータルRNAを抽出し、Prime Script(タカラバイオ)を用いてトータルRNAからcDNAを調製した。cDNAはLightCycler 96システム(Roche社)でPCRを行った。KLF5のプライマー配列は、5’-ctgcctccagaggacctg-3’(配列番号1)および5’-tctgtctatactttatgctggaat-3’(配列番号2)である。GAPDHのプライマー配列は、5’-agccacatcgctcagac-3’(配列番号3)および5’-gcccaatacgacaatcc-3’(配列番号4)である。
5. RT-PCR
Total RNA was extracted from the cells using Isogen (Nippon Gene), and cDNA was prepared from the total RNA using Prime Script (Takara Bio). cDNA was subjected to PCR using the LightCycler 96 system (Roche). The primer sequences for KLF5 are 5'-ctgcctccagaggacctg-3' (SEQ ID NO: 1) and 5'-tctgtctatactttatgctggaat-3' (SEQ ID NO: 2). The primer sequences for GAPDH are 5'-agccacatcgctcagac-3' (SEQ ID NO:3) and 5'-gcccaatacgacaatcc-3' (SEQ ID NO:4).
6.ヒト大腸がん細胞スフェロイド形成及び測定
 HCT116細胞をPrimeSurface低粘着性組織培養プレート(住友ベークライト)に播種した。スフェロイドの大きさはCell3iMager duos(Screen)で測定した。
6. Human Colon Cancer Cell Spheroid Formation and Measurement HCT116 cells were plated on PrimeSurface low-adhesion tissue culture plates (Sumitomo Bakelite). The size of spheroids was measured with Cell3iMager duos (Screen).
7.式(I)化合物投薬下での腫瘍の移植と腫瘍の測定
 ヌードマウス(日本SLC社より購入)に5×10個のHT29細胞を皮下移植した。移植の2日後から式(I)化合物(2mg)の1日2回の腹腔内投与を開始した。ノギスを用いて腫瘍の短径と長径を測定した。腫瘍体積は短径2×長径/2で評価した。
7. Implantation of tumor under administration of compound of formula (I) and measurement of tumor 5×10 6 HT29 cells were subcutaneously implanted in a nude mouse (purchased from SLC Japan). Twice daily intraperitoneal administration of the compound of formula (I) (2 mg) was initiated 2 days after transplantation. The minor axis and major axis of the tumor were measured using vernier calipers. Tumor volume was evaluated by 2×major axis/2.
8.病理組織学的解析
 組織を中性緩衝ホルマリンで固定した。固定した組織をパラフィンに包埋した。パラフィンに包埋された組織をスライスし、ヘマトキシリン及びエオシン染色またはその後の免疫組織化学に供した。
8. Histopathological Analysis Tissues were fixed in neutral buffered formalin. Fixed tissues were embedded in paraffin. Paraffin-embedded tissues were sliced and subjected to hematoxylin and eosin staining or subsequent immunohistochemistry.
9.免疫組織化学
 中性緩衝ホルマリンで固定されたマウスの腸切片及びヒトの手術時の検体を用いて、KLF5の免疫組織化学を行った。
 抗KLF5マウスまたはラットモノクローナル抗体は、本発明者らと協和キリン株式会社とで共同でクローニングし、精製したものを用いた。
 抗Ki67抗体(Gene Tex)を用いてKi67の免疫組織化学を行った。
 抗原賦活化は、切片を10mMクエン酸ナトリウム(pH6.0)中で121℃、15分間オートクレーブ処理することにより行った。PBSで洗浄した後、切片を一次抗体でインキュベートした。その後、3,3’-ジアミノベンジジンを発色基質として用いたLSABキット(DAKO)を用いて免疫組織化学染色を行い、ヘマトキシリンによるカウンター染色を行った。
9. Immunohistochemistry Immunohistochemistry for KLF5 was performed using neutral buffered formalin-fixed mouse intestinal sections and human post-operative specimens.
The anti-KLF5 mouse or rat monoclonal antibody was cloned jointly by the present inventors and Kyowa Kirin Co., Ltd. and purified.
Immunohistochemistry for Ki67 was performed using an anti-Ki67 antibody (Gene Tex).
Antigen retrieval was performed by autoclaving the sections in 10 mM sodium citrate (pH 6.0) at 121° C. for 15 minutes. After washing with PBS, sections were incubated with primary antibody. Thereafter, immunohistochemical staining was performed using an LSAB kit (DAKO) using 3,3'-diaminobenzidine as a chromogenic substrate, followed by counter staining with hematoxylin.
10.免疫沈降によるUSPタンパク質複合体の精製
 FLAG/HA-hKLF5を発現するpPyCAG-IPベクターとMyc-tag-hUSP3を発現するpPyCAG-IPベクターを作製した(H. Niwa, et al., Mol Cell Biol 22, 1526-1536 (2002))。FLAG/HA-hKLF5を発現させたpPyCAG-IPベクターとMyc-tag-hUSP3を発現させたpPyCAG-IPベクターを、Hilymax試薬(日本、同仁堂)を用いてHEK293T細胞に共導入した。FLAG/HA-hKLF5を発現させたHEK293T細胞とMyc-tag-hUSP3を発現させたHEK293T細胞を、式(I)化合物(20μM)またはDMSO(コントロール)で4時間処理した。細胞ペレットをcOmplete錠剤(Roche)を用いて改良RIPA緩衝液中で懸濁した。懸濁した細胞ペレットをTenbrroeck homogenizers(Wheaton)を用いてホモジナイズした。ホモジナイズした混合物を15000rpmで30分間4℃で遠心分離し、上清を細胞ライセートとして得た。
 細胞ライセートを、抗Mycタグ付きmAb磁気ビーズ(MBL、日本)と4℃で4時間混合した。この磁気ビーズをビーズ洗浄バッファー(100mM KCl、50mM Tris-HCl pH 7.5、5mM MgCl、0.1% NP-40、及び10%グリセロール)で洗浄した。次いで、Mycタグ付きペプチド(MBL、日本)を含む改良RIPA緩衝液を用いて磁気ビーズを混合回転させ、抗Mycタグ付きmAb-磁気ビーズに結合したタンパク質複合体の溶出物を得た。この溶出液には、Myc-tag-USP3の免疫沈降したタンパク質複合体が含まれていた。免疫沈降したUPS3タンパク質複合体と共免疫沈降したKLF5タンパク質をウエスタンブロッティングで推定した。
10. Purification of USP protein complex by immunoprecipitation pPyCAG-IP vector expressing FLAG/HA-hKLF5 and pPyCAG-IP vector expressing Myc-tag-hUSP3 were generated (H. Niwa, et al., Mol Cell Biol 22 , 1526-1536 (2002)). The pPyCAG-IP vector expressing FLAG/HA-hKLF5 and the pPyCAG-IP vector expressing Myc-tag-hUSP3 were co-transfected into HEK293T cells using Hilymax reagent (Dojindo, Japan). HEK293T cells expressing FLAG/HA-hKLF5 and HEK293T cells expressing Myc-tag-hUSP3 were treated with the compound of formula (I) (20 μM) or DMSO (control) for 4 hours. Cell pellets were suspended in modified RIPA buffer using cOmplete tablets (Roche). The suspended cell pellet was homogenized using Tenbrroeck homogenizers (Wheaton). The homogenized mixture was centrifuged at 15000 rpm for 30 minutes at 4° C. and the supernatant was obtained as a cell lysate.
Cell lysates were mixed with anti-Myc-tagged mAb magnetic beads (MBL, Japan) at 4°C for 4 hours. The magnetic beads were washed with bead wash buffer (100 mM KCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl 2 , 0.1% NP-40, and 10% glycerol). The magnetic beads were then mixed and spun using a modified RIPA buffer containing Myc-tagged peptides (MBL, Japan) to obtain an eluate of protein complexes bound to the anti-Myc-tagged mAb-magnetic beads. This eluate contained immunoprecipitated protein complexes of Myc-tag-USP3. The immunoprecipitated UPS3 protein complex and co-immunoprecipitated KLF5 protein were estimated by Western blotting.
11.免疫沈降によるKLF5タンパク質複合体の精製
 空のpMxs-PuroベクターにFLAG/HA-hKLF5配列を挿入することでFLAG/HA-hKLF5発現pMxs-Puroベクターを調製した。このベクターをPlat-A細胞にFugene試薬(Roche)を用いてトランスフェクションした。FLAG/HA-hKLF5発現ベクターをトランスフェクトしたPlat-A細胞からレトロウイルスを含有する上清を回収した。該上清をSW480細胞に添加し、FLAG/HA-KLF5を安定して発現するSW480細胞ピューロマイシン耐性によって選択した。
 FLAG/HA-hKLF5を発現したSW480細胞を式(I)化合物(10μM)またはDMSO(コントロール)で24時間処理した。細胞ペレットをcOmplete錠剤(Roche)を用いて改良RIPA緩衝液中で懸濁した。懸濁した細胞ペレットをTenbrroeck homogenizers(Wheaton)を用いてホモジナイズした。ホモジナイズした混合物を15000rpmで30分間4℃で遠心分離し、上清を細胞ライセートとして得た。
 細胞ライセートを、抗FLAGタグ付きmAb磁気ビーズ(MBL、日本)と4℃で4時間混合した。この磁気ビーズをビーズ洗浄バッファー(100mM KCl、50mM Tris-HCl pH 7.5、5mM MgCl、0.1% NP-40、及び10%グリセロール)で洗浄した。次いで、3x FLAGタグペプチド(Sigma)を含む改良RIPA緩衝液を用いて磁気ビーズを混合回転させ、抗FLAGタグ付きmAb-磁気ビーズに結合したタンパク質複合体の溶出物を得た。この溶出物には、FLAG/HA-tag-KLF5の免疫沈降したタンパク質複合体が含まれていた。
 FLAGペプチド溶出物を抗HAタグ付きmAb磁性ビーズ(MBL、日本)、及びHA-tag peptide elusion(MBL)による連続した免疫沈降に付した。HAタグを用いた免疫沈降は、FLAGタグを用いた免疫沈降と同様の方法で行った。タンデムアフィニティ精製後に溶出したHAビーズ溶出液には、より純度の高いFLAG/HA-KLF5タンパク質複合体が含まれていた。免疫沈降したFLAG/HA-KLF5タンパク質複合体と共免疫沈降したβ-カテニンタンパク質がKLF5タンパク質複合体に含まれていることをウエスタンブロッティングで推定した。
11. Purification of KLF5 Protein Complex by Immunoprecipitation A FLAG/HA-hKLF5 expressing pMxs-Puro vector was prepared by inserting the FLAG/HA-hKLF5 sequence into an empty pMxs-Puro vector. This vector was transfected into Plat-A cells using Fugene reagent (Roche). Supernatant containing retrovirus was harvested from Plat-A cells transfected with the FLAG/HA-hKLF5 expression vector. The supernatant was added to SW480 cells and SW480 cells stably expressing FLAG/HA-KLF5 were selected by puromycin resistance.
SW480 cells expressing FLAG/HA-hKLF5 were treated with compound of formula (I) (10 μM) or DMSO (control) for 24 hours. Cell pellets were suspended in modified RIPA buffer using cOmplete tablets (Roche). The suspended cell pellet was homogenized using Tenbrroeck homogenizers (Wheaton). The homogenized mixture was centrifuged at 15000 rpm for 30 minutes at 4° C. and the supernatant was obtained as a cell lysate.
Cell lysates were mixed with anti-FLAG-tagged mAb magnetic beads (MBL, Japan) at 4° C. for 4 hours. The magnetic beads were washed with bead wash buffer (100 mM KCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl 2 , 0.1% NP-40, and 10% glycerol). The magnetic beads were then mixed and spun using a modified RIPA buffer containing 3x FLAG-tagged peptide (Sigma) to obtain an eluate of protein complexes bound to the anti-FLAG-tagged mAb-magnetic beads. This eluate contained immunoprecipitated protein complexes of FLAG/HA-tag-KLF5.
FLAG peptide eluate was subjected to sequential immunoprecipitation with anti-HA tagged mAb magnetic beads (MBL, Japan) and HA-tag peptide elution (MBL). Immunoprecipitation using HA tag was performed in the same manner as immunoprecipitation using FLAG tag. The HA bead eluate eluted after tandem affinity purification contained higher purity FLAG/HA-KLF5 protein complexes. Western blotting suggested that the KLF5 protein complex contained the immunoprecipitated FLAG/HA-KLF5 protein complex and the co-immunoprecipitated β-catenin protein.
12.式(I)化合物が共有結合したビーズの合成
 式(I)化合物の側鎖はすべて、化学反応性の低い疎水性の構造で占められている。さらに、式(I)の主鎖は、化学構造上、側鎖に囲まれているため、共有結合したリンカーがアクセスできない化学構造になっている。そのため、反応性基を持つリンカーを用いて式(I)化合物をセファロースビーズに共有結合させることは困難であった。
 そこで、光親和性反応を用いた。光親和性反応を用いることで、反応性の低い化学構造体とセファロースビーズの間にランダムな共有結合を生成することができる。この方法を用いて、ランダムな方向に式(I)化合物と共有結合したビーズを調製した(Kanoh, N. et al., Angew Chem Int Edit 44, (23), pp 3559-3562; Kawatani, M. et al. P Natl Acad Sci USA 105, 11691-11696)。
12. Synthesis of Beads with Covalently Attached Compounds of Formula (I ) All side chains of compounds of formula (I) are occupied by hydrophobic structures with low chemical reactivity. Furthermore, the backbone of formula (I) is chemically surrounded by side chains, making the chemical structure inaccessible to the covalent linker. Therefore, it was difficult to covalently bind the compound of formula (I) to Sepharose beads using a linker with a reactive group.
Therefore, a photoaffinity reaction was used. Photoaffinity reactions can be used to generate random covalent bonds between less reactive chemical structures and Sepharose beads. This method was used to prepare beads covalently attached to compounds of formula (I) in random orientations (Kanoh, N. et al., Angew Chem Int Edit 44, (23), pp 3559-3562; Kawatani, M. et al. P Natl Acad Sci USA 105, 11691-11696).
13.式(I)化合物結合タンパク質の質量分析
 Tenbroeck homogenizer(Wheaton)を用いて、改変RIPA緩衝液中のSW480ヒト大腸がん細胞からタンパク質ライセートを調製した。タンパク質ライセートを、式(I)化合物が共有結合したビーズまたは式(I)化合物が結合していない対照ビーズと4℃で一晩混合した。ビーズを洗浄し、式(I)化合物共有結合ビーズまたは対照ビーズに結合したタンパク質を、2-ME(和光)を添加したLDS Sample Buffer(×4)(Invitrogen)で溶出した。
 溶出したタンパク質をOrbitrap(ThermoFisher)を用いてLC/MS/MS分析を行い、対照ビーズと比較して式(I)化合物共有結合ビーズで有意に濃縮されたタンパク質を同定した。タンパク質の定量には、Tandem Mass TagTMステム(Thermo Fisher)を用いた。
13. Mass Spectrometry of Formula (I) Compound Bound Proteins Protein lysates were prepared from SW480 human colon cancer cells in modified RIPA buffer using a Tenbroeck homogenizer (Wheaton). The protein lysate was mixed overnight at 4° C. with beads to which the compound of formula (I) was covalently attached or control beads to which no compound of formula (I) was attached. The beads were washed and proteins bound to the compound of formula (I) covalently bound beads or control beads were eluted with LDS Sample Buffer (x4) (Invitrogen) supplemented with 2-ME (Wako).
Eluted proteins were subjected to LC/MS/MS analysis using Orbitrap (ThermoFisher) to identify proteins significantly enriched with compound of formula (I) covalently attached beads compared to control beads. A Tandem Mass Tag stem (Thermo Fisher) was used for protein quantification.
14.JFCR39がん細胞パネル
 JFCR(Japanese Foundation for Cancer Research)39 cancer cell panelを用いた解析は、既報(例、Nagai R, Friedman SL, & Kasuga M (2009) The biology of Kruppel-like factors (Springer Verlag))に従って行った。
14. JFCR39 cancer cell panel JFCR (Japanese Foundation for Cancer Research) 39 Analysis using cancer cell panel has been reported (e.g., Nagai R, Friedman SL, & Kasuga M (2009) The biology of Kruppel-like factors (Springer Verlag) ).
(結果) (result)
1.本発明化合物によるヒト大腸がん細胞の増殖抑制効果
 本発明化合物(式(I)化合物、式(II)化合物及び式(III)化合物)によるヒト大腸がん細胞の増殖抑制効果を調べた。
 本発明化合物は、ヒト大腸がん細胞(SW480およびHCT116)の増殖を抑制した(図1)。この効果は、ヒト大腸がん細胞の3次元スフェロイドの増殖に対する効果を調べたところ、より明確に示された(図2)。特に式(I)化合物はIC50が2.5μMと最も強力な抗増殖作用を示した。
 特に興味深いのは、本発明化合物は非がん細胞(CCD841)の生存率に影響を与えなかったことである(図1)。一方、Wntシグナル伝達阻害作用を有することが知られている化合物(ICG-001)にはそのような特徴は見られなかった。
1. Effect of Compounds of the Present Invention on Growth of Human Colon Cancer Cells The growth inhibitory effects of the compounds of the present invention (compounds of formula (I), compounds of formula (II) and compounds of formula (III)) on human colon cancer cells were investigated.
The compounds of the present invention inhibited the proliferation of human colon cancer cells (SW480 and HCT116) (Fig. 1). This effect was more clearly demonstrated when the effect on the proliferation of 3D spheroids of human colon cancer cells was examined (Fig. 2). In particular, the compound of formula (I) exhibited the most potent antiproliferative activity with an IC50 of 2.5 μM.
Of particular interest is that the compounds of the present invention did not affect viability of non-cancer cells (CCD841) (Fig. 1). On the other hand, such characteristics were not observed in a compound (ICG-001) known to have Wnt signaling inhibitory activity.
2.本発明化合物は、大腸がん細胞におけるKLF5およびWntシグナル伝達タンパク質を減少させる。
 本発明化合物(式(II)化合物、式(III)化合物)をヒト大腸がん細胞に投与すると、Wntシグナルに関与し、大腸がん細胞の生存に重要な役割を果たすKLF5、TCF4、Survivin、Ser552でリン酸化されたβ-カテニンが有意に減少した(図3、図5)。また、式(I)化合物は、KLF5が転写を制御する重要な細胞周期促進因子であるCyclin D1のタンパク質レベルを低下させた(図4)。さらに、Wntシグナル活性化の特徴であるβ-カテニンの552番または675番のリン酸化は、本発明化合物によって減少した(図4、図5)。さらに、SW480細胞では、精製したFLAG/HA-KLF5タンパク質複合体に含まれるβ-カテニンのタンパク質レベルが、本発明化合物の処理によって低下した(図6)。興味深いことに、本発明化合物は細胞内のKLF5のmRNAレベルを低下させなかった(図7)。
 本発明化合物の投与によるWntシグナル関連タンパク質の減少は、がん細胞で観察されたが、ヒトの非がん細胞株であるCCD841にはほとんど影響がなかった(図3、図4)。さらに、JFCR39のヒトがん細胞株を対象に、本発明化合物の抗腫瘍プロファイルを調べた。COMPARE解析(米国国立がん研究所)の結果、式(II)化合物の抗腫瘍フィンガープリントは、Wnt経路阻害剤であるLGK974と類似していた。
 これらの結果は、本発明化合物が、ヒト大腸がんにおいて最も重要な分子経路であるWntシグナル経路を阻害することで、がん細胞の増殖を抑制していることを示唆している。
2. The compounds of the invention reduce KLF5 and Wnt signaling proteins in colon cancer cells.
When the compounds of the present invention (formula (II) compound, formula (III) compound) are administered to human colon cancer cells, KLF5, TCF4, Survivin, β-catenin phosphorylated at Ser552 was significantly reduced (Fig. 3, Fig. 5). Compounds of formula (I) also reduced protein levels of Cyclin D1, a key cell cycle promoter whose transcription is regulated by KLF5 (Fig. 4). Furthermore, the phosphorylation of β-catenin at positions 552 or 675, which is a hallmark of Wnt signaling activation, was decreased by the compounds of the present invention (FIGS. 4 and 5). Furthermore, in SW480 cells, the protein level of β-catenin contained in the purified FLAG/HA-KLF5 protein complex was reduced by treatment with the compounds of the present invention (Fig. 6). Interestingly, the compounds of the present invention did not decrease intracellular KLF5 mRNA levels (FIG. 7).
A decrease in Wnt signal-related proteins by administration of the compounds of the present invention was observed in cancer cells, but had almost no effect on CCD841, a human non-cancer cell line (FIGS. 3 and 4). Furthermore, the anti-tumor profile of the compounds of the present invention was examined using the JFCR39 human cancer cell line. COMPARE analysis (National Cancer Institute, USA) showed that the anti-tumor fingerprint of compound of formula (II) was similar to that of Wnt pathway inhibitor LGK974.
These results suggest that the compounds of the present invention inhibit cancer cell growth by inhibiting the Wnt signaling pathway, which is the most important molecular pathway in human colorectal cancer.
3.KLF5-USP3タンパク質の複合体形成は本発明化合物での処理によって損なわれる。
 式(I)化合物に結合するタンパク質を、式(I)化合物結合ビーズを用いて同定した。低分子を官能基非依存的にアフィニティビーズに不可逆的に光架橋させることができるKanohら(Kanoh N, et al., Angew Chem Int Edit 44(28):4282-4282.(2005))の方法を用いた。そして、式(I)化合物に結合するタンパク質の中に、ユビキチン特異的ペプチダーゼ3(USP3)が含まれていることを発見した。USP3は脱ユビキチン化によってKLF5を安定化させることが知られているので(Saltz LB, et al. N Engl J Med 343(13):905-914.(2000))、USP3-KLF5タンパク質複合体が式(I)化合物での処理によって阻害されるかどうかを調べた。このタンパク質複合体を検出するために、HEK293T細胞でFLAG/HA-KLF5とMyc-tag-USP3を共発現させ、細胞ライセートから免疫沈降法(IP)でMyc-tag-USP3タンパク質複合体を精製した。図8に示すように、IP-ウエスタンブロット解析の結果、式(I)化合物で処理するとMyc-tag-USP3タンパク質複合体中のKLF5の量が減少することがわかった。
3. Complex formation of the KLF5-USP3 protein is impaired by treatment with the compounds of the invention.
Proteins that bind to Formula (I) compounds were identified using Formula (I) compound-bound beads. The method of Kanoh et al. (Kanoh N, et al., Angew Chem Int Edit 44(28):4282-4282.(2005)) can irreversibly photocrosslink small molecules to affinity beads in a functional group-independent manner. was used. Then, they discovered that ubiquitin-specific peptidase 3 (USP3) is included in the proteins that bind to the compound of formula (I). Since USP3 is known to stabilize KLF5 by deubiquitination (Saltz LB, et al. N Engl J Med 343(13):905-914.(2000)), the USP3-KLF5 protein complex is It was investigated whether it is inhibited by treatment with compounds of formula (I). To detect this protein complex, we co-expressed FLAG/HA-KLF5 and Myc-tag-USP3 in HEK293T cells and purified the Myc-tag-USP3 protein complex from cell lysates by immunoprecipitation (IP). . As shown in FIG. 8, IP-Western blot analysis revealed that treatment with the compound of formula (I) reduced the amount of KLF5 in the Myc-tag-USP3 protein complex.
4.本発明化合物によるインビボでの移植した腫瘍の増殖抑制
 式(I)化合物のインビボでの抗腫瘍効果を調べるために、HT-29ヒト大腸がん細胞を皮下移植したヌードマウスに式(I)化合物を腹腔内投与した。
 図9Aに示すように、式(I)化合物の投与は、腫瘍体積の有意な減少をもたらした。注目すべきことに、式(I)化合物は、腸及び結腸の組織学的異常を含む明白な副作用を引き起こさなかった(図9B)。
4. Suppression of In Vivo Implanted Tumor Growth by Compounds of the Present Invention In order to investigate the in vivo antitumor effect of compound of formula (I), compound of formula (I) was administered to nude mice subcutaneously implanted with HT-29 human colon cancer cells. was administered intraperitoneally.
As shown in Figure 9A, administration of the compound of formula (I) resulted in a significant reduction in tumor volume. Remarkably, the compound of formula (I) did not cause overt side effects, including intestinal and colonic histological abnormalities (Fig. 9B).
試験例2:心機能改善作用
(材料と方法)
Test Example 2: Cardiac Function Improving Action (Materials and Methods)
1.動物と圧負荷心不全モデル
 8週齢のオスのマウスC57BL/6を温度と湿度が制御された条件下で飼育し、実験に使用した。マウスは、部屋で12時間の明暗サイクルの下で自由に食物と水を得ることができた。横大動脈縮窄手術(TAC)が、マウスの圧力過負荷を誘発するために使用された。マウスはTACグループまたは偽手術グループのいずれかにランダムに割り当てられた。
 TACマウスの大動脈弓上で27ゲージの針と共に結紮し、結紮後に6-0シルクで針を抜いたときに、大動脈直径が狭くなった。針はすぐに取り外され、横行大動脈に狭窄が残った。偽治療を受けたグループは、結紮なしで同様の手順の手術を受けた。
1. Animals and pressure-overload heart failure model Eight-week-old male C57BL/6 mice were bred under temperature- and humidity-controlled conditions and used for experiments. Mice had free access to food and water in a room under a 12 hour light/dark cycle. Transverse aortic constriction surgery (TAC) was used to induce pressure overload in mice. Mice were randomly assigned to either the TAC group or the sham-operated group.
Aortic diameter was narrowed when ligated with a 27-gauge needle on the aortic arch of TAC mice and the needle was removed with 6-0 silk after ligation. The needle was quickly removed, leaving a stenosis in the transverse aorta. The sham-treated group underwent a similar surgical procedure without ligation.
2.心エコー検査
 心エコー検査は、TACの前とTACの4週間後に実施した。簡単に説明すると、心エコー検査は、30MHzの線形トランスデューサーを備えたVevo2100を使用して実行した。左心室収縮末期径(LVESd)、左室拡張末期径(LVEDd)、拡張末期の心室間中隔の厚さ(IVSd)、収縮末期の心室間中隔の厚さ(IVS)、拡張末期の左室後壁の厚さ(LVPWd)、収縮末期のLV後壁の厚さ(LVPW)、心拍数(HR)、左室駆出率(EF)を測定した。
 左室駆出率を計算し、壁の厚さを測定するための画像を取得した。次に、マウスを安楽死させ血液と心臓組織を収集した。
2. Echocardiography Echocardiography was performed before TAC and 4 weeks after TAC. Briefly, echocardiography was performed using a Vevo2100 equipped with a 30 MHz linear transducer. Left ventricular end-systolic diameter (LVESd), left ventricular end-diastolic diameter (LVEDd), end-diastolic interventricular septal thickness (IVSd), end-systolic interventricular septal thickness (IVS), end-diastolic left Posterior ventricular wall thickness (LVPWd), end-systolic LV posterior wall thickness (LVPW), heart rate (HR), and left ventricular ejection fraction (EF) were measured.
Images were acquired to calculate left ventricular ejection fraction and measure wall thickness. Mice were then euthanized and blood and heart tissue were collected.
3.治療
 TAC手術後、マウスはまた、ビークル(Vehicle)群(陰性対照)、及び式(I)化合物投与群で治療されたTACを含む3つの群にランダムに割り当てた。
 式(I)化合物(50mg/kg/日)を10日間腹腔内投与した(1日2回;25mg/kg/日)。ビークル(DMSO)を偽及び野生型グループに腹腔内投与した。
 4週間後、心臓と血液を採取し、心臓の重量をチェックして、心臓の重量/体重(HW/BW、mg/g)を比較した。その後、次の実験のために左心室(LV)組織を収集した。
3. Treatment After TAC surgery, mice were also randomly assigned to three groups containing TAC treated with the vehicle group (negative control) and the compound of formula (I) administration group.
The compound of formula (I) (50 mg/kg/day) was administered intraperitoneally for 10 days (twice daily; 25 mg/kg/day). Vehicle (DMSO) was administered intraperitoneally to sham and wild type groups.
After 4 weeks, hearts and blood were collected and heart weights were checked to compare heart weight/body weight (HW/BW, mg/g). Left ventricular (LV) tissue was then collected for subsequent experiments.
4.組織学
 心臓は、TAC手術の4週間後に収集された。心臓組織をパラフィンに包埋し、5μmの厚さの切片を作成した。切片を顕微鏡スライドに移し、ヘマトキシリン&エオジン(HE)で染色して心筋細胞の断面積を評価し、マッソン&トリクローム(MT)で染色して線維症の程度を評価した。各スライスの組織病理学的特徴を顕微鏡(キーエンスBZ-9000)で検査し、心臓のサイズと線維症の全体的な変化を観察した。線維症の領域はImage-Jによって分析した。
4. Histology Hearts were collected 4 weeks after TAC surgery. Heart tissue was embedded in paraffin and sectioned at a thickness of 5 μm. Sections were transferred to microscope slides and stained with hematoxylin and eosin (HE) to assess cardiomyocyte cross-sectional area and with Masson and trichrome (MT) to assess the degree of fibrosis. Histopathological features of each slice were examined under a microscope (Keyence BZ-9000) to observe global changes in heart size and fibrosis. Areas of fibrosis were analyzed by Image-J.
5.RNA抽出と定量的リアルタイムPCR
 心臓組織はTAC後に収集した。
 RNeasyミニキット(登録商標)(QIAGEN)を使用して、マウスLV組織からRNAを抽出し、製造元のプロトコルに従ってRNaseフリーDNase消化(QIAGEN、カタログ番号79254)によってDNA汚染を除去した。次に、製造元のプロトコルに従って、ReverTraAce(登録商標)逆転写酵素(東洋紡)によってcDNAを合成した。リアルタイムPCRは、SYBR Premix Ex Taq IIキット(Takara Biotechnology)を使用して実施し、qPCRシステム(Stratagene Mx3005P)を使用して実施した。標的遺伝子の相対的発現レベルは、GAPDH遺伝子に対して正規化した後に決定され、比較閾値サイクル法を使用して定量化した。
5. RNA extraction and quantitative real-time PCR
Cardiac tissue was collected after TAC.
RNA was extracted from mouse LV tissue using the RNeasy Mini Kit® (QIAGEN) and DNA contamination was removed by RNase-free DNase digestion (QIAGEN, cat#79254) according to the manufacturer's protocol. Next, cDNA was synthesized by ReverTraAce® Reverse Transcriptase (Toyobo) according to the manufacturer's protocol. Real-time PCR was performed using the SYBR Premix Ex Taq II kit (Takara Biotechnology) and performed using the qPCR system (Stratagene Mx3005P). Relative expression levels of target genes were determined after normalization to the GAPDH gene and quantified using the comparative threshold cycle method.
6.ウエスタンブロッティング
 T-PER(登録商標)組織タンパク質抽出試薬(Thermo Scientific)を使用して、心臓組織からタンパク質を抽出した。その後、製造元のプロトコルに従って、PierceTM BCAタンパク質アッセイキット(R)(Thermo Scientific)によってタンパク質濃度を定量した。各サンプルからの等量のタンパク質を、SDS-PAGEによって分画した。タンパク質を、ゲル転写装置によってゲルSDS-PAGEから膜に転写した。次に、メンブレンをさまざまな一次抗体と室温で1時間インキュベートし、二次抗体と室温で1時間インキュベートした。タンパク質発現レベルは、対応するGAPDH(Thermo Scientific)レベルに正規化された。
6. Proteins were extracted from heart tissue using Western Blotting T-PER® Tissue Protein Extraction Reagent (Thermo Scientific). Protein concentration was then quantified by the Pierce BCA Protein Assay Kit® (Thermo Scientific) according to the manufacturer's protocol. Equal amounts of protein from each sample were fractionated by SDS-PAGE. Proteins were transferred from gel SDS-PAGE to membrane by a gel transfer apparatus. Membranes were then incubated with various primary antibodies for 1 hour at room temperature and secondary antibodies for 1 hour at room temperature. Protein expression levels were normalized to corresponding GAPDH (Thermo Scientific) levels.
7.生存試験
 40匹のマウスを10匹ずつ、横大動脈縮窄手術(TAC)を受けていない無処置群(WT)、偽手術群(Sham)、ビヒクル群(Vehicle)及び式(I)化合物投与群の4群に分けた。ビヒクル群及び式(I)化合物投与群はTACを受けている。WT群、Sham群、ビヒクル群の各マウスにはDMSOを1日2回、偽手術あるいはTAC後10日間腹腔内投与した。式(I)化合物投与群の各マウスは、TAC後10日間、25mg/kgの用量で式(I)化合物を1日2回投与した。マウスの生存率は、14週間毎日観察した。生存率を評価するために、GraphPad Prism 6ソフトウェアのKaplan-Meierプロットを使用し、続いて、群間比較のためにTukeyの多重比較検定を行った。プロトコルを図15に示す。
7. Survival study 10 each of 40 mice, untreated group (WT) not undergoing transverse aortic constriction surgery (TAC), sham-operated group (Sham), vehicle group (Vehicle) and formula (I) compound administration group were divided into four groups. The vehicle group and the formula (I) compound dose group are receiving TAC. Mice in the WT, Sham, and vehicle groups were intraperitoneally administered DMSO twice daily for 10 days after sham operation or TAC. Each mouse in the compound of formula (I) administration group was administered compound of formula (I) twice daily at a dose of 25 mg/kg for 10 days after TAC. Mouse survival was monitored daily for 14 weeks. Kaplan-Meier plots in GraphPad Prism 6 software were used to assess survival, followed by Tukey's multiple comparison test for comparison between groups. The protocol is shown in FIG.
(結果)
1.心不全を防ぐための式(I)化合物の用量の変動
 式(I)化合物は、12.5、25、50、100mg/kgを含む4つの濃度、あるいは、25、50、100mg/kgを含む3つの濃度で変化させた。マウスに1日2回注射した。式(I)化合物の25mg/kg(50mg/kg/day)の用量での効率は、TACによる圧力過負荷による心不全の予防に十分であることが明らかとなった。
 式(I)化合物(50mg/kg/day)は、TACマウスの左室駆出率の減少を抑え、HW/BWの増加を減少させた(図10)。
(result)
1. Varying Dosages of Compounds of Formula (I) to Prevent Heart Failure Compounds of Formula (I) are administered at four concentrations including 12.5, 25, 50, 100 mg/kg, or three doses including 25, 50, 100 mg/kg. was varied at one concentration. Mice were injected twice daily. Efficacy at a dose of 25 mg/kg (50 mg/kg/day) of the compound of formula (I) was found to be sufficient to prevent heart failure due to TAC pressure overload.
The compound of formula (I) (50 mg/kg/day) suppressed the decrease in left ventricular ejection fraction and reduced the increase in HW/BW in TAC mice (Fig. 10).
2.式(I)化合物は、TACマウスの左室駆出率を高め、心機能を改善する
 TACの10日後から1か月まで、TACマウスは殆ど死亡しなかった。式(I)化合物(50mg/kg/day)は、式(I)化合物で処置されたTACマウスグループにおいて10日間(1日2回)腹腔内投与された。
 式(I)化合物での治療は、左心室圧過負荷誘発性心不全が確立されたマウスの生存率を大幅に改善した。
 TACの4週間後、式(I)化合物処置TACマウスグループと比較して、ビークル群において左室駆出率は有意に減少した。これは、式(I)化合物が左室駆出率の値を改善したことを意味する(図11)。さらに、心エコー検査では、治療されたTACマウスグループにおいて、式(I)化合物と比較し、収縮末期の左心室内寸(LVID)、拡張末期の左心室内寸(LVIDd)、及び左心室質量補正(LV質量補正)の有意な増加が示された。定量的リアルタイム逆転写酵素-ポリメラーゼ連鎖反応(qRT-PCR)は、心不全のマーカーの脳性ナトリウム利尿ペプチド(BNP)レベルも、TACと比較して、式(I)化合物で治療したTACマウスで有意に減少した(図12)。これらのデータは、心機能がTAC後に改善され、式(I)化合物で治療されたことを示している。
2. The compound of formula (I) enhances the left ventricular ejection fraction of TAC mice and improves cardiac function From 10 days to 1 month after TAC, few TAC mice died. The compound of formula (I) (50 mg/kg/day) was administered intraperitoneally for 10 days (twice daily) in a group of TAC mice treated with compound of formula (I).
Treatment with compounds of formula (I) greatly improved survival in mice with established left ventricular pressure overload-induced heart failure.
Four weeks after TAC, left ventricular ejection fraction was significantly decreased in the vehicle group compared to the Formula (I) compound-treated TAC mouse group. This means that the compound of formula (I) improved left ventricular ejection fraction values (Figure 11). In addition, echocardiography showed that end-systolic left ventricular dimension (LVID), end-diastolic left ventricular dimension (LVIDd), and left ventricular mass were compared with the compound of formula (I) in the treated TAC mouse group. A significant increase in correction (LV mass correction) was shown. Quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) also revealed that brain natriuretic peptide (BNP) levels, a marker of heart failure, were significantly higher in TAC mice treated with compound of formula (I) compared to TAC. decreased (Fig. 12). These data demonstrate that cardiac function was improved after TAC and treatment with compounds of formula (I).
3.式(I)化合物は、インビボで心肥大を軽減し、圧力過負荷によって誘発される心筋線維症を改善する
 心臓肥大は、TACの4週間後に心臓重量/体重比(HW/BW)の増加によって示された(図13)。心臓切片のヘマトキシリン及びエオシン染色(HE)は、TACを受けたマウスで肥大性変化を示したが、肥大性変化は、式(I)化合物処置TACマウスで減少した。これらのデータは、式(I)化合物がTAC後の心肥大を軽減することを示す。次に、心臓組織切片をマッソンのトリクローム染色(MT)によって線維症を評価した。心臓組織における間質性線維症の増加は、TAC手術を受けたマウスで観察されたが、この増加は、式(I)化合物で治療されたTACマウスで軽減した(図14)。これらのデータは、式(I)化合物が圧力過負荷によって誘発される心臓線維症を改善することを示している。
3. Compounds of formula (I) attenuate cardiac hypertrophy in vivo and ameliorate myocardial fibrosis induced by pressure overload (Fig. 13). Hematoxylin and eosin staining (HE) of heart sections showed hypertrophic changes in mice receiving TAC, which were reduced in Formula (I) compound-treated TAC mice. These data demonstrate that compounds of formula (I) reduce cardiac hypertrophy after TAC. Heart tissue sections were then evaluated for fibrosis by Masson's trichrome staining (MT). An increase in interstitial fibrosis in cardiac tissue was observed in mice undergoing TAC surgery, but this increase was attenuated in TAC mice treated with compound of formula (I) (Figure 14). These data demonstrate that compounds of formula (I) ameliorate cardiac fibrosis induced by pressure overload.
3.式(I)化合物は、圧負荷心不全モデルにおいて生存期間を延長する
 圧負荷心不全モデルマウス(TACマウス)における式(I)化合物の効果を生存試験により評価した。結果を図16に示す。
 長期生存曲線から、式(I)化合物を投与したTACマウスの死亡率は、ビヒクル投与TACマウスの死亡率より有意に低かった(各群n=10)。式(I)化合物投与群では、生存期間中央値がビヒクル投与群に比べて2.2倍延長した(式(I)化合物投与群は11週間、ビヒクル投与群は5週間)。
3. The compound of formula (I) prolongs the survival period in pressure overload heart failure model The effect of the compound of formula (I) in pressure overload heart failure model mice (TAC mice) was evaluated by a survival test. The results are shown in FIG.
From the long-term survival curves, the mortality rate of TAC mice treated with compound of formula (I) was significantly lower than that of vehicle-treated TAC mice (n=10 in each group). In the formula (I) compound-administered group, the median survival time was 2.2 times longer than in the vehicle-administered group (11 weeks for the formula (I) compound-administered group and 5 weeks for the vehicle-administered group).
 本発明化合物は、以下の特徴を有する。
(i)がん細胞の増殖と生存を抑制するが、非がん細胞の増殖と生存は抑制しない、
(ii)KLF5タンパク質レベルだけでなくWntシグナル伝達経路のタンパク質レベルを減少させる、さらにKLF5を安定化することが知られているUbiquitin-specific peptidase 3(USP3)とKLF5との相互作用を阻害する、
(iii)明らかな副作用を伴わずに、in vivoで移植された大腸がん細胞を効果的に抑制する、
(iv)心機能改善作用を有する。
 従って、本発明化合物又はその医薬上許容され得る塩は、抗がん剤又は心機能改善剤として有用である。
 詳細が上記されているのは、本発明の、いくつかの例示的な実施形態のみであるが、当業者は本発明の新規な教示及び効果から実質的に逸脱することなく、当該例示的な実施形態における多くの変更があり得ることを容易に理解するであろう。従って、そのような変更を全て本発明の範囲内に含めることが意図される。
The compound of the present invention has the following characteristics.
(i) inhibit the growth and survival of cancer cells, but not the growth and survival of non-cancer cells;
(ii) reducing not only KLF5 protein levels but also protein levels of the Wnt signaling pathway, and inhibiting the interaction of KLF5 with Ubiquitin-specific peptidase 3 (USP3), which is known to stabilize KLF5;
(iii) effectively inhibits transplanted colon cancer cells in vivo without apparent side effects;
(iv) have a cardiac function-improving effect;
Therefore, the compounds of the present invention or pharmaceutically acceptable salts thereof are useful as anticancer agents or cardiac function improving agents.
Although only some exemplary embodiments of the present invention have been set forth in detail above, those skilled in the art will appreciate such exemplary embodiments without departing substantially from the novel teachings and advantages of the present invention. It will be readily understood that many variations in the embodiments are possible. Accordingly, all such modifications are intended to be included within the scope of this invention.
 本出願は、日本で出願された特願特願2021-187420(出願日:2021年11月17日)を基礎としておりその内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2021-187420 (filing date: November 17, 2021) filed in Japan, the contents of which are all incorporated herein.

Claims (9)

  1.  Kruppel-like factor 5(KLF5)とUbiquitin-specific peptidase 3(USP3)との結合を阻害する物質を含む、抗がん剤及び/又は心機能改善剤。 An anticancer agent and/or cardiac function improving agent containing a substance that inhibits the binding of Kruppel-like factor 5 (KLF5) and Ubiquitin-specific peptidase 3 (USP3).
  2.  KLF5とUSP3との結合を阻害する物質が、下記式(I)~(III):
    Figure JPOXMLDOC01-appb-C000001
    のいずれかで表される化合物又はその医薬上許容され得る塩である、請求項1記載の剤。
    Substances that inhibit the binding of KLF5 and USP3 have the following formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000001
    The agent according to claim 1, which is a compound represented by any of or a pharmaceutically acceptable salt thereof.
  3.  被検物質の、KLF5とUSP3との結合阻害活性を測定する工程、及び結合阻害活性を有する化合物を選抜する工程を含む、抗がん剤及び/又は心機能改善剤のスクリーニング方法。 A screening method for anticancer agents and/or cardiac function improving agents, comprising a step of measuring the KLF5-USP3 binding inhibitory activity of a test substance, and a step of selecting a compound having binding inhibitory activity.
  4.  下記式(I)~(III):
    Figure JPOXMLDOC01-appb-C000002
    のいずれかで表される化合物又はその医薬上許容され得る塩。
    Formulas (I) to (III) below:
    Figure JPOXMLDOC01-appb-C000002
    A compound represented by any of or a pharmaceutically acceptable salt thereof.
  5.  下記式(I)~(III):
    Figure JPOXMLDOC01-appb-C000003
    のいずれかで表される化合物又はその医薬上許容され得る塩を含む医薬組成物。
    Formulas (I) to (III) below:
    Figure JPOXMLDOC01-appb-C000003
    A pharmaceutical composition comprising a compound represented by any of or a pharmaceutically acceptable salt thereof.
  6.  KLF5阻害剤である請求項5記載の医薬組成物。 The pharmaceutical composition according to claim 5, which is a KLF5 inhibitor.
  7.  抗がん剤及び/又は心機能改善剤である請求項5又は6記載の医薬組成物。 The pharmaceutical composition according to claim 5 or 6, which is an anticancer agent and/or an agent for improving cardiac function.
  8.  抗がん剤が、大腸がんに対するものである、請求項7記載の医薬組成物。 The pharmaceutical composition according to claim 7, wherein the anticancer agent is for colorectal cancer.
  9.  心機能改善剤が、心不全治療薬である、請求項7記載の医薬組成物。 The pharmaceutical composition according to claim 7, wherein the agent for improving cardiac function is a therapeutic agent for heart failure.
PCT/JP2022/042585 2021-11-17 2022-11-16 Anticancer agent and cardiac-function-improving agent WO2023090366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-187420 2021-11-17
JP2021187420 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023090366A1 true WO2023090366A1 (en) 2023-05-25

Family

ID=86397138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042585 WO2023090366A1 (en) 2021-11-17 2022-11-16 Anticancer agent and cardiac-function-improving agent

Country Status (1)

Country Link
WO (1) WO2023090366A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010185A1 (en) * 2003-07-29 2005-02-03 Kyowa Hakko Kogyo Co., Ltd. Rna capable of inhibiting expression of klf5 gene
JP2012505153A (en) * 2008-10-14 2012-03-01 PRISM BioLab株式会社 Alpha helix mimetics and related methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010185A1 (en) * 2003-07-29 2005-02-03 Kyowa Hakko Kogyo Co., Ltd. Rna capable of inhibiting expression of klf5 gene
JP2012505153A (en) * 2008-10-14 2012-03-01 PRISM BioLab株式会社 Alpha helix mimetics and related methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAYA TAKEO, AIZAWA KENICHI, TAGUCHI YUKI, TSUJI KENTARO, SEKINE SACHI, MURAKAMI KAZUHIRO, KASAI MASAJI, NAKANO HIROFUMI, KONDOH : "Development of Low-Molecular-Weight Compounds Targeting the Cancer-Associated KLF5 Transcription Factor", ACS MEDICINAL CHEMISTRY LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 4, 14 April 2022 (2022-04-14), US , pages 687 - 694, XP093068394, ISSN: 1948-5875, DOI: 10.1021/acsmedchemlett.1c00721 *
WU YINGYING, QIN JUNYING, LI FUBING, YANG CHUANYU, LI ZHEN, ZHOU ZHONGMEI, ZHANG HAILIN, LI YUNXI, WANG XINYE, LIU RONG, TAO QIAN,: "USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 294, no. 47, 1 November 2019 (2019-11-01), US , pages 17837 - 17847, XP093068392, ISSN: 0021-9258, DOI: 10.1074/jbc.RA119.009102 *

Similar Documents

Publication Publication Date Title
Lu et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
TWI299731B (en) Selected fused pyrrolocarbazoles
US20170121261A1 (en) Diglycidic ether derivative therapeutics and methods for their use
TWI681961B (en) (6s,9as)-n-benzyl-6-[(4-hydroxyphenyl)methyl]-4,7-dioxo-8-({6-[3-(piperazin-1-yl)azetidin-1-yl]pyridin-2-yl}methyl)-2-(prop-2-en-1-yl)-octahydro-1h-pyrazino[2,1-c][1,2,4]triazine-1-carboxamide compound
UA124271C2 (en) PROCESS FOR THE PREPARATION OF PYRAZOLO[1,5-a]PYRIMIDINES AND SALTS THEREOF
US20200354331A1 (en) Icariin derivatives
KR20150091389A (en) Treatment of cancer with heterocyclic inhibitors of glutaminase
BR112019021800A2 (en) ferroportin inhibitor salts
EA032429B1 (en) Cdk8/cdk19 selective small molecule inhibitors and use thereof as agents for treating cancer
KR20220125803A (en) MEK inhibitors and their therapeutic uses
JP7145873B2 (en) Azacyclic aromatic compound with condensed 5-membered ring and 6-membered ring, method for producing the same, pharmaceutical composition and application thereof
WO2012027495A1 (en) Piperazinylpyrimidine analogues as protein kinase inhibitors
CN104936953A (en) Chemical compounds
EP3897848B1 (en) Cancer treatments
EP2687216B1 (en) Pharmaceutical composition for treating aging-associated diseases, containing progerin expression inhibitor as active ingredient, and screening method of said progerin expression inhibitor
CA2907668A1 (en) Trail enhancers for the selective killing of cancer cells
CN107151233B (en) Hydrazone-containing pyrimidine derivative and application thereof
Song et al. Discovery of bazedoxifene analogues targeting glycoprotein 130
WO2023090366A1 (en) Anticancer agent and cardiac-function-improving agent
US20090005398A1 (en) Methods For The Treatment of Central Nervous System Tumors
WO2012012653A1 (en) Combination therapy with mdm2 and efgr inhibitors
EP3456712B1 (en) Novel 2,4,6-trisubstituted s-triazine compound, preparation method therefor, and use thereof
EP2857392A1 (en) Small compound targeting at tacc3
CN104755084A (en) Compositions and methods for inhibiting activity of hypoxia-inducible transcription factor complex and its use for treatment of tumors
CN115068480A (en) Application of cyclin 42 small-molecule inhibitor in preparation of medicine for treating chronic kidney disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895647

Country of ref document: EP

Kind code of ref document: A1