WO2023089866A1 - Standardization processing device and standardization processing method for pressure waveform - Google Patents

Standardization processing device and standardization processing method for pressure waveform Download PDF

Info

Publication number
WO2023089866A1
WO2023089866A1 PCT/JP2022/027956 JP2022027956W WO2023089866A1 WO 2023089866 A1 WO2023089866 A1 WO 2023089866A1 JP 2022027956 W JP2022027956 W JP 2022027956W WO 2023089866 A1 WO2023089866 A1 WO 2023089866A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
time
index value
waveform
standardization processing
Prior art date
Application number
PCT/JP2022/027956
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 水上
世史明 川瀬
雅文 中山
Original Assignee
拓也 水上
合同会社Medboost
世史明 川瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓也 水上, 合同会社Medboost, 世史明 川瀬 filed Critical 拓也 水上
Publication of WO2023089866A1 publication Critical patent/WO2023089866A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • the present invention relates to a pressure waveform standardization processing apparatus and a pressure waveform standardization processing method that performs standardization processing for evaluating heart disease based on a pressure waveform representing temporal changes in intravascular pressure at a predetermined site of a subject.
  • a method using a guide wire with a pressure sensor called a pressure wire is known.
  • pressure wires are used to measure the aortic pressure Pa (aortic pressure), which is the coronary artery inlet pressure, and the coronary artery pressure Pd (distal pressure), which is downstream of the stenosis site in the coronary artery.
  • the presence or absence of myocardial ischemia is determined using the pressure ratio (Pd/Pa) of these aortic pressure Pa and coronary artery pressure Pd as a diagnostic index.
  • the pressure ratio there are a myocardial blood flow reserve ratio (FFR: Fractional Flow Reserve) and a resting non-hyperemic pressure ratio (NHPR: Non-Hyperemic Pressure Ratio) depending on the measurement conditions (Patent Document 1. etc.). All of these are diagnostic indices based on the pressure gradient, which is the pressure difference that occurs when blood flows through a lesion in the coronary artery.
  • FFR Fractional Flow Reserve
  • NHPR Non-Hyperemic Pressure Ratio
  • the FFR is an index obtained in a state of maximal hyperemia in which microvascular resistance is lowered by administering a drug to a patient, and when it falls below a predetermined value (e.g., 0.80), it is diagnosed as myocardial ischemia. It is used as a guideline for treatment such as coronary artery stent placement.
  • the blood flow in the coronary arteries is not a constant amount, but the blood flow velocity and blood flow volume differ between the systole and diastole in the cardiac cycle.
  • blood flow patterns in coronary arteries are affected by various factors such as blood pressure, pulse rate, right and left coronary arteries, severity of coronary artery stenosis and microcirculatory disorder, and presence or absence of valvular disease.
  • the FFR and the NHPR are calculated by a uniform formula regardless of the coronary artery to be measured and the condition of the patient.
  • the coronary arteries of patients with hypertrophic myocardium due to aortic stenosis are generally considered to have microcirculatory disorders.
  • the present inventors have found that patients with and without aortic stenosis have different coronary artery pressure waveforms, and that changes in pressure waveforms with respect to drug-induced maximal hyperemia are different. Therefore, in a diagnosis based on the above-mentioned index from the conventional pressure waveform, for example, even for a patient who can be treated only for valvular disease and does not need to be treated for coronary artery disease, the above-mentioned index can be used to treat coronary heart disease. You might get the recommended results.
  • the coronary artery microcirculatory disorder is calculated from the blood flow waveform in the coronary artery measured using a catheter-type wire called a Doppler flow wire, or is calculated by the thermodilution method of the coronary artery. It is possible. However, the method of measuring blood flow using such a Doppler flow wire is reported to have a probability of obtaining satisfactory data of about 69%, and is not widely used due to high technical hurdles.
  • the present invention has been devised with a focus on such problems, and its object is to more accurately evaluate heart disease based on pressure waveforms representing temporal changes in intravascular pressure of a subject.
  • the object of the present invention is to provide a pressure waveform standardization processing device and a standardization processing method for performing data processing for the purpose.
  • the present invention provides an apparatus that performs standardization processing for evaluating heart disease based mainly on pressure data of a pressure waveform representing changes in the intravascular pressure of a subject over time. is specified, and subdivides one heartbeat into a plurality of time phases, a time phase dividing unit that standardizes the time scale within each time phase, and an index value for evaluating the heart disease from the pressure data. and an index value calculation unit that associates the index value with the time scale, and the time phase division unit sets one or more predetermined feature points within one heartbeat, and divides each time zone by the feature points. is converted to the time on the unified time scale.
  • FIG. 1 is a block diagram schematically showing the configuration of a heart disease evaluation support system including a standardization processing device according to the present invention
  • FIG. 1 is a graph of pressure waveforms for aortic pressure and coronary artery pressure in one heartbeat
  • 1 is a graph of normalized waveforms for aortic pressure and coronary artery pressure in one heartbeat
  • FIG. 10 is a graph of normalized waveforms with respect to pressure ratio in one heartbeat
  • FIG. 1 shows a block diagram schematically showing the configuration of a heart disease evaluation support system including a standardization processing device according to the present invention.
  • the evaluation support system 10 is a system that performs data processing for supporting the evaluation of heart disease based on pressure waveforms in which the intravascular pressure at a predetermined site of a subject such as a patient is associated with the acquisition time. be.
  • This evaluation support system 10 includes an intravascular pressure measuring device 11 for measuring the intravascular pressure of a subject, and pressure waveform data based on the intravascular pressure acquired by the intravascular pressure measuring device 11 for evaluating heart disease. and a display device 13 such as a display for displaying various information including information based on the processing result of the standardization processing device 12 .
  • the intravascular pressure measuring device 11 a known cardiac catheterization device capable of measuring intravascular pressure by inserting a guide wire with a pressure sensor called a pressure wire into the blood vessel is used.
  • the aortic pressure Pa and the coronary artery pressure Pd are measured as pressure data at predetermined time intervals, and pressure waveforms (see FIG. 2) representing changes over time are acquired for each.
  • the intravascular pressures on the upstream and downstream sides of a stenotic lesion in a coronary artery are measured, the pressure at the proximal stenotic region on the upstream side is taken as the aortic pressure Pa, and the pressure at the distal stenotic region on the downstream side is taken as Pa. is taken as the coronary artery pressure Pd.
  • the standardization processing device 12 is composed of a computer comprising an arithmetic device such as a CPU and a storage device such as a memory and a hard disk, and programs are installed to make the computer function as the following units.
  • the standardization processing device 12 includes a storage unit 15 that stores pressure data (pressure waveform) consisting of the aortic pressure Pa and the coronary artery pressure Pd acquired by the intravascular pressure measuring device 11 at each acquisition time, and a cardiac cycle from the pressure data.
  • a time phase dividing unit 16 that identifies and subdivides one heartbeat into a plurality of time phases and standardizes the time scale within each time phase, and calculates an index value for evaluating heart disease from pressure data, and calculates the index value and an index value calculator 17 that associates a value with a time scale.
  • the time-phase dividing unit 16 divides the pressure waveform (solid line in FIG. 2) of the aortic pressure Pa during one heartbeat into a dicrotic notch (DN) in which the pressure intensity fluctuates greatly when the aortic valve is closed.
  • a corresponding time (a dashed dotted line in the figure) is specified as a feature point.
  • the time zone before and after the DN portion is divided into a first time phase T1 corresponding to systole and a second time phase T2 corresponding to diastole.
  • the time scale is unified and converted into standardized time. For example, as shown on the horizontal axis of FIG.
  • the DN time is set to zero, and each time in the first phase T1 is the ratio of the elapsed time from the beginning of the systole to the DN. It is converted to the corresponding time (-100 to 0 (sec)). On the other hand, each time in the second phase T1 is converted into a time (0 to 100 (sec)) corresponding to the ratio of elapsed time from DN to the end of diastole.
  • the maximum aortic pressure Pmax during one heartbeat is defined as a feature point, and the pressure data during one heartbeat in the time zones before and after the feature point are obtained in the first and second time phases T1, It can also be partitioned as T2 and converted to standardized time as before. Furthermore, a plurality of feature points are set in the time zone when the aortic pressure Pa and the coronary artery pressure P decrease from the maximum aortic pressure Pmax during one heartbeat, and the time zone is divided at each feature point and standardized as described above. You can also set the time scale that is used. In addition, in the diastolic phase during one heartbeat, the mid-diastolic to end-diastolic phase (WFP (see FIG.
  • Wave free period of the heart used in the resting non-hyperemic pressure ratio (NHPR) is used as a feature point. It is also possible to extract a part of the time zone, such as cutting out the time zone, and set the above-mentioned time scale for each time zone. Furthermore, a predetermined feature point is specified in the Pd/Pa waveform representing the relationship of the pressure ratio Pd/Pa to the time during one heartbeat, and the time scale described above is set in each time zone divided by the feature point.
  • a device capable of measuring a predetermined intravascular pressure or based on the measurement results of an electrocardiogram (not shown) or the like, identifies a cardiac cycle, and determines one or more timings having predetermined characteristics within the cardiac cycle.
  • Various aspects can be adopted as long as the time of one heartbeat is divided at the feature point and the time of each time zone is converted into a standardized time.
  • the index value calculation unit 17 calculates the pressure ratio Pd/Pa obtained by dividing the coronary artery pressure Pd by the aortic pressure Pa, and the maximum aortic pressure Pa and the coronary artery pressure Pd. Standardized blood pressure Pa/Pmax and Pd/Pmax (%) divided by Pmax are calculated as index values.
  • the index value calculation unit 17 calculates a standardized time within one heartbeat, which varies between subjects, and a standardized blood pressure Pa/ A standardized waveform corresponding to Pmax, Pd/Pmax and pressure ratio Pd/Pa is generated.
  • the aortic pressure Pa, the coronary artery pressure Pd, the pressure value Pd/Pa, and the standardized blood pressure Pa/Pmax, Pd/Pmax are the average value, the median value, or the predetermined Calculated values are determined and these values are also available as indicators in assessing heart disease.
  • the standardized blood pressure Pa/Pmax and Pd/Pmax can be obtained to standardize the index values related to pressure to 1.0 (100%) or less.
  • the waveform corresponding to the intravascular pressure is converted into a standardized waveform.

Abstract

A standardization processing device 10 according to the present invention comprises: a time phase division unit 16 that identifies a cardiac cycle, subdivides one heartbeat into a plurality of time phases, and standardizes the time scale within each time phase; and an index value calculation unit 17 that calculates an index value for assessing heart disease from pressure data of a pressure waveform which represents changes over time in intravascular pressure of a subject, and associates the index value with the time scale. The time phase division unit 16 sets one or more predetermined feature points in one heartbeat and converts, into a time on a unified time scale, the time of each time zone which is obtained by division by the feature points. The index value calculation unit 17 generates a standardized waveform which represents the relationship between each time on the time scale and the intravascular pressure and index value.

Description

圧波形の標準化処理装置及び標準化処理方法Pressure waveform standardization processing device and standardization processing method
 本発明は、被検者の所定部位における血管内圧の経時的な変化を表す圧波形に基づき、心疾患を評価するための標準化処理を行う圧波形の標準化処理装置及び標準化処理方法に関する。 The present invention relates to a pressure waveform standardization processing apparatus and a pressure waveform standardization processing method that performs standardization processing for evaluating heart disease based on a pressure waveform representing temporal changes in intravascular pressure at a predetermined site of a subject.
 虚血性心疾患の重症度を診断する手法の一つとして、プレッシャーワイヤと呼ばれる圧力センサ付きのガイドワイヤを用いた手法が知られている。この手法では、先ず、プレッシャーワイヤにより、冠動脈入口部圧となる大動脈圧Pa(Aortic pressure)と、冠動脈内の狭窄部位の下流側となる冠動脈圧Pd(Distal pressure)とが測定される。そして、これら大動脈圧Pa及び冠動脈圧Pdの圧力比(Pd/Pa)を診断指標として、心筋虚血の有無が判断される。ここでは、圧力比として、計測条件の違いにより、心筋血流予備量比(FFR:Fractional Flow Reserve)と、安静時非充血圧力比(NHPR:Non-Hyperemic Pressure Ratio)とがある(特許文献1等参照)。これらは、何れも、血流が冠動脈内の病変を通過する際に生じる圧力差である圧較差に基づく診断指標である。 As one of the methods for diagnosing the severity of ischemic heart disease, a method using a guide wire with a pressure sensor called a pressure wire is known. In this technique, first, pressure wires are used to measure the aortic pressure Pa (aortic pressure), which is the coronary artery inlet pressure, and the coronary artery pressure Pd (distal pressure), which is downstream of the stenosis site in the coronary artery. The presence or absence of myocardial ischemia is determined using the pressure ratio (Pd/Pa) of these aortic pressure Pa and coronary artery pressure Pd as a diagnostic index. Here, as the pressure ratio, there are a myocardial blood flow reserve ratio (FFR: Fractional Flow Reserve) and a resting non-hyperemic pressure ratio (NHPR: Non-Hyperemic Pressure Ratio) depending on the measurement conditions (Patent Document 1. etc.). All of these are diagnostic indices based on the pressure gradient, which is the pressure difference that occurs when blood flows through a lesion in the coronary artery.
 前記FFRは、患者への薬剤投与により微小血管抵抗を低下させた最大充血状態で求められる指標であって、所定値(例えば、0.80)を下回った場合に、心筋虚血があると診断され、冠動脈ステント留置術等の治療を行う目安とされる。 The FFR is an index obtained in a state of maximal hyperemia in which microvascular resistance is lowered by administering a drug to a patient, and when it falls below a predetermined value (e.g., 0.80), it is diagnosed as myocardial ischemia. It is used as a guideline for treatment such as coronary artery stent placement.
 一方、前記NHPRは、患者に薬剤を投与せずに、安静時において血管内の抵抗値が一般的に低いとされる心臓の拡張中期から末期(WFP:Wave free period)における全ての圧力比Pd/Paの平均値とされ、当該NHPRが、所定値を下回った場合に心筋虚血があると判断される。 On the other hand, the NHPR is measured without administering drugs to the patient, and all pressure ratios Pd /Pa, and when the NHPR is below a predetermined value, it is determined that there is myocardial ischemia.
国際公開第2020/22232号パンフレットWO 2020/22232 pamphlet
 冠動脈の血流は定常量でなく、心周期の中の収縮期と拡張期で、血流速度、血流量が異なる。また、冠動脈の血流パターンは、血圧、脈拍、左右冠動脈、冠動脈の狭窄や微小循環障害の重症度、弁膜症の有無等の多様な因子により影響される。しかしながら、前記FFRや前記NHPRでは、測定する冠動脈や患者の状態に関係なく一律の計算式によって算出される。例えば、前記FFRや前記NHPRでは、測定時の血圧が高ければ、冠動脈内の血流が早くなり、狭窄部位での圧較差がより生じ易くなり、心筋が虚血状態にあると診断され易くなる。このように、従来は、冠動脈内の圧波形を詳細に解析することで冠動脈病変を評価する手法が存在していない。 The blood flow in the coronary arteries is not a constant amount, but the blood flow velocity and blood flow volume differ between the systole and diastole in the cardiac cycle. In addition, blood flow patterns in coronary arteries are affected by various factors such as blood pressure, pulse rate, right and left coronary arteries, severity of coronary artery stenosis and microcirculatory disorder, and presence or absence of valvular disease. However, the FFR and the NHPR are calculated by a uniform formula regardless of the coronary artery to be measured and the condition of the patient. For example, in the FFR and NHPR, if the blood pressure at the time of measurement is high, the blood flow in the coronary arteries becomes faster, the pressure gradient at the stenosis site is more likely to occur, and the myocardium is likely to be diagnosed as being in an ischemic state. . Thus, conventionally, there is no method for evaluating coronary artery lesions by analyzing the pressure waveform in the coronary arteries in detail.
 また、例えば、大動脈弁狭窄症により肥大心筋を有する患者の冠動脈は、一般的に微小循環障害を有するとされる。本発明者らは、大動脈弁狭窄症を有する患者と有しない患者とでは、冠動脈の圧波形が異なるとともに、薬剤誘発による最大充血状態に対する圧波形の変化状況が異なることを知見した。従って、従前の圧波形からの前述の指標に基づく診断では、例えば、弁膜症の治療のみで良く冠動脈疾患の治療を行う必要のない患者に対しても、前記指標により、冠動脈心疾患の治療が推奨される結果が得られる虞がある。 Also, for example, the coronary arteries of patients with hypertrophic myocardium due to aortic stenosis are generally considered to have microcirculatory disorders. The present inventors have found that patients with and without aortic stenosis have different coronary artery pressure waveforms, and that changes in pressure waveforms with respect to drug-induced maximal hyperemia are different. Therefore, in a diagnosis based on the above-mentioned index from the conventional pressure waveform, for example, even for a patient who can be treated only for valvular disease and does not need to be treated for coronary artery disease, the above-mentioned index can be used to treat coronary heart disease. You might get the recommended results.
 ここで、冠動脈の微小循環障害は、ドップラーフローワイヤと呼ばれるカテーテル型ワイヤを用いることで測定された冠動脈内の血流波形から計算されるか、冠動脈の熱希釈法により算出されることで、評価可能である。しかしながら、このようなドップラーフローワイヤによる血流量の測定方法は、満足なデータを得られる可能性が69%程度と報告されており、また、技術的なハードルが高いことからあまり普及していない。 Here, the coronary artery microcirculatory disorder is calculated from the blood flow waveform in the coronary artery measured using a catheter-type wire called a Doppler flow wire, or is calculated by the thermodilution method of the coronary artery. It is possible. However, the method of measuring blood flow using such a Doppler flow wire is reported to have a probability of obtaining satisfactory data of about 69%, and is not widely used due to high technical hurdles.
 一方、圧波形を利用した前述の従来手法では、圧波形における1心拍の時間、収縮期及び拡張期の各時間等は、各患者の個人差があり、各患者における冠動脈の圧波形に関するデータを病態毎等に単純に対比できず、心疾患の正確な評価を行うために、多くの患者の圧波形を総合して心疾患の傾向を分析するためのデータ取得が困難である。 On the other hand, in the above-mentioned conventional method using the pressure waveform, the time of one heartbeat in the pressure waveform, the time of systole and diastole, etc. differ from patient to patient, and data on the pressure waveform of the coronary arteries in each patient is not available. It is difficult to obtain data for analyzing tendencies of heart disease by synthesizing pressure waveforms of many patients in order to perform accurate evaluation of heart disease because it cannot be simply compared for each pathological condition.
 本発明は、このような課題に着目して案出されたものであり、その目的は、被検者の血管内圧の経時的な変化を表す圧波形に基づき、心疾患をより正確に評価するためのデータ処理を行う圧波形の標準化処理装置及び標準化処理方法を提供することにある。 The present invention has been devised with a focus on such problems, and its object is to more accurately evaluate heart disease based on pressure waveforms representing temporal changes in intravascular pressure of a subject. The object of the present invention is to provide a pressure waveform standardization processing device and a standardization processing method for performing data processing for the purpose.
 前記目的を達成するため、本発明は、主として、被検者の血管内圧の経時的な変化を表す圧波形の圧データに基づき、心疾患を評価するための標準化処理を行う装置において、心周期を特定した上で1心拍を複数の時相に細分化し、各時相内での時間スケールを標準化する時相分割部と、前記圧データから前記心疾患を評価するための指標値を算出し、当該指標値を前記時間スケールに対応させる指標値算出部とを備え、前記時相分割部では、1心拍内における所定の特徴点を1又は複数設定し、当該特徴点で分割した各時間帯の時刻について、統一した前記時間スケールでの時刻に変換する、という構成を採っている。 In order to achieve the above object, the present invention provides an apparatus that performs standardization processing for evaluating heart disease based mainly on pressure data of a pressure waveform representing changes in the intravascular pressure of a subject over time. is specified, and subdivides one heartbeat into a plurality of time phases, a time phase dividing unit that standardizes the time scale within each time phase, and an index value for evaluating the heart disease from the pressure data. and an index value calculation unit that associates the index value with the time scale, and the time phase division unit sets one or more predetermined feature points within one heartbeat, and divides each time zone by the feature points. is converted to the time on the unified time scale.
 本発明によれば、患者や病態に応じて異なる圧波形における血管内圧やそれに基づいて算出された指標値と、複数の被検者間で統一された時間スケールとを対応させた標準化波形の生成が可能となる。このため、従前は被検者間での対比評価が難しかった異なった条件での圧波形ではなく、当該圧波形に基づいて標準化された標準化波形を用いることで、被検者間での対比評価を行うことができ、病態毎の標準化波形上での傾向を把握可能になる。その結果、冠動脈に内在する病態に対応する血流の変化を鋭敏に評価し、例えば、冠動脈の微小循環障害の評価が可能になり、適切な虚血診断のための活用も期待できる。 According to the present invention, a standardized waveform is generated by associating intravascular pressure in pressure waveforms that differ according to patients and pathological conditions and index values calculated based thereon with time scales that are unified among a plurality of subjects. becomes possible. Therefore, by using a standardized waveform standardized based on the pressure waveform, instead of pressure waveforms under different conditions, which was difficult to compare and evaluate between subjects, comparative evaluation between subjects can be performed, and it becomes possible to grasp the tendency on the standardized waveform for each pathological condition. As a result, it will be possible to sensitively evaluate changes in blood flow corresponding to the underlying pathology of the coronary arteries, for example, to evaluate microcirculatory disturbances in the coronary arteries.
本発明に係る標準化処理装置を含む心疾患の評価支援システムの構成を概略的に表したブロック図である。1 is a block diagram schematically showing the configuration of a heart disease evaluation support system including a standardization processing device according to the present invention; FIG. 1心拍における大動脈圧と冠動脈圧に関する圧波形のグラフである。1 is a graph of pressure waveforms for aortic pressure and coronary artery pressure in one heartbeat; 1心拍における大動脈圧と冠動脈圧に関する標準化波形のグラフである。1 is a graph of normalized waveforms for aortic pressure and coronary artery pressure in one heartbeat; 1心拍における圧力比に関する標準化波形のグラフである。FIG. 10 is a graph of normalized waveforms with respect to pressure ratio in one heartbeat; FIG.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1には、本発明に係る標準化処理装置を含む心疾患の評価支援システムの構成を概略的に表したブロック図が示されている。この図において、前記評価支援システム10は、患者等の被検者の所定部位における血管内圧を取得時刻に対応させた圧波形に基づき、心疾患の評価を支援するためのデータ処理を行うシステムである。この評価支援システム10は、被検者の血管内圧を測定する血管内圧測定装置11と、血管内圧測定装置11で取得された血管内圧に基づく圧波形の圧データに基づき、心疾患を評価するための標準化処理を行う標準化処理装置12と、標準化処理装置12での処理結果に基づく情報を含む各種情報を表示するディスプレイ等の表示装置13とを含んでいる。 FIG. 1 shows a block diagram schematically showing the configuration of a heart disease evaluation support system including a standardization processing device according to the present invention. In this figure, the evaluation support system 10 is a system that performs data processing for supporting the evaluation of heart disease based on pressure waveforms in which the intravascular pressure at a predetermined site of a subject such as a patient is associated with the acquisition time. be. This evaluation support system 10 includes an intravascular pressure measuring device 11 for measuring the intravascular pressure of a subject, and pressure waveform data based on the intravascular pressure acquired by the intravascular pressure measuring device 11 for evaluating heart disease. and a display device 13 such as a display for displaying various information including information based on the processing result of the standardization processing device 12 .
 前記血管内圧測定装置11は、プレッシャーワイヤと呼ばれる圧力センサ付きのガイドワイヤを血管内に挿入して、血管内圧を計測可能な公知の心臓カテーテル検査装置が用いられる。本実施形態では、大動脈圧Pa及び冠動脈圧Pdが圧データとして所定の時刻毎に計測され、それぞれについて、経時的な変化を表す圧波形(図2参照)が取得される。例えば、冠動脈内の狭窄病変部を挟んだ上流側及び下流側のそれぞれの血管内圧を計測すると、その上流側の狭窄近位部の圧力が大動脈圧Paとされ、同下流側の狭窄遠位部の圧力が冠動脈圧Pdとされる。 As the intravascular pressure measuring device 11, a known cardiac catheterization device capable of measuring intravascular pressure by inserting a guide wire with a pressure sensor called a pressure wire into the blood vessel is used. In this embodiment, the aortic pressure Pa and the coronary artery pressure Pd are measured as pressure data at predetermined time intervals, and pressure waveforms (see FIG. 2) representing changes over time are acquired for each. For example, when the intravascular pressures on the upstream and downstream sides of a stenotic lesion in a coronary artery are measured, the pressure at the proximal stenotic region on the upstream side is taken as the aortic pressure Pa, and the pressure at the distal stenotic region on the downstream side is taken as Pa. is taken as the coronary artery pressure Pd.
 前記標準化処理装置12は、CPU等の演算装置及びメモリやハードディスク等の記憶装置等からなるコンピュータによって構成され、当該コンピュータを以下の各部として機能させるためのプログラムがインストールされている。 The standardization processing device 12 is composed of a computer comprising an arithmetic device such as a CPU and a storage device such as a memory and a hard disk, and programs are installed to make the computer function as the following units.
 この標準化処理装置12は、血管内圧測定装置11で取得した取得時刻毎の大動脈圧Pa及び冠動脈圧Pdからなる圧データ(圧波形)がそれぞれ格納される記憶部15と、圧データから心周期を特定して1心拍を複数の時相に細分化し、各時相内での時間スケールを標準化する時相分割部16と、圧データから心疾患を評価するための指標値を算出し、当該指標値を時間スケールに対応させる指標値算出部17とを備えている。 The standardization processing device 12 includes a storage unit 15 that stores pressure data (pressure waveform) consisting of the aortic pressure Pa and the coronary artery pressure Pd acquired by the intravascular pressure measuring device 11 at each acquisition time, and a cardiac cycle from the pressure data. A time phase dividing unit 16 that identifies and subdivides one heartbeat into a plurality of time phases and standardizes the time scale within each time phase, and calculates an index value for evaluating heart disease from pressure data, and calculates the index value and an index value calculator 17 that associates a value with a time scale.
 前記時相分割部16では、一例として、大動脈圧Paの1心拍中の圧波形(図2中実線)から、大動脈弁の閉鎖時に圧強度が大きく変動する重複切痕(DN:Dicrotic Notch)に相当する時間(同図中1点鎖線)が特徴点として特定される。そして、当該DNの部分を境にその前後の時間帯を、収縮期に相当する第1の時相T1と、拡張期に相当する第2の時相T2に区分される。そして、当該各時相T1,T2それぞれの中で、時間スケールが統一され、標準化時間に変換される。例えば、図3の横軸に示されるように、1心拍の周期において、DNの時刻をゼロとし、第1の時相T1における各時刻は、収縮期の最初からDNまでの経過時間の割合に対応する時刻(-100~0(sec))に変換される。一方、第2の時相T1における各時刻は、DNから拡張期の最後までの経過時間の割合に対応する時刻(0~100(sec))に変換される。 As an example, the time-phase dividing unit 16 divides the pressure waveform (solid line in FIG. 2) of the aortic pressure Pa during one heartbeat into a dicrotic notch (DN) in which the pressure intensity fluctuates greatly when the aortic valve is closed. A corresponding time (a dashed dotted line in the figure) is specified as a feature point. Then, the time zone before and after the DN portion is divided into a first time phase T1 corresponding to systole and a second time phase T2 corresponding to diastole. Then, in each of the time phases T1 and T2, the time scale is unified and converted into standardized time. For example, as shown on the horizontal axis of FIG. 3, in one heartbeat cycle, the DN time is set to zero, and each time in the first phase T1 is the ratio of the elapsed time from the beginning of the systole to the DN. It is converted to the corresponding time (-100 to 0 (sec)). On the other hand, each time in the second phase T1 is converted into a time (0 to 100 (sec)) corresponding to the ratio of elapsed time from DN to the end of diastole.
 また、他の例として、1心拍中の最大大動脈圧Pmaxを特徴点とし、当該特徴点を境にその前後の時間帯における1心拍中の圧データを、第1及び第2の時相T1、T2として区分し、前述と同様に標準化時間に変換することもできる。更に、1心拍中の最大大動脈圧Pmaxから大動脈圧Pa及び冠動脈圧Pが下降する時間帯に複数の特徴点を設定し、当該時間帯について各特徴点を境に分割し、前述のように標準化された時間スケールを設定することもできる。また、1心拍中の拡張期の中で、安静時非充血圧力比(NHPR)で用いられる心臓の拡張中期から末期(WFP(図2参照):Wave free period)の前後を特徴点としてその間の時間帯を切り出す等、一部の時間帯を抽出し、各時間帯で前述の時間スケールを設定することもできる。更に、1心拍中の時間に対する圧力比Pd/Paの関係を表すPd/Pa波形において所定の特徴点を特定し、当該特徴点を境に分割された各時間帯において、前述の時間スケールを設定することもできる。要するに、所定の血管内圧を測定可能な装置、また、図示しない心電図等での計測結果等に基づき、心周期を特定し、当該心周期内で、所定の特徴を有するタイミングとなる1又は複数の特徴点を境に1心拍の時間を分割し、各時間帯の時刻を標準化した標準化時間に変換する限り、種々の態様を採ることができる。 As another example, the maximum aortic pressure Pmax during one heartbeat is defined as a feature point, and the pressure data during one heartbeat in the time zones before and after the feature point are obtained in the first and second time phases T1, It can also be partitioned as T2 and converted to standardized time as before. Furthermore, a plurality of feature points are set in the time zone when the aortic pressure Pa and the coronary artery pressure P decrease from the maximum aortic pressure Pmax during one heartbeat, and the time zone is divided at each feature point and standardized as described above. You can also set the time scale that is used. In addition, in the diastolic phase during one heartbeat, the mid-diastolic to end-diastolic phase (WFP (see FIG. 2): Wave free period) of the heart used in the resting non-hyperemic pressure ratio (NHPR) is used as a feature point. It is also possible to extract a part of the time zone, such as cutting out the time zone, and set the above-mentioned time scale for each time zone. Furthermore, a predetermined feature point is specified in the Pd/Pa waveform representing the relationship of the pressure ratio Pd/Pa to the time during one heartbeat, and the time scale described above is set in each time zone divided by the feature point. You can also In short, a device capable of measuring a predetermined intravascular pressure, or based on the measurement results of an electrocardiogram (not shown) or the like, identifies a cardiac cycle, and determines one or more timings having predetermined characteristics within the cardiac cycle. Various aspects can be adopted as long as the time of one heartbeat is divided at the feature point and the time of each time zone is converted into a standardized time.
 前記指標値算出部17では、大動脈圧Pa及び冠動脈圧Pdを取得した各時刻において、冠動脈圧Pdを大動脈圧Paで除算した圧力比Pd/Paと、大動脈圧Paと冠動脈圧Pdを最大大動脈圧Pmaxでそれぞれ除算した標準化血圧Pa/Pmax,Pd/Pmax(%)とが、指標値として算出される。 At each time when the aortic pressure Pa and the coronary artery pressure Pd are acquired, the index value calculation unit 17 calculates the pressure ratio Pd/Pa obtained by dividing the coronary artery pressure Pd by the aortic pressure Pa, and the maximum aortic pressure Pa and the coronary artery pressure Pd. Standardized blood pressure Pa/Pmax and Pd/Pmax (%) divided by Pmax are calculated as index values.
 また、指標値算出部17では、図3及び図4に示されるように、個人差や病態等で差の生じる1心拍内の時間を被検者間で統一した標準化時間と、標準化血圧Pa/Pmax,Pd/Pmaxや圧力比Pd/Paとを対応させた標準化波形が生成される。 In addition, as shown in FIGS. 3 and 4, the index value calculation unit 17 calculates a standardized time within one heartbeat, which varies between subjects, and a standardized blood pressure Pa/ A standardized waveform corresponding to Pmax, Pd/Pmax and pressure ratio Pd/Pa is generated.
 そして、大動脈圧Pa、冠動脈圧Pd、圧力値Pd/Pa、及び標準化血圧Pa/Pmax,Pd/Pmaxが、時相特定部16で特定された時相毎に平均値、中央値、或いは所定の計算による値が求められ、これら値も心疾患を評価する際の指標として利用可能となる。 Then, the aortic pressure Pa, the coronary artery pressure Pd, the pressure value Pd/Pa, and the standardized blood pressure Pa/Pmax, Pd/Pmax are the average value, the median value, or the predetermined Calculated values are determined and these values are also available as indicators in assessing heart disease.
 従って、このような実施形態によれば、1心拍中の圧波形や圧力比Pd/Paの波形における1心拍中の特徴点から、被検者間での時間スケールを統一できるとともに、圧力比Pd/Paの他、標準化血圧Pa/Pmax,Pd/Pmaxを求めることで、圧力に関する指標値を1.0(100%)以下に統一することができる。これにより、従前は、各被検者によって1心拍の各事象の経過時間等が異なる圧波形を単純に対比できなかったが、本発明では、血管内圧に対応する波形が標準化波形として変換されることで、被検者の様々なデータの対比分析が可能となり、冠動脈の微小循環障害の原因となる弁膜症や心筋虚血等の傾向のより細かい把握が期待できる。 Therefore, according to such an embodiment, it is possible to unify the time scale between subjects from the feature points in one heartbeat in the pressure waveform in one heartbeat and the waveform of the pressure ratio Pd/Pa, and the pressure ratio Pd /Pa, the standardized blood pressure Pa/Pmax and Pd/Pmax can be obtained to standardize the index values related to pressure to 1.0 (100%) or less. As a result, conventionally, it was not possible to simply compare pressure waveforms in which the elapsed time of each event of one heartbeat differs from subject to subject, but in the present invention, the waveform corresponding to the intravascular pressure is converted into a standardized waveform. As a result, it is possible to perform comparative analysis of various data of subjects, and it is expected that trends such as valvular disease and myocardial ischemia, which cause microcirculatory disorders in the coronary arteries, will be more precisely understood.
 その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。 In addition, the configuration of each part of the device in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same effect is achieved.
 10 評価支援システム
 11 血管内圧測定装置
 12 標準化処理装置
 13 表示装置
 15 記憶部
 16 時相分割部
 17 指標値算出部
 T1 第1の時相
 T2 第2の時相
REFERENCE SIGNS LIST 10 evaluation support system 11 intravascular pressure measuring device 12 standardization processing device 13 display device 15 storage unit 16 time phase division unit 17 index value calculation unit T1 first time phase T2 second time phase

Claims (5)

  1.  被検者の血管内圧の経時的な変化を表す圧波形の圧データに基づき、心疾患を評価するための標準化処理を行う装置において、
     心周期を特定した上で1心拍を複数の時相に細分化し、各時相内での時間スケールを標準化する時相分割部と、前記圧データから前記心疾患を評価するための指標値を算出し、当該指標値を前記時間スケールに対応させる指標値算出部とを備え、
     前記時相分割部では、1心拍内における所定の特徴点を1又は複数設定し、当該特徴点で分割した各時間帯の時刻について、統一した前記時間スケールでの時刻に変換することを特徴とする圧波形の標準化処理装置。
    In a device that performs standardization processing for evaluating heart disease based on pressure data of a pressure waveform representing temporal changes in intravascular pressure of a subject,
    A time phase division unit that specifies a cardiac cycle, subdivides one heart beat into a plurality of time phases, standardizes the time scale in each time phase, and an index value for evaluating the heart disease from the pressure data. an index value calculation unit that calculates and associates the index value with the time scale,
    The time phase division unit sets one or more predetermined feature points in one heart beat, and converts the time of each time zone divided by the feature points into the time on the unified time scale. Pressure waveform standardization processing equipment.
  2.  前記指標値算出部では、前記時間スケールでの各時刻と前記血管内圧や前記指標値との関係を表す標準化波形が生成されることを特徴とする請求項1記載の圧波形の標準化処理装置。 The pressure waveform standardization processing apparatus according to claim 1, wherein the index value calculation unit generates a standardized waveform representing the relationship between each time on the time scale and the intravascular pressure or the index value.
  3.  前記圧波形は、大動脈圧及び冠動脈圧に関するそれぞれの経時的な変化を表し、
     前記指標値算出部では、それぞれ同一時刻で取得された前記冠動脈圧と前記大動脈圧の圧力比が前記指標値として算出され、
     前記時相分割部では、前記特徴点として、前記圧波形、若しくは前記圧力比の経時的変化を表す波形における所定の地点に設定されることを特徴とする請求項1又は2記載の圧波形の標準化処理装置。
    The pressure waveforms represent changes over time in aortic pressure and coronary artery pressure, respectively;
    In the index value calculation unit, a pressure ratio between the coronary artery pressure and the aortic pressure obtained at the same time is calculated as the index value,
    3. The pressure waveform according to claim 1 or 2, wherein the feature point is set at a predetermined point in the pressure waveform or in the waveform representing the temporal change in the pressure ratio in the time phase division unit. Standardization processor.
  4.  前記指標値算出部では、前記大動脈圧と前記冠動脈圧について、1心拍中の最大大動脈圧でそれぞれ除算した標準化血圧が前記指標値として算出されることを特徴とする請求項3記載の圧波形の標準化処理装置。 4. The pressure waveform according to claim 3, wherein the index value calculation unit calculates standardized blood pressure obtained by dividing each of the aortic pressure and the coronary artery pressure by the maximum aortic pressure during one heartbeat, as the index value. Standardization processor.
  5.  被検者の血管内圧の経時的な変化を表す圧波形の圧データに基づき、心疾患を評価するための標準化処理を行う方法において、
     心周期を特定した上で1心拍を複数の時相に細分化する際に、1心拍内における所定の特徴点を1又は複数設定し、当該特徴点で分割した各時間帯の時刻について、統一した前記時間スケールでの時刻に変換することで、各時相内での時間スケールを標準化し、前記圧データから前記心疾患を評価するための指標値を算出し、当該指標値を前記時間スケールに対応させることを特徴とする圧波形の標準化処理方法。
    In a method for performing standardization processing for evaluating heart disease based on pressure data of a pressure waveform representing changes in intravascular pressure of a subject over time,
    When one heartbeat is subdivided into a plurality of time phases after specifying the cardiac cycle, one or more predetermined feature points are set in one heartbeat, and the time of each time zone divided by the feature points is unified. standardize the time scale in each time phase by converting to the time on the time scale, calculate an index value for evaluating the heart disease from the pressure data, and convert the index value to the time scale A pressure waveform standardization processing method characterized by corresponding to.
PCT/JP2022/027956 2021-11-18 2022-07-18 Standardization processing device and standardization processing method for pressure waveform WO2023089866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021187589A JP2023074595A (en) 2021-11-18 2021-11-18 Compressed waveform standardization processing unit and program thereof
JP2021-187589 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023089866A1 true WO2023089866A1 (en) 2023-05-25

Family

ID=86396612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027956 WO2023089866A1 (en) 2021-11-18 2022-07-18 Standardization processing device and standardization processing method for pressure waveform

Country Status (2)

Country Link
JP (1) JP2023074595A (en)
WO (1) WO2023089866A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525067A (en) * 1999-03-09 2003-08-26 フローレンス・メディカル・リミテッド Method and system for measuring CFR and additional clinical hemodynamic parameters on a pressure basis
JP2016508049A (en) * 2012-12-26 2016-03-17 ヴォルカノ コーポレイションVolcano Corporation Measurement and enhancement in multi-modality medical imaging systems
JP2016534770A (en) * 2013-10-18 2016-11-10 ボルケーノ コーポレイション Device, system, and method for evaluating a conduit by optimization of proximal and distal pressure measurements obtained without using a hyperemic agent
JP2018500982A (en) * 2014-12-08 2018-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Apparatus, system and method for detecting abnormal heartbeat waveform and performing physiological measurement calculation
JP2019524235A (en) * 2016-07-14 2019-09-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Apparatus, system and method for providing feedback on quality of intravascular characterization
JP2020531109A (en) * 2017-08-17 2020-11-05 カーディアックス・アクティーゼルスカブ Methods and devices for estimating ventricular pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525067A (en) * 1999-03-09 2003-08-26 フローレンス・メディカル・リミテッド Method and system for measuring CFR and additional clinical hemodynamic parameters on a pressure basis
JP2016508049A (en) * 2012-12-26 2016-03-17 ヴォルカノ コーポレイションVolcano Corporation Measurement and enhancement in multi-modality medical imaging systems
JP2016534770A (en) * 2013-10-18 2016-11-10 ボルケーノ コーポレイション Device, system, and method for evaluating a conduit by optimization of proximal and distal pressure measurements obtained without using a hyperemic agent
JP2018500982A (en) * 2014-12-08 2018-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Apparatus, system and method for detecting abnormal heartbeat waveform and performing physiological measurement calculation
JP2019524235A (en) * 2016-07-14 2019-09-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Apparatus, system and method for providing feedback on quality of intravascular characterization
JP2020531109A (en) * 2017-08-17 2020-11-05 カーディアックス・アクティーゼルスカブ Methods and devices for estimating ventricular pressure

Also Published As

Publication number Publication date
JP2023074595A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
JP7196273B2 (en) Systems and methods for assessing the cardiac system by determining the minimum distal pressure/arterial pressure (PD/PA) ratio
Nabeel et al. Local pulse wave velocity: theory, methods, advancements, and clinical applications
CN107730540B (en) Coronary parameter calculation method based on high-precision matching model
CN107978371B (en) Method and system for rapidly calculating micro-circulation resistance
JP5850861B2 (en) Eliminating the effects of irregular cardiac cycles in determining cardiovascular parameters
CN112384137B (en) Method and device for acquiring blood vessel assessment parameters in resting state based on contrast image
Thiele et al. A systematic approach to the assessment of aortoiliac disease
CN101765398A (en) Assessment of preload dependence and fluid responsiveness
Huang et al. Comparison of different pulse waveforms for local pulse wave velocity measurement in healthy and hypertensive common carotid arteries in vivo
Vijayan et al. Assessing coronary blood flow physiology in the cardiac catheterisation laboratory
US20160302672A1 (en) System and Method for Determining Arterial Compliance and Stiffness
CN110638432B (en) System and method for assessing blood flow in a blood vessel
CN113040795A (en) Detection method for non-guide wire FFR, non-guide wire IMR and non-guide wire CFR
US20240148261A1 (en) Hemodynamic analysis system
Keegan et al. Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire
EP4154273A1 (en) Method for the simulation of coronary changes and/or for the risk assessment of myocardial ischemia
JP7260188B2 (en) Diagnosis support system for ischemic heart disease
WO2023089866A1 (en) Standardization processing device and standardization processing method for pressure waveform
WO2010108110A2 (en) Monitoring peripheral decoupling
Seiler et al. Regional left ventricular function during transient coronary occlusion: relation with coronary collateral flow
Doriot et al. Accuracy of coronary flow measurements performed by means of Doppler wires
Hanya Validity of the water hammer formula for determining regional aortic pulse wave velocity: comparison of one-point and two-point (Foot-to-Foot) measurements using a multisensor catheter in human
WO2023021902A1 (en) Evaluation support system for cardiac disease and evaluation support method
JP7483843B2 (en) System and method for assessing the cardiac system by determining the minimum distal pressure/arterial pressure (PD/PA) ratio - Patents.com
US20230225622A1 (en) System and method for determining the microvascular resistance reserve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895155

Country of ref document: EP

Kind code of ref document: A1