WO2023089845A1 - Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program - Google Patents

Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program Download PDF

Info

Publication number
WO2023089845A1
WO2023089845A1 PCT/JP2022/015562 JP2022015562W WO2023089845A1 WO 2023089845 A1 WO2023089845 A1 WO 2023089845A1 JP 2022015562 W JP2022015562 W JP 2022015562W WO 2023089845 A1 WO2023089845 A1 WO 2023089845A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
ultrasonic
subject
pressure
image
Prior art date
Application number
PCT/JP2022/015562
Other languages
French (fr)
Japanese (ja)
Inventor
健介 井芹
勝利 前原
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2023089845A1 publication Critical patent/WO2023089845A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic imaging apparatus, an ultrasonic imaging system, an ultrasonic imaging method, and an ultrasonic imaging program for imaging the inside of a subject using ultrasonic waves.
  • the quadriceps femoris muscle is the muscle of the thigh and controls movements such as pulling up the thigh and extending the knee joint. Since the muscle mass of the quadriceps femoris muscle decreases significantly with aging, the decrease in the quadriceps femoris muscle is a factor in walking difficulties and falls in the elderly. Therefore, by ascertaining the muscle mass of the quadriceps femoris, elderly people are diagnosed with walking difficulties and falls. For example, a CT (Computed Tomography) device or an M An RI (Magnetic Resonance Imaging) device is used.
  • CT Computer Tomography
  • M An RI Magnetic Resonance Imaging
  • Japanese Patent Laid-Open No. 2002-200000 discloses a technique for imaging cross-sections of the thigh, upper arm, abdomen, and the like of a human body, which is a subject, using a probe that transmits and receives ultrasonic waves.
  • the operator continuously moves the probe along the cross section around the object to be imaged while maintaining the angle of the probe at an appropriate angle with respect to the surface of the human body.
  • a panorama synthetic image hereinafter also simply referred to as "composite image" obtained by imaging a wide cross-section of the region of the imaging target is obtained.
  • Ultrasound images captured using ultrasound include errors caused by pressing the probe against the subject. For example, if the angle of the probe with respect to the surface of the human body, which is the subject, is not at an appropriate angle, and the probe is not evenly pressed against the surface of the subject, the ultrasound image to be captured will include , includes errors due to deformation of the tissue on the surface of the object. If the ultrasonic image contains an error, the muscle thickness and muscle cross-sectional area measured based on the ultrasonic image also contain an error, making it impossible to obtain accurate measurement values.
  • Patent Literature 2 discloses a technique in which an operator adjusts the posture of a probe by detecting pressure of an ultrasonic sensor against a subject using force sensors provided at four corners of the probe.
  • Ultrasonic images are continuously taken around the thighs, upper arms, abdomen, etc. of the human body, which is the subject, while moving the probe along the surface of the subject, and a panoramic composite image of the region to be imaged is obtained.
  • Acquisition attempts cause continuous deformation of the tissue on the subject's surface along the direction in which the probe moves.
  • the degree of tissue deformation due to the pressure applied by the probe changes moment by moment according to the movement of the probe along the surface of the subject.
  • An object of the present invention is to provide an ultrasonic imaging apparatus that quantifies an operator's manipulation of the probe when moving the probe along the surface of the subject.
  • An ultrasonic imaging apparatus receives, through the probe, a signal related to ultrasonic waves transmitted from a probe placed on the surface of a subject to the inside of the subject and reflected inside the subject.
  • An ultrasonic wave receiving unit receives an ultrasonic image based on the received ultrasonic signal, and at least partial imaging regions acquired at a plurality of probe positions on the surface of the subject.
  • pressure estimation for estimating a pressure index which is an index indicating the magnitude of the contact pressure of the probe to the subject, based on the displacement of the positions of the corresponding feature points between the two or more superimposed ultrasound images. and a part.
  • An ultrasonic imaging system includes a probe that transmits ultrasonic waves from the surface of a subject to the inside and receives the ultrasonic waves reflected inside the subject, and an ultrasonic imaging device according to the present invention. , is provided.
  • An ultrasonic imaging method receives, through the probe, a signal related to ultrasonic waves transmitted from a probe placed on the surface of a subject to the inside of the subject and reflected inside the subject.
  • an ultrasonic wave receiving step an image generating step of generating an ultrasonic image based on the received ultrasonic wave signal; pressure estimation for estimating a pressure index, which is an index indicating the magnitude of the contact pressure of the probe to the subject, based on the displacement of the positions of the corresponding feature points between the two or more superimposed ultrasound images. and a step.
  • An ultrasonic imaging program receives a signal related to ultrasonic waves transmitted from a probe placed on the surface of a subject to the inside of the subject and reflected inside the subject through the probe.
  • a pressure estimating unit that estimates a pressure index, which is an index indicating the magnitude of the contact pressure of the probe on the subject, based on the displacement of the positions of the corresponding feature points between the two or more ultrasound images; It is characterized by operating the computer as
  • an ultrasonic imaging apparatus that quantifies the manipulation of the probe by the operator when moving the probe along the surface of the object.
  • FIG. 4 is a schematic cross-sectional view for explaining deformation of thigh soft tissue caused by pressing the probe against the thigh.
  • FIG. 4 is a schematic cross-sectional view for explaining deformation of thigh soft tissue caused by pressing the probe against the thigh.
  • FIG. 4 is a schematic cross-sectional view for explaining deformation of thigh soft tissue caused by pressing the probe against the thigh.
  • 1 is a schematic diagram showing the configuration of an ultrasound imaging system according to one embodiment
  • FIG. 1 is a block diagram showing the configuration of an ultrasonic imaging apparatus according to one embodiment
  • FIG. 4 is a flow chart showing a processing procedure of an ultrasonic imaging method according to one embodiment
  • FIG. 4 is a schematic diagram for explaining a plurality of pairs of ultrasound images that are consecutive in time series;
  • FIG. 10 is a schematic diagram for explaining feature point matching processing performed when estimating a pressure index;
  • FIG. 7 is a flowchart showing a detailed processing procedure of step S3 shown in FIG. 6;
  • FIG. 7 is a flowchart showing a detailed processing procedure of step S6 shown in FIG. 6;
  • FIG. It is an example of a panorama synthetic image of the cross section of the thigh when the pressure index is good.
  • It is an example of a panorama synthetic image of the cross section of the thigh when the pressure index is not good.
  • 4 is a graph showing verification results according to Example 1.
  • FIG. 9 is a graph showing comparison results according to Example 2.
  • FIG. 9 is a graph showing comparison results according to Example 2.
  • FIG. 9 is a graph showing comparison results according to Example 2.
  • FIGS. 1 to 3 are schematic cross-sectional views for explaining the deformation of femoral soft tissue caused by pressing the probe against the femoral region.
  • FIGS. 1 to 3 the deformation of the subject that occurs when an ultrasonic image of the subject is acquired using the probe will be discussed.
  • An index indicating the magnitude of (hereinafter also simply referred to as a pressure index) will be described.
  • each feature in the soft tissue 93 is detected.
  • the point moves to various positions depending on the degree of pressing of the soft tissue 93 by the probe 2 and the positional relationship between the probe 2 and the feature point.
  • reference numeral 94 indicates a feature point before soft tissue 93 is deformed
  • reference numeral 95 indicates a feature point after movement after deformation of soft tissue 93 .
  • Numeral 96 is a displacement vector (hereinbelow, the displacement vector is also referred to as a movement vector) indicating the movement of the feature point caused by deformation of the soft tissue 93 .
  • Reference numeral 96X denotes the component of the displacement vector 96 in the horizontal direction (X direction)
  • reference numeral 96Y denotes the component of the displacement vector 96 in the vertical direction (Y direction).
  • the movement of feature points in soft tissue 93 that occurs when probe 2 is pressed against soft tissue 93 will be considered.
  • the lateral displacement 96X is smaller nearer the centerline 97 of the probe 2 and larger nearer both ends of the probe 2 . That is, the lateral displacement distribution varies with distance from centerline 97 .
  • the longitudinal displacement 96Y increases as it approaches the centerline 97 of the probe 2 and decreases as it approaches both ends of the probe 2 . Further, even in the vertical displacement 96Y, the magnitude of the displacement varies between the shallow region and the deep region.
  • two feature points 94 can be observed at symmetrical positions across a center line 97 in the soft tissue 93 as shown in FIG.
  • the two feature points 94 are at the same distance from the center line 97 . Therefore, due to the deformation of the soft tissue 93 due to the pressing force of the probe 2 , in the illustrated example, the two left and right feature points 94 shift left and right by 0.5 on the X coordinate scale, respectively, and move to the position of the feature point 95 . Since the left and right two feature points 94 are symmetrical with respect to the center line 97, the magnitude of the displacement from the feature point 94 to the feature point 95 is also the same on the left and right sides.
  • the state of time T1 shown in FIG. 3 is reached by moving the probe 2 in the lateral direction (right side in the drawing: positive direction of the X-axis) from the state of time T0 shown in FIG .
  • the feature points 94 and 95 and the femur 91 also move laterally (left side in the drawing: negative direction of the X axis) by the amount corresponding to the lateral movement of the probe 2. .
  • the lateral displacement distribution varies with distance from centerline 97 .
  • the two characteristic points 94 and 95 located on the left side of the center line 97 in the drawing are directed away from the center line 97.
  • the displacement 94a, 95a of these two feature points 94, 95 located on the left side is larger than the displacement at time T0 when the probe 2 is not moved in the lateral direction. growing. This is the leftward shift amount ⁇ shown in the drawing.
  • the two feature points 94 and 95 located on the right side of the center line 97 in the drawing move toward the center line 97, so that the displacement in the lateral direction becomes small, and these two feature points located on the right side move toward the center line 97.
  • Displacements 94b and 95b of 94 and 95 are smaller than the displacement at time T0 when the probe 2 is not moved laterally. This is the shift amount ⁇ to the left shown in the figure.
  • the deviation amount of the feature points has different characteristics in the X-axis direction and the Y-axis direction.
  • any feature point is shifted only in one direction in proportion to the degree of deformation due to pressure.
  • the directions of the shifts are opposite to the left and right of the feature points (left and right of the center line 97).
  • the amount of deviation in the Y-axis direction is highly random and becomes a noise component as a pressure index.
  • a difference occurs between a shallow region and a deep region within the subject 9 depending on whether or not there is pressing.
  • the degree of deformation is large in shallow regions, and the amount of deviation in the X-axis direction is large.
  • a deep region has a small degree of deformation and a small amount of deviation in the X-axis direction. As the degree of deformation due to pressing increases, the amount of deviation also increases.
  • the extent to which the feature point moves in the soft tissue 93 is That is, the magnitude of the displacement vector of the feature point changes according to the extent to which the probe 2 is pressed against the subject 9 .
  • an index (pressure index) indicating the magnitude of the contact pressure of the probe to the subject is quantified in the manipulation of the probe by the operator.
  • the magnitude of the displacement vector of the feature point differs between the shallow region and the deep region in the soft tissue 93 with respect to the direction in which the probe 2 is moved. It takes advantage of the differences between shallow and deep regions within the soft tissue 93 .
  • a displacement vector representing the movement of a feature point that is, the displacement of the position of a feature point, is calculated by matching the position of the corresponding feature point between two or more ultrasound images in which at least a part of the imaging regions overlap each other.
  • FIG. 4 is a schematic diagram showing the configuration of the ultrasonic imaging system 1 according to one embodiment.
  • An ultrasound imaging system 1 includes a probe 2 and an ultrasound imaging device 3 .
  • the subject uses the ultrasonic imaging system 1 to visualize and confirm the state of his/her own muscles. That is, in this embodiment, the operator of the ultrasonic imaging system 1 is the subject himself/herself.
  • the probe 2 is a device that transmits ultrasonic waves from the surface of the subject 9 toward the inside of the subject 9 and receives the ultrasonic waves reflected inside the subject 9 .
  • the probe 2 is configured so that it can be held and moved by an operator.
  • the lower end of the probe 2 is provided with an ultrasonic transmission/reception surface on which a plurality of ultrasonic transducers are arranged in a row.
  • the subject 9 is the thigh of a human body, but the body part included in the subject 9 is not particularly limited.
  • the probe 2 operates in a linear scan mode for acquiring a fragmentary image (first fragmentary image 41) by linear scanning, and a fragmentary image (second fragmentary image 42) by sector scanning with a wider imaging range than linear scanning. ) to operate in both drive schemes with sector scan mode.
  • a fragment image is an ultrasonic image obtained by one-time imaging in linear scan mode or sector scan mode, and is equivalent to an image obtained by an ultrasonic diagnostic device (ultrasonic imaging device) with a general configuration. It is.
  • the operator When acquiring the panoramic composite image 47 of the cross section of the subject 9, the operator brings the ultrasonic wave transmitting/receiving surface of the probe 2 into contact with the subject 9 and moves the probe 2 along the surface of the subject 9 ( Scan around the thigh with probe 2). During this time, the probe 2 intermittently transmits ultrasonic waves from the ultrasonic transmission/reception surface toward the inside of the subject 9 while switching the scan mode between the linear scan mode and the sector scan mode at a predetermined cycle. receive the ultrasonic waves reflected inside the ultrasonic wave transmitting/receiving surface. As a result, the probe 2 outputs electrical signals (echo signals) representing the received ultrasonic waves in each of the linear scan mode and the sector scan mode.
  • an angle sensor is attached to the probe 2, and information on the tilt angle of the probe 2 (for example, the tilt angle of the probe 2 from the vertical direction) is transmitted to the ultrasonic imaging apparatus 3 together with the echo signal. be.
  • the ultrasonic imaging device 3 is connected to the probe 2 by wireless such as WiFi (registered trademark).
  • the ultrasonic imaging apparatus 3 is configured by, for example, a tablet terminal, and estimates the index of pressure applied to the subject 9 by the probe 2 based on echo signals received from the probe 2 .
  • the ultrasonic imaging apparatus 3 generates a plurality of fragmentary images (a plurality of first fragmentary images 41 and a plurality of second fragmentary images) for each of the linear scan mode and the sector scan mode, based on echo signals. 42).
  • the ultrasonic imaging device 3 While the probe 2 is moved along the surface of the subject 9, the ultrasonic imaging device 3 continuously generates a pair of the first fragment image 41 and the second fragment image 42 in time series, Generate multiple pairs of time-sequential ultrasound images.
  • the ultrasonic imaging apparatus 3 compares two or more time-series fragmented images in which at least a part of the imaging region overlaps with each other, thereby matching the two or more time-series successive fragment images. Calculate the displacement of the position of the feature point.
  • the ultrasonic imaging apparatus 3 estimates a pressing index of the probe 2 to the subject 9 based on the calculated displacement of the position.
  • the ultrasonic imaging apparatus 3 calculates the displacement of the position of the corresponding feature point between the plurality of first fragment images 41, 41, and between the plurality of second fragment images 42, 42, Calculate the displacement of the position of the corresponding feature point.
  • the ultrasonic imaging apparatus 3 estimates a pressing index of the probe 2 to the subject 9 based on the calculated displacement of the position of the feature point.
  • the ultrasonic imaging apparatus 3 further has a function of displaying a panorama synthetic image 47 of a cross section obtained by synthesizing these fragmentary images.
  • the ultrasonic imaging device 3 is not particularly limited as long as it can display an image, and can be configured with a general-purpose personal computer, smartphone, or the like. Also, the method of connecting the probe 2 and the ultrasonic imaging apparatus 3 is not particularly limited, and a wired connection may be used.
  • FIG. 5 is a block diagram showing the configuration of the ultrasonic imaging apparatus 3 according to one embodiment.
  • the ultrasound imaging apparatus 3 has a hardware configuration including a display 31, an input device 32, an auxiliary storage device 33, a communication interface section (I/F section) 34, and an output interface section (I/F section) 36. , and a speaker 37 .
  • the display 31 can be composed of, for example, a liquid crystal display, a plasma display, an organic EL display, or the like. Note that the display 31 may be configured as a device separate from the ultrasonic imaging device 3 .
  • the input device 32 is a touch panel provided on the surface of the display 31. An operator can perform an input operation on the image displayed on the display 31 via the input device 32 .
  • the auxiliary storage device 33 is a non-volatile storage device that stores an operating system (OS), various control programs, and data generated by the programs. Drive), etc.
  • An ultrasonic imaging program P is stored in the auxiliary storage device 33 .
  • the ultrasonic imaging program P may be installed in the ultrasonic imaging apparatus 3 via a network such as the Internet. Alternatively, the ultrasonic imaging program P can be transferred to the ultrasonic imaging apparatus 3 by causing the ultrasonic imaging apparatus 3 to read a computer-readable non-temporary tangible recording medium such as a memory card in which the ultrasonic imaging program P is recorded. can be installed on
  • the communication interface unit 34 transmits and receives data to and from an external device, and in this embodiment, demodulates signals received from the probe 2 and modulates control signals to be transmitted to the probe 2.
  • the output interface unit 36 outputs various data generated by arithmetic processing of the ultrasonic imaging apparatus 3 to the display 31 and the speaker 37 .
  • the output interface unit 36 displays the image on the display 31 by developing various generated image data in the VRAM. 31.
  • the output interface unit 36 outputs a sound corresponding to the determination result from the speaker 37 based on the determination result data regarding the pressure indicator generated by the pressure determination unit 355 .
  • the ultrasonic imaging apparatus 3 includes, as other hardware configurations, a processor such as a CPU that performs data processing, and a memory (main storage device) that the processor uses as a work area for data processing. I have more.
  • the ultrasonic imaging apparatus 3 also includes a signal processing unit 35 as a software configuration.
  • the signal processing unit 35 is a functional block realized by executing the ultrasonic imaging program P by the processor.
  • the signal processing unit 35 has a function of processing the echo signal received from the probe 2, estimating the pressure index of the probe 2 on the subject 9, and determining whether the estimated pressure index is good. there is Further, the signal processing unit 35 processes the echo signals received from the probe 2 to generate a composite image 47 of the cross section of the subject 9 for the operator, subject, doctor, imaging staff, etc. to understand the state of the subject 9 .
  • the signal processing unit 35 includes an ultrasonic wave receiving unit 351, a first fragment image generation unit 352, a second fragment image generation unit 353, a pressure estimation unit 354, and a pressure determination unit. 355 and a cross-sectional image synthesizing unit 356 .
  • the signal processing unit 35 may be implemented in hardware by a logic circuit formed on an integrated circuit.
  • the ultrasonic wave receiving unit 351 generates a transmission signal by giving a delay to a signal having a frequency in the ultrasonic range, and outputs it to a control device (not shown) built in the probe 2 .
  • the controller drives the probe 2 based on the received transmission signal.
  • the ultrasonic wave receiving unit 351 can control the driving method and beam shape of the probe 2 by controlling the delay.
  • a received signal is input from the probe 2 to the ultrasonic wave receiving section 351 .
  • the ultrasonic wave receiving unit 351 performs processing such as analog-to-digital conversion on the input received signal, and transmits the processed received signal to the first fragment image generation unit 352 when driven in the linear scan mode. When driving, they are output to the second fragment image generator 353 respectively.
  • the ultrasonic wave receiving unit 351 While the probe 2 is moved along the surface of the subject 9, the ultrasonic wave receiving unit 351 repeatedly outputs the transmission signal at regular time intervals for each of the linear scan mode and the sector scan mode, and outputs the transmission signal. Each time, a received signal of ultrasonic waves received by the probe 2 is obtained.
  • the function of the ultrasonic wave receiving unit 351 may be provided in the control device that controls the probe 2 .
  • the control device may be connected to the ultrasonic imaging device 3, or an ultrasonic image may be stored in the control device and transmitted to the ultrasonic imaging device 3 via a recording medium. good.
  • Each of the first fragment image generation unit 352 and the second fragment image generation unit 353 performs image conversion processing according to the driving method of the probe 2 based on the reception signal output by the ultrasonic wave reception unit 351 to determine the object to be imaged. Generating a partially captured fragment image.
  • the first image fragment generator 352 generates the first image fragment 41 in linear scan mode
  • the second image fragment generator 353 generates the second image fragment 42 in sector scan mode. Generate. While the probe 2 is moved along the surface of the subject 9, the first fragment image generation unit 352 and the second fragment image generation unit 353 each generate signals based on the reception signals repeatedly input from the ultrasound reception unit 351.
  • a plurality of fragmentary images obtained by imaging a cross section of the subject 9 from various directions are taken from the subject 9 when the fragmentary images were acquired. It is generated together with angle information (information on the angle of inclination) of the probe 2 with respect to the surface.
  • a pair of fragmentary images of the first fragmentary image 41 in the linear scan mode and the second fragmentary image 42 in the sector scan mode is generated, and while the probe 2 is continuously moved along the surface of the subject 9, a plurality of pairs of such fragmentary images are generated for each tilt angle of the probe 2, together with information on the tilt angle of the probe 2. generated.
  • the number of fragment image pairs generated varies depending on the transmission/reception time and transmission/reception cycle of the ultrasonic waves by the probe 2 .
  • one fragmentary image pair of the first fragmentary image 41 and the second fragmentary image 42 is generated every approximately 125 msec.
  • the pressure estimating unit 354 compares a plurality of ultrasonic images acquired at a plurality of probe positions on the surface of the subject 9, thereby estimating the displacement of the position of the corresponding feature point between the plurality of ultrasonic images.
  • the index of pressure of the probe 2 on the subject 9 is estimated based on the calculated displacement.
  • the first fragmentary image 41 acquired in the linear scan mode is used as an ultrasound image of a shallow region within the subject 9
  • the second fragmentary image 42 acquired in the sector scan mode is used as the ultrasound image of the subject. It is used as an ultrasonic image of a deep region within the specimen 9 .
  • the pressure estimating unit 354 calculates displacement vectors representing displacements of the positions of a plurality of feature points for each of shallow and deep regions in the ultrasonic image of the subject 9 .
  • Shallow region and deep region refer to regions within the object 9 along the transmission direction of the ultrasound beam. In the ultrasound image, the shallow and deep regions may be partially overlapped.
  • the pressure estimation unit 354 estimates the pressure index based on the difference between the displacement vector acquired for the shallow region and the displacement vector acquired for the deep region. At least a part of the imaging regions of the plurality of ultrasound images to be compared overlap each other, and corresponding feature points between the plurality of ultrasound images are detected by, for example, feature point matching.
  • the pressure determination unit 355 determines whether the estimated pressure index is good or not, and notifies whether the pressure index is good or not based on the determination result in different modes. In this embodiment, the pressure determination unit 355 determines whether the pressure index is good based on a predetermined threshold. The determination result is notified to the operator through the speaker 37, for example, as sound intensity. Alternatively, the determination result is displayed on the display 31, for example, as character information.
  • the pressure determination unit 355 repeatedly performs the determination of the pressure index while the probe 2 is moved along the surface of the subject 9. whether or not can be notified in different manners. As a determination through the entire imaging, the pressure determination unit 355 determines the pressure based on a plurality of pressure indicators obtained during the movement (that is, during the measurement) after the probe 2 is moved along the surface of the subject 9. It can also be communicated differently whether the metric is good or not. When performing determination throughout the imaging, the pressure determination unit 355 is based on the ratio of the sum of multiple pressure indicators obtained during movement and the sum of the magnitudes of multiple displacement vectors obtained during movement. , it can be determined whether the pressure index is good or not. Note that the ratio of two values means division in which one of the two values is the numerator and the other value is the denominator.
  • the cross-sectional image synthesis unit 356 combines the plurality of first fragment images 41 generated by the first fragment image generation unit 352 and the plurality of second fragment images 42 generated by the second fragment image generation unit 353. are synthesized unevenly.
  • section or “transverse section” is a concept including not only a circular section but also a partial section.
  • the cross-sectional image synthesizing unit 356 performs a process of unevenly synthesizing the first fragmentary image 41 acquired in the linear scan mode and the second fragmentary image 42 acquired in the sector scan mode. is performed for each tilt angle to generate a plurality of intermediate synthesized images. For example, by replacing the region corresponding to the first fragment image 41 of the second fragment image 42 acquired by the sector scan mode with the first fragment image 41 acquired by the linear scan mode, the second fragment The first fragment image 41 is partially superimposed on the image 42 and synthesized to generate an intermediate synthesized image. Information on the tilt angle of the probe 2 is associated with the intermediate synthesized image.
  • the composite image 47 of the cross section of the subject 9 generated by the cross-sectional image synthesizing unit 356 is input to the output interface unit 36 .
  • the output interface unit 36 displays the synthesized image 47 on the display 31 by developing the data of the synthesized image 47 in the VRAM.
  • FIG. 6 is a flow chart showing a processing procedure of an ultrasonic imaging method according to one embodiment.
  • step S1 ultrasonic waves are transmitted from the probe 2 placed on the surface of the subject 9 to the inside of the subject 9, and signals related to the ultrasonic waves reflected inside the subject 9 are received through the probe 2.
  • the ultrasonic wave receiving unit 351 drives the probe 2 in linear scan mode, and the probe 2 transmits ultrasonic waves from the surface of the subject 9 toward the inside of the subject 9 in linear scan mode.
  • the probe 2 receives the ultrasonic waves reflected inside the subject 9, and the probe 2 outputs an echo signal corresponding to the linear scan mode.
  • the ultrasound receiver 351 drives the probe 2 in sector scan mode. The probe 2 outputs an echo signal corresponding to the sector scan mode.
  • step S2 an ultrasonic image is generated for each of the deep region and shallow region within the subject 9 based on the received ultrasonic signal.
  • the first fragmentary image 41 is used as an ultrasonic image of a shallow region within the subject 9
  • the second fragmentary image 42 is used as an ultrasonic image of a deep region within the subject 9 .
  • the ultrasound reception unit 351 performs processing such as analog-to-digital conversion on the input reception signal, and outputs the processed reception signal to the first fragment image generation unit 352 .
  • the first fragment image generator 352 generates the first fragment image 41 in linear scan mode.
  • the first fragment image generator 352 generates the first fragment image 41 each time the probe 2 outputs an echo signal.
  • the second fragment image generator 353 generates the second fragment image 42 in sector scan mode each time the probe 2 outputs an echo signal.
  • FIG. 7 is a schematic diagram for explaining a plurality of pairs of ultrasonic images that are consecutive in time series.
  • steps S1 and S2 are repeatedly executed while the probe 2 is moved along the surface of the subject 9 from time T1 to time TN .
  • the ultrasonic imaging apparatus 3 continuously generates pairs of the first fragmentary image 41 and the second fragmentary image 42 in time series, and generates a plurality of pairs of ultrasonic images that are consecutive in time series.
  • Generate P 1 , P 2 , . . . PN Generate P 1 , P 2 , . . . PN .
  • a pair P1 of a first fragmentary image 41 and a second fragmentary image 42 is generated at time T1
  • a pair P1 of a first fragmentary image 41 and a second fragmentary image 42 is generated at time T2 .
  • a pair P2 with the image 42 is generated, and at time TN , a pair PN with the first image fragment 41 and the second image fragment 42 is generated.
  • the plurality of pairs P 1 , P 2 Among the plurality of pairs P 1 , P 2 , .
  • the pair of ultrasound images P1 and P2 acquired from time T1 to time T2 at least a part of the imaging region overlaps between the first fragment images 41, 41, and At least a part of the imaging area overlaps between the second fragment images 42 , 42 .
  • step S3 the index of pressure on the subject 9 by the probe 2 is estimated.
  • the pressure estimating unit 354 matches the positions of corresponding feature points between two or more ultrasound images by comparing two or more ultrasound images in which at least a part of the imaging regions overlap each other. do.
  • the pressure estimation unit 354 calculates the positional displacement of the feature points between the plurality of ultrasound images by matching the positions of the feature points, and estimates the pressure index based on the positional displacement of the feature points.
  • the matching of the positions of the feature points is performed for each of shallow regions and deep regions within the subject 9 .
  • a displacement vector representing the displacement of the position of the feature point is calculated for each of the shallow region and the deep region.
  • the pressure index is estimated based on the difference between the displacement vector in the shallow region and the displacement vector in the deep region.
  • FIG. 8 is a schematic diagram for explaining feature point matching processing performed when estimating a pressure index.
  • (a) is a diagram for explaining a displacement vector B (b x , b y ) calculated for a deep region.
  • (b) is a diagram for explaining a displacement vector A(a x , a y ) calculated for a shallow region.
  • (c) is a diagram for explaining a difference C(c x , c y ) between two displacement vectors used for estimating a pressure index.
  • FIG. 9 is a flowchart showing the detailed processing procedure of step S3 shown in FIG. Step S3 has steps S31 to S33.
  • a displacement vector B(b x , b y ) is calculated for the deep region.
  • B 1 (b 1x , b 1y ), B 2 (b 2x , b 2y ), B 3 (b 3x , b 3y ) are obtained.
  • the number nB of feature points is set to 3 for simplification of explanation, the number nB of feature points is not limited to 3. In FIG.
  • reference numeral 52a denotes a feature point in the fragment image 42 of the ultrasound image pair P1 at time T1
  • reference numeral 52b denotes the fragment image 42 of the ultrasound image pair P2 at time T2 . It shows the feature points inside.
  • the displacement vector B1 is expressed as a vector indicating movement from the feature point 52a to the feature point 52b.
  • a known algorithm such as an ORB (Oriented FAST and Rotated Brief) algorithm can be used for extracting feature point pairs between the two ultrasound images 42 , 42 .
  • the displacement vector B(b x , b y ) is calculated, for example, by averaging the elements of the three displacement vectors B 1 , B 2 and B 3 . That is, b x is calculated by (b 1x +b 2x +b 3x )/3, and b y is calculated by (b 1y +b 2y +b 3y )/3.
  • a displacement vector A(a x , a y ) is calculated for the shallow region.
  • the displacement vector A (a x , a y ) is also calculated in the same manner as the displacement vector B (b x , b y ).
  • the number nA of feature points is set to 3 for simplification of explanation, the number nA of feature points is not limited to 3.
  • reference numeral 51a denotes a feature point in the fragment image 41 of the ultrasound image pair P1 at time T1
  • reference numeral 51b denotes the fragment image 41 of the ultrasound image pair P2 at time T2 . It shows the feature points inside.
  • the displacement vector A1 is expressed as a vector indicating movement from the feature point 51a to the feature point 51b.
  • the displacement vector A (a x , a y ) is calculated, for example, by averaging the elements of the three displacement vectors A 1 , A 2 and A 3 .
  • an ORB Oriented FAST and Rotated Brief
  • template matching is performed using the displacement vector B (b x , b y ) calculated between the two ultrasound images 42, 42 in step S31 as an initial value.
  • a plurality of displacement vectors A 1 (a 1x , a 1y ), A 2 (a 2x , a 2y ), A 3 (a 3x , a 3y ) between a plurality of feature points between the fragment images 41 and 41 of one image are expressed as can ask.
  • NCC Normalized Cross-Correlation
  • ZNCC Zero-mean Normalized Cross-Correlation
  • SSD Sum of Squared Difference
  • step S33 the pressure index is estimated based on the displacement vector difference C(c x , c y ).
  • the displacement vector difference C(c x , c y ) is calculated from B(b x , b y ) ⁇ A(a x , a y ). Calculate c x as (b x ⁇ a x ) and c y as (b y ⁇ a y ).
  • c x which is the component in the X direction
  • the pressure index is used as the pressure index.
  • the feature calculated by feature point matching is This is because the displacement vector of the point mainly includes the displacement deviation in the X direction.
  • the X-direction component means a component in a direction perpendicular to the transmission direction of the ultrasonic beam transmitted from the probe 2, and means a component in the azimuth direction.
  • step S4 the determination result regarding the pressure index is notified by sound.
  • the magnitude of the estimated pressure indicator (c x ) is determined based on a predetermined threshold value (first threshold value) of the pressure indicator.
  • the pressure determination unit 355 determines whether or not the pressure index (c x ) estimated in step S3 is good, based on the first threshold value of the predetermined pressure index.
  • the first threshold is set in advance and stored in memory.
  • the press determination unit 355 transmits the determination result data to the output interface unit 36 , and a sound corresponding to the determination result is output from the speaker 37 . For example, when the pressure index is good, no sound is output from the speaker 37, and no sound is output.
  • step S4 scanning by the probe 2 from time T1 to time TN is not completed, and the determination result notified by the pressure determination unit 355 by sound in step S4 is a real-time determination result. It can be said.
  • the determination result is notified by sound, but the sound may be replaced by voice, or the determination result may be notified by other forms such as light or vibration instead of sound.
  • the ultrasonic imaging apparatus 3 can be appropriately provided with a light-emitting device such as an LED and a vibration generator such as a vibrator in addition to the speaker 37 .
  • Steps S1 to S4 are repeated until scanning by the probe 2 ends (Yes in step S5).
  • an index pressing index
  • an index indicating the magnitude of the contact pressure of the probe to the subject is quantified. be done.
  • the ultrasonic imaging apparatus 3 determines whether or not the operator has performed a good probing technique, and notifies the operator of the determination result.
  • step S5 When the scanning by the probe 2 from the time T1 to the time TN ends (Yes in step S5), a plurality of pairs P1 , P2 , . N is generated. In steps S6 to S8, processing using a plurality of pairs P 1 , P 2 , . . . PN of these ultrasound images is performed.
  • step S6 the cross-sectional image synthesizing unit 356 unevenly synthesizes the plurality of first fragment images 41 and the plurality of second fragment images 42 to generate a synthetic image 47 of the cross section of the subject 9. .
  • step S7 a panorama composite image 47 of the cross section of the subject 9 is displayed on the display 31.
  • FIG. 10 is a flowchart showing the detailed processing procedure of step S6 shown in FIG. Step S6 has steps S61 to S63.
  • step S61 the cross-sectional image synthesizing unit 356 generates an intermediate synthesized image for each tilt angle of the probe 2.
  • the cross-sectional image synthesizing unit 356 partially superimposes the first fragmentary image 41 on the second fragmentary image 42 and synthesizes them to generate an intermediate synthetic image.
  • Step S61 is repeated until the generation of intermediate composite images is completed for all probe tilt angles (Yes in step S62). Thereby, a plurality of intermediate composite images are generated for each tilt angle of the probe 2 .
  • step S63 the cross-sectional image synthesizing unit 356 rotates and synthesizes a plurality of intermediate synthesized images based on the tilt angle of the probe 2.
  • a panorama composite image 47 of the cross section of the subject 9 is generated.
  • An example of a panorama composite image 47 of a cross-section of the thigh produced by an ultrasound imaging method according to one embodiment is illustrated in FIGS. 11 and 12 .
  • FIG. 11 is an example of a panorama synthesized image when the pressure index is good
  • FIG. 12 is an example of a panorama synthesized image when the pressure index is not good.
  • step S8 the determination result regarding the pressure index is displayed in characters.
  • the magnitude of the pressure indicator is determined based on a predetermined threshold value (second threshold value) of the pressure indicator.
  • the pressure determination unit 355 calculates the average magnitude of the pressure index obtained at each time during the scanning by the probe 2 from time T1 to time TN .
  • the average magnitude of the pressure indices at each time is calculated by dividing the sum total of a plurality of pressure indices obtained during movement of the probe 2 by the sum total of the magnitudes of the displacement vectors.
  • the sum of a plurality of pressure indices obtained during movement is calculated by adding the X components of the displacement vector difference C(c x , c y ) throughout the measurement, as shown in Equation (1).
  • the sum of the magnitudes of the displacement vectors is the magnitude of the displacement vector B calculated in the alignment with the second fragment image 42 in the sector scan mode, which is the base of feature point matching. is calculated by summing over the entire measurement.
  • the pressure determination unit 355 determines whether or not the calculated average value of the magnitudes of the pressure indicators is good based on the second threshold value of the predetermined pressure indicators.
  • the pressure determination unit 355 transmits data of the determination result to the output interface unit 36, and characters corresponding to the determination result are displayed on the display 31.
  • FIG. For example, if the pressure index is good, the characters "Good” are displayed as indicated by reference numeral 51 in FIG. 11, and if the pressure index is not good, the characters "Error" are displayed as indicated by reference numeral 51 in FIG. Is displayed.
  • the score of the pressure index indicated by reference numeral 52 is displayed in addition to the character of the determination result of the pressure index indicated by reference numeral 51.
  • FIG. The score of the pressure indicator can be obtained by scoring the estimated size of the pressure indicator based on, for example, a score table prepared in advance.
  • step S8 the scanning by the probe 2 performed from time T1 to time TN has been completed, and the determination result displayed in characters by the pressure determination unit 355 in step S8 is It can be said that this is a comprehensive judgment result.
  • the displacement of the position of the corresponding feature point between the plurality of ultrasound images is calculated.
  • the index of pressure of the probe 2 on the subject 9 is estimated based on the calculated displacement. It is determined whether or not the estimated pressure index is good, and based on the determination result, whether or not the pressure index is good is notified in different modes.
  • Determination of the pressure index can be performed in real time or after the end of imaging. Notification as to whether or not the pressure index is appropriate may be made by sound, voice, light, vibration, or the like, or by text or display.
  • the pressure index is estimated by matching feature points between a plurality of images, that is, by performing image processing. can be suppressed to quantify the pressure.
  • the pressure estimating unit 354 compares a plurality of ultrasonic images acquired at a plurality of probe positions on the surface of the subject 9, thereby identifying corresponding feature points among the plurality of ultrasonic images. The displacement of the position is calculated, and the pressure index of the probe 2 to the subject 9 is estimated based on the calculated displacement. Not limited.
  • the pressure estimation unit 354 can further have the function of a speed estimation unit, and the pressure determination unit 355 can further have the function of a speed determination unit.
  • the velocity estimator operates in the same manner as the pressure estimator 354.
  • the operations of the velocity estimator and the pressure estimator 354 can be shared up to the process of calculating the displacement of the position of the corresponding feature point. That is, the velocity estimating unit compares a plurality of ultrasonic images acquired at a plurality of probe positions on the surface of the subject 9, thereby estimating the displacement of the position of the corresponding feature point between the plurality of ultrasonic images. Based on the ratio between the calculated displacement and the measurement time, an index (hereinafter also referred to as a speed index) relating to the moving speed of the probe 2 is estimated.
  • a speed index an index relating to the moving speed of the probe 2 is estimated.
  • the speed determination section operates in the same manner as the pressure determination section 355 . That is, the speed determination unit determines whether or not the estimated speed index is good based on a predetermined speed index threshold value (third threshold value), and determines whether or not the speed index is good based on the determination result. Notify in different ways. Similar to the pressure determination unit 355, the determination may be performed in real time while scanning is performed by the probe 2 from time T1 to time TN , or may be performed during the scanning by the probe 2 from time T1 to time TN . may be performed as a comprehensive determination through the entire imaging by the probe 2 after the is completed.
  • a predetermined speed index threshold value third threshold value
  • the speed judgment unit displays the characters "Good” as indicated by reference numeral 53 in FIGS. If it is not good, for example, the characters "Error" are displayed. In the example shown in FIGS. 11 and 12, the score of the speed index is displayed as indicated by reference numeral 54 for the speed index as well as the pressure index.
  • the displacement vector B(b x , b y ) is calculated by, for example, averaging the elements of the three displacement vectors B 1 , B 2 , B 3 .
  • the method for calculating x , b y ) is not limited to this aspect. For example, instead of such simple arithmetic averaging, weighting according to the depth in the second image fragment 42 is added to the displacement vectors B 1 , B 2 , B 3 , and the displacement vector B(b x , b y ) may be calculated.
  • the contribution of the displacement vector B 1 existing at a shallow position in the second fragment image 42 is The weighting can be such that it increases and the contribution by the deep-lying displacement vector B3 is reduced. The same applies to the calculation of the displacement vector A(a x , a y ) for the first image fragment 41 .
  • the first fragmentary image 41 acquired in the linear scan mode is used as an ultrasound image of a shallow region within the subject 9, and the second fragmentary image 42 acquired in the sector scan mode is used as the ultrasound image of the subject.
  • the ultrasonic images are used as the ultrasonic images of the deep region inside the subject 9
  • the combination of ultrasonic images used when the pressure estimation unit 354 estimates the pressure index is not limited to this.
  • the second fragment image 42 acquired in the sector scan mode is used for a shallow region within the subject 9, and the first fragment image acquired in the linear scan mode is used.
  • a fragment image 41 may be used for a deep region within the subject 9 .
  • the first fragmentary image 41 acquired by the linear scan mode may be used, or for both shallow and deep regions within the subject 9.
  • the second fragment image 42 acquired by the sector scan mode may be used.
  • the ORB Oriented FAST and Rotated Brief
  • the algorithm used to extract feature point pairs is not limited to this.
  • Various other algorithms for extracting feature points can also be used, such as SIFT (Scale-invariant feature transform), SURF (Speeded Up Robust Features), AKAZE (Accelerated-KAZE), and the like.
  • the cross-sectional image synthesizing unit 356 performs a process of non-uniformly synthesizing the first fragment image 41 and the second fragment image 42 for each tilt angle of the probe 2 to generate a plurality of intermediate synthetic images.
  • the panorama synthetic image 47 is generated by synthesizing these multiple intermediate synthetic images by rotating them based on the tilt angle of the probe 2, but the manner in which the panorama synthetic image 47 is generated is not limited to this.
  • the cross-sectional image synthesizing unit 356 rotates and synthesizes a plurality of first fragment images acquired in the linear scan mode based on the tilt angle of the probe 2, thereby performing the first intermediate synthesizing. Generate an image.
  • a plurality of second fragment images generated for each tilt angle of the probe 2 are rotated based on the tilt angle of the probe 2 and synthesized.
  • a second intermediate synthesized image is generated.
  • the first intermediate synthesized image and the second intermediate synthesized image are weighted and synthesized to generate a panorama synthesized image 47 in which the first fragmentary image and the second fragmentary image are unevenly synthesized.
  • the pressure determination unit 355 determines whether or not the pressure indicator is good based on a predetermined threshold, but the determination of the pressure indicator is not limited to using the threshold.
  • the pressure determination unit 355 may determine whether or not the pressure index is good, for example, using artificial intelligence such as machine learning or deep learning.
  • the threshold values (first threshold value, second threshold value, and third threshold value) used by the pressure determination unit 355 and the speed determination unit for determination may be set in advance and stored in a memory. Alternatively, an operator input via the input device 32 may be used.
  • the pressure estimating unit 354 compares two or more ultrasound images in which the imaging regions at least partially overlap each other, thereby calculating the displacement of the position of the feature point between the two or more ultrasound images. , and the pressure index is estimated based on the calculated displacement, the manner in which the pressure estimation unit 354 estimates the pressure index is not limited to this manner.
  • the pressure estimator 354 may estimate the pressure index by using artificial intelligence such as machine learning or deep learning.
  • the pressure estimation unit 354 can be configured as a learned learning model.
  • the pressure estimation unit 354 learns the ultrasonic image and the pressure index obtained by comparing the displacement of the feature points between the ultrasonic images, and outputs the estimated value of the pressure index when the ultrasonic image is input.
  • the pressure index is estimated by the learning model of .
  • the signal processing unit 35 can include a learning unit 359 that causes the pressure estimating unit 354 to learn the ultrasonic image and the pressure index obtained by comparing the displacement of the feature points between the ultrasonic images.
  • the probe 2 in order to obtain fragmentary images corresponding to a plurality of mutually different positions on the surface of the subject 9, the probe 2 is moved along the surface of the subject 9, and ultrasonic waves are intermittently emitted from the probe 2.
  • the manner in which fragment images are obtained is not limited to this.
  • a plurality of probes 2 may be arranged on the subject 9 and ultrasonic waves may be transmitted simultaneously from each probe 2 .
  • the probe 2 operates in both the linear scan mode and the sector scan mode in the above embodiment
  • the probe 2 drive method is not limited to this.
  • the probe 2 may operate in convex scan mode instead of sector scan mode. That is, the probe 2 may operate in both the linear scan mode and the convex scan mode.
  • An ultrasonic image obtained by the linear scan mode is belt-shaped, and an ultrasonic image obtained by the sector scan mode or convex scan mode is fan-shaped or convex.
  • the ultrasonic images were continuously acquired while pressing the probe against the surface of the subject and moving the probe along the surface of the subject.
  • Ultrasound images were acquired in linear scan mode.
  • the reduction ratio of the cross-sectional area of the ultrasonic image was based on the cross-sectional image captured by the MRI apparatus.
  • Fig. 13 shows a graph of the verification results.
  • (a) is the difference in the amount of misalignment in the X-axis direction
  • (b) is the difference in the amount of misalignment in the Y-axis direction.
  • the misalignment amount means the amount of movement of the feature points when the feature points are matched between temporally adjacent ultrasound images.
  • the difference in the amount of displacement means the difference between the amount of displacement in a shallow region and the amount of displacement in a deep region within the object.
  • the larger the numerical value on the horizontal axis the greater the deformation due to pressure, and the smaller the numerical value of the ratio shown on the vertical axis, the greater the deformation due to pressure and the smaller the cross-sectional area.
  • the difference in the amount of misalignment in the X-axis direction (the component in the X-axis direction of the amount of movement of the feature points) is correlated with the area reduction ratio of the ultrasonic image. was confirmed. As a result, it was shown that it is effective to use the component in the X-axis direction and exclude the component in the Y-axis direction for the misalignment amount used as the pressing index.
  • the pressure index was calculated by the following two calculation methods.
  • the first pressure index was calculated by dividing the total amount of misalignment in the X-axis direction by the number of frames (the number of ultrasonic images).
  • the second pressure index was calculated by dividing the total amount of misalignment in the X-axis direction by the total vector.
  • the sum of the vectors is the magnitude of the displacement vector (displacement vector B in the description of the above embodiment) calculated in the alignment on which the feature point matching is based while the probe is moved along the surface of the subject. means the sum of
  • Feature point matching was performed under the following four conditions to simulate changes in probe movement speed. If the number of images to be skipped is increased, the moving speed of the probe will be simulated faster.
  • condition (II) As the number of skipped images was gradually increased from condition (II) to condition (IV), the value of the first pressure index increased monotonously.
  • the second pressure index showed a substantially constant value throughout the conditions (I) to (IV), although there were some variations in the values depending on the operator.
  • the first pressure indicator is an indicator that depends on the moving speed of the probe
  • the second pressure indicator is an indicator that is less affected by the moving speed of the probe. It was shown that it is appropriate to use the second pressure index with less variation in value.
  • the present invention can be applied to both medical and non-medical applications, and is particularly suitable for use by subjects who are not medical professionals to visualize and routinely check their own muscle conditions. .
  • Ultrasonic Imaging System 2 Probe 3 Ultrasonic Imaging Device 9 Subject 31 Display 32 Input Device 33 Auxiliary Storage Device 34 Communication Interface Unit 35 Signal Processing Unit 36 Output Interface Unit 37 Speaker 41 First Fragmented Image 42 Second Fragmented Image 47 Panoramic composite image 351 Ultrasonic wave receiving unit 352 First fragment image generating unit (image generating unit) 353 second fragment image generator (image generator) 354 pressure estimation unit 355 pressure determination unit 356 cross-sectional image synthesis unit 359 learning unit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

[Problem] To provide an ultrasonic imaging device that quantifies manipulation of a probe by an operator when the probe is moved over the surface of a subject. [Solution] This ultrasonic imaging device 3 comprises: an ultrasonic receiving unit 351 that receives, via a probe disposed on a surface of the subject, signals pertaining to ultrasonic waves transmitted by the probe into the subject and reflected inside the subject; image generating units 352 and 353 that generate ultrasonic images on the basis of the signals of the received ultrasonic waves; and a pressing force estimating unit 354 that estimates, on the basis of the displacements of positions of corresponding feature points, a pressing force indicator that is an indicator representing the magnitude of a contact force on the subject due to the probe, in two or more ultrasonic images which are acquired at a plurality of probe positions on the surface of the subject and partially overlap each other.

Description

超音波撮像装置、超音波撮像システム、超音波撮像方法および超音波撮像プログラムUltrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method and ultrasonic imaging program
 本発明は、超音波によって被検体の内部を撮像する超音波撮像装置、超音波撮像システム、超音波撮像方法および超音波撮像プログラムに関する。 The present invention relates to an ultrasonic imaging apparatus, an ultrasonic imaging system, an ultrasonic imaging method, and an ultrasonic imaging program for imaging the inside of a subject using ultrasonic waves.
 大腿四頭筋は大腿部の筋肉であり、太ももを引き上げる、膝関節を延ばす等の動きを司っている。大腿四頭筋の筋量は高齢化に伴って著しく減少するため、大腿四頭筋の減少は高齢者の歩行難や転倒の要因となっている。したがって、大腿四頭筋の筋量などを把握することにより、高齢者の歩行難や転倒についての診療が行われている。大腿四頭筋を含む大腿部の横断面全体を撮像するためには、例えばCT(Computed Tomography)装置やM
RI(Magnetic Resonance Imaging)装置が用いられている。
The quadriceps femoris muscle is the muscle of the thigh and controls movements such as pulling up the thigh and extending the knee joint. Since the muscle mass of the quadriceps femoris muscle decreases significantly with aging, the decrease in the quadriceps femoris muscle is a factor in walking difficulties and falls in the elderly. Therefore, by ascertaining the muscle mass of the quadriceps femoris, elderly people are diagnosed with walking difficulties and falls. For example, a CT (Computed Tomography) device or an M
An RI (Magnetic Resonance Imaging) device is used.
 一方で、CT装置やMRI装置は高価であり、かつ撮像に要する時間が長いことから、より簡便な撮像技術が望まれている。そこで、超音波を用いて人体の横断面を広範囲に撮像する技術が各種考案されている。例えば特許文献1には、超音波を送受するプローブを用いて、被検体である人体の大腿部、上腕部、腹部等の横断面を撮像する技術が開示されている。特許文献1の技術によると、オペレータが、プローブの角度を人体の表面に対して適切な角度となるように維持しながら、撮像対象の周囲を横断面に沿ってプローブを移動させつつ連続して撮像し、撮像した超音波画像を合成することにより、撮像対象の部位に関する横断面を広範囲に撮像したパノラマ合成画像(以下、単に「合成画像」とも記載する)が取得される。 On the other hand, CT devices and MRI devices are expensive and require a long time for imaging, so a simpler imaging technology is desired. Therefore, various techniques have been devised for imaging a wide range of cross-sections of the human body using ultrasonic waves. For example, Japanese Patent Laid-Open No. 2002-200000 discloses a technique for imaging cross-sections of the thigh, upper arm, abdomen, and the like of a human body, which is a subject, using a probe that transmits and receives ultrasonic waves. According to the technique of Patent Document 1, the operator continuously moves the probe along the cross section around the object to be imaged while maintaining the angle of the probe at an appropriate angle with respect to the surface of the human body. By imaging and synthesizing the imaged ultrasound images, a panorama synthetic image (hereinafter also simply referred to as "composite image") obtained by imaging a wide cross-section of the region of the imaging target is obtained.
 超音波を用いて撮像される超音波画像には、プローブを被検体に押し当てることにより生じる誤差が含まれる。例えば、被検体である人体の表面に対してプローブの角度が適切な角度になっておらず、プローブが被検体の表面に均等に押圧されていない場合には、撮像される超音波画像には、被検体表面の組織が変形することによる誤差が含まれる。超音波画像に誤差が含まれていると、超音波画像に基づいて計測する筋厚や筋断面積にも誤差が含まれ、正確な計測値を得ることができない。プローブによる被検体の過度な押圧を避けるために、オペレータへは、「可能な限り押圧を弱く、しかしプローブが被検体の表面から離れないように」などという、定性的な表現による指示がなされている。しかしながら、オペレータへの定性的な表現での指示には、指示の受け取り方に個人差があり、オペレータの技能の違いにより、撮像される超音波画像の品質にはばらつきが生じている。  Ultrasound images captured using ultrasound include errors caused by pressing the probe against the subject. For example, if the angle of the probe with respect to the surface of the human body, which is the subject, is not at an appropriate angle, and the probe is not evenly pressed against the surface of the subject, the ultrasound image to be captured will include , includes errors due to deformation of the tissue on the surface of the object. If the ultrasonic image contains an error, the muscle thickness and muscle cross-sectional area measured based on the ultrasonic image also contain an error, making it impossible to obtain accurate measurement values. In order to avoid excessive pressing of the subject by the probe, the operator is instructed by qualitative expressions such as "apply as little pressure as possible, but keep the probe from the surface of the subject." there is However, there are individual differences in the way instructions are given to operators using qualitative expressions, and variations in the quality of ultrasound images taken occur due to differences in operator skill.
 超音波画像に含まれる誤差の原因が、プローブを押圧する強度やプローブの姿勢等といったオペレータによるプローブの手技にあることから、オペレータによる手技を定量化する取り組みが従来からなされている。例えば特許文献2には、被検体に対する超音波センサの押圧を、プローブの四隅に設けた力センサを用いて検出することにより、オペレータがプローブの姿勢を調整する技術が開示されている。 Since the cause of the error contained in the ultrasound image is the probing technique performed by the operator, such as the force with which the probe is pressed and the posture of the probe, efforts have been made to quantify the technique performed by the operator. For example, Patent Literature 2 discloses a technique in which an operator adjusts the posture of a probe by detecting pressure of an ultrasonic sensor against a subject using force sensors provided at four corners of the probe.
国際公開第2017/010193号WO2017/010193 特開2015-80600号公報Japanese Patent Application Laid-Open No. 2015-80600
 被検体である人体の大腿部、上腕部、腹部等の周囲を、これら被検体表面に沿ってプローブを移動させつつ連続して超音波画像を撮像し、撮像対象の部位に関するパノラマ合成画像を取得しようとすると、プローブが移動する方向に沿って、被検体表面の組織の変形が連続して発生する。このような場合、プローブの押圧による組織の変形の程度は、被検体表面に沿ったプローブの移動に応じて刻々と変化する。撮像対象の部位に関するより鮮明なパノラマ合成画像を取得するために、被検体表面に沿ってプローブを移動させつつ連続して超音波画像を撮像するケースにおいても、オペレータによるプローブの手技を定量化することが求められている。 Ultrasonic images are continuously taken around the thighs, upper arms, abdomen, etc. of the human body, which is the subject, while moving the probe along the surface of the subject, and a panoramic composite image of the region to be imaged is obtained. Acquisition attempts cause continuous deformation of the tissue on the subject's surface along the direction in which the probe moves. In such a case, the degree of tissue deformation due to the pressure applied by the probe changes moment by moment according to the movement of the probe along the surface of the subject. To quantify the operator's manipulation of the probe even in the case of continuously capturing ultrasound images while moving the probe along the surface of the subject in order to obtain a clearer panoramic composite image of the target site. is required.
 本発明の目的は、被検体表面に沿ってプローブを移動させる際のオペレータによるプローブの手技を定量化する超音波撮像装置を提供することにある。 An object of the present invention is to provide an ultrasonic imaging apparatus that quantifies an operator's manipulation of the probe when moving the probe along the surface of the subject.
 本発明に係る超音波撮像装置は、被検体の表面に配置されたプローブから当該被検体の内部に送信されて、前記被検体の内部で反射された超音波に関する信号を、前記プローブを通じて受信する超音波受信部と、受信した前記超音波の信号に基づいて超音波画像を生成する画像生成部と、前記被検体の表面上の複数のプローブ位置において取得された、互いに少なくとも一部の撮像領域が重なる2枚以上の前記超音波画像間における、対応する特徴点の位置の変位に基づいて、前記プローブによる前記被検体への接触圧の大きさを示す指標である押圧指標を推定する押圧推定部と、を備えることを特徴とする。 An ultrasonic imaging apparatus according to the present invention receives, through the probe, a signal related to ultrasonic waves transmitted from a probe placed on the surface of a subject to the inside of the subject and reflected inside the subject. An ultrasonic wave receiving unit, an image generating unit that generates an ultrasonic image based on the received ultrasonic signal, and at least partial imaging regions acquired at a plurality of probe positions on the surface of the subject. pressure estimation for estimating a pressure index, which is an index indicating the magnitude of the contact pressure of the probe to the subject, based on the displacement of the positions of the corresponding feature points between the two or more superimposed ultrasound images. and a part.
 本発明に係る超音波撮像システムは、被検体の表面から超音波を内部に送信し、前記被検体の内部で反射された前記超音波を受信するプローブと、本発明に係る超音波撮像装置と、を備えることを特徴とする。 An ultrasonic imaging system according to the present invention includes a probe that transmits ultrasonic waves from the surface of a subject to the inside and receives the ultrasonic waves reflected inside the subject, and an ultrasonic imaging device according to the present invention. , is provided.
 本発明に係る超音波撮像方法は、被検体の表面に配置されたプローブから当該被検体の内部に送信されて、前記被検体の内部で反射された超音波に関する信号を、前記プローブを通じて受信する超音波受信ステップと、受信した前記超音波の信号に基づいて超音波画像を生成する画像生成ステップと、前記被検体の表面上の複数のプローブ位置において取得された、互いに少なくとも一部の撮像領域が重なる2枚以上の前記超音波画像間における、対応する特徴点の位置の変位に基づいて、前記プローブによる前記被検体への接触圧の大きさを示す指標である押圧指標を推定する押圧推定ステップと、を含むことを特徴とする。 An ultrasonic imaging method according to the present invention receives, through the probe, a signal related to ultrasonic waves transmitted from a probe placed on the surface of a subject to the inside of the subject and reflected inside the subject. an ultrasonic wave receiving step; an image generating step of generating an ultrasonic image based on the received ultrasonic wave signal; pressure estimation for estimating a pressure index, which is an index indicating the magnitude of the contact pressure of the probe to the subject, based on the displacement of the positions of the corresponding feature points between the two or more superimposed ultrasound images. and a step.
 本発明に係る超音波撮像プログラムは、被検体の表面に配置されたプローブから当該被検体の内部に送信されて、前記被検体の内部で反射された超音波に関する信号を、前記プローブを通じて受信する超音波受信部、受信した前記超音波の信号に基づいて超音波画像を生成する画像生成部、前記被検体の表面上の複数のプローブ位置において取得された、互いに少なくとも一部の撮像領域が重なる2枚以上の前記超音波画像間における、対応する特徴点の位置の変位に基づいて、前記プローブによる前記被検体への接触圧の大きさを示す指標である押圧指標を推定する押圧推定部、としてコンピュータを動作させることを特徴とする。 An ultrasonic imaging program according to the present invention receives a signal related to ultrasonic waves transmitted from a probe placed on the surface of a subject to the inside of the subject and reflected inside the subject through the probe. An ultrasonic wave receiving unit, an image generating unit that generates an ultrasonic image based on the received ultrasonic wave signal, and at least a part of the imaging regions acquired at a plurality of probe positions on the surface of the subject overlap each other. A pressure estimating unit that estimates a pressure index, which is an index indicating the magnitude of the contact pressure of the probe on the subject, based on the displacement of the positions of the corresponding feature points between the two or more ultrasound images; It is characterized by operating the computer as
 本発明によると、被検体表面に沿ってプローブを移動させる際のオペレータによるプローブの手技を定量化する超音波撮像装置を提供することができる。 According to the present invention, it is possible to provide an ultrasonic imaging apparatus that quantifies the manipulation of the probe by the operator when moving the probe along the surface of the object.
プローブを大腿部に押し当てることにより生じる大腿部軟組織の変形を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining deformation of thigh soft tissue caused by pressing the probe against the thigh. プローブを大腿部に押し当てることにより生じる大腿部軟組織の変形を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining deformation of thigh soft tissue caused by pressing the probe against the thigh. プローブを大腿部に押し当てることにより生じる大腿部軟組織の変形を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining deformation of thigh soft tissue caused by pressing the probe against the thigh. 一実施形態に係る超音波撮像システムの構成を示す模式図である。1 is a schematic diagram showing the configuration of an ultrasound imaging system according to one embodiment; FIG. 一実施形態に係る超音波撮像装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an ultrasonic imaging apparatus according to one embodiment; FIG. 一実施形態に係る超音波撮像方法の処理手順を示すフローチャートである。4 is a flow chart showing a processing procedure of an ultrasonic imaging method according to one embodiment; 時系列的に連続した超音波画像の複数のペアを説明するための模式的な図である。FIG. 4 is a schematic diagram for explaining a plurality of pairs of ultrasound images that are consecutive in time series; 押圧指標を推定する際に行う特徴点のマッチング処理を説明するための模式的な図である。FIG. 10 is a schematic diagram for explaining feature point matching processing performed when estimating a pressure index; 図6に示すステップS3の詳細な処理手順を示すフローチャートである。FIG. 7 is a flowchart showing a detailed processing procedure of step S3 shown in FIG. 6; FIG. 図6に示すステップS6の詳細な処理手順を示すフローチャートである。FIG. 7 is a flowchart showing a detailed processing procedure of step S6 shown in FIG. 6; FIG. 押圧指標が良好な場合における大腿部の横断面のパノラマ合成画像の一例である。It is an example of a panorama synthetic image of the cross section of the thigh when the pressure index is good. 押圧指標が良好ではない場合における大腿部の横断面のパノラマ合成画像の一例である。It is an example of a panorama synthetic image of the cross section of the thigh when the pressure index is not good. 実施例1に係る検証結果を示すグラフである。4 is a graph showing verification results according to Example 1. FIG. 実施例2に係る比較結果を示すグラフである。9 is a graph showing comparison results according to Example 2. FIG. 実施例2に係る比較結果を示すグラフである。9 is a graph showing comparison results according to Example 2. FIG.
 以下、本発明の実施形態を、添付の図面を参照して詳細に説明する。なお、以下の説明および図面において、同じ符号は同じまたは類似の構成要素を示すこととし、よって、同じまたは類似の構成要素に関する重複した説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description and drawings, the same reference numerals denote the same or similar components, and redundant description of the same or similar components will be omitted.
(押圧指標)
 図1~図3は、プローブを大腿部に押し当てることにより生じる大腿部軟組織の変形を説明するための模式的な断面図である。以下、図1~図3を参照して、プローブを用いて被検体の超音波画像を取得する際に生じる被検体の変形に関して考察をし、本発明において用いる、プローブによる被検体への接触圧の大きさを示す指標(以下、単に押圧指標とも呼ぶ)を説明する。
(press index)
1 to 3 are schematic cross-sectional views for explaining the deformation of femoral soft tissue caused by pressing the probe against the femoral region. Hereinafter, with reference to FIGS. 1 to 3, the deformation of the subject that occurs when an ultrasonic image of the subject is acquired using the probe will be discussed. An index indicating the magnitude of (hereinafter also simply referred to as a pressure index) will be described.
 図1に示すように、被検体9である人体の大腿骨91に向けて、図中下方向(Y方向)に大腿部表面92にプローブ2を押し当てると、軟組織93中のそれぞれの特徴点は、プローブ2による軟組織93への押圧の程度と、プローブ2と特徴点との位置関係とに応じて様々な位置へ移動する。図中、符号94は、軟組織93が変形する前の特徴点を示し、符号95は、軟組織93が変形した後の移動後の特徴点を示している。符号96は、軟組織93が変形することにより生じる特徴点の移動を示す変位ベクトル(以下、変位ベクトルを移動ベクトルとも呼ぶ)である。符号96Xは、変位ベクトル96の横方向(X方向)の成分であり、符号96Yは、変位ベクトル96の縦方向(Y方向)の成分である。なお、押圧による変形の程度は、浅い領域ほど歪みが大きく深い領域ほど歪みが小さくなり、図1に示す複数の変位ベクトル96の分布および大きさは、人体のファントムを用いた模擬的な変形実験により得られる結果と傾向が一致していることが確認されている。 As shown in FIG. 1, when the probe 2 is pressed against the femoral surface 92 in the downward direction (Y direction) toward the femur 91 of the human body, which is the subject 9, each feature in the soft tissue 93 is detected. The point moves to various positions depending on the degree of pressing of the soft tissue 93 by the probe 2 and the positional relationship between the probe 2 and the feature point. In the figure, reference numeral 94 indicates a feature point before soft tissue 93 is deformed, and reference numeral 95 indicates a feature point after movement after deformation of soft tissue 93 . Numeral 96 is a displacement vector (hereinbelow, the displacement vector is also referred to as a movement vector) indicating the movement of the feature point caused by deformation of the soft tissue 93 . Reference numeral 96X denotes the component of the displacement vector 96 in the horizontal direction (X direction), and reference numeral 96Y denotes the component of the displacement vector 96 in the vertical direction (Y direction). It should be noted that the degree of deformation due to pressure is such that the shallower the region, the larger the strain, and the deeper the region, the smaller the strain. The distribution and magnitude of the plurality of displacement vectors 96 shown in FIG. It has been confirmed that the results obtained by
 図1を参照して、軟組織93にプローブ2を押し当てた際に生じる、軟組織93中の特徴点の移動を考察する。図1に示すように、横方向の変位96Xは、プローブ2の中心線97に近づくほど小さくなり、プローブ2の両端に近づくほど大きくなる。すなわち横方向の変位の分布は中心線97からの距離に応じて変化する。これに対し、縦方向の変位96Yは、プローブ2の中心線97に近づくほど大きくなり、プローブ2の両端に近づくほ
ど小さくなる。また、縦方向の変位96Yであっても、浅い領域と深い領域とでは変位の大きさが変化しており、浅い領域ほど変位が大きくなり、深い領域ほど変位が小さくなる。
Referring to FIG. 1, the movement of feature points in soft tissue 93 that occurs when probe 2 is pressed against soft tissue 93 will be considered. As shown in FIG. 1, the lateral displacement 96X is smaller nearer the centerline 97 of the probe 2 and larger nearer both ends of the probe 2 . That is, the lateral displacement distribution varies with distance from centerline 97 . On the other hand, the longitudinal displacement 96Y increases as it approaches the centerline 97 of the probe 2 and decreases as it approaches both ends of the probe 2 . Further, even in the vertical displacement 96Y, the magnitude of the displacement varies between the shallow region and the deep region.
 図2および図3を参照して、軟組織93に押し当てられたプローブ2が時刻Tから時刻Tにかけて横方向に移動した際に生じる、軟組織93中の特徴点の移動を考察する。 2 and 3, consider the movement of feature points in the soft tissue 93 that occurs when the probe 2 pressed against the soft tissue 93 moves laterally from time T0 to time T1 .
 或る時刻Tにおいて、図2に示すように軟組織93中の中心線97を挟んだ対称の位置に2つの特徴点94が観測できていたとする。この時刻Tの時点においては、2つの特徴点94は中心線97からの距離が同じである。よって、プローブ2の押圧による軟組織93の変形により、図示する例では、左右2つの特徴点94はX座標において例えば目盛り0.5ずつ左右にずれて、特徴点95の位置へそれぞれ移動する。左右2つの特徴点94は中心線97を挟んで対称の位置にあるので、特徴点94から特徴点95への変位の大きさも左右で同じである。 Assume that at a certain time T0 , two feature points 94 can be observed at symmetrical positions across a center line 97 in the soft tissue 93 as shown in FIG. At time T 0 , the two feature points 94 are at the same distance from the center line 97 . Therefore, due to the deformation of the soft tissue 93 due to the pressing force of the probe 2 , in the illustrated example, the two left and right feature points 94 shift left and right by 0.5 on the X coordinate scale, respectively, and move to the position of the feature point 95 . Since the left and right two feature points 94 are symmetrical with respect to the center line 97, the magnitude of the displacement from the feature point 94 to the feature point 95 is also the same on the left and right sides.
 次に、図2に示す時刻Tの状態からプローブ2を横方向(図中右側:X軸の正の方向)へ移動させることにより、図3に示す時刻Tの状態になったとする。この時刻Tの時点においては、横方向へのプローブ2の移動に応じた分だけ、特徴点94,95や大腿骨91も横方向(図中左側:X軸の負の方向)へ移動する。ここで図1を参照して説明したように、横方向の変位の分布は、中心線97からの距離に応じて変化している。 Next, it is assumed that the state of time T1 shown in FIG. 3 is reached by moving the probe 2 in the lateral direction (right side in the drawing: positive direction of the X-axis) from the state of time T0 shown in FIG . At time T1 , the feature points 94 and 95 and the femur 91 also move laterally (left side in the drawing: negative direction of the X axis) by the amount corresponding to the lateral movement of the probe 2. . As described herein with reference to FIG. 1, the lateral displacement distribution varies with distance from centerline 97 .
 よって、図3に示すように、図示する4つの特徴点94,94,95,95のうち、中心線97の図中左側に位置する2つの特徴点94,95は、中心線97から離れる方向へ移動するので、横方向の変位が大きくなり、左側に位置するこれら2つの特徴点94,95の変位94a,95aは、プローブ2を横方向へ移動させていない時刻T時の変位よりも大きくなる。これは図中に示す左方向へのずれ量αのことである。同様に、中心線97の図中右側に位置する2つの特徴点94,95は、中心線97に近づく方向へ移動するので、横方向の変位が小さくなり、右側に位置するこれら2つの特徴点94,95の変位94b,95bは、プローブ2を横方向へ移動させていない時刻T時の変位よりも小さくなる。これは図中に示す左方向へのずれ量βのことである。 Therefore, as shown in FIG. 3, of the four characteristic points 94, 94, 95, and 95 shown, the two characteristic points 94 and 95 located on the left side of the center line 97 in the drawing are directed away from the center line 97. The displacement 94a, 95a of these two feature points 94, 95 located on the left side is larger than the displacement at time T0 when the probe 2 is not moved in the lateral direction. growing. This is the leftward shift amount α shown in the drawing. Similarly, the two feature points 94 and 95 located on the right side of the center line 97 in the drawing move toward the center line 97, so that the displacement in the lateral direction becomes small, and these two feature points located on the right side move toward the center line 97. Displacements 94b and 95b of 94 and 95 are smaller than the displacement at time T0 when the probe 2 is not moved laterally. This is the shift amount β to the left shown in the figure.
 すなわち、プローブ2を被検体9に押し当てながらプローブ2を図中右側へ移動させると、中心線97の図中左側および右側のどちらに位置する特徴点94,95についても、特徴点の位置は図中左側にずれてしまう。このような事象は、被検体9表面に沿ってプローブ2を移動させながら撮像されるすべての超音波画像において発生している。よって、時系列的に連続する複数の画像間に特徴点マッチングを適用して、特徴点の変位ベクトルを算出すると、算出したその変位ベクトルには、プローブ2を被検体9に押し当てながら移動させたことによる変位のずれが含まれている。このような変位のずれは、パノラマ合成画像において鮮明度の低下や画像のむらとして現れる。 That is, when the probe 2 is moved to the right side in the drawing while pressing the probe 2 against the subject 9, the positions of the feature points 94 and 95 located on either the left side or the right side of the center line 97 in the drawing are It shifts to the left in the figure. Such an event occurs in all ultrasonic images taken while moving the probe 2 along the surface of the subject 9 . Therefore, when feature point matching is applied between a plurality of images consecutive in time series to calculate the displacement vector of the feature points, the calculated displacement vector is obtained by moving the probe 2 while pressing it against the subject 9. This includes displacement deviations due to Such a displacement deviation appears as a reduction in sharpness and image unevenness in a panoramic composite image.
 図2および図3を用いた考察により、プローブ2を被検体9に押し当てながらプローブ2を被検体9の表面に沿って移動させる態様において、プローブ2を通じて撮像される超音波画像内の特徴点の移動に関して得られる知見は次の通りである。 2 and 3, in a mode in which the probe 2 is moved along the surface of the subject 9 while pressing the probe 2 against the subject 9, feature points in an ultrasonic image captured through the probe 2 The following findings are obtained regarding the movement of .
 特徴点のずれ量は、X軸方向とY軸方向とで特性が異なっている。X軸方向(アジマス方向)については、どの特徴点においても、押圧による変形の程度に比例して一方向のみに特徴点のずれが生じる。Y軸方向については、押圧による変形の程度に比例して特徴点
のずれが生じるものの、ずれの方向は特徴点の左右で(中心線97の左右で)反対になる。
The deviation amount of the feature points has different characteristics in the X-axis direction and the Y-axis direction. In the X-axis direction (azimuth direction), any feature point is shifted only in one direction in proportion to the degree of deformation due to pressure. In the Y-axis direction, although the feature points are shifted in proportion to the degree of deformation due to pressing, the directions of the shifts are opposite to the left and right of the feature points (left and right of the center line 97).
 Y軸方向のずれ量はランダム性が高く、押圧指標としてはノイズ成分になる。X軸方向のずれ量については、押圧の有無によって、被検体9内の浅い領域と深い領域とで差が発生する。押圧による変形が有る場合、浅い領域については変形の程度が大きく、X軸方向のずれ量が大きくなる。深い領域については変形の程度が小さく、X軸方向のずれ量は小さくなる。押圧による変形の程度が大きくなる程、ずれ量も大きくなる。 The amount of deviation in the Y-axis direction is highly random and becomes a noise component as a pressure index. As for the displacement amount in the X-axis direction, a difference occurs between a shallow region and a deep region within the subject 9 depending on whether or not there is pressing. When there is deformation due to pressing, the degree of deformation is large in shallow regions, and the amount of deviation in the X-axis direction is large. A deep region has a small degree of deformation and a small amount of deviation in the X-axis direction. As the degree of deformation due to pressing increases, the amount of deviation also increases.
 以上、図1~図3を参照して説明したように、プローブ2を被検体9に押し当てながらプローブ2を図中右側へ移動させる態様では、軟組織93内において特徴点が移動する程度は、すなわち特徴点の変位ベクトルの大きさは、プローブ2を被検体9に押し当てる程度に応じて変化する。本発明では、オペレータによるプローブの手技のうち、プローブによる被検体への接触圧の大きさを示す指標(押圧指標)を定量化する。押圧指標の推定には、軟組織93内の浅い領域と深い領域との間で、プローブ2を移動させる方向に関して特徴点の変位ベクトルの大きさが異なることを、すなわち特徴点の位置の変位量が軟組織93内の浅い領域と深い領域との間で異なることを利用する。特徴点の移動すなわち特徴点の位置の変位を表す変位ベクトルは、互いに少なくとも一部の撮像領域が重なる2枚以上の超音波画間における、対応する特徴点の位置をマッチングすることにより算出する。 As described above with reference to FIGS. 1 to 3, in the mode in which the probe 2 is pressed against the subject 9 and moved to the right in the drawing, the extent to which the feature point moves in the soft tissue 93 is That is, the magnitude of the displacement vector of the feature point changes according to the extent to which the probe 2 is pressed against the subject 9 . In the present invention, an index (pressure index) indicating the magnitude of the contact pressure of the probe to the subject is quantified in the manipulation of the probe by the operator. In estimating the pressure index, the magnitude of the displacement vector of the feature point differs between the shallow region and the deep region in the soft tissue 93 with respect to the direction in which the probe 2 is moved. It takes advantage of the differences between shallow and deep regions within the soft tissue 93 . A displacement vector representing the movement of a feature point, that is, the displacement of the position of a feature point, is calculated by matching the position of the corresponding feature point between two or more ultrasound images in which at least a part of the imaging regions overlap each other.
 (全体構成)
 図4は、一実施形態に係る超音波撮像システム1の構成を示す模式図である。超音波撮像システム1は、プローブ2と、超音波撮像装置3とを含んでいる。なお本実施形態では、被検者が超音波撮像システム1を用いて自身の筋肉の状態を可視化して確認する場合について説明する。すなわち本実施形態では、超音波撮像システム1のオペレータは被検者自身である。
(overall structure)
FIG. 4 is a schematic diagram showing the configuration of the ultrasonic imaging system 1 according to one embodiment. An ultrasound imaging system 1 includes a probe 2 and an ultrasound imaging device 3 . In this embodiment, a case will be described in which the subject uses the ultrasonic imaging system 1 to visualize and confirm the state of his/her own muscles. That is, in this embodiment, the operator of the ultrasonic imaging system 1 is the subject himself/herself.
 プローブ2は、超音波を被検体9の表面から被検体9の内部に向けて送信し、被検体9の内部で反射された超音波を受信する装置である。本実施形態では、プローブ2は、オペレータが把持して動かすことができるように構成されている。プローブ2の下端には、複数の超音波振動子が一列に配列された超音波送受面が設けられている。なお、本実施形態では、被検体9は人体の大腿部であるが、被検体9に含まれる生体部位は特に限定されない。 The probe 2 is a device that transmits ultrasonic waves from the surface of the subject 9 toward the inside of the subject 9 and receives the ultrasonic waves reflected inside the subject 9 . In this embodiment, the probe 2 is configured so that it can be held and moved by an operator. The lower end of the probe 2 is provided with an ultrasonic transmission/reception surface on which a plurality of ultrasonic transducers are arranged in a row. In this embodiment, the subject 9 is the thigh of a human body, but the body part included in the subject 9 is not particularly limited.
 本実施形態では、プローブ2は、リニアスキャンによる断片画像(第1の断片画像41)を取得するリニアスキャンモードと、リニアスキャンよりも撮像範囲が広いセクタスキャンによる断片画像(第2の断片画像42)を取得するセクタスキャンモードとの両方の駆動方式で動作する。断片画像とは、リニアスキャンモードまたはセクタスキャンモードでの一回の撮像により得られる超音波画像であり、一般的な構成の超音波診断装置(超音波撮像装置)で得られる撮像画像と同等のものである。 In the present embodiment, the probe 2 operates in a linear scan mode for acquiring a fragmentary image (first fragmentary image 41) by linear scanning, and a fragmentary image (second fragmentary image 42) by sector scanning with a wider imaging range than linear scanning. ) to operate in both drive schemes with sector scan mode. A fragment image is an ultrasonic image obtained by one-time imaging in linear scan mode or sector scan mode, and is equivalent to an image obtained by an ultrasonic diagnostic device (ultrasonic imaging device) with a general configuration. It is.
 被検体9の横断面に関するパノラマ合成画像47を取得する場合、オペレータは、被検体9にプローブ2の超音波送受面を当接させて、プローブ2を被検体9の表面に沿って移動させる(プローブ2により大腿部の周囲をスキャンする)。その間に、プローブ2は、所定の周期でリニアスキャンモードまたはセクタスキャンモードにスキャンモードを切り替えながら、超音波送受面から被検体9の内部に向けて超音波を断続的に送信し、被検体9の内部で反射された超音波を超音波送受面において受信する。これにより、プローブ2は、リニアスキャンモードおよびセクタスキャンモードのそれぞれについて、受信した超音波を示す電気信号(エコー信号)を出力する。好ましくは、プローブ2には角度センサが取り付けられており、エコー信号と共にプローブ2の傾斜角(例えば、プローブ2の鉛直方向からの傾き等の傾斜角度)の情報が超音波撮像装置3に送信される。 When acquiring the panoramic composite image 47 of the cross section of the subject 9, the operator brings the ultrasonic wave transmitting/receiving surface of the probe 2 into contact with the subject 9 and moves the probe 2 along the surface of the subject 9 ( Scan around the thigh with probe 2). During this time, the probe 2 intermittently transmits ultrasonic waves from the ultrasonic transmission/reception surface toward the inside of the subject 9 while switching the scan mode between the linear scan mode and the sector scan mode at a predetermined cycle. receive the ultrasonic waves reflected inside the ultrasonic wave transmitting/receiving surface. As a result, the probe 2 outputs electrical signals (echo signals) representing the received ultrasonic waves in each of the linear scan mode and the sector scan mode. Preferably, an angle sensor is attached to the probe 2, and information on the tilt angle of the probe 2 (for example, the tilt angle of the probe 2 from the vertical direction) is transmitted to the ultrasonic imaging apparatus 3 together with the echo signal. be.
 超音波撮像装置3は、WiFi(登録商標)などの無線によってプローブ2に接続され
ている。本実施形態では、超音波撮像装置3は例えばタブレット端末で構成されており、プローブ2から受信したエコー信号に基づいて、プローブ2による被検体9への押圧指標を推定する。本実施形態では、超音波撮像装置3は、エコー信号に基づいて、リニアスキャンモードおよびセクタスキャンモードのそれぞれについて、複数の断片画像(複数の第1の断片画像41および複数の第2の断片画像42)を生成する。
The ultrasonic imaging device 3 is connected to the probe 2 by wireless such as WiFi (registered trademark). In the present embodiment, the ultrasonic imaging apparatus 3 is configured by, for example, a tablet terminal, and estimates the index of pressure applied to the subject 9 by the probe 2 based on echo signals received from the probe 2 . In this embodiment, the ultrasonic imaging apparatus 3 generates a plurality of fragmentary images (a plurality of first fragmentary images 41 and a plurality of second fragmentary images) for each of the linear scan mode and the sector scan mode, based on echo signals. 42).
 プローブ2が被検体9の表面に沿って移動される間、超音波撮像装置3は、第1の断片画像41と第2の断片画像42とのペアを時系列的に連続して生成し、時系列的に連続した超音波画像の複数のペアを生成する。超音波撮像装置3は、時系列的に連続した、互いに少なくとも一部の撮像領域が重なる2枚以上の断片画像を対比することにより、時系列的に連続した2枚以上の断片画像間において対応する特徴点の位置の変位を算出する。超音波撮像装置3は、算出した位置の変位に基づいて、プローブ2による被検体9への押圧指標を推定する。本実施形態では、超音波撮像装置3は、複数の第1の断片画像41,41間について、対応する特徴点の位置の変位を算出し、複数の第2の断片画像42,42間について、対応する特徴点の位置の変位を算出する。超音波撮像装置3は、算出した特徴点の位置の変位に基づいて、プローブ2による被検体9への押圧指標を推定する。本実施形態では、超音波撮像装置3はさらに、それらの断片画像を合成した横断面のパノラマ合成画像47を表示する機能を有している。 While the probe 2 is moved along the surface of the subject 9, the ultrasonic imaging device 3 continuously generates a pair of the first fragment image 41 and the second fragment image 42 in time series, Generate multiple pairs of time-sequential ultrasound images. The ultrasonic imaging apparatus 3 compares two or more time-series fragmented images in which at least a part of the imaging region overlaps with each other, thereby matching the two or more time-series successive fragment images. Calculate the displacement of the position of the feature point. The ultrasonic imaging apparatus 3 estimates a pressing index of the probe 2 to the subject 9 based on the calculated displacement of the position. In this embodiment, the ultrasonic imaging apparatus 3 calculates the displacement of the position of the corresponding feature point between the plurality of first fragment images 41, 41, and between the plurality of second fragment images 42, 42, Calculate the displacement of the position of the corresponding feature point. The ultrasonic imaging apparatus 3 estimates a pressing index of the probe 2 to the subject 9 based on the calculated displacement of the position of the feature point. In this embodiment, the ultrasonic imaging apparatus 3 further has a function of displaying a panorama synthetic image 47 of a cross section obtained by synthesizing these fragmentary images.
 なお、超音波撮像装置3は画像を表示可能な装置であれば特に限定されず、汎用のパーソナルコンピュータや、スマートフォン等で構成することができる。また、プローブ2と超音波撮像装置3との接続方法は特に限定されず、有線接続であってもよい。 Note that the ultrasonic imaging device 3 is not particularly limited as long as it can display an image, and can be configured with a general-purpose personal computer, smartphone, or the like. Also, the method of connecting the probe 2 and the ultrasonic imaging apparatus 3 is not particularly limited, and a wired connection may be used.
 (超音波撮像装置の機能)
 図5は、一実施形態に係る超音波撮像装置3の構成を示すブロック図である。超音波撮像装置3は、ハードウェアの構成として、ディスプレイ31と、入力装置32と、補助記憶装置33と、通信インタフェース部(I/F部)34と、出力インタフェース部(I/F部)36と、スピーカ37とを備えている。
(Functions of Ultrasound Imaging Device)
FIG. 5 is a block diagram showing the configuration of the ultrasonic imaging apparatus 3 according to one embodiment. The ultrasound imaging apparatus 3 has a hardware configuration including a display 31, an input device 32, an auxiliary storage device 33, a communication interface section (I/F section) 34, and an output interface section (I/F section) 36. , and a speaker 37 .
 ディスプレイ31は、例えば液晶ディスプレイ、プラズマディスプレイおよび有機ELディスプレイ等で構成することができる。なお、超音波撮像装置3とは別個の装置としてディスプレイ31を構成してもよい。 The display 31 can be composed of, for example, a liquid crystal display, a plasma display, an organic EL display, or the like. Note that the display 31 may be configured as a device separate from the ultrasonic imaging device 3 .
 入力装置32は、ディスプレイ31の表面に設けられたタッチパネルである。オペレータは、入力装置32を介してディスプレイ31に表示された画像に対する入力操作を行うことができる。 The input device 32 is a touch panel provided on the surface of the display 31. An operator can perform an input operation on the image displayed on the display 31 via the input device 32 .
 補助記憶装置33は、オペレーティングシステム(OS)、各種制御プログラム、および、プログラムによって生成されたデータなどを記憶する不揮発性の記憶装置であり、例えば、eMMC(embedded Multi Media Card)やSSD(Solid State Drive)等によって構成される。補助記憶装置33には、超音波撮像プログラムPが記憶されている。超音波撮像プログラムPは、インターネットなどのネットワークを介して超音波撮像装置3にインストールしてもよい。あるいは、超音波撮像プログラムPを記録したメモリカード等のコンピュータ読み取り可能な非一時的な有体の記録媒体を超音波撮像装置3に読み取らせることにより、超音波撮像プログラムPを超音波撮像装置3にインストールしてもよい。 The auxiliary storage device 33 is a non-volatile storage device that stores an operating system (OS), various control programs, and data generated by the programs. Drive), etc. An ultrasonic imaging program P is stored in the auxiliary storage device 33 . The ultrasonic imaging program P may be installed in the ultrasonic imaging apparatus 3 via a network such as the Internet. Alternatively, the ultrasonic imaging program P can be transferred to the ultrasonic imaging apparatus 3 by causing the ultrasonic imaging apparatus 3 to read a computer-readable non-temporary tangible recording medium such as a memory card in which the ultrasonic imaging program P is recorded. can be installed on
 通信インタフェース部34は、外部機器とのデータの送受信を行うものであり、本実施形態では、プローブ2から受信した信号の復調や、プローブ2に送信するための制御信号の変調などを行う。 The communication interface unit 34 transmits and receives data to and from an external device, and in this embodiment, demodulates signals received from the probe 2 and modulates control signals to be transmitted to the probe 2.
 出力インタフェース部36は、超音波撮像装置3の演算処理によって生成された各種データを、ディスプレイ31やスピーカ37に出力する。例えば出力インタフェース部36は、生成された各種画像データをVRAMに展開することにより、当該画像をディスプレイ31に表示するものであり、例えば後述する信号処理部35によって生成された合成画像47等をディスプレイ31に表示する。また例えば出力インタフェース部36は、押圧判定部355により生成された押圧指標に関する判定結果のデータに基づいて、判定結果に応じた音をスピーカ37から出力する。 The output interface unit 36 outputs various data generated by arithmetic processing of the ultrasonic imaging apparatus 3 to the display 31 and the speaker 37 . For example, the output interface unit 36 displays the image on the display 31 by developing various generated image data in the VRAM. 31. Further, for example, the output interface unit 36 outputs a sound corresponding to the determination result from the speaker 37 based on the determination result data regarding the pressure indicator generated by the pressure determination unit 355 .
 図示していないが、超音波撮像装置3は、他のハードウェアの構成として、データ処理を行うCPU等のプロセッサ、および、プロセッサがデータ処理の作業領域に使用するメモリ(主記憶装置)などをさらに備えている。 Although not shown, the ultrasonic imaging apparatus 3 includes, as other hardware configurations, a processor such as a CPU that performs data processing, and a memory (main storage device) that the processor uses as a work area for data processing. I have more.
 また、超音波撮像装置3は、ソフトウェアの構成として信号処理部35を備えている。信号処理部35は、プロセッサが超音波撮像プログラムPを実行することにより実現される機能ブロックである。信号処理部35は、プローブ2から受信されたエコー信号を処理して、プローブ2による被検体9への押圧指標を推定し、推定した押圧指標が良好か否かを判定する機能を有している。また信号処理部35は、プローブ2から受信されたエコー信号を処理して、被検体9の横断面の合成画像47を、オペレータ、被検者、医師、撮像従事者などが被検体9の状態を把握しやすいようにディスプレイ31に表示する機能を有している。これらの機能を実現するために信号処理部35は、超音波受信部351と、第1の断片画像生成部352と、第2の断片画像生成部353と、押圧推定部354と、押圧判定部355と、断面画像合成部356とを備えている。なお、信号処理部35を、集積回路上に形成された論理回路によってハードウェア的に実現してもよい。 The ultrasonic imaging apparatus 3 also includes a signal processing unit 35 as a software configuration. The signal processing unit 35 is a functional block realized by executing the ultrasonic imaging program P by the processor. The signal processing unit 35 has a function of processing the echo signal received from the probe 2, estimating the pressure index of the probe 2 on the subject 9, and determining whether the estimated pressure index is good. there is Further, the signal processing unit 35 processes the echo signals received from the probe 2 to generate a composite image 47 of the cross section of the subject 9 for the operator, subject, doctor, imaging staff, etc. to understand the state of the subject 9 . has a function of displaying on the display 31 so that it is easy to grasp the In order to realize these functions, the signal processing unit 35 includes an ultrasonic wave receiving unit 351, a first fragment image generation unit 352, a second fragment image generation unit 353, a pressure estimation unit 354, and a pressure determination unit. 355 and a cross-sectional image synthesizing unit 356 . Note that the signal processing unit 35 may be implemented in hardware by a logic circuit formed on an integrated circuit.
 超音波受信部351は、超音波領域の周波数を有する信号にディレイを与えて送信信号を生成し、プローブ2に内蔵されている制御装置(図示せず)に出力する。制御装置は受信した送信信号に基づいてプローブ2を駆動する。超音波受信部351は、ディレイを制御することによって、プローブ2の駆動方式やビーム形状を制御することができる。また、超音波受信部351には、プローブ2から受信信号が入力される。超音波受信部351は、入力された受信信号にアナログデジタル変換などの処理を行い、処理を行った受信信号を、リニアスキャンモードによる駆動時には第1の断片画像生成部352に、セクタスキャンモードによる駆動時には第2の断片画像生成部353にそれぞれ出力する。プローブ2が被検体9の表面に沿って動かされる間に、超音波受信部351は、リニアスキャンモードおよびセクタスキャンモードのそれぞれについて一定の時間間隔で繰り返し送信信号の出力を行い、送信信号を出力する度に、プローブ2で受信する超音波の受信信号を取得する。 The ultrasonic wave receiving unit 351 generates a transmission signal by giving a delay to a signal having a frequency in the ultrasonic range, and outputs it to a control device (not shown) built in the probe 2 . The controller drives the probe 2 based on the received transmission signal. The ultrasonic wave receiving unit 351 can control the driving method and beam shape of the probe 2 by controlling the delay. A received signal is input from the probe 2 to the ultrasonic wave receiving section 351 . The ultrasonic wave receiving unit 351 performs processing such as analog-to-digital conversion on the input received signal, and transmits the processed received signal to the first fragment image generation unit 352 when driven in the linear scan mode. When driving, they are output to the second fragment image generator 353 respectively. While the probe 2 is moved along the surface of the subject 9, the ultrasonic wave receiving unit 351 repeatedly outputs the transmission signal at regular time intervals for each of the linear scan mode and the sector scan mode, and outputs the transmission signal. Each time, a received signal of ultrasonic waves received by the probe 2 is obtained.
 なお、超音波受信部351の機能を、プローブ2を制御する制御装置に設けてもよい。その場合、制御装置を超音波撮像装置3に接続してもよいし、制御装置に超音波画像を記憶させておき、記録媒体を介して超音波画像を超音波撮像装置3に送信してもよい。 It should be noted that the function of the ultrasonic wave receiving unit 351 may be provided in the control device that controls the probe 2 . In that case, the control device may be connected to the ultrasonic imaging device 3, or an ultrasonic image may be stored in the control device and transmitted to the ultrasonic imaging device 3 via a recording medium. good.
 第1の断片画像生成部352および第2の断片画像生成部353はそれぞれ、超音波受信部351が出力する受信信号に基づいて、プローブ2の駆動方式に応じた画像変換処理により、撮像対象を部分的に撮像した断片画像を生成する。本実施形態では、第1の断片画像生成部352は、リニアスキャンモードによる第1の断片画像41を生成し、第2の断片画像生成部353は、セクタスキャンモードによる第2の断片画像42を生成する。プローブ2が被検体9の表面に沿って動かされる間に、第1の断片画像生成部352および第2の断片画像生成部353はそれぞれ、超音波受信部351から繰り返し入力される受信信号に基づいて、被検体9の横断面を様々な方向から撮像した複数の断片画像(複数
の第1の断片画像41および複数の第2の断片画像42)を、断片画像を取得した際の被検体9表面に対するプローブ2の角度情報(傾斜角の情報)と共に生成する。
Each of the first fragment image generation unit 352 and the second fragment image generation unit 353 performs image conversion processing according to the driving method of the probe 2 based on the reception signal output by the ultrasonic wave reception unit 351 to determine the object to be imaged. Generating a partially captured fragment image. In this embodiment, the first image fragment generator 352 generates the first image fragment 41 in linear scan mode, and the second image fragment generator 353 generates the second image fragment 42 in sector scan mode. Generate. While the probe 2 is moved along the surface of the subject 9, the first fragment image generation unit 352 and the second fragment image generation unit 353 each generate signals based on the reception signals repeatedly input from the ultrasound reception unit 351. Then, a plurality of fragmentary images (plurality of first fragmentary images 41 and a plurality of second fragmentary images 42) obtained by imaging a cross section of the subject 9 from various directions are taken from the subject 9 when the fragmentary images were acquired. It is generated together with angle information (information on the angle of inclination) of the probe 2 with respect to the surface.
 すなわち、本実施形態では、被検体9表面に対するプローブ2の或る一つの傾斜角度において、リニアスキャンモードによる第1の断片画像41とセクタスキャンモードによる第2の断片画像42との断片画像のペアが生成され、プローブ2が被検体9の表面に沿って連続して移動される間に、このような断片画像の複数のペアが、プローブ2の傾斜角度毎にプローブ2の傾斜角度の情報と共に生成される。断片画像のペアの生成数は、プローブ2による超音波の送受信時間および送受信の周期によって変動する。例示的には、約125msec毎に、第1の断片画像41と第2の断片画像42との断片画像のペアが一つ生成される。 That is, in the present embodiment, at one tilt angle of the probe 2 with respect to the surface of the subject 9, a pair of fragmentary images of the first fragmentary image 41 in the linear scan mode and the second fragmentary image 42 in the sector scan mode is generated, and while the probe 2 is continuously moved along the surface of the subject 9, a plurality of pairs of such fragmentary images are generated for each tilt angle of the probe 2, together with information on the tilt angle of the probe 2. generated. The number of fragment image pairs generated varies depending on the transmission/reception time and transmission/reception cycle of the ultrasonic waves by the probe 2 . Exemplarily, one fragmentary image pair of the first fragmentary image 41 and the second fragmentary image 42 is generated every approximately 125 msec.
 押圧推定部354は、被検体9の表面上の複数のプローブ位置において取得された、複数の超音波画像を対比することにより、複数の超音波画像を間において対応する特徴点の位置の変位を算出し、算出した変位に基づいて、プローブ2による被検体9への押圧指標を推定する。本実施形態では、リニアスキャンモードにより取得される第1の断片画像41を、被検体9内の浅い領域の超音波画像として用い、セクタスキャンモードにより取得される第2の断片画像42を、被検体9内の深い領域の超音波画像として用いる。すなわち本実施形態では、押圧推定部354は、被検体9の超音波画像内の浅い領域および深い領域のそれぞれについて、複数の特徴点の位置の変位を表す変位ベクトルを算出する。浅い領域および深い領域とは、超音波ビームの送信方向に沿った被検体9内の領域を意味する。超音波画像は浅い領域と深い領域とで領域が一部重なっていてもよい。押圧推定部354は、浅い領域について取得された変位ベクトルと、深い領域について取得された変位ベクトルとの差分に基づいて、押圧指標を推定する。対比される複数の超音波画像は、少なくとも一部の撮像領域が重なっており、複数の超音波画像間において対応する特徴点が、例えば特徴点マッチングにより検出される。 The pressure estimating unit 354 compares a plurality of ultrasonic images acquired at a plurality of probe positions on the surface of the subject 9, thereby estimating the displacement of the position of the corresponding feature point between the plurality of ultrasonic images. The index of pressure of the probe 2 on the subject 9 is estimated based on the calculated displacement. In this embodiment, the first fragmentary image 41 acquired in the linear scan mode is used as an ultrasound image of a shallow region within the subject 9, and the second fragmentary image 42 acquired in the sector scan mode is used as the ultrasound image of the subject. It is used as an ultrasonic image of a deep region within the specimen 9 . That is, in the present embodiment, the pressure estimating unit 354 calculates displacement vectors representing displacements of the positions of a plurality of feature points for each of shallow and deep regions in the ultrasonic image of the subject 9 . Shallow region and deep region refer to regions within the object 9 along the transmission direction of the ultrasound beam. In the ultrasound image, the shallow and deep regions may be partially overlapped. The pressure estimation unit 354 estimates the pressure index based on the difference between the displacement vector acquired for the shallow region and the displacement vector acquired for the deep region. At least a part of the imaging regions of the plurality of ultrasound images to be compared overlap each other, and corresponding feature points between the plurality of ultrasound images are detected by, for example, feature point matching.
 押圧判定部355は、推定された押圧指標が良好か否かを判定し、判定結果に基づいて、押圧指標が良好か否かを異なる態様で通知する。本実施形態では、押圧判定部355は、所定の閾値に基づいて押圧指標が良好か否かを判定する。判定結果は、例えばスピーカ37を通じて例えば音の強弱としてオペレータに通知される。または判定結果は、例えば文字の情報として例えばディスプレイ31に表示される。 The pressure determination unit 355 determines whether the estimated pressure index is good or not, and notifies whether the pressure index is good or not based on the determination result in different modes. In this embodiment, the pressure determination unit 355 determines whether the pressure index is good based on a predetermined threshold. The determination result is notified to the operator through the speaker 37, for example, as sound intensity. Alternatively, the determination result is displayed on the display 31, for example, as character information.
 リアルタイムの判定として、押圧判定部355は、プローブ2が被検体9の表面に沿って移動される間、押圧指標の判定を繰り返し実行し、押圧指標の判定を実行する度に、押圧指標が良好か否かを異なる態様で通知することができる。撮像全体を通じた判定として、押圧判定部355は、プローブ2が被検体9の表面に沿って移動された後に、移動中に(すなわち測定中に)得られた複数の押圧指標に基づいて、押圧指標が良好か否かを異なる態様で通知することもできる。撮像全体を通じた判定を行う場合、押圧判定部355は、移動中に得られた複数の押圧指標の総和と、移動中に得られた複数の変位ベクトルの大きさの総和との比率に基づいて、押圧指標が良好か否かを判定することができる。なお2つの値の比率とは、2つの値のうち一方の値を分子とし他方の値を分母とする除算を意味する。 As a real-time determination, the pressure determination unit 355 repeatedly performs the determination of the pressure index while the probe 2 is moved along the surface of the subject 9. whether or not can be notified in different manners. As a determination through the entire imaging, the pressure determination unit 355 determines the pressure based on a plurality of pressure indicators obtained during the movement (that is, during the measurement) after the probe 2 is moved along the surface of the subject 9. It can also be communicated differently whether the metric is good or not. When performing determination throughout the imaging, the pressure determination unit 355 is based on the ratio of the sum of multiple pressure indicators obtained during movement and the sum of the magnitudes of multiple displacement vectors obtained during movement. , it can be determined whether the pressure index is good or not. Note that the ratio of two values means division in which one of the two values is the numerator and the other value is the denominator.
 断面画像合成部356は、第1の断片画像生成部352により生成された複数の第1の断片画像41と、第2の断片画像生成部353により生成された複数の第2の断片画像42とを不均一に合成する。なお、本明細書において「断面」または「横断面」とは、輪切りの断面だけではなく、部分的な断面も含む概念である。 The cross-sectional image synthesis unit 356 combines the plurality of first fragment images 41 generated by the first fragment image generation unit 352 and the plurality of second fragment images 42 generated by the second fragment image generation unit 353. are synthesized unevenly. In this specification, the term "section" or "transverse section" is a concept including not only a circular section but also a partial section.
 本実施形態では、断面画像合成部356は、リニアスキャンモードにより取得された第
1の断片画像41とセクタスキャンモードにより取得された第2の断片画像42とを不均一に合成する処理をプローブ2の傾斜角毎に行い、複数の中間合成画像を生成する。例えば、セクタスキャンモードにより取得された第2の断片画像42の第1の断片画像41に対応する領域を、リニアスキャンモードにより取得された第1の断片画像41に置き換えることにより、第2の断片画像42に第1の断片画像41を部分的に重ね合わせて合成し、中間合成画像を生成する。中間合成画像にはプローブ2の傾斜角の情報が対応付けられている。次に、プローブ2の傾斜角毎に生成された複数の中間合成画像を、プローブ2の傾斜角に基づいて回転させて合成することにより、被検体9の横断面が広範囲に撮像されたパノラマ合成画像47を生成する。
In the present embodiment, the cross-sectional image synthesizing unit 356 performs a process of unevenly synthesizing the first fragmentary image 41 acquired in the linear scan mode and the second fragmentary image 42 acquired in the sector scan mode. is performed for each tilt angle to generate a plurality of intermediate synthesized images. For example, by replacing the region corresponding to the first fragment image 41 of the second fragment image 42 acquired by the sector scan mode with the first fragment image 41 acquired by the linear scan mode, the second fragment The first fragment image 41 is partially superimposed on the image 42 and synthesized to generate an intermediate synthesized image. Information on the tilt angle of the probe 2 is associated with the intermediate synthesized image. Next, a plurality of intermediate synthesized images generated for each inclination angle of the probe 2 are rotated based on the inclination angle of the probe 2 and synthesized, thereby panorama synthesis in which the cross section of the subject 9 is imaged over a wide range. Generate image 47 .
 断面画像合成部356によって生成された被検体9の横断面の合成画像47は、出力インタフェース部36に入力される。出力インタフェース部36は、合成画像47のデータをVRAMに展開することにより、合成画像47をディスプレイ31に表示する。 The composite image 47 of the cross section of the subject 9 generated by the cross-sectional image synthesizing unit 356 is input to the output interface unit 36 . The output interface unit 36 displays the synthesized image 47 on the display 31 by developing the data of the synthesized image 47 in the VRAM.
 (処理手順)
 図6は、一実施形態に係る超音波撮像方法の処理手順を示すフローチャートである。
(Processing procedure)
FIG. 6 is a flow chart showing a processing procedure of an ultrasonic imaging method according to one embodiment.
 ステップS1では、被検体9の表面に配置されたプローブ2から被検体9の内部に超音波を送信し、被検体9の内部で反射された超音波に関する信号を、プローブ2を通じて受信する。 In step S1, ultrasonic waves are transmitted from the probe 2 placed on the surface of the subject 9 to the inside of the subject 9, and signals related to the ultrasonic waves reflected inside the subject 9 are received through the probe 2.
 超音波受信部351(制御装置)はリニアスキャンモードにてプローブ2を駆動し、プローブ2が、リニアスキャンモードで超音波を被検体9の表面から被検体9の内部に向けて送信する。これにより、プローブ2は、被検体9の内部で反射された超音波を受信し、プローブ2からリニアスキャンモードに対応するエコー信号が出力される。同様に、超音波受信部351はセクタスキャンモードにてプローブ2を駆動する。プローブ2からは、セクタスキャンモードに対応するエコー信号が出力される。 The ultrasonic wave receiving unit 351 (control device) drives the probe 2 in linear scan mode, and the probe 2 transmits ultrasonic waves from the surface of the subject 9 toward the inside of the subject 9 in linear scan mode. As a result, the probe 2 receives the ultrasonic waves reflected inside the subject 9, and the probe 2 outputs an echo signal corresponding to the linear scan mode. Similarly, the ultrasound receiver 351 drives the probe 2 in sector scan mode. The probe 2 outputs an echo signal corresponding to the sector scan mode.
 ステップS2では、受信した超音波の信号に基づいて、被検体9内の深い領域および浅い領域のそれぞれについて、超音波画像を生成する。本実施形態では、被検体9内の浅い領域の超音波画像として第1の断片画像41を用い、被検体9内の深い領域の超音波画像として第2の断片画像42を用いる。 In step S2, an ultrasonic image is generated for each of the deep region and shallow region within the subject 9 based on the received ultrasonic signal. In this embodiment, the first fragmentary image 41 is used as an ultrasonic image of a shallow region within the subject 9 , and the second fragmentary image 42 is used as an ultrasonic image of a deep region within the subject 9 .
 超音波受信部351は、入力された受信信号にアナログデジタル変換などの処理を行い、処理を行った受信信号を第1の断片画像生成部352に出力する。第1の断片画像生成部352は、リニアスキャンモードによる第1の断片画像41を生成する。第1の断片画像生成部352は、プローブ2からエコー信号が出力されるたびに、第1の断片画像41を生成する。同様に、第2の断片画像生成部353は、プローブ2からエコー信号が出力されるたびに、セクタスキャンモードによる第2の断片画像42を生成する。 The ultrasound reception unit 351 performs processing such as analog-to-digital conversion on the input reception signal, and outputs the processed reception signal to the first fragment image generation unit 352 . The first fragment image generator 352 generates the first fragment image 41 in linear scan mode. The first fragment image generator 352 generates the first fragment image 41 each time the probe 2 outputs an echo signal. Similarly, the second fragment image generator 353 generates the second fragment image 42 in sector scan mode each time the probe 2 outputs an echo signal.
 図7は、時系列的に連続した超音波画像の複数のペアを説明するための模式的な図である。 FIG. 7 is a schematic diagram for explaining a plurality of pairs of ultrasonic images that are consecutive in time series.
 ステップS1およびS2の処理は、時刻Tから時刻Tにかけてプローブ2が被検体9の表面に沿って移動される間、繰り返し実行される。これにより、超音波撮像装置3は、第1の断片画像41と第2の断片画像42とのペアを時系列的に連続して生成し、時系列的に連続した超音波画像の複数のペアP,P,…Pを生成する。図7に示す例では、時刻Tにおいて、第1の断片画像41と第2の断片画像42とのペアPが生成され、時刻Tにおいて、第1の断片画像41と第2の断片画像42とのペアPが生成され、時刻Tにおいて、第1の断片画像41と第2の断片画像42とのペアPが生成さ
れる。
The processes of steps S1 and S2 are repeatedly executed while the probe 2 is moved along the surface of the subject 9 from time T1 to time TN . As a result, the ultrasonic imaging apparatus 3 continuously generates pairs of the first fragmentary image 41 and the second fragmentary image 42 in time series, and generates a plurality of pairs of ultrasonic images that are consecutive in time series. Generate P 1 , P 2 , . . . PN . In the example shown in FIG. 7 , a pair P1 of a first fragmentary image 41 and a second fragmentary image 42 is generated at time T1, and a pair P1 of a first fragmentary image 41 and a second fragmentary image 42 is generated at time T2 . A pair P2 with the image 42 is generated, and at time TN , a pair PN with the first image fragment 41 and the second image fragment 42 is generated.
 これら超音波画像の複数のペアP,P,…Pのうち、時間的に隣り合う超音波画像のペアの間では、少なくとも一部の撮像領域が重なっている。例えば、時刻Tから時刻Tにかけて取得される超音波画像のペアPとペアPとの間では、第1の断片画像41,41間で少なくとも一部の撮像領域が重なっており、第2の断片画像42,42間で少なくとも一部の撮像領域が重なっている。 Among the plurality of pairs P 1 , P 2 , . For example, between the pair of ultrasound images P1 and P2 acquired from time T1 to time T2 , at least a part of the imaging region overlaps between the first fragment images 41, 41, and At least a part of the imaging area overlaps between the second fragment images 42 , 42 .
 ステップS3では、プローブ2による被検体9への押圧指標を推定する。本実施形態では、押圧推定部354は、互いに少なくとも一部の撮像領域が重なる2枚以上の超音波画像を対比することにより、2枚以上の超音波画像間において対応する特徴点の位置をマッチングする。押圧推定部354は、特徴点の位置をマッチングすることにより、複数の超音波画像間における特徴点の位置の変位を算出し、特徴点の位置の変位に基づいて押圧指標を推定する。 In step S3, the index of pressure on the subject 9 by the probe 2 is estimated. In this embodiment, the pressure estimating unit 354 matches the positions of corresponding feature points between two or more ultrasound images by comparing two or more ultrasound images in which at least a part of the imaging regions overlap each other. do. The pressure estimation unit 354 calculates the positional displacement of the feature points between the plurality of ultrasound images by matching the positions of the feature points, and estimates the pressure index based on the positional displacement of the feature points.
 特徴点の位置のマッチングは、被検体9内の浅い領域と深い領域とのそれぞれについて行う。これにより、特徴点の位置の変位を表す変位ベクトルを、浅い領域と深い領域とのそれぞれについて算出する。押圧指標は、浅い領域における変位ベクトルと、深い領域における変位ベクトルとの差分に基づいて推定する。 The matching of the positions of the feature points is performed for each of shallow regions and deep regions within the subject 9 . Thereby, a displacement vector representing the displacement of the position of the feature point is calculated for each of the shallow region and the deep region. The pressure index is estimated based on the difference between the displacement vector in the shallow region and the displacement vector in the deep region.
 図8は、押圧指標を推定する際に行う特徴点のマッチング処理を説明するための模式的な図である。(a)は、深い領域について算出する変位ベクトルB(b,b)を説明するための図である。(b)は、浅い領域について算出する変位ベクトルA(a,a)を説明するための図である。(c)は、押圧指標の推定に用いる2つの変位ベクトルの差分C(c,c)を説明するための図である。 FIG. 8 is a schematic diagram for explaining feature point matching processing performed when estimating a pressure index. (a) is a diagram for explaining a displacement vector B (b x , b y ) calculated for a deep region. (b) is a diagram for explaining a displacement vector A(a x , a y ) calculated for a shallow region. (c) is a diagram for explaining a difference C(c x , c y ) between two displacement vectors used for estimating a pressure index.
 図9は、図6に示すステップS3の詳細な処理手順を示すフローチャートである。ステップS3は、ステップS31ないしステップS33を有している。 FIG. 9 is a flowchart showing the detailed processing procedure of step S3 shown in FIG. Step S3 has steps S31 to S33.
 ステップS31では、深い領域について変位ベクトルB(b,b)を算出する。本実施形態では、時間的に隣接する超音波画像のペアPとペアPとの間において、2枚の第2の断片画像42,42間について、複数の特徴点間の複数の変位ベクトルB(b1x,b1y),B(b2x,b2y),B(b3x,b3y)を求める。なお説明の簡易化のため特徴点の数nを3としているが、特徴点の数nは3に限定されない。図8(a)において、符号52aは、時刻Tにおける超音波画像ペアPの断片画像42中の特徴点を示し、符号52bは、時刻Tにおける超音波画像ペアPの断片画像42中の特徴点を示している。例えば変位ベクトルBは、特徴点52aから特徴点52bへの移動を示すベクトルとして表現される。2枚の超音波画像42,42間における特徴点のペアの抽出には、例えばORB(Oriented FAST and Rotated Brief)アルゴリズム
等の公知のアルゴリズムを用いることができる。
In step S31, a displacement vector B(b x , b y ) is calculated for the deep region. In the present embodiment, a plurality of displacement vectors between a plurality of feature points between two second fragment images 42, 42 between a pair P1 and a pair P2 of ultrasonic images adjacent in time. B 1 (b 1x , b 1y ), B 2 (b 2x , b 2y ), B 3 (b 3x , b 3y ) are obtained. Although the number nB of feature points is set to 3 for simplification of explanation, the number nB of feature points is not limited to 3. In FIG. 8A, reference numeral 52a denotes a feature point in the fragment image 42 of the ultrasound image pair P1 at time T1 , and reference numeral 52b denotes the fragment image 42 of the ultrasound image pair P2 at time T2 . It shows the feature points inside. For example, the displacement vector B1 is expressed as a vector indicating movement from the feature point 52a to the feature point 52b. A known algorithm such as an ORB (Oriented FAST and Rotated Brief) algorithm can be used for extracting feature point pairs between the two ultrasound images 42 , 42 .
 変位ベクトルB(b,b)は、例えば3つの変位ベクトルB,B,Bの各要素の平均をとることにより算出する。すなわち、bを(b1x+b2x+b3x)/3で算出し、bを(b1y+b2y+b3y)/3で算出する。 The displacement vector B(b x , b y ) is calculated, for example, by averaging the elements of the three displacement vectors B 1 , B 2 and B 3 . That is, b x is calculated by (b 1x +b 2x +b 3x )/3, and b y is calculated by (b 1y +b 2y +b 3y )/3.
 ステップS32では、浅い領域について変位ベクトルA(a,a)を算出する。本実施形態では、変位ベクトルA(a,a)についても変位ベクトルB(b,b)と同様に算出する。 In step S32, a displacement vector A(a x , a y ) is calculated for the shallow region. In this embodiment, the displacement vector A (a x , a y ) is also calculated in the same manner as the displacement vector B (b x , b y ).
 すなわち、時間的に隣接する超音波画像のペアPとペアPとの間において、2枚の
第1の断片画像41,41間について、複数の特徴点間の複数の変位ベクトルA(a1x,a1y),A(a2x,a2y),A(a3x,a3y)を求める。なお説明の簡易化のため特徴点の数nを3としているが、特徴点の数nは3に限定されない。図8(b)において、符号51aは、時刻Tにおける超音波画像ペアPの断片画像41中の特徴点を示し、符号51bは、時刻Tにおける超音波画像ペアPの断片画像41中の特徴点を示している。例えば変位ベクトルAは、特徴点51aから特徴点51bへの移動を示すベクトルとして表現される。変位ベクトルA(a,a)は、例えば3つの変位ベクトルA,A,Aの各要素の平均をとることにより算出する。
That is , a plurality of displacement vectors A 1 ( a 1x , a 1y ), A 2 (a 2x , a 2y ), A 3 (a 3x , a 3y ). Although the number nA of feature points is set to 3 for simplification of explanation, the number nA of feature points is not limited to 3. In FIG. 8B, reference numeral 51a denotes a feature point in the fragment image 41 of the ultrasound image pair P1 at time T1 , and reference numeral 51b denotes the fragment image 41 of the ultrasound image pair P2 at time T2 . It shows the feature points inside. For example, the displacement vector A1 is expressed as a vector indicating movement from the feature point 51a to the feature point 51b. The displacement vector A (a x , a y ) is calculated, for example, by averaging the elements of the three displacement vectors A 1 , A 2 and A 3 .
 2枚の超音波画像41,41間における特徴点のペアの抽出には、ステップS31と同様に、例えばORB(Oriented FAST and Rotated Brief)アルゴリズムを用いることが
できる。または、ORBアルゴリズムに代えて、ステップS31において2枚の超音波画像42,42間において算出した変位ベクトルB(b,b)を初期値とするテンプレートマッチングを行うことにより、2枚の第1の断片画像41,41間における、複数の特徴点間の複数の変位ベクトルA(a1x,a1y),A(a2x,a2y),A(a3x,a3y)を求めることができる。テンプレートマッチングの結果を吟味する際の指標には、例えば正規化相互相関(NCC: Normalized Cross-Correlation)や、正規化
相互相関の改良版であるZNCC(Zero-mean Normalized Cross-Correlation)、差分二乗和(SSD:Sum of Squared Difference)等の種々の指標を用いることができる。ZNCCを評価の指標に用いたテンプレートマッチングによると、本ステップS32における演算量を削減することができ、後続のステップS4における通知のリアルタイム性を向上することができる。
For example, an ORB (Oriented FAST and Rotated Brief) algorithm can be used to extract feature point pairs between the two ultrasound images 41, 41, as in step S31. Alternatively, instead of the ORB algorithm, template matching is performed using the displacement vector B (b x , b y ) calculated between the two ultrasound images 42, 42 in step S31 as an initial value. A plurality of displacement vectors A 1 (a 1x , a 1y ), A 2 (a 2x , a 2y ), A 3 (a 3x , a 3y ) between a plurality of feature points between the fragment images 41 and 41 of one image are expressed as can ask. Indices for examining the results of template matching include, for example, Normalized Cross-Correlation (NCC), ZNCC (Zero-mean Normalized Cross-Correlation), which is an improved version of Normalized Cross-Correlation, and squared difference. Various measures such as the sum (SSD: Sum of Squared Difference) can be used. According to template matching using ZNCC as an evaluation index, the amount of calculation in step S32 can be reduced, and the real-time nature of notification in subsequent step S4 can be improved.
 ステップS33では、変位ベクトルの差分C(c,c)に基づいて押圧指標を推定する。変位ベクトルの差分C(c,c)はB(b,b)-A(a,a)から算出する。cを(b-a)で算出し、cを(b-a)で算出する。 In step S33, the pressure index is estimated based on the displacement vector difference C(c x , c y ). The displacement vector difference C(c x , c y ) is calculated from B(b x , b y )−A(a x , a y ). Calculate c x as (b x −a x ) and c y as (b y −a y ).
 本実施形態では、変位ベクトルの差分C(c,c)の成分のうち、X方向の成分であるcを押圧指標に用いる。押圧指標に関して図2および図3を参照して説明したように、プローブ2を被検体9に押し当てながらプローブ2を図中右側のX方向へ移動させる態様では、特徴点マッチングにより算出される特徴点の変位ベクトルが、主にX方向に関する変位のずれを含んでいるからである。なお、X方向の成分とは、プローブ2から送信される超音波のビームの送信方向に対して垂直な方向の成分を意味し、アジマス(azimuth)方向の成分を意味する。 In this embodiment, among the components of the displacement vector difference C(c x , c y ), c x , which is the component in the X direction, is used as the pressure index. As described with reference to FIGS. 2 and 3 regarding the pressing index, in a mode in which the probe 2 is pressed against the subject 9 and moved in the X direction on the right side of the drawing, the feature calculated by feature point matching is This is because the displacement vector of the point mainly includes the displacement deviation in the X direction. The X-direction component means a component in a direction perpendicular to the transmission direction of the ultrasonic beam transmitted from the probe 2, and means a component in the azimuth direction.
 ステップS4では、押圧指標に関する判定結果を音で通知する。本実施形態では、推定された押圧指標(c)の大きさを、所定の押圧指標の閾値(第1閾値)に基づいて判定する。 In step S4, the determination result regarding the pressure index is notified by sound. In the present embodiment, the magnitude of the estimated pressure indicator (c x ) is determined based on a predetermined threshold value (first threshold value) of the pressure indicator.
 押圧判定部355は、ステップS3において推定された押圧指標(c)が良好か否かを、所定の押圧指標の第1閾値に基づいて判定する。本実施形態では、第1閾値は、予め設定しておいてメモリに記憶しておいたものを使用する。押圧判定部355は、判定結果のデータを出力インタフェース部36に送信し、判定結果に応じた音がスピーカ37から出力される。例えば押圧指標が良好であれば、スピーカ37からは音が出力されず無音とし、押圧指標が良好ではない場合には、スピーカ37からは注意を喚起する例えばビープ音が出力される。 The pressure determination unit 355 determines whether or not the pressure index (c x ) estimated in step S3 is good, based on the first threshold value of the predetermined pressure index. In this embodiment, the first threshold is set in advance and stored in memory. The press determination unit 355 transmits the determination result data to the output interface unit 36 , and a sound corresponding to the determination result is output from the speaker 37 . For example, when the pressure index is good, no sound is output from the speaker 37, and no sound is output.
 このステップS4の時点においては、時刻Tから時刻Tにかけたプローブ2によるスキャンが終了しておらず、ステップS4において押圧判定部355が音で通知する判定結果は、リアルタイムな判定結果であるといえる。 At the time of step S4, scanning by the probe 2 from time T1 to time TN is not completed, and the determination result notified by the pressure determination unit 355 by sound in step S4 is a real-time determination result. It can be said.
 なお本実施形態では判定結果を音で通知しているが、音に代えて音声であってもよく、または音に代えて光や振動等の他の態様により判定結果を通知してもよい。その場合、超音波撮像装置3は、スピーカ37に加えて、LED等の発光装置やバイブレータ等の振動発生装置を適宜備えることができる。 In the present embodiment, the determination result is notified by sound, but the sound may be replaced by voice, or the determination result may be notified by other forms such as light or vibration instead of sound. In that case, the ultrasonic imaging apparatus 3 can be appropriately provided with a light-emitting device such as an LED and a vibration generator such as a vibrator in addition to the speaker 37 .
 ステップS1ないしS4は、プローブ2によるスキャンが終了する(ステップS5においてYes)まで繰り返される。これにより、プローブ2によるスキャンが終了するまでの、プローブ2が被検体9の表面に沿って移動される間、プローブによる被検体への接触圧の大きさを示す指標(押圧指標)が定量化される。超音波撮像装置3は、定量化した押圧指標に基づいて、オペレータによるプローブの手技が良好か否かを判定し、判定結果をオペレータへ通知する。 Steps S1 to S4 are repeated until scanning by the probe 2 ends (Yes in step S5). As a result, while the probe 2 is moving along the surface of the subject 9 until scanning by the probe 2 is completed, an index (pressing index) indicating the magnitude of the contact pressure of the probe to the subject is quantified. be done. Based on the quantified pressure index, the ultrasonic imaging apparatus 3 determines whether or not the operator has performed a good probing technique, and notifies the operator of the determination result.
 時刻Tから時刻Tにかけたプローブ2によるスキャンが終了する(ステップS5においてYes)と、図9に例示する時系列的に連続した超音波画像の複数のペアP,P,…Pが生成されている。ステップS6ないしS8では、これら超音波画像の複数のペアP,P,…Pを用いた処理を行う。 When the scanning by the probe 2 from the time T1 to the time TN ends (Yes in step S5), a plurality of pairs P1 , P2 , . N is generated. In steps S6 to S8, processing using a plurality of pairs P 1 , P 2 , . . . PN of these ultrasound images is performed.
 ステップS6では、断面画像合成部356が、複数の第1の断片画像41と複数の第2の断片画像42とを不均一に合成することにより、被検体9の断面の合成画像47を生成する。その後、ステップS7において、被検体9の横断面のパノラマ合成画像47がディスプレイ31に表示される。 In step S6, the cross-sectional image synthesizing unit 356 unevenly synthesizes the plurality of first fragment images 41 and the plurality of second fragment images 42 to generate a synthetic image 47 of the cross section of the subject 9. . After that, in step S7, a panorama composite image 47 of the cross section of the subject 9 is displayed on the display 31. FIG.
 図10は、図6に示すステップS6の詳細な処理手順を示すフローチャートである。ステップS6は、ステップS61ないしステップS63を有している。 FIG. 10 is a flowchart showing the detailed processing procedure of step S6 shown in FIG. Step S6 has steps S61 to S63.
 ステップS61において、断面画像合成部356が、プローブ2の傾斜角毎に中間合成画像を生成する。断面画像合成部356は、第2の断片画像42に第1の断片画像41を部分的に重ね合わせて合成することにより、中間合成画像を生成する。 In step S61, the cross-sectional image synthesizing unit 356 generates an intermediate synthesized image for each tilt angle of the probe 2. The cross-sectional image synthesizing unit 356 partially superimposes the first fragmentary image 41 on the second fragmentary image 42 and synthesizes them to generate an intermediate synthetic image.
 ステップS61は、全てのプローブ傾斜角について中間合成画像の生成が終了する(ステップS62においてYes)まで繰り返される。これにより、プローブ2の傾斜角毎に、複数の中間合成画像が生成される。 Step S61 is repeated until the generation of intermediate composite images is completed for all probe tilt angles (Yes in step S62). Thereby, a plurality of intermediate composite images are generated for each tilt angle of the probe 2 .
 続いて、ステップS63において、断面画像合成部356が、複数の中間合成画像をプローブ2の傾斜角に基づいて回転させて合成する。これにより、被検体9の横断面のパノラマ合成画像47が生成される。一実施形態に係る超音波撮像方法により生成された、大腿部の横断面のパノラマ合成画像47の一例を、図11および図12に例示する。図11は、押圧指標が良好な場合におけるパノラマ合成画像の一例であり、図12は、押圧指標が良好ではない場合におけるパノラマ合成画像の一例である。 Subsequently, in step S63, the cross-sectional image synthesizing unit 356 rotates and synthesizes a plurality of intermediate synthesized images based on the tilt angle of the probe 2. Thereby, a panorama composite image 47 of the cross section of the subject 9 is generated. An example of a panorama composite image 47 of a cross-section of the thigh produced by an ultrasound imaging method according to one embodiment is illustrated in FIGS. 11 and 12 . FIG. 11 is an example of a panorama synthesized image when the pressure index is good, and FIG. 12 is an example of a panorama synthesized image when the pressure index is not good.
 ステップS8では、押圧指標に関する判定結果を文字で表示する。本実施形態では、押圧指標の大きさを、所定の押圧指標の閾値(第2閾値)に基づいて判定する。 In step S8, the determination result regarding the pressure index is displayed in characters. In the present embodiment, the magnitude of the pressure indicator is determined based on a predetermined threshold value (second threshold value) of the pressure indicator.
 押圧判定部355は、時刻Tから時刻Tにかけてプローブ2によるスキャンが行われる間に各時刻において得られた、各時刻における押圧指標の大きさの平均を算出する。本実施形態では、プローブ2の移動中に得られた複数の押圧指標の総和を、変位ベクトルの大きさの総和で除算することにより、各時刻における押圧指標の大きさの平均を算出する。移動中に得られた複数の押圧指標の総和は、式(1)に示すように、変位ベクトルの差分C(c,c)のX成分を、測定全体を通して足し合わせることにより算出する。
変位ベクトルの大きさの総和は、式(2)に示すように、特徴点マッチングのベースとなる、セクタスキャンモードによる第2の断片画像42での位置合わせにおいて算出された変位ベクトルBの大きさを、測定全体を通して足し合わせることにより算出する。
The pressure determination unit 355 calculates the average magnitude of the pressure index obtained at each time during the scanning by the probe 2 from time T1 to time TN . In the present embodiment, the average magnitude of the pressure indices at each time is calculated by dividing the sum total of a plurality of pressure indices obtained during movement of the probe 2 by the sum total of the magnitudes of the displacement vectors. The sum of a plurality of pressure indices obtained during movement is calculated by adding the X components of the displacement vector difference C(c x , c y ) throughout the measurement, as shown in Equation (1).
As shown in equation (2), the sum of the magnitudes of the displacement vectors is the magnitude of the displacement vector B calculated in the alignment with the second fragment image 42 in the sector scan mode, which is the base of feature point matching. is calculated by summing over the entire measurement.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 押圧判定部355は、算出した押圧指標の大きさの平均値が良好か否かを、所定の押圧指標の第2閾値に基づいて判定する。押圧判定部355は、判定結果のデータを出力インタフェース部36に送信し、判定結果に応じた文字がディスプレイ31に表示される。例えば押圧指標が良好であれば、図11に符号51で示すように文字「Good」が表示され、押圧指標が良好ではない場合には、図12に符号51で示すように文字「Error」が表示される。 The pressure determination unit 355 determines whether or not the calculated average value of the magnitudes of the pressure indicators is good based on the second threshold value of the predetermined pressure indicators. The pressure determination unit 355 transmits data of the determination result to the output interface unit 36, and characters corresponding to the determination result are displayed on the display 31. FIG. For example, if the pressure index is good, the characters "Good" are displayed as indicated by reference numeral 51 in FIG. 11, and if the pressure index is not good, the characters "Error" are displayed as indicated by reference numeral 51 in FIG. Is displayed.
 図11および図12には、符号51で示す押圧指標の判定結果の文字に加えて、符号52で示す押圧指標のスコアが表示されている。押圧指標のスコアは、推定された押圧指標の大きさを、例えば予め準備しておいたスコアテーブルに基づいてスコア化することにより得ることができる。 In FIGS. 11 and 12, the score of the pressure index indicated by reference numeral 52 is displayed in addition to the character of the determination result of the pressure index indicated by reference numeral 51. FIG. The score of the pressure indicator can be obtained by scoring the estimated size of the pressure indicator based on, for example, a score table prepared in advance.
 このステップS8の時点においては、時刻Tから時刻Tにかけて行ったプローブ2によるスキャンが終了しており、ステップS8において押圧判定部355が文字で表示する判定結果は、プローブ2による撮像全体を通じた総合的な判定結果であるといえる。 At the time of this step S8, the scanning by the probe 2 performed from time T1 to time TN has been completed, and the determination result displayed in characters by the pressure determination unit 355 in step S8 is It can be said that this is a comprehensive judgment result.
 (総括)
 以上、本発明によると、被検体表面に沿ってプローブを移動させる際のオペレータによるプローブの手技を定量化することができる。
(Summary)
As described above, according to the present invention, it is possible to quantify the manipulation of the probe by the operator when moving the probe along the surface of the object.
 本発明によると、被検体9の表面上の複数のプローブ位置において取得された、複数の超音波画像を対比することにより、複数の超音波画像を間において対応する特徴点の位置の変位を算出し、算出した変位に基づいて、プローブ2による被検体9への押圧指標を推定する。推定した押圧指標について良好か否かを判定し、判定結果に基づいて、押圧指標が良好か否かを異なる態様で通知する。これにより、プローブ2の押圧による組織の変形の程度が、被検体9表面に沿ったプローブ2の移動に応じて刻々と変化するようなケースであっても、オペレータによるプローブ2を用いた被検体9への押圧の程度が適切か否かを判定してオペレータに通知することができる。押圧指標の判定は、リアルタイムに行うことも撮像終了後に行うこともできる。押圧指標が適切か否かの通知は、音、音声、光、振動等による通知や、文字による通知または表示を行うこともできる。 According to the present invention, by comparing a plurality of ultrasound images acquired at a plurality of probe positions on the surface of the subject 9, the displacement of the position of the corresponding feature point between the plurality of ultrasound images is calculated. Then, the index of pressure of the probe 2 on the subject 9 is estimated based on the calculated displacement. It is determined whether or not the estimated pressure index is good, and based on the determination result, whether or not the pressure index is good is notified in different modes. As a result, even in the case where the degree of deformation of the tissue due to the pressing force of the probe 2 changes from moment to moment according to the movement of the probe 2 along the surface of the subject 9, the subject using the probe 2 by the operator It is possible to determine whether or not the degree of pressing to 9 is appropriate and notify the operator. Determination of the pressure index can be performed in real time or after the end of imaging. Notification as to whether or not the pressure index is appropriate may be made by sound, voice, light, vibration, or the like, or by text or display.
 本発明では、複数の画像間において特徴点のマッチングを行うことにより、すなわち画像処理を行うことにより押圧指標を推定しているので、超音波撮像装置に追加のセンサを設けることなく、費用の発生を抑えて押圧を定量化することができる。 In the present invention, the pressure index is estimated by matching feature points between a plurality of images, that is, by performing image processing. can be suppressed to quantify the pressure.
(その他の形態)
 以上、本発明を特定の実施形態によって説明したが、本発明は上記した実施形態に限定
されるものではない。
(Other forms)
Although the present invention has been described in terms of specific embodiments, the present invention is not limited to the embodiments described above.
 上記実施形態では、押圧推定部354は、被検体9の表面上の複数のプローブ位置において取得された、複数の超音波画像を対比することにより、複数の超音波画像間において対応する特徴点の位置の変位を算出し、算出した変位に基づいて、プローブ2による被検体9への押圧指標を推定しているが、超音波撮像装置3が定量化するオペレータによるプローブの手技は、押圧指標に限定されない。押圧推定部354はさらに速度推定部の機能を備えることができ、押圧判定部355はさらに速度判定部の機能を備えることができる。 In the above-described embodiment, the pressure estimating unit 354 compares a plurality of ultrasonic images acquired at a plurality of probe positions on the surface of the subject 9, thereby identifying corresponding feature points among the plurality of ultrasonic images. The displacement of the position is calculated, and the pressure index of the probe 2 to the subject 9 is estimated based on the calculated displacement. Not limited. The pressure estimation unit 354 can further have the function of a speed estimation unit, and the pressure determination unit 355 can further have the function of a speed determination unit.
 速度推定部は押圧推定部354と同様に動作する。速度推定部および押圧推定部354の動作は、対応する特徴点の位置の変位を算出する処理までは共通化することができる。すなわち、速度推定部は、被検体9の表面上の複数のプローブ位置において取得された、複数の超音波画像を対比することにより、複数の超音波画像間において対応する特徴点の位置の変位を算出し、算出した変位と測定時間との比率に基づいて、プローブ2の移動速度に関する指標(以下、速度指標とも呼ぶ)を推定する。 The velocity estimator operates in the same manner as the pressure estimator 354. The operations of the velocity estimator and the pressure estimator 354 can be shared up to the process of calculating the displacement of the position of the corresponding feature point. That is, the velocity estimating unit compares a plurality of ultrasonic images acquired at a plurality of probe positions on the surface of the subject 9, thereby estimating the displacement of the position of the corresponding feature point between the plurality of ultrasonic images. Based on the ratio between the calculated displacement and the measurement time, an index (hereinafter also referred to as a speed index) relating to the moving speed of the probe 2 is estimated.
 速度判定部は押圧判定部355と同様に動作する。すなわち、速度判定部は、推定された速度指標が良好か否かを、所定の速度指標の閾値(第3閾値)に基づいて判定し、判定結果に基づいて、速度指標が良好か否かを異なる態様で通知する。押圧判定部355と同様に、判定は、時刻Tから時刻Tにかけたプローブ2によるスキャンを行う間にリアルタイムに行っても良いし、時刻Tから時刻Tにかけて行ったプローブ2によるスキャンが終了した後に、プローブ2による撮像全体を通じた総合的な判定として行ってもよい。 The speed determination section operates in the same manner as the pressure determination section 355 . That is, the speed determination unit determines whether or not the estimated speed index is good based on a predetermined speed index threshold value (third threshold value), and determines whether or not the speed index is good based on the determination result. Notify in different ways. Similar to the pressure determination unit 355, the determination may be performed in real time while scanning is performed by the probe 2 from time T1 to time TN , or may be performed during the scanning by the probe 2 from time T1 to time TN . may be performed as a comprehensive determination through the entire imaging by the probe 2 after the is completed.
 速度判定部は、プローブ2による撮像全体を通じた総合的な判定として、例えば速度指標が良好であれば、図11および図12に符号53で示すように文字「Good」を表示し、速度指標が良好ではない場合には、例えば文字「Error」を表示する。図11および図12に示す例では、押圧指標と同様に速度指標についても、符号54で示すように速度指標のスコアを表示している。 As a comprehensive judgment through the whole imaging by the probe 2, for example, if the speed index is good, the speed judgment unit displays the characters "Good" as indicated by reference numeral 53 in FIGS. If it is not good, for example, the characters "Error" are displayed. In the example shown in FIGS. 11 and 12, the score of the speed index is displayed as indicated by reference numeral 54 for the speed index as well as the pressure index.
 上記実施形態では、変位ベクトルB(b,b)を、例えば3つの変位ベクトルB,B,Bの各要素の平均をとることにより算出しているが、変位ベクトルB(b,b)を算出する方法はこの態様に限定されない。例えばこのような単純な算術平均に代えて、第2の断片画像42内の深さに応じた重みづけを変位ベクトルB,B,Bに加えて、加重平均により変位ベクトルB(b,b)を算出してもよい。例えば図示する例では、第2の断片画像42について変位ベクトルB(b,b)を算出する際に、この第2の断片画像42内において浅い位置に存在する変位ベクトルBによる寄与が増大し、深い位置に存在する変位ベクトルBによる寄与が減少するように、重みづけをすることができる。第1の断片画像41について変位ベクトルA(a,a)を算出する場合についても同様である。 In the above embodiment, the displacement vector B(b x , b y ) is calculated by, for example, averaging the elements of the three displacement vectors B 1 , B 2 , B 3 . The method for calculating x , b y ) is not limited to this aspect. For example, instead of such simple arithmetic averaging, weighting according to the depth in the second image fragment 42 is added to the displacement vectors B 1 , B 2 , B 3 , and the displacement vector B(b x , b y ) may be calculated. For example, in the illustrated example, when calculating the displacement vector B (b x , b y ) for the second fragment image 42, the contribution of the displacement vector B 1 existing at a shallow position in the second fragment image 42 is The weighting can be such that it increases and the contribution by the deep-lying displacement vector B3 is reduced. The same applies to the calculation of the displacement vector A(a x , a y ) for the first image fragment 41 .
 上記実施形態では、リニアスキャンモードにより取得される第1の断片画像41を、被検体9内の浅い領域の超音波画像として用い、セクタスキャンモードにより取得される第2の断片画像42を、被検体9内の深い領域の超音波画像として用いているが、押圧推定部354が押圧指標を推定する際に用いる超音波画像の組み合わせはこれに限定されない。押圧指標を推定する際に用いる超音波画像の組み合わせとして、セクタスキャンモードにより取得される第2の断片画像42を、被検体9内の浅い領域について用い、リニアスキャンモードにより取得される第1の断片画像41を、被検体9内の深い領域について用いてもよい。或いは、被検体9内の浅い領域および深い領域のどちらについても、リニア
スキャンモードにより取得される第1の断片画像41を用いてもよいし、被検体9内の浅い領域および深い領域のどちらについても、セクタスキャンモードにより取得される第2の断片画像42を用いてもよい。
In the above embodiment, the first fragmentary image 41 acquired in the linear scan mode is used as an ultrasound image of a shallow region within the subject 9, and the second fragmentary image 42 acquired in the sector scan mode is used as the ultrasound image of the subject. Although the ultrasonic images are used as the ultrasonic images of the deep region inside the subject 9, the combination of ultrasonic images used when the pressure estimation unit 354 estimates the pressure index is not limited to this. As a combination of ultrasonic images used when estimating the pressure index, the second fragment image 42 acquired in the sector scan mode is used for a shallow region within the subject 9, and the first fragment image acquired in the linear scan mode is used. A fragment image 41 may be used for a deep region within the subject 9 . Alternatively, for both shallow and deep regions within the subject 9, the first fragmentary image 41 acquired by the linear scan mode may be used, or for both shallow and deep regions within the subject 9. Alternatively, the second fragment image 42 acquired by the sector scan mode may be used.
 上記実施形態では、2枚の超音波画像間における特徴点のペアの抽出に、ORB(Oriented FAST and Rotated Brief)アルゴリズムを用いているが、特徴点のペアの抽出に用
いるアルゴリズムはこれに限定されない。例えばSIFT(Scale-invariant feature transform)や、SURF(Speeded Up Robust Features)、AKAZE(Accelerated-KAZE)等といった、特徴点を抽出する他の様々なアルゴリズムも用いることができる。
In the above embodiment, the ORB (Oriented FAST and Rotated Brief) algorithm is used to extract feature point pairs between two ultrasound images, but the algorithm used to extract feature point pairs is not limited to this. . Various other algorithms for extracting feature points can also be used, such as SIFT (Scale-invariant feature transform), SURF (Speeded Up Robust Features), AKAZE (Accelerated-KAZE), and the like.
 上記実施形態では、断面画像合成部356は、第1の断片画像41と第2の断片画像42とを不均一に合成する処理をプローブ2の傾斜角毎に行うことにより複数の中間合成画像を生成し、これら複数の中間合成画像をプローブ2の傾斜角に基づいて回転させて合成することによりパノラマ合成画像47を生成しているが、パノラマ合成画像47を生成する態様はこれに限定されない。他の実施形態では、断面画像合成部356は、リニアスキャンモードにより取得された複数の第1の断片画像を、プローブ2の傾斜角に基づいて回転させて合成することにより、第1の中間合成画像を生成する。セクタスキャンモードにより取得された第2の断片画像についても同様に、プローブ2の傾斜角毎に生成されている複数の第2の断片画像を、プローブ2の傾斜角に基づいて回転させて合成することにより、第2の中間合成画像を生成する。次に、第1の中間合成画像および第2の中間合成画像を重み付け合成することにより、第1の断片画像および第2の断片画像が不均一に合成されたパノラマ合成画像47を生成する。 In the above-described embodiment, the cross-sectional image synthesizing unit 356 performs a process of non-uniformly synthesizing the first fragment image 41 and the second fragment image 42 for each tilt angle of the probe 2 to generate a plurality of intermediate synthetic images. The panorama synthetic image 47 is generated by synthesizing these multiple intermediate synthetic images by rotating them based on the tilt angle of the probe 2, but the manner in which the panorama synthetic image 47 is generated is not limited to this. In another embodiment, the cross-sectional image synthesizing unit 356 rotates and synthesizes a plurality of first fragment images acquired in the linear scan mode based on the tilt angle of the probe 2, thereby performing the first intermediate synthesizing. Generate an image. Similarly, for the second fragment images acquired in the sector scan mode, a plurality of second fragment images generated for each tilt angle of the probe 2 are rotated based on the tilt angle of the probe 2 and synthesized. By doing so, a second intermediate synthesized image is generated. Next, the first intermediate synthesized image and the second intermediate synthesized image are weighted and synthesized to generate a panorama synthesized image 47 in which the first fragmentary image and the second fragmentary image are unevenly synthesized.
 上記実施形態では、押圧判定部355は、所定の閾値に基づいて押圧指標が良好か否かを判定しているが、押圧指標の判定は閾値を用いる態様に限定されない。押圧判定部355は、例えば機械学習やディープラーニング等の人工知能を用いる態様により、押圧指標が良好か否かを判定してもよい。また、押圧判定部355および速度判定部が判定に用いる閾値(第1閾値、第2閾値および第3閾値)は、予め設定しておいてメモリに記憶しておいたものを使用してもよいし、入力装置32を介してオペレータが入力したものを使用してもよい。 In the above embodiment, the pressure determination unit 355 determines whether or not the pressure indicator is good based on a predetermined threshold, but the determination of the pressure indicator is not limited to using the threshold. The pressure determination unit 355 may determine whether or not the pressure index is good, for example, using artificial intelligence such as machine learning or deep learning. Further, the threshold values (first threshold value, second threshold value, and third threshold value) used by the pressure determination unit 355 and the speed determination unit for determination may be set in advance and stored in a memory. Alternatively, an operator input via the input device 32 may be used.
 上記実施形態では、押圧推定部354は、互いに少なくとも一部の撮像領域が重なる2枚以上の超音波画像を対比することにより、2枚以上の超音波画像間における特徴点の位置の変位を算出し、算出した変位に基づいて押圧指標を推定しているが、押圧推定部354が押圧指標を推定する態様はこの態様に限定されない。押圧推定部354は、例えば機械学習やディープラーニング等の人工知能を用いる態様により、押圧指標を推定してもよい。 In the above embodiment, the pressure estimating unit 354 compares two or more ultrasound images in which the imaging regions at least partially overlap each other, thereby calculating the displacement of the position of the feature point between the two or more ultrasound images. , and the pressure index is estimated based on the calculated displacement, the manner in which the pressure estimation unit 354 estimates the pressure index is not limited to this manner. The pressure estimator 354 may estimate the pressure index by using artificial intelligence such as machine learning or deep learning.
 例えば押圧推定部354は、学習済みの学習モデルとして構成することができる。押圧推定部354は、超音波画像と超音波画像間の特徴点の変位の対比によって得られた押圧指標とを学習し、超音波画像を入力したときに押圧指標の推定値を出力する学習済みの学習モデルにより、押圧指標を推定する。この場合、信号処理部35は、超音波画像と超音波画像間の特徴点の変位の対比によって得られた押圧指標とを押圧推定部354に学習させる、学習部359を備えることができる。 For example, the pressure estimation unit 354 can be configured as a learned learning model. The pressure estimation unit 354 learns the ultrasonic image and the pressure index obtained by comparing the displacement of the feature points between the ultrasonic images, and outputs the estimated value of the pressure index when the ultrasonic image is input. The pressure index is estimated by the learning model of . In this case, the signal processing unit 35 can include a learning unit 359 that causes the pressure estimating unit 354 to learn the ultrasonic image and the pressure index obtained by comparing the displacement of the feature points between the ultrasonic images.
 上記実施形態では、被検体9の表面上の互いに異なる複数の位置に対応した断片画像を得るために、プローブ2を被検体9の表面に沿って移動させながら、プローブ2から超音波を断続的に送信しているが、断片画像を得る態様はこれに限定されない。例えば、被検体9にプローブ2を複数配置し、各プローブ2から同時に超音波を送信してもよい。 In the above embodiment, in order to obtain fragmentary images corresponding to a plurality of mutually different positions on the surface of the subject 9, the probe 2 is moved along the surface of the subject 9, and ultrasonic waves are intermittently emitted from the probe 2. However, the manner in which fragment images are obtained is not limited to this. For example, a plurality of probes 2 may be arranged on the subject 9 and ultrasonic waves may be transmitted simultaneously from each probe 2 .
 上記実施形態では、プローブ2はリニアスキャンモードとセクタスキャンモードとの両方の駆動方式で動作しているが、プローブ2の駆動方式はこれに限定されない。プローブ2は、セクタスキャンモードに代えてコンベックススキャンモードで動作してもよい。すなわち、プローブ2は、リニアスキャンモードとコンベックススキャンモードとの両方の駆動方式で動作してもよい。リニアスキャンモードにより得られる超音波画像は帯状であり、セクタスキャンモードまたはコンベックススキャンモードにより得られる超音波画像は扇状または凸状である。 Although the probe 2 operates in both the linear scan mode and the sector scan mode in the above embodiment, the probe 2 drive method is not limited to this. The probe 2 may operate in convex scan mode instead of sector scan mode. That is, the probe 2 may operate in both the linear scan mode and the convex scan mode. An ultrasonic image obtained by the linear scan mode is belt-shaped, and an ultrasonic image obtained by the sector scan mode or convex scan mode is fan-shaped or convex.
 以下に本発明の実施例を示し、本発明の特徴をより明確にする。 Examples of the present invention are shown below to further clarify the features of the present invention.
 本発明において導入した押圧指標と、超音波画像の断面積の縮小率との相関性について検証をした。超音波画像は、図2~図3を参照して説明したように、プローブを被検体の表面に押し当てながら、プローブを被検体の表面に沿って移動させながら連続して取得した。超音波画像はリニアスキャンモードにより取得した。超音波画像の断面積の縮小率は、MRI装置により撮像された断面画像を基準とした。 We verified the correlation between the pressure index introduced in the present invention and the reduction ratio of the cross-sectional area of the ultrasonic image. As described with reference to FIGS. 2 and 3, the ultrasonic images were continuously acquired while pressing the probe against the surface of the subject and moving the probe along the surface of the subject. Ultrasound images were acquired in linear scan mode. The reduction ratio of the cross-sectional area of the ultrasonic image was based on the cross-sectional image captured by the MRI apparatus.
 図13に検証結果のグラフを示す。(a)は、X軸方向の位置合わせに関するずれ量の差であり、(b)は、Y軸方向の位置合わせに関するずれ量の差である。位置合わせのずれ量とは、時間的に隣接する超音波画像間において特徴点のマッチングを行った際の、特徴点の移動量を意味する。ずれ量の差とは、被検体内の浅い領域におけるずれ量と深い領域におけるずれ量との差を意味する。図13のグラフ中、横軸の数値が大きいほど、押圧による変形が大きいことを意味しており、縦軸に示す比率の数値が小さいほど、押圧による変形が大きく断面積が縮小していることを意味している。 Fig. 13 shows a graph of the verification results. (a) is the difference in the amount of misalignment in the X-axis direction, and (b) is the difference in the amount of misalignment in the Y-axis direction. The misalignment amount means the amount of movement of the feature points when the feature points are matched between temporally adjacent ultrasound images. The difference in the amount of displacement means the difference between the amount of displacement in a shallow region and the amount of displacement in a deep region within the object. In the graph of FIG. 13, the larger the numerical value on the horizontal axis, the greater the deformation due to pressure, and the smaller the numerical value of the ratio shown on the vertical axis, the greater the deformation due to pressure and the smaller the cross-sectional area. means
 図13に示す検証結果のグラフについて考察する。検証結果のグラフを、プローブの移動方向に沿ったX軸方向の成分と、被検体の深さ方向に沿ったY軸方向の成分とのそれぞれについて確認すると、押圧指標として採用したずれ量の差のうち、X軸方向の成分については、超音波画像の面積の縮小率と相関を有していることが確認された。Y軸方向の成分については相関は確認されなかった。Y軸方向の成分についてはランダム性が高く、指標としてはノイズ成分になると考えられた。 Consider the graph of the verification results shown in FIG. When the graph of the verification result is checked for each of the X-axis direction component along the moving direction of the probe and the Y-axis direction component along the depth direction of the subject, the difference in the displacement amount adopted as the pressing index is Among them, it was confirmed that the component in the X-axis direction has a correlation with the reduction ratio of the area of the ultrasonic image. No correlation was confirmed for the component in the Y-axis direction. The component in the Y-axis direction is highly random and was considered to be a noise component as an index.
 以上、図13に示す検証結果のグラフを考察することにより、プローブを被検体の表面に押し当てながらプローブを被検体の表面に沿って移動させながら超音波画像を撮像するケースでは、図1~図3を参照して考察した通り、X軸方向の位置合わせに関するずれ量(特徴点の移動量のうちX軸方向の成分)の差は、超音波画像の面積縮小率と相関していることが確認された。これにより、押圧指標として用いる位置合わせに関するずれ量については、X軸方向の成分を採用し、Y軸方向の成分を除外することが有効であることが示された。 As described above, by considering the graph of the verification result shown in FIG. As discussed with reference to FIG. 3, the difference in the amount of misalignment in the X-axis direction (the component in the X-axis direction of the amount of movement of the feature points) is correlated with the area reduction ratio of the ultrasonic image. was confirmed. As a result, it was shown that it is effective to use the component in the X-axis direction and exclude the component in the Y-axis direction for the misalignment amount used as the pressing index.
 プローブの移動速度と補正値(位置合わせのずれ量)との関係について検証をし、算出方法が異なる2つの押圧指標について比較を行った。 We verified the relationship between the moving speed of the probe and the correction value (the amount of misalignment), and compared two pressure indices with different calculation methods.
 超音波画像の撮像は、1人のオペレータにより、異なる4人の被検者の大腿部に対して行われた。押圧指標は次の2つの算出方法により算出した。第1の押圧指標は、X軸方向の位置合わせのずれ量の総和を、フレーム数(超音波画像の枚数)で除算することにより算出した。第2の押圧指標は、X軸方向の位置合わせのずれ量の総和を、ベクトルの総和で除算することにより算出した。ベクトルの総和とは、プローブを被検体の表面に沿って移動させている間の、特徴点マッチングのベースとする位置合わせにおいて算出した変位
ベクトル(上記実施形態の説明でいう変位ベクトルB)の大きさの総和を意味する。
Acquisition of ultrasound images was performed by one operator on the thighs of four different subjects. The pressure index was calculated by the following two calculation methods. The first pressure index was calculated by dividing the total amount of misalignment in the X-axis direction by the number of frames (the number of ultrasonic images). The second pressure index was calculated by dividing the total amount of misalignment in the X-axis direction by the total vector. The sum of the vectors is the magnitude of the displacement vector (displacement vector B in the description of the above embodiment) calculated in the alignment on which the feature point matching is based while the probe is moved along the surface of the subject. means the sum of
 特徴点マッチングは、プローブの移動速度の変化をシミュレートするために次の4つの条件で行った。画像のスキップ枚数を多くするとプローブの移動速度が速くシミュレートされる。 Feature point matching was performed under the following four conditions to simulate changes in probe movement speed. If the number of images to be skipped is increased, the moving speed of the probe will be simulated faster.
・条件(I):画像スキップ無し、
・条件(II):画像スキップ1枚
・条件(III):画像スキップ2枚
・条件(IV):画像スキップ3枚
 図14および図15に比較結果のグラフを示す。グラフは、条件(I)に示す画像スキップが無い場合の押圧指標を基準とした。すなわち条件(II)~条件(IV)に示すグラフの縦軸の値は、条件(I)に示す押圧指標を基準とした比率を表している。
・Condition (I): No image skip,
- Condition (II): 1 image skip - Condition (III): 2 image skip - Condition (IV): 3 image skip Figs. 14 and 15 show graphs of comparison results. The graph is based on the pressure index when there is no image skip shown in condition (I). That is, the values on the vertical axis of the graphs shown in conditions (II) to (IV) represent ratios based on the pressure index shown in condition (I).
 条件(II)~条件(IV)へと画像のスキップ枚数を徐々に増大させてゆくと、第1の押圧指標については値が単調に増大した。これに対し第2の押圧指標については、オペレータの違いにより値に多少のばらつきはあるものの、条件(I)~条件(IV)を通じてほぼ一定の値となった。これにより、第1の押圧指標はプローブの移動速度に依存した指標であり、第2の押圧指標はプローブの移動速度から受ける影響が少ない指標であることが確認され、押圧指標の判定には、値のばらつきが少ない第2の押圧指標を用いることが適切であることが示された。 As the number of skipped images was gradually increased from condition (II) to condition (IV), the value of the first pressure index increased monotonously. On the other hand, the second pressure index showed a substantially constant value throughout the conditions (I) to (IV), although there were some variations in the values depending on the operator. As a result, it is confirmed that the first pressure indicator is an indicator that depends on the moving speed of the probe, and the second pressure indicator is an indicator that is less affected by the moving speed of the probe. It was shown that it is appropriate to use the second pressure index with less variation in value.
 本発明は、医療用途および非医療用途のいずれにも適用可能であるが、特に、医療従事者ではない被検者が自身の筋肉の状態を可視化して日常的に確認する用途に好適である。 INDUSTRIAL APPLICABILITY The present invention can be applied to both medical and non-medical applications, and is particularly suitable for use by subjects who are not medical professionals to visualize and routinely check their own muscle conditions. .
1   超音波撮像システム
2   プローブ
3   超音波撮像装置
9   被検体
31  ディスプレイ
32  入力装置
33  補助記憶装置
34  通信インタフェース部
35  信号処理部
36  出力インタフェース部
37  スピーカ
41  第1の断片画像
42  第2の断片画像
47  パノラマ合成画像
351 超音波受信部
352 第1の断片画像生成部(画像生成部)
353 第2の断片画像生成部(画像生成部)
354 押圧推定部
355 押圧判定部
356 断面画像合成部
359 学習部 
1 Ultrasonic Imaging System 2 Probe 3 Ultrasonic Imaging Device 9 Subject 31 Display 32 Input Device 33 Auxiliary Storage Device 34 Communication Interface Unit 35 Signal Processing Unit 36 Output Interface Unit 37 Speaker 41 First Fragmented Image 42 Second Fragmented Image 47 Panoramic composite image 351 Ultrasonic wave receiving unit 352 First fragment image generating unit (image generating unit)
353 second fragment image generator (image generator)
354 pressure estimation unit 355 pressure determination unit 356 cross-sectional image synthesis unit 359 learning unit

Claims (15)

  1.  被検体の表面に配置されたプローブから当該被検体の内部に送信されて、前記被検体の内部で反射された超音波に関する信号を、前記プローブを通じて受信する超音波受信部と、
     受信した前記超音波の信号に基づいて超音波画像を生成する画像生成部と、
     前記被検体の表面上の複数のプローブ位置において取得された、互いに少なくとも一部の撮像領域が重なる2枚以上の前記超音波画像間における、対応する特徴点の位置の変位に基づいて、前記プローブによる前記被検体への接触圧の大きさを示す指標である押圧指標を推定する押圧推定部と、
     を備える、超音波撮像装置。
    An ultrasonic wave receiving unit for receiving, through the probe, a signal relating to ultrasonic waves transmitted from a probe placed on the surface of the subject to the inside of the subject and reflected inside the subject;
    an image generator that generates an ultrasound image based on the received ultrasound signal;
    Based on the displacement of the position of the corresponding feature point between the two or more ultrasonic images in which the imaging regions at least partially overlap each other, acquired at a plurality of probe positions on the surface of the subject, the probe a pressure estimating unit for estimating a pressure index, which is an index indicating the magnitude of the contact pressure applied to the subject by
    An ultrasound imaging device comprising:
  2.  前記押圧推定部は、前記変位における、前記超音波のビームの送信方向に対して垂直な方向の成分を用いて、前記押圧指標を推定する、
     請求項1に記載の超音波撮像装置。
    The pressure estimating unit estimates the pressure index using a component of the displacement in a direction perpendicular to the transmission direction of the ultrasonic beam.
    The ultrasonic imaging apparatus according to claim 1.
  3.  前記押圧推定部は、前記超音波画像内の第1領域および前記第1領域よりも前記超音波のビームの送信方向において前記プローブの遠方に位置する領域を含む第2領域のそれぞれについて、複数の前記特徴点の位置の変位を表す変位ベクトルを算出し、前記第1領域と前記第2領域との間の前記変位ベクトルの差分に基づいて前記押圧指標を推定する、
     請求項1または2に記載の超音波撮像装置。
    For each of a first region in the ultrasonic image and a second region including a region located farther from the probe in the transmission direction of the ultrasonic beam than the first region, the pressure estimating unit performs a plurality of calculating a displacement vector representing the displacement of the position of the feature point, and estimating the pressure index based on the difference in the displacement vector between the first area and the second area;
    The ultrasonic imaging apparatus according to claim 1 or 2.
  4.  前記第1領域は帯状の領域であり、前記第2領域は扇状または凸状の領域である、
     請求項3に記載の超音波撮像装置。
    The first region is a strip-shaped region, and the second region is a fan-shaped or convex region,
    The ultrasonic imaging apparatus according to claim 3.
  5.  前記押圧推定部は、前記プローブが前記被検体の表面に沿って移動される間に取得した、時系列的に連続した複数の前記超音波画像を対比する、
     請求項1から4のいずれか一項に記載の超音波撮像装置。
    The pressure estimating unit compares a plurality of the ultrasonic images consecutive in time series acquired while the probe is moved along the surface of the subject,
    The ultrasonic imaging apparatus according to any one of claims 1 to 4.
  6.  推定した前記押圧指標が良好か否かを、所定の押圧指標の第1閾値に基づいて判定し、判定結果に基づいて、前記押圧指標が良好か否かを異なる態様で通知する押圧判定部をさらに備える、
     請求項1から5のいずれか一項に記載の超音波撮像装置。
    a pressure determination unit that determines whether or not the estimated pressure indicator is good based on a first threshold value of a predetermined pressure indicator, and notifies whether or not the pressure indicator is good based on the determination result in different modes; prepare further,
    The ultrasonic imaging apparatus according to any one of claims 1 to 5.
  7.  前記押圧判定部は、前記プローブが前記被検体の表面に沿って移動される間、前記押圧指標の判定を繰り返し実行し、前記押圧指標の判定を実行する度に、前記押圧指標が良好か否かを異なる態様で通知する、
     請求項6に記載の超音波撮像装置。
    The pressure determination unit repeatedly performs determination of the pressure indicator while the probe is moved along the surface of the subject, and determines whether the pressure indicator is good or not each time the determination of the pressure indicator is performed. notify in different ways whether
    The ultrasonic imaging apparatus according to claim 6.
  8.  前記押圧判定部は、前記プローブが前記被検体の表面に沿って移動された後に、移動中に得られた複数の前記押圧指標に基づいて、前記押圧指標が良好か否かを異なる態様で通知する、
     請求項6または7に記載の超音波撮像装置。
    After the probe is moved along the surface of the subject, the pressure determination unit notifies in different modes whether the pressure indicators are good or not, based on the plurality of pressure indicators obtained during the movement. do,
    The ultrasonic imaging apparatus according to claim 6 or 7.
  9.  前記押圧判定部は、前記移動中に得られた複数の前記押圧指標の総和と、前記移動中に得られた複数の前記変位の大きさの総和との比率に基づいて、前記押圧指標が良好か否かを異なる態様で通知する、
     請求項8に記載の超音波撮像装置。
    The pressure determination unit determines that the pressure indicator is good based on a ratio of the sum of the plurality of pressure indicators obtained during the movement and the sum of the magnitudes of the plurality of displacements obtained during the movement. Notify in different ways whether or not
    The ultrasonic imaging apparatus according to claim 8.
  10.  前記押圧判定部は、前記押圧指標が良好か否かを表示器に表示する、
     請求項6から9のいずれか一項に記載の超音波撮像装置。
    The pressure determination unit displays on a display whether the pressure indicator is good or not.
    The ultrasonic imaging apparatus according to any one of claims 6 to 9.
  11.  前記超音波撮像装置はさらに、算出した前記変位の大きさと測定時間との比率に基づいて速度指標を推定する速度推定部と、
     推定した前記速度指標が良好か否かを、所定の速度指標の第2閾値に基づいて判定し、判定結果に基づいて、前記速度指標が良好か否かを異なる態様で通知する速度判定部と、を備える、
     請求項1から10のいずれか一項に記載の超音波撮像装置。
    The ultrasonic imaging apparatus further includes a speed estimating unit that estimates a speed index based on the calculated ratio between the magnitude of the displacement and the measurement time;
    a speed determination unit that determines whether the estimated speed index is good based on a second threshold value of a predetermined speed index, and notifies whether the speed index is good or not based on the determination result in a different manner; have a
    The ultrasonic imaging device according to any one of claims 1 to 10.
  12.  前記押圧推定部は、
     前記超音波画像と前記超音波画像間の特徴点の変位の対比によって得られた押圧指標とを学習し、前記超音波画像を入力したときに前記押圧指標の推定値を出力する学習済みの学習モデルにより前記押圧指標を推定する、
     請求項1から11のいずれか一項に記載の超音波撮像装置。
    The pressure estimation unit is
    A learned learning that learns the ultrasonic image and a pressure index obtained by comparing displacements of feature points between the ultrasonic images, and outputs an estimated value of the pressure index when the ultrasonic image is input. estimating the pressure index by a model;
    The ultrasonic imaging device according to any one of claims 1 to 11.
  13.  被検体の表面から超音波を内部に送信し、前記被検体の内部で反射された前記超音波を受信するプローブと、
     請求項1から12のいずれか一項に記載の超音波撮像装置と、
     を備える、超音波撮像システム。
    a probe that transmits ultrasonic waves from the surface of a subject to the inside and receives the ultrasonic waves that are reflected inside the subject;
    An ultrasonic imaging device according to any one of claims 1 to 12;
    An ultrasound imaging system comprising:
  14.  被検体の表面に配置されたプローブから当該被検体の内部に送信されて、前記被検体の内部で反射された超音波に関する信号を、前記プローブを通じて受信する超音波受信ステップと、
     受信した前記超音波の信号に基づいて超音波画像を生成する画像生成ステップと、
     前記被検体の表面上の複数のプローブ位置において取得された、互いに少なくとも一部の撮像領域が重なる2枚以上の前記超音波画像間における、対応する特徴点の位置の変位に基づいて、前記プローブによる前記被検体への接触圧の大きさを示す指標である押圧指標を推定する押圧推定ステップと、
     を含む、超音波撮像方法。
    An ultrasonic wave receiving step of receiving, through the probe, a signal relating to ultrasonic waves transmitted from a probe placed on the surface of the subject to the inside of the subject and reflected inside the subject;
    an image generating step of generating an ultrasonic image based on the received ultrasonic signal;
    Based on the displacement of the position of the corresponding feature point between the two or more ultrasonic images in which the imaging regions at least partially overlap each other, acquired at a plurality of probe positions on the surface of the subject, the probe a pressure estimation step of estimating a pressure index, which is an index indicating the magnitude of the contact pressure on the subject by
    A method of ultrasound imaging, comprising:
  15.  被検体の表面に配置されたプローブから当該被検体の内部に送信されて、前記被検体の内部で反射された超音波に関する信号を、前記プローブを通じて受信する超音波受信部、
     受信した前記超音波の信号に基づいて超音波画像を生成する画像生成部、
     前記被検体の表面上の複数のプローブ位置において取得された、互いに少なくとも一部の撮像領域が重なる2枚以上の前記超音波画像間における、対応する特徴点の位置の変位に基づいて、前記プローブによる前記被検体への接触圧の大きさを示す指標である押圧指標を推定する押圧推定部、
     としてコンピュータを動作させる、超音波撮像プログラム。
    An ultrasonic wave receiving unit for receiving, through the probe, a signal relating to ultrasonic waves transmitted from a probe placed on the surface of the subject to the inside of the subject and reflected inside the subject,
    an image generation unit that generates an ultrasound image based on the received ultrasound signal;
    Based on the displacement of the position of the corresponding feature point between the two or more ultrasonic images in which the imaging regions at least partially overlap each other, acquired at a plurality of probe positions on the surface of the subject, the probe A pressure estimating unit that estimates a pressure index that is an index indicating the magnitude of the contact pressure applied to the subject by
    An ultrasound imaging program that operates a computer as
PCT/JP2022/015562 2021-11-19 2022-03-29 Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program WO2023089845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189007 2021-11-19
JP2021189007 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023089845A1 true WO2023089845A1 (en) 2023-05-25

Family

ID=86396562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015562 WO2023089845A1 (en) 2021-11-19 2022-03-29 Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program

Country Status (2)

Country Link
JP (1) JP2023075904A (en)
WO (1) WO2023089845A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017585A (en) * 2004-06-09 2010-01-28 Hitachi Medical Corp Method for operating ultrasonographic device and ultrasonographic device
US20170281094A1 (en) * 2016-04-05 2017-10-05 The Board Of Trustees Of The University Of Illinois Information Based Machine Learning Approach to Elasticity Imaging
WO2020039796A1 (en) * 2018-08-22 2020-02-27 古野電気株式会社 Ultrasonic analysis device, ultrasonic analysis method, and ultrasonic analysis program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017585A (en) * 2004-06-09 2010-01-28 Hitachi Medical Corp Method for operating ultrasonographic device and ultrasonographic device
US20170281094A1 (en) * 2016-04-05 2017-10-05 The Board Of Trustees Of The University Of Illinois Information Based Machine Learning Approach to Elasticity Imaging
WO2020039796A1 (en) * 2018-08-22 2020-02-27 古野電気株式会社 Ultrasonic analysis device, ultrasonic analysis method, and ultrasonic analysis program

Also Published As

Publication number Publication date
JP2023075904A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
CN104220005B (en) Ultrasonic imaging apparatus and ultrasonographic method
US8538103B2 (en) Medical image processing device, medical image processing method, medical image diagnostic apparatus, operation method of medical image diagnostic apparatus, and medical image display method
JP2008539897A (en) Method for real-time mechanical imaging of the prostate and dual array transducer probe
JP5368615B1 (en) Ultrasound diagnostic system
WO2019114034A1 (en) Method and apparatus for acquiring biomechanical parameter according to ultrasonic elasticity myogram
KR101656127B1 (en) Measuring apparatus and program for controlling the same
CN112998748A (en) Method and system for strain automatic measurement and strain ratio calculation for ultrasonic elastography
JP2016112285A (en) Ultrasonic diagnostic device
WO2023089845A1 (en) Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program
JP6518116B2 (en) Ultrasound system
Ge et al. Automatic measurement of spinous process angles on ultrasound spine images
TWI681755B (en) System and method for measuring scoliosis
CN106604683B (en) Diagnostic ultrasound equipment
WO2017183466A1 (en) Ultrasound diagnostic device
JP7215053B2 (en) Ultrasonic image evaluation device, ultrasonic image evaluation method, and ultrasonic image evaluation program
CN112842381B (en) Ultrasonic diagnostic apparatus and display method
JP7322774B2 (en) ULTRASOUND DIAGNOSTIC APPARATUS, ULTRASOUND DIAGNOSTIC SYSTEM CONTROL METHOD, AND ULTRASOUND DIAGNOSTIC SYSTEM CONTROL PROGRAM
JP6356528B2 (en) Ultrasonic diagnostic equipment
JP6937731B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
JP6885908B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
WO2022239400A1 (en) Ultrasonic imaging device, ultrasonic imaging method, ultrasonic imaging system, and ultrasonic imaging program
Hampson et al. Towards robust 3D registration of non-invasive tactile elasticity images of breast tissue for cost-effective cancer screening
JP7273708B2 (en) Ultrasound image processor
JP7008590B2 (en) Ultrasonic image processing equipment
KR20140070044A (en) Method and apparatus for estimation of joint motions capable of bio-feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895134

Country of ref document: EP

Kind code of ref document: A1