WO2023089809A1 - Radio signal observation system, radio signal observation method, and control device - Google Patents

Radio signal observation system, radio signal observation method, and control device Download PDF

Info

Publication number
WO2023089809A1
WO2023089809A1 PCT/JP2021/042745 JP2021042745W WO2023089809A1 WO 2023089809 A1 WO2023089809 A1 WO 2023089809A1 JP 2021042745 W JP2021042745 W JP 2021042745W WO 2023089809 A1 WO2023089809 A1 WO 2023089809A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
radio signal
bandwidth
frequency
analyzers
Prior art date
Application number
PCT/JP2021/042745
Other languages
French (fr)
Japanese (ja)
Inventor
笑子 篠原
裕介 淺井
泰司 鷹取
純一 岩谷
芳孝 清水
知之 山田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/042745 priority Critical patent/WO2023089809A1/en
Publication of WO2023089809A1 publication Critical patent/WO2023089809A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • the present disclosure relates to technology for observing the frequency spectrum of radio signals.
  • Non-Patent Document 2 proposes a multi-stage detection method. It will take time. In addition, it is difficult to deal with time-variant frequency usage conditions of a plurality of wireless communication systems.
  • a first disclosure relates to a radio signal observation system that observes the frequency spectrum of radio signals.
  • a radio signal observation system includes a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth, and a second bandwidth narrower than the first bandwidth of the radio signal.
  • One or more second spectrum analyzers that observe the frequency spectrum, and a controller that controls the one or more second spectrum analyzers.
  • the resolution bandwidth of the one or more second spectrum analyzers is set narrower than the resolution bandwidth of the first spectrum analyzer.
  • the control device performs a process of acquiring spectrum information of the frequency spectrum observed by the first spectrum analyzer, and based on the spectrum information, the radio signal is not observed by the first spectrum analyzer or the radio signal is not observed.
  • a specific band calculation process of calculating a specific band whose time share is equal to or less than a predetermined value; and a selection of selecting the second bandwidth of each of the one or more second spectrum analyzers so as to observe the specific band. is configured to perform a process
  • a second disclosure relates to a radio signal observation system having the following characteristics in addition to the radio signal observation system according to the first disclosure.
  • the selection processing includes the one or more second spectrum analyzers, such that the specific band is frequency-divided or time-divided, and each of the one or more second spectrum analyzers is assigned to the frequency-division or time-division. selecting the second bandwidth for each of .
  • a third disclosure relates to a radio signal observation system having the following characteristics in addition to the radio signal observation system according to the first or second disclosure.
  • the control device detects a change in the channel of the radio signal observed by the first spectrum analyzer based on the spectrum information, and in response to the detection of the channel change, the specific band calculation processing and the It is configured to perform selection processing.
  • a fourth disclosure relates to an unrelated signal observation system according to any one of the first to third disclosures, and further relates to a radio signal observation system having the following features.
  • the control device is configured to further execute a process of acquiring a frequency band used by a specific wireless terminal.
  • the specific band calculation process includes not using the frequency band to be used as the specific band.
  • a fifth disclosure relates to a radio signal observation method for observing the frequency spectrum of radio signals using a plurality of spectrum analyzers.
  • the plurality of spectrum analyzers include a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth, and the frequency of the radio signal with a second bandwidth that is narrower than the first bandwidth. and one or more second spectrum analyzers for observing the spectrum. Also, the resolution bandwidth of the first or second spectrum analyzer is set narrower than the resolution bandwidth of the first spectrum analyzer.
  • a radio signal observation method acquires spectrum information of the frequency spectrum observed by the first spectrum analyzer, and based on the spectrum information, the radio signal is detected by the first spectrum analyzer. calculating a specific band that is not observed or in which the time occupancy rate of the radio signal is equal to or less than a predetermined value; selecting a width; and
  • a sixth disclosure relates to a radio signal observation method having the following characteristics in addition to the radio signal observation method according to the fifth disclosure.
  • Selecting the second bandwidth includes frequency-dividing or time-dividing the specific band, and assigning each of the one or more second spectrum analyzers to the frequency-division or time-division. Selecting the second bandwidth of each of a plurality of second spectrum analyzers.
  • a seventh disclosure relates to a control device that controls a plurality of spectrum analyzers that observe the frequency spectrum of radio signals.
  • the plurality of spectrum analyzers include a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth, and the frequency of the radio signal with a second bandwidth that is narrower than the first bandwidth. and one or more second spectrum analyzers for observing the spectrum.
  • the resolution bandwidth of the first or second spectrum analyzer is set narrower than the resolution bandwidth of the first spectrum analyzer.
  • a control device includes a process of acquiring spectrum information of the frequency spectrum observed by the first spectrum analyzer, and based on the spectrum information, the radio signal is not observed in the first spectrum analyzer.
  • a specific band calculation process for calculating a specific band in which the time occupation ratio of the radio signal is equal to or less than a predetermined value, and the second band of each of the one or more second spectrum analyzers so as to observe the specific band A selection process for selecting a width is performed.
  • An eighth disclosure relates to a control device having the following characteristics in addition to the control device according to the seventh disclosure.
  • the selection processing includes the one or more second spectrum analyzers, such that the specific band is frequency-divided or time-divided, and each of the one or more second spectrum analyzers is assigned to the frequency-division or time-division. selecting the second bandwidth for each of .
  • a first spectrum analyzer observes the frequency spectrum of a broadband, high-time occupancy radio signal, and each of the one or more second spectrum analyzers, in parallel with the first spectrum analyzer, provides a more detailed Observe the frequency spectrum of the radio signal in a narrow band for the specific band that needs to be confirmed.
  • the resolution bandwidth of the second spectrum analyzer is set narrower than the resolution bandwidth of the first spectrum analyzer.
  • each of the one or more second spectrum analyzers does not need to wait for the observation results of the first spectrum analyzer, it is possible to flexibly respond to fluctuations in the frequency usage conditions of a plurality of wireless communication systems. can be done.
  • FIG. 1 is a block diagram showing a schematic configuration of a radio signal observation system according to this embodiment;
  • FIG. 1 is a graph showing an example of frequency spectra of radio signals observed by a first spectrum analyzer and one or more second spectrum analyzers;
  • FIG. 4 is a conceptual diagram for explaining an outline of specific band calculation processing;
  • FIG. 10 is a conceptual diagram for explaining an overview of selection processing; It is a block diagram which shows schematic structure of a control apparatus.
  • 4 is a flow chart showing a radio signal observation method realized by the radio signal observation system according to the present embodiment; It is a block diagram which shows schematic structure of the radio signal observation system based on a modification. 4 is a graph showing examples of frequency bands used by specific wireless terminals;
  • 9 is a flowchart showing a radio signal observation method implemented by a radio signal observation system according to a modification;
  • FIG. 1 is a block diagram showing a schematic configuration of a radio signal observation system 10 according to this embodiment.
  • the radio signal observation system 10 includes a first spectrum analyzer 100, one or more second spectrum analyzers 200 (#1-#N), and a controller 300.
  • N is an integer representing the number of second spectrum analyzers 200 included in the radio signal observation system 10 .
  • the controller 300 is also communicatively connected to the first spectrum analyzer 100 and one or more second spectrum analyzers 200 . For example, they are electrically connected via a cable. However, information may be transmitted indirectly through a relay device.
  • Each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200 observes the frequency spectrum of radio signals with a predetermined bandwidth.
  • the predetermined bandwidth associated with the first spectrum analyzer 100 will be referred to as the "first bandwidth”
  • the predetermined bandwidth associated with the one or more second spectrum analyzers 200 will be referred to as the "second bandwidth”.
  • the second bandwidth may be different for each of the one or more second spectrum analyzers 200 .
  • Each of the one or more second spectrum analyzers 200 is configured such that the second bandwidth can be selected by the control device 300, which will be described later.
  • each of the one or more second spectrum analyzers 200 acquires a second bandwidth selection request as a control signal output by the control device 300, and updates parameter information defining the second selection width according to the control signal.
  • the second bandwidth is selected to be narrower than and contained within the first bandwidth, as described below. That is, the first spectrum analyzer 100 observes the frequency spectrum of the radio signal in a wide band, and the one or more second spectrum analyzers 200 observe the frequency spectrum of the radio signal in a narrow band in parallel with the first spectrum analyzer 100. do.
  • the first bandwidth may be given as a fixed value, or may be configured so that it can be selected by the control device 300 .
  • an input unit provided in the first spectrum analyzer 100 or an input terminal (switch, touch panel, keyboard, etc.) not shown in FIG. 1 accepts a user's operation, and the first bandwidth is selected according to the operation. It's okay to be.
  • Each of the first spectrum analyzer 100 and one or a plurality of second spectrum analyzers 200 performs spectrum analysis according to a known sweep method for other parts of the functions described above (algorithms and configurations for observing the frequency spectrum of radio signals). It may be equivalent to the analyzer. That is, the frequency spectrum of the radio signal is observed by executing a scan with a resolution bandwidth (RBW) set for a predetermined bandwidth. It typically includes an attenuator, a local oscillator, a mixer, an IF filter, a detector, and a sweep generator. In particular, each of the first spectrum analyzer 100 and the one or more second spectrum analyzers 200 may be simple spectrum analyzers.
  • the RBW of one or more second spectrum analyzers 200 is set narrower than the RBW of the first spectrum analyzer 100 . That is, the frequency accuracy of one or more second spectrum analyzers 200 is higher than the frequency accuracy of the first spectrum analyzer 100 .
  • the second bandwidth is selected to be narrower than and contained within the first bandwidth, so that the one or more second spectrum analyzers 200 can detect a portion of the first bandwidth. It is possible to observe the frequency spectrum of the radio signal in more detail for the frequency band of .
  • the second bandwidth is selected to be narrower than the first bandwidth. Therefore, if the RBW of the first spectrum analyzer 100 and the RBW of the one or more second spectrum analyzers 200 are the same, the sweep speed of the first spectrum analyzer 100 is faster than the sweep speed of the one or more second spectrum analyzers 200. slower (the time it takes to scan in the first spectrum analyzer 100 is longer than the time it takes to scan in one or more of the second spectrum analyzers 200).
  • the first spectrum analyzer 100 observes the frequency spectrum of broadband, long-occupancy radio signals
  • the one or more second spectrum analyzers 200 observes the frequency spectrum of narrow-band, short-occupancy radio signals (eg, short packets).
  • the RBW of one or more of the second spectrum analyzers may be set as a fixed value, or the control device may 300 may be set.
  • the control device 300 sets the RBW of one or more second spectrum analyzers 200 according to the selected second bandwidth within a range not slower than the sweep speed of the first spectrum analyzer 100 .
  • FIG. 2 shows an example of the frequency spectrum of radio signals observed by the first spectrum analyzer 100 and the frequency spectrum of radio signals observed by one or more second spectrum analyzers 200 .
  • FIG. 2 shows graphs of frequency spectra for each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200, with the horizontal axis representing frequency and the vertical axis representing signal strength.
  • (A), (B), and (C) show graphs of frequency spectra with different second bandwidths. This is, for example, the frequency spectrum of a radio signal observed on three second spectrum analyzers 200 with mutually different second bandwidths selected.
  • f0, f1, . . . , f10 shown in FIG. 2 indicate frequencies.
  • the first bandwidth is f0 or more and f10 or less.
  • the respective second bandwidths are divided into band A (f0 or more and f1 or less), band B (f8 or more and f9 or less), and band C (f9 or more and f10 or less). It is an example of the frequency spectrum observed when selected.
  • a first spectrum analyzer 100 observes the frequency spectrum of a radio signal over a wide band, and one or more second spectrum analyzers 200 are arranged in parallel with the first spectrum analyzer 100 over a first bandwidth. Observe the frequency spectrum of the radio signal in the narrow band it contains.
  • one or a plurality of second spectrum analyzers 200 observe the frequency spectrum with higher frequency accuracy (RBW narrower than the first spectrum analyzer) than the first spectrum analyzer 100 in the narrow second bandwidth set for each. do.
  • one or more second spectrum analyzers can observe radio signals that could not be captured by the first spectrum analyzer 100 due to low frequency accuracy, as shown in FIG. 2(A).
  • the first spectrum analyzer 100 and one or more second spectrum analyzers 200 may be used by a wireless communication terminal to grasp the usage status and interference status of the surrounding frequency band, or the user may It may be used for grasping the usage status and interference status of the surrounding frequency bands.
  • the first spectrum analyzer 100 and one or more second spectrum analyzers 200 output observation results of the frequency spectrum of surrounding radio signals to the radio communication terminal. Then, the wireless communication terminal selects a channel according to the usage status and transmits a wireless signal, or grasps the interference status of the wireless signal that is being transmitted.
  • the first spectrum analyzer 100 and the one or more second spectrum analyzers 200 are provided with an input section for accepting user operations and a display section for displaying the frequency spectrum of the observed radio signal. Then, the user sets the first bandwidth and the RBW of the first spectrum analyzer 100 by operating the input section, and by checking the display section, grasps the usage status and interference status of the surrounding frequency bands.
  • the control device 300 controls one or more second spectrum analyzers 200 .
  • Control by the control device 300 is performed by operating one or more second spectrum analyzers 200 according to the control signal output by the control device 300 .
  • the control signal is generated by a process executed in control device 300 .
  • the control device 300 executes processing related to selection of the second bandwidth for each of the one or more second spectrum analyzers 200 .
  • the process related to the selection of the second bandwidth executed by the control device 300 is also called "second bandwidth selection process". An outline of the second bandwidth selection process will be described below.
  • the second bandwidth selection process information on the frequency spectrum observed by the first spectrum analyzer 100 (hereinafter also referred to as “spectrum information”) is acquired, and based on the spectrum information, the first spectrum analyzer 100 determines whether the radio signal is is not observed or the frequency band in which the time share of the radio signal is equal to or less than a predetermined value is calculated as the specific band (specific band calculation process).
  • FIG. 3 is a conceptual diagram for explaining the outline of the specific band calculation process.
  • (A), (B), (C), (D), and (E) show examples of frequency spectra observed by the first spectrum analyzer 100 in time series in this order.
  • the control device 300 acquires spectrum information corresponding to the frequency spectrum shown in FIG. For example, the control device 300 detects a frequency band in which no radio signal is observed or in which the time share of the radio signal is equal to or less than a predetermined value depending on whether the signal strength is equal to or greater than a threshold.
  • a threshold In the example shown in FIG. 3, in the frequency band from f0 to f2 and the frequency band from f8 to f10, no radio signal having a signal strength equal to or higher than the threshold is observed.
  • radio signals whose signal strength is equal to or higher than the threshold are observed, and in the frequency band from f6 to f7, only in (C) Radio signals above the threshold have been observed. That is, in the example shown in FIG. 3, the time share of radio signals observed in the frequency band from f2 to f3 is 60%, and the time share of radio signals observed in the frequency band from f6 to f7 is 20%. %. For example, if the predetermined value related to the time share is 50%, in the example shown in FIG. is calculated as a specific band.
  • time occupation rate may be given for spectral information acquired at each predetermined cycle, or may be given by recalculating it every time spectral information is acquired.
  • a second bandwidth is selected for each of the one or more second spectrum analyzers 200 so as to observe a specific band (selection process).
  • the selection processing is performed by frequency-dividing or time-dividing a specific band, and assigning one or more second spectrum analyzers 200 to each of the one or more second spectrum analyzers 200 for the frequency-division or time-division. Select each second bandwidth.
  • FIG. 4 is a conceptual diagram for explaining the outline of the selection process.
  • the frequency band from f0 to f2 the frequency band from f6 to f7, and the frequency band from f8 to f10 are calculated as specific bands.
  • the radio signal observation system 10 includes three second spectrum analyzers 200 (#1, #2, #3).
  • the control device 300 as shown in the upper part of FIG. , band D (from f6 to f7), band E (from f8 to f9), and band F (from f9 to f10).
  • band D from f6 to f7
  • band E from f8 to f9
  • FIG. 4 the lower part of FIG.
  • each band is time-divided and a second bandwidth is selected to be assigned to each of the second spectrum analyzers 200 .
  • the control device 300 selects band A as the second bandwidth from time t0 to t1, selects band B as the second bandwidth from time t1 to time t2, and After that, the second bandwidth is selected so as to repeat this.
  • control device 300 may be configured to select the second bandwidth by performing only frequency division of a specific band.
  • the second bandwidth may be selected so as to be equally divided in each of the one or more second spectrum analyzers 200, or the frequency-divided bands may be allocated in descending order of priority.
  • a second bandwidth for each of the second spectrum analyzers 200 may be selected.
  • the control device 300 outputs a control signal to each of the one or more second spectrum analyzers 200 so as to obtain the second bandwidth selected by the second bandwidth selection process.
  • the second bandwidth of each of the one or more second spectrum analyzers 200 is selected from the first bandwidth in the first spectrum analyzer 100 as It is included in a specific band in which no radio signal is observed or the time occupation ratio of the radio signal is equal to or less than a predetermined value. That is, according to the radio signal observation system 10 according to the present embodiment, while observing the frequency spectrum of a radio signal with a wide band and a high time occupation ratio with the first spectrum analyzer 100, one or more second spectrum analyzers Each of 200 observes the frequency spectrum of the radio signal in a narrow band for specific bands that require detailed confirmation.
  • the control device 300 detects a change in the channel of the radio signal observed by the first spectrum analyzer 100, and in response to the detection of the channel change, performs specific band calculation processing and selection processing. configured to run.
  • detection of channel change is performed, for example, by detecting a radio signal in a frequency band in which no radio signal was observed by the first spectrum analyzer 100 .
  • it is performed when the radio signal is no longer detected in the frequency band in which the radio signal was observed by the first spectrum analyzer 100 .
  • FIG. 5 is a block diagram showing a schematic configuration of the control device 300. As shown in FIG.
  • the control device 300 includes one or more storage devices 310 and one or more processors 320 .
  • One or more storage devices 310 store a control program 311 executable by one or more processors 320 and control information 312 necessary for processing executed by one or more processors 320 .
  • the one or more storage devices 310 are exemplified by volatile memory, non-volatile memory, HDDs, SSDs, and the like.
  • Information acquired by the control device 300 is stored in one or more storage devices 310 as control information 312 .
  • the control program 311 includes a program related to execution of the second bandwidth selection process.
  • Examples of the control information 312 include spectrum information acquired from the first spectrum analyzer 100 and parameter information related to the control program 311 (threshold values related to specific band calculation processing, etc.). Note that the control program 311 may be provided through a network.
  • the one or more processors 320 read the control program 311 and the control information 312 from the one or more storage devices 310 and execute processing according to the control program 311 based on the control information 312 . Thereby, a second bandwidth selection process is performed to generate a control signal for selecting a second bandwidth for each of the one or more second spectrum analyzers 200 .
  • FIG. 6 is a flowchart showing a radio signal observation method realized by the radio signal observation system 10 according to this embodiment.
  • the flowchart shown in FIG. 6 is started, for example, after receiving a request to start observation of radio signals by operating the input terminal. Further, each process is executed in each predetermined process cycle.
  • step S100 each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200 performs a scan to observe the frequency spectrum of radio signals. Then, control device 300 acquires spectrum information from first spectrum analyzer 100 .
  • step S100 proceed to step S200.
  • control device 300 detects whether or not there is a change in the channel of the radio signal observed by the first spectrum analyzer 100, based on the spectrum information.
  • step S200 If there is a channel change (step S200; Yes), proceed to step S300. If there is no channel change (step S200: No), the process returns to step S100, scans are performed again, and observation is continued.
  • step S300 the control device 300 executes specific band calculation processing based on the spectrum information acquired in step S100 to calculate a specific band.
  • step S300 proceed to step S400.
  • step S400 the control device 300 executes selection processing according to the specific band calculated in step S300, and selects the second bandwidth of each of the one or more second spectrum analyzers 200. Then, control device 300 outputs a control signal to each of one or more second spectrum analyzers 200 so as to achieve the selected second bandwidth.
  • step S400 proceed to step S500.
  • each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200 determines whether to end observation. This is determined, for example, by whether or not a request for ending observation has been received by operating the input terminal. If the observation is not to be ended (step S500; No), the process returns to step S100, and the scanning is performed again to continue the observation.
  • the first spectrum analyzer 100 observes the frequency spectrum of a radio signal with a high time occupation ratio in a wide band
  • each of the one or more second spectrum analyzers 200 observes the 1
  • the frequency spectrum of the radio signal is observed in a narrow band for a specific band that requires more detailed confirmation.
  • the RBW of the second spectrum analyzer 200 is narrower than the RBW of the first spectrum analyzer 100 (the frequency accuracy of the second spectrum analyzer 200 is higher than the frequency accuracy of the first spectrum analyzer 100).
  • wideband radio signals can be properly observed without deteriorating frequency accuracy. Furthermore, it contributes to speeding up the observation of radio signals.
  • each of the one or more second spectrum analyzers 200 does not need to wait for the observation result of the first spectrum analyzer 100, when there is a time variation in the frequency usage of a plurality of wireless communication systems (Fig. 6 (step S200; Yes) (second bandwidth selection process) can be performed flexibly.
  • the radio signal observation system 10 may adopt the following modifications. In the following description, portions that overlap with the content described above will be omitted as appropriate.
  • the control device 300 may be configured so as to acquire the frequency band used by a specific wireless terminal (for example, a wireless LAN terminal) and not use the acquired frequency band as the specific band in the specific band calculation process.
  • a specific wireless terminal for example, a wireless LAN terminal
  • the frequency band used can be rephrased as a "channel" used by a specific wireless terminal.
  • FIG. 7 is a block diagram showing a schematic configuration of the radio signal observation system 10 according to the modification.
  • the radio signal observation system 10 according to the modification includes a radio communication device 400.
  • Control device 300 is connected to wireless communication device 400 so as to be able to communicate with each other.
  • the wireless communication device 400 is configured to be able to communicate with specific wireless terminals located in the vicinity.
  • Radio communication apparatus 400 acquires a frequency band used by a specific radio terminal through communication. For example, a beacon transmitted by a specific wireless terminal is detected, and a demodulator included in wireless communication apparatus 400 acquires a usable frequency band. Then, the control device 300 acquires the frequency band used by the specific wireless terminal from the wireless communication device 400 .
  • FIG. 8 shows an example of frequency bands used by specific wireless terminals (wireless terminal A and wireless terminal B).
  • the frequency band used by wireless terminal A is from near f1 to desired f2
  • the frequency band used by wireless terminal B is from near f6 to near f7.
  • the control device 300 calculates the specific band so as not to include the available frequency band acquired from the wireless communication device 400 . For example, when the spectrum information is acquired as described in FIG. 3 and the frequency band used as described in FIG. , a frequency band from f0 to f1 and a frequency band from f8 to f10.
  • FIG. 9 shows a radio signal observation method implemented by the radio signal observation system 10 according to the modification.
  • the control device 300 acquires the frequency band used by a specific radio terminal. (Step S210) is executed. Then, in step S300, control device 300 executes specific band calculation processing based on the spectrum information obtained in step S100 and the frequency band in use obtained in step S210 to calculate a specific band.
  • the frequency band does not need to be confirmed because it is used by a large number of wireless terminals, it is a frequency band with a low time occupancy rate and no radio signal is observed by the first spectrum analyzer 100. It is possible to prevent a bandwidth that does not require detailed confirmation from being selected as the second bandwidth.
  • Radio Signal Observation System 100 First Spectrum Analyzer 200 Second Spectrum Analyzer 300 Control Device 310 Storage Device 311 Control Program 312 Control Information 320 Processor 400 Radio Communication Device

Abstract

A radio signal observation system for observing frequency spectra of radio signals comprises: a first spectrum analyzer that observes frequency spectra of radio signals in a first bandwidth; one or multiple second spectrum analyzers that observe frequency spectra of radio signals in a second bandwidth; and a control device that controls the one or more second spectrum analyzers. The control device is configured to execute: processing to calculate, on the basis of information about the frequency spectra observed by the first spectrum analyzer, a specific standby period during which radio signals are not observed by the first spectrum analyzer or a time occupancy is equal to or less than a predetermined value; and processing to select a second bandwidth for each of the one or more second spectrum analyzers so as to perform observation for a specific bandwidth.

Description

無線信号観測システム、無線信号観測方法、及び制御装置Radio signal observation system, radio signal observation method, and control device
 本開示は、無線信号の周波数スペクトルを観測する技術に関する。 The present disclosure relates to technology for observing the frequency spectrum of radio signals.
 近年、様々な無線通信システムが同一の周波数帯を共用して運用されるケースが多くみられる。例えば、国内の免許不要帯域では無線通信を行う筐体はキャリアセンス(またはリッスンビフォアトーク)により周辺の送信信号を一定時間以上確認してから送信を開始する規定があり、異なる無線通信システム間での共存技術として使用されている。 In recent years, there have been many cases where various wireless communication systems share the same frequency band for operation. For example, in domestic unlicensed bands, it is stipulated that the chassis that performs wireless communication must check the surrounding transmission signal for a certain period of time by carrier sense (or listen-before-talk) before starting transmission. is used as a coexistence technology for
 しかしながら、同一の周波数帯に多数の無線通信システムが混在している場合、キャリアセンス等の共存技術を使用したとしても、混在していない場合と比較してフレーム衝突等が原因となり周波数利用効率が低下する。従って、周波数利用効率を最大化するためには周波数帯の混在を把握して利用するチャネルを適切に選択することが重要となる。また、複数の無線通信システムが同一の周波数帯を利用している場合にチャネルを適切に選択するには、スペクトラムアナライザやソフトウェア無線(SDR;Software Defined Radio)により広帯域で無線信号を観測することが有効と考えられる(非特許文献1、非特許文献2、非特許文献3参照)。 However, when many wireless communication systems coexist in the same frequency band, even if coexistence technology such as carrier sense is used, the frequency utilization efficiency will be lower than when there is no coexistence due to frame collisions. descend. Therefore, in order to maximize frequency utilization efficiency, it is important to appropriately select the channel to be used by grasping the mixture of frequency bands. Also, in order to appropriately select channels when multiple wireless communication systems use the same frequency band, it is possible to observe wireless signals over a wide band using a spectrum analyzer or software defined radio (SDR). It is considered effective (see Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3).
 スペクトラムアナライザやSDRにより広帯域で無線信号を観測しようとする場合、狭帯域で無線信号を観測するよりも、一度のスキャンに時間をかける必要がある。一方で、一度のスキャンに時間がかかると無線信号長が短い無線信号を捕捉できない可能性があるため、正確に観測するためには何度もスキャンを実行するか周波数精度を落として(分解能帯域幅(RBW;Resolution Band Width)を広くして)短時間にスキャンを実行することが必要となる。 When trying to observe a broadband wireless signal with a spectrum analyzer or SDR, it is necessary to spend more time on one scan than observing a narrowband wireless signal. On the other hand, if a single scan takes a long time, it may not be possible to capture wireless signals with short wireless signal lengths. It is necessary to widen the width (RBW: Resolution Band Width) and execute the scan in a short time.
 しかしながら、何度もスキャンを実行する場合、無線通信システムの送信頻度に応じてスキャンの回数を増やす必要があるため、観測完了まで非常に時間がかかってしまう。また、周波数精度を落とす場合、狭帯域で送信が行われている無線信号の観測が正確にできない虞がある。例えば、異種無線システムでは、920MHz帯で最大40倍近くの帯域幅差があり、一度に正確に観測することが困難である。 However, when performing scans many times, it takes a long time to complete the observation because it is necessary to increase the number of scans according to the transmission frequency of the wireless communication system. Further, if the frequency accuracy is lowered, there is a possibility that radio signals transmitted in a narrow band cannot be accurately observed. For example, in heterogeneous wireless systems, there is a maximum bandwidth difference of nearly 40 times in the 920 MHz band, which is difficult to observe accurately at once.
 なお、高速かつ高ダイナミックレンジのスペクトラムアナライザを利用することは、コストや入手の容易さ、生産性等から適用可能な環境が限られてしまう。また、非特許文献2には、多段階検出方法が提案されているが、前段階の終了を待って次段階が行われるため、複数の無線通信システムが混在している場合に状況の把握に時間がかかることとなる。加えて、複数の無線通信システムの周波数利用状況に時間変動があった場合の対応が困難である。 However, using a high-speed, high-dynamic-range spectrum analyzer limits the applicable environment due to cost, availability, and productivity. Non-Patent Document 2 proposes a multi-stage detection method. It will take time. In addition, it is difficult to deal with time-variant frequency usage conditions of a plurality of wireless communication systems.
 本開示の1つの目的は、周波数精度を落とさずに広帯域の無線信号を適切に観測することができる技術を提供することにある。本開示の他の目的は、複数の無線通信システムの周波数利用状況に時間変動があった場合の対応を機動的に行うことができる技術を提供することにある。 One object of the present disclosure is to provide a technology capable of appropriately observing broadband radio signals without reducing frequency accuracy. Another object of the present disclosure is to provide a technology capable of flexibly dealing with the case where frequency usage conditions of a plurality of wireless communication systems fluctuate over time.
 第1の開示は、無線信号の周波数スペクトルを観測する無線信号観測システムに関する。
 第1の開示に係る無線信号観測システムは、第1帯域幅で前記無線信号の前記周波数スペクトルを観測する第1スペクトラムアナライザと、前記第1帯域幅よりも狭い第2帯域幅で前記無線信号の前記周波数スペクトルを観測する1又は複数の第2スペクトラムアナライザと、前記1又は複数の第2スペクトラムアナライザを制御する制御装置と、を備える。ここで、前記1又は複数の第2スペクトラムアナライザの分解能帯域幅は、前記第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されている。
 前記制御装置は、前記第1スペクトラムアナライザにより観測される前記周波数スペクトルのスペクトル情報を取得する処理と、前記スペクトル情報に基づいて、前記第1スペクトラムアナライザにおいて前記無線信号が観測されない又は前記無線信号の時間占有率が所定値以下となる特定帯域を算出する特定帯域算出処理と、前記特定帯域について観測を行うように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択する選択処理と、を実行するように構成されている。
A first disclosure relates to a radio signal observation system that observes the frequency spectrum of radio signals.
A radio signal observation system according to a first disclosure includes a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth, and a second bandwidth narrower than the first bandwidth of the radio signal. One or more second spectrum analyzers that observe the frequency spectrum, and a controller that controls the one or more second spectrum analyzers. Here, the resolution bandwidth of the one or more second spectrum analyzers is set narrower than the resolution bandwidth of the first spectrum analyzer.
The control device performs a process of acquiring spectrum information of the frequency spectrum observed by the first spectrum analyzer, and based on the spectrum information, the radio signal is not observed by the first spectrum analyzer or the radio signal is not observed. a specific band calculation process of calculating a specific band whose time share is equal to or less than a predetermined value; and a selection of selecting the second bandwidth of each of the one or more second spectrum analyzers so as to observe the specific band. is configured to perform a process;
 第2の開示は、第1の開示に係る無線信号観測システムに対して、さらに以下の特徴を有する無線信号観測システムに関する。
 前記選択処理は、前記特定帯域を周波数分割又は時分割し、前記周波数分割又は前記時分割に対して前記1又は複数の第2スペクトラムアナライザの各々を割り当てるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することを含んでいる。
A second disclosure relates to a radio signal observation system having the following characteristics in addition to the radio signal observation system according to the first disclosure.
The selection processing includes the one or more second spectrum analyzers, such that the specific band is frequency-divided or time-divided, and each of the one or more second spectrum analyzers is assigned to the frequency-division or time-division. selecting the second bandwidth for each of .
 第3の開示は、第1又は第2の開示に係る無線信号観測システムに対して、さらに以下の特徴を有する無線信号観測システムに関する。
 前記制御装置は、前記スペクトル情報に基づいて、前記第1スペクトラムアナライザで観測される前記無線信号のチャネルの変更を検出し、前記チャネルの変更を検出したことを受けて前記特定帯域算出処理及び前記選択処理を実行するように構成されている。
A third disclosure relates to a radio signal observation system having the following characteristics in addition to the radio signal observation system according to the first or second disclosure.
The control device detects a change in the channel of the radio signal observed by the first spectrum analyzer based on the spectrum information, and in response to the detection of the channel change, the specific band calculation processing and the It is configured to perform selection processing.
 第4の開示は、第1乃至第3の開示のいずれか1つの開示に係る無縁信号観測システムに関して、さらに以下の特徴を有する無線信号観測システムに関する。
 前記制御装置は、特定の無線端末の利用周波数帯域を取得する処理をさらに実行するように構成されている。そして、前記特定帯域算出処理は、前記利用周波数帯域を前記特定帯域としないことを含んでいる。
A fourth disclosure relates to an unrelated signal observation system according to any one of the first to third disclosures, and further relates to a radio signal observation system having the following features.
The control device is configured to further execute a process of acquiring a frequency band used by a specific wireless terminal. The specific band calculation process includes not using the frequency band to be used as the specific band.
 第5の開示は、複数のスペクトラムアナライザにより無線信号の周波数スペクトルを観測する無線信号観測方法に関する。
 ここで、前記複数のスペクトラムアナライザは、第1帯域幅で前記無線信号の前記周波数スペクトルを観測する第1スペクトラムアナライザと、前記第1帯域幅よりも狭い第2帯域幅で前記無線信号の前記周波数スペクトルを観測する1又は複数の第2スペクトラムアナライザと、を含んでいる。また、前記1又は第2スペクトラムアナライザの分解能帯域幅は、前記第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されている。
 第5の開示に係る無線信号観測方法は、前記第1スペクトラムアナライザにより観測される前記周波数スペクトルのスペクトル情報を取得することと、前記スペクトル情報に基づいて、前記第1スペクトラムアナライザにおいて前記無線信号が観測されない又は前記無線信号の時間占有率が所定値以下となる特定帯域を算出することと、前記特定帯域について観測が行われるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することと、を含んでいる。
A fifth disclosure relates to a radio signal observation method for observing the frequency spectrum of radio signals using a plurality of spectrum analyzers.
Here, the plurality of spectrum analyzers include a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth, and the frequency of the radio signal with a second bandwidth that is narrower than the first bandwidth. and one or more second spectrum analyzers for observing the spectrum. Also, the resolution bandwidth of the first or second spectrum analyzer is set narrower than the resolution bandwidth of the first spectrum analyzer.
A radio signal observation method according to a fifth disclosure acquires spectrum information of the frequency spectrum observed by the first spectrum analyzer, and based on the spectrum information, the radio signal is detected by the first spectrum analyzer. calculating a specific band that is not observed or in which the time occupancy rate of the radio signal is equal to or less than a predetermined value; selecting a width; and
 第6の開示は、第5の開示に係る無線信号観測方法に対して、さらに以下の特徴を有する無線信号観測方法に関する。
 前記第2帯域幅を選択することは、前記特定帯域を周波数分割又は時分割し、前記周波数分割又は前記時分割に対して前記1又は複数の第2スペクトラムアナライザの各々を割り当てるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することを含んでいる。
A sixth disclosure relates to a radio signal observation method having the following characteristics in addition to the radio signal observation method according to the fifth disclosure.
Selecting the second bandwidth includes frequency-dividing or time-dividing the specific band, and assigning each of the one or more second spectrum analyzers to the frequency-division or time-division. Selecting the second bandwidth of each of a plurality of second spectrum analyzers.
 第7の開示は、無線信号の周波数スペクトルを観測する複数のスペクトラムアナライザを制御する制御装置に関する。
 ここで、前記複数のスペクトラムアナライザは、第1帯域幅で前記無線信号の前記周波数スペクトルを観測する第1スペクトラムアナライザと、前記第1帯域幅よりも狭い第2帯域幅で前記無線信号の前記周波数スペクトルを観測する1又は複数の第2スペクトラムアナライザと、を含んでいる。また、前記1又は第2スペクトラムアナライザの分解能帯域幅は、前記第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されている。
 第7の開示に係る制御装置は、前記第1スペクトラムアナライザにより観測される前記周波数スペクトルのスペクトル情報を取得する処理と、前記スペクトル情報に基づいて、前記第1スペクトラムアナライザにおいて前記無線信号が観測されない又は前記無線信号の時間占有率が所定値以下となる特定帯域を算出する特定帯域算出処理と、前記特定帯域について観測を行うように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択する選択処理と、を実行する。
A seventh disclosure relates to a control device that controls a plurality of spectrum analyzers that observe the frequency spectrum of radio signals.
Here, the plurality of spectrum analyzers include a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth, and the frequency of the radio signal with a second bandwidth that is narrower than the first bandwidth. and one or more second spectrum analyzers for observing the spectrum. Also, the resolution bandwidth of the first or second spectrum analyzer is set narrower than the resolution bandwidth of the first spectrum analyzer.
A control device according to a seventh disclosure includes a process of acquiring spectrum information of the frequency spectrum observed by the first spectrum analyzer, and based on the spectrum information, the radio signal is not observed in the first spectrum analyzer. Alternatively, a specific band calculation process for calculating a specific band in which the time occupation ratio of the radio signal is equal to or less than a predetermined value, and the second band of each of the one or more second spectrum analyzers so as to observe the specific band A selection process for selecting a width is performed.
 第8の開示は、第7の開示に係る制御装置に対して、さらに以下の特徴を有する制御装置に関する。
 前記選択処理は、前記特定帯域を周波数分割又は時分割し、前記周波数分割又は前記時分割に対して前記1又は複数の第2スペクトラムアナライザの各々を割り当てるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することを含んでいる。
An eighth disclosure relates to a control device having the following characteristics in addition to the control device according to the seventh disclosure.
The selection processing includes the one or more second spectrum analyzers, such that the specific band is frequency-divided or time-divided, and each of the one or more second spectrum analyzers is assigned to the frequency-division or time-division. selecting the second bandwidth for each of .
 本開示によれば、第1スペクトラムアナライザは広帯域で時間占有率の高い無線信号の周波数スペクトルを観測し、1又は複数の第2スペクトラムアナライザの各々は、第1スペクトラムアナライザと並列に、より詳細な確認が必要な特定帯域について狭帯域で無線信号の周波数スペクトルを観測する。ここで、第2スペクトラムアナライザの分解能帯域幅は、第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されている。これにより周波数精度を落とさずに広帯域の無線信号を適切に観測することができる。 According to the present disclosure, a first spectrum analyzer observes the frequency spectrum of a broadband, high-time occupancy radio signal, and each of the one or more second spectrum analyzers, in parallel with the first spectrum analyzer, provides a more detailed Observe the frequency spectrum of the radio signal in a narrow band for the specific band that needs to be confirmed. Here, the resolution bandwidth of the second spectrum analyzer is set narrower than the resolution bandwidth of the first spectrum analyzer. As a result, wideband radio signals can be appropriately observed without deteriorating frequency accuracy.
 また、1又は複数の第2スペクトラムアナライザの各々は、第1スペクトラムアナライザの観測の結果を待つことを要しないため、複数の無線通信システムの周波数利用状況に変動があった場合の対応を機動的に行うことができる。 In addition, since each of the one or more second spectrum analyzers does not need to wait for the observation results of the first spectrum analyzer, it is possible to flexibly respond to fluctuations in the frequency usage conditions of a plurality of wireless communication systems. can be done.
本実施形態に係る無線信号観測システムの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a radio signal observation system according to this embodiment; FIG. 第1スペクトラムアナライザ及び1又は複数の第2スペクトラムアナライザにより観測される無線信号の周波数スペクトルの例を示すグラフである。1 is a graph showing an example of frequency spectra of radio signals observed by a first spectrum analyzer and one or more second spectrum analyzers; 特定帯域算出処理の概要について説明するための概念図である。FIG. 4 is a conceptual diagram for explaining an outline of specific band calculation processing; 選択処理の概要について説明するための概念図である。FIG. 10 is a conceptual diagram for explaining an overview of selection processing; 制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a control apparatus. 本実施形態に係る無線信号観測システムにより実現される無線信号観測方法を示すフローチャートである。4 is a flow chart showing a radio signal observation method realized by the radio signal observation system according to the present embodiment; 変形例に係る無線信号観測システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radio signal observation system based on a modification. 特定の無線端末の利用周波数帯域の例を示すグラフである。4 is a graph showing examples of frequency bands used by specific wireless terminals; 変形例に係る無線信号観測システムにより実現される無線信号観測方法を示すフローチャートである。9 is a flowchart showing a radio signal observation method implemented by a radio signal observation system according to a modification;
 以下、図面を参照して本開示の実施形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲などの数に言及した場合、特に明示した場合や原理的に明らかにその数が特定される場合を除いて、その言及した数に、本開示に係る思想が限定されるものではない。また、以下に示す実施の形態において説明する構成等は、特に明示した場合や原理的に明らかにそれに特定される場合を除いて、本開示に係る思想に必ずしも必須のものではない。なお、各図中、同一又は相当する部分には同一の符号を附しており、その重複説明は適宜に簡略化ないし省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. However, when referring to the number, quantity, amount, range, etc. of each element in the embodiments shown below, unless otherwise specified or the number is clearly specified in principle, the reference The idea according to the present disclosure is not limited to the number. In addition, the configurations and the like described in the embodiments shown below are not necessarily essential to the concept of the present disclosure, unless otherwise specified or clearly specified in principle. In each figure, the same or corresponding parts are denoted by the same reference numerals, and redundant description thereof will be appropriately simplified or omitted.
 1.無線信号観測システムの概要
 図1は、本実施形態に係る無線信号観測システム10の概略構成を示すブロック図である。無線信号観測システム10は、第1スペクトラムアナライザ100と、1又は複数の第2スペクトラムアナライザ200(#1-#N)と、制御装置300と、を含んでいる。ここで、Nは整数であり、無線信号観測システム10に含まれる第2スペクトラムアナライザ200の数を示す。ただし、N=1であっても良い。また、制御装置300は、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200と互いに情報を伝達することができるように接続されている。例えば、ケーブルを介して電気的に接続されている。ただし、情報の伝達は、中継する装置を介して間接的に行うように構成されていても良い。
1. Overview of Radio Signal Observation System FIG. 1 is a block diagram showing a schematic configuration of a radio signal observation system 10 according to this embodiment. The radio signal observation system 10 includes a first spectrum analyzer 100, one or more second spectrum analyzers 200 (#1-#N), and a controller 300. FIG. Here, N is an integer representing the number of second spectrum analyzers 200 included in the radio signal observation system 10 . However, N=1 may be used. The controller 300 is also communicatively connected to the first spectrum analyzer 100 and one or more second spectrum analyzers 200 . For example, they are electrically connected via a cable. However, information may be transmitted indirectly through a relay device.
 第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200の各々は、所定の帯域幅で無線信号の周波数スペクトルを観測する。以下、第1スペクトラムアナライザ100に係る所定の帯域幅を「第1帯域幅」、1又は複数の第2スペクトラムアナライザ200に係る所定の帯域幅を「第2帯域幅」と称する。ここで、1又は複数の第2スペクトラムアナライザ200の各々について、第2帯域幅は互いに異なっていても良い。 Each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200 observes the frequency spectrum of radio signals with a predetermined bandwidth. Hereinafter, the predetermined bandwidth associated with the first spectrum analyzer 100 will be referred to as the "first bandwidth", and the predetermined bandwidth associated with the one or more second spectrum analyzers 200 will be referred to as the "second bandwidth". Here, the second bandwidth may be different for each of the one or more second spectrum analyzers 200 .
 1又は複数の第2スペクトラムアナライザ200の各々は、後述する制御装置300により第2帯域幅を選択することができるように構成されている。例えば、1又は複数の第2スペクトラムアナライザ200の各々は、制御装置300が出力する制御信号として第2帯域幅の選択要求を取得し、制御信号に従って第2選択幅を規定するパラメータ情報を更新するように構成されている。特に、後述するように第2帯域幅は、第1帯域幅よりも狭くかつ第1帯域幅に含まれるように選択される。つまり、第1スペクトラムアナライザ100は、広帯域で無線信号の周波数スペクトルを観測し、1又は複数の第2スペクトラムアナライザ200は、第1スペクトラムアナライザ100と並列に、狭帯域で無線信号の周波数スペクトルを観測する。 Each of the one or more second spectrum analyzers 200 is configured such that the second bandwidth can be selected by the control device 300, which will be described later. For example, each of the one or more second spectrum analyzers 200 acquires a second bandwidth selection request as a control signal output by the control device 300, and updates parameter information defining the second selection width according to the control signal. is configured as In particular, the second bandwidth is selected to be narrower than and contained within the first bandwidth, as described below. That is, the first spectrum analyzer 100 observes the frequency spectrum of the radio signal in a wide band, and the one or more second spectrum analyzers 200 observe the frequency spectrum of the radio signal in a narrow band in parallel with the first spectrum analyzer 100. do.
 なお、第1帯域幅は、固定値として与えられていても良いし、制御装置300により選択することができるように構成されていても良い。あるいは、第1スペクトラムアナライザ100が備える入力部や図1に図示しない入力端末(スイッチ、タッチパネル、キーボード等)によりユーザの操作を受け付けて、操作に応じて第1帯域幅が選択されるように構成されていても良い。 Note that the first bandwidth may be given as a fixed value, or may be configured so that it can be selected by the control device 300 . Alternatively, an input unit provided in the first spectrum analyzer 100 or an input terminal (switch, touch panel, keyboard, etc.) not shown in FIG. 1 accepts a user's operation, and the first bandwidth is selected according to the operation. It's okay to be.
 第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200の各々は、上述した機能の他の部分(無線信号の周波数スペクトルを観測するためのアルゴリズムや構成)については、公知の掃引方式によるスペクトラムアナライザと同等であって良い。つまり、所定の帯域幅について設定された分解能帯域幅(RBW;Resolution Band Width)でスキャンを実行することで無線信号の周波数スペクトルを観測する。典型的には、アッテネータと、局部発振器と、ミキサと、IFフィルタと、検波器と、掃引ジェネレータと、を含んで構成される。特に、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200の各々は、簡易スペクトラムアナライザであっても良い。 Each of the first spectrum analyzer 100 and one or a plurality of second spectrum analyzers 200 performs spectrum analysis according to a known sweep method for other parts of the functions described above (algorithms and configurations for observing the frequency spectrum of radio signals). It may be equivalent to the analyzer. That is, the frequency spectrum of the radio signal is observed by executing a scan with a resolution bandwidth (RBW) set for a predetermined bandwidth. It typically includes an attenuator, a local oscillator, a mixer, an IF filter, a detector, and a sweep generator. In particular, each of the first spectrum analyzer 100 and the one or more second spectrum analyzers 200 may be simple spectrum analyzers.
 本実施形態に係る無線信号観測システム10では、1又は複数の第2スペクトラムアナライザ200のRBWは、第1スペクトラムアナライザ100のRBWよりも狭く設定される。つまり、1又は複数の第2スペクトラムアナライザ200の周波数精度は、第1スペクトラムアナライザ100の周波数精度より高い。第2帯域幅は、第1帯域幅よりも狭くかつ第1帯域幅に含まれるように選択されるので、これにより、1又は複数の第2スペクトラムアナライザ200は、第1帯域幅のうち一部の周波数帯域についてより詳細に無線信号の周波数スペクトルを観測することができる。 In the radio signal observation system 10 according to this embodiment, the RBW of one or more second spectrum analyzers 200 is set narrower than the RBW of the first spectrum analyzer 100 . That is, the frequency accuracy of one or more second spectrum analyzers 200 is higher than the frequency accuracy of the first spectrum analyzer 100 . The second bandwidth is selected to be narrower than and contained within the first bandwidth, so that the one or more second spectrum analyzers 200 can detect a portion of the first bandwidth. It is possible to observe the frequency spectrum of the radio signal in more detail for the frequency band of .
 ところで、本実施形態に係る無線信号観測システム10では第2帯域幅は第1帯域幅よりも狭く選択される。従って、第1スペクトラムアナライザ100のRBWと1又は複数の第2スペクトラムアナライザ200のRBWが同一ならば、第1スペクトラムアナライザ100の掃引速度は、1又は複数の第2スペクトラムアナライザ200の掃引速度よりも遅くなる(第1スペクトラムアナライザ100においてスキャンにかかる時間は、1又は複数の第2スペクトラムアナライザ200においてスキャンにかかる時間より長くなる)。つまり、1又は複数の第2スペクトラムアナライザ200の掃引速度が第1スペクトラムアナライザ100の掃引速度よりも遅くならない範囲で1又は複数の第2スペクトラムアナライザ200のRBWを設定するとき、第1スペクトラムアナライザ100は広帯域で占有時間が長い無線信号の周波数スペクトルを観測し、1又は複数の第2スペクトラムアナライザ200は狭帯域で時間占有率の短い無線信号(例えば、短パケット)の周波数スペクトルを観測する。 By the way, in the radio signal observation system 10 according to this embodiment, the second bandwidth is selected to be narrower than the first bandwidth. Therefore, if the RBW of the first spectrum analyzer 100 and the RBW of the one or more second spectrum analyzers 200 are the same, the sweep speed of the first spectrum analyzer 100 is faster than the sweep speed of the one or more second spectrum analyzers 200. slower (the time it takes to scan in the first spectrum analyzer 100 is longer than the time it takes to scan in one or more of the second spectrum analyzers 200). That is, when setting the RBW of the one or more second spectrum analyzers 200 within a range in which the sweep speed of the one or more second spectrum analyzers 200 is not slower than the sweep speed of the first spectrum analyzer 100, the first spectrum analyzer 100 observes the frequency spectrum of broadband, long-occupancy radio signals, and the one or more second spectrum analyzers 200 observes the frequency spectrum of narrow-band, short-occupancy radio signals (eg, short packets).
 なお、1又は複数の第2スペクトラムアナライザのRBWは、固定値として設定されても良いし、第1帯域幅、第1スペクトラムアナライザ100のRBW、及び選択する第2帯域幅等に基づいて制御装置300により設定されても良い。例えば、制御装置300は、第1スペクトラムアナライザ100の掃引速度よりも遅くならない範囲で、選択する第2帯域幅に応じて1又は複数の第2スペクトラムアナライザ200のRBWを設定する。  Note that the RBW of one or more of the second spectrum analyzers may be set as a fixed value, or the control device may 300 may be set. For example, the control device 300 sets the RBW of one or more second spectrum analyzers 200 according to the selected second bandwidth within a range not slower than the sweep speed of the first spectrum analyzer 100 . 
 図2に、第1スペクトラムアナライザ100により観測される無線信号の周波数スペクトル、及び1又は複数の第2スペクトラムアナライザ200により観測される無線信号の周波数スペクトルの例を示す。図2では、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200それぞれについて、横軸を周波数、縦軸を信号強度とする周波数スペクトルのグラフを示している。ここで、1又は複数の第2スペクトラムアナライザ200については、(A)、(B)、及び(C)として互いに第2帯域幅が異なる周波数スペクトルのグラフを示している。これは、例えば、互いに異なる第2帯域幅が選択された3つの第2スペクトラムアナライザ200において観測される無線信号の周波数スペクトルである。なお、図2に示されるf0,f1,・・・,f10は、それぞれ周波数を示す。つまり、図2において、第1帯域幅は、f0以上f10以下である。また(A)、(B)、及び(C)は、それぞれの第2帯域幅を、帯域A(f0以上f1以下)、帯域B(f8以上f9以下)、帯域C(f9以上f10以下)に選択した場合に観測される周波数スペクトルの例である。 FIG. 2 shows an example of the frequency spectrum of radio signals observed by the first spectrum analyzer 100 and the frequency spectrum of radio signals observed by one or more second spectrum analyzers 200 . FIG. 2 shows graphs of frequency spectra for each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200, with the horizontal axis representing frequency and the vertical axis representing signal strength. Here, for one or a plurality of second spectrum analyzers 200, (A), (B), and (C) show graphs of frequency spectra with different second bandwidths. This is, for example, the frequency spectrum of a radio signal observed on three second spectrum analyzers 200 with mutually different second bandwidths selected. Note that f0, f1, . . . , f10 shown in FIG. 2 indicate frequencies. That is, in FIG. 2, the first bandwidth is f0 or more and f10 or less. In (A), (B), and (C), the respective second bandwidths are divided into band A (f0 or more and f1 or less), band B (f8 or more and f9 or less), and band C (f9 or more and f10 or less). It is an example of the frequency spectrum observed when selected.
 図2に示すように、第1スペクトラムアナライザ100は、広帯域で無線信号の周波数スペクトルを観測し、1又は複数の第2スペクトラムアナライザ200は、第1スペクトラムアナライザ100と並列に、第1帯域幅に含まれる狭帯域で無線信号の周波数スペクトルを観測する。 As shown in FIG. 2, a first spectrum analyzer 100 observes the frequency spectrum of a radio signal over a wide band, and one or more second spectrum analyzers 200 are arranged in parallel with the first spectrum analyzer 100 over a first bandwidth. Observe the frequency spectrum of the radio signal in the narrow band it contains.
 また、1又は複数の第2スペクトラムアナライザ200は、各々に設定される狭帯域の第2帯域幅において、第1スペクトラムアナライザ100より高い周波数精度(第1スペクトラムアナライザより狭いRBW)で周波数スペクトルを観測する。これにより、1又は複数の第2スペクトラムアナライザでは、図2の(A)に示すように、第1スペクトラムアナライザ100では周波数精度が低いために捕捉できていなかった無線信号を観測することができる。 In addition, one or a plurality of second spectrum analyzers 200 observe the frequency spectrum with higher frequency accuracy (RBW narrower than the first spectrum analyzer) than the first spectrum analyzer 100 in the narrow second bandwidth set for each. do. As a result, one or more second spectrum analyzers can observe radio signals that could not be captured by the first spectrum analyzer 100 due to low frequency accuracy, as shown in FIG. 2(A).
 なお、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200は、無線通信端末が周囲の周波数帯の利用状況や干渉状況を把握するために用いられるものであっても良いし、ユーザが周囲の周波数帯の利用状況や干渉状況を把握するために用いられるものであっても良い。前者の場合、例えば、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200は、無線通信端末に対して周囲の無線信号の周波数スペクトルの観測結果を出力する。そして無線通信端末は、利用状況に応じてチャネルを選択して無線信号の送信を行う、あるいは送信を行っている無線信号の干渉状況を把握する。後者の場合、例えば、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200は、ユーザの操作を受け付ける入力部と、観測した無線信号の周波数スペクトルを表示する表示部と、を備える。そしてユーザは、入力部の操作により第1帯域幅や第1スペクトラムアナライザ100のRBWを設定し、表示部を確認することで周囲の周波数帯の利用状況や干渉状況を把握する。 The first spectrum analyzer 100 and one or more second spectrum analyzers 200 may be used by a wireless communication terminal to grasp the usage status and interference status of the surrounding frequency band, or the user may It may be used for grasping the usage status and interference status of the surrounding frequency bands. In the former case, for example, the first spectrum analyzer 100 and one or more second spectrum analyzers 200 output observation results of the frequency spectrum of surrounding radio signals to the radio communication terminal. Then, the wireless communication terminal selects a channel according to the usage status and transmits a wireless signal, or grasps the interference status of the wireless signal that is being transmitted. In the latter case, for example, the first spectrum analyzer 100 and the one or more second spectrum analyzers 200 are provided with an input section for accepting user operations and a display section for displaying the frequency spectrum of the observed radio signal. Then, the user sets the first bandwidth and the RBW of the first spectrum analyzer 100 by operating the input section, and by checking the display section, grasps the usage status and interference status of the surrounding frequency bands.
 再度図1を参照する。制御装置300は、1又は複数の第2スペクトラムアナライザ200を制御する。制御装置300が出力する制御信号に従って1又は複数の第2スペクトラムアナライザ200が動作することで、制御装置300による制御が行われる。ここで、制御信号は、制御装置300において実行される処理により生成される。特に制御装置300は、1又は複数の第2スペクトラムアナライザ200の各々について、第2帯域幅の選択に係る処理を実行する。制御装置300において実行される第2帯域幅の選択に係る処理を「第2帯域幅選択処理」とも称する。以下、第2帯域幅選択処理の概要について説明する。 Refer to Figure 1 again. The control device 300 controls one or more second spectrum analyzers 200 . Control by the control device 300 is performed by operating one or more second spectrum analyzers 200 according to the control signal output by the control device 300 . Here, the control signal is generated by a process executed in control device 300 . In particular, the control device 300 executes processing related to selection of the second bandwidth for each of the one or more second spectrum analyzers 200 . The process related to the selection of the second bandwidth executed by the control device 300 is also called "second bandwidth selection process". An outline of the second bandwidth selection process will be described below.
 まず第2帯域幅選択処理では、第1スペクトラムアナライザ100により観測される周波数スペクトルの情報(以下、「スペクトル情報」とも称する)を取得し、スペクトル情報に基づいて、第1スペクトラムアナライザ100において無線信号が観測されない又は無線信号の時間占有率が所定値以下となる周波数帯域を特定帯域として算出する(特定帯域算出処理)。 First, in the second bandwidth selection process, information on the frequency spectrum observed by the first spectrum analyzer 100 (hereinafter also referred to as “spectrum information”) is acquired, and based on the spectrum information, the first spectrum analyzer 100 determines whether the radio signal is is not observed or the frequency band in which the time share of the radio signal is equal to or less than a predetermined value is calculated as the specific band (specific band calculation process).
 図3は、特定帯域算出処理の概要ついて説明するための概念図である。図3では、(A)、(B)、(C)、(D)、及び(E)として、この順の時系列で第1スペクトラムアナライザ100により観測される周波数スペクトルの例を示している。いま制御装置300が、図3に示す周波数スペクトルに対応するスペクトル情報を取得するとする。制御装置300は、例えば、信号強度が閾値以上となるか否かにより、無線信号が観測されない又は無線信号の時間占有率が所定値以下となる周波数帯域を検出する。図3に示す例では、f0以上f2以下の周波数帯域とf8以上f10以下の周波数帯域では、信号強度が閾値以上となる無線信号が観測されていない。また、f2以上f3以下の周波数帯域では、(A)及び(D)を除いて信号強度が閾値以上となる無線信号が観測されており、f6以上f7以下の周波数帯域では、(C)でのみ閾値以上となる無線信号が観測されている。つまり、図3に示す例において、f2以上f3以下の周波数帯域で観測される無線信号の時間占有率は60%で、f6以上f7以下の周波数帯域で観測される無線信号の時間占有率は20%である。例えば時間占有率に係る所定値を50%とすれば、図3に示す例において、制御装置300は、f0以上f2以下の周波数帯域、f6以上f7以下の周波数帯域、f8以上f10以下の周波数帯域を特定帯域として算出する。 FIG. 3 is a conceptual diagram for explaining the outline of the specific band calculation process. In FIG. 3, (A), (B), (C), (D), and (E) show examples of frequency spectra observed by the first spectrum analyzer 100 in time series in this order. Assume now that the control device 300 acquires spectrum information corresponding to the frequency spectrum shown in FIG. For example, the control device 300 detects a frequency band in which no radio signal is observed or in which the time share of the radio signal is equal to or less than a predetermined value depending on whether the signal strength is equal to or greater than a threshold. In the example shown in FIG. 3, in the frequency band from f0 to f2 and the frequency band from f8 to f10, no radio signal having a signal strength equal to or higher than the threshold is observed. In addition, in the frequency band from f2 to f3, except for (A) and (D), radio signals whose signal strength is equal to or higher than the threshold are observed, and in the frequency band from f6 to f7, only in (C) Radio signals above the threshold have been observed. That is, in the example shown in FIG. 3, the time share of radio signals observed in the frequency band from f2 to f3 is 60%, and the time share of radio signals observed in the frequency band from f6 to f7 is 20%. %. For example, if the predetermined value related to the time share is 50%, in the example shown in FIG. is calculated as a specific band.
 なお、時間占有率は、所定の周期毎に取得するスペクトル情報について与えられても良いし、スペクトル情報を取得する毎に逐次再計算して与えられても良い。 It should be noted that the time occupation rate may be given for spectral information acquired at each predetermined cycle, or may be given by recalculating it every time spectral information is acquired.
 次に第2帯域幅選択処理では、特定帯域について観測を行うように1又は複数の第2スペクトラムアナライザ200の各々の第2帯域幅を選択する(選択処理)。ここで、選択処理は、特定帯域を周波数分割又は時分割し、周波数分割又は時分割に対して1又は複数の第2スペクトラムアナライザ200の各々を割り当てるように1又は複数の第2スペクトラムアナライザ200の各々の第2帯域幅を選択する。 Next, in the second bandwidth selection process, a second bandwidth is selected for each of the one or more second spectrum analyzers 200 so as to observe a specific band (selection process). Here, the selection processing is performed by frequency-dividing or time-dividing a specific band, and assigning one or more second spectrum analyzers 200 to each of the one or more second spectrum analyzers 200 for the frequency-division or time-division. Select each second bandwidth.
 図4は、選択処理の概要について説明するための概念図である。図4では、図3において説明した場合と同様に、f0以上f2以下の周波数帯域、f6以上f7以下の周波数帯域、f8以上f10以下の周波数帯域が特定帯域として算出されているとする。また、無線信号観測システム10は、3つの第2スペクトラムアナライザ200(#1,#2,#3)を含むとする。図4に示す例では、制御装置300は、図4の上部に示すように特定帯域を、帯域A(f0以上f1以下)、帯域B(f1以上f2以下)、帯域C(f3以上f4以下)、帯域D(f6以上f7以下)、帯域E(f8以上f9以下)、及び帯域F(f9以上f10以下)に周波数分割する。次に、図4の下部に示すように、それぞれの帯域を時分割して、第2スペクトラムアナライザ200の各々に割り当てるように第2帯域幅を選択する。例えば、#1の第2スペクトラムアナライザ200について、制御装置300は、時刻t0からt1まで帯域Aを第2帯域幅として選択し、時刻t1から時刻t2まで帯域Bを第2帯域幅として選択し、以降これを繰り返すように第2帯域幅を選択する。 FIG. 4 is a conceptual diagram for explaining the outline of the selection process. In FIG. 4, as in the case described with reference to FIG. 3, it is assumed that the frequency band from f0 to f2, the frequency band from f6 to f7, and the frequency band from f8 to f10 are calculated as specific bands. It is also assumed that the radio signal observation system 10 includes three second spectrum analyzers 200 (#1, #2, #3). In the example shown in FIG. 4, the control device 300, as shown in the upper part of FIG. , band D (from f6 to f7), band E (from f8 to f9), and band F (from f9 to f10). Next, as shown in the lower part of FIG. 4, each band is time-divided and a second bandwidth is selected to be assigned to each of the second spectrum analyzers 200 . For example, for the second spectrum analyzer 200 #1, the control device 300 selects band A as the second bandwidth from time t0 to t1, selects band B as the second bandwidth from time t1 to time t2, and After that, the second bandwidth is selected so as to repeat this.
 なお、制御装置300は、特定帯域の周波数分割のみを行って第2帯域幅を選択するように構成されていても良い。この場合、1又は複数の第2スペクトラムアナライザ200の各々で等分割となるように第2帯域幅を選択しても良いし、周波数分割した帯域を優先度の高い順に割り当てるように1又は複数の第2スペクトラムアナライザ200の各々の第2帯域幅を選択しても良い。 Note that the control device 300 may be configured to select the second bandwidth by performing only frequency division of a specific band. In this case, the second bandwidth may be selected so as to be equally divided in each of the one or more second spectrum analyzers 200, or the frequency-divided bands may be allocated in descending order of priority. A second bandwidth for each of the second spectrum analyzers 200 may be selected.
 制御装置300は、第2帯域幅選択処理により選択した第2帯域幅となるように、1又は複数の第2スペクトラムアナライザ200の各々に対して制御信号を出力する。 The control device 300 outputs a control signal to each of the one or more second spectrum analyzers 200 so as to obtain the second bandwidth selected by the second bandwidth selection process.
 このように制御装置300において第2帯域幅選択処理が実行されることで、1又は複数の第2スペクトラムアナライザ200の各々の第2帯域幅は、第1帯域幅のうち第1スペクトラムアナライザ100において無線信号が観測されない又は無線信号の時間占有率が所定値以下となる特定帯域に含まれることとなる。つまり、本実施形態に係る無線信号観測システム10によれば、第1スペクトラムアナライザ100により広帯域で時間占有率の高い無線信号の周波数スペクトルを観測しながら、並列に、1又は複数の第2スペクトラムアナライザ200の各々により詳細な確認が必要な特定帯域について狭帯域で無線信号の周波数スペクトルを観測する。 By executing the second bandwidth selection process in the control device 300 in this way, the second bandwidth of each of the one or more second spectrum analyzers 200 is selected from the first bandwidth in the first spectrum analyzer 100 as It is included in a specific band in which no radio signal is observed or the time occupation ratio of the radio signal is equal to or less than a predetermined value. That is, according to the radio signal observation system 10 according to the present embodiment, while observing the frequency spectrum of a radio signal with a wide band and a high time occupation ratio with the first spectrum analyzer 100, one or more second spectrum analyzers Each of 200 observes the frequency spectrum of the radio signal in a narrow band for specific bands that require detailed confirmation.
 また、制御装置300は、スペクトル情報に基づいて、第1スペクトラムアナライザ100で観測される無線信号のチャネルの変更を検出し、チャネルの変更を検出したことを受けて特定帯域算出処理及び選択処理を実行するように構成される。ここで、チャネルの変更の検出は、例えば、第1スペクトラムアナライザ100で無線信号が観測されていなかった周波数帯域で無線信号が検出されたことにより行われる。あるいは、第1スペクトラムアナライザ100で無線信号が観測されていた周波数帯域で無線信号が検出されなくなったことにより行われる。 Further, based on the spectrum information, the control device 300 detects a change in the channel of the radio signal observed by the first spectrum analyzer 100, and in response to the detection of the channel change, performs specific band calculation processing and selection processing. configured to run. Here, detection of channel change is performed, for example, by detecting a radio signal in a frequency band in which no radio signal was observed by the first spectrum analyzer 100 . Alternatively, it is performed when the radio signal is no longer detected in the frequency band in which the radio signal was observed by the first spectrum analyzer 100 .
 このように、チャネルの変更を検出したことを受けて特定帯域算出処理及び選択処理を実行するように構成することで、不必要に第2帯域幅選択処理が実行されることを抑制することができる。 In this way, by performing the specific band calculation process and the selection process in response to the detection of the channel change, unnecessary execution of the second bandwidth selection process can be suppressed. can.
 2.制御装置の構成
 以下、制御装置300の構成について説明する。図5は、制御装置300の概略構成を示すブロック図である。制御装置300は、1又は複数の記憶装置310と、1又は複数のプロセッサ320と、を備えている。
2. Configuration of Control Device The configuration of the control device 300 will be described below. FIG. 5 is a block diagram showing a schematic configuration of the control device 300. As shown in FIG. The control device 300 includes one or more storage devices 310 and one or more processors 320 .
 1又は複数の記憶装置310は、1又は複数のプロセッサ320により実行可能な制御プログラム311と、1又は複数のプロセッサ320が実行する処理に必要な制御情報312と、を格納している。1又は複数の記憶装置310として、揮発性メモリ、不揮発性メモリ、HDD、SSD等が例示される。制御装置300が取得する情報は、制御情報312として1又は複数の記憶装置310に格納される。 One or more storage devices 310 store a control program 311 executable by one or more processors 320 and control information 312 necessary for processing executed by one or more processors 320 . The one or more storage devices 310 are exemplified by volatile memory, non-volatile memory, HDDs, SSDs, and the like. Information acquired by the control device 300 is stored in one or more storage devices 310 as control information 312 .
 制御プログラム311には、第2帯域幅選択処理の実行に係るプログラムが含まれる。制御情報312として、第1スペクトラムアナライザ100から取得するスペクトル情報、制御プログラム311に係るパラメータ情報(特定帯域算出処理に係る閾値等)が例示される。なお、制御プログラム311は、ネットワークを通して提供されても良い。 The control program 311 includes a program related to execution of the second bandwidth selection process. Examples of the control information 312 include spectrum information acquired from the first spectrum analyzer 100 and parameter information related to the control program 311 (threshold values related to specific band calculation processing, etc.). Note that the control program 311 may be provided through a network.
 1又は複数のプロセッサ320は、1又は複数の記憶装置310から制御プログラム311及び制御情報312を読み出し、制御情報312に基づいて制御プログラム311に従う処理を実行する。これにより、第2帯域幅選択処理が実行され、1又は複数の第2スペクトラムアナライザ200の各々の第2帯域幅を選択する制御信号が生成される。 The one or more processors 320 read the control program 311 and the control information 312 from the one or more storage devices 310 and execute processing according to the control program 311 based on the control information 312 . Thereby, a second bandwidth selection process is performed to generate a control signal for selecting a second bandwidth for each of the one or more second spectrum analyzers 200 .
 3.無線信号観測方法
 以下、本実施形態に係る無線信号観測システム10により実現される無線信号観測方法について説明する。図6は、本実施形態に係る無線信号観測システム10により実現される無線信号観測方法を示すフローチャートである。図6に示すフローチャートは、例えば、入力端末の操作により無線信号の観測の開始の要求を受けつけた後に開始される。また、各処理は、所定の処理周期毎に実行される。
3. Radio Signal Observation Method Hereinafter, a radio signal observation method implemented by the radio signal observation system 10 according to the present embodiment will be described. FIG. 6 is a flowchart showing a radio signal observation method realized by the radio signal observation system 10 according to this embodiment. The flowchart shown in FIG. 6 is started, for example, after receiving a request to start observation of radio signals by operating the input terminal. Further, each process is executed in each predetermined process cycle.
 ステップS100において、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200の各々は、スキャンを実行し、無線信号の周波数スペクトルを観測する。そして、制御装置300は、第1スペクトラムアナライザ100からスペクトル情報を取得する。 In step S100, each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200 performs a scan to observe the frequency spectrum of radio signals. Then, control device 300 acquires spectrum information from first spectrum analyzer 100 .
 ステップS100の後、ステップS200に進む。 After step S100, proceed to step S200.
 ステップS200において、制御装置300は、スペクトル情報に基づいて、第1スペクトラムアナライザ100で観測される無線信号のチャネルの変更があるか否かを検出する。 At step S200, the control device 300 detects whether or not there is a change in the channel of the radio signal observed by the first spectrum analyzer 100, based on the spectrum information.
 チャネルの変更がある場合(ステップS200;Yes)、ステップS300に進む。チャネルの変更がない場合(ステップS200:No)、ステップS100に戻り、再度スキャンを実行して観測を継続する。 If there is a channel change (step S200; Yes), proceed to step S300. If there is no channel change (step S200: No), the process returns to step S100, scans are performed again, and observation is continued.
 ステップS300において、制御装置300は、ステップS100において取得したスペクトル情報に基づいて特定帯域算出処理を実行し、特定帯域を算出する。 In step S300, the control device 300 executes specific band calculation processing based on the spectrum information acquired in step S100 to calculate a specific band.
 ステップS300の後、ステップS400に進む。 After step S300, proceed to step S400.
 ステップS400において、制御装置300は、ステップS300において算出した特定帯域に応じて選択処理を実行し、1又は複数の第2スペクトラムアナライザ200の各々の第2帯域幅を選択する。そして、制御装置300は、選択した第2帯域幅となるように、1又は複数の第2スペクトラムアナライザ200の各々に対して制御信号を出力する。 In step S400, the control device 300 executes selection processing according to the specific band calculated in step S300, and selects the second bandwidth of each of the one or more second spectrum analyzers 200. Then, control device 300 outputs a control signal to each of one or more second spectrum analyzers 200 so as to achieve the selected second bandwidth.
 ステップS400の後、ステップS500に進む。 After step S400, proceed to step S500.
 ステップS500において、第1スペクトラムアナライザ100及び1又は複数の第2スペクトラムアナライザ200の各々は、観測を終了するかを判断する。これは、例えば、入力端末の操作により観測の終了の要求を受け付けたか否かにより判断する。観測を終了しない場合(ステップS500;No)、ステップS100に戻り、再度スキャンを実行して観測を継続する。 In step S500, each of the first spectrum analyzer 100 and one or more second spectrum analyzers 200 determines whether to end observation. This is determined, for example, by whether or not a request for ending observation has been received by operating the input terminal. If the observation is not to be ended (step S500; No), the process returns to step S100, and the scanning is performed again to continue the observation.
 4.効果
 以上説明したように、本実施形態によれば、第1スペクトラムアナライザ100は広帯域で時間占有率の高い無線信号の周波数スペクトルを観測し、1又は複数の第2スペクトラムアナライザ200の各々は、第1スペクトラムアナライザ100と並列に、より詳細な確認が必要な特定帯域について狭帯域で無線信号の周波数スペクトルを観測する。ここで、第2スペクトラムアナライザ200のRBWは、第1スペクトラムアナライザ100のRBWよりも狭い(第2スペクトラムアナライザ200の周波数精度は、第1スペクトラムアナライザ100の周波数精度より高い)。これにより周波数精度を落とさずに広帯域の無線信号を適切に観測することができる。延いては、無線信号の観測の高速化に寄与する。
4. Effect As described above, according to the present embodiment, the first spectrum analyzer 100 observes the frequency spectrum of a radio signal with a high time occupation ratio in a wide band, and each of the one or more second spectrum analyzers 200 observes the 1 In parallel with the spectrum analyzer 100, the frequency spectrum of the radio signal is observed in a narrow band for a specific band that requires more detailed confirmation. Here, the RBW of the second spectrum analyzer 200 is narrower than the RBW of the first spectrum analyzer 100 (the frequency accuracy of the second spectrum analyzer 200 is higher than the frequency accuracy of the first spectrum analyzer 100). As a result, wideband radio signals can be properly observed without deteriorating frequency accuracy. Furthermore, it contributes to speeding up the observation of radio signals.
 また、1又は複数の第2スペクトラムアナライザ200の各々は、第1スペクトラムアナライザ100の観測の結果を待つことを要しないため、複数の無線通信システムの周波数利用状況に時間変動があった場合(図6に示すステップS200;Yes)の対応(第2帯域幅選択処理)を機動的に行うことができる。 In addition, since each of the one or more second spectrum analyzers 200 does not need to wait for the observation result of the first spectrum analyzer 100, when there is a time variation in the frequency usage of a plurality of wireless communication systems (Fig. 6 (step S200; Yes) (second bandwidth selection process) can be performed flexibly.
 5.変形例
 本実施形態に係る無線信号観測システム10は、以下のように変形した態様を採用しても良い。以下の説明において、前述した内容と重複する部分については適宜省略する。
5. Modifications The radio signal observation system 10 according to this embodiment may adopt the following modifications. In the following description, portions that overlap with the content described above will be omitted as appropriate.
 制御装置300は、特定の無線端末(例えば、無線LAN端末)の利用周波数帯域を取得し、特定帯域算出処理において、取得した利用周波数帯域を特定帯域としないように構成されていても良い。ここで、利用周波数帯域は、特定の無線端末が利用する「チャネル」と言い換えることもできる。 The control device 300 may be configured so as to acquire the frequency band used by a specific wireless terminal (for example, a wireless LAN terminal) and not use the acquired frequency band as the specific band in the specific band calculation process. Here, the frequency band used can be rephrased as a "channel" used by a specific wireless terminal.
 図7は、変形例に係る無線信号観測システム10の概略構成を示すブロック図である。図1に示す無線信号観測システム10と比較して、変形例に係る無線信号観測システム10は、無線通信装置400を含んでいる。制御装置300は、無線通信装置400と互いに情報を伝達することができるように接続されている。 FIG. 7 is a block diagram showing a schematic configuration of the radio signal observation system 10 according to the modification. Compared with the radio signal observation system 10 shown in FIG. 1, the radio signal observation system 10 according to the modification includes a radio communication device 400. In FIG. Control device 300 is connected to wireless communication device 400 so as to be able to communicate with each other.
 無線通信装置400は、周囲に位置する特定の無線端末と通信可能に構成される。無線通信装置400は、通信により、特定の無線端末の利用周波数帯域を取得する。例えば、特定の無線端末が送信しているビーコンを検出し、無線通信装置400が備える復調器により利用周波数帯域を取得する。そして、制御装置300は、無線通信装置400から特定の無線端末の利用周波数帯域を取得する。 The wireless communication device 400 is configured to be able to communicate with specific wireless terminals located in the vicinity. Radio communication apparatus 400 acquires a frequency band used by a specific radio terminal through communication. For example, a beacon transmitted by a specific wireless terminal is detected, and a demodulator included in wireless communication apparatus 400 acquires a usable frequency band. Then, the control device 300 acquires the frequency band used by the specific wireless terminal from the wireless communication device 400 .
 図8に、特定の無線端末(無線端末A及び無線端末B)の利用周波数帯域の例を示す。図8に示す例では、無線端末Aの利用周波数帯域は、f1近傍からf2希望までであり、無線端末Bの利用周波数帯域は、f6近傍からf7近傍までである。 FIG. 8 shows an example of frequency bands used by specific wireless terminals (wireless terminal A and wireless terminal B). In the example shown in FIG. 8, the frequency band used by wireless terminal A is from near f1 to desired f2, and the frequency band used by wireless terminal B is from near f6 to near f7.
 制御装置300は、特定帯域算出処理において、無線通信装置400から取得した利用周波数帯域を含めないように特定帯域を算出する。例えば、図3において説明したようにスペクトル情報が取得され、さらに図8において説明したように利用周波数帯域が取得される場合、特定帯域は、無線端末A及び無線端末Bの利用周波数帯域が除かれ、f0以上f1以下の周波数帯域、及びf8以上f10以下の周波数帯域となる。 In the specific band calculation process, the control device 300 calculates the specific band so as not to include the available frequency band acquired from the wireless communication device 400 . For example, when the spectrum information is acquired as described in FIG. 3 and the frequency band used as described in FIG. , a frequency band from f0 to f1 and a frequency band from f8 to f10.
 図9に、変形例に係る無線信号観測システム10により実現される無線信号観測方法を示す。図9に示すように、変形例に係る無線信号観測方法では、チャネルの変更があると判断した後(ステップS200;Yes)、制御装置300は、特定の無線端末の利用周波数帯域を取得する処理(ステップS210)を実行する。そして、ステップS300において、制御装置300は、ステップS100において取得したスペクトル情報と、ステップS210において取得した利用周波数帯域と、に基づいて特定帯域算出処理を実行し、特定帯域を算出する。 FIG. 9 shows a radio signal observation method implemented by the radio signal observation system 10 according to the modification. As shown in FIG. 9, in the radio signal observation method according to the modification, after determining that there is a channel change (step S200; Yes), the control device 300 acquires the frequency band used by a specific radio terminal. (Step S210) is executed. Then, in step S300, control device 300 executes specific band calculation processing based on the spectrum information obtained in step S100 and the frequency band in use obtained in step S210 to calculate a specific band.
 このように変形した態様を採用することで、多数の無線端末が存在する周波数帯を事前に把握することができる。延いては、多数の無線端末が利用していることから確認の必要はない周波数帯にもかかわらず、時間占有率が低く第1スペクトラムアナライザ100において無線信号が観測されない周波数帯であるために、詳細な確認を要しない帯域幅が第2帯域幅として選択されることを抑制することができる。 By adopting such a modified form, it is possible to grasp in advance the frequency bands in which many wireless terminals exist. Furthermore, although the frequency band does not need to be confirmed because it is used by a large number of wireless terminals, it is a frequency band with a low time occupancy rate and no radio signal is observed by the first spectrum analyzer 100. It is possible to prevent a bandwidth that does not require detailed confirmation from being selected as the second bandwidth.
 10  無線信号観測システム
100 第1スペクトラムアナライザ
200 第2スペクトラムアナライザ
300 制御装置
310 記憶装置
311 制御プログラム
312 制御情報
320 プロセッサ
400 無線通信装置
10 Radio Signal Observation System 100 First Spectrum Analyzer 200 Second Spectrum Analyzer 300 Control Device 310 Storage Device 311 Control Program 312 Control Information 320 Processor 400 Radio Communication Device

Claims (8)

  1.  無線信号の周波数スペクトルを観測する無線信号観測システムであって、
     第1帯域幅で前記無線信号の前記周波数スペクトルを観測する第1スペクトラムアナライザと、
     前記第1帯域幅よりも狭い第2帯域幅で前記無線信号の前記周波数スペクトルを観測する1又は複数の第2スペクトラムアナライザと、
     前記1又は複数の第2スペクトラムアナライザを制御する制御装置と、
     を備え、
     前記1又は複数の第2スペクトラムアナライザの分解能帯域幅は、前記第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されており、
     前記制御装置は、
     前記第1スペクトラムアナライザにより観測される前記周波数スペクトルのスペクトル情報を取得する処理と、
     前記スペクトル情報に基づいて、前記第1スペクトラムアナライザにおいて前記無線信号が観測されない又は前記無線信号の時間占有率が所定値以下となる特定帯域を算出する特定帯域算出処理と、
     前記特定帯域について観測を行うように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択する選択処理と、
     を実行するように構成されている
     ことを特徴とする無線信号観測システム。
    A radio signal observation system for observing the frequency spectrum of radio signals,
    a first spectrum analyzer observing the frequency spectrum of the radio signal at a first bandwidth;
    one or more second spectrum analyzers observing the frequency spectrum of the radio signal with a second bandwidth narrower than the first bandwidth;
    a control device that controls the one or more second spectrum analyzers;
    with
    The resolution bandwidth of the one or more second spectrum analyzers is set narrower than the resolution bandwidth of the first spectrum analyzer,
    The control device is
    a process of obtaining spectrum information of the frequency spectrum observed by the first spectrum analyzer;
    a specific band calculation process for calculating, based on the spectrum information, a specific band in which the radio signal is not observed in the first spectrum analyzer or in which the time occupation ratio of the radio signal is equal to or less than a predetermined value;
    a selection process of selecting the second bandwidth of each of the one or more second spectrum analyzers to observe on the particular band;
    A wireless signal observation system, characterized in that it is configured to perform
  2.  請求項1に記載の無線信号観測システムであって、
     前記選択処理は、前記特定帯域を周波数分割又は時分割し、前記周波数分割又は前記時分割に対して前記1又は複数の第2スペクトラムアナライザの各々を割り当てるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することを含む
     ことを特徴とする無線信号観測システム。
    A wireless signal observation system according to claim 1,
    The selection processing includes the one or more second spectrum analyzers, such that the specific band is frequency-divided or time-divided, and each of the one or more second spectrum analyzers is assigned to the frequency-division or time-division. selecting the second bandwidth for each of the wireless signal observation systems.
  3.  請求項1又は請求項2に記載の無線信号観測システムであって、
     前記制御装置は、前記スペクトル情報に基づいて、前記第1スペクトラムアナライザで観測される前記無線信号のチャネルの変更を検出し、前記チャネルの変更を検出したことを受けて前記特定帯域算出処理及び前記選択処理を実行するように構成されている
     ことを特徴とする無線信号観測システム。
    The radio signal observation system according to claim 1 or claim 2,
    The control device detects a change in the channel of the radio signal observed by the first spectrum analyzer based on the spectrum information, and in response to the detection of the channel change, the specific band calculation processing and the A radio signal observation system configured to perform a selection process.
  4.  請求項1乃至請求項3のいずれか1項に記載の無線信号観測システムであって、
     前記制御装置は、特定の無線端末の利用周波数帯域を取得する処理をさらに実行するように構成され、
     前記特定帯域算出処理は、前記利用周波数帯域を前記特定帯域としないことを含む
     ことを特徴とする無線信号観測システム。
    The radio signal observation system according to any one of claims 1 to 3,
    The control device is configured to further execute a process of acquiring a frequency band used by a specific wireless terminal,
    The radio signal observation system, wherein the specific band calculation process includes not using the frequency band as the specific band.
  5.  複数のスペクトラムアナライザにより無線信号の周波数スペクトルを観測する無線信号観測方法であって、
     前記複数のスペクトラムアナライザは、第1帯域幅で前記無線信号の前記周波数スペクトルを観測する第1スペクトラムアナライザと、前記第1帯域幅よりも狭い第2帯域幅で前記無線信号の前記周波数スペクトルを観測する1又は複数の第2スペクトラムアナライザと、を含み、
     前記1又は複数の第2スペクトラムアナライザの分解能帯域幅は、前記第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されており、
     前記無線信号観測方法は、
     前記第1スペクトラムアナライザにより観測される前記周波数スペクトルのスペクトル情報を取得することと、
     前記スペクトル情報に基づいて、前記第1スペクトラムアナライザにおいて前記無線信号が観測されない又は前記無線信号の時間占有率が所定値以下となる特定帯域を算出することと、
     前記特定帯域について観測が行われるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することと、
     を含む
     ことを特徴とする無線信号観測方法。
    A radio signal observation method for observing the frequency spectrum of radio signals with a plurality of spectrum analyzers,
    The plurality of spectrum analyzers include a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth and a second bandwidth that is narrower than the first bandwidth and observes the frequency spectrum of the radio signal. and one or more second spectrum analyzers for
    The resolution bandwidth of the one or more second spectrum analyzers is set narrower than the resolution bandwidth of the first spectrum analyzer,
    The radio signal observation method includes:
    obtaining spectral information of the frequency spectrum observed by the first spectrum analyzer;
    calculating, based on the spectrum information, a specific band in which the radio signal is not observed in the first spectrum analyzer or in which the time share of the radio signal is equal to or less than a predetermined value;
    selecting the second bandwidth of each of the one or more second spectrum analyzers such that observations are made on the particular band;
    A radio signal observation method, comprising:
  6.  請求項5に記載の無線信号観測方法であって、
     前記第2帯域幅を選択することは、前記特定帯域を周波数分割又は時分割し、前記周波数分割又は前記時分割に対して前記1又は複数の第2スペクトラムアナライザの各々を割り当てるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することを含む
     ことを特徴とする無線信号観測方法。
    The radio signal observation method according to claim 5,
    Selecting the second bandwidth includes frequency-dividing or time-dividing the specific band, and assigning each of the one or more second spectrum analyzers to the frequency-division or time-division. A radio signal observation method, comprising: selecting the second bandwidth for each of a plurality of second spectrum analyzers.
  7.  無線信号の周波数スペクトルを観測する複数のスペクトラムアナライザを制御する制御装置であって、
     前記複数のスペクトラムアナライザは、第1帯域幅で前記無線信号の前記周波数スペクトルを観測する第1スペクトラムアナライザと、前記第1帯域幅よりも狭い第2帯域幅で前記無線信号の前記周波数スペクトルを観測する1又は複数の第2スペクトラムアナライザと、を含み、
     前記1又は複数の第2スペクトラムアナライザの分解能帯域幅は、前記第1スペクトラムアナライザの分解能帯域幅よりも狭く設定されており、
     前記制御装置は、
     前記第1スペクトラムアナライザにより観測される前記周波数スペクトルのスペクトル情報を取得する処理と、
     前記スペクトル情報に基づいて、前記第1スペクトラムアナライザにおいて前記無線信号が観測されない又は前記無線信号の時間占有率が所定値以下となる特定帯域を算出する特定帯域算出処理と、
     前記特定帯域について観測を行うように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択する選択処理と、
     を実行する
     ことを特徴とする制御装置。
    A control device for controlling a plurality of spectrum analyzers that observe the frequency spectrum of radio signals,
    The plurality of spectrum analyzers include a first spectrum analyzer that observes the frequency spectrum of the radio signal with a first bandwidth and a second bandwidth that is narrower than the first bandwidth and observes the frequency spectrum of the radio signal. and one or more second spectrum analyzers for
    The resolution bandwidth of the one or more second spectrum analyzers is set narrower than the resolution bandwidth of the first spectrum analyzer,
    The control device is
    a process of obtaining spectrum information of the frequency spectrum observed by the first spectrum analyzer;
    a specific band calculation process for calculating, based on the spectrum information, a specific band in which the radio signal is not observed in the first spectrum analyzer or in which the time occupation ratio of the radio signal is equal to or less than a predetermined value;
    a selection process of selecting the second bandwidth of each of the one or more second spectrum analyzers to observe on the particular band;
    A control device characterized by performing
  8.  請求項7に記載の制御装置であって、
     前記選択処理は、前記特定帯域を周波数分割又は時分割し、前記周波数分割又は前記時分割に対して前記1又は複数の第2スペクトラムアナライザの各々を割り当てるように前記1又は複数の第2スペクトラムアナライザの各々の前記第2帯域幅を選択することを含む
     ことを特徴とする制御装置。
    A control device according to claim 7,
    The selection processing includes the one or more second spectrum analyzers, such that the specific band is frequency-divided or time-divided, and each of the one or more second spectrum analyzers is assigned to the frequency-division or time-division. selecting the second bandwidth for each of .
PCT/JP2021/042745 2021-11-22 2021-11-22 Radio signal observation system, radio signal observation method, and control device WO2023089809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042745 WO2023089809A1 (en) 2021-11-22 2021-11-22 Radio signal observation system, radio signal observation method, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042745 WO2023089809A1 (en) 2021-11-22 2021-11-22 Radio signal observation system, radio signal observation method, and control device

Publications (1)

Publication Number Publication Date
WO2023089809A1 true WO2023089809A1 (en) 2023-05-25

Family

ID=86396557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042745 WO2023089809A1 (en) 2021-11-22 2021-11-22 Radio signal observation system, radio signal observation method, and control device

Country Status (1)

Country Link
WO (1) WO2023089809A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115881A (en) * 1983-11-29 1985-06-22 Mitsubishi Electric Corp Receiver
US20040212358A1 (en) * 2000-05-05 2004-10-28 Stephen Andrew Barry Scanning rf receiver
JP2007033171A (en) * 2005-07-26 2007-02-08 Advantest Corp Frequency component measuring device
JP2012193964A (en) * 2011-03-15 2012-10-11 Hioki Ee Corp Signal measuring apparatus
JP2015175717A (en) * 2014-03-14 2015-10-05 三菱電機株式会社 Frequency measuring device, frequency measuring method, and program
JP2015204560A (en) * 2014-04-15 2015-11-16 マスプロ電工株式会社 Signal level measuring device
US20170126529A1 (en) * 2015-10-30 2017-05-04 Qualcomm Incorporated Spectral masking for wideband wireless local area network transmissions
JP2017227655A (en) * 2014-04-08 2017-12-28 アナログ・デヴァイシズ・グローバル Dominant signal detection method and apparatus
JP2021040242A (en) * 2019-09-03 2021-03-11 株式会社日立製作所 Radio analyzing device and radio analyzing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115881A (en) * 1983-11-29 1985-06-22 Mitsubishi Electric Corp Receiver
US20040212358A1 (en) * 2000-05-05 2004-10-28 Stephen Andrew Barry Scanning rf receiver
JP2007033171A (en) * 2005-07-26 2007-02-08 Advantest Corp Frequency component measuring device
JP2012193964A (en) * 2011-03-15 2012-10-11 Hioki Ee Corp Signal measuring apparatus
JP2015175717A (en) * 2014-03-14 2015-10-05 三菱電機株式会社 Frequency measuring device, frequency measuring method, and program
JP2017227655A (en) * 2014-04-08 2017-12-28 アナログ・デヴァイシズ・グローバル Dominant signal detection method and apparatus
JP2015204560A (en) * 2014-04-15 2015-11-16 マスプロ電工株式会社 Signal level measuring device
US20170126529A1 (en) * 2015-10-30 2017-05-04 Qualcomm Incorporated Spectral masking for wideband wireless local area network transmissions
JP2021040242A (en) * 2019-09-03 2021-03-11 株式会社日立製作所 Radio analyzing device and radio analyzing method

Similar Documents

Publication Publication Date Title
US9549332B2 (en) Spectrum-aware RF management and automatic conversion of access points to spectrum monitors and hybrid mode access points
US9730186B2 (en) Spectrum assignment for networks over white spaces and other portions of the spectrum
CA2338972C (en) A dynamic channel assignment
CN100342667C (en) Fast chennel characteristic for blue-tooth symbiont
KR101949802B1 (en) Apparatus and method for ultra low power wireless communication
EP2415317B1 (en) Selecting operating frequency channels in a wireless communication system
US8179797B2 (en) Channel discovery and disconnection in networks over white spaces and other portions of the spectrum
US9456364B2 (en) Dynamically modifying scanning methods and/or configurations
EP3171624A1 (en) System and method to avoid interference with radar systems
US20080291985A1 (en) Agile spectrum monitoring in a radio transceiver
EP2317791A2 (en) System and method for measuring and displaying presence of wireless local area network devices
CN103339885A (en) Distributed channel selection using cost functions for wireless networks
CN107113624B (en) Method, control equipment and system for configuring frequency points in microwave network
CN111372294B (en) Method and apparatus for switching channel, storage medium and electronic device
US20150163806A1 (en) Wireless communication apparatus and method for selecting communication channel
WO2023089809A1 (en) Radio signal observation system, radio signal observation method, and control device
JP2019520747A (en) System and related method for optimizing Wi-Fi coverage in home network
CN106559908B (en) Method and device for realizing listen before talk
JP5547219B2 (en) Measuring apparatus and measuring method
JP2017168902A (en) Wireless communication method and wireless communication device
JP3076263B2 (en) Method for switching channel frequency of mobile radio base station
JP5551298B1 (en) Radio wave intensity measuring device and program
JP6959315B2 (en) Signal analyzer and signal analysis method
JP2015143644A (en) Device and method for signal analysis
Karcz et al. Channel Access in Wireless Smart Grid Networks Operating under ETSI Frame-Based Equipment Rules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964824

Country of ref document: EP

Kind code of ref document: A1