WO2023089220A1 - A thermal energy storage tank floor - Google Patents

A thermal energy storage tank floor Download PDF

Info

Publication number
WO2023089220A1
WO2023089220A1 PCT/ES2022/070746 ES2022070746W WO2023089220A1 WO 2023089220 A1 WO2023089220 A1 WO 2023089220A1 ES 2022070746 W ES2022070746 W ES 2022070746W WO 2023089220 A1 WO2023089220 A1 WO 2023089220A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
annular
energy storage
storage tank
thermal energy
Prior art date
Application number
PCT/ES2022/070746
Other languages
Spanish (es)
French (fr)
Inventor
Kurt Friedrich DREWES
Bruce Alexander Leslie
Sergio DAVILA BORRAZ
David CUBEL RECASENS
Original Assignee
Vast Solar Pty Ltd
Contratos Y Diseños Industriales S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2021903715A external-priority patent/AU2021903715A0/en
Application filed by Vast Solar Pty Ltd, Contratos Y Diseños Industriales S.A. filed Critical Vast Solar Pty Ltd
Publication of WO2023089220A1 publication Critical patent/WO2023089220A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0026Particular heat storage apparatus the heat storage material being enclosed in mobile containers for transporting thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining

Definitions

  • the present disclosure is directed to a thermal energy storage tank floor, a thermal energy storage tank base and a thermal energy storage tank.
  • Thermal energy storage tanks are known for storing thermal energy, such as molten salts, generated by concentrating solar thermal power (CSP) plants. These cylindrical storage tanks are typically large in diameter (35-50m) and configured to hold thousands of tons of molten solar salt (30,000 tons or more) at elevated temperatures up to 600°C (and occasionally exceeding it).
  • These storage tanks are typically constructed by welding together stainless steel plates to form the floor, side wall, and roof of the storage tanks.
  • a plurality of steel plates are arranged on a suitable, thermally insulated and reinforced foundation and welded together to form the floor of the storage tank, and a plurality of steel plates are welded together to form the side wall of the tank storage.
  • the side wall is typically connected to the floor by welding the lowermost edge of the side wall perpendicular to the floor.
  • Storage tanks of this type are subjected to significant thermal stress with changes in temperature and volume of molten salt. Heating the tank and adding heated molten salt to the empty storage tank will cause the steel plates to expand radially outward.
  • tanks are maintained with at least a small amount of molten salt at the desired temperature to keep the tank floor expanded.
  • small increases and decreases in the temperature of the molten salt will cause the soil to expand and contract respectively.
  • cyclical variations in the depth of the molten salt in the tank will vary the hydrostatic pressure in the tank at ground level, and this will cause hoop stresses with the walls expanding and contracting as the depth of the molten salt increases. increases and decreases, respectively.
  • the ability of the tank floor to radially expand and retract is impeded by friction between the floor and the foundation and the vertical pressure on the foundation due to gravity acting on the tank and its contents.
  • the frictional constraint is especially important at the corner of the tank, where the weight of the tank walls provides a substantial and constant vertical load from the foot of the wall on the foundation.
  • the weight of the tank on the toe of the wall and the frictional conditions between the toe and the foundation do not allow the toe of the wall to move radially in response to thermal expansion and contraction of the floor plates, the buckling of the floor plates, causing the rupture and failure of the tank. It should be noted that this has been overcome to some extent by using a suitable foundation matrix of refractory material, as well as a dry lubricant between the tank floor and the foundation to reduce frictional forces.
  • a thermal energy storage tank floor comprising: a substantially circular central floor plate; an annular floor plate arranged concentrically with the central floor plate such that the two floor plates form a pair of radially adjacent floor plates; and an annular expansion joint joining said radially adjacent floor plates, and wherein the expansion joint is configured to at least partially compensate for thermal expansion of the central floor plate and/or the annular floor plate.
  • the inner expansion joint may comprise a bellows ring having an inner circumferential edge welded to an outer circumferential part of the central floor plate, and an outer circumferential edge welded to an inner circumferential part of the floor plate. inner ring.
  • the bellows ring may have an omega-shaped profile.
  • the bellows ring may have a central circular profile with a bottom opening, terminating in uprights welded to adjacent floor plates.
  • the central part may be formed of an annular tube section with a bottom cut to define an opening spanning a gap between adjacent floor plates.
  • the bellows ring can describe a central convex part that is fused with concave support parts welded to adjacent floor plates.
  • the central convex part and the concave support parts may comprise continuous circular arcs, which may share the same radius.
  • a tangential extension of a first end of a first circular arc may define the inner circumferential edge of the inner expansion joint; a tangential extension of a first end of a second circular arc may define the outer circumferential edge of the inner expansion joint; and a third circular arc may connect a second end of the first circular arc with a second end of the second circular arc.
  • An arc angle of the first and second circular arcs may be approximately half of an arc angle of the third circular arc.
  • the bellows ring may have a figure-of-eight profile.
  • the bellows ring may be formed of upper and lower pipe sections, the upper pipe section having a lower opening and the lower pipe section having upper and lower openings, the upper opening of the lower pipe section being attached to and communicating with the lower opening of the upper pipe section and terminating the lower opening of the lower pipe section at uprights welded to adjacent floor plates.
  • the radially adjacent floor plates can be arranged such that an annular clearance is formed between their opposite outer and inner circumferential edges, the annular clearance being traversed by the annular expansion gap.
  • the expansion joint may further comprise a contraction stroke limiter configured to limit the relative movement of radially adjacent floor plates away from each other due to thermal contraction.
  • the contraction stroke limiter may comprise a series of tie rods.
  • Each brace may include: i. a first shell attached to one of the radially adjacent floor plates joined by the expansion joint, the first shell defining a first hole having an axis extending in a radial direction of the tank floor; ii. a second bushing fixed to the other radially adjacent floor plate joined by the expansion joint, the second bushing defining a second hole coaxial with the first hole of the first bushing; and iii. a restrictor pin extending through the first and second holes of the first and second bushings, respectively, and iv. wherein the restrictor pin is plugged at each end with a head portion having a diameter larger than a diameter of the first and second holes, respectively.
  • the contraction stroke limiter may comprise a series of interconnecting formations extending from adjacent floor plates, the interconnecting formations comprising a series of head and neck formations alternating with head and head receiving recesses. neck, where the head and neck formations extending from one floor plate are held captive within the corresponding receiving head and neck formations of the other adjacent floor plate, and vice versa, whereby the floor plates Adjacent ones are capable of limiting radial movement within the corresponding recesses.
  • Interconnecting formations can be integrally formed into adjacent floor plates, preferably by laser cutting.
  • a tangential extension of a first end of a first circular arc may define the inner circumferential edge of the inner expansion joint; a tangential extension of a first end of a second circular arc may define the outer circumferential edge of the inner expansion joint; and a third circular arc may connect a second end of the first circular arc with a second end of the second circular arc.
  • the cross section of the expansion joint may have a line of symmetry passing through a center of the third circular arc, and an arc angle of the first and second circular arcs may be approximately half an arc angle of the third circular arc.
  • the radially adjacent floor plates can be arranged so that an annular clearance is formed between their opposite outer and inner circumferential edges.
  • the tank floor may further comprise: at least one additional annular floor plate arranged concentrically with the central and annular floor plates; and at least one corresponding additional annular expansion joint joining the outer and inner circumferential portions of the radially adjacent annular floor plates, and wherein the at least one additional expansion joint is configured to at least partially compensate for thermal expansion of at least one additional expansion joint.
  • at least one additional annular floor plate arranged concentrically with the central and annular floor plates; and at least one corresponding additional annular expansion joint joining the outer and inner circumferential portions of the radially adjacent annular floor plates, and wherein the at least one additional expansion joint is configured to at least partially compensate for thermal expansion of at least one additional expansion joint.
  • the at least one additional expansion joint may comprise a bellows ring having inner and outer circumferential edges welded to inner and outer circumferential portions, respectively, of radially adjacent annular floor plates.
  • all expansion joints may have the same stress-strain curve.
  • the at least one expansion joint may have a different stress-strain curve than the at least one other expansion joint.
  • each radially successive expansion joint may have a curve of increasingly pronounced stress-strain, so that the internal expansion joint exhibits the greatest degree of strain in response to the same stress input.
  • all of the annular floor plates have the same radial width.
  • the at least one annular floor plate may have a different radial width from the radial width of the at least one other annular floor plate.
  • each successive radially annular floor plate has a radial width that is less than a radial width of its preceding radially annular floor plate, such that the inner annular floor plate has the greatest radial width.
  • a thermal energy storage tank base comprising: a foundation; and a thermal energy storage tank floor according to the first aspect, the foundation supported tank floor.
  • a thermal energy storage tank comprising: a thermal energy storage tank base according to the second aspect; a cylindrical side wall extending from the tank floor; and a roof supported on the side wall.
  • Figure 1 is an isometric view of a thermal energy storage tank floor in accordance with the present disclosure.
  • Figure 2 is a sectional isometric view of the tank floor of Figure 1 .
  • Figure 3 is an enlarged cross-sectional view of a first embodiment of the expansion joint and radially adjacent floor plates of the tank floor area identified "A" in Figure 2.
  • Figure 4 is an enlarged cross-sectional view of a second embodiment of an expansion joint in accordance with the present disclosure.
  • Figure 5 is an enlarged cross-sectional view of a third embodiment of an expansion joint according to the present disclosure.
  • Figures 6a and 6b show detailed plan views of second embodiments of floor plate retaining means in the retracted and extended positions.
  • Figure 7 is a sectional isometric view of a thermal energy storage tank base according to the present disclosure.
  • Figure 8 is a sectional isometric view of a thermal energy storage tank according to the present disclosure.
  • FIG. 9 is a sectional isometric view of another thermal energy storage tank floor in accordance with the present disclosure.
  • Figure 10 is a sectional isometric view of another thermal energy storage tank floor according to the present disclosure.
  • FIGs 1 and 2 are isometric and isometric sectional views, respectively, of a thermal energy storage tank floor 100 in accordance with the present disclosure, together with an inner section of a cylindrical side wall 200 extending from the floor 100.
  • the tank floor 100 when supported by a foundation 300 to form a tank base 400 (see also Figure 7), the tank floor 100 can be combined with a side wall 200 and a roof 500 to form a storage tank.
  • thermal energy storage 600 for storing thermal energy.
  • the thermal energy stored in the thermal energy storage tank 600 may be in the form of molten salt generated from a concentrating solar thermal power plant. However, it is also envisioned that other forms of thermal energy can be stored in the storage tank 600.
  • the tank floor 100 comprises a substantially circular central floor plate 110, seven annular floor plates 120a-g arranged concentrically with the central floor plate, and seven corresponding annular expansion joints 130a-g.
  • the seven annular floor plates 120a-g comprise an inner annular floor plate 120a radially adjacent to the central floor plate 1 10, and six outer annular floor plates 120b-g arranged radially in succession from the inner annular floor plate. 120a.
  • the seven annular expansion joints 130a-g comprise an inner expansion joint 130a joining radially adjacent central and inner annular floor plates 1 10, 120a, and six outer expansion joints 130b-g, each joining a pair of radially adjacent annular floor plates 120a-g.
  • Each expansion joint 130a-g is configured to compensate, at least partially, for the thermal expansion of at least one of the floor plates in the pair of floor plates. radially adjacent that unites. Consequently, the internal expansion joint 130a is configured to compensate, at least partially, for the thermal expansion of the central floor plate 110 and/or the internal annular floor plate 120a. Similarly, each of the six outer expansion joints 130b-g is configured to at least partially compensate for the thermal expansion of at least one of the annular floor plates 120a-g of said pair of annular floor plates 120a-g. radially adjacent joined by the respective expansion joint 130b-g.
  • the expansion joints 130a-g are configured in such a way as to allow a certain degree of relative movement between the pair of joined radially adjacent floor plates 1 10, 120a-g. Consequently, when one floor plate of the joined pair expands under thermal stress, the respective expansion joint absorbs at least a part of this thermally induced deformation before it is transmitted to the radially adjacent floor plate as compressive stress in the tank floor plan 100.
  • a bellows-type expansion joint may be used in conjunction with an annular clearance formed between opposite circumferential edges of radially adjacent floor plates.
  • a bellows-type expansion joint may be used in conjunction with a sliding lap that occurs between the circumferential edges of radially adjacent floor plates.
  • the sliding overlap between the circumferential edges of radially adjacent floor plates may itself form the expansion joint.
  • the inner expansion joint 130a is a bellows-type expansion joint comprising a bellows ring 140a having an inner circumferential edge 142a welded to an outer circumferential part of the central floor plate 110, and an outer circumferential edge 144a welded to an inner circumferential portion of the inner annular floor plate 120a.
  • the inner and outer circumferential edges 142a, 144a are welded at an angle to the respective parts of the central and inner annular floor plates 110, 120a. It will be appreciated that, in embodiments using other configurations, the edges Inner and outer circumferential edges 142a, 144a may be butt welded to respective circumferential edges of radially adjacent floor plates.
  • Bellows ring 140a describes a modified "Q" (omega) in cross section. More specifically, the cross section of the bellows ring 140a is defined by three continuous circular arcs bounded by a pair of tangential extensions.
  • a tangential extension 141 a of a first end of a first circular arc 146a runs parallel to the plane of the tank floor 100 and overlaps a part of the central floor plate 110 to define the internal circumferential edge 142a of the internal expansion joint. 130a.
  • a tangential extension 143a of a first end of a second circular arc 147a also runs parallel to the plane of the tank floor 100 and overlaps a portion of the inner annular floor plate 120a to define the outer circumferential edge of the inner expansion joint. 130a.
  • a third circular arc 148a connects a second end of the first circular arc 146a with a second end of the second circular arc 147a.
  • the three continuous circular arcs 146a, 147a, 148a share the same radius, and the cross section of the expansion joint 130a has a line of symmetry passing through a center of the third circular arc 148a. Consequently, an arc angle of the first and second circular arcs 146a, 147a is approximately half of an arc angle of the third circular arc 148a.
  • Such a configuration may allow the expansion joint 130a to distribute the applied stress relatively evenly over the entire cross section of the bellows ring 140a.
  • an arc angle of the first and second circular arcs 146a, 147a is approximately 135°
  • an arc angle of the third circular arc 148a is approximately 270°. It will be appreciated that, in embodiments where it may be desirable to concentrate stress at certain points in the cross section of the bellows ring, one or more of these characteristics may be varied to achieve the desired result.
  • the bellows ring 140a can be made by cutting the three circular arcs 146a, 147a, 148a from tubes of the same radius, and then welding them with flat plates that form the tangential extensions 141a, 143a.
  • the cross section of the bellows ring 140a can be rolled from a length of flat plate, which is subsequently (or simultaneously) rolled into a circular arc forming a section of the bellows ring 140a.
  • the central and inner annular floor plates 110, 120a are arranged in such a way that an annular gap 150 is formed between their opposite outer and inner circumferential edges.
  • the radial width of this annular gap 150 defines the maximum relative movement of these two floor plates 1 10, 120a radially adjacent to each other when they undergo thermal expansion.
  • the expansion joint 130a further comprises a separate contraction stroke limiter 160 configured to limit the relative movement of the radially adjacent central and inner annular floor plates 1 10, 120a away from each other due to thermal contraction.
  • the bellows ring 140a itself may be configured to act as a contraction stroke limiter.
  • the contraction stroke limiter 160 comprises first and second bushings 162, 164 attached to the outer and inner circumferential portions of the central and inner annular floor plates 1 10, 120a, respectively.
  • the first bushing 162 defines a first hole (not shown) having an axis extending in a radial direction of the tank floor 100.
  • the second bushing 164 defines a second hole (also not shown) coaxial with the first hole of the first bushing 162 .
  • the contraction stroke limiter 160 further comprises a restrictor pin 166 which extends through the first and second holes of the first and second bushings 162, 164, respectively.
  • the restraint pin 166 is covered at each end with a head portion having a diameter greater than a diameter of the first and second holes, respectively. Consequently, the distance between the head portion defines the maximum relative movement of the two radially adjacent floor plates 1 10, 120a away from each other when subjected to thermal contraction.
  • the tank floor 100 comprises seven annular plates 120a-g which together with the central plate 110 form seven annular clearances traversed by seven annular expansion joints 130a-g.
  • the number of annular plates and corresponding expansion joints may differ depending on a number of tank characteristics, such as tank size, temperatures to which the floor is expected to be exposed, temperature variations in the soil, thickness, width and material of the annular plates, etc. For example, smaller tanks may require only one ring plate or one or two ring plates, while larger tanks may require more than seven ring plates.
  • all expansion joints 130a-g are substantially identical, that is, they all comprise substantially identical bellows rings made of the same material and having the same cross-sectional shape, height, width and wall thickness, and all are constrained by the same expansion/contraction stroke limitations. Consequently, they all have the same stress-strain curve, that is, they exhibit the same degree of strain in response to the same stress input.
  • expansion joints 130a-g such that at least one expansion joint has a curve of stress-strain different from the other expansion joints. It may also be desirable to configure the expansion joints 130a-g such that at least one expansion joint has a different expansion and/or contraction stroke limit from the remaining joints.
  • the stress applied to the expansion joints 130a-g increases for each radially successive expansion joint, that is, the expansion joint radially outermost expansion 130g is exposed to the greatest stress and the inner expansion joint 130a is exposed to the least stress. Accordingly, it may be desirable to configure the expansion joints 130a-g such that at least the inner expansion joint 130a exhibits a greater degree of deformation than one or more of the remaining expansion joints 130b-g in response to the same input. of effort.
  • each radially successive expansion joint 130a-g may be desirable to configure to have an increasingly steeper stress-strain curve such that the inner expansion joint 130a exhibits the greatest degree of strain in response to pressure. same effort input. It will be understood that this can be accomplished by varying one or more of the defining characteristics of expansion joints 130a-g, such as type, cross-sectional shape, height, width, wall thickness, etc.
  • each of these annular floor plates 120a-f has the same increase in width that occurs due to thermal expansion and that the joints of dilation 130a-g must partially compensate. It will be appreciated that, in other embodiments, it may be desirable to provide at least one annular floor plate with a radial width that is different from the radial width of at least one other annular floor plate.
  • each successive radially annular floor plate with a radial width that is less than a radial width of its preceding radially annular floor plate such that the inner annular floor plate has the greatest radial width.
  • Configuring the tank floor 100 in this manner can allow each successive radially expansion joint to partially compensate for a lesser amount of thermal expansion than the expansion joint radially preceding it.
  • an enlarged cross-sectional view of a second embodiment of an omega (Q)-shaped expansion joint 402 includes an annular tube section 404 having a short arcuate portion cut from its base, the open end faces 408 of the tube section being angle welded to supports annular uprights 410. These supports are in turn welded at 412 to the upper end faces of the adjacent floor plates 120a and 120b.
  • the pipe section has a diameter of 136.5 mm and a thickness of 4 2 mm, and the base plates are 8 mm thick. This allows the pipe section to flex in response to expansion of the floor plates relative to each other and contraction relative to each other as a result of thermal variations. It will be appreciated that the dimensions of the pipe, supports and floor plates can vary significantly depending on numerous factors, such as tank size, anticipated temperature variations and expansion joint spacing.
  • Figure 5 shows an enlarged cross-sectional view of a third embodiment of a figure-of-eight expansion joint 501 having a lower part formed by two annular tube halves 502 and 504 joined at their lower ends to the upper end faces of adjacent floor plates 120a and 120b in the same manner as tube section 404 by means of annular uprights 510 and fillet welds 511.
  • An upper annular tube section 512 has the lower ends 514 welded to the upper ends 516 of the halves of lower tubes through connection strips 518.
  • the resulting expansion joint has a greater bending capacity than that of the second embodiment and, therefore, is capable of bridging a greater gap between adjacent floor plates to allow greater degrees of expansion and contraction when necessary.
  • the expansion joints 402 and 501 may further comprise a separate contraction stroke limiter, configured to limit the relative movement of radially adjacent floor plates to one another due to thermal contraction.
  • This may take the form of a tie rod of the type illustrated in Figure 3 which extends between uprights 510.
  • adjacent floor plates 120a and 120b are laser cut with profiles of "lollipop" that interconnect.
  • Floor plate 120a has a series of bulbous head portions 121 extending from respective notched neck portions 123 and alternating with head receiving recesses 125.
  • Floor plate 120b has shaped head portions 127 identical and notched neck parts 129 that alternate with recesses to receive the head 131 .
  • At least one annular expansion joint at least partially isolates a central part of the tank floor 100 from a circumferential part of the tank floor 100, so that thermal expansion of a party is not transmitted, or only partially, to the other party.
  • This structure allows the gradient of the overall thermal stress curve of the tank floor 100 to be reduced further than is possible by merely varying the material and dimensions of the tank floor 100.
  • the number, type, The characteristics (stress-strain curve) and radial interval of expansion joints can be varied to achieve the desired overall thermal stress-strain curve of the tank floor 100 and reduce the likelihood of buckling occurring in the tank floor.
  • the type of expansion joint can also vary based on the degree of expansion and contraction required for a particular tank or location within the tank. For example, omega type expansion joints can be used in conjunction with figure eight type expansion joints.
  • the tank foundation 400 comprises a foundation 300 and the thermal energy storage tank floor 100 described above, with the tank floor 100 supported on foundation 300.
  • Foundation 300 is prepared from a properly insulated and thermally strengthened matrix of refractory material.
  • a dry lubricant is also applied to the top surface of the foundation 300.
  • the central floor plate 110 and all the annular floor plates 120a-g are arranged on the upper surface of the foundation 300, before being joined by the respective expansion joints 130a-g.
  • the central floor plate 110 and the inner annular floor plate 120a are first arranged on the upper surface of the foundation 300 before being joined by the inner expansion joint 130a.
  • Each outer annular floor plate 120b-g is then arranged on the upper surface of the foundation 300 and is joined to its preceding radially annular plate with the respective expansion joint.
  • exterior 130b-g, before its successive radially annular floor plate 120c-g is arranged on the foundation 300.
  • the entire tank floor is fabricated from a series of adjoining floor plates that are welded together in any suitable pattern, including, for example, segments.
  • the annular floor plates are then defined by laser cutting them in the manner illustrated in Figures 6a and 6b, using a series of concentric circular cuts with interconnected head and neck portions or "lollipop" profiles.
  • a thermal energy storage tank 600 comprising the thermal energy storage tank base 400 described above.
  • a plurality of wall plates (not shown) are welded together to form the cylindrical side wall 200 that extends from the tank base 100.
  • a plurality of roof plates (not shown) are welded together to form the roof 500 that it has a peripheral edge supported and welded to the upper edge of the cylindrical side wall 200.
  • the thermal energy storage tank 600 is intended to store a thermal energy storage medium (for example, molten salt)
  • the floor 100, including expansion joints 130a-g, wall 200 and roof 500 must be made of a suitable alloy steel material capable of withstanding high temperatures and masses. Suitable materials include, but are not limited to, 316 stainless steel, A588 carbon steel, and Inconel.
  • the number, type, characteristics (stress-strain curve) and radial interval of annular expansion joints can be varied to achieve the desired overall thermal stress-strain curve of a tank floor and reduce the likelihood of buckling of the tank floor.
  • increasing the annular spacing between adjacent floor plates in the tank floor and the size of expansion joints connecting adjacent floor plates can increase the ability of expansion joints to compensate for thermal stresses applied to the tank. tank floor.
  • the configuration of the expansion joints 130a-g, 402, 501 described above may restrict the size of the annular gap between adjacent floor plates. To overcome this restriction, the size of the expansion joints and annular gaps can be increased using the tank floor embodiment illustrated in Figure 9.
  • FIG. 9 is a partial view of a tank floor 700 according to another embodiment, together with a lower section of a cylindrical wall 200 extending from the tank floor 700.
  • the tank floor 700 is similar to the tank floor 100 in comprising a substantially circular central floor plate 710, a plurality of annular floor plates 720a-e arranged concentrically with the central floor plate 710, and a plurality corresponding set of annular expansion joints 730a-e each spanning an annular gap between radially adjacent floor plates.
  • annular expansion joints 730a-e and annular gaps cooperate to compensate for thermal expansion of radially adjacent floor plates 710, 720a-e is the same as described above with with respect to the annular expansion joints 130a-g, 402, 501 and their corresponding annular gaps.
  • the annular expansion joints 730a-e are bellows-type expansion joints comprising a bellows ring having an inner circumferential edge welded to an outer circumferential portion of the bearing plate. radially inner adjacent floor, and an outer circumferential edge welded to an inner circumferential portion of the radially outer adjacent annular floor plate.
  • the bellows ring of the annular expansion joints 730a-e differs from the bellows ring 140a described above in that they describe a semicircle in cross section.
  • annular floor plates 120a-g of the tank floor 100 shown in Figure 1 have a radial width that is substantially greater than the annular expansion joints 130a-g and their corresponding annular gaps (see, for example, 150 in Figure 2)
  • the radial width of the annular floor plates 720a-e is actually less (or at least not greater) than the annular expansion joints 730a-e and their corresponding annular tank floor voids 700. Therefore
  • the semicircular cross section of the annular expansion joints 730a-e may have a radius of between 0.5 and 1 m and the annular floor plates may have a radial width of between 1 and 2 m.
  • such a size relationship between the annular expansion joints 730a-e (and corresponding annular gaps) and the floor plates 720a-e can provide greater compensation when the tank floor undergoes thermal expansion, and can obviate the need for a stroke limiter for when the tank floor undergoes thermal contraction.
  • each bellows ring of annular expansion joints 130a-g is formed using the similar method to that described above with respect to bellows ring 140a, for example, by rolling straight lengths of half-tube section into arc lengths. circular, and then welding them on the bellows ring.
  • a plurality of straight half-tube sections 732 are used to approximate a circular ring.
  • Each half-tube section 732 has an inner longitudinal edge 733, an outer longitudinal edge 734, a first axial edge 735, and a second axial edge 736.
  • the first axial edge 735 of a half-pipe section 732 is connected (eg, by butt welding) to the second axial edge 736 of an adjacent half-pipe section 732.
  • the inner longitudinal edge 733 of each half-pipe section 732 is connected (eg, by fillet welding) to a radially inner adjacent floor plate of the tank floor 700 and the edge outer longitudinal 734 of each half-pipe section 732 is connected (eg, by fillet welding) to an adjacent radially outer floor plate of tank floor 700.
  • each half-pipe section 732 is connected to an outer circumferential portion of the central floor plate 710 and the outer longitudinal edge 734 of each half-pipe section is connected to an inner circumferential portion of the annular floor plate 720a.
  • the inner longitudinal edge 733 of each half-pipe section 732 is connected to an outer circumferential portion of a radially inner annular floor plate 720a-d and the outer longitudinal edge 734 of each half-pipe section. it is connected to an inner circumferential portion of a radially outer floor plate 720b-e.
  • FIG 10 is a partial view of a tank base 800 according to another embodiment.
  • the tank base 800 comprises the tank floor 700 arranged on a substantially circular base plate 860.
  • the tank floor 700 is not connected to the base plate 860. This allows the tank floor 700 to expand and contract independently of the base plate 860. This can reduce the forces in the tank floor 700 as which expands and contracts, since the friction between the tank floor 700 and the base plate 860 can be less than the friction between the tank floor 700 and a base on which the tank floor 700 is placed. This can further reduce the possibility of the 700 tank floor buckling as it expands and contracts.
  • Base plate 860 may be formed by a plurality of plates welded together.
  • the plates that form the base plate 860 may be formed of the same material as the plates that form the tank floor 700.
  • tank floor 100 of the tank 600 illustrated in Figure 8 may be replaced by the tank floor 700 or the tank base 800.
  • tank floor 700 has been described and illustrated as having five annular floor plates 720a-e and five annular expansion joints 730a-e, it will be appreciated that tank floor 700 may have more or less annular floor plates and expansion joints. annular expansion depending on the size and operating parameters of the required storage tank. It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or apparent in the text or drawings. All of these different combinations constitute various alternative aspects of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a thermal energy storage tank floor that comprises a substantially circular central floor plate, an annular floor plate and an annular inner expansion joint. The annular floor plate is arranged concentrically with the central floor plate in such a way that the two floor plates form a pair of radially adjacent floor plates. The annular inner expansion joint connects said radially adjacent floor plates and is configured to offset, at least partially, the thermal expansion of the central floor plate and/or of the inner floor plate.

Description

Un suelo de tanque de almacenamiento de energía térmica Campo técnico A thermal energy storage tank floor Technical field
La presente divulgación se dirige a un suelo de tanque de almacenamiento de energía térmica, una base de tanque de almacenamiento de energía térmica y un tanque de almacenamiento de energía térmica. The present disclosure is directed to a thermal energy storage tank floor, a thermal energy storage tank base and a thermal energy storage tank.
Antecedentes Background
Se conocen tanques de almacenamiento de energía térmica para almacenar energía térmica, como por ejemplo sales fundidas, generada por plantas de energía térmica solar de concentración (CSP). Estos tanques de almacenamiento cilindricos típicamente tienen un gran diámetro (35-50 m) y se configuran para contener miles de toneladas de sal solar fundida (30.000 toneladas o más) a temperaturas elevadas de hasta 600 °C (y ocasionalmente excediéndola). Thermal energy storage tanks are known for storing thermal energy, such as molten salts, generated by concentrating solar thermal power (CSP) plants. These cylindrical storage tanks are typically large in diameter (35-50m) and configured to hold thousands of tons of molten solar salt (30,000 tons or more) at elevated temperatures up to 600°C (and occasionally exceeding it).
Estos tanques de almacenamiento se construyen típicamente soldando juntas placas de acero inoxidable para formar el suelo, la pared lateral y el techo de los tanques de almacenamiento. Una pluralidad de placas de acero se disponen sobre una cimentación adecuada, aislada térmicamente y reforzada, y se sueldan entre sí para formar el suelo del tanque de almacenamiento, y una pluralidad de placas de acero se sueldan entre sí para formar la pared lateral del tanque de almacenamiento. La pared lateral típicamente se conecta al suelo al soldar el borde más inferior de la pared lateral perpendicularmente al suelo. These storage tanks are typically constructed by welding together stainless steel plates to form the floor, side wall, and roof of the storage tanks. A plurality of steel plates are arranged on a suitable, thermally insulated and reinforced foundation and welded together to form the floor of the storage tank, and a plurality of steel plates are welded together to form the side wall of the tank storage. The side wall is typically connected to the floor by welding the lowermost edge of the side wall perpendicular to the floor.
Los tanques de almacenamiento de este tipo se someten a un importante esfuerzo térmico con los cambios de temperatura y volumen de la sal fundida. El calentamiento del tanque y la adición de sal fundida calentada al tanque de almacenamiento vacío hará que las placas de acero se expandan radialmente hacia fuera. Típicamente, una vez cargados con sal fundida, los tanques se mantienen con al menos una pequeña cantidad de sal fundida a la temperatura deseada para mantener el suelo del tanque expandido. Sin embargo, pequeños aumentos y disminuciones de la temperatura de la sal fundida harán que el suelo se expanda y se contraiga respectivamente. Del mismo modo, las variaciones cíclicas en la profundidad de la sal fundida en el tanque harán variar la presión hidrostática en el tanque a nivel del suelo, y esto provocará tensiones circunferenciales con las paredes expandiéndose y contrayéndose a medida que la profundidad de la sal fundida aumenta y disminuye, respectivamente. Storage tanks of this type are subjected to significant thermal stress with changes in temperature and volume of molten salt. Heating the tank and adding heated molten salt to the empty storage tank will cause the steel plates to expand radially outward. Typically, once charged with molten salt, tanks are maintained with at least a small amount of molten salt at the desired temperature to keep the tank floor expanded. However, small increases and decreases in the temperature of the molten salt will cause the soil to expand and contract respectively. Similarly, cyclical variations in the depth of the molten salt in the tank will vary the hydrostatic pressure in the tank at ground level, and this will cause hoop stresses with the walls expanding and contracting as the depth of the molten salt increases. increases and decreases, respectively.
La capacidad del suelo del tanque para expandirse y retraerse radialmente se ve impedida por la fricción entre el suelo y la cimentación y la presión vertical sobre la cimentación debida a la gravedad que actúa sobre el tanque y su contenido. La restricción por fricción es especialmente importante en la esquina del tanque, donde el peso de las paredes del tanque proporciona una carga vertical sustancial y constante del pie de la pared en la cimentación. Cuando el peso del tanque sobre el pie de la pared y las condiciones de fricción entre el pie y la cimentación no permiten que el pie de la pared se mueva radialmente en respuesta a la dilatación y contracción térmicas de las placas de suelo, puede producirse el pandeo de las placas de suelo, causando la ruptura y el fallo del tanque. Cabe señalar que esto se ha solucionado en cierta medida utilizando una matriz de cimentación adecuada de material refractario, así como un lubricante seco entre el suelo del tanque y la cimentación para reducir las fuerzas de fricción. The ability of the tank floor to radially expand and retract is impeded by friction between the floor and the foundation and the vertical pressure on the foundation due to gravity acting on the tank and its contents. The frictional constraint is especially important at the corner of the tank, where the weight of the tank walls provides a substantial and constant vertical load from the foot of the wall on the foundation. When the weight of the tank on the toe of the wall and the frictional conditions between the toe and the foundation do not allow the toe of the wall to move radially in response to thermal expansion and contraction of the floor plates, the buckling of the floor plates, causing the rupture and failure of the tank. It should be noted that this has been overcome to some extent by using a suitable foundation matrix of refractory material, as well as a dry lubricant between the tank floor and the foundation to reduce frictional forces.
La referencia a cualquier técnica anterior en la memoria descriptiva no es un reconocimiento o sugerencia de que esta técnica anterior forme parte del conocimiento general común en cualquier jurisdicción o que pueda esperarse razonablemente que esta técnica anterior sea entendido, considerado como relevante y/o combinado con otras piezas de la técnica anterior por un experto en la materia. Reference to any prior art in the specification is not an acknowledgment or suggestion that this prior art forms part of common general knowledge in any jurisdiction or that this prior art could reasonably be expected to be understood, regarded as relevant and/or combined with other pieces of prior art by a person skilled in the art.
Compendio Compendium
En un primer aspecto de la presente invención se proporciona un suelo de tanque de almacenamiento de energía térmica que comprende: una placa de suelo central sustancialmente circular; una placa de suelo anular dispuesta concéntricamente con la placa de suelo central de manera que las dos placas de suelo forman un par de placas de suelo radialmente adyacentes; y una junta de dilatación anular que une dichas placas de suelo radialmente adyacentes, y en donde la junta de dilatación se configura para compensar al menos parcialmente la dilatación térmica de la placa de suelo central y/o la placa de suelo anular. In a first aspect of the present invention there is provided a thermal energy storage tank floor comprising: a substantially circular central floor plate; an annular floor plate arranged concentrically with the central floor plate such that the two floor plates form a pair of radially adjacent floor plates; and an annular expansion joint joining said radially adjacent floor plates, and wherein the expansion joint is configured to at least partially compensate for thermal expansion of the central floor plate and/or the annular floor plate.
En una realización, la junta de dilatación interior puede comprender un anillo de fuelle que tiene un borde circunferencial interior soldado a una parte circunferencial exterior de la placa de suelo central, y un borde circunferencial exterior soldado a una parte circunferencial interior de la placa de suelo anular interior. In one embodiment, the inner expansion joint may comprise a bellows ring having an inner circumferential edge welded to an outer circumferential part of the central floor plate, and an outer circumferential edge welded to an inner circumferential part of the floor plate. inner ring.
En una realización, el anillo de fuelle puede tener un perfil en forma de omega. In one embodiment, the bellows ring may have an omega-shaped profile.
El anillo de fuelle puede tener un perfil circular central con una abertura inferior, que termina en soportes verticales soldados a placas de suelo adyacentes. The bellows ring may have a central circular profile with a bottom opening, terminating in uprights welded to adjacent floor plates.
La parte central se puede formar de una sección de tubo anular con una parte inferior cortada para definir una abertura que abarque una holgura entre placas de suelo adyacentes. The central part may be formed of an annular tube section with a bottom cut to define an opening spanning a gap between adjacent floor plates.
El anillo de fuelle puede describir una parte central convexa que se fusiona con partes de soporte cóncavas soldadas a placas de suelo adyacentes. La parte convexa central y las partes de soporte cóncavas pueden comprender arcos circulares continuos, que pueden compartir el mismo radio. The bellows ring can describe a central convex part that is fused with concave support parts welded to adjacent floor plates. The central convex part and the concave support parts may comprise continuous circular arcs, which may share the same radius.
Una extensión tangencial de un primer extremo de un primer arco circular puede definir el borde circunferencial interior de la junta de dilatación interior; una extensión tangencial de un primer extremo de un segundo arco circular puede definir el borde circunferencial exterior de la junta de dilatación interior; y un tercer arco circular puede conectar un segundo extremo del primer arco circular con un segundo extremo del segundo arco circular. A tangential extension of a first end of a first circular arc may define the inner circumferential edge of the inner expansion joint; a tangential extension of a first end of a second circular arc may define the outer circumferential edge of the inner expansion joint; and a third circular arc may connect a second end of the first circular arc with a second end of the second circular arc.
Un ángulo de arco de los arcos circulares primero y segundo puede ser aproximadamente la mitad de un ángulo de arco del tercer arco circular. An arc angle of the first and second circular arcs may be approximately half of an arc angle of the third circular arc.
En una realización, el anillo de fuelle puede tener un perfil en forma de figura de ocho. In one embodiment, the bellows ring may have a figure-of-eight profile.
El anillo de fuelle se puede formar de secciones de tubería superior e inferior, teniendo la sección de tubería superior una abertura inferior y teniendo la sección de tubería inferior aberturas superior e inferior, estando la abertura superior de la sección de tubería inferior unida y comunicada con la abertura inferior de la sección de tubería superior y terminando la abertura inferior de la sección de tubería inferior en soportes verticales soldados a placas de suelo adyacentes. The bellows ring may be formed of upper and lower pipe sections, the upper pipe section having a lower opening and the lower pipe section having upper and lower openings, the upper opening of the lower pipe section being attached to and communicating with the lower opening of the upper pipe section and terminating the lower opening of the lower pipe section at uprights welded to adjacent floor plates.
Las placas de suelo radialmente adyacentes se pueden disponer de manera que se forme una holgura anular entre sus bordes circunferenciales opuestos exterior e interior, estando el holgura anular atravesado por la junta de dilatación anular. The radially adjacent floor plates can be arranged such that an annular clearance is formed between their opposite outer and inner circumferential edges, the annular clearance being traversed by the annular expansion gap.
En una realización, la junta de dilatación puede comprender además un limitador de carrera de contracción configurado para limitar el movimiento relativo de las placas de suelo radialmente adyacentes alejándose entre sí debido a la contracción térmica. In one embodiment, the expansion joint may further comprise a contraction stroke limiter configured to limit the relative movement of radially adjacent floor plates away from each other due to thermal contraction.
El limitador de carrera de contracción puede comprender una serie de tirantes. The contraction stroke limiter may comprise a series of tie rods.
Cada tirante puede incluir: i. un primer cosquillo fijado a una de las placas de suelo radialmente adyacentes unidas por la junta de dilatación, definiendo el primer cosquillo un primer agujero que tiene un eje que se extiende en una dirección radial del suelo de tanque; ii. un segundo casquillo fijado a la otra placa de suelo radialmente adyacente unida por la junta de dilatación, definiendo el segundo casquillo un segundo agujero coaxial con el primer agujero del primer casquillo; y iii. un pasador restrictor que se extiende a través de los agujeros primero y segundo de los casquillos primero y segundo, respectivamente, y iv. en donde el pasador restrictor se tapa en cada extremo con una parte de cabeza que tiene un diámetro más grande que un diámetro de los agujeros primer y segundo, respectivamente. En una realización, el limitador de carrera de contracción puede comprender una serie de formaciones de interconexión que se extienden desde placas de suelo adyacentes, las formaciones de interconexión comprenden una serie de formaciones de cuello y cabeza que se alternan con rebajes de recepción de cabeza y cuello, en donde las formaciones de cabeza y cuello que se extienden desde una placa de suelo se mantienen cautivas dentro de las correspondientes formaciones de recepción de cabeza y cuello de la otra placa de suelo adyacente, y viceversa, por lo que las placas de suelo adyacentes son capaces de limitar el movimiento radial dentro de los rebajes correspondientes. Each brace may include: i. a first shell attached to one of the radially adjacent floor plates joined by the expansion joint, the first shell defining a first hole having an axis extending in a radial direction of the tank floor; ii. a second bushing fixed to the other radially adjacent floor plate joined by the expansion joint, the second bushing defining a second hole coaxial with the first hole of the first bushing; and iii. a restrictor pin extending through the first and second holes of the first and second bushings, respectively, and iv. wherein the restrictor pin is plugged at each end with a head portion having a diameter larger than a diameter of the first and second holes, respectively. In one embodiment, the contraction stroke limiter may comprise a series of interconnecting formations extending from adjacent floor plates, the interconnecting formations comprising a series of head and neck formations alternating with head and head receiving recesses. neck, where the head and neck formations extending from one floor plate are held captive within the corresponding receiving head and neck formations of the other adjacent floor plate, and vice versa, whereby the floor plates Adjacent ones are capable of limiting radial movement within the corresponding recesses.
Las formaciones de interconexión se pueden formar integralmente en placas de suelo adyacentes, preferentemente mediante corte por láser. Interconnecting formations can be integrally formed into adjacent floor plates, preferably by laser cutting.
En otra realización, una extensión tangencial de un primer extremo de un primer arco circular puede definir el borde circunferencial interior de la junta de dilatación interior; una extensión tangencial de un primer extremo de un segundo arco circular puede definir el borde circunferencial exterior de la junta de dilatación interior; y un tercer arco circular puede conectar un segundo extremo del primer arco circular con un segundo extremo del segundo arco circular. La sección transversal de la junta de dilatación puede tener una línea de simetría que pasa a través de un centro del tercer arco circular, y un ángulo de arco de los arcos circulares primero y segundo puede ser aproximadamente la mitad de un ángulo de arco del tercer arco circular. In another embodiment, a tangential extension of a first end of a first circular arc may define the inner circumferential edge of the inner expansion joint; a tangential extension of a first end of a second circular arc may define the outer circumferential edge of the inner expansion joint; and a third circular arc may connect a second end of the first circular arc with a second end of the second circular arc. The cross section of the expansion joint may have a line of symmetry passing through a center of the third circular arc, and an arc angle of the first and second circular arcs may be approximately half an arc angle of the third circular arc.
En otra realización, las placas de suelo radialmente adyacentes se pueden disponer de manera que se forme una holgura anular entre sus bordes circunferenciales opuestos exterior e interior. In another embodiment, the radially adjacent floor plates can be arranged so that an annular clearance is formed between their opposite outer and inner circumferential edges.
En una realización, el suelo de tanque puede comprender además: al menos una placa de suelo anular adicional dispuesta concéntricamente con las placas de suelo central y anular; y al menos una junta de dilatación anular adicional correspondiente que une las partes circunferenciales exterior e interior de las placas de suelo anulares radialmente adyacentes, y en donde la al menos una junta de dilatación adicional se configura para compensar al menos parcialmente la dilatación térmica de al menos una de las placas de suelo anulares radialmente adyacentes. In one embodiment, the tank floor may further comprise: at least one additional annular floor plate arranged concentrically with the central and annular floor plates; and at least one corresponding additional annular expansion joint joining the outer and inner circumferential portions of the radially adjacent annular floor plates, and wherein the at least one additional expansion joint is configured to at least partially compensate for thermal expansion of at least one additional expansion joint. least one of the radially adjacent annular floor plates.
La al menos una junta de dilatación adicional puede comprender un anillo de fuelle que tiene bordes circunferenciales interior y exterior soldados a partes circunferenciales interior y exterior, respectivamente, de placas de suelo anulares radialmente adyacentes. The at least one additional expansion joint may comprise a bellows ring having inner and outer circumferential edges welded to inner and outer circumferential portions, respectively, of radially adjacent annular floor plates.
En otra realización, todas las juntas de dilatación pueden poseer la misma curva de esfuerzo- deformación. En una realización alternativa, al menos una junta de dilatación puede tener una curva de esfuerzo-deformación diferente a la de al menos otra junta de dilatación. En esta realización alternativa, cada junta de dilatación radialmente sucesiva puede tener una curva de esfuerzo-deformación cada vez más pronunciada, de manera que ia junfa de dilatación interior exhibe el mayor grado de deformación en respuesta a la misma entrada de esfuerzo. En otra realización, todas las placas de suelo anulares tienen la misma anchura radial. En una realización alternativa, al menos una placa de suelo anular puede tener una anchura radial diferente de la anchura radial de al menos otra placa de suelo anular. En esta realización alternativa, cada placa de suelo anular radialmente sucesiva tiene una anchura radial que es menor que una anchura radial de su placa de suelo anular radialmente precedente, de manera que la placa de suelo anular interior tiene la mayor anchura radial. In another embodiment, all expansion joints may have the same stress-strain curve. In an alternate embodiment, the at least one expansion joint may have a different stress-strain curve than the at least one other expansion joint. In this alternative embodiment, each radially successive expansion joint may have a curve of increasingly pronounced stress-strain, so that the internal expansion joint exhibits the greatest degree of strain in response to the same stress input. In another embodiment, all of the annular floor plates have the same radial width. In an alternative embodiment, the at least one annular floor plate may have a different radial width from the radial width of the at least one other annular floor plate. In this alternative embodiment, each successive radially annular floor plate has a radial width that is less than a radial width of its preceding radially annular floor plate, such that the inner annular floor plate has the greatest radial width.
En un segundo aspecto de la presente invención se proporciona una base de tanque de almacenamiento de energfa térmica que comprende: una cimentación; y un suelo de tanque de almacenamiento de energía térmica según el primer aspecto, el suelo de tanque apoyado en la cimentación. In a second aspect of the present invention there is provided a thermal energy storage tank base comprising: a foundation; and a thermal energy storage tank floor according to the first aspect, the foundation supported tank floor.
En un tercer aspecto de la presente invención se proporciona un tanque de almacenamiento de energía térmica que comprende: una base de tanque de almacenamiento de energía térmica según el segundo aspecto; una pared lateral cilindrica que se extiende desde el suelo de tanque; y un techo apoyado en la pared lateral. In a third aspect of the present invention there is provided a thermal energy storage tank comprising: a thermal energy storage tank base according to the second aspect; a cylindrical side wall extending from the tank floor; and a roof supported on the side wall.
Tal como se utiliza en esta memoria, excepto cuando el contexto requiera lo contrario, el término "comprender" y las variaciones del término, como "que comprende", "comprende" y "comprendido", no pretenden excluir otros aditivos, componentes, enteros o etapas. As used herein, except where the context otherwise requires, the term "comprising" and variations of the term, such as "comprising", "comprising", and "comprising", are not intended to exclude other additives, components, integers or stages.
Otros aspectos de la presente invención y otras realizaciones de los aspectos descritos en los párrafos anteriores se harán evidentes a partir de la siguiente descripción, dada a modo de ejemplo y con referencia a los dibujos adjuntos. Other aspects of the present invention and other embodiments of the aspects described in the preceding paragraphs will become apparent from the following description, given by way of example and with reference to the accompanying drawings.
Breve descripción de los dibujos Brief description of the drawings
La figura 1 es una vista isométrica de un suelo de tanque de almacenamiento de energía térmica según la presente divulgación. Figure 1 is an isometric view of a thermal energy storage tank floor in accordance with the present disclosure.
La figura 2 es una vista isométrica en sección del suelo de tanque de la figura 1 . Figure 2 is a sectional isometric view of the tank floor of Figure 1 .
La figura 3 es una vista en sección transversal ampliada de una primera realización de la junta de dilatación y de las placas de suelo radialmente adyacentes de la zona del suelo de tanque identificada como "A" en la figura 2. Figure 3 is an enlarged cross-sectional view of a first embodiment of the expansion joint and radially adjacent floor plates of the tank floor area identified "A" in Figure 2.
La figura 4 es una vista en sección transversal ampliada de una segunda realización de una junta de dilatación según la presente divulgación. Figure 4 is an enlarged cross-sectional view of a second embodiment of an expansion joint in accordance with the present disclosure.
La figura 5 es una vista en sección transversal ampliada de una tercera realización de una junta de dilatación según la presente divulgación. Las figuras 6a y 6b muestran vistas en planta detalladas de segundas realizaciones de medios de retención de placas de suelo en las posiciones retraída y extendida. Figure 5 is an enlarged cross-sectional view of a third embodiment of an expansion joint according to the present disclosure. Figures 6a and 6b show detailed plan views of second embodiments of floor plate retaining means in the retracted and extended positions.
La figura 7 es una vista isométrica en sección de una base de tanque de almacenamiento de energía térmica según la presente divulgación. Figure 7 is a sectional isometric view of a thermal energy storage tank base according to the present disclosure.
La figura 8 es una vista isométrica seccional de un tanque de almacenamiento de energía térmica según la presente divulgación. Figure 8 is a sectional isometric view of a thermal energy storage tank according to the present disclosure.
La figura 9 es una vista isométrica seccional de otro suelo de tanque de almacenamiento de energía térmica de acuerdo con la presente divulgación. Figure 9 is a sectional isometric view of another thermal energy storage tank floor in accordance with the present disclosure.
La figura 10 es una vista isométrica seccional de otro suelo de tanque de almacenamiento de energía térmica según la presente divulgación. Figure 10 is a sectional isometric view of another thermal energy storage tank floor according to the present disclosure.
Descripción detallada de las realizaciones Detailed description of embodiments
Las figuras 1 y 2 son vistas isométricas e isométricas seccionales, respectivamente, de un suelo de tanque de almacenamiento de energía térmica 100 según la presente divulgación, junto con una sección interior de una pared lateral cilindrica 200 que se extiende desde el suelo 100. Como se representa en la figura 8, cuando se apoya en una cimentación 300 para formar una base de tanque 400 (véase también la figura 7), el suelo de tanque 100 puede combinarse con una pared lateral 200 y un techo 500 para formar un tanque de almacenamiento de energía térmica 600 para almacenar energía térmica. La energía térmica almacenada en el tanque de almacenamiento de energía térmica 600 puede ser en forma de sal fundida generada a partir de una planta de energía solar térmica de concentración. Sin embargo, también se prevé que se puedan almacenar otras formas de energía térmica en el tanque de almacenamiento 600. Figures 1 and 2 are isometric and isometric sectional views, respectively, of a thermal energy storage tank floor 100 in accordance with the present disclosure, together with an inner section of a cylindrical side wall 200 extending from the floor 100. As As shown in Figure 8, when supported by a foundation 300 to form a tank base 400 (see also Figure 7), the tank floor 100 can be combined with a side wall 200 and a roof 500 to form a storage tank. thermal energy storage 600 for storing thermal energy. The thermal energy stored in the thermal energy storage tank 600 may be in the form of molten salt generated from a concentrating solar thermal power plant. However, it is also envisioned that other forms of thermal energy can be stored in the storage tank 600.
El suelo de tanque 100 comprende una placa de suelo central 110 sustancialmente circular, siete placas de suelo anulares 120a-g dispuestas concéntricamente con la placa de suelo central, y siete juntas de dilatación anulares correspondientes 130a-g. Las siete placas de suelo anulares 120a-g comprenden una placa de suelo anular interior 120a radialmente adyacente a la placa de suelo central 1 10, y seis placas de suelo anulares exteriores 120b-g dispuestas radialmente de forma sucesiva desde la placa de suelo anular interior 120a. Las siete juntas de dilatación anulares 130a-g comprenden una junta de dilatación interior 130a que une las placas de suelo anulares central e interior 1 10, 120a radialmente adyacentes, y seis juntas de dilatación exteriores 130b-g, cada una de las cuales une un par de placas de suelo anulares 120a-g radialmente adyacentes. The tank floor 100 comprises a substantially circular central floor plate 110, seven annular floor plates 120a-g arranged concentrically with the central floor plate, and seven corresponding annular expansion joints 130a-g. The seven annular floor plates 120a-g comprise an inner annular floor plate 120a radially adjacent to the central floor plate 1 10, and six outer annular floor plates 120b-g arranged radially in succession from the inner annular floor plate. 120a. The seven annular expansion joints 130a-g comprise an inner expansion joint 130a joining radially adjacent central and inner annular floor plates 1 10, 120a, and six outer expansion joints 130b-g, each joining a pair of radially adjacent annular floor plates 120a-g.
Cada junta de dilatación 130a-g se configura para compensar, al menos parcialmente, la dilatación térmica de al menos una de las placas de suelo en el par de placas de suelo radialmente adyacentes que une. En consecuencia, la junta de dilatación interior 130a se configura para compensar, al menos parcialmente, la dilatación térmica de la placa de suelo central 110 y/o la placa de suelo anular interior 120a. Del mismo modo, cada una de las seis juntas de dilatación exteriores 130b-g se configura para compensar al menos parcialmente la dilatación térmica de al menos una de las placas de suelo anulares 120a-g de dicho par de placas de suelo anulares 120a-g radialmente adyacentes unidas por la respectiva junta de dilatación 130b-g. Each expansion joint 130a-g is configured to compensate, at least partially, for the thermal expansion of at least one of the floor plates in the pair of floor plates. radially adjacent that unites. Consequently, the internal expansion joint 130a is configured to compensate, at least partially, for the thermal expansion of the central floor plate 110 and/or the internal annular floor plate 120a. Similarly, each of the six outer expansion joints 130b-g is configured to at least partially compensate for the thermal expansion of at least one of the annular floor plates 120a-g of said pair of annular floor plates 120a-g. radially adjacent joined by the respective expansion joint 130b-g.
Para compensar al menos parcialmente la dilatación térmica, las juntas de dilatación 130a-g se configuran de tal manera que permiten un cierto grado de movimiento relativo entre el par de placas de suelo 1 10, 120a-g radialmente adyacentes unidas. En consecuencia, cuando una placa de suelo del par unido se expande bajo esfuerzo térmico, la junta de dilatación respectiva absorbe al menos una parte de esta deformación inducida térmicamente antes de que se transmita a la placa de suelo radialmente adyacente como esfuerzo de compresión en el plano del suelo de tanque 100. To at least partially compensate for thermal expansion, the expansion joints 130a-g are configured in such a way as to allow a certain degree of relative movement between the pair of joined radially adjacent floor plates 1 10, 120a-g. Consequently, when one floor plate of the joined pair expands under thermal stress, the respective expansion joint absorbs at least a part of this thermally induced deformation before it is transmitted to the radially adjacent floor plate as compressive stress in the tank floor plan 100.
La configuración específica de la junta de dilatación puede depender de las características del respectivo tanque de almacenamiento. En algunas realizaciones, puede utilizarse una junta de dilatación de tipo fuelle junto con una holgura anular formada entre los bordes circunferenciales opuestos de las placas de suelo radialmente adyacentes. En otras realizaciones, una junta de dilatación de tipo fuelle puede utilizarse junto con un solapamiento deslizante que se produce entre los bordes circunferenciales de las placas de suelo radialmente adyacentes. En otras realizaciones, el solapamiento deslizante entre los bordes circunferenciales de las placas de suelo radialmente adyacentes puede formar por sí mismo la junta de dilatación. Cuando se utiliza un solapamiento deslizante, se apreciará que la junta de dilatación puede comprender características separadas o adicionales que limiten la carrera de deslizamiento relativa. The specific configuration of the expansion joint may depend on the characteristics of the respective storage tank. In some embodiments, a bellows-type expansion joint may be used in conjunction with an annular clearance formed between opposite circumferential edges of radially adjacent floor plates. In other embodiments, a bellows-type expansion joint may be used in conjunction with a sliding lap that occurs between the circumferential edges of radially adjacent floor plates. In other embodiments, the sliding overlap between the circumferential edges of radially adjacent floor plates may itself form the expansion joint. When a sliding overlap is used, it will be appreciated that the expansion joint may comprise separate or additional features that limit the relative sliding stroke.
Un ejemplo específico de una junta de dilatación de acuerdo con una realización de la presente divulgación se describirá ahora con más detalle con referencia a la sección transversal de la junta de dilatación interior 130a representada en la figura 3. A specific example of an expansion joint according to one embodiment of the present disclosure will now be described in more detail with reference to the cross section of the inner expansion joint 130a shown in Fig. 3.
La junta de dilatación interior 130a es una junta de dilatación de tipo fuelle que comprende un anillo de fuelle 140a que tiene un borde circunferencial interior 142a soldado a una parte circunferencial exterior de la placa de suelo central 110, y un borde circunferencial exterior 144a soldado a una parte circunferencial interior de la placa de suelo anular interior 120a. En esta realización, los bordes circunferenciales interior y exterior 142a, 144a se sueldan en ángulo a las respectivas partes de las placas de suelo anular central e interior 110, 120a. Se apreciará que, en las realizaciones que utilizan otras configuraciones, los bordes circunferenciales interior y exterior 142a, 144a pueden soldarse a tope a los respectivos bordes circunferenciales de las placas de suelo radialmente adyacentes. The inner expansion joint 130a is a bellows-type expansion joint comprising a bellows ring 140a having an inner circumferential edge 142a welded to an outer circumferential part of the central floor plate 110, and an outer circumferential edge 144a welded to an inner circumferential portion of the inner annular floor plate 120a. In this embodiment, the inner and outer circumferential edges 142a, 144a are welded at an angle to the respective parts of the central and inner annular floor plates 110, 120a. It will be appreciated that, in embodiments using other configurations, the edges Inner and outer circumferential edges 142a, 144a may be butt welded to respective circumferential edges of radially adjacent floor plates.
El anillo de fuelle 140a describe una "Q" (omega) modificada en sección transversal. Más concretamente, la sección transversal del anillo de fuelle 140a se define por tres arcos circulares continuos delimitados por un par de extensiones tangenciales. Una extensión tangencial 141 a de un primer extremo de un primer arco circular 146a discurre paralela al plano del suelo de tanque 100 y se superpone a una parte de la placa de suelo central 110 para definir el borde circunferencial interno 142a de la junta de dilatación interior 130a. Una extensión tangencial 143a de un primer extremo de un segundo arco circular 147a también discurre paralela al plano del suelo de tanque 100 y se sobrepone a una parte de la placa de suelo anular interna 120a para definir el borde circunferencial externo de la junta de dilatación interior 130a. Un tercer arco circular 148a conecta un segundo extremo del primer arco circular 146a con un segundo extremo del segundo arco circular 147a. Bellows ring 140a describes a modified "Q" (omega) in cross section. More specifically, the cross section of the bellows ring 140a is defined by three continuous circular arcs bounded by a pair of tangential extensions. A tangential extension 141 a of a first end of a first circular arc 146a runs parallel to the plane of the tank floor 100 and overlaps a part of the central floor plate 110 to define the internal circumferential edge 142a of the internal expansion joint. 130a. A tangential extension 143a of a first end of a second circular arc 147a also runs parallel to the plane of the tank floor 100 and overlaps a portion of the inner annular floor plate 120a to define the outer circumferential edge of the inner expansion joint. 130a. A third circular arc 148a connects a second end of the first circular arc 146a with a second end of the second circular arc 147a.
En esta realización, los tres arcos circulares continuos 146a, 147a, 148a comparten el mismo radio, y la sección transversal de la junta de dilatación 130a tiene una línea de simetría que pasa por un centro del tercer arco circular 148a. En consecuencia, un ángulo de arco de ios arcos circulares primero y segundo 146a, 147a es aproximadamente la mitad de un ángulo de arco del tercer arco circular 148a. Dicha configuración puede permitir que la junta de dilatación 130a distribuya el esfuerzo aplicado de forma relativamente uniforme sobre toda la sección transversal del anillo de fuelle 140a. En esta realización, el ángulo de arco de los arcos circulares primero y segundo 146a, 147a es de aproximadamente 135°, y un ángulo de arco del tercer arco circular 148a es de aproximadamente 270°. Se apreciará que, en realizaciones en las que puede ser deseable concentrar el esfuerzo en ciertos puntos de la sección transversal del anillo de fuelle, una o más de estas características pueden variarse para conseguir el resultado deseado. In this embodiment, the three continuous circular arcs 146a, 147a, 148a share the same radius, and the cross section of the expansion joint 130a has a line of symmetry passing through a center of the third circular arc 148a. Consequently, an arc angle of the first and second circular arcs 146a, 147a is approximately half of an arc angle of the third circular arc 148a. Such a configuration may allow the expansion joint 130a to distribute the applied stress relatively evenly over the entire cross section of the bellows ring 140a. In this embodiment, an arc angle of the first and second circular arcs 146a, 147a is approximately 135°, and an arc angle of the third circular arc 148a is approximately 270°. It will be appreciated that, in embodiments where it may be desirable to concentrate stress at certain points in the cross section of the bellows ring, one or more of these characteristics may be varied to achieve the desired result.
El anillo de fuelle 140a puede fabricarse cortando los tres arcos circulares 146a, 147a, 148a a partir de tubos del mismo radio, y soldándolos después con placas planas que forman las extensiones tangenciales 141 a, 143a. Alternativamente, la sección transversal del anillo de fuelle 140a puede ser laminada a partir de una longitud de placa plana, que posteriormente (o simultáneamente) es laminada en un arco circular que forma una sección del anillo de fuelle 140a. The bellows ring 140a can be made by cutting the three circular arcs 146a, 147a, 148a from tubes of the same radius, and then welding them with flat plates that form the tangential extensions 141a, 143a. Alternatively, the cross section of the bellows ring 140a can be rolled from a length of flat plate, which is subsequently (or simultaneously) rolled into a circular arc forming a section of the bellows ring 140a.
Las placas de suelo anulares central e interior 110, 120a se disponen de tal manera que se forma un hueco anular 150 entre sus bordes circunferenciales exteriores e interiores opuestos. La anchura radial de este hueco anular 150 define el máximo movimiento relativo de estas dos placas de suelo 1 10, 120a radialmente adyacentes entre sí cuando sufren una dilatación térmica. La junta de dilatación 130a comprende además un tirante o limitador de carrera de contracción separado 160 configurado para limitar el movimiento relativo de las placas de suelo anular interior y central radialmente adyacentes 1 10, 120a alejándose entre sí debido a la contracción térmica. Se apreciará que, en otras realizaciones, el propio anillo de fuelle 140a se puede configurar para actuar como limitador de carrera de contracción. The central and inner annular floor plates 110, 120a are arranged in such a way that an annular gap 150 is formed between their opposite outer and inner circumferential edges. The radial width of this annular gap 150 defines the maximum relative movement of these two floor plates 1 10, 120a radially adjacent to each other when they undergo thermal expansion. The expansion joint 130a further comprises a separate contraction stroke limiter 160 configured to limit the relative movement of the radially adjacent central and inner annular floor plates 1 10, 120a away from each other due to thermal contraction. It will be appreciated that, in other embodiments, the bellows ring 140a itself may be configured to act as a contraction stroke limiter.
En esta realización, el limitador de carrera de contracción 160 comprende casquines primero y segundo 162, 164 fijados a las partes circunferenciales exterior e interior de las placas de suelo anulares central e interior 1 10, 120a, respectivamente. El primer casquillo 162 define un primer agujero (no mostrado) que tiene un eje que se extiende en una dirección radial del suelo de tanque 100. El segundo casquillo 164 define un segundo agujero (tampoco mostrado) coaxial con el primer agujero del primer casquillo 162. In this embodiment, the contraction stroke limiter 160 comprises first and second bushings 162, 164 attached to the outer and inner circumferential portions of the central and inner annular floor plates 1 10, 120a, respectively. The first bushing 162 defines a first hole (not shown) having an axis extending in a radial direction of the tank floor 100. The second bushing 164 defines a second hole (also not shown) coaxial with the first hole of the first bushing 162 .
El limitador de carrera de contracción 160 comprende además un pasador restrictor 166 que se extiende a través de los agujeros primero y segundo de los caequillos primero y segundo 162, 164, respectivamente. El pasador restrictor 166 se cubre en cada extremo con una parte de cabeza que tiene un diámetro mayor que un diámetro de las agujeros primero y segundo, respectivamente. En consecuencia, la distancia entre la parte de cabeza define el máximo movimiento relativo de las dos placas de suelo radialmente adyacentes 1 10, 120a alejándose entre sí cuando se somete a contracción térmica. The contraction stroke limiter 160 further comprises a restrictor pin 166 which extends through the first and second holes of the first and second bushings 162, 164, respectively. The restraint pin 166 is covered at each end with a head portion having a diameter greater than a diameter of the first and second holes, respectively. Consequently, the distance between the head portion defines the maximum relative movement of the two radially adjacent floor plates 1 10, 120a away from each other when subjected to thermal contraction.
En esta realización, el suelo de tanque 100 comprende siete placas anulares 120a-g que junto con la placa central 110 forman siete holguras anulares atravesadas por siete juntas de dilatación anulares 130a-g. Se apreciará que, en otras realizaciones, el número de placas anulares y las correspondientes juntas de dilatación pueden diferir en función de una serie de características del tanque, como el tamaño del tanque, las temperaturas a las que se espera que se exponga el suelo, las variaciones de temperatura en el suelo, el grosor, la anchura y el material de las placas anulares, etc. Por ejemplo, los tanques más pequeños pueden requerir únicamente una placa anular o una o dos placas anulares, mientras que los tanques más grandes pueden requerir más de siete placas anulares. In this embodiment, the tank floor 100 comprises seven annular plates 120a-g which together with the central plate 110 form seven annular clearances traversed by seven annular expansion joints 130a-g. It will be appreciated that, in other embodiments, the number of annular plates and corresponding expansion joints may differ depending on a number of tank characteristics, such as tank size, temperatures to which the floor is expected to be exposed, temperature variations in the soil, thickness, width and material of the annular plates, etc. For example, smaller tanks may require only one ring plate or one or two ring plates, while larger tanks may require more than seven ring plates.
En el suelo de tanque 100 de esta realización, todas las juntas de dilatación 130a-g son sustancialmente idénticas, es decir, todas comprenden anillos de fuelle sustancialmente idénticos hechos del mismo material y que tienen la misma forma de sección transversal, altura, anchura y grosor de pared, y todas están restringidas por las mismas limitaciones de carrera de dilatación/contracción. En consecuencia, todos poseen la misma curva de esfuerzo-deformación, es decir, presentan el mismo grado de deformación en respuesta a la misma entrada de esfuerzo. In the tank floor 100 of this embodiment, all expansion joints 130a-g are substantially identical, that is, they all comprise substantially identical bellows rings made of the same material and having the same cross-sectional shape, height, width and wall thickness, and all are constrained by the same expansion/contraction stroke limitations. Consequently, they all have the same stress-strain curve, that is, they exhibit the same degree of strain in response to the same stress input.
Se apreciará que, en otras realizaciones, puede ser deseable configurar las juntas de dilatación 130a-g de manera que al menos una junta de dilatación posea una curva de esfuerzo-deformación diferente de las restantes juntas de dilatación. También puede ser deseable configurar las juntas de dilatación 130a-g de manera que al menos una junta de dilatación posea un límite de carrera de dilatación y/o contracción diferente de las juntas restantes. It will be appreciated that, in other embodiments, it may be desirable to configure the expansion joints 130a-g such that at least one expansion joint has a curve of stress-strain different from the other expansion joints. It may also be desirable to configure the expansion joints 130a-g such that at least one expansion joint has a different expansion and/or contraction stroke limit from the remaining joints.
Por ejemplo, para un tanque de almacenamiento que almacena energía térmica en forma de sal fundida de temperatura uniforme, se entiende que el esfuerzo aplicado a las juntas de dilatación 130a-g aumenta para cada junta de dilatación radialmente sucesiva, es decir, la junta de dilatación radialmente más externa 130g se expone ai mayor esfuerzo y la junta de dilatación interior 130a se expone al menor esfuerzo. En consecuencia, puede ser deseable configurar las juntas de dilatación 130a-g de manera que al menos la junta de dilatación interior 130a exhiba un mayor grado de deformación que una o más de las restantes juntas de dilatación 130b-g en respuesta a la misma entrada de esfuerzo. En algunas realizaciones, puede ser deseable configurar cada junta de dilatación radialmente sucesiva 130a-g para que tenga una curva de esfuerzo-deformación cada vez más pronunciada, de manera que la junta de dilatación interior 130a exhiba el mayor grado de deformación en respuesta a la misma entrada de esfuerzo. Se entenderá que esto puede lograrse variando una o más de las características definitorias de las juntas de dilatación 130a-g, tales como el tipo, la forma de la sección transversal, la altura, la anchura, el grosor de la pared, etc. For example, for a storage tank that stores thermal energy in the form of molten salt of uniform temperature, it is understood that the stress applied to the expansion joints 130a-g increases for each radially successive expansion joint, that is, the expansion joint radially outermost expansion 130g is exposed to the greatest stress and the inner expansion joint 130a is exposed to the least stress. Accordingly, it may be desirable to configure the expansion joints 130a-g such that at least the inner expansion joint 130a exhibits a greater degree of deformation than one or more of the remaining expansion joints 130b-g in response to the same input. of effort. In some embodiments, it may be desirable to configure each radially successive expansion joint 130a-g to have an increasingly steeper stress-strain curve such that the inner expansion joint 130a exhibits the greatest degree of strain in response to pressure. same effort input. It will be understood that this can be accomplished by varying one or more of the defining characteristics of expansion joints 130a-g, such as type, cross-sectional shape, height, width, wall thickness, etc.
En el suelo de tanque 100 de esta realización, todas las placas de suelo anulares 120a-f , aparte de la placa de suelo anular radialmente más externa 120g, tienen sustancialmente la misma anchura radial. En consecuencia, para un tanque de almacenamiento que almacena energía térmica en forma de sal fundida de temperatura uniforme, cada una de estas placas de suelo anulares 120a-f presenta el mismo aumento de anchura que se produce debido a la dilatación térmica y que las juntas de dilatación 130a-g deben compensar parcialmente. Se apreciará que, en otras realizaciones, puede ser deseable proporcionar al menos una placa de suelo anular con una anchura radial que es diferente de la anchura radial de al menos otra placa de suelo anular. En algunas realizaciones, puede ser deseable proporcionar cada placa de suelo anular radialmente sucesiva con una anchura radial que es menor que una anchura radial de su placa de suelo anular radialmente precedente de tal manera que la placa de suelo anular interior tiene la mayor anchura radial. Configurar el suelo de tanque 100 de esta manera puede permitir que cada junta de dilatación radialmente sucesiva compense parcialmente una cantidad menor de dilatación térmica que la junta de dilatación que la precede radialmente.In the tank floor 100 of this embodiment, all of the annular floor plates 120a-f, apart from the radially outermost annular floor plate 120g, have substantially the same radial width. Consequently, for a storage tank that stores thermal energy in the form of molten salt of uniform temperature, each of these annular floor plates 120a-f has the same increase in width that occurs due to thermal expansion and that the joints of dilation 130a-g must partially compensate. It will be appreciated that, in other embodiments, it may be desirable to provide at least one annular floor plate with a radial width that is different from the radial width of at least one other annular floor plate. In some embodiments, it may be desirable to provide each successive radially annular floor plate with a radial width that is less than a radial width of its preceding radially annular floor plate such that the inner annular floor plate has the greatest radial width. Configuring the tank floor 100 in this manner can allow each successive radially expansion joint to partially compensate for a lesser amount of thermal expansion than the expansion joint radially preceding it.
Haciendo referencia ahora a la figura 4, una vista en sección transversal ampliada de una segunda realización de una junta de dilatación en forma de omega (Q) 402 incluye una sección de tubo anular 404 que tiene una parte corta en forma de arco cortada desde su base, estando las caras extremas abiertas 408 de la sección de tubo soldadas en ángulo a soportes verticales anulares 410, Estos soportes están a su vez soldados en 412 a las caras extremas superiores de las placas de suelo adyacentes 120a y 120b, En esta realización particular, la sección de tubería tiene un diámetro de 136,5 mm y un grosor de 4,2 mm, y las placas de suelo tienen un grosor de 8 mm. Esto permite que la sección de tubería se flexione en respuesta a la expansión de las placas de suelo entre sí y la contracción entre sí como resultado de las variaciones térmicas. Se apreciará que las dimensiones de la tubería, los soportes y las placas del suelo pueden variar significativamente en función de numerosos factores, como el tamaño del tanque, las variaciones de temperatura previstas y la separación de las juntas de dilatación. Referring now to Figure 4, an enlarged cross-sectional view of a second embodiment of an omega (Q)-shaped expansion joint 402 includes an annular tube section 404 having a short arcuate portion cut from its base, the open end faces 408 of the tube section being angle welded to supports annular uprights 410. These supports are in turn welded at 412 to the upper end faces of the adjacent floor plates 120a and 120b. In this particular embodiment, the pipe section has a diameter of 136.5 mm and a thickness of 4 2 mm, and the base plates are 8 mm thick. This allows the pipe section to flex in response to expansion of the floor plates relative to each other and contraction relative to each other as a result of thermal variations. It will be appreciated that the dimensions of the pipe, supports and floor plates can vary significantly depending on numerous factors, such as tank size, anticipated temperature variations and expansion joint spacing.
La figura 5 muestra una vista en sección transversal ampliada de una tercera realización de una junta de dilatación en forma de ocho 501 que tiene una parte inferior formada por dos mitades de tubo anular 502 y 504 unidas en sus extremos inferiores a las caras extremas superiores de las placas de suelo adyacentes 120a y 120b de la misma manera que la sección de tubo 404 mediante soportes verticales anulares 510 y soldaduras en ángulo 511. Una sección de tubo anular superior 512 tiene los extremos inferiores 514 soldados a los extremos superiores 516 de las mitades de tubo inferiores a través de tiras de conexión 518. La junta de dilatación resultante tiene una mayor capacidad de flexión que la de la segunda realización y, por tanto, es capaz, de salvar una mayor holgura entre las placas de suelo adyacentes para permitir mayores grados de dilatación y contracción cuando sea necesario. Figure 5 shows an enlarged cross-sectional view of a third embodiment of a figure-of-eight expansion joint 501 having a lower part formed by two annular tube halves 502 and 504 joined at their lower ends to the upper end faces of adjacent floor plates 120a and 120b in the same manner as tube section 404 by means of annular uprights 510 and fillet welds 511. An upper annular tube section 512 has the lower ends 514 welded to the upper ends 516 of the halves of lower tubes through connection strips 518. The resulting expansion joint has a greater bending capacity than that of the second embodiment and, therefore, is capable of bridging a greater gap between adjacent floor plates to allow greater degrees of expansion and contraction when necessary.
Las juntas de dilatación 402 y 501 pueden comprender además un limitador de carrera de contracción separado, configurado para limitar el movimiento relativo de las placas de suelo radialmente adyacentes entre sí debido a la contracción térmica. Esto puede adoptar la forma de un tirante del tipo ilustrado en la figura 3 que se extiende entre los soportes verticales 510. Alternativamente, como se muestra en las figuras 6a y 6b, las placas de suelo adyacentes 120a y 120b se cortan con láser con perfiles de "piruleta" que se interconectan. La placa de suelo 120a tiene una serie de partes de cabeza bulbosa 121 que se extienden desde las respectivas partes de cuello entallado 123 y que se alternan con los rebajes de recepción de cabeza 125. La placa de suelo 120b tiene partes de cabeza 127 de forma idéntica y partes de cuello entallado 129 que se alternan con rebajes para recibir la cabeza 131 . Es evidente cómo las partes de cabeza 121 de la placa de suelo 120a se desplazan y se mantienen cautivas dentro de los rebajes 131 de la placa de suelo 120b y las partes de cabeza 127 de la placa de suelo 120b se desplazan y se mantienen cautivas dentro de los correspondientes rebajes 125 de la placa de suelo 120a entre las posiciones retraída y extendida indicadas en las figuras 6a y 6b respectivamente. En la posición de extensión de la figura 6b, el movimiento adicional hacia fuera está limitado por las cabezas 121 que hacen tope con los hombros 121 a de las aberturas estrechadas definidas por las cabezas opuestas 127, y viceversa. La disposición limitadora de la carrera de contracción de las figuras 6a y 6b puede cortarse con láser a partir de placas de suelo más grandes, de modo que sean integrales con las placas de suelo adyacentes. Alternativamente, pueden cortarse con láser a partir de tiras anulares que se sueldan en posición a las caras extremas superiores de las placas de suelo adyacentes. Las juntas de dilatación se sueldan entonces a las regiones de aterrizaje continuas indicadas en contorno discontinuo en 133 y 135 de las placas de suelo adyacentes 120a y 120b. The expansion joints 402 and 501 may further comprise a separate contraction stroke limiter, configured to limit the relative movement of radially adjacent floor plates to one another due to thermal contraction. This may take the form of a tie rod of the type illustrated in Figure 3 which extends between uprights 510. Alternatively, as shown in Figures 6a and 6b, adjacent floor plates 120a and 120b are laser cut with profiles of "lollipop" that interconnect. Floor plate 120a has a series of bulbous head portions 121 extending from respective notched neck portions 123 and alternating with head receiving recesses 125. Floor plate 120b has shaped head portions 127 identical and notched neck parts 129 that alternate with recesses to receive the head 131 . It is evident how the head parts 121 of the floor plate 120a move and are held captive within the recesses 131 of the floor plate 120b and the head parts 127 of the floor plate 120b move and are held captive within of the corresponding recesses 125 in the floor plate 120a between the retracted and extended positions indicated in Figures 6a and 6b respectively. In the extended position of Figure 6b, further outward movement is limited by the heads 121 abutting the shoulders 121 a of the tapered openings defined by the opposing heads 127, and vice versa. The contraction stroke limiting arrangement of Figures 6a and 6b can be laser cut from larger floor plates so that they are integral with adjacent floor plates. Alternatively, they can be laser cut from annular strips which are welded in place to the upper end faces of adjacent floor plates. The expansion joints are then welded to the continuous landing regions indicated in dashed outline at 133 and 135 of the adjacent floor plates 120a and 120b.
Se apreciará que esta forma de limitador de carrera de contracción puede aplicarse a cualquiera de los tipos de juntas de dilatación descritos en la memoria descriptiva. It will be appreciated that this form of contraction stroke limiter can be applied to any of the types of expansion joints described in the specification.
A partir de la descripción anterior, se entenderá que el uso de al menos una junta de dilatación anular aísla al menos parcialmente una parte central del suelo de tanque 100 de una parte circunferencial del suelo de tanque 100, de manera que la dilatación térmica de una parte no se transmite, o únicamente parcialmente, a la otra parte. Esta estructura permite reducir el gradiente de la curva global de esfuerzo térmico del suelo de tanque 100 más allá de lo que es posible variando únicamente el material y las dimensiones del suelo de tanque 100. Por consiguiente, se apreciará que el número, el tipo, las características (curva de esfuerzo- deformación) y el intervalo radial de las juntas de dilatación pueden variarse para lograr la curva general de esfuerzo-deformación térmica deseada del suelo de tanque 100 y reducir la probabilidad de que se produzca un pandeo en el suelo de tanque 100. El tipo de junta de dilatación también puede variar en función del grado de dilatación y contracción requerido para un tanque en particular o una ubicación dentro del tanque. Por ejemplo, pueden utilizarse juntas de dilatación de tipo omega junto con juntas de dilatación de tipo figura de ocho. From the above description, it will be understood that the use of at least one annular expansion joint at least partially isolates a central part of the tank floor 100 from a circumferential part of the tank floor 100, so that thermal expansion of a party is not transmitted, or only partially, to the other party. This structure allows the gradient of the overall thermal stress curve of the tank floor 100 to be reduced further than is possible by merely varying the material and dimensions of the tank floor 100. Accordingly, it will be appreciated that the number, type, The characteristics (stress-strain curve) and radial interval of expansion joints can be varied to achieve the desired overall thermal stress-strain curve of the tank floor 100 and reduce the likelihood of buckling occurring in the tank floor. tank 100. The type of expansion joint can also vary based on the degree of expansion and contraction required for a particular tank or location within the tank. For example, omega type expansion joints can be used in conjunction with figure eight type expansion joints.
A continuación se describirá una base de tanque de almacenamiento de energía térmica 400 con referencia a la figura 7. La base de tanque 400 comprende una cimentación 300 y el suelo de tanque de almacenamiento de energía térmica 100 descrito anteriormente, con el suelo de tanque 100 apoyado en la cimentación 300. La cimentación 300 se prepara a partir de una matriz de material refractario adecuadamente aislada y reforzada térmicamente. En algunas realizaciones, también se aplica un lubricante seco a la superficie superior de la cimentación 300. A thermal energy storage tank foundation 400 will now be described with reference to Fig. 7. The tank foundation 400 comprises a foundation 300 and the thermal energy storage tank floor 100 described above, with the tank floor 100 supported on foundation 300. Foundation 300 is prepared from a properly insulated and thermally strengthened matrix of refractory material. In some embodiments, a dry lubricant is also applied to the top surface of the foundation 300.
En algunas realizaciones, la placa de suelo central 110 y todas las placas de suelo anulares 120a-g se disponen en la superficie superior de la cimentación 300, antes de ser unidas por las respectivas juntas de dilatación 130a-g. En otras realizaciones, la placa de suelo central 110 y la placa de suelo anular interior 120a se disponen primero en la superficie superior de la cimentación 300 antes de ser unidas por la junta de dilatación interior 130a. Cada placa de suelo anular exterior 120b-g se dispone entonces en la superficie superior de la cimentación 300 y se une a su placa anular radialmente precedente con la respectiva junta de dilatación exterior 130b-g, antes de que su placa de suelo anular radialmente sucesiva 120c-g se disponga en la cimentación 300. In some embodiments, the central floor plate 110 and all the annular floor plates 120a-g are arranged on the upper surface of the foundation 300, before being joined by the respective expansion joints 130a-g. In other embodiments, the central floor plate 110 and the inner annular floor plate 120a are first arranged on the upper surface of the foundation 300 before being joined by the inner expansion joint 130a. Each outer annular floor plate 120b-g is then arranged on the upper surface of the foundation 300 and is joined to its preceding radially annular plate with the respective expansion joint. exterior 130b-g, before its successive radially annular floor plate 120c-g is arranged on the foundation 300.
En otra realización, todo el suelo de tanque se fabrica a partir de una serie de placas de suelo contiguas que se sueldan entre sí en cualquier patrón adecuado, incluyendo, por ejemplo, segmentos. Las placas de suelo anulares se definen entonces cortándolas con láser de la manera ilustrada en las figuras 6a y 6b, utilizando una serie de cortes circulares concéntricos con las partes de cabeza y cuello interconectadas o perfiles de "piruleta". In another embodiment, the entire tank floor is fabricated from a series of adjoining floor plates that are welded together in any suitable pattern, including, for example, segments. The annular floor plates are then defined by laser cutting them in the manner illustrated in Figures 6a and 6b, using a series of concentric circular cuts with interconnected head and neck portions or "lollipop" profiles.
En la figura 8 se representa un tanque de almacenamiento de energía térmica 600 que comprende la base de tanque de almacenamiento de energía térmica 400 descrita anteriormente. Una pluralidad de placas de pared (no mostradas) se sueldan entre sí para formar la pared lateral cilindrica 200 que se extiende desde la base de tanque 100. Una pluralidad de placas de techo (no mostradas) se sueldan juntas para formar el techo 500 que tiene un borde periférico apoyado y soldado al borde superior de la pared lateral cilindrica 200. Como el tanque de almacenamiento de energía térmica 600 está destinado a almacenar un medio de almacenamiento de energía térmica (por ejemplo, sal fundida), el suelo 100, incluidas las juntas de dilatación 130a-g, la pared 200 y el techo 500 deben fabricarse con un material de aleación de acero adecuado capaz de soportar altas temperaturas y masas. Los materiales adecuados incluyen, entre otros, el acero inoxidable 316, el acero al carbono A588 y el Inconel. In Fig. 8 there is shown a thermal energy storage tank 600 comprising the thermal energy storage tank base 400 described above. A plurality of wall plates (not shown) are welded together to form the cylindrical side wall 200 that extends from the tank base 100. A plurality of roof plates (not shown) are welded together to form the roof 500 that it has a peripheral edge supported and welded to the upper edge of the cylindrical side wall 200. Since the thermal energy storage tank 600 is intended to store a thermal energy storage medium (for example, molten salt), the floor 100, including expansion joints 130a-g, wall 200 and roof 500 must be made of a suitable alloy steel material capable of withstanding high temperatures and masses. Suitable materials include, but are not limited to, 316 stainless steel, A588 carbon steel, and Inconel.
Como se ha discutido anteriormente, el número, el tipo, las características (curva de tensión- deformación) y el intervalo radial de las juntas de dilatación anulares pueden variar para conseguir la curva de tensión-deformación térmica global deseada de un suelo de tanque y reducir la probabilidad de que se produzca un pandeo en el suelo del tanque. Por ejemplo, el aumento de la separación anular entre placas de suelo adyacentes en el suelo del tanque y el tamaño de las juntas de dilatación que conectan dichas placas de suelo adyacentes pueden aumentar la capacidad de las juntas de dilatación para compensar las tensiones térmicas aplicadas al suelo del tanque. Sin embargo, la configuración de las juntas de dilatación 130a- g, 402, 501 descritas anteriormente puede restringir el tamaño del hueco anular entre las placas de suelo adyacentes. Para superar dicha restricción, el tamaño de las juntas de dilatación y de los huecos anulares puede aumentarse utilizando la realización del suelo del tanque ilustrada en la figura 9. As discussed above, the number, type, characteristics (stress-strain curve) and radial interval of annular expansion joints can be varied to achieve the desired overall thermal stress-strain curve of a tank floor and reduce the likelihood of buckling of the tank floor. For example, increasing the annular spacing between adjacent floor plates in the tank floor and the size of expansion joints connecting adjacent floor plates can increase the ability of expansion joints to compensate for thermal stresses applied to the tank. tank floor. However, the configuration of the expansion joints 130a-g, 402, 501 described above may restrict the size of the annular gap between adjacent floor plates. To overcome this restriction, the size of the expansion joints and annular gaps can be increased using the tank floor embodiment illustrated in Figure 9.
La figura 9 es una vista parcial de un suelo de tanque 700 según otra realización, junto con una sección inferior de una pared cilindrica 200 que se extiende desde el suelo de tanque 700. El suelo de tanque 700 es similar al suelo de tanque 100 en que comprende una placa de suelo central sustancialmente circular 710, una pluralidad de placas de suelo anulares 720a-e dispuestas concéntricamente con la placa de suelo central 710, y una pluralidad correspondiente de juntas de dilatación anulares 730a-e que abarcan cada una un hueco anular entre placas de suelo radialmente adyacentes. En consecuencia, se entenderá que la manera general en la que las juntas de dilatación anulares 730a-e y los huecos anulares cooperan para compensar la expansión térmica de las placas de suelo radialmente adyacentes 710, 720a-e es la misma que se ha descrito anteriormente con respecto a las juntas de dilatación anulares 130a-g, 402, 501 y sus correspondientes huecos anulares.Figure 9 is a partial view of a tank floor 700 according to another embodiment, together with a lower section of a cylindrical wall 200 extending from the tank floor 700. The tank floor 700 is similar to the tank floor 100 in comprising a substantially circular central floor plate 710, a plurality of annular floor plates 720a-e arranged concentrically with the central floor plate 710, and a plurality corresponding set of annular expansion joints 730a-e each spanning an annular gap between radially adjacent floor plates. Accordingly, it will be understood that the general manner in which annular expansion joints 730a-e and annular gaps cooperate to compensate for thermal expansion of radially adjacent floor plates 710, 720a-e is the same as described above with with respect to the annular expansion joints 130a-g, 402, 501 and their corresponding annular gaps.
De forma similar a la junta de dilatación anular 130a anteriormente descrita, las juntas de dilatación anular 730a-e son juntas de dilatación de tipo fuelle que comprenden un anillo de fuelle que tiene un borde circunferencial interior soldado a una porción circunferencial exterior de la placa de suelo adyacente radialmente interior, y un borde circunferencial exterior soldado a una porción circunferencial interior de la placa de suelo anular adyacente radialmente exterior. Sin embargo, el anillo de fuelle de las juntas de dilatación anulares 730a-e difiere del anillo de fuelle 140a descrito anteriormente en que describen un semicírculo en sección transversal. Similar to the annular expansion joint 130a described above, the annular expansion joints 730a-e are bellows-type expansion joints comprising a bellows ring having an inner circumferential edge welded to an outer circumferential portion of the bearing plate. radially inner adjacent floor, and an outer circumferential edge welded to an inner circumferential portion of the radially outer adjacent annular floor plate. However, the bellows ring of the annular expansion joints 730a-e differs from the bellows ring 140a described above in that they describe a semicircle in cross section.
Además, mientras que las placas de suelo anulares 120a-g del suelo del tanque 100 representadas en la figura 1 tienen una anchura radial que es sustancialmente mayor que las juntas de dilatación anulares 130a-g y sus correspondientes huecos anulares (véase, por ejemplo, 150 en la figura 2), la anchura radial de las placas de suelo anulares 720a-e es en realidad menor (o al menos no es mayor) que las juntas de dilatación anulares 730a-e y sus correspondientes huecos anulares del suelo del tanque 700. Por ejemplo, la sección transversal semicircular de las juntas de dilatación anulares 730a-e puede tener un radio de entre 0,5 y 1 m y las placas de suelo anulares pueden tener una anchura radial de entre 1 y 2 m. Sin estar limitado por la teoría, tal relación de tamaño entre las juntas de dilatación anulares 730a-e (y los correspondientes huecos anulares) y las placas de suelo 720a-e puede proporcionar una mayor compensación cuando el suelo de tanque sufre una expansión térmica, y puede obviar la necesidad de un limitador de carrera para cuando el suelo de tanque sufre una contracción térmica. Furthermore, while the annular floor plates 120a-g of the tank floor 100 shown in Figure 1 have a radial width that is substantially greater than the annular expansion joints 130a-g and their corresponding annular gaps (see, for example, 150 in Figure 2), the radial width of the annular floor plates 720a-e is actually less (or at least not greater) than the annular expansion joints 730a-e and their corresponding annular tank floor voids 700. Therefore For example, the semicircular cross section of the annular expansion joints 730a-e may have a radius of between 0.5 and 1 m and the annular floor plates may have a radial width of between 1 and 2 m. Without being limited by theory, such a size relationship between the annular expansion joints 730a-e (and corresponding annular gaps) and the floor plates 720a-e can provide greater compensation when the tank floor undergoes thermal expansion, and can obviate the need for a stroke limiter for when the tank floor undergoes thermal contraction.
Sin embargo, se apreciará que pueden surgir dificultades con la fabricación de un anillo de fuelle de tal tamaño utilizando el método similar al descrito anteriormente con respecto al anillo de fuelle 140a, por ejemplo, enrollando longitudes rectas de sección de medio tubo en longitudes de arco circular, y a continuación soldando las mismas en el anillo de fuelle. En consecuencia, en lugar de intentar formar cada anillo de fuelle de las juntas de dilatación anulares 130a-g como un anillo liso y circular, se utiliza una pluralidad de secciones de medio tubo recto 732 para aproximarse a un anillo circular. Cada sección de medio tubo 732 tiene un borde longitudinal interior 733, un borde longitudinal exterior 734, un primer borde axial 735 y un segundo borde axial 736. Para cada junta de dilatación 730a-e, el primer borde axial 735 de una sección de medio tubo 732 está conectado (por ejemplo, mediante soldadura a tope) al segundo borde axial 736 de una sección de medio tubo 732 adyacente. Además, para cada junta de dilatación 730a-e, el borde longitudinal interior 733 de cada sección de medio tubo 732 está conectado (por ejemplo, mediante soldadura de filete) a una placa de suelo adyacente radialmente interior del suelo del tanque 700 y el borde longitudinal exterior 734 de cada sección de medio tubo 732 está conectado (por ejemplo, mediante soldadura de filete) a una placa de suelo adyacente radialmente exterior del suelo de tanque 700. Por ejemplo, para la junta de dilatación 730a, el borde longitudinal interior 733 de cada sección de medio tubo 732 está conectado a una porción circunferencial exterior de la placa de suelo central 710 y el borde longitudinal exterior 734 de cada sección de medio tubo está conectado a una porción circunferencial interior de la placa de suelo anular 720a. Para cada junta de dilatación 730b-e, el borde longitudinal interior 733 de cada sección de medio tubo 732 está conectado a una porción circunferencial exterior de una placa de suelo anular radialmente interior 720a-d y el borde longitudinal exterior 734 de cada sección de medio tubo está conectado a una porción circunferencial interior de una placa de suelo radialmente exterior 720b-e. However, it will be appreciated that difficulties may arise with the manufacture of such a size bellows ring using the similar method to that described above with respect to bellows ring 140a, for example, by rolling straight lengths of half-tube section into arc lengths. circular, and then welding them on the bellows ring. Accordingly, instead of attempting to form each bellows ring of annular expansion joints 130a-g as a smooth, circular ring, a plurality of straight half-tube sections 732 are used to approximate a circular ring. Each half-tube section 732 has an inner longitudinal edge 733, an outer longitudinal edge 734, a first axial edge 735, and a second axial edge 736. For each expansion joint 730a-e, the first axial edge 735 of a half-pipe section 732 is connected (eg, by butt welding) to the second axial edge 736 of an adjacent half-pipe section 732. In addition, for each expansion joint 730a-e, the inner longitudinal edge 733 of each half-pipe section 732 is connected (eg, by fillet welding) to a radially inner adjacent floor plate of the tank floor 700 and the edge outer longitudinal 734 of each half-pipe section 732 is connected (eg, by fillet welding) to an adjacent radially outer floor plate of tank floor 700. For example, for expansion joint 730a, inner longitudinal edge 733 of each half-pipe section 732 is connected to an outer circumferential portion of the central floor plate 710 and the outer longitudinal edge 734 of each half-pipe section is connected to an inner circumferential portion of the annular floor plate 720a. For each expansion joint 730b-e, the inner longitudinal edge 733 of each half-pipe section 732 is connected to an outer circumferential portion of a radially inner annular floor plate 720a-d and the outer longitudinal edge 734 of each half-pipe section. it is connected to an inner circumferential portion of a radially outer floor plate 720b-e.
La figura 10 es una vista parcial de una base de tanque 800 según otra realización. La base de tanque 800 comprende el suelo de tanque 700 dispuesto sobre una placa base 860 sustancialmente circular. En esta realización, el suelo de tanque 700 no está conectado a la placa base 860. Esto permite que el suelo de tanque 700 se expanda y contraiga independientemente de la placa base 860. Esto puede reducir las fuerzas en el suelo de tanque 700 a medida que se expande y se contrae, ya que la fricción entre el suelo de tanque 700 y la placa base 860 puede ser menor que la fricción entre el suelo de tanque 700 y una base sobre la que se dispone el suelo de tanque 700. Esto puede reducir aún más la posibilidad de que el suelo de tanque 700 se pandee a medida que se expande y contrae.Figure 10 is a partial view of a tank base 800 according to another embodiment. The tank base 800 comprises the tank floor 700 arranged on a substantially circular base plate 860. In this embodiment, the tank floor 700 is not connected to the base plate 860. This allows the tank floor 700 to expand and contract independently of the base plate 860. This can reduce the forces in the tank floor 700 as which expands and contracts, since the friction between the tank floor 700 and the base plate 860 can be less than the friction between the tank floor 700 and a base on which the tank floor 700 is placed. This can further reduce the possibility of the 700 tank floor buckling as it expands and contracts.
La placa base 860 puede estar formada por una pluralidad de placas soldadas entre sí. Las placas que forman la placa base 860 pueden estar formadas del mismo material que las placas que forman el suelo de tanque 700. Base plate 860 may be formed by a plurality of plates welded together. The plates that form the base plate 860 may be formed of the same material as the plates that form the tank floor 700.
Se apreciará que el suelo de tanque 100 del tanque 600 ilustrado en la figura 8 puede ser sustituido por el suelo de tanque 700 o la base de tanque 800. It will be appreciated that the tank floor 100 of the tank 600 illustrated in Figure 8 may be replaced by the tank floor 700 or the tank base 800.
Aunque el suelo de tanque 700 se ha descrito e ilustrado como teniendo cinco placas de suelo anulares 720a-e y cinco juntas de dilatación anulares 730a-e, se apreciará que el suelo de tanque 700 puede tener más o menos placas de suelo anulares y juntas de dilatación anulares dependiendo del tamaño y los parámetros operativos del tanque de almacenamiento que se requiera. Se entenderá que la invención divulgada y definida en esta memoria descriptiva se extiende a todas las combinaciones alternativas de dos o más de las características individuales mencionadas o evidentes en el texto o los dibujos. Todas estas combinaciones diferentes constituyen diversos aspectos alternativos de la invención. Although tank floor 700 has been described and illustrated as having five annular floor plates 720a-e and five annular expansion joints 730a-e, it will be appreciated that tank floor 700 may have more or less annular floor plates and expansion joints. annular expansion depending on the size and operating parameters of the required storage tank. It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or apparent in the text or drawings. All of these different combinations constitute various alternative aspects of the invention.

Claims

REIVINDICACIONES Un suelo de tanque de almacenamiento de energía térmica que comprende: una placa de suelo central sustancialmente circular; una placa de suelo anular dispuesta concéntricamente con la placa de suelo central de manera que las dos placas de suelo forman un par de placas de suelo radialmente adyacentes; y una junta de dilatación anular que une dichas placas de suelo radialmente adyacentes, y en donde la junta de dilatación se configura para compensar, al menos parcialmente, la dilatación térmica de la placa de suelo central y/o de la placa de suelo anular. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 1 , en donde la junta de dilatación comprende un anillo de fuelle que tiene un borde circunferencial interno soldado a una parte circunferencial externa de la placa de suelo central, y un borde circunferencial externo soldado a una parte circunferencial interna de la placa de suelo anular. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 2, en donde el anillo de fuelle tiene un perfil en forma de omega. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 3, en donde el anillo de fuelle tiene una parte central con un perfil circular que tiene una abertura inferior, que termina en soportes verticales soldados a las placas de suelo adyacentes. Un tanque de almacenamiento de energía térmica según la reivindicación 4 en donde la parte central se forma de una sección de tubo anular con una parte más baja cortada para definir una abertura que abarca una holgura entre placas de suelo adyacentes. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 3, en donde el perfil describe una parte central convexa que se fusiona con partes de soporte cóncavas soldadas a placas de suelo adyacentes. Un tanque de almacenamiento de energía térmica según la reivindicación 6, en donde la parte convexa central y las partes de soporte cóncavas comprenden arcos circulares continuos. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 7, en donde: una extensión tangencial de un primer extremo de un primer arco circular define el borde circunferencial interior de la junta de dilatación interior; una extensión tangencial de un primer extremo de un segundo arco circular define el borde circunferencial exterior de la junta de dilatación interior; y un tercer arco circular conecta un segundo extremo del primer arco circular con un segundo extremo del segundo arco circular. CLAIMS A thermal energy storage tank floor comprising: a substantially circular central floor plate; an annular floor plate arranged concentrically with the central floor plate such that the two floor plates form a pair of radially adjacent floor plates; and an annular expansion joint joining said radially adjacent floor plates, and wherein the expansion joint is configured to compensate, at least partially, for thermal expansion of the central floor plate and/or annular floor plate. A thermal energy storage tank floor according to claim 1, wherein the expansion joint comprises a bellows ring having an internal circumferential edge welded to an external circumferential part of the central floor plate, and an external circumferential edge welded to an inner circumferential portion of the annular floor plate. A thermal energy storage tank floor according to claim 2, wherein the bellows ring has an omega-shaped profile. A thermal energy storage tank floor according to claim 3, wherein the bellows ring has a central part with a circular profile having a bottom opening, terminating in uprights welded to adjacent floor plates. A thermal energy storage tank according to claim 4 wherein the central part is formed of an annular tube section with a lower part cut to define an opening spanning a gap between adjacent floor plates. A thermal energy storage tank floor according to claim 3, wherein the profile describes a central convex part that merges with concave support parts welded to adjacent floor plates. A thermal energy storage tank according to claim 6, wherein the central convex part and the concave support parts comprise continuous circular arcs. A thermal energy storage tank floor according to claim 7, wherein: a tangential extension of a first end of a first circular arc defines the inner circumferential edge of the inner expansion joint; a tangential extension of a first end of a second circular arc defines the outer circumferential edge of the inner expansion joint; and a third circular arc connects a second end of the first circular arc with a second end of the second circular arc.
9. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 8, en donde un ángulo de arco de los arcos circulares primero y segundo es aproximadamente la mitad de un ángulo de arco del tercer arco circular. A thermal energy storage tank floor according to claim 8, wherein an arc angle of the first and second circular arcs is approximately half of an arc angle of the third circular arc.
10. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 2, en donde el anillo de fuelle tiene un perfil en forma de figura de ocho. A thermal energy storage tank floor according to claim 2, wherein the bellows ring has a figure-of-eight profile.
11. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 10, en donde el anillo de fuelle se forma de secciones de tubería superior e inferior, teniendo la sección de tubería superior una abertura inferior y la sección de tubería inferior aberturas superior e inferior, estando la abertura superior de la sección de tubería inferior unida y comunicada con la abertura inferior de la sección de tubería superior y la abertura inferior de la sección de tubería inferior termina en soportes verticales soldados a placas de suelo adyacentes. A thermal energy storage tank floor according to claim 10, wherein the bellows ring is formed of upper and lower pipe sections, the upper pipe section having a lower opening and the lower pipe section having upper and lower openings. bottom, the upper opening of the lower pipe section being attached to and communicating with the lower opening of the upper pipe section and the lower opening of the lower pipe section terminating in uprights welded to adjacent floor plates.
12. Un suelo de tanque de almacenamiento de energía térmica según una cualquiera de las reivindicaciones anteriores, en donde las placas de suelo radialmente adyacentes se disponen de tal manera que se forma una holgura anular entre sus bordes circunferenciales exteriores e interiores opuestos, estando el holgura anular atravesada por la junta de dilatación anular. A thermal energy storage tank floor according to any one of the preceding claims, wherein the radially adjacent floor plates are arranged in such a way that an annular clearance is formed between their opposite outer and inner circumferential edges, the clearance being ring crossed by the annular expansion joint.
13. Un suelo de tanque de almacenamiento de energía térmica según una cualquiera de las reivindicaciones anteriores, en donde la junta de dilatación comprende además un limitador de carrera de contracción configurado para limitar el movimiento relativo de las placas de suelo radlalmente adyacentes alejándose entre sí debido a la contracción térmica. A thermal energy storage tank floor according to any one of the preceding claims, wherein the expansion joint further comprises a contraction stroke limiter configured to limit the relative movement of radially adjacent floor plates away from each other due to to thermal contraction.
14. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 13, en donde el limitador de carrera de contracción comprende una serie de tirantes. A thermal energy storage tank floor according to claim 13, wherein the contraction stroke limiter comprises a series of tie rods.
15. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 14, en donde cada tirante incluye: un primer casqulllo fijado a una de las placas de suelo radlalmente adyacentes unidas por la junta de dilatación, definiendo el primer casquillo un primer agujero que tiene un eje que se extiende en una dirección radial del suelo de tanque; un segundo casquillo fijado a la otra placa de suelo radialmente adyacente unida por la junta de dilatación, definiendo el segundo casquillo un segundo agujero coaxial con el primer agujero del primer casquillo; y un pasador restrictor que se extiende a través de los agujeros primero y segundo de los casquillos primero y segundo, respectivamente, y en donde el pasador restrictor se tapa en cada extremo con una parte de cabeza que tiene un diámetro más grande que un diámetro de los agujeros primer y segundo, respectivamente. A thermal energy storage tank floor according to claim 14, wherein each stay includes: a first bushing fixed to one of the radially adjacent floor plates joined by the expansion joint, the first bushing defining a first hole that it has an axis extending in a radial direction from the tank floor; a second bushing fixed to the other radially adjacent floor plate joined by the expansion joint, the second bushing defining a second hole coaxial with the first hole of the first bushing; and a restrictor pin extending through the first and second holes of the first and second bushings, respectively, and wherein the restrictor pin is plugged at each end with a head portion having a diameter larger than a diameter of the first and second holes, respectively.
16. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 13, en donde el limitador de carrera de contracción comprende una serie de formaciones de interconexión que se extienden desde placas de suelo adyacentes, comprendiendo las formaciones de interconexión una serie de formaciones de cuello y cabeza que se alternan con rebajes receptores de cabeza y cuello, en los que las formaciones de cabeza y cuello que se extienden desde una placa de suelo se mantienen cautivas dentro de las correspondientes formaciones receptoras de cabeza y cuello de la otra placa de suelo adyacente, y viceversa, por lo que las placas de suelo adyacentes son capaces de limitar el movimiento radial dentro de los rebajes correspondientes. A thermal energy storage tank floor according to claim 13, wherein the contraction stroke limiter comprises a series of interconnecting formations extending from adjacent floor plates, the interconnecting formations comprising a series of interlocking formations. alternating head and neck with head and neck receiving recesses, in which head and neck formations extending from one floor plate are held captive within corresponding head and neck receiving formations of the other floor plate adjacent, and vice versa, whereby adjacent floor plates are capable of limiting radial movement within the corresponding recesses.
17. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 16, en donde las formaciones de interconexión se forman integralmente en placas de suelo adyacentes, preferentemente mediante corte por láser. A thermal energy storage tank floor according to claim 16, wherein the interconnecting formations are integrally formed into adjacent floor plates, preferably by laser cutting.
18. Un suelo de tanque de almacenamiento de energía térmica según una cualquiera de las reivindicaciones anteriores, el suelo de tanque que comprende además: al menos una placa de suelo anular adicional dispuesta concéntricamente con las placas de suelo central y anular; y al menos una junta de dilatación anular adicional correspondiente que une las partes circunferenciales exterior e Interior de las placas de suelo anulares radlalmente adyacentes, y en donde la al menos una junta de dilatación adicional se configura para compensar, al menos parcialmente, la dilatación térmica de al menos una de las placas de suelo anulares radlalmente adyacentes. A thermal energy storage tank floor according to any one of the preceding claims, the tank floor further comprising: at least one further annular floor plate arranged concentrically with the central and annular floor plates; and at least one corresponding additional annular expansion joint that joins the outer and inner circumferential portions of the radially adjacent annular floor plates, and wherein the at least one additional expansion joint is configured to compensate, at least partially, for thermal expansion. of at least one of the radially adjacent annular floor plates.
19. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 18, en el que las placas de suelo anulares radlalmente adyacentes están dispuestas de tal manera que se forma un hueco anular entre sus bordes circunferenciales exterior e Interior opuestos, estando el hueco anular atravesado por la al menos una junta de dilatación anular adicional correspondiente, y la anchura radial de las placas de suelo anulares es menor o igual que la al menos una junta de dilatación anular adicional correspondiente y su correspondiente hueco anular. A thermal energy storage tank floor according to claim 18, wherein the radially adjacent annular floor plates are arranged such that an annular gap is formed between their opposite outer and inner circumferential edges, the annular gap being crossed by the at least one additional corresponding annular expansion gap, and the radial width of the annular floor plates is less than or equal to the corresponding at least one additional annular expansion gap and its corresponding annular gap.
20. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 18, en donde todas las juntas de dilatación poseen la misma curva de esfuerzo-deformación. 20. A thermal energy storage tank floor according to claim 18, wherein all expansion joints have the same stress-strain curve.
21 . Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 18, en donde al menos una junta de dilatación tiene una curva de esfuerzo-deformación diferente de al menos otra junta de dilatación. twenty-one . A thermal energy storage tank floor according to claim 18, wherein at least one expansion joint has a different stress-strain curve from at least one other expansion joint.
22. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 21 , en donde cada junta de dilatación radialmente sucesiva tiene una curva de esfuerzo- deformación cada vez más pronunciada, de tal manera que la junta de dilatación interior exhibe el mayor grado de deformación en respuesta a la misma entrada de esfuerzo. 22. A thermal energy storage tank floor according to claim 21, wherein each radially successive expansion joint has an increasingly steeper stress-strain curve, such that the inner expansion joint exhibits the greatest degree of strain in response to the same stress input.
23. Un suelo de tanque de almacenamiento de energía térmica según una cualquiera de las reivindicaciones 18 a 22, en donde todas las placas anulares del suelo tienen la misma anchura radial. A thermal energy storage tank floor according to any one of claims 18 to 22, wherein all the annular plates of the floor have the same radial width.
24. Un suelo de tanque de almacenamiento de energía térmica según una cualquiera de las reivindicaciones 18 a 22, en donde al menos una placa de suelo anular tiene una anchura radial que es diferente de una anchura radial de al menos otra placa de suelo anular. A thermal energy storage tank floor according to any one of claims 18 to 22, wherein the at least one annular floor plate has a radial width that is different from a radial width of the at least one other annular floor plate.
25. Un suelo de tanque de almacenamiento de energía térmica según la reivindicación 24, en donde cada placa de suelo anular radialmente sucesiva tiene una anchura radial que es menor que una anchura radial de su placa de suelo anular radialmente precedente, de manera que la placa de suelo anular interior tiene la mayor anchura radial. A thermal energy storage tank floor according to claim 24, wherein each successive radially annular floor plate has a radial width that is less than a radial width of its preceding radially annular floor plate, such that the plate Inner annular soil has the greatest radial width.
26. Una base de tanque de almacenamiento de energía térmica que comprende: una cimentación; y un suelo de tanque de almacenamiento de energía térmica según una cualquiera de las reivindicaciones anteriores, el suelo de tanque apoyado en la cimentación. 26. A thermal energy storage tank base comprising: a foundation; and a thermal energy storage tank floor according to any one of the preceding claims, the tank floor resting on the foundation.
27. Un tanque de almacenamiento de energía térmica que comprende: una base de tanque de almacenamiento de energía térmica según la reivindicación 26; una pared lateral cilindrica que se extiende desde el suelo de tanque; y un techo apoyado en la pared lateral. A thermal energy storage tank comprising: a thermal energy storage tank base according to claim 26; a cylindrical side wall extending from the tank floor; and a roof supported on the side wall.
PCT/ES2022/070746 2021-11-18 2022-11-18 A thermal energy storage tank floor WO2023089220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2021903715A AU2021903715A0 (en) 2021-11-18 A thermal energy storage tank floor
AU2021903715 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023089220A1 true WO2023089220A1 (en) 2023-05-25

Family

ID=84767180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070746 WO2023089220A1 (en) 2021-11-18 2022-11-18 A thermal energy storage tank floor

Country Status (1)

Country Link
WO (1) WO2023089220A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100818A1 (en) * 1991-01-14 1992-07-16 Herrmann Gmbh & Co Kg Domestic heat storage system - operates with pressure increase of heat carrier during heat transfer
US20110226780A1 (en) * 2010-03-16 2011-09-22 Bell Independent Power Corporation Energy storage vessel, systems, and methods
DE102019121027A1 (en) * 2019-08-03 2021-02-04 Hubert Langheinz Hollow jacket tube heat exchanger device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100818A1 (en) * 1991-01-14 1992-07-16 Herrmann Gmbh & Co Kg Domestic heat storage system - operates with pressure increase of heat carrier during heat transfer
US20110226780A1 (en) * 2010-03-16 2011-09-22 Bell Independent Power Corporation Energy storage vessel, systems, and methods
DE102019121027A1 (en) * 2019-08-03 2021-02-04 Hubert Langheinz Hollow jacket tube heat exchanger device

Similar Documents

Publication Publication Date Title
WO2010000892A2 (en) Dual-temperature energy storage tank
ES2313480T3 (en) NUCLEAR FUEL ASSEMBLY WITH SEPARATOR GRIDS AND EXCENTRIC SUPPORTS FOR FUEL BARS.
ES2215736T3 (en) THREADED TUBULAR GASKET TO THE OUTDOOR PRESSURE.
US2919549A (en) Heat-resisting wall structures
KR950008104B1 (en) Multiple walled chimney
JP2015527508A (en) Nodal structure for lattice frames
ES2669731T3 (en) Storage silo
KR20140001776A (en) Diffuser for the exhaust section of a gas turbine and gas turbine with such a diffuser
JPS5854321B2 (en) Netsukou Kanki
ES2896732T3 (en) A plate heat exchanger, a plate heat exchanger, and a method for manufacturing a plate heat exchanger
WO2023089220A1 (en) A thermal energy storage tank floor
ES2915408B2 (en) TRANSITION PIECE FOR WIND TURBINE TOWER
ES2580332B1 (en)  Concrete tower
US2375442A (en) Horizontal tank and support therefor
KR101742752B1 (en) Hybrid wind power tower combined with steel tower and dsct tower
ES2404781B1 (en) Construction system and method of concrete towers, and concrete tower obtained
ES2912940T3 (en) Stress distribution element for a mill casing
US3368506A (en) Stack sections with expansion means
JP5114443B2 (en) Underground structures that cross the active fault zone
US3363591A (en) Sectionalized expansible insulated smokestack and breeching
US1197496A (en) Expansible pipe and joint.
US3227430A (en) Refractory structure for a rotary kiln
ES2231154T3 (en) SYSTEM FOR ACTIVATING AN ORIENTABLE TOWER THROUGH AN ELASTIC RING FOR REACTION PROPULSOR.
US3302599A (en) Hermet air-sealed smokestack
ES2758540T3 (en) System for joining uprights to the central pillar of a wind generator and wind generator tower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22835085

Country of ref document: EP

Kind code of ref document: A1