WO2023088297A1 - 一种备电方法和装置 - Google Patents

一种备电方法和装置 Download PDF

Info

Publication number
WO2023088297A1
WO2023088297A1 PCT/CN2022/132236 CN2022132236W WO2023088297A1 WO 2023088297 A1 WO2023088297 A1 WO 2023088297A1 CN 2022132236 W CN2022132236 W CN 2022132236W WO 2023088297 A1 WO2023088297 A1 WO 2023088297A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
backup
management system
network element
state
Prior art date
Application number
PCT/CN2022/132236
Other languages
English (en)
French (fr)
Inventor
闫文
李贤明
于益俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023088297A1 publication Critical patent/WO2023088297A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a power backup method and device.
  • the communication site can use the power system to supply power to the network devices in the communication site.
  • the power system can supply power to the network equipment of the communication site through the mains power, and when the mains power fails, the power system can supply power to the network equipment of the communication site through the storage battery.
  • the network equipment can start the corresponding operation according to the backup power strategy, where the backup power strategy is provided by the user (such as the operator, the equipment manufacturer), which lacks flexibility , which has a great impact on network performance.
  • the embodiments of the present application provide a power backup method and device, which can determine the operations to be performed by network elements based on the status of the power system, improve the flexibility of power backup in the network system, and reduce the impact on network performance.
  • a power backup method is provided, which is characterized in that the method is applied to a network system, and the network system includes a management system and a network element, and the network element is powered by a power supply system, and the method includes: the management system receives the first An intention, the first intention is used to indicate the length of backup power or power saving preference; when the management system detects that the power system meets the preset conditions, it determines the first operation according to the first intention and the first state of the power system; the The management system controls the network element to perform the first operation.
  • the management system can determine the operation according to the state of the power system and the received intention, and then instruct the network element to perform the operation, so that the network element can perform the corresponding operation, because the management system is based on the state of the power system and The intention determines the operation that the network element needs to perform, and the operation can conform to the state and intention of the power system, which improves the flexibility of the network system backup power and reduces the impact on network performance.
  • the first intent is also used to indicate a backup power preference.
  • the method further includes: when the management system detects that the first state of the power system changes to the second state, according to the first intention and the power system's The second state determines a second operation; the management system controls the network element to execute the second operation.
  • the management system can dynamically adjust the operations that the network elements need to perform according to the status of the power system, so that the network elements can perform operations that meet the intention, and the flexibility of network system backup reduces the impact on network performance.
  • the management system determines the first operation according to the first intention and the first state of the power supply system, including: the management system determines the first operation according to the first intention strategy, the first strategy is used to indicate the correspondence between the backup strategy and the operation; the management system determines the first backup strategy according to the first intention and the first state of the power system, and the first backup strategy is used to indicate
  • the first operation the management system controls the network element to perform the first operation, including: the management system sends the first policy to the network element; the management system sends the first backup policy to the network element to indicate the The network element executes the first operation corresponding to the first power backup policy.
  • the management system sends the first power backup policy to the network element to instruct the network element to perform the first operation corresponding to the first power backup policy, including : the management system sends a command to enable the power backup feature to the network element; the management system configures parameters of the power backup feature to enable the network element to execute the first operation corresponding to the first power backup policy.
  • the management system determines the first power backup policy according to the first intention and the first state of the power system, including: the management system determines the first power backup strategy according to the first state of the power system A state determines the first remaining power backup time; the management system determines the first power backup strategy according to the first remaining power backup time and the first intention.
  • the management system determines the first operation according to the first intent and the first state of the power system, including: the management system determines the first operation according to the first state of the power system determining the first remaining power backup duration; the management system determines the first operation according to the first remaining power backup duration and the first intention.
  • the first state of the power supply system includes: the first remaining power and the first load current of the power supply system, or the first state of the power supply is the first state of the power supply system The first remaining backup power duration.
  • the first state of the power system further includes: a first temperature of the power system and a first voltage of the power system.
  • the method further includes: the management system detects the status of the power system through the network element, or the management system detects the status of the power system through the data coordination function DCCF .
  • the preset condition includes: the power supply system supplies power to the network element through a storage battery.
  • a power backup method is provided, which is characterized in that the method is applied to a network system, and the network system includes a management system and a network element, and the network element is powered by a power supply system, and the method includes: the network element receives the first An intention, where the first intention is used to indicate the duration of power backup or power saving preference; when the network element detects that the power system satisfies a preset condition, it determines a first operation according to the first state of the power system and the first intention; The network element performs the first operation.
  • the network element may determine the operation to be performed according to the state of the power system and the received intention. Since the network element determines the operation to be performed according to the state and intention of the power system, the operation can be in line with the state and intention of the power system, which improves the flexibility of the network system backup power and reduces the impact on network performance.
  • the first intent is also used to indicate a backup power preference.
  • the method further includes: when the network element detects that the power system changes from the first state to the second state, according to the second state of the power system and the The first intent determines the second operation; the network element executes the second operation.
  • the network element can dynamically adjust the operations to be performed according to the change of the state of the power system, which improves the flexibility of the network system power backup and reduces the impact on network performance. .
  • the network element determining the first operation according to the first intent and the first state of the power system includes: the network element determining the first operation according to the first state of the power system Determining a first remaining power backup duration; the network element determines the first operation according to the first remaining power backup duration and the first intention.
  • the first state of the power supply system includes: the first remaining power and the first load current of the power supply system, or the first state of the power supply system is the power supply The first remaining backup time of the system.
  • the first state of the power system further includes: a first temperature and a first voltage of the power system.
  • the preset condition includes: the power supply system supplies power to the network element through a storage battery.
  • a management device is provided, which is characterized in that the management device is applied to a network system including a network element and a management device, and the management device includes: an acquisition module, configured to acquire a first intention, the first intention It is used to indicate the backup time or power saving preference; the detection module is used to detect the power system; the acquisition module is also used to obtain the first state of the power system; the processing module is used to when the power system meets the preset conditions, A first operation is determined according to the first intent and the first state of the power system; the processing module is further configured to instruct the network element to execute the first operation.
  • an acquisition module configured to acquire a first intention, the first intention It is used to indicate the backup time or power saving preference
  • the detection module is used to detect the power system
  • the acquisition module is also used to obtain the first state of the power system
  • the processing module is used to when the power system meets the preset conditions, A first operation is determined according to the first intent and the first state of the power system; the processing module is further configured to instruct the network element to execute
  • the first intent is also used to indicate a backup power preference.
  • the processing module is further configured to, when the detection module detects that the first state of the power system changes to the second state, The second state of the system and the first intention determine a second operation; the processing module is further configured to instruct the network element to execute the second operation.
  • the management device further includes a sending module, wherein the processing module is specifically configured to determine a first policy according to the first intention, and the first policy is used to indicate The corresponding relationship between the power backup strategy and the operation, and determining the first power backup strategy according to the first intention and the first state of the power system, where the first power backup strategy is used to indicate the first operation; the sending module is used to Sending the first policy and the first power backup policy to the network element to enable the network element to perform the first operation.
  • the sending module is further configured to send a command to the network element to enable the backup power feature; the processing module is specifically used to configure the backup power
  • the parameter of the characteristic enables the network element to execute the first operation corresponding to the first power backup strategy.
  • the processing module is specifically configured to determine the first remaining power backup time according to the first state of the power system, and determine the first remaining power backup time according to the first remaining power backup time and the The first intention determines the first power backup strategy.
  • the processing module is specifically configured to determine the first remaining power backup time according to the first state of the power system, and determine the first remaining power backup time according to the first remaining power backup time and the The first intent determines the first action.
  • the first state of the power supply system includes: the first remaining power and the first load current of the power supply system, or the first state of the power supply is the first state of the power supply system The first remaining backup power duration.
  • the first state of the power system further includes: a first temperature and a first voltage of the power system.
  • the detection module detects the state of the power system through the network element, or detects the state of the power system through a data coordination function DCCF.
  • the preset condition is that the power supply system supplies power to the network element through a storage battery.
  • a network element device configured to include: an acquisition module, configured to acquire a first intent, the first intent being used to indicate a backup power duration or a power saving preference; a detection module, configured to for detecting the power system; the obtaining module is also used for obtaining the first state of the power system; the processing module is used for determining the first state according to the first intention and the first state of the power system when the power system satisfies a preset condition An operation; the processing module is further configured to execute the first operation.
  • the first intent is also used to indicate a backup power preference.
  • the processing module is further configured to, when the detection module detects that the first state of the power system changes to the second state, The state and the first intent determine a second operation; the processing module is also used to execute the second operation.
  • the processing module is specifically configured to determine a first remaining backup power duration according to the first state of the power system, and determine the first remaining backup power duration and the The first intent determines the first action.
  • the first state of the power supply system includes: the first remaining power and the first load current of the power supply system, or the first state of the power supply system is the power supply The first remaining backup time of the system.
  • the first state of the power system further includes: a first temperature and a first voltage of the power system.
  • the preset condition is that the power supply system supplies power to the network element through a storage battery.
  • a computer program product in a fifth aspect, includes a computer program, and when the computer program is executed by a processor, it is used to execute the method in the first aspect or any possible implementation manner of the first aspect, Or execute the method in the second aspect or any possible implementation manner of the second aspect.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, it is used to implement the first aspect or any possible implementation manner of the first aspect. method, or perform the method in the second aspect or any possible implementation manner of the second aspect.
  • a seventh aspect provides a management device, the management device includes a processor and a memory, the memory includes a computer program, when the computer program is executed by the processor, the management device executes the first aspect or the first aspect A method in any of the possible implementations.
  • a network element device in an eighth aspect, includes a processor and a memory, the memory includes a computer program, and when the computer program is executed by the processor, the management device executes the second aspect or the first The method in any one of the possible implementation modes of the second aspect.
  • a ninth aspect provides a power backup method, which is characterized in that the method is applied to a network system, and the network system includes a management system and a network element, and the network element is powered by a power supply system, and the method includes: the management system receives the first One piece of information, the first information is used to indicate one of the following: backup power duration, power saving preference and backup power preference; when the management system detects the power system and determines that the preset condition is satisfied, according to the first information and the The first state of the power system determines the first operation, wherein the first state of the power system includes the first remaining power of the power system; the management system instructs the network element to perform the first operation to meet the backup duration or the section battery preference or the backup battery preference.
  • the management system can determine the operation according to the state of the power system and the received first information, and then instruct the network element to perform the operation, so that the network element can perform the corresponding operation, because the management system is based on the power system
  • the status and the first information determine the operation that the network element needs to perform, and the operation can match the status of the power system and the backup power duration or backup power preference or power saving preference indicated by the first information, which improves the flexibility of the network system backup power. Reduced impact on network performance.
  • the method further includes: when the management system detects that the first state of the power system changes to the second state, according to the first information and the power system's The second state determines the second operation, wherein the second state of the power system includes a second remaining power of the power system; the management system instructs the network element to perform the second operation to meet the power backup duration or the power saving preference or The backup power preference.
  • the management system determines the first operation according to the first information and the first state of the power supply system, including: the management system determines the first operation according to the first information, the power supply system The first state of the system and the first quality of service (QoS) of the network element determine the first operation.
  • QoS quality of service
  • the management system determines the first operation according to the first information and the first state of the power system, including: the management system determines the first operation according to the first information strategy, the first strategy is used to indicate the correspondence between the backup strategy and the operation; the management system determines the first backup strategy according to the first information and the first state of the power system, and the first backup strategy is used to indicate The first operation; the management system instructing the network element to perform the first operation includes: the management system sending the first policy to the network element; the management system sending the first power backup policy to the network element to instruct the The network element executes the first operation corresponding to the first power backup policy.
  • the management system sends the first power backup policy to the network element to instruct the network element to perform the first operation corresponding to the first power backup policy, including : the management system sends to the network element indication information for instructing to enable the power backup feature; the management system sends the first parameter to the network element to instruct the network element to execute the first operation corresponding to the first power backup strategy, Wherein the first parameter corresponds to the first backup strategy.
  • the management system determines the first power backup strategy according to the first information and the first state of the power system, including: the management system determines the first power backup strategy according to the first state of the power system A state determines the first remaining power backup duration; the management system determines the first backup power strategy according to the first remaining power backup duration and the first information.
  • the management system determines the first operation according to the first intent and the first state of the power system, including: the management system determines the first operation according to the first state of the power system determining the first remaining power backup duration; the management system determines the first operation according to the first remaining power backup duration and the first information.
  • the first state of the power system further includes at least one of the following: the first load current of the power system, the remaining backup time of the power system, The first temperature of the power system, the first voltage of the power system.
  • the method further includes: the management system detects the status of the power system through the network element, or the management system detects the status of the power system through the data coordination function DCCF .
  • the preset condition includes: the power supply system supplies power to the network element through a storage battery.
  • the first information includes a first intention
  • the management system is deployed with an intention system
  • the first intention is used to indicate one of the following: the backup power duration , the power saving preference and the backup power preference.
  • the first information includes first indication information, and the first intention is used to indicate one of the following: the power backup duration, the power saving preference, and the Backup preference.
  • a management device configured to apply to a network system including a network element and a management device, and the management device includes: an acquisition module, configured to acquire first information, and the first information is used to indicate One of the following: backup power duration, power saving preference and backup power preference; detection module, used to detect the power system; the acquisition module, also used to obtain the first state of the power system; processing module, used in the When the power system satisfies the preset condition, determine a first operation according to the first information and the first state of the power system, wherein the first state of the power system includes the first remaining power of the power system; the processing module, It is also used to instruct the network element to perform the first operation to meet the power backup duration or the power saving preference or the power backup preference.
  • the management system can determine the operation according to the state of the power system and the received first information, and then instruct the network element to perform the operation, so that the network element can perform the corresponding operation, because the management system is based on the state of the power system
  • the status and the first information determine the operation that the network element needs to perform, and the operation can match the status of the power system and the backup power duration or backup power preference or power saving preference indicated by the first information, which improves the flexibility of the network system backup power. Reduced impact on network performance.
  • the processing module is further configured to, when the detection module detects that the first state of the power system changes to the second state, The state and the first intention determine the second operation; the processing module is also used to instruct the network element to execute the second operation to meet the backup duration or the power saving preference or the backup preference.
  • the processing module is specifically configured to, according to the first information, the first state of the power system and the The first operation is determined by the first quality of service QoS of the network element.
  • the management device further includes a sending module, wherein the processing module is specifically configured to determine a first policy according to the first information, and the first policy is used to indicate The corresponding relationship between the power backup strategy and the operation, and determining the first power backup strategy according to the first information and the first state of the power supply system, the first power backup strategy is used to indicate the first operation; the sending module is used to Sending the first policy and the first power backup policy to the network element to enable the network element to perform the first operation.
  • the sending module is further configured to send instruction information for enabling the power backup feature to the network element; the processing module is specifically used to configure the power backup feature the first parameter to enable the network element to execute the first operation corresponding to the first power backup strategy, where the first parameter corresponds to the first power backup strategy.
  • the processing module is specifically configured to determine a first remaining backup power duration according to the first state of the power supply system, and determine the first remaining backup power duration and the The first information determines the first power backup strategy.
  • the processing module is specifically configured to determine a first remaining backup power duration according to the first state of the power supply system, and determine the first remaining backup power duration and the The first intent determines the first action.
  • the first state of the power system further includes at least one of the following: the first load current of the power system, the remaining backup time of the power system, The first temperature of the power system, the first voltage of the power system.
  • the detection module detects the state of the power system through the network element, or detects the state of the power system through a data coordination function DCCF.
  • the preset condition is that the power supply system supplies power to the network element through a storage battery.
  • the first information includes a first intent
  • the management device is deployed with an intent system
  • the first intent is used to indicate one of the following: the backup power duration , the power saving preference and the backup power preference.
  • the first information includes first indication information, and the first indication information is used to indicate one of the following: the power backup duration, the power saving preference, and The backup power preference.
  • Fig. 1 is a schematic diagram of an exemplary application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an intent layered architecture provided by an embodiment of the present application.
  • Fig. 3 is an intention framework provided by the embodiment of the present application.
  • Fig. 4 is a schematic flow chart of a power backup method provided by an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a power backup method provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a power backup method provided by an embodiment of the present application.
  • Fig. 7 is a schematic flow chart of a power backup method provided by an embodiment of the present application.
  • Fig. 8 is a schematic flow chart of a power backup method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a power backup method provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a management device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network element device provided in an embodiment of the present application.
  • Fig. 12 is a structural block diagram of a management device provided by an embodiment of the present application.
  • Fig. 13 is a structural block diagram of a network element device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, the future fifth generation (5th Generation, 5G) system or New Radio (New Radio, NR), etc.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System of Mobile communication (GSM) system or a code division multiple access (Code Division Multiple Access, CDMA)
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the base station (Base Transceiver Station, BTS) in the wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system (NodeB, NB) can also be the evolved base station (Evolutionary Base Station) in the LTE system NodeB, eNB or eNodeB), may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario, which is not limited in this embodiment of the present application.
  • CRAN Cloud Radio Access Network
  • FIG. 1 is a schematic diagram of an exemplary application scenario provided by an embodiment of the present application.
  • the scenario includes a communication site 101 and a power system 102 .
  • the communication station 101 may be a base station, such as gNB, ng-eNB and so on.
  • the power supply system is used to supply power to the communication equipment of the communication station 101 .
  • the communication site 101 may also be a core network device, which is not limited in this embodiment of the present application.
  • the power supply system can use the mains power to supply power to the communication equipment of the communication station 101.
  • the power supply system can use the battery in the power supply system to supply power to the communication equipment of the communication station 101.
  • the power supply system can use the storage battery to supply power to the communication device, but it is not limited thereto. In the embodiment of the present application, other methods can also be used to supply power to the communication device.
  • the power supply system can use mains power and photovoltaics to supply power to the communication equipment. When the mains power fails, the power supply system can use photovoltaics to supply power to the communication equipment without using a storage battery for power supply.
  • FIG. 2 is a schematic diagram of an intent layered architecture provided by an embodiment of the present application.
  • the power backup method provided in the embodiment of the present application can be applied to the layered architecture shown in FIG. 2 .
  • the network system 200 may include: a communication service consumer (communication service consumer, CSC) 201, a communication service provider (communication service provider, CSP) 202, a network operator (network operator, NOP) 203 and a network equipment provider (network equipment provider, NEP) 204 .
  • a communication service consumer communication service consumer, CSC
  • CSP communication service provider
  • NOP network operator
  • NEP network equipment provider
  • the CSC 201 may be a user terminal.
  • CSP 202 can provide communication services for CSC 201 and is responsible for the operation of communication services.
  • CSP 202 can include life cycle management of communication services, etc., and convert corresponding communication service requirements into network requirements.
  • the NOP 203 can provide the network for the CSP 202, and is mainly responsible for the lifecycle management of the network.
  • the NOP 203 can provide the CSP 202 with slice and/or non-slice network.
  • NEP 202 can provide NOP 203 with lifecycle management of subnetworks and network elements.
  • the CSP 202 may be a business support system (business support system, BSS)/operation support system (operations support system, OSS).
  • the NOP 203 may be a network management system (network management system, NMS).
  • NEP 204 may be an element management system (element management system, EMS).
  • BSS/OSS is an integrated management system for operators' services. Operators can implement functions such as order management, billing, user management, or product management through BSS/OSS.
  • the NMS may be a management system responsible for network operation, management and maintenance functions, and the NMS may provide functions such as failure, configuration, accounting, performance or security.
  • the management objects of NMS can include entities in the network, such as: network equipment, application programs, server systems, routers, switches, hubs (HUB), auxiliary equipment (for example, uninterrupted power system (uninterrupted power system, UPS)), etc.
  • NMS can provide network administrators with a system-wide network view.
  • the EMS may be network element management software conforming to the standards of the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) and can manage one or more network elements of a certain category.
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • OSS or BSS can send backup power policy to EMS or equipment manufacturers can build backup power policy.
  • EMS can send a command to enable the backup power feature to the network element, and can determine the correspondence between the backup power policy and the operation. relationship, and then send the backup power policy and the relationship corresponding to the backup power policy and operation to the network element.
  • the backup power strategy can be understood as the strategy adopted by network elements when the power system is powered by non-mains power.
  • a backup power strategy can correspond to an operation, such as carrier shutdown, symbol shutdown, and frequency reduction.
  • the power backup feature may also be referred to as a power backup function.
  • the power backup feature can be understood as the specific operation that the network element takes when the power system is powered by non-mains power.
  • the power backup feature when the power backup feature is enabled on the network element, it can perform the operations corresponding to the power backup strategy.
  • the power backup feature is not enabled, Even if the network element receives the backup power policy, it will not perform the operation corresponding to the backup power policy.
  • the network element can detect the power supply status of the power system. When the network element detects that the power system uses the storage battery to supply power to the network element, the network element can obtain the operation corresponding to the backup power strategy according to the backup power strategy and execute the operation. For example, the BSS sends the backup power policy to the EMS.
  • the EMS can configure the operation corresponding to the power backup policy as carrier shutdown.
  • the EMS sends a command to enable the power backup feature to the network element, and the network element can enable the power backup feature after receiving the command.
  • the network element detects that it is powered by the storage battery of the power supply system, it can determine that the operation is to turn off the carrier according to the power backup strategy, and then the network element can turn off the carrier.
  • the backup power policy is issued by the OSS/BSS or built-in by the equipment manufacturer, it is impossible to adjust the operation according to the demand in real time, thus affecting the network performance.
  • the OSS/BSS sends the backup power strategy to the EMS, and the backup power strategy is to enable carrier shutdown when the power system supplies power through the battery.
  • the EMS sends a command to enable the backup power feature to the network element.
  • the network element detects that the power system is powered by the battery, it will execute the operation corresponding to the backup power policy even when the battery is fully charged, that is, enable the carrier off This makes users in the community unable to use the network normally.
  • the power backup strategy is fixed, it is difficult to meet the requirements of all power systems, and the adaptability to different power systems is poor, which greatly affects network performance.
  • the present application provides a power backup method, which can dynamically adjust operations to be performed by network elements and reduce impact on network performance.
  • CSC 201 can put forward the intention of CSC (intent-CSC), and send this intent-CSC to CSP 202, CSP 202 receives this intent-CSC, can translate this intent-CSC It is intent-CSP.
  • CSP 202 can also propose intent-CSP.
  • the CSP 202 can send the translated intent-CSP and/or the proposed intent-CSP to the NOP 203, and the NOP 203 receives the intent-CSP, and can translate the intent-CSP into the intent of the NOP (intent-NOP).
  • NOP 203 can also propose an intent-NOP.
  • the NOP 203 can send the translated intent-NOP and/or the proposed intent-NOP to the NEP 204, and the NEP 204 receives the intent-NOP, can translate the intent-NOP into a command corresponding to the intent-NOP, and send The command is issued to the network element (network element, NE) corresponding to the command (not shown in FIG. 1 ), and the network status is monitored when the NE corresponding to the command executes the command, so as to ensure that the purpose is achieved.
  • network element network element
  • intent-CSC can express business-level management requirements, and does not involve the implementation details of business and network.
  • Intent-CSP can express network-level management requirements without involving the professional knowledge of network operators.
  • Intent-NOP can express management requirements at the network resource level without involving the operational details of physical network devices and/or virtualized infrastructure.
  • the EMS can perform operations such as intent translation, intent resolution, and conflict detection.
  • the EMS can receive the intent (for example, intent-NOP) of the upper layer network element through an external interface, and feed back the achievement of the intent to the sender of the intent.
  • the EMS can also send the decomposed sub-intents to the network element at the lower layer.
  • each device in FIG. 1 of the embodiment of the present application may be a functional module in a device.
  • the functional module can be a component in a hardware device, a software functional module running on hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • FIG. 2 introduces a schematic diagram of an intent layered architecture, and the intent architecture of the embodiment of the present application will be described below in conjunction with FIG. 3 .
  • FIG. 3 shows a schematic architecture provided by the embodiment of the present application.
  • the intent architecture of the embodiment of the present application may include an intent consumer and an intent system, and the intent system may include an intent management module, an intent translation module, a knowledge management module, and an intent execution module.
  • the intent system can be used to handle the intent of the intent consumer. After the intent system receives the intent delivered by the intent consumer, it can obtain the object for executing the intent according to the intent.
  • the intention system shown in the embodiment of the present application does not constitute a specific limitation on the intention system.
  • the intent system may include more or fewer modules than the graph, or combine the graph modules, or split the graph modules to achieve the purpose of executing the intent.
  • Intent consumers are used to deliver intents.
  • the intended consumer may be OSS, BSS, device manufacturer, application program, terminal device, operator, and so on.
  • the system, device, etc. that deliver the intent to the management system (such as NMS, EMS) may be referred to as the intent consumer.
  • the intent management module may include an intent instance repository and an intent pattern repository for managing intent patterns and intent instances.
  • the intent translation module is used for intent translation.
  • the intent can be translated into an executable command through the intent translation module.
  • the knowledge management module may include an intent knowledge base for intent knowledge management.
  • the intent execution module is used for executing the intent.
  • the CSC 201, CSP 202, NOP 203, and NEP 204 in the network system 200 can be intended consumers. of objects.
  • the intent system can be deployed at the NOP 203.
  • CSP 202 can be BSS
  • NOP 203 can be NMS
  • NEP 204 can be EMS.
  • the intent system is deployed at the NMS.
  • NMS can be used to manage EMS. After receiving the intent issued by the BSS, the NMS determines that the object to be managed is the EMS according to the intent, and the intent system can issue instructions to the EMS according to the intent.
  • the intent system can also be deployed in the NEP 204.
  • CSP 202 can be BSS
  • NOP 203 can be NMS
  • NEP 204 can be EMS.
  • the intent system is deployed in EMS. After receiving the intent issued by the BSS, the NMS can send the intent to the EMS, and then the EMS translates the intent and executes the operation corresponding to the intent.
  • an intent system can be deployed at a NEP 204 or an object managed by a NEP 204 when the NOP 203 is an intent consumer.
  • the NOP 203 may be an NMS
  • the NEP 204 may be an EMS
  • the object managed by the NEP 204 may be a network element.
  • the intent architecture shown in FIG. 3 is only an example, and the embodiment of the present application does not limit the intent architecture, and the embodiment of the present application may also adopt other intent architectures.
  • FIG. 4 shows a schematic flowchart of a power backup method 400 provided in an embodiment of the present application, and the process includes:
  • the intent consumer sends a first intent.
  • Intended consumers can be OSS, BSS, equipment manufacturers, applications, terminal equipment, operators, etc.
  • the intended consumer is BSS as an example.
  • the BSS may send the first intent to the management system, where the first intent is used to indicate the duration of the backup power and/or the power saving preference and/or the backup power preference.
  • the backup power duration can be understood as the running time of network elements under the condition of battery power supply.
  • Power-saving preference can be understood as the power-saving effect that consumers want to achieve, and different power-saving preferences can correspond to different backup power durations. For example, when the power-saving preference is high, the network element can turn off most functions, and the backup time will be longer; when the power-saving preference is low, the network element can turn off some functions that have little impact on network performance to ensure network performance, and the backup time will be longer. short.
  • backup power preference can be understood as the backup power effect that consumers want to achieve, and different backup power preferences can correspond to unused backup power duration.
  • a high backup power preference may correspond to a 5-hour backup power duration
  • a low backup power preference may correspond to a 3-hour backup power duration.
  • the first intent when the first intent indicates a preference for power saving or backup, the first intent can be translated to obtain the duration of the backup.
  • the first intent may include a first intent driven action and a first intent driven object.
  • the first intent-driven action includes a first intent-driven action name and a first intent-driven action attribute, and the first intent-driven action attribute may include one or more attributes required to complete the first intent-driven action.
  • the first intent-driven object information may include a first intent-driven object name and a first intent-driven object attribute, and the first intent-driven object attribute may be used to represent an attribute of an object instance.
  • the management system may translate the first intention, so as to obtain the backup power duration and/or power saving preference and/or power backup preference. For example, if the BSS requires the communication equipment at the communication site to keep the service running for 3 hours under the condition of battery power, the BSS can determine the first intention, and then send the first intention to the management system, and the management system receives and translates the first intention. Intent, the intention of the BSS can be obtained, that is, to keep the communication equipment running for 3 hours under the condition of battery power supply.
  • the power-saving preference can also be understood as a power-saving level or power-saving mode, and different power-saving levels or power-saving modes correspond to different power-saving effects that users wish to achieve.
  • backup power preferences can also be understood as backup power levels or backup power modes, and different backup power levels or backup power modes correspond to different backup power effects that users want to achieve.
  • the first intent may include condition information, where the condition information is used to indicate the conditions for the management system to execute the first intent.
  • the condition information may indicate that the management system executes the first intent when the power supply system is powered by the battery.
  • the embodiment of the present application does not limit the manner in which the BSS sends the first intent.
  • the BSS may send the first request information to the management system, where the first request information includes the information of the first intent.
  • the first request message may be used to request creation of the first intent.
  • the first intention information may include first intention-driven action information and first intention-driven object information.
  • the first request message may be used to request implementation of the first intent.
  • the first intention information may include first intention-driven action information and first intention-driven object information.
  • the first request information may be used to request modification of the first intent
  • the information of the first intent to be modified may include first intent-driven action information and/or first intent-driven object information.
  • the management system receives a first intent.
  • the management system includes an NMS and an EMS, and the intended system is deployed on the NMS.
  • the NMS when the first request information is used to request creation of the first intent, the NMS receives the first request information, and may create the first intent according to the first intent-driven action and the first intent-driven object. The NMS translates the first intent and executes an execution policy corresponding to the first intent.
  • the NMS when the first request information is used to request implementation of the first intent, the NMS receives the first request information, and translates the first request information into an execution policy corresponding to the first intent.
  • the NMS when the first request information is used to request modification of the first intent, the NMS receives the first request information, and modifies information corresponding to the first intent. The NMS translates the modified first intent and executes an execution policy corresponding to the modified first intent.
  • the management system includes an NMS and an EMS, and the intended system is deployed in the EMS.
  • the NMS when the first request information is used to request the creation of the first intent, the NMS receives the first request information and may send the first request information to the EMS, and the EMS may drive the action and the first intent-driven action according to the first intent. Objects are created with the first intent. The EMS translates the first intent and executes an execution strategy corresponding to the first intent.
  • the NMS when the first request information is used to request the implementation of the first intention, receives the first request information, and may send the first request information to the EMS, and the EMS receives the first request information, and translates the first request information is the execution policy corresponding to the first intent.
  • the NMS when the first request information is used to request modification of the first intent, the NMS receives the first request information, and may send the first request information to the EMS, and the EMS receives the first request information, and modifies the corresponding information.
  • the NMS translates the modified first intent and executes an execution policy corresponding to the modified first intent.
  • the management system includes an NMS and an EMS, and the intended system deployment can be deployed on the NMS and the EMS respectively.
  • the NMS when the first request information is used to request creation of the first intent, the NMS receives the first request information, and the NMS may create the first intent according to the first intent-driven action and the first intent-driven object.
  • the EMS translates the first intent and executes the first intent to generate second request information, where the second request information includes information of the second intent, and the second intent indicates the duration of power backup.
  • the second request information For the description of the second request information, reference may be made to the description of the first request information, which will not be repeated here.
  • the NMS sends the second intent information to the EMS, and the EMS receives and translates the second intent and executes an execution policy corresponding to the second intent.
  • the NMS when the first request information is used to request the implementation of the first intent, the NMS receives the first request information, translates the first request information into an execution strategy corresponding to the first intent to generate the second request information, and the first request information
  • the second request information includes the information of the second intention, and the second intention indicates the duration of power backup.
  • the NMS sends the second intent information to the EMS, and the EMS receives and translates the second intent and executes an execution policy corresponding to the second intent.
  • the NMS when the first request information is used to request modification of the first intent, receives the first request information, and modifies information corresponding to the first intent.
  • the NMS translates the modified first intent and executes an execution policy corresponding to the modified first intent to generate second request information, where the second request information includes information about the second intent, and the second intent indicates a backup duration.
  • the NMS sends the second intent information to the EMS, and the EMS receives and translates the second intent and executes an execution strategy corresponding to the second intent.
  • the management system includes an NMS and an EMS, and the intended system is deployed in the EMS.
  • the BSS may directly issue the first intention to the EMS.
  • the EMS when the first request information is used to request creation of the first intent, the EMS receives the first request information, and may create the first intent according to the first intent-driven action and the first intent-driven object. The EMS translates the first intent and executes an execution strategy corresponding to the first intent.
  • the EMS when the first request information is used to request implementation of the first intent, the EMS receives the first request information, and translates the first request information into an execution strategy corresponding to the first intent.
  • the EMS when the first request information is used to request modification of the first intent, the EMS receives the first request information, and modifies information corresponding to the first intent.
  • the NMS translates the modified first intent and executes an execution policy corresponding to the modified first intent.
  • the management system detects the power system.
  • the management system can detect the state of the power system and the power supply mode of the power system.
  • the detection of the power supply mode of the power system by the management system can be understood as the management system can sense the change of the power supply mode of the power system, such as switching from the mains power supply to the battery power supply.
  • the management system detecting the state of the power system includes: the management system detecting the state of the battery.
  • the management system may send first inquiry information to the power supply system, where the first inquiry information is used to request the state of the storage battery of the power supply system and the power supply mode of the power supply system.
  • the management system may request the battery model, battery type (such as lithium battery, lead-acid battery, etc.), battery charging and discharging times, and the power supply mode of the power system from the power system.
  • the management system may send the first query information to the power supply system through transparent transmission, that is, the management system first sends the first query information to the network element, and the network element then sends the first query information to the power supply system.
  • the management system may directly send the first query information to the power supply system.
  • the management system and the power supply system can be two subsystems of the network system, and the management system and the power supply system are coupled, so that the two systems can send information to each other.
  • the power supply system may send first feedback information according to the first query information, for feeding back the status and power supply mode of the storage battery of the power supply system.
  • the power system may send the first feedback information to the management system through transparent transmission, that is, the power system first sends the first feedback information to the network element, and the network element then sends the first feedback information to the management system.
  • the power system may directly send the first feedback information to the management system.
  • the management system and the power supply system can be two subsystems of the network system, and the management system and the power supply system are coupled, so that the two systems can send information to each other.
  • the management system can regularly detect the power system, so as to ensure that the state of the power system and the power supply mode can be known in time. For example, the management system may send the first query information to the power supply system every 5 minutes.
  • the management system may send second query information and third query information to the power supply system, the second query information is used to request the state of the storage battery of the power supply system, and the third query information is used to request the power supply mode of the power supply system.
  • the second query information is used to request the state of the storage battery of the power supply system
  • the third query information is used to request the power supply mode of the power supply system.
  • the power supply system After the power supply system receives the second query information and the third query information, it can send the second feedback information and the third feedback information according to the second query information and the third query information, which are used to feed back the state of the storage battery and the power supply mode of the power supply system .
  • the second feedback information and the third feedback information by the power system For the description of sending the second feedback information and the third feedback information by the power system, reference may be made to the description of sending the first feedback information by the power system, which will not be repeated here.
  • the management system sends the second query information and the third query information, that is, the management system can send the second query information first, the third query information first, or the second query information at the same time. query information and third query information.
  • the power system may report the power supply mode and status of the power system to the management system.
  • the preset condition is that the power supply system supplies power to the network elements in a non-mains manner.
  • the power system can supply power to network elements through batteries.
  • the power system can supply power to network elements through photovoltaic power generation.
  • the power system may supply power to network elements through wind power.
  • the management system when the management system detects that the preset condition is satisfied, it may generate indication information according to the first state and the first intent of the power system, where the indication information is used to instruct the network element to perform the corresponding first operation.
  • the management system when the management system detects that the power supply system is powered by a battery, the management system can determine that the first operation needs to be performed according to the first intention and the first state of the power supply system, that is, the carrier is turned off, and the management system can send instruction information, the instruction information It is used to instruct the NE to perform the carrier shutdown operation.
  • the power supply system supplies power to the network element through a storage battery
  • the status of the power supply system includes the remaining power of the storage battery.
  • the management system can determine what needs to be done based on the remaining charge of the battery. For example, when the management system detects that the power supply system is powered by the battery, the management system may select different operations according to whether the remaining power of the battery is greater than a first threshold (for example, the first threshold is 70%). When the remaining power of the battery is greater than the first threshold, the management system may determine that the operation to be performed by the network element is the first operation; when the remaining power of the battery is less than the first threshold, the management system may determine that the operation to be performed by the network element is the second operate.
  • a first threshold for example, the first threshold is 70%
  • the management system when it is detected that the first state of the storage battery has changed to the second state, for example, when the remaining power of the battery changes, the management system can adjust in real time what the network element needs to perform according to the change in the remaining power. operate. For example, if the management system detects that the remaining power of the storage battery is 80%, it determines that the operation is the first operation and sends it to the network element. %, the management system may determine that the operation is the second operation and send it to the network element, and the network element may execute the second operation after receiving the second operation.
  • the network element when the network element performs the second operation, it may stop performing the first operation or continue to perform the first operation, which is not limited in this embodiment of the present application.
  • the management system may instruct the network element to continue performing the first operation.
  • the power supply system supplies power to the network element through a storage battery
  • the state of the power supply system includes the remaining power of the storage battery.
  • the management system can determine the operation to be performed according to the remaining power of the storage battery and the first intention. For example, when the management system detects that the power supply system is powered by a storage battery, the management system can determine whether the remaining power is greater than the first threshold (for example, the first threshold is 70%) and the backup power duration obtained according to the first intention (for example, the second threshold is 3 hours) is greater than the second threshold to determine a different operation.
  • the first threshold for example, the first threshold is 70%
  • the backup power duration obtained according to the first intention for example, the second threshold is 3 hours
  • the management system can determine that the operation to be performed is the first operation; when the remaining power of the battery is greater than the first threshold and the backup time is longer than the second threshold , the management system can determine that the operation to be performed is the second operation; when the remaining power of the battery is less than the first threshold and the backup time is less than the second threshold, the management system can determine that the operation to be performed is the second operation; When the power quantity is less than the first threshold and the backup time is greater than the second threshold, the management system may determine that the operation to be performed is the third operation.
  • the management system can adjust the operations to be performed by the network element in real time according to the change of the storage battery status, which will not be repeated here.
  • the power supply system supplies power to the network element through a storage battery
  • the status of the power supply system may include the remaining power of the storage battery and the load current.
  • the management system can determine the operation that the network element needs to perform according to the remaining power, the load current, and the first intention. Specifically, the management system can estimate the remaining power backup time according to the remaining power and load current, and then the management system can determine the operation to be performed by the network element according to the relationship between the remaining power backup time and the power backup time determined according to the first intention.
  • the operation selected by the management system may be an operation that has little impact on network performance. For example the first operation.
  • the management system estimates that the remaining backup power is 3 hours according to the remaining power and the load current, and the backup power duration is 4 hours, then the management system can choose a relatively power-saving operation, such as the second operation.
  • the network element can estimate the remaining backup power duration according to the remaining power and load current, and then send the estimated remaining backup power duration to the management system, and the management system can then The duration and the backup duration obtained according to the first intention determine the operations to be performed by the network element.
  • the power supply system can directly calculate its remaining backup power duration, and the management system can directly obtain the remaining backup power duration and determine the operation to be performed by the network element according to the first intention.
  • the state of the power system may also include the temperature, voltage, and type of the battery of the power system. For example, considering that the decay speed of the storage battery is different at different temperatures, the management system determines the first remaining backup power duration through the remaining power and load current, and can further determine the second remaining backup power duration in combination with the temperature. Exemplarily, the management system determines that the remaining backup time is 5 hours based on the remaining power and load current. When the temperature is 60°C, the remaining backup time determined by the management system is 3.5 hours. When the temperature is 50°C, the management system The final remaining backup time is 4 hours.
  • the state of the power system can be the remaining power, load current, temperature, and voltage as an example, but this embodiment of the application is not limited thereto.
  • the power system when the power system is powered by a battery, the power system The state may also include the charging and discharging times, type, etc. of the battery.
  • S404 when the management system detects that the power system meets the preset condition, determines the first operation according to the first state and the first intention of the power system, including: the management system detects that the power system meets the preset condition When the condition is set, the first operation is determined according to the first state of the power system, the first quality of service (quality of service, QoS) and the first intent.
  • QoS refers to a technology used to solve problems such as network delay and congestion. When network congestion occurs, data may be discarded, and different QoS can be provided to meet user needs.
  • the management system may determine the corresponding first operation according to the first state of the power system, the first QoS of the network element, and the first intent.
  • the management system can determine the remaining backup time according to the remaining power. If the backup time indicated by the first intention is short, and the network element If the first QoS requirement is high, the management system can determine an operation that has little impact on network performance.
  • the management system can determine the remaining backup time according to the remaining power. If the backup time indicated by the first intention is long, and the network If the first QoS requirement of the unit is low, the management system can determine an operation that has little impact on the backup time.
  • the management system sends the first operation.
  • the management system may send instruction information to the network element, where the instruction information is used to instruct the network element to perform the first operation determined by the management system.
  • the network element performs a first operation.
  • the network element may receive instruction information from the management system, and perform the first operation according to the instruction information.
  • the method 400 further includes: when the management system detects that the first state of the power system has changed to the second state, determining the second operation according to the first intent and the second state of the power system. For example, if the management system detects that the remaining power of the battery is 80%, it determines that the operation is symbol off, and when the remaining power of the battery decreases to 70% with the service operation of the network element, it can determine that the operation is carrier off.
  • the management system can determine the operation according to the state of the power system and the received intention, and then instruct the network element to perform the operation, so that the network element can perform the corresponding operation, because the management system is based on the state of the power system and The intention determines the operation that the network element needs to perform, and the operation can conform to the state and intention of the power system, which improves the flexibility of the network system backup power and reduces the impact on network performance.
  • FIG. 5 shows a schematic flowchart of another power backup method 500 provided by an embodiment of the present application.
  • the management system detects that the power system meets the preset condition, it determines the first operation according to the first state and the first intention of the power system ,include:
  • the management system determines a first policy according to the first intent.
  • the management system may obtain the battery backup duration according to the first intention. For example, when the first intent indicates the duration of the backup power, the management system can obtain the duration of the backup power after translating the first intent. For another example, when the first intent indicates a power saving preference, the management system can obtain the power saving preference after translating the first intent, and then the management system can obtain the battery backup duration according to the power saving preference. For another example, when the first intent indicates a backup power preference, the management system can obtain the backup power preference after translating the first intent, and then the management system can obtain the backup power duration according to the backup power preference.
  • the intention system includes a knowledge management module, and the management system can query the power saving preference and the backup power duration corresponding to the power backup preference through the intention knowledge base in the knowledge management module.
  • the management system can configure the first strategy after determining the backup power duration. Specifically, after the management system determines the first intention, it may determine the first policy according to the first intention, and then the management system sends the first policy to the network element, where the first policy may indicate the correspondence between the power backup policy and the operation. In some other embodiments, the first policy may also indicate a corresponding relationship between the battery backup policy, the state of the storage battery, and the operation.
  • the first strategy can be understood as a table including the correspondence between the power backup strategy, the state of the battery, and the operation, or a table that includes the correspondence between the power backup strategy and the operation.
  • the state of the storage battery may include the type of the storage battery, the remaining power of the storage battery, the load current of the storage battery, the charging and discharging times of the storage battery, and the like.
  • Table 1 shows a first strategy provided by the embodiment of this application. It can be seen from Table 1 that the operation corresponding to the first backup strategy is not to take power-saving action; the operation corresponding to the second backup strategy is sign off; the operation corresponding to the third backup strategy is carrier shutdown.
  • Table 2 shows another first strategy provided by the embodiment of the present application, wherein the state of the storage battery is the remaining power. It can be obtained from Table 2 that 100%, 80%, and 60% of the remaining power are the cut-off points of the backup power strategy, and the first strategy configured is when the remaining power of the battery is greater than 80%, the backup power strategy is the first backup power strategy, The operation corresponding to the first backup power strategy is not to take power-saving action; when the power of the battery is greater than 60% and less than 80%, the backup power saving strategy is the second backup power strategy, and the operation corresponding to the second backup power strategy is The symbol is turned off; when the power of the storage battery is less than 60%, the backup power strategy is the third backup power strategy, and the operation corresponding to the third backup power strategy is carrier cut off.
  • the backup power strategy can be configured as a backup power strategy that is greater than the remaining power of the cut-off point, or can be configured as a backup power strategy that is smaller than the remaining power of the cut-off point.
  • the power backup strategy may be the first power backup strategy or the second power backup strategy, which is not limited in this embodiment of the present application.
  • Table 3 shows another first strategy provided by the embodiment of the present application, wherein the state of the storage battery is the remaining power and the load current.
  • the first strategy configured similarly is that when the load current of the battery is high and the remaining power is greater than 90%, the backup strategy is adopted as the first backup strategy, and the corresponding operation is not to adopt the saving strategy.
  • Electric action; the first strategy configured is when the load current of the battery is high and the remaining power is greater than 70% and less than 90%, the backup strategy is adopted as the second backup strategy, and the corresponding operation is sign off; configuration
  • the first strategy is that when the load current of the storage battery is high and the remaining power is less than 70%, the backup strategy is adopted as the third backup strategy, and the corresponding operation is carrier shutdown.
  • High load current, medium load current, and low load current can be set according to different network elements. For example, if the full load current is 50A, it can be considered that the load current of 40A-50A is the high load current, and the load current of 25A-40A is the medium load current. The load current of 0A-25A is low load current.
  • the management system may configure the first policy according to the first intention and the network elements managed by the management system, and then send the first policy to the network elements.
  • the management system is EMS, and the EMS can manage the first network element and the second network element, then the EMS can determine different first policies according to the first network element and the second network element.
  • Table 4 shows another first strategy provided by the embodiment of the present application, wherein the state of the storage battery is the remaining power. It can be obtained from Table 4 that similarly when the remaining power is greater than 80%, the backup power strategy of the first network element is the first power backup strategy, and the corresponding operation is not to take power-saving action; when the remaining power is greater than 60% and less than 80%, the backup power strategy of the first network element is the second backup power strategy, and the corresponding operation is sign off; when the remaining power is less than 60%, the backup power strategy of the first network element is the third backup power strategy, The corresponding operation is to turn off the carrier. Similarly, for the description of the second network element, reference may be made to the description of the first network element, and details are not repeated here.
  • one backup strategy corresponds to one operation, but this embodiment of the application does not limit this. It is also possible that one backup strategy corresponds to multiple operations, and then it is determined according to the state of the power system and then specifically corresponds to different operations. Operation, that is, it can be understood that a power backup strategy includes multiple operations, and the multiple operations are distinguished by the state of the power system.
  • Table 5 shows another first strategy provided by the embodiment of the present application. It can be seen from Table 5 that the same backup strategy can correspond to multiple operations, mainly because it corresponds to different operations under different remaining power conditions.
  • a power backup policy includes multiple operations, and after receiving the power backup policy, a network element may select different operations according to the remaining power. For example, when the remaining power of the first backup strategy is 100%, the corresponding operation is not to take power-saving action; when the remaining power is 90%, the corresponding operation is sign off; when the remaining power is 70%, the corresponding operation is symbol off.
  • the operations corresponding to the first power backup strategy when the electric power is 100%, 90%, and 70% are no action, symbol off, and symbol off.
  • the operations corresponding to the second backup power strategy are symbol off, symbol off, and carrier off when the power is 100%, 90%, and 70% respectively, wherein the power saving effect of carrier off is greater than that of symbol off.
  • the power saving effect of the first power backup strategy is worse than that of the second power backup strategy, and similarly, the power saving effect of the second power backup strategy is worse than that of the third power backup strategy.
  • adopting the first backup effect has less impact on the network than the second backup strategy and the third backup strategy, so the management device can determine different backup strategies according to the status of the power system and the first intention. For details, see Explained later.
  • Table 6 shows another first strategy provided by the embodiment of the present application. It can be seen from Table 6 that the same backup strategy can correspond to multiple operations, which mainly distinguishes different operations according to different remaining power and load current conditions.
  • a power backup strategy includes multiple operations, and network elements can select different operations according to the remaining power and load current.
  • the corresponding operation when the remaining power is 100% and the load current is a high load current, the corresponding operation is not to take power-saving action; when the remaining power is 100% and the load current is a medium load current, the corresponding operation is no Take power saving action; when the remaining power is 100% and the load current is low load current, the corresponding operation is not to take power saving action; when the remaining power is 90% and the load current is high load current, the corresponding operation is sign off ; When the remaining power is 90% and the load current is a medium load current, the corresponding operation is sign off; when the remaining power is 90% and the load current is a low load current, the corresponding operation is not to take power-saving action; When the load current is 700% and the load current is high load current, the corresponding operation is carrier cut-off; when the remaining power is 90% and the load current is medium load current, the corresponding operation is carrier cut-off; when the remaining power is 90% and the load current When the load current is low, the corresponding operation is sign off.
  • the load current is 700% and the
  • a backup strategy can correspond to multiple operations, and different operations are determined according to the remaining power, or the remaining power and the load current, but they are not limited thereto.
  • the same backup policy can correspond to multiple operations, and different operations can be distinguished according to remaining power, load current, and voltage.
  • the same backup policy can correspond to multiple operations, and different operations can be distinguished according to remaining power, load current, and temperature.
  • the same backup policy can correspond to multiple operations, and different operations can be distinguished according to remaining power, load current, voltage, and temperature.
  • the network element may configure the first policy.
  • the management system may send indication information, where the indication information is used to instruct the network element to configure the first policy.
  • Table 7 shows another first strategy provided by the embodiment of the present application. It can be seen from Table 7 that the same backup strategy can correspond to multiple operations, which mainly distinguishes different operations according to different remaining power and QoS conditions.
  • a power backup strategy includes multiple operations, and network elements can choose different operations according to the remaining power and QoS.
  • the corresponding operation when the remaining power of the first backup policy is 100% and the QoS level is high, the corresponding operation is not to take power-saving actions; when the remaining power is 100% and the QoS level is medium, the corresponding operation is Electric action; when the remaining power is 100% and the QoS level is low, the corresponding operation is not to take power-saving action; when the remaining power is 90% and the QoS level is high, the corresponding operation is sign off; when the remaining power When the remaining power is 90% and the QoS level is medium, the corresponding operation is to turn off the symbol; when the remaining power is 90% and the QoS level is low, the corresponding operation is not to take power-saving action; when the remaining power is 70% and the QoS level When the power level is high, the corresponding operation is to turn off the carrier; when the remaining power is 90% and the QoS level is medium, the corresponding operation is to turn off the carrier; when the remaining power is 70% and the QoS level is low, the corresponding operation is symbol off.
  • the remaining power level
  • a backup strategy can correspond to multiple operations, and different operations are determined according to the remaining power, or the remaining power and the load current, but they are not limited thereto.
  • the same backup policy can correspond to multiple operations, and different operations can be distinguished according to remaining power, load current, and voltage.
  • the same backup policy can correspond to multiple operations, and different operations can be distinguished according to remaining power, load current, and temperature.
  • the same backup policy can correspond to multiple operations, and different operations can be distinguished according to remaining power, load current, voltage, and temperature.
  • the management system detects the power supply system, and when it detects that the preset condition is met, the management system can determine the first power backup strategy according to the first state and the first intention of the storage battery of the power supply system.
  • the first backup strategy can be in a form similar to Table 1 to Table 4, that is, one backup strategy corresponds to one operation, or it can be in a form similar to Table 5 to Table 6, that is, one backup strategy corresponds to multiple operations, Then determine different operations according to different power systems.
  • the power supply system supplies power to the network element through a storage battery
  • the status of the power supply system may include the remaining power of the storage battery and the load current.
  • the management system can determine the power backup strategy according to the remaining power, load current, and first intention. Specifically, the management system can estimate the remaining power backup time according to the remaining power and load current, and then the management system can determine the power backup strategy according to the remaining power backup time and the power backup time determined according to the first intention.
  • the management system can determine a backup power strategy that has less impact on network performance; When the backup power duration is determined by the first intention, the management system can determine a backup power strategy with a good power saving effect.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery as 3 hours according to the remaining power of the battery and the load current, and the backup time determined according to the first intention is 2 hours, then the management system can Determine the first backup power strategy.
  • the management system estimates that the remaining backup power of the battery is 3 hours according to the remaining power of the battery and the load current, and the backup time is 4 hours, then the management system can determine the second backup strategy.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery to be 3 hours based on the remaining power of the battery and the load current, and the backup time determined according to the first intention is 2 hours.
  • the management system may determine a backup power strategy that has little impact on network performance, for example, the first backup power strategy.
  • the management system can determine a backup strategy with a good power saving effect, such as the second Strategy.
  • the management system may Changes in current, adjust the backup strategy in real time.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery to be 3 hours according to the remaining power of the battery and the load current, and the backup time determined according to the first intention is 2 hours, then the backup strategy is determined It is the first backup strategy.
  • the remaining backup time is 1 hour, and according to the first intention, it needs to run for 1.5 hours. If the first backup strategy is still adopted If the first intention cannot be met, the management system may determine a power backup strategy that can satisfy the first intention, for example, a second power backup strategy.
  • the management system sends the determined power backup policy to the network element, and the network element executes the operation corresponding to the power backup policy.
  • a second power backup strategy may determine a power backup strategy that can satisfy the first intention.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery to be 3 hours according to the remaining power of the battery and the load current, and the backup time determined according to the first intention is 2 hours, then the management system can Determine the backup power policy that has less impact on network performance, such as the first backup power policy.
  • the network element selects different operations corresponding to the first power backup strategy according to the remaining power. With the service operation of the network element, the remaining power of the battery decreases, for example, from 100% to 60%. At this time, the operation of the network element is to turn off the symbol, which is the most power-saving operation in the first backup strategy.
  • the management system estimates that the remaining backup power time is 1 hour, and according to the first intention, the network element needs to run for 1.5 hours, that is, the network element adopts the first backup power strategy and cannot realize the first intention.
  • the management system can update the backup power strategy, so that the updated backup power strategy includes operations that are more power-saving than sign off, such as carrier power off, and then send the updated backup power strategy to the network Yuan.
  • the network element can estimate the remaining battery backup time according to the remaining power of the battery and the load current, and then send the estimated remaining battery backup time to the management system.
  • the remaining power backup duration and the backup power duration obtained according to the first intention determine the backup power strategy.
  • the power supply system can directly calculate its remaining power backup time, and then the management system can directly obtain the remaining power backup time and determine the power backup strategy according to the first intention.
  • the state of the power supply system may also include the temperature, voltage, and type of the storage battery of the power supply system. For example, considering that the decay speed of the storage battery is different at different temperatures, the management system determines the first remaining backup power duration through the remaining power and load current, and can further determine the second remaining backup power duration in combination with the temperature. Exemplarily, the management system determines that the remaining backup time is 5 hours based on the remaining power and load current. When the temperature is 60°C, the remaining backup time determined by the management system is 3.5 hours. When the temperature is 50°C, the management system The final remaining backup time is 4 hours.
  • the state of the battery may also include the charging and discharging times and type of the battery.
  • the management system when the management system detects that the power system satisfies the preset condition, the first operation is determined according to the first state, the first quality of service and the first intention of the power system, including: the management system detects When the power system satisfies the preset condition, the first power backup policy is determined according to the first intention, the first state of the power system and the first QoS of the network element.
  • the management system detects the power system, and when it detects that the preset condition is satisfied, the management system may determine the first power backup strategy according to the first state of the storage battery of the power system, the first intent, and the first QoS of the network element.
  • the first backup strategy can be in a form similar to Table 1 to Table 4, that is, one backup strategy corresponds to one operation, or it can be in a form similar to Table 5 to Table 7, that is, one backup strategy corresponds to multiple operations, Then different operations are determined according to the states of different power supply systems and the QoS of network elements.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery as 3 hours according to the remaining power of the battery, and the backup time determined according to the first intent is 2 hours, the first QoS indication of the network element If network elements have high requirements on network performance, the management system can determine the first backup power strategy. For another example, the management system estimates that the remaining backup power of the battery is 3 hours according to the remaining power of the battery, and the backup power duration is 4 hours.
  • the first QoS of the network element indicates that the network element has low requirements for network performance. Power backup strategy.
  • step S405 the management system sends a first operation, including:
  • the management system sends the first policy.
  • the management system may send the first policy to the network element.
  • the management system sends the first backup power policy.
  • the management system may send the first power backup policy to the network element.
  • the management system may send indication information to the network element, where the indication information is used to indicate the first power backup policy.
  • the management system can send a command to enable the power backup feature to the network element, and then the management system can configure parameters in the power backup feature to implement the delivery of the first power backup policy.
  • a backup strategy For example, the power backup feature includes a parameter: savepolicy, and the value of this parameter can be set to policy1, that is, it can be considered that the management system has sent the first power backup policy to the network element.
  • the management system may first send a command to enable the power backup feature to the network element, and then send the power backup policy when it detects that the power system meets a preset condition.
  • the management system may send a command to enable the power backup feature to the network element after completing the configuration of the first policy.
  • the management system may send a command to enable the power backup feature to the network element when detecting the status of the power system.
  • step S406 the network element performs a first operation, including:
  • the network element executes an operation corresponding to the first power backup policy according to the first power backup policy.
  • the network element receives the instruction information sent by the management system, the instruction information is used to indicate the first backup strategy, and the network element executes the first backup strategy according to the first backup strategy and the first strategy The operation corresponding to the policy.
  • the network element when the network element enables the power backup feature and determines that the management system sends the first power backup policy, the network element may perform operations corresponding to the first power backup policy.
  • the network element when a power backup strategy corresponds to an operation, the network element can directly execute the corresponding operation according to the power backup strategy; operate. For example, the management system sends the first backup power policy to the network element.
  • the remaining power of the first backup power policy is 100%, 90%, and 70%, the corresponding operations are no action, sign off, and sign off.
  • the remaining power is 80%, the operation of turning off the symbol is performed.
  • the management system when the management system detects that the power system changes from the first state to the second state, the management system can update the backup power policy and send the updated backup power policy, and the network element receives the updated backup power policy. After updating the policy, you can perform corresponding operations according to the updated policy.
  • the network element when a backup power strategy corresponds to an operation, the network element can directly perform the corresponding operation according to the updated backup power strategy; when the updated backup power strategy corresponds to multiple operations, the network element can determine The specific action to be taken.
  • the backup power strategy after the management system is updated is the second backup power strategy, and the corresponding operations of the second backup power strategy when the remaining power is 100%, 90%, and 70% are symbol off, symbol off, and carrier off.
  • the network element determines that the remaining power is 60%, it will perform the operation of turning off the symbol.
  • the network element may send request information to the power system to request the status of the power system.
  • the power system may periodically send the status of the power system to the network element.
  • the methods 400 and 500 further include: the management system sends intention feedback information.
  • the management system may send intent feedback information to the intent consumer to indicate that the first intent is completed.
  • the management system can dynamically adjust the backup strategy according to the state of the power system and the duration of the backup, which can reduce the impact of the operation on the network performance.
  • the management system when the management system detects the state of the power system, it may also detect the state of the power system through a Data Collection Coordination Function (DCCF).
  • DCCF Data Collection Coordination Function
  • management system detects the state of the power system through the data collection and coordination function is similar to the description that the management system detects the state of the power system through network elements, and for the sake of brevity, details are not repeated here.
  • FIG. 6 shows a schematic flowchart of a power backup method 600 provided in an embodiment of the present application, and the process includes:
  • the intent consumer sends a first intent.
  • the intention system can be deployed in the network element, and the intention consumer can send the first intention to the network element, and the first intention is used to indicate the backup power duration or power saving preference or backup power preference.
  • the intent consumer can send the first intent directly to the network element
  • the intent consumer may send the first intent to the network element through transparent transmission.
  • the management system can also deploy an intention system. After the intention consumer sends the first intention to the management system, the management system can translate the first intention and then send the second intention to the network element, where the second intention is used to indicate the backup Duration or power saving preference or backup power preference.
  • the network element receives the first intent.
  • the network element may receive the first intent directly sent by the intent consumer or the first intent forwarded by the management system.
  • the network element detects the power supply system.
  • network element detection power system is similar to the management system detection power system, and for the sake of brevity, details are not repeated here.
  • the network element detects that the power system satisfies a preset condition, and determines a first operation according to the first state and the first intention of the power system.
  • the network element may detect the state of the power system, and when it is detected that the power system satisfies a preset condition, the network element may determine an operation to be performed according to the detected first state and the first intention of the power system.
  • determining the first operation by the network element according to the first state and the first intent of the power system is similar to determining the first operation by the management system according to the first state and the first intent of the power system, and details are not repeated here for brevity.
  • the network element performs a first operation.
  • the management system can dynamically adjust the operation according to the state of the storage battery of the power supply system and the backup power duration, which improves the flexibility of the backup power and reduces the impact on network performance.
  • the management system or network element deploys an intentional system, so that the management system or network element can determine the power-saving operation or backup power-saving strategy according to the intention message after receiving the intention message, but this
  • the embodiment of the application is not limited thereto, and the management system or network element may also implement the power backup method provided in the embodiment of the application without deploying an intentional system.
  • Fig. 7 shows a schematic flowchart of a power backup method 700 provided by an embodiment of the present application.
  • the method is applied to a network system, and the network system includes a management system and network elements.
  • the management system includes a first management system and a second management system. Two management systems, as shown in Figure 7, the process includes
  • the first management system sends first indication information to the second management system.
  • the second management system receives the first indication information sent by the first management system.
  • the first management system may be NMS or OSS
  • the second management system may be EMS.
  • the first system is NMS
  • the second management system is EMS as an example for description.
  • the NMS may send first indication information to the EMS, where the first indication information is used to indicate the battery backup duration/or power saving preference/or battery backup preference.
  • the second management system detects the power system.
  • the second management system detects that the power system satisfies a preset condition, it determines a first operation according to the first indication information and the first state of the power system.
  • the first state of the power system includes a first remaining capacity of the power system.
  • the first state of the power system further includes at least one of the following: a first load current, a first remaining backup time, and a first temperature of the power system.
  • the second management system may determine the first operation according to the first indication information and the first state of the power system in the following possible ways.
  • the second management system is preset with a corresponding relationship for indicating the duration of the backup power, the status of the power system and the operation, so that when the second management system receives the first indication information for indicating the duration of the backup power,
  • the first operation may be determined according to the first indication information and the first state of the power system.
  • the second management system is preset with a corresponding relationship for indicating power saving preference, power system status and operation, so that when the second management system receives the first indication information for indicating power saving preference, The first operation may be determined according to the first indication information and the first state of the power system.
  • the second management system is preset with a corresponding relationship for indicating the preference for power saving, the state of the power system, and the operation, so that when the second management system receives the first indication information for indicating the preference for power backup , the first operation may be determined according to the first indication information and the first state of the power supply system.
  • Table 8 shows a table of backup duration, status and operation of the power system provided by the embodiment of the present application.
  • the second management system may determine a corresponding operation according to the remaining power.
  • Table 9 shows a table of power saving preference, status and operation of the power system provided by the embodiment of the present application.
  • the second management system may determine a corresponding operation according to the remaining power.
  • Table 10 shows a table of backup power preference, power system status and operation provided by the embodiment of the present application.
  • the second management system may determine a corresponding operation according to the remaining power.
  • a possible implementation method a model for determining operation is deployed in the second management system.
  • the input of the model can be the duration of backup power or the preference of backup power or power saving preference, and the output can be the operation of saving power.
  • the second management system After receiving the first instruction information, the first instruction information may be input into the model, so as to obtain the first operation.
  • the second management system sends the first operation to the network element.
  • the network element performs a first operation.
  • S703 when the second management system detects that the power system meets the preset condition, determine the first operation according to the first state of the power system and the first indication information, including: the second management system detects When the power system satisfies the preset condition, the first operation is determined according to the first state of the power system, the first QoS and the first indication information.
  • the management system can determine the remaining backup time according to the remaining power. If the backup time indicated by the first indication information is short, and the network If the first QoS requirement of the unit is high, the management system can determine an operation that has little impact on network performance.
  • the management system can determine the remaining backup time according to the remaining power. If the backup time indicated by the first indication information is long, and If the first QoS requirement of the network element is low, the management system can determine an operation that has little impact on the backup power duration.
  • the method further includes: when the second management system detects that the first state of the power system has changed to the second state, determining the second operation according to the first indication information and the second state of the power system .
  • the second management system can determine the operation according to the status of the power supply system and the received instruction information, and then instruct the network element to perform the operation, so that the network element can perform the corresponding operation.
  • the status and indication information of the system determine the operation that the network element needs to perform, and the operation can match the status of the power system, which improves the flexibility of the network system backup power and reduces the impact on network performance.
  • S703 when the second management system detects that the power system satisfies the preset condition, determines the first operation according to the first indication information and the first state of the power system, including:
  • the second management system determines the first policy according to the first indication information
  • the second management system When the second management system detects that the power system satisfies the preset condition, it determines the first power backup strategy according to the first indication information and the first state of the power system.
  • the second management system detects the power supply system, and when it detects that the preset condition is met, the second management system can determine the first power backup strategy according to the first state of the storage battery of the power supply system and the first indication information.
  • the first backup strategy can be in a form similar to Table 1 to Table 4, that is, one backup strategy corresponds to one operation, or it can be in a form similar to Table 5 to Table 6, that is, one backup strategy corresponds to multiple operations, Then determine different operations according to different power systems.
  • the second management system when the second management system detects that the power system meets the preset condition, it determines the first operation according to the first state of the power system, the first quality of service and the first indication information, including: managing When the system detects that the power system satisfies the preset condition, it determines the first power backup policy according to the first indication information, the first state of the power system and the first QoS of the network element.
  • the second management system detects the power supply system, and when it detects that the preset condition is satisfied, the second management system can determine the first standby state according to the first state of the storage battery of the power supply system, the first indication information, and the first QoS of the network element. electric strategy.
  • the first backup strategy can be in a form similar to Table 1 to Table 4, that is, one backup strategy corresponds to one operation, or it can be in a form similar to Table 5 to Table 7, that is, one backup strategy corresponds to multiple operations, Then different operations are determined according to the states of different power supply systems and the QoS of network elements.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery as 3 hours according to the remaining power of the battery, and the backup time determined according to the first indication information is 2 hours, the first QoS of the network element Indicating that the network element corresponds to a high network performance requirement, the management system can determine the first backup power strategy. For another example, the management system estimates that the remaining backup power of the battery is 3 hours according to the remaining power of the battery, and the backup power duration is 4 hours.
  • the first QoS of the network element indicates that the network element has low requirements for network performance. Power backup strategy.
  • S704 the second management system sends the first operation, including:
  • the second management system sends the first policy
  • the second management system sends the first power backup policy.
  • the second management system may send the first policy and the first power backup policy to the network element.
  • the second management system may send indication information to the network element, where the indication information is used to indicate the first power backup policy.
  • the second management system can send a command to enable the power backup feature to the network element, and then the second management system can configure the power backup feature parameters to implement the delivery of the first backup power policy.
  • the power backup feature includes a parameter: savepolicy, and the value of this parameter can be set to policy1, that is, it can be considered that the management system has sent the first power backup policy to the network element.
  • the second management system may first send a command to enable the power backup feature to the network element, and then the management system sends a power backup policy when it detects that the power system satisfies a preset condition.
  • the second management system may send a command to enable the power backup feature to the network element after completing the configuration of the first policy.
  • the second management system may send a command to enable the power backup feature to the network element when detecting the state of the power supply system.
  • S705 the network element performs the first operation, including:
  • the network element executes an operation corresponding to the first power backup policy according to the first power backup policy.
  • the network element receives indication information sent by the second management system, the indication information is used to indicate the first power backup policy, and the network element executes the first power backup policy according to the first power backup policy and the first policy. Operations corresponding to the battery backup policy.
  • the network element enables the power backup feature and determines that the second management system sends the first power backup policy, and the network element may perform operations corresponding to the first power backup policy.
  • the network element when a power backup strategy corresponds to an operation, the network element can directly execute the corresponding operation according to the power backup strategy; operate. For example, the management system sends the first backup power policy to the network element.
  • the remaining power of the first backup power policy is 100%, 90%, and 70%, the corresponding operations are no action, sign off, and sign off.
  • the remaining power is 80%, the operation of turning off the symbol is performed.
  • the second management system when the management system detects that the power system changes from the first state to the second state, the second management system can update the backup power policy and send the updated backup power policy, and the network element receives the updated After the backup power policy is configured, corresponding operations can be performed according to the updated policy.
  • a backup power strategy corresponds to an operation
  • the network element can directly perform the corresponding operation according to the updated backup power strategy; when the updated backup power strategy corresponds to multiple operations, the network element can determine The specific action to be taken.
  • the backup power strategy after the management system is updated is the second backup power strategy, and the corresponding operations of the second backup power strategy when the remaining power is 100%, 90%, and 70% are symbol off, symbol off, and carrier off.
  • the network element determines that the remaining power is 60%, it will perform the operation of turning off the symbol.
  • the network element may send request information to the power system to request the status of the power system.
  • the power system may periodically send the status of the power system to the network element.
  • the second management system can dynamically adjust the power backup policy according to the state of the power system and the power backup duration, which can reduce the impact of operations on network performance.
  • Fig. 8 shows a schematic flowchart of a power backup method 800 provided by an embodiment of the present application.
  • the method is applied to a network system, and the network system includes a management system and network elements.
  • the management system includes a first management system and a second management system. Two management systems, as shown in Figure 8, the process includes
  • the first management system detects the power system.
  • the first management system may be NMS or OSS
  • the second management system may be EMS.
  • the first system is NMS
  • the second management system is EMS as an example for description.
  • the first management system When the first management system detects that the power supply system satisfies the preset condition, it determines the first operation according to the first indication information and the first state of the power supply system, and the first indication information is used to indicate the backup power duration or backup power preference or power saving preference.
  • the first indication information may be configured by the operator.
  • the first state of the power system includes a first remaining capacity of the power system.
  • the first state of the power system further includes at least one of the following: a first load current, a first remaining backup time, and a first temperature of the power system.
  • the first management system sends the first operation to the network element.
  • the first management system may send the first operation to the network element through transparent transmission, that is, the first management system may first send the first operation to the second management system, and then the second management system sends the first operation to the network element.
  • the network element performs a first operation.
  • S802 when the first management system detects that the power system satisfies the preset condition, determines the first operation according to the first state of the power system and the first indication information, including: the first management system detects When the power system satisfies the preset condition, the first operation is determined according to the first state of the power system, the first QoS and the first indication information.
  • the first management system can determine the remaining power backup time according to the remaining power. If the power backup time indicated by the first indication information is short, and the first QoS requirement of the network element is high, the first management system can determine an operation that has little impact on network performance.
  • the first management system can determine the remaining backup time according to the remaining power. If the backup power indicated by the first indication information If the duration is long and the first QoS requirement of the network element is low, the first management system can determine an operation that has little impact on the backup duration.
  • the method further includes: when the first management system detects that the first state of the power system has changed to the second state, determining the second operation according to the first indication information and the second state of the power system .
  • the first management system can determine the operation according to the status of the power supply system and the received instruction information, and then instruct the network element to perform the operation, so that the network element can perform the corresponding operation.
  • the status and indication information of the system determine the operation that the network element needs to perform, and the operation can match the status of the power system, which improves the flexibility of the network system backup power and reduces the impact on network performance.
  • the method also includes:
  • the first management system sends the first indication information to the second management system
  • the second management system determines the first policy according to the first indication information
  • the second management system sends the first policy to the network element.
  • S802 when the first management system detects that the power system satisfies the preset condition, determines the first operation according to the first indication information and the first state of the power system, including:
  • the first management system When the first management system detects that the power system satisfies the preset condition, it determines the first power backup strategy according to the first indication information and the first state of the power system.
  • the first management system detects the power supply system, and when it detects that the preset condition is met, the first management system can determine a first power backup strategy according to the first state of the storage battery of the power supply system and the first indication information.
  • the first backup strategy can be in a form similar to Table 1 to Table 4, that is, one backup strategy corresponds to one operation, or it can be in a form similar to Table 5 to Table 6, that is, one backup strategy corresponds to multiple operations, Then determine different operations according to different power systems.
  • the first management system when the first management system detects that the power system satisfies the preset condition, it determines the first operation according to the first state of the power system, the first quality of service and the first indication information, including: the first When a management system detects that the power system satisfies a preset condition, it determines a first power backup policy according to the first indication information, the first state of the power system, and the first QoS of the network element.
  • the first management system detects the power supply system, and when it detects that the preset condition is met, the first management system can determine the first standby state according to the first state of the storage battery of the power supply system, the first indication information, and the first QoS of the network element. electric strategy.
  • the first backup strategy can be in a form similar to Table 1 to Table 4, that is, one backup strategy corresponds to one operation, or it can be in a form similar to Table 5 to Table 7, that is, one backup strategy corresponds to multiple operations, Then different operations are determined according to the states of different power supply systems and the QoS of network elements.
  • the first power backup policy has less impact on network performance
  • the second power backup policy has greater impact on network performance.
  • the management system estimates the remaining backup time of the battery as 3 hours according to the remaining power of the battery, and the backup time determined according to the first indication information is 2 hours, the first QoS of the network element Indicating that the network element corresponds to a high network performance requirement, the management system can determine the first backup power strategy. For another example, the management system estimates that the remaining backup power of the battery is 3 hours according to the remaining power of the battery, and the backup power duration is 4 hours.
  • the first QoS of the network element indicates that the network element has low requirements for network performance. Power backup strategy.
  • the first management system sends a first operation to the network element, including:
  • the first management system sends the first backup policy to the network element.
  • the first management system may send indication information to the network element, where the indication information is used to indicate the first power backup policy.
  • the first management system can send a command to enable the power backup feature to the network element, and then the first management system can configure the power backup feature parameters to implement the delivery of the first backup power policy.
  • the power backup feature includes a parameter: savepolicy, and the value of this parameter can be set to policy1, that is, it can be considered that the management system has sent the first power backup policy to the network element.
  • the first management system may first send a command to enable the power backup feature to the network element, and when it detects that the power system meets a preset condition, the management system then sends a power backup policy.
  • the first management system may send a command to enable the power backup feature to the network element after completing the configuration of the first policy.
  • the first management system may send a command to enable the power backup feature to the network element when detecting the state of the power supply system.
  • the network element performs a first operation, including:
  • the network element determines the first operation and executes the first operation according to the first strategy and the first backup strategy.
  • the second management system may send indication information to the network element, where the indication information is used to indicate the first power backup policy.
  • the second management system can send a command to enable the power backup feature to the network element, and then the second management system can configure the power backup feature parameters to implement the delivery of the first backup power policy.
  • the power backup feature includes a parameter: savepolicy, and the value of this parameter can be set to policy1, that is, it can be considered that the management system has sent the first power backup policy to the network element.
  • the second management system may first send a command to enable the power backup feature to the network element, and then the management system sends a power backup policy when it detects that the power system satisfies a preset condition.
  • the second management system may send a command to enable the power backup feature to the network element after completing the configuration of the first policy.
  • the second management system may send a command to enable the power backup feature to the network element when detecting the state of the power supply system.
  • the network element may send request information to the power system to request the status of the power system.
  • the power system may periodically send the status of the power system to the network element.
  • the first management system can dynamically adjust the power backup policy according to the state of the power system and the power backup duration, which can reduce the impact of operations on network performance.
  • Fig. 9 shows a schematic flowchart of a power backup method provided by an embodiment of the present application. As shown in Fig. 9, the method includes:
  • the management system receives first information.
  • the first information includes the first intention, and the first intention may be sent by the intended consumer to the management system.
  • the first intention may be sent by the intended consumer to the management system.
  • the first information includes first indication information
  • the first management system includes a first management system and a second management system
  • the first management system may be NMS
  • the second management system may be EMS
  • the first The indication information may be sent from the NMS to the EMS.
  • the first information includes first indication information
  • the first management system includes a first management system and a second management system
  • the first management system may be NMS
  • the second management system may be EMS
  • the first The indication information may be sent by the operator to the NMS.
  • the management system detects the power system.
  • the management system detects that the power system satisfies a preset condition, and determines a first operation according to the first information and the first state of the power system, wherein the first state of the power system includes a first remaining power of the power system.
  • the management system sends the first operation to the network element.
  • the network element performs a first operation.
  • the method also includes:
  • the management system When the management system detects that the first state of the power system has changed to a second state, it determines a second operation according to the first information and the second state of the power system, wherein the second state of the power system includes a second remaining power of the power system ;
  • the management system sends the second operation to the network element
  • the network element performs the second operation.
  • the management system determines the first operation according to the first information and the first state of the power system, including:
  • the management system determines a first strategy according to the first information, and the first strategy is used to indicate the correspondence between the backup strategy and the operation;
  • the management system determines a first power backup strategy according to the first information and the first state of the power supply system, and the first power backup strategy is used to indicate the first operation;
  • the management system sends the first operation to the network element, including:
  • the management system sends the first policy to the network element
  • the management system sends the first power backup policy to the network element to indicate the first operation.
  • the management system sends the first power backup policy to the network element to indicate the first operation, including:
  • the management system sends instruction information for instructing to enable the backup power feature to the network element
  • the management system sends the first parameter to the network element to instruct the network element to perform the first operation corresponding to the first power backup strategy, where the first parameter corresponds to the first power backup strategy.
  • the management system determines the first power backup policy according to the first information and the first state of the power system, including:
  • the management system determines the first remaining backup time according to the first state of the power system
  • the management system determines the first power backup strategy according to the first remaining power backup duration and first information.
  • the management system determines the first operation according to the first intention and the first state of the power system, including:
  • the management system determines the first remaining backup time according to the first state of the power system
  • the management system determines the first operation according to the first remaining battery backup duration and first information.
  • the first state of the power system further includes at least one of the following: the first load current of the power system, the remaining backup time of the power system, the first temperature of the power system, the the first voltage.
  • the management system detects the power system, including:
  • the management system detects the state of the power system through network elements, or
  • the management system detects the status of the power system through the data coordination function DCCF.
  • the preset condition includes: the power supply system supplies power to the network element through a storage battery.
  • the above-mentioned management system and the like include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiments of the present application may divide the management system into functional modules according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 shows a schematic structural diagram of a management device 1000 provided by an embodiment of the present application.
  • the management device 1000 can be used to implement the functions of the management system involved in the above embodiments.
  • the management device 1000 shown in FIG. 10 includes: an acquisition module 1010 , a detection module 1020 , and a processing module 1030 .
  • the acquiring module 1010 is configured to acquire first information, where the first information is used to indicate the duration of power backup or preference for power saving or preference for power backup.
  • the first information includes a first intention, and the first intention is used for power backup duration or power saving preference or power backup preference.
  • the first information includes first indication information, and the first indication information is used for power backup duration, power saving preference, or power backup preference.
  • the detection module 1020 is used for detecting the power system.
  • the acquiring module 1010 is further configured to acquire the first state of the power system.
  • the processing module 1030 is configured to determine a first operation according to the first information and the first state of the power system when it is detected that the power system meets the preset condition, wherein the first state of the power system includes the first remaining power of the power system.
  • the processing module 1030 is further configured to instruct the network element to perform the first operation to satisfy the power backup duration or the power saving preference or the power backup preference.
  • the processing module 1030 is further configured to determine the second state according to the first information and the second state of the power system when the detection module 1020 detects that the first state of the power system changes to the second state. operate.
  • processing module 1030 is further configured to instruct the network element to perform the second operation.
  • the processing module 1030 is specifically configured to determine the first operation according to the first information, the first state of the power system, and the first QoS of the network element when detecting that the power system satisfies a preset condition.
  • the management device 1000 further includes a sending module 1040, wherein the processing module 1030 is specifically configured to determine the first policy according to the first information and determine the second strategy according to the first information and the first state of the power system. A backup strategy.
  • a sending module 1040 configured to send the first policy and the first power backup policy to the network element to instruct the network element to perform the first operation.
  • the sending module 1040 is further configured to send instruction information for enabling the power backup feature to the network element.
  • the processing module 1030 is specifically configured to configure a first parameter of the power backup characteristic to enable the network element to perform a first operation corresponding to the first power backup strategy, where the first parameter corresponds to the first power backup strategy.
  • the processing module 1030 is specifically configured to determine the first remaining power backup duration according to the first state of the power system, and determine the first backup power strategy according to the first remaining power backup duration and the first intention .
  • the processing module 1030 is specifically configured to determine the first remaining power backup time according to the first state of the power system, and determine the first operation according to the first remaining power backup time and the first intention.
  • the first state of the power system further includes at least one of the following: the first load current of the power system, the remaining backup time of the power system, the The first temperature, the first voltage of the power system.
  • the detection unit 1020 is specifically configured to detect the state of the power system through a network element, or detect the state of the power system through a data coordination function DCCF.
  • the preset condition includes: the power supply system supplies power to the network element through a storage battery.
  • FIG. 11 is a schematic structural diagram of a network element device 1100 provided by an embodiment of the present application.
  • the network element device 1100 may be used to perform the functions of the network element involved in the foregoing embodiments.
  • the network element device 1100 includes: an acquisition module 1110 , a detection module 1120 , and a processing module 1130 .
  • the acquiring module 1110 is configured to acquire a first intention, where the first intention is used to indicate the battery backup duration or power saving preference or battery backup preference.
  • the detection module 1120 is used for detecting the power system.
  • the acquiring module 1110 is further configured to acquire the first state of the power system.
  • the processing module 1130 is configured to determine a first operation according to the first intent and the first state of the power system when it is detected that the preset condition is met.
  • the processing module 1130 is further configured to perform the first operation.
  • the processing module 1130 is further configured to, when the detection module 1120 detects that the first state of the power system changes to the second state, determine the second operate.
  • processing module 1130 is further configured to perform a second operation.
  • the processing module 1130 is specifically configured to determine the first remaining power backup time according to the first state of the power system, and determine the first operation according to the first remaining power backup time and the first intention.
  • the first state of the power system includes a first remaining power and a first load current of the power system, or
  • the first state of the power system is the first remaining backup time of the power system.
  • the first state of the power system further includes: a first voltage and a first temperature of the power system.
  • the preset condition includes: the power supply system supplies power to the network element through a storage battery.
  • Fig. 12 is a structural block diagram of a management device provided according to an embodiment of the present application.
  • the management device includes a processor 1201 , a memory 1202 and a transceiver 1203 .
  • the memory 1202 is mainly used to store software programs and data, and the processor 701 can be used to execute the software programs in the memory so that the management device executes the power backup method in the foregoing embodiments.
  • FIG. 12 For ease of illustration, only one memory and processor are shown in FIG. 12 .
  • processors there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the circuit with the transceiver function can be regarded as the transceiver 903 of the management device, and the processor with the processing function can be regarded as the processing module of the management device.
  • the transceiver may also be called a transceiver module, a transceiver, a transceiver device, and the like.
  • a processing module may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver 1203 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver 1203 for realizing the sending function may be regarded as a sending unit, that is, the transceiver 1203 includes a receiving unit and a sending unit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1201, the memory 1202, and the transceiver 1203 communicate with each other through internal connection paths, and transmit control and/or data signals
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1201 or implemented by the processor 1201 .
  • the processor 1201 may be an integrated circuit chip with signal processing capability.
  • each step of the above method may be implemented by an integrated logic circuit of hardware in the processor 1201 or instructions in the form of software.
  • Fig. 13 is a structural block diagram of a network element device 1300 provided according to an embodiment of the present application.
  • the network element device includes a processor 1301 , a memory 1302 and a transceiver 1303 .
  • the memory 1302 is mainly used to store software programs and data, and the processor 801 may be used to execute the software programs in the memory so that the network element device executes the power backup method in the foregoing embodiments.
  • FIG. 13 For ease of illustration, only one memory and processor are shown in FIG. 13 .
  • processors there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the circuit with the transceiver function can be regarded as the transceiver 1303 of the network element device, and the processor with the processing function can be regarded as the processing module of the network element device.
  • the transceiver may also be called a transceiver module, a transceiver, a transceiver device, and the like.
  • a processing module may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver 1303 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver 1303 for realizing the sending function may be regarded as a sending unit, that is, the transceiver 1303 includes a receiving unit and a sending unit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1301, the memory 1302, and the transceiver 1303 communicate with each other through internal connection paths, and transmit control and/or data signals
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1301 or implemented by the processor 1301 .
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1301 or instructions in the form of software.
  • the processor described in each embodiment of the present application may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a ready-made programmable gate array (field programmable gate array) , FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in connection with the embodiments of the present invention may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. in the storage medium.
  • RAM random access memory
  • flash memory read-only memory
  • read-only memory read-only memory
  • ROM programmable read-only memory or electrically erasable programmable memory, registers, etc.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory, and completes the steps of the above method in combination with its hardware.
  • the embodiment of the present application also provides a chip, and the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the chip can execute the method of the management system in the method embodiment shown in FIG. 4 to FIG. 6 or the method of the network element in the method embodiment shown in FIG. 4 to FIG. 6 .
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions When the instructions are executed, the method for managing the system in the method embodiments shown in FIGS. 4 to 6 or the network element in the method embodiments shown in FIGS. 4 to 6 are executed. Methods.
  • the embodiment of the present application also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed, the method of the management system in the method embodiment shown in Figure 4 to Figure 6 or the method shown in Figure 4 to Figure 6 is executed The method of the network element in the embodiment.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Sources (AREA)

Abstract

本申请实施例提供了一种备电方法和装置,该方法包括:管理系统接收第一信息,管理系统检测电源系统且确定满足预设条件时,根据第一信息和电源系统的第一状态确定第一操作;管理系统指示网元执行第一操作。该方法基于电源系统的状态确定网元需要执行的操作,能够提高网络系统备电的灵活性,减少对网络性能造成的影响。

Description

一种备电方法和装置
本申请要求于2021年11月17日提交中国专利局、申请号为202111364745.2、申请名称为“一种备电方法和装置”的中国专利申请以及于2022年10月31日提交中国专利局,申请号为202211343233.2、申请名称为“一种备电方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地涉及一种备电方法和装置。
背景技术
通信站点可以使用电源系统为通信站点中的网络设备供电。具体地,电源系统可以通过市电为通信站点的网络设备供电,当市电停电后,电源系统可以通过蓄电池为通信站点的网络设备供电。目前,当电源系统可以通过蓄电池为通信站点的网络设备供电时,网络设备可以根据备电策略开启相应的操作,其中备电策略是由用户(例如运营商、设备厂商)提供的,缺少灵活性,对网络性能影响大。
发明内容
本申请实施例提供一种备电方法和装置,能够基于电源系统的状态确定网元需要执行的操作,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
第一方面,提供了一种备电方法,其特征在于,该方法应用于网络系统,该网络系统包括管理系统、网元,该网元由电源系统供电,该方法包括:该管理系统接收第一意图,该第一意图用于指示备电时长或节电偏好;该管理系统检测到电源系统满足预设条件时,根据该第一意图和该电源系统的第一状态确定第一操作;该管理系统控制该网元执行该第一操作。
本申请实施例中,管理系统可以根据电源系统的状态和接收到的意图确定操作,然后指示该网元执行该操作,从而网元可以执行相应的操作,由于管理系统是根据电源系统的状态和意图确定网元需要执行的操作,则该操作可以契合电源系统的状态和意图,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
结合第一方面,在第一方面的某些实现方式中,第一意图还用于指示备电偏好。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该管理系统检测到该电源系统的第一状态变为第二状态时,根据该第一意图和该电源系统的第二状态确定第二操作;该管理系统控制该网元执行该第二操作。
本申请实施例中,管理系统可以根据电源系统的状态动态的调整网元需要执行的操作,使得网元执行符合意图的操作,网络系统备电的灵活性,减少了对网络性能造成的影响。
结合第一方面,在第一方面的某些实现方式中,该管理系统根据该第一意图和该电源 系统的第一状态确定第一操作,包括:该管理系统根据该第一意图确定第一策略,该第一策略用于指示备电策略与操作的对应关系;该管理系统根据该第一意图和该电源系统的第一状态确定第一备电策略,该第一备电策略用于指示该第一操作;该管理系统控制该网元执行该第一操作,包括:该管理系统向该网元发送该第一策略;该管理系统向该网元发送该第一备电策略以指示该网元执行该第一备电策略对应的该第一操作。
结合第一方面,在第一方面的某些实现方式中,该管理系统向该网元发送该第一备电策略以指示该网元执行该第一备电策略对应的该第一操作,包括:该管理系统向该网元发送开启备电特性的命令;该管理系统配置该备电特性的参数以使该网元执行该第一备电策略对应的该第一操作。
结合第一方面,在第一方面的某些实现方式中,该管理系统根据该第一意图和该电源系统的第一状态确定第一备电策略,包括:该管理系统根据该电源系统的第一状态确定第一剩余备电时长;该管理系统根据该第一剩余备电时长和该第一意图确定该第一备电策略。
结合第一方面,在第一方面的某些实现方式中,该管理系统根据该第一意图和该电源系统的第一状态确定第一操作,包括:该管理系统根据该电源系统的第一状态确定第一剩余备电时长;该管理系统根据该第一剩余备电时长和该第一意图确定该第一操作。
结合第一方面,在第一方面的某些实现方式中,该电源系统的第一状态包括:该电源系统的第一剩余电量和第一负载电流,或该电源的第一状态为该电源系统的该第一剩余备电时长。
结合第一方面,在第一方面的某些实现方式中,该电源系统的第一状态还包括:该电源系统的第一温度和该电源系统的第一电压。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该管理系统通过该网元检测该电源系统的状态,或该管理系统通过数据协调功能DCCF检测该电源系统的状态。
结合第一方面,在第一方面的某些实现方式中,该预设条件包括:该电源系统通过蓄电池向该网元供电。
第二方面,提供了一种备电方法,其特征在于,该方法应用于网络系统,该网络系统包括管理系统、网元,该网元由电源系统供电,该方法包括:该网元接收第一意图,该第一意图用于指示备电时长或节电偏好;该网元检测到该电源系统满足预设条件时,根据该电源系统的第一状态和该第一意图确定第一操作;该网元执行该第一操作。
本申请实施例中,网元可以根据电源系统的状态和接收到的意图确定需要执行的操作。由于网元是根据电源系统的状态和意图确定需要执行的操作,该操作可以契合电源系统的状态和意图,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
结合第二方面,在第二方面的某些实现方式中,第一意图还用于指示备电偏好。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网元检测到该电源系统由第一状态变为第二状态时,根据该电源系统的第二状态和该第一意图确定第二操作;该网元执行该第二操作。
本申请实施例中,网元可以根据电源系统的状态的变化动态的调整需要执行的操作,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。。
结合第二方面,在第二方面的某些实现方式中,该网元根据该第一意图和该电源系统的第一状态确定第一操作,包括:该网元根据该电源系统的第一状态确定第一剩余备电时 长;该网元根据该第一剩余备电时长和该第一意图确定该第一操作。
结合第二方面,在第二方面的某些实现方式中,该电源系统的第一状态包括:该电源系统的第一剩余电量和第一负载电流,或该电源系统的第一状态为该电源系统的该第一剩余备电时长。
结合第二方面,在第二方面的某些实现方式中,该电源系统的第一状态还包括:该电源系统的第一温度和第一电压。
结合第二方面,在第二方面的某些实现方式中,该预设条件包括:该电源系统通过蓄电池向该网元供电。
第三方面,提供了一种管理装置,其特征在于,该管理装置应用于包括网元和管理装置的网络系统中,该管理装置包括:获取模块,用于获取第一意图,该第一意图用于指示备电时长或节电偏好;检测模块,用于检测电源系统;该获取模块,还用于获取该电源系统的第一状态;处理模块,用于在电源系统满足预设条件时,根据该第一意图和该电源系统的第一状态确定第一操作;该处理模块,还用于指示该网元执行该第一操作。
结合第三方面,在第三方面的某些实现方式中,第一意图还用于指示备电偏好。
结合第三方面,在第三方面的某些实现方式中,其特征在于,该处理模块,还用于在该检测模块检测到该电源系统的第一状态变为第二状态时,根据该电源系统的第二状态和该第一意图确定第二操作;该处理模块,还用于指示该网元执行该第二操作。
结合第三方面,在第三方面的某些实现方式中,该管理装置还包括发送模块,其中,该处理模块,具体用于根据该第一意图确定第一策略,该第一策略用于指示备电策略与操作的对应关系,以及根据该第一意图和该电源系统的第一状态确定第一备电策略,该第一备电策略用于指示该第一操作;该发送模块,用于向该网元发送该第一策略和该第一备电策略以使该网元执行该第一操作。
结合第三方面,在第三方面的某些实现方式中,其特征在于,该发送模块,还用于向该网元发送开启备电特性的命令;该处理模块,具体用于配置该备电特性的参数以使该网元执行该第一备电策略对应的该第一操作。
结合第三方面,在第三方面的某些实现方式中,该处理模块,具体用于根据该电源系统的第一状态确定第一剩余备电时长,并根据该第一剩余备电时长和该第一意图确定该第一备电策略。
结合第三方面,在第三方面的某些实现方式中,该处理模块,具体用于根据该电源系统的第一状态确定第一剩余备电时长,并根据该第一剩余备电时长和该第一意图确定该第一操作。
结合第三方面,在第三方面的某些实现方式中,该电源系统的第一状态包括:该电源系统的第一剩余电量和第一负载电流,或该电源的第一状态为该电源系统的该第一剩余备电时长。
结合第三方面,在第三方面的某些实现方式中,该电源系统的第一状态还包括:该电源系统的第一温度和第一电压。
结合第三方面,在第三方面的某些实现方式中,该检测模块通过该网元检测该电源系统的状态,或通过数据协调功能DCCF检测该电源系统的状态。
结合第三方面,在第三方面的某些实现方式中,该预设条件为该电源系统通过蓄电池 向该网元供电。,
第四方面,提供了一种网元装置,其特征在于,该网元包括:获取模块,用于获取第一意图,该第一意图用于指示备电时长或节电偏好;检测模块,用于检测电源系统;该获取模块,还用于获取该电源系统的第一状态;处理模块,用于在电源系统满足预设条件时,根据该第一意图和该电源系统的第一状态确定第一操作;该处理模块,还用于执行该第一操作。
结合第四方面,在第四方面的某些实现方式中,第一意图还用于指示备电偏好。
结合第四方面,在第四方面的某些实现方式中,该处理模块,还用于在该检测模块检测到该电源系统的第一状态变为第二状态时,根据该电源系统的第二状态和该第一意图确定第二操作;该处理模块,还用于执行该第二操作。
结合第四方面,在第四方面的某些实现方式中,该处理模块,具体用于根据该电源系统的第一状态确定第一剩余备电时长,并根据该第一剩余备电时长和该第一意图确定该第一操作。
结合第四方面,在第四方面的某些实现方式中,该电源系统的第一状态包括:该电源系统的第一剩余电量和第一负载电流,或该电源系统的第一状态为该电源系统的该第一剩余备电时长。
结合第四方面,在第四方面的某些实现方式中,该电源系统的第一状态还包括:该电源系统的第一温度和第一电压。
结合第四方面,在第四方面的某些实现方式中,其特征在于,该预设条件为该电源系统通过蓄电池向该网元供电。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第六方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种管理设备,该管理设备包括处理器和存储器,该存储器中包括计算机程序,当该计算机程序被该处理器执行时,使得该管理设备执行第一方面或第一方面任意一种可能实现方式中的方法。
第八方面,提供了一种网元设备,该网元设备包括处理器和存储器,该存储器中包括计算机程序,当该计算机程序被该处理器执行时,使得该管理设备执行第二方面或第二方面任意一种可能实现方式中的方法。
第九方面,提供了一种备电方法,其特征在于,该方法应用于网络系统,该网络系统包括管理系统、网元,该网元由电源系统供电,该方法包括:该管理系统接收第一信息,该第一信息用于指示以下中的一项:备电时长、节电偏好和备电偏好;该管理系统检测该电源系统且确定满足预设条件时,根据该第一信息和该电源系统的第一状态确定第一操作,其中该电源系统的第一状态包括该电源系统的第一剩余电量;该管理系统指示该网元执行该第一操作以满足该备电时长或该节电偏好或该备电偏好。
本申请实施例中,管理系统可以根据电源系统的状态和接收到的第一信息确定操作, 然后指示该网元执行该操作,从而网元可以执行相应的操作,由于管理系统是根据电源系统的状态和第一信息确定网元需要执行的操作,则该操作可以契合电源系统的状态和第一信息指示的备电时长或备电偏好或节电偏好,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
结合第九方面,在第九方面的某些实现方式中,该方法还包括:该管理系统检测到该电源系统的第一状态变为第二状态时,根据该第一信息和该电源系统的第二状态确定第二操作,其中该电源系统的第二状态包括该电源系统的第二剩余电量;该管理系统指示该网元执行该第二操作以满足该备电时长或该节电偏好或该备电偏好。
结合第九方面,在第九方面的某些实现方式中,该管理系统根据该第一信息和该电源系统的第一状态确定第一操作,包括:该管理系统根据该第一信息、该电源系统的第一状态和该网元的第一服务质量QoS确定第一操作。
结合第九方面,在第九方面的某些实现方式中,该管理系统根据该第一信息和该电源系统的第一状态确定第一操作,包括:该管理系统根据该第一信息确定第一策略,该第一策略用于指示备电策略与操作的对应关系;该管理系统根据该第一信息和该电源系统的第一状态确定第一备电策略,该第一备电策略用于指示该第一操作;该管理系统指示该网元执行该第一操作,包括:该管理系统向该网元发送该第一策略;该管理系统向该网元发送该第一备电策略以指示该网元执行该第一备电策略对应的该第一操作。
结合第九方面,在第九方面的某些实现方式中,该管理系统向该网元发送该第一备电策略以指示该网元执行该第一备电策略对应的该第一操作,包括:该管理系统向该网元发送用于指示开启备电特性的指示信息;该管理系统向该网元发送第一参数以指示该网元执行该第一备电策略对应的该第一操作,其中该第一参数对应该第一备电策略。
结合第九方面,在第九方面的某些实现方式中,该管理系统根据该第一信息和该电源系统的第一状态确定第一备电策略,包括:该管理系统根据该电源系统的第一状态确定第一剩余备电时长;该管理系统根据该第一剩余备电时长和该第一信息确定该第一备电策略。
结合第九方面,在第九方面的某些实现方式中,该管理系统根据该第一意图和该电源系统的第一状态确定第一操作,包括:该管理系统根据该电源系统的第一状态确定第一剩余备电时长;该管理系统根据该第一剩余备电时长和该第一信息确定该第一操作。
结合第九方面,在第九方面的某些实现方式中,该电源系统的第一状态还包括以下中的至少一项:该电源系统的第一负载电流、该电源系统的剩余备电时长、该电源系统的第一温度、该电源系统的第一电压。
结合第九方面,在第九方面的某些实现方式中,该方法还包括:该管理系统通过该网元检测该电源系统的状态,或该管理系统通过数据协调功能DCCF检测该电源系统的状态。
结合第九方面,在第九方面的某些实现方式中,该预设条件包括:该电源系统通过蓄电池向该网元供电。
结合第九方面,在第九方面的某些实现方式中,该第一信息包括第一意图,该管理系统部署有意图系统,该第一意图用于指示以下中的一项:该备电时长、该节电偏好和该备电偏好。
结合第九方面,在第九方面的某些实现方式中,该第一信息包括第一指示信息,该第一意图用于指示以下中的一项:该备电时长、该节电偏好和该备电偏好。
第十方面,提供了一种管理装置,该管理装置应用于包括网元和管理装置的网络系统中,该管理装置包括:获取模块,用于获取第一信息,该述第一信息用于指示以下中的一项:备电时长、节电偏好和备电偏好;检测模块,用于检测电源系统;该获取模块,还用于获取该电源系统的第一状态;处理模块,用于在该电源系统满足预设条件的情况下,根据该第一信息和该电源系统的第一状态确定第一操作,其中该电源系统的第一状态包括该电源系统的第一剩余电量;该处理模块,还用于指示该网元执行该第一操作以满足该备电时长或该节电偏好或该备电偏好。
本申请实施例中,管理系统可以根据电源系统的状态和接收到的第一信息确定操作,然后指示该网元执行该操作,从而网元可以执行相应的操作,由于管理系统是根据电源系统的状态和第一信息确定网元需要执行的操作,则该操作可以契合电源系统的状态和第一信息指示的备电时长或备电偏好或节电偏好,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
结合第十方面,在第十方面的某些实现方式中,该处理模块,还用于在该检测模块检测到该电源系统的第一状态变为第二状态时,根据该电源系统的第二状态和该第一意图确定第二操作;该处理模块,还用于指示该网元执行该第二操作以满足该备电时长或该节电偏好或该备电偏好。
结合第十方面,在第十方面的某些实现方式中,该处理模块,具体用于在该电源系统满足预设条件的情况下,根据该第一信息、该电源系统的第一状态和该网元的第一服务质量QoS确定该第一操作。
结合第十方面,在第十方面的某些实现方式中,该管理装置还包括发送模块,其中,该处理模块,具体用于根据该第一信息确定第一策略,该第一策略用于指示备电策略与操作的对应关系,以及根据该第一信息和该电源系统的第一状态确定第一备电策略,该第一备电策略用于指示该第一操作;该发送模块,用于向该网元发送该第一策略和该第一备电策略以使该网元执行该第一操作。
结合第十方面,在第十方面的某些实现方式中,该发送模块,还用于向该网元发送用于开启备电特性的指示信息;该处理模块,具体用于配置该备电特性的第一参数以使该网元执行该第一备电策略对应的该第一操作,其中该第一参数对应该第一备电策略。
结合第十方面,在第十方面的某些实现方式中,该处理模块,具体用于根据该电源系统的第一状态确定第一剩余备电时长,并根据该第一剩余备电时长和该第一信息确定该第一备电策略。
结合第十方面,在第十方面的某些实现方式中,该处理模块,具体用于根据该电源系统的第一状态确定第一剩余备电时长,并根据该第一剩余备电时长和该第一意图确定该第一操作。
结合第十方面,在第十方面的某些实现方式中,该电源系统的第一状态还包括以下中的至少一项:该电源系统的第一负载电流、该电源系统的剩余备电时长、该电源系统的第一温度、该电源系统的第一电压。
结合第十方面,在第十方面的某些实现方式中,该检测模块通过该网元检测该电源系统的状态,或通过数据协调功能DCCF检测该电源系统的状态。
结合第十方面,在第十方面的某些实现方式中,该预设条件为该电源系统通过蓄电池 向该网元供电。
结合第十方面,在第十方面的某些实现方式中,该第一信息包括第一意图,该管理装置部署有意图系统,该第一意图用于指示以下中的一项:该备电时长、该节电偏好和该备电偏好。
结合第十方面,在第十方面的某些实现方式中,该第一信息包括第一指示信息,该第一指示信息用于指示以下中的一项:该备电时长、该节电偏好和该备电偏好。
附图说明
图1是本申请实施例提供的一种示例性应用场景的示意图。
图2是本申请实施例提供的意图分层架构示意图。
图3是本申请实施例提供的一种意图架构。
图4是本申请实施例提供的一种备电方法的示意性流程图。
图5是本申请实施例提供的一种备电方法的示意性流程图。
图6是本申请实施例提供的一种备电方法的示意性流程图。
图7是本申请实施例提供的一种备电方法的示意性流程图。
图8是本申请实施例提供的一种备电方法的示意性流程图。
图9是本申请实施例提供的一种备电方法的示意性流程图。
图10是本申请实施例提供的一种管理装置的结构示意图。
图11是本申请实施例提供的一种网元装置的结构示意图。
图12是本申请实施例提供的管理设备的结构框图。
图13是本申请实施例提供的网元设备的结构框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,本申请实施例并不限定。
为了便于理解,首先对本申请实施例的应用场景进行介绍。图1所示为本申请实施例提供的一种示例性应用场景的示意图。
参见图1,该场景包括通信站点101和电源系统102。示例性地,通信站点101可以是基站,例如gNB、ng-eNB等。电源系统用于为通信站点101的通信设备供电。
需要说明的是,通信站点101也可以是核心网设备,本申请实施例对此不作限定。
电源系统可以利用市电为通信站点101的通信设备供电,当市电停电以后,电源系统可以利用电源系统中的蓄电池为通信站点101的通信设备供电。
需要说明的是,本申请实施例中仅以电源系统可以利用蓄电池为通信设备供电为例,但并不限定于此,本申请实施例中还可以通过其他方式为通信设备供电。示例性地,电源系统可以利用市电和光电为通信设备供电,当市电停电后,电源系统可以利用光电为通信设备供电,而不需要利用蓄电池供电。
图2所示为本申请实施例提供的意图分层架构示意图。本申请实施例提供的备电方法可以应用于图2所示的分层架构中。
如图2所示,网络系统200可以包括:通信业务消费者(communication service consumer,CSC)201、通信业务提供商(communication service provider,CSP)202、网络运营商(network operator,NOP)203和网络设备提供商(network equipment provider,NEP)204。
其中,CSC 201可以为用户终端。CSP202可以为CSC 201提供通信业务,负责通信业务的运营,CSP 202可以包括通信业务的生命周期管理等,并将相应通信业务需求转化为网络需求。NOP 203可以为CSP 202提供网络,主要负责网络的生命周期管理,例如,NOP 203可以为CSP 202提供切片和/或非切片网络。NEP 202可以为NOP 203提供子网络的生命周期管理,网元的生命周期管理等。
CSP 202可以是业务支撑系统(business support system,BSS)/运营支撑系统(operations support system,OSS)。NOP 203可以是网络管理系统(network management system,NMS)。NEP 204可以是网元管理系统(element management system,EMS)。
其中,BSS/OSS是面向运营商业务的综合管理系统,运营商可以通过BSS/OSS实现订单管理、计费、用户管理或产品管理等功能。
其中,NMS可以是负责网络的运行、管理和维护功能的管理系统,NMS可以提供故障、配置、计帐、性能或安全等功能。NMS的管理对象可以包括网络中的实体,如:网络设备、应用程序、服务器系统、路由器、交换机、集线器(HUB)、辅助设备(例如,不间断电源系统(uninterrupted power system,UPS))等。NMS可以给网络管理员提供一个全系统的网络视图。
其中,EMS可以是符合国际电信联盟电信标准分局(ITU telecommunication standardization sector,ITU-T)标准的网元管理软件,可以管理一个或多个某个类别的网元。
目前,OSS或BSS可以向EMS发送备电策略或设备厂商可以内置备电策略,EMS接收到备电策略后可以向网元发送开启备电特性的命令,并可以确定备电策略与操作的对应关系,然后将备电策略和备电策略与操作对应的关系发送给网元。备电策略可以理解为电源系统通过非市电供电时,网元采取的策略,一个备电策略可以对应一个操作,例如载波关断、符号关断、降低频率等。备电特性也可以称为备电功能。备电特性可以理解为网元在电源系统通过非市电供电的情况下采取特定的操作,即当网元开启备电特性后,可以 执行备电策略对应的操作,未开启备电特性时,网元即使接收到备电策略,也不会执行该备电策略对应的操作。网元可以检测电源系统的供电情况,当网元检测到电源系统利用蓄电池向网元供电时,网元可以根据备电策略得到该备电策略对应的操作并执行该操作。例如,BSS向EMS发送备电策略。EMS可以配置该备电策略对应的操作为载波关断。EMS向网元发送开启备电特性的命令,网元接收到该命令后,可以开启备电特性。网元检测到由电源系统的蓄电池供电时,可以根据该备电策略确定操作为载波关断,则网元可以将载波关断。但是由于备电策略是由OSS/BSS下发的或者由设备厂家内置的,因此无法实时的根据需求调整操作,从而影响网络性能。例如,OSS/BSS向EMS发送备电策略,该备电策略为当电源系统通过蓄电池供电时,开启载波关断。EMS根据该备电策略向网元发送开启备电特性命令,当网元检测到电源系统通过蓄电池供电时,即使在蓄电池满电的情况下也会执行备电策略对应的操作,即开启载波关断,这使得小区内的用户无法正常使用网络。再例如,由于备电策略是固定的,难以满足所有电源系统的需求,对不同的电源系统适应性差,从而对网络性能影响较大。
综上所述,由于目前的备电策略是固定的,可能造成采取的操作也是固定的,使网络无法正常运行。基于此,本申请提供了一种备电方法,可以动态的调整网元需要执行的操作,减少对网络性能的影响。
继续参考图2,在图2中,CSC 201可以提出CSC的意图(intent-CSC),并将该intent-CSC发送给CSP 202,CSP 202接收到该intent-CSC,可以将该intent-CSC转译为intent-CSP。CSP 202也可以提出intent-CSP。CSP 202可以将转译得到的intent-CSP和/或提出的intent-CSP发送给NOP 203,NOP 203接收到该intent-CSP,可以将该intent-CSP转译为NOP的意图(intent-NOP)。NOP 203也可以提出intent-NOP。NOP 203可以将转译得到的intent-NOP和/或提出的intent-NOP发送给NEP 204,NEP 204接收到该intent-NOP,可以将该intent-NOP转译为该intent-NOP对应的命令,并将该命令下发给该命令对应的网元(networkelement,NE)(图1中未示出),并在该命令对应的NE执行该命令时监测网络状态,以保证该意图的达成。
其中,intent-CSC可以表达业务级的管理需求,不涉及业务和网络的实现细节。intent-CSP可以表达网络级的管理需求,不涉及网络运营商的专业知识。intent-NOP可以表达网络资源级的管理需求,不涉及物理网络设备和/或虚拟化基础设施的操作细节。
在一些实施例中,EMS可以进行意图转译,意图分解和冲突检测等操作。在实际应用中,EMS可以通过外部接口接收上层网元的意图(例如,intent-NOP),并向意图的发送方反馈意图的达成情况。EMS还可以向下层网元发送意图分解后的子意图。
可选的,本申请实施例图1中的各设备,例如,CSC 201、CSP 202、NOP 203或NEP204可以是一个装置内的一个功能模块。可以理解的是,该功能模块既可以是硬件设备中的元件,也可以是在硬件上运行的软件功能模块,或者是平台(例如,云平台)上实例化的虚拟化功能。
图2介绍了意图分层架构示意图,下面将结合图3介绍本申请实施例的意图架构。
图3所示为本申请实施例提供的一种意图架构。
本申请实施例的意图架构可以包括意图消费者和意图系统,意图系统可以包括意图管理模块、意图转译模块、知识管理模块、意图执行模块。意图系统可以用于处理意图消费 者的意图。意图系统接收到意图消费者下发的意图之后,可以根据意图得到意图执行的对象。
需要说明的是,本申请实施例示意的意图系统并不构成对意图系统的具体限定。在本申请另一些实施例中,意图系统可以包括比图示更多或更少的模块,或者组合图示模块,或者拆分图示模块以实现执行意图的目的。
意图消费者,用于下发意图。本申请实施例中对于意图消费者不作限定,意图消费者可以是OSS、BSS、设备厂商、应用程序、终端设备、运营商等。换句话说,本申请实施例中可以将向管理系统(例如NMS、EMS)下发意图的系统、设备等称为意图消费者。
意图管理模块可以包括意图实例库和意图模式库,用于意图模式和意图实例管理。
意图转译模块,用于进行意图转译。示例性地,通过意图转译模块可以将意图转译成可执行的命令。
知识管理模块可以包括意图知识库,用于意图知识管理。
意图执行模块,用于执行意图。
结合图2所示的网络系统200,网络系统200中的CSC 201、CSP 202、NOP 203、NEP 204可以为意图消费者,可以理解的是,根据意图消费中的不同,意图系统可以部署在不同的对象中。例如,当CSP 202是意图消费者时,意图系统可以部署在NOP203。其中CSP 202可以是BSS,NOP 203可以是NMS、NEP 204可以是EMS。意图系统部署在NMS。NMS可以用于管理EMS。NMS接收到BSS下发的意图后,根据该意图确定需要管理的对象是EMS,则意图系统可以根据该意图向EMS下发指令。再例如,当CSP 202是意图消费者时,意图系统还可以部署在NEP204中。其中CSP 202可以是BSS,NOP 203可以是NMS、NEP 204可以是EMS。意图系统部署在EMS。NMS接收到BSS下发的意图后,可以将该意图发送给EMS,然后EMS转译该意图,并执行该意图对应的操作。
类似地,当NOP 203是意图消费者时,意图系统可以部署在NEP 204或NEP 204管理的对象。具体地,NOP203可以是NMS,NEP 204可以是EMS,则NEP 204管理的对象可以是网元。
需要说明的是,图3所示的意图架构仅为示例,本申请实施例对意图架构并不限定,本申请实施例还可以采取其他意图架构。
上面介绍了本申请实施例的意图架构,下面将结合图4至图6详细介绍本申请实施例提供的备电方法。
图4示出了本申请实施例提供的一种备电方法400的示意性流程图,该流程包括:
S401,意图消费者发送第一意图。
意图消费者可以是OSS、BSS、设备厂商、应用程序、终端设备、运营商等。本申请实施例以意图消费者为BSS为例。
BSS可以向管理系统发送第一意图,该第一意图用于指示备电时长和/或节电偏好和/或备电偏好。备电时长可以理解为网元在蓄电池供电的情况下的运行时间。节电偏好可以理解为意图消费者希望达到的节电效果,不同的节电偏好可以对应不同的备电时长。例如,节电偏好高时,网元可以关闭大部分功能则备电时长较长;节电偏好低时,网元可以关闭部分对网络性能影响不大的功能以保证网络性能则备电时长较短。类似地,备电偏好可以理解为意图消费者希望达到的备电效果,不同的备电偏好可以对应不用的备电时长。例如, 备电偏好高可以对应5小时备电时长,备电偏好低可以对应3小时备电时长。综上所述,第一意图指示节电偏好或备电偏好时,可以转译该第一意图得到备电时长。第一意图可以包括第一意图驱动动作(intent driven action)和第一意图驱动对象(intent driven object)。第一意图驱动动作包括第一意图驱动动作名称和第一意图驱动动作属性,该第一意图驱动动作属性可以包括完成该第一意图驱动动作所需的一个或多个属性。第一意图驱动对象信息可以包括第一意图驱动对象名称和第一意图驱动对象属性,该第一意图驱动对象属性可以用于表示对象实例的属性。管理系统接收第一意图后,可以转译该第一意图,从而可以得到备电时长和/或节电偏好和/或备电偏好。例如,BSS需要通信站点的通信设备在蓄电池供电的情况下保持业务运行时长为3小时,则BSS可以确定第一意图,然后将该第一意图发送给管理系统,管理系统接收并转译该第一意图,可以得到BSS的意图,即保持通信设备在蓄电池供电的情况下保持业务运行3小时。
节电偏好也可以理解为节电等级或节电模式,不同节电等级或节电模式对应用户希望达到的不同节电效果。类似的,备电偏好也可以理解为备电等级或备电模式,不同的备电等级或备电模式对应用户希望达到的不同备电效果。
可选地,第一意图可以包括条件信息,该条件信息用于指示管理系统执行该第一意图的条件。例如,该条件信息可以指示当电源系统通过蓄电池供电时,管理系统执行第一意图。
本申请实施例对于BSS发送第一意图的方式不作限定。例如,BSS可以向管理系统发送第一请求信息,该第一请求信息包括第一意图的信息。
在一些实施例中,第一请求信息可以用于请求创建第一意图。该第一意图的信息可以包括第一意图驱动动作信息和第一意图驱动对象信息。
在一些实施例中,第一请求信息可以用于请求实施该第一意图。该第一意图的信息可以包括第一意图驱动动作信息和第一意图驱动对象信息。
在一些实施例中,第一请求信息可以用于请求修改该第一意图,要修改的该第一意图的信息可以包括第一意图驱动动作信息和/或第一意图驱动对象信息。
S402,管理系统接收第一意图。
可选地,管理系统包括NMS和EMS,意图系统部署在NMS。
在一些实施例中,当第一请求信息用于请求创建第一意图时,NMS接收第一请求信息,可以根据第一意图驱动动作和第一意图驱动对象创建第一意图。NMS转译第一意图并执行第一意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求实施第一意图时,NMS接收第一请求信息,将第一请求信息转译为第一意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求修改第一意图时,NMS接收第一请求信息,修改第一意图对应的信息。NMS转译修改后的第一意图并执行修改后的第一意图对应的执行策略。
可选地,管理系统包括NMS和EMS,意图系统部署在EMS。
在一些实施例中,当第一请求信息用于请求创建第一意图时,NMS接收第一请求信息,可以将第一请求信息发送给EMS,EMS可以根据第一意图驱动动作和第一意图驱动对象创建第一意图。EMS转译第一意图并执行第一意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求实施第一意图时,NMS接收第一请求信息,可以将第一请求信息发送给EMS,EMS接收第一请求信息,将第一请求信息转译为第一意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求修改第一意图时,NMS接收第一请求信息,可以将第一请求信息发送给EMS,EMS接收第一请求信息,修改第一意图对应的信息。NMS转译修改后的第一意图并执行修改后的第一意图对应的执行策略。
可选地,管理系统包括NMS和EMS,意图系统部署可以分别部署在NMS和EMS。
在一些实施例中,当第一请求信息用于请求创建第一意图时,NMS接收第一请求信息,NMS可以根据第一意图驱动动作和第一意图驱动对象创建第一意图。EMS转译第一意图并执行第一意图以生成第二请求信息,该第二请求信息包括第二意图的信息,该第二意图指示备电时长。针对第二请求信息的描述可以参见针对第一请求信息的描述,在此不再赘述。NMS将第二意图信息发送给EMS,EMS接收转译第二意图并执行第二意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求实施第一意图时,NMS接收第一请求信息,将第一请求信息转译为第一意图对应的执行策略以生成第二请求信息,该第二请求信息包括第二意图的信息,该第二意图指示备电时长。NMS将第二意图信息发送给EMS,EMS接收转译第二意图并执行第二意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求修改第一意图时,NMS接收第一请求信息,修改第一意图对应的信息。NMS转译修改后的第一意图并执行修改后的第一意图对应的执行策略以生成第二请求信息,该第二请求信息包括第二意图的信息,该第二意图指示备电时长。NMS将第二意图信息发送给EMS,EMS接收转译第二意图并执行第二意图对应的执行策略。
可选地,管理系统包括NMS和EMS,意图系统部署在EMS。
具体地,BSS可以将第一意图直接下发给EMS。
在一些实施例中,当第一请求信息用于请求创建第一意图时,EMS接收第一请求信息,可以根据第一意图驱动动作和第一意图驱动对象创建第一意图。EMS转译第一意图并执行第一意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求实施第一意图时,EMS接收第一请求信息,将第一请求信息转译为第一意图对应的执行策略。
在一些实施例中,当第一请求信息用于请求修改第一意图时,EMS接收第一请求信息,修改第一意图对应的信息。NMS转译修改后的第一意图并执行修改后的第一意图对应的执行策略。
S403,管理系统检测电源系统。
具体地,管理系统可以检测电源系统的状态和电源系统的供电方式。管理系统检测电源系统的供电方式可以理解为管理系统可以感知电源系统的供电方式发生变化,例如由市电供电切换为蓄电池供电。
进一步地,当电源系统包括蓄电池时,管理系统检测电源系统的状态,包括:管理系统检测蓄电池的状态。
可选地,管理系统可以向电源系统发送第一查询信息,该第一查询信息用于请求电源 系统的蓄电池的状态和电源系统的供电方式。例如,管理系统可以向电源系统请求蓄电池的型号、蓄电池的类型(例如锂电池、铅酸电池等)、电池的充放电次数以及电源系统的供电方式。在一些实施例中,管理系统可以通过透传的方式向电源系统发送第一查询信息,即管理系统先将第一查询信息发送给网元,网元再将第一查询信息发送给电源系统。在另一些实施例中,管理系统可以直接将第一查询信息发送给电源系统。例如,管理系统和电源系统可以为网络系统的两个子系统,管理系统和电源系统之间耦合,则两个系统之间可以互相发送信息。
电源系统接收到第一查询信息后,可以根据该第一查询信息发送第一反馈信息,用于反馈电源系统的蓄电池的状态和供电方式。在一些实施例中,电源系统可以通过透传的方式向管理系统发送第一反馈信息,即电源系统先将第一反馈信息发送给网元,网元再将第一反馈信息发送给管理系统。在另一些实施例中,电源系统可以直接将第一反馈信息发送给管理系统。例如,管理系统和电源系统可以为网络系统的两个子系统,管理系统和电源系统之间耦合,则两个系统之间可以互相发送信息。
进一步地,管理系统可以定期检测电源系统,以保证能够及时了解电源系统的状态和供电的方式。例如,管理系统可以每5分钟向电源系统发送第一查询信息。
可选地,管理系统可以向电源系统发送第二查询信息和第三查询信息,该第二查询信息用于请求电源系统的蓄电池的状态,第三查询信息用于请求电源系统的供电方式。针对管理系统发送第二查询信息和第三查询信息的描述可以参见管理系统发送第一查询信息的描述,在此不再赘述。
电源系统接收到第二查询信息和第三查询信息后,可以根据该第二查询信息和第三查询信息发送第二反馈信息和第三反馈信息,用于反馈电源系统的蓄电池的状态和供电方式。针对电源系统发送第二反馈信息和第三反馈信息的描述可以参见电源系统发送第一反馈信息的描述,在此不再赘述。
需要说明的是,管理系统发送第二查询信息和第三查询信息并没有实际的先后顺序,即管理系统可以先发送第二查询信息,也可以先发送第三查询信息,也可以同时发送第二查询信息和第三查询信息。
可选地,在另一些实施例中,电源系统可以向管理系统上报电源系统的供电方式和状态。
S404,管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态和第一意图确定第一操作。
可选地,在一些实施例中,预设条件为电源系统通过非市电的方式向网元供电。例如,电源系统可以通过蓄电池向网元供电。再例如,电源系统可以通过光伏发电向网元供电。再例如,电源系统可以通过风力发电向网元供电。
可选地,管理系统检测到满足预设条件时,可以根据电源系统的第一状态和第一意图生成指示信息,该指示信息用于指示网元执行相应的第一操作。例如,管理系统检测到电源系统由蓄电池供电时,管理系统根据第一意图和电源系统的第一状态可以确定需要执行第一操作,即载波关断,则管理系统可以发送指示信息,该指示信息用于指示网元执行载波关断的操作。
可选地,在一些实施例中,电源系统通过蓄电池向网元供电,电源系统的状态包括蓄 电池的剩余电量。管理系统可以根据蓄电池的剩余电量确定需要执行的操作。例如,管理系统检测到电源系统通过蓄电池供电时,管理系统可以根据蓄电池的剩余电量是否大于第一阈值(例如第一阈值为70%)选择不同的操作。当蓄电池的剩余电量大于第一阈值时,管理系统可以确定网元需要执行的操作为第一操作;当蓄电池的剩余电量小于第一阈值时,管理系统可以确定网元需要执行的操作为第二操作。
进一步地,在一些实施例中,当检测到蓄电池的第一状态变为第二状态时,例如蓄电池的剩余电量发生变化时,管理系统可以根据剩余电量的变化,实时的调整网元需要执行的操作。例如,管理系统检测到蓄电池的剩余电量为80%,则确定操作为第一操作并发送给网元,网元可以执行第一操作,随着网元的业务运行,蓄电池的剩余电量降低至70%时,管理系统可以确定操作为第二操作并发送给网元,网元接收到第二操作后,可以执行第二操作。
需要说明的是,网元执行第二操作时,可以停止执行第一操作,也可以继续执行第一操作,本申请实施例对此不作限定,例如管理系统可以指示网元继续执行第一操作。
可选地,在一些实施例中,电源系统通过蓄电池向网元供电,电源系统的状态包括蓄电池的剩余电量。管理系统可以根据蓄电池的剩余电量和第一意图确定需要执行的操作。例如,管理系统检测到电源系统通过蓄电池供电时,管理系统可以根据剩余电量是否大于第一阈值(例如第一阈值为70%)和根据第一意图得到的备电时长(例如第二阈值为3小时)是否大于第二阈值确定不同的操作。当蓄电池的剩余电量大于第一阈值且备电时长小于第二阈值时,管理系统可以确定需要执行的操作为第一操作;当蓄电池的剩余电量大于第一阈值且备电时长大于第二阈值时,管理系统可以确定需要执行的操作为第二操作;当蓄电池的剩余电量小于第一阈值且备电时长小于第二阈值时,管理系统可以确定需要执行的操作为第二操作;当蓄电池的剩余电量小于第一阈值且备电时长大于第二阈值时,管理系统可以确定需要执行的操作为第三操作。
类似地,管理系统可以根据蓄电池状态的变化,实时的调整网元需要执行的操作,在此不再赘述。
可选地,在一些实施例中,电源系统通过蓄电池向网元供电,电源系统的状态可以包括蓄电池的剩余电量、负载电流。管理系统可以根据剩余电量、负载电流、第一意图确定网元需要执行的操作。具体地,管理系统可以根据剩余电量和负载电流预估剩余备电时长,然后管理系统可以根据剩余备电时长和根据第一意图确定的备电时长的关系确定网元需要执行的操作。例如,管理系统根据剩余电量和负载电流预估剩余备电时长为3小时,且根据第一意图确定的备电时长为2小时,则管理系统选择的操作可以是对网络性能影响小的操作,例如第一操作。再例如,管理系统根据剩余电量和负载电流预估剩余备电为3小时,且备电时长为4小时,则管理系统可以选择比较节电的操作,例如第二操作。
替代性地,另一些实施例中,网元可以根据剩余电量和负载电流预估剩余备电时长,然后将预估的剩余备电时长发送给管理系统,管理系统再根据预估的剩余备电时长和根据第一意图得到的备电时长确定网元需要执行的操作。
可选地,在一些实施例中,电源系统可以直接计算其剩余备电时长,则管理系统可以直接获取该剩余备电时长并根据第一意图确定网元需要执行的操作。
进一步地,在一些实施例中,当电源系统通过蓄电池供电时,电源系统的状态还可以 包括电源系统的温度、电压、蓄电池的类型。例如,考虑到蓄电池在不同的温度下的衰减速度不同,管理系统通过剩余电量和负载电流确定第一剩余备电时长,可以再结合温度进一步的确定第二剩余备电时长。示例性地,管理系统通过剩余电量和负载电流确定剩余备电时长为5小时,当温度为60℃时,管理系统最终确定的剩余备电时长为3.5小时,当温度为50℃时,管理系统最终确定的剩余备电时长为4小时。
应理解,上述描述中仅以电源系统的状态可以是剩余电量、负载电流、温度、电压为例,但本申请实施例并不限定于此,例如,当电源系统通过蓄电池供电时,电源系统的状态还可以包括蓄电池的充放电次数、类型等。
可选地,在一些实施例中,S404,管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态和第一意图确定第一操作,包括:管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态、第一服务质量(qualityofservice,QoS)和第一意图确定第一操作。QoS是指用来解决网络延迟和阻塞等问题的一种技术。当网络发生拥塞的时候,数据有可能被丢弃,为满足用户的需求可以提供不同的QoS。管理系统可以根据电源系统的第一状态,网元的第一QoS以及第一意图确定对应的第一操作。
例如,以电源系统的状态为剩余电量为例,管理系统检测到电源系统通过蓄电池供电时,管理系统可以根据剩余电量确定剩余备电时长,若第一意图指示的备电时长短,而网元的第一QoS要求高,则管理系统可以确定一个对网络性能影响小的操作。
再例如,以电源系统的状态为剩余电量为例,管理系统检测到电源系统通过蓄电池供电时,管理系统可以根据剩余电量确定剩余备电时长,若第一意图指示的备电时长长,而网元的第一QoS要求低,则管理系统可以确定一个对备电时长影响小的操作。
S405,管理系统发送第一操作。
具体地,管理系统可以向网元发送指示信息,该指示信息用于指示网元执行管理系统确定的第一操作。
S406,网元执行第一操作。
具体地,网元可以接收管理系统的指示信息,并根据该指示信息执行第一操作。
进一步地,方法400还包括:管理系统检测到电源系统的第一状态变为第二状态时,根据第一意图和电源系统的第二状态确定第二操作。例如,管理系统检测到蓄电池的剩余电量为80%,则确定操作为符号关断,随着网元的业务运行,蓄电池的剩余电量降低至70%时,则可以确定操作为载波关断。
本申请实施例中,管理系统可以根据电源系统的状态和接收到的意图确定操作,然后指示该网元执行该操作,从而网元可以执行相应的操作,由于管理系统是根据电源系统的状态和意图确定网元需要执行的操作,则该操作可以契合电源系统的状态和意图,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
图5示出了本申请实施例提供的另一种备电方法500的示意性流程图。基于图4示出的方法400,在一些可选地实施例中,在步骤S404中,管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态和第一意图确定第一操作,包括:
S4041,管理系统根据第一意图确定第一策略。
可选地,管理系统接收第一意图后,可以根据该第一意图得到备电时长。例如,第一意图指示备电时长时,管理系统转译该第一意图后可以得到备电时长。再例如,第一意图 指示节电偏好时,管理系统转译该第一意图后可以得到节电偏好,然后管理系统可以根据节电偏好得到备电时长。再例如,第一意图指示备电偏好时,管理系统转译该第一意图后可以得到备电偏好,然后管理系统可以根据备电偏好得到备电时长。示例性地,意图系统中包括知识管理模块,管理系统可以通过知识管理模块中的意图知识库查询节电偏好、备电偏好对应的备电时长。管理系统确定备电时长后可以配置第一策略。具体地,管理系统确定第一意图后,可以根据第一意图确定第一策略,然后管理系统将第一策略发送给网元,该第一策略可以指示备电策略与操作的对应关系。在另一些实施例中,该第一策略还可以指示备电策略、蓄电池的状态以及操作的对应关系。换句话说,第一策略可以理解为包括备电策略、蓄电池的状态以及操作的对应关系的表格,或可以包括备电策略以及操作的对应关系的表格。蓄电池的状态可以包括蓄电池的类型、蓄电池的剩余电量、蓄电池的负载电流、蓄电池的充放电次数等。
示例性地,表1所示为本申请实施例提供的一种第一策略。由表1可得,第一备电策略对应的操作为不采取节电动作;第二备电策略对应的操作为符号关断;第三备电策略对应的操作为载波关断。
表1第一策略
备电策略 操作
第一 无动作
第二 符号关断
第三 载波关断
示例性地,表2所示为本申请实施例提供的另一种第一策略,其中蓄电池的状态为剩余电量。由表2可得,剩余电量100%、80%、60%为备电策略的分界点,配置的第一策略为当蓄电池的剩余电量大于80%时,备电策略为第一备电策略,第一备电策略对应的操作为不采取节电动作;当蓄电池的电量为大于60%且小于80%时,备电节电策略为第二备电策略,第二备电策略对应的操作为符号关断;当蓄电池的电量为小于60%时,备电策略为第三备电策略,第三备电策略对应的操作为载波关断。当蓄电池的剩余电量处于分界点时,既可以将备电策略配置为大于该分界点剩余电量的备电策略,也可以将备电策略配置为小于该分界点剩余电量的备电策略。例如,当剩余电量为80%时,备电策略可以为第一备电策略,也可以为第二备电策略,本申请实施例对此不作限定。
表2第一策略
剩余电量/% 备电策略 操作
100 第一 无动作
80 第二 符号关断
60 第三 载波关断
示例性地,表3所示为本申请实施例提供的另一种第一策略,其中蓄电池的状态为剩余电量和负载电流。由表3可得,类似地配置的第一策略为当蓄电池的负载电流为高负载时,剩余电量为大于90%时,采取备电策略为第一备电策略,对应的操作为不采取节电动作;配置的第一策略为当蓄电池的负载电流为高负载时,剩余电量为大于70%小于90%时,采取备电策略为第二备电策略,对应的操作为符号关断;配置的第一策略为当蓄电池的负载电流为高负载时,剩余电量为小于70%时,采取备电策略为第三备电策略,对应的 操作为载波关断。针对负载电流为中负载和低负载的描述可以参见上文描述,在此不再赘述。高负载电流、中负载电流、低负载电流可以根据网元的不同进行设置,例如满载电流为50A,可以认为40A-50A的负载电流为高负载电流,25A-40A的负载电流为中负载电流,0A-25A的负载电流为低负载电流。
表3第一策略
Figure PCTCN2022132236-appb-000001
应理解,表1至表3所示的第一策略仅为示意,本申请实施例还可以根据蓄电池的状态的不同配置不同的第一策略。
可选地,管理系统确定第一意图后,可以根据第一意图与管理系统管理的网元配置第一策略,然后将第一策略发送给网元。例如,管理系统为EMS,该EMS可以管理第一网元和第二网元,则EMS可以根据第一网元和第二网元的确定不同的第一策略。
示例性地,表4所示为本申请实施例提供的另一种第一策略,其中蓄电池的状态为剩余电量。由表4可得,类似地当剩余电量为大于80%时,第一网元的备电策略为第一备电策略,对应的操作为不采取节电动作;当剩余电量大于60%且小于80%时,第一网元的备电策略为第二备电策略,对应的操作为符号关断;当剩余电量小于60%时,第一网元的备电策略为第三备电策略,对应的操作为载波关断。类似地,针对第二网元的描述可以参见针对第一网元的描述,在此不再赘述。
表4第一策略
Figure PCTCN2022132236-appb-000002
上述表1至表4介绍的是一个备电策略对应一个操作,但本申请实施例对此不作限定,还可以一个备电策略对应多个操作,然后根据电源系统的状态确定再具体对应不同的操作, 即可以理解为一个备电策略包括多个操作,通过电源系统的状态再去区分该多个操作。
示例性地,表5所示为本申请实施例提供的另一种第一策略。由表5可得,同一个备电策略可以对应多个操作,其主要是根据在不同的剩余电量的情况下对应不同的操作。换句话说,一个备电策略包括多个操作,网元接收到该备电策略后可以根据剩余电量的不同选择不同的操作。例如,第一备电策略在剩余电量为100%时对应的操作为不采取节电动作,在剩余电量为90%时对应的操作为符号关断,在剩余电量为70%时对应的操作为符号关断。
可以理解为是,不用的备电策略可以有不同的效果。例如,第一备电策略在电量分别为100%、90%、70%时对应的操作为无动作、符号关断、符号关断。第二备电策略在电量分别为100%、90%、70%时对应的操作为符号关断、符号关断、载波关断,其中载波关断的节电效果大于符号关断。由此可以看出,采取第一备电策略时的节电效果会差于第二备电策略,类似地,第二备电策略的节电效果差于第三备电策略。相应地,采取第一备电效果对网络的影响小于第二备电策略和第三备电策略,因此管理设备可以根据电源系统的状态和第一意图确定不同的备电策略,具体说明请参见后文说明。
表5第一策略
Figure PCTCN2022132236-appb-000003
示例性地,表6所示为本申请实施例提供的另一种第一策略。由表6可得,同一个备电策略可以对应多个操作,其主要是根据在不同的剩余电量和负载电流的情况下来区分不同的操作。换句话说,一个备电策略包括多个操作,网元可以根据剩余电量和负载电流的不同选择不同的操作。例如,第一备电策略在剩余电量为100%且负载电流为高负载电流时对应的操作为不采取节电动作;在剩余电量为100%且负载电流为中负载电流时对应的操作为不采取节电动作;在剩余电量为100%且负载电流为低负载电流时对应的操作为不采取节电动作;在剩余电量为90%且负载电流为高负载电流时对应的操作为符号关断;在剩余电量为90%且负载电流为中负载电流时对应的操作为符号关断;在剩余电量为90%且负载电流为低负载电流时对应的操作为不采取节电动作;在剩余电量为700%且负载电流为高负载电流时对应的操作为载波关断;在剩余电量为90%且负载电流为中负载电流时对应的操作为载波关断;在剩余电量为90%且负载电流为低负载电流时对应的操作为符号关断。类似地,针对第二备电策略的描述,可以参见针对第一备电策略的描述,为了简洁,在此不再赘述。
需要说明的是,表5和表6仅是示例性地介绍了一个备电策略可以对应多个操作,并 根据剩余电量、或剩余电量和负载电流确定不同的操作,但并不限定于此,例如,同一个备电策略可以对应多个操作,还可以根据剩余电量、负载电流、电压来区分不同的操作。再例如,同一个备电策略可以对应多个操作,还可以根据剩余电量、负载电流、温度来区分不同的操作。再例如,同一个备电策略可以对应多个操作,还可以根据剩余电量、负载电流、电压、温度来区分不同的操作。
表6第一策略
Figure PCTCN2022132236-appb-000004
替代性地,在另一些实施例中,网元可以配置第一策略。管理系统确定第一意图后,可以发送指示信息,该指示信息用于指示网元配置第一策略。针对第一策略的描述可以参见上文的描述,为了简洁,在此不再赘述。
示例性地,表7所示为本申请实施例提供的另一种第一策略。由表7可得,同一个备电策略可以对应多个操作,其主要是根据在不同的剩余电量和QoS的情况下来区分不同的操作。换句话说,一个备电策略包括多个操作,网元可以根据剩余电量和QoS的不同选择不同的操作。例如,第一备电策略在剩余电量为100%且QoS等级为高等级时对应的操作为不采取节电动作;在剩余电量为100%且QoS等级为中等级时对应的操作为不采取节电动作;在剩余电量为100%且QoS等级为低等级时对应的操作为不采取节电动作;在剩余电量为90%且QoS等级为高等级时对应的操作为符号关断;在剩余电量为90%且QoS等级为中等级时对应的操作为符号关断;在剩余电量为90%且QoS等级为低等级时对应的操作为不采取节电动作;在剩余电量为70%且QoS等级为高等级时对应对应的操作为载波关断;在剩余电量为90%且QoS等级为中等级对应的操作为载波关断;在剩余电量 为70%且QoS等级为低等级时对应的操作为符号关断。类似地,针对第二备电策略的描述,可以参见针对第一备电策略的描述,为了简洁,在此不再赘述。
需要说明的是,表5和表6仅是示例性地介绍了一个备电策略可以对应多个操作,并根据剩余电量、或剩余电量和负载电流确定不同的操作,但并不限定于此,例如,同一个备电策略可以对应多个操作,还可以根据剩余电量、负载电流、电压来区分不同的操作。再例如,同一个备电策略可以对应多个操作,还可以根据剩余电量、负载电流、温度来区分不同的操作。再例如,同一个备电策略可以对应多个操作,还可以根据剩余电量、负载电流、电压、温度来区分不同的操作。
表7第一策略
Figure PCTCN2022132236-appb-000005
S4042,管理系统检测到电源系统满足预设条件时,根据第一意图和电源系统的第一状态确定第一备电策略。
具体地,管理系统检测电源系统,当检测到满足预设条件时,管理系统可以根据电源系统的蓄电池的第一状态和第一意图确定第一备电策略。该第一备电策略可以是类似于表1至表4的形式,即一个备电策略对应一个操作,也可以是类似于表5至表6的形式,即一个备电策略对应多个操作,然后根据不同的电源系统确定不同的操作。
可选地,在一些实施例中,电源系统通过蓄电池向网元供电,电源系统的状态可以包括蓄电池的剩余电量、负载电流。管理系统可以根据剩余电量、负载电流、第一意图确定备电策略。具体地,管理系统可以根据剩余电量和负载电流预估剩余备电时长,然后管理系统可以根据剩余备电时长和根据第一意图确定的备电时长确定备电策略。换句话说,当 预估的剩余备电时长大于根据第一意图确定的备电时长时,管理系统可以确定一个对网络性能影响较小的备电策略,当预估的剩余备电时长小于根据第一意图确定的备电时长时,管理系统可以确定一个节电效果好的备电策略。
例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。当一个备电策略对应一个操作时,管理系统根据蓄电池的剩余电量和负载电流预估蓄电池的剩余备电时长为3小时,且根据第一意图确定的备电时长为2小时,则管理系统可以确定第一备电策略。再例如,管理系统根据蓄电池的剩余电量和负载电流预估蓄电池剩余备电为3小时,且备电时长为4小时,则管理系统可以确定第二备电策略。
再例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。一个备电策略对应多个操作时,管理系统根据蓄电池的剩余电量和负载电流预估蓄电池的剩余备电时长为3小时,且根据第一意图确定的备电时长为2小时。管理系统可以确定对网络性能影响较小的备电策略,例如第一备电策略。再例如,管理系统根据蓄电池的剩余电量和负载电流预估蓄电池剩余备电为3小时,且备电时长为4小时,则管理系统可以确定节电效果好的备电策略,例如第二备电策略。
进一步地,在一些实施例中,当检测到蓄电池的第一状态变为第二状态时,例如蓄电池的剩余电量发生变化和/或负载电流发生变化时,管理系统可以根据剩余电量和/或负载电流的变化,实时的调整备电策略。
例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。一个备电策略对应一个操作时,管理系统根据蓄电池的剩余电量和负载电流预估蓄电池的剩余备电时长为3小时,且根据第一意图确定的备电时长为2小时,则确定备电策略为第一备电策略。随着网元的业务运行,蓄电池的剩余电量降低且负载电流变大,管理系统预估剩余备电时长为1小时,而根据第一意图还需运行1.5小时,若仍采取第一备电策略将不能满足第一意图,则管理系统可以确定能够满足第一意图的备电策略,例如第二备电策略。管理系统将确定的备电策略发送给网元,由网元执行备电策略对应的操作,具体说明请参见后文说明。
再例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。一个备电策略对应多个操作时,管理系统根据蓄电池的剩余电量和负载电流预估蓄电池的剩余备电时长为3小时,且根据第一意图确定的备电时长为2小时,则管理系统可以确定对网络性能影响较小的备电策略,例如第一备电策略。网元根据剩余电量的不同选择第一备电策略对应的不同操作。随着网元的业务运行,蓄电池的剩余电量降低,例如由100%降低至60%,此时网元采取的操作为符号关断,符号关断是第一备电策略中最节电的操作,但是管理系统预估剩余备电时长为1小时,而根据第一意图网元还需运行1.5小时,即网元采取第一备电策略无法实现第一意图。为了能够实现第一意图,管理系统可以更新备电策略,使得更新后的备电策略中包括比符号关断更加节电的操作,例如载波关断,然后将更新后的备电策略发送给网元。
替代性地,另一些实施例中,网元可以根据蓄电池的剩余电量和负载电流预估蓄电池的剩余备电时长,然后将预估的剩余备电时长发送给管理系统,管理系统再根据预估的剩余备电时长和根据第一意图得到的备电时长确定备电策略。
可选地,在一些实施例中,电源系统可以直接计算其剩余备电时长,则管理系统可以 直接获取该剩余备电时长并根据第一意图确定备电策略。
进一步地,在一些实施例中,当电源系统通过蓄电池供电时,电源系统的状态还可以包括电源系统的温度、电压、蓄电池的类型。例如,考虑到蓄电池在不同的温度下的衰减速度不同,管理系统通过剩余电量和负载电流确定第一剩余备电时长,可以再结合温度进一步的确定第二剩余备电时长。示例性地,管理系统通过剩余电量和负载电流确定剩余备电时长为5小时,当温度为60℃时,管理系统最终确定的剩余备电时长为3.5小时,当温度为50℃时,管理系统最终确定的剩余备电时长为4小时。
应理解,上述描述中仅以电源系统的状态可以是剩余电量、负载电流为例,但本申请实施例并不限定于此,例如,蓄电池的状态还可包括蓄电池的充放电次数、类型等。
可选地,在另一些实施例中,管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态、第一服务质量和第一意图确定第一操作,包括:管理系统检测到电源系统满足预设条件时,根据第一意图、电源系统的第一状态和网元的第一QoS确定第一备电策略。
具体地,管理系统检测电源系统,当检测到满足预设条件时,管理系统可以根据电源系统的蓄电池的第一状态、第一意图和网元的第一QoS确定第一备电策略。该第一备电策略可以是类似于表1至表4的形式,即一个备电策略对应一个操作,也可以是类似于表5至表7的形式,即一个备电策略对应多个操作,然后根据不同的电源系统的状态和网元的QoS确定不同的操作。
例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。当一个备电策略对应一个操作时,管理系统根据蓄电池的剩余电量预估蓄电池的剩余备电时长为3小时,且根据第一意图确定的备电时长为2小时,网元的第一QoS指示网元对应网络性能要求高,则管理系统可以确定第一备电策略。再例如,管理系统根据蓄电池的剩余电量预估蓄电池剩余备电为3小时,且备电时长为4小时,网元的第一QoS指示网元对网络性能要求低,则管理系统可以确定第二备电策略。
在一些可选地实施例中,在步骤S405中,管理系统发送第一操作,包括:
S4051,管理系统发送第一策略。
具体地,管理系统确定第一策略后,可以向网元发送第一策略。
S4052,管理系统发送第一备电策略。
具体地,管理系统确定第一备电策略后,可以向网元发送第一备电策略。
可选地,在一些实施例中,管理系统可以向网元发送指示信息,该指示信息用于指示第一备电策略。
可选地,在一些实施例中,管理系统确定第一备电策略后,管理系统可以向网元发送开启备电特性的命令,然后管理系统可以配置备电特性中的参数以实现下发第一备电策略。例如,备电特性中包括参数:savepolicy,可以将该参数的值设置为policy1,即可以认为管理系统向网元发送了第一备电策略。
可选地,在另一些实施例中,管理系统可以先向网元发送开启备电特性的命令,当检测到电源系统满足预设条件的情况下,管理系统再发送备电策略。例如,管理系统可以在完成配置第一策略后向网元发送开启备电特性的命令。再例如,管理系统可以在检测电源系统的状态时,向网元发送开启备电特性的命令。
在一些可选地实施例中,在步骤S406中,网元执行第一操作,包括:
S4061,网元根据第一备电策略执行第一备电策略对应的操作。
可选地,在一些实施例中,网元接收管理系统发送的指示信息,该指示信息用于指示第一备电策略,网元根据第一备电策略和第一策略执行该第一备电策略对应的操作。
可选地,在一些实施例中,网元开启备电特性并确定管理系统发送的是第一备电策略,则网元可以执行第一备电策略对应的操作。
其中,当一个备电策略对应一个操作时,网元可以直接根据该备电策略执行对应的操作,当一个备电策略对应多个操作时,网元可以根据电源系统的状态确定具体需要执行的操作。例如,管理系统向网元发送第一备电策略,第一备电策略在剩余电量分别为100%、90%、70%时对应的操作为无动作、符号关断、符号关断,网元确定剩余电量为80%时,则执行符号关断的操作。
进一步地,在一些实施例中,当管理系统检测到电源系统由第一状态变为第二状态时,管理系统可以更新备电策略并发送更新后的备电策略,网元接收更新后的备电策略后,可以根据更新后的策略执行对应的操作。其中,当一个备电策略对应一个操作时,网元可以直接根据更新后的备电策略执行对应的操作,当更新后的备电策略对应多个操作时,网元可以根据电源系统的状态确定具体需要执行的操作。例如,管理系统更新后的备电策略为第二备电策略,第二备电策略在剩余电量分别为100%、90%、70%时对应的操作为符号关断、符号关断、载波关断,网元确定剩余电量为60%时,则执行符号关断的操作。
本申请实施例中对于网元获取电源系统状态的方式并不限定,例如,网元可以向电源系统发送请求信息用于请求电源系统的状态。再例如,电源系统可以定期向网元发送电源系统的状态。
可选地,在一些实施例中,方法400、500还包括:管理系统发送意图反馈信息。
具体地,管理系统可以发送向意图消费者发送意图反馈信息,用以指示第一意图以完成。
本申请实施例中,管理系统可以根据电源系统的状态和备电时长动态的调整备电策略,可以减少由于采取操作对网络性能的影响。
替代性地,管理系统检测电源系统的状态时,还可以通过数据收集协调功能(Data Collection Coordination Function,DCCF)检测电源系统的状态。
应理解管理系统通过数据收集协调功能检测电源系统的状态的描述与管理系统通过网元检测电源系统的状态的描述类似,为了简洁,在此不再赘述。
图6示出了本申请实施例提供的一种备电方法600的示意性流程图,该流程包括:
S601,意图消费者发送第一意图。
具体地,意图系统可以部署在网元中,意图消费者可以向网元发送第一意图,第一意图用于指示备电时长或节电偏好或备电偏好。
可选地,意图消费者可以直接向网元发送第一意图
可选地,意图消费者可以通过透传的方式向网元发送第一意图。
可选地,管理系统也可以部署意图系统,意图消费者向管理系统发送第一意图后,管理系统转译第一意图后,可以向网元发送第二意图,其中第二意图用于指示备电时长或节电偏好或备电偏好。
S602,网元接收第一意图。
具体地,网元可以接收由意图消费者直接发送的第一意图或由管理系统转发的第一意图。
S603,网元检测电源系统。
应理解,网元检测电源系统和管理系统检测电源系统类似,为了简洁,在此不再赘述。
S604,网元检测到电源系统满足预设条件,根据电源系统的第一状态和第一意图确定第一操作。
具体地,网元可以检测电源系统的状态,当检测到电源系统满足预设条件时,网元可以根据检测到的电源系统的第一状态和第一意图确定需要执行的操作。
应理解,网元根据电源系统的第一状态和第一意图确定第一操作与管理系统根据电源系统的第一状态和第一意图确定第一操作类似,为了简洁,在此不再赘述。
S605,网元执行第一操作。
本申请实施例中,管理系统可以根据电源系统的蓄电池的状态和备电时长动态的调整操作,提高了备电的灵活性,减少对网络性能的影响。
在图4-图6示出的备电方法中管理系统或网元部署有意图系统,从而管理系统或网元接收意图消息后可以根据意图消息确定节电操作或备电节电策略,但本申请实施例并不限定于此,管理系统或网元也可以不部署有意图系统而实施本申请实施例提供的备电方法。
图7示出了本申请实施例提供的一种备电方法700的示意性流程图,该方法应用于网络系统,该网络系统包括管理系统、网元,该管理系统包括第一管理系统和第二管理系统,如图7所示,该流程包括
S701,第一管理系统向第二管理系统发送第一指示信息。
对应的,第二管理系统接收第一管理系统发送的第一指示信息。
示例性地,第一管理系统可以是NMS或OSS,第二管理系统可以是EMS,下文中以第一系统为NMS,第二管理系统为EMS为例进行说明。
NMS可以向EMS发送第一指示信息,该第一指示信息用于指示备电时长/或节电偏好/或备电偏好。
应理解,针对备电时长、备电偏好和节电偏好的描述可以参见上文,为了简洁,在此不再赘述。
S702,第二管理系统检测电源系统。
应理解,针对S702的描述可以参见针对S402的描述,为了简洁,在此不再赘述。
S703,第二管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一操作。
在一些实施例中,电源系统的第一状态包括电源系统的第一剩余电量。
在一些实施例中,电源系统的第一状态还包括以下中的至少一项:第一负载电流、第一剩余备电时长、电源系统的第一温度。
第二管理系统可以通过以下几种可能的方式根据第一指示信息和电源系统的第一状态确定第一操作。
一种可能的方式:第二管理系统预置有用于指示备电时长、电源系统的状态和操作的对应关系,从而当第二管理系统接收到用于指示备电时长的第一指示信息后,可以根据第 一指示信息、电源系统的第一状态确定第一操作。
一种可能的方式:第二管理系统预置有用于指示节电偏好、电源系统的状态和操作的对应关系,从而当第二管理系统接收到用于指示节电偏好的第一指示信息后,可以根据第一指示信息、电源系统的第一状态确定第一操作。
一种可能的方式:第二管理系统预置有用于指示节备电偏好、电源系统的状态和操作的对应关系,从而当第二管理系统接收到用于指示备电偏好的第一指示信息后,可以根据第一指示信息、电源系统的第一状态确定第一操作。
例如,表8示出了本申请实施例提供的一种备电时长、电源系统的状态和操作的表格。
如表8所示,当第一指示信息指示的备电时长在1h-3h之间且剩余电量处于90%-100%时,确定不进行操作。当第一指示信息指示的备电时长在1h-3h之间且剩余电量处于70%-90%时,确定操作为符号关断。当第一指示信息指示的备电时长处于1h-3h之间且剩余电量处于70%以下时,确定操作为载波关断。类似的,当第一指示信息指示的备电时长为3h-5h或指示的备电时长为5h-7h时,第二管理系统可以根据剩余电量确定相应的操作。
表8备电时长、电源系统的状态和操作的对应关系表
Figure PCTCN2022132236-appb-000006
再例如,表9示出了本申请实施例提供的一种节电偏好、电源系统的状态和操作的表格。
如表9所示,当第一指示信息指示的节电偏好为高等级且剩余电量处于90%-100%时,确定不进行操作。当第一指示信息指示的节电偏好为高等级且剩余电量处于70%-90%时,确定操作为符号关断。当第一指示信息指示的节电偏好为高等级且剩余电量处于70%以下时,确定操作为载波关断。类似的,当第一指示信息指示的节电偏好为中等级或指示的节电偏好为低等级时,第二管理系统可以根据剩余电量确定相应的操作。
表9节电偏好、电源系统的状态和操作的对应关系表
Figure PCTCN2022132236-appb-000007
Figure PCTCN2022132236-appb-000008
再例如,表10示出了本申请实施例提供的一种备电偏好、电源系统的状态和操作的表格。
如表10所示,当第一指示信息指示的备电偏好为高等级且剩余电量处于90%-100%时,确定不进行操作。当第一指示信息指示的备电偏好为高等级且剩余电量处于70%-90%时,确定操作为符号关断。当第一指示信息指示的备电偏好为高等级且剩余电量处于70%以下时,确定操作为载波关断。类似的,当第一指示信息指示的备电偏好为中等级或指示的备电偏好为低等级时,第二管理系统可以根据剩余电量确定相应的操作。
表10备电偏好、电源系统的状态和操作的对应关系表
Figure PCTCN2022132236-appb-000009
一种可能的实现方式:第二管理系统中部署有用于确定操作的模型,该模型的输入可以是备电时长或备电偏好或节电偏好,输出可以是节电的操作,第二管理系统接收到第一指示信息后,可以将第一指示信息输入到模型中,从而得到第一操作。
S704,第二管理系统向网元发送第一操作。
S705,网元执行第一操作。
应理解,针对S704和S705的描述可以参见上文,为了简洁,在此不再赘述。
可选地,在一些实施例中,S703,第二管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态和第一指示信息确定第一操作,包括:第二管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态、第一QoS和第一指示信息确定第一操作。
例如,以电源系统的状态为剩余电量为例,管理系统检测到电源系统通过蓄电池供电时,管理系统可以根据剩余电量确定剩余备电时长,若第一指示信息指示的备电时长短,而网元的第一QoS要求高,则管理系统可以确定一个对网络性能影响小的操作。
再例如,以电源系统的状态为剩余电量为例,管理系统检测到电源系统通过蓄电池供电时,管理系统可以根据剩余电量确定剩余备电时长,若第一指示信息指示的备电时长长,而网元的第一QoS要求低,则管理系统可以确定一个对备电时长影响小的操作。
可选地,在一些实施例中,该方法还包括:第二管理系统检测到电源系统的第一状态 变为第二状态时,根据第一指示信息和电源系统的第二状态确定第二操作。
本申请实施例中,第二管理系统可以根据电源系统的状态和接收到的指示信息确定操作,然后指示网元执行该操作,从而网元可以执行相应的操作,由于第二管理系统是根据电源系统的状态和指示信息确定网元需要执行的操作,则该操作可以契合电源系统的状态,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
可选地,在一些实施例中,S703,第二管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一操作,包括:
第二管理系统根据第一指示信息确定第一策略;
第二管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一备电策略。
第二管理系统检测电源系统,当检测到满足预设条件时,第二管理系统可以根据电源系统的蓄电池的第一状态和第一指示信息确定第一备电策略。该第一备电策略可以是类似于表1至表4的形式,即一个备电策略对应一个操作,也可以是类似于表5至表6的形式,即一个备电策略对应多个操作,然后根据不同的电源系统确定不同的操作。
可选地,在另一些实施例中,第二管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态、第一服务质量和第一指示信息确定第一操作,包括:管理系统检测到电源系统满足预设条件时,根据第一指示信息、电源系统的第一状态和网元的第一QoS确定第一备电策略。
具体地,第二管理系统检测电源系统,当检测到满足预设条件时,第二管理系统可以根据电源系统的蓄电池的第一状态、第一指示信息和网元的第一QoS确定第一备电策略。该第一备电策略可以是类似于表1至表4的形式,即一个备电策略对应一个操作,也可以是类似于表5至表7的形式,即一个备电策略对应多个操作,然后根据不同的电源系统的状态和网元的QoS确定不同的操作。
例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。当一个备电策略对应一个操作时,管理系统根据蓄电池的剩余电量预估蓄电池的剩余备电时长为3小时,且根据第一指示信息确定的备电时长为2小时,网元的第一QoS指示网元对应网络性能要求高,则管理系统可以确定第一备电策略。再例如,管理系统根据蓄电池的剩余电量预估蓄电池剩余备电为3小时,且备电时长为4小时,网元的第一QoS指示网元对网络性能要求低,则管理系统可以确定第二备电策略。
在一些可选地实施例中,S704,第二管理系统发送第一操作,包括:
第二管理系统发送第一策略;
第二管理系统发送第一备电策略。
具体地,第二管理系统确定第一策略和第一备电策略后,可以向网元发送第一策略和第一备电策略。
可选地,在一些实施例中,第二管理系统可以向网元发送指示信息,该指示信息用于指示第一备电策略。
可选地,在一些实施例中,第二管理系统确定第一备电策略后,第二管理系统可以向网元发送开启备电特性的命令,然后第二管理系统可以配置备电特性中的参数以实现下发第一备电策略。例如,备电特性中包括参数:savepolicy,可以将该参数的值设置为policy1, 即可以认为管理系统向网元发送了第一备电策略。
可选地,在另一些实施例中,第二管理系统可以先向网元发送开启备电特性的命令,当检测到电源系统满足预设条件的情况下,管理系统再发送备电策略。例如,第二管理系统可以在完成配置第一策略后向网元发送开启备电特性的命令。再例如,第二管理系统可以在检测电源系统的状态时,向网元发送开启备电特性的命令。
在一些可选地实施例中,S705,网元执行第一操作,包括:
网元根据第一备电策略执行第一备电策略对应的操作。
可选地,在一些实施例中,网元接收第二管理系统发送的指示信息,该指示信息用于指示第一备电策略,网元根据第一备电策略和第一策略执行该第一备电策略对应的操作。
可选地,在一些实施例中,网元开启备电特性并确定第二管理系统发送的是第一备电策略,则网元可以执行第一备电策略对应的操作。
其中,当一个备电策略对应一个操作时,网元可以直接根据该备电策略执行对应的操作,当一个备电策略对应多个操作时,网元可以根据电源系统的状态确定具体需要执行的操作。例如,管理系统向网元发送第一备电策略,第一备电策略在剩余电量分别为100%、90%、70%时对应的操作为无动作、符号关断、符号关断,网元确定剩余电量为80%时,则执行符号关断的操作。
进一步地,在一些实施例中,当管理系统检测到电源系统由第一状态变为第二状态时,第二管理系统可以更新备电策略并发送更新后的备电策略,网元接收更新后的备电策略后,可以根据更新后的策略执行对应的操作。其中,当一个备电策略对应一个操作时,网元可以直接根据更新后的备电策略执行对应的操作,当更新后的备电策略对应多个操作时,网元可以根据电源系统的状态确定具体需要执行的操作。例如,管理系统更新后的备电策略为第二备电策略,第二备电策略在剩余电量分别为100%、90%、70%时对应的操作为符号关断、符号关断、载波关断,网元确定剩余电量为60%时,则执行符号关断的操作。
本申请实施例中对于网元获取电源系统状态的方式并不限定,例如,网元可以向电源系统发送请求信息用于请求电源系统的状态。再例如,电源系统可以定期向网元发送电源系统的状态。
本申请实施例中,第二管理系统可以根据电源系统的状态和备电时长动态的调整备电策略,可以减少由于采取操作对网络性能的影响。
图8示出了本申请实施例提供的一种备电方法800的示意性流程图,该方法应用于网络系统,该网络系统包括管理系统、网元,该管理系统包括第一管理系统和第二管理系统,如图8所示,该流程包括
S801,第一管理系统检测电源系统。
示例性地,第一管理系统可以是NMS或OSS,第二管理系统可以是EMS,下文中以第一系统为NMS,第二管理系统为EMS为例进行说明。
应理解,针对S801的描述可以参见针对S403的描述,为了简洁,在此不再赘述。
S802,第一管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一操作。
第一管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一操作,第一指示信息用于指示备电时长或备电偏好或节电偏好。第一指示信 息可以是运营商配置的。
在一些实施例中,电源系统的第一状态包括电源系统的第一剩余电量。
在一些实施例中,电源系统的第一状态还包括以下中的至少一项:第一负载电流、第一剩余备电时长、电源系统的第一温度。
应理解,针对S802的描述可以参见S703的描述,为了简洁,在此不再赘述。
S803,第一管理系统向网元发送第一操作。
第一管理系统可以通过透传的方式向网元发送第一操作,即第一管理系统可以先向第二管理系统发送第一操作,然后第二管理系统向网元发送第一操作。
S804,网元执行第一操作。
应理解,针对S804的描述可以参见上文,为了简洁,在此不再赘述。
可选地,在一些实施例中,S802,第一管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态和第一指示信息确定第一操作,包括:第一管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态、第一QoS和第一指示信息确定第一操作。
例如,以电源系统的状态为剩余电量为例,第一管理系统检测到电源系统通过蓄电池供电时,第一管理系统可以根据剩余电量确定剩余备电时长,若第一指示信息指示的备电时长短,而网元的第一QoS要求高,则第一管理系统可以确定一个对网络性能影响小的操作。
再例如,以电源系统的状态为剩余电量为例,第一管理系统检测到电源系统通过蓄电池供电时,第一管理系统可以根据剩余电量确定剩余备电时长,若第一指示信息指示的备电时长长,而网元的第一QoS要求低,则第一管理系统可以确定一个对备电时长影响小的操作。
可选地,在一些实施例中,该方法还包括:第一管理系统检测到电源系统的第一状态变为第二状态时,根据第一指示信息和电源系统的第二状态确定第二操作。
本申请实施例中,第一管理系统可以根据电源系统的状态和接收到的指示信息确定操作,然后指示网元执行该操作,从而网元可以执行相应的操作,由于第一管理系统是根据电源系统的状态和指示信息确定网元需要执行的操作,则该操作可以契合电源系统的状态,提高了网络系统备电的灵活性,减少了对网络性能造成的影响。
可选地,在一些实施例中,该方法还包括:
第一管理系统向第二管理系统发送第一指示信息;
第二管理系统根据第一指示信息确定第一策略;
第二管理系统向网元发送第一策略。
可选地,在一些实施例中,S802,第一管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一操作,包括:
第一管理系统检测到电源系统满足预设条件时,根据第一指示信息和电源系统的第一状态确定第一备电策略。
第一管理系统检测电源系统,当检测到满足预设条件时,第一管理系统可以根据电源系统的蓄电池的第一状态和第一指示信息确定第一备电策略。该第一备电策略可以是类似于表1至表4的形式,即一个备电策略对应一个操作,也可以是类似于表5至表6的形式,即一个备电策略对应多个操作,然后根据不同的电源系统确定不同的操作。
可选地,在另一些实施例中,第一管理系统检测到电源系统满足预设条件时,根据电源系统的第一状态、第一服务质量和第一指示信息确定第一操作,包括:第一管理系统检测到电源系统满足预设条件时,根据第一指示信息、电源系统的第一状态和网元的第一QoS确定第一备电策略。
具体地,第一管理系统检测电源系统,当检测到满足预设条件时,第一管理系统可以根据电源系统的蓄电池的第一状态、第一指示信息和网元的第一QoS确定第一备电策略。该第一备电策略可以是类似于表1至表4的形式,即一个备电策略对应一个操作,也可以是类似于表5至表7的形式,即一个备电策略对应多个操作,然后根据不同的电源系统的状态和网元的QoS确定不同的操作。
例如,第一备电策略对网络性能的影响较小,第二备电策略对网络性能的影响较大。当一个备电策略对应一个操作时,管理系统根据蓄电池的剩余电量预估蓄电池的剩余备电时长为3小时,且根据第一指示信息确定的备电时长为2小时,网元的第一QoS指示网元对应网络性能要求高,则管理系统可以确定第一备电策略。再例如,管理系统根据蓄电池的剩余电量预估蓄电池剩余备电为3小时,且备电时长为4小时,网元的第一QoS指示网元对网络性能要求低,则管理系统可以确定第二备电策略。
S803,第一管理系统向网元发送第一操作,包括:
第一管理系统向网元发送第一备电策略。
可选地,在一些实施例中,第一管理系统可以向网元发送指示信息,该指示信息用于指示第一备电策略。
可选地,在一些实施例中,第一管理系统确定第一备电策略后,第一管理系统可以向网元发送开启备电特性的命令,然后第一管理系统可以配置备电特性中的参数以实现下发第一备电策略。例如,备电特性中包括参数:savepolicy,可以将该参数的值设置为policy1,即可以认为管理系统向网元发送了第一备电策略。
可选地,在另一些实施例中,第一管理系统可以先向网元发送开启备电特性的命令,当检测到电源系统满足预设条件的情况下,管理系统再发送备电策略。例如,第一管理系统可以在完成配置第一策略后向网元发送开启备电特性的命令。再例如,第一管理系统可以在检测电源系统的状态时,向网元发送开启备电特性的命令。
S804,网元执行第一操作,包括:
网元根据第一策略和第一备电策略确定第一操作并执行第一操作。
可选地,在一些实施例中,第二管理系统可以向网元发送指示信息,该指示信息用于指示第一备电策略。
可选地,在一些实施例中,第二管理系统确定第一备电策略后,第二管理系统可以向网元发送开启备电特性的命令,然后第二管理系统可以配置备电特性中的参数以实现下发第一备电策略。例如,备电特性中包括参数:savepolicy,可以将该参数的值设置为policy1,即可以认为管理系统向网元发送了第一备电策略。
可选地,在另一些实施例中,第二管理系统可以先向网元发送开启备电特性的命令,当检测到电源系统满足预设条件的情况下,管理系统再发送备电策略。例如,第二管理系统可以在完成配置第一策略后向网元发送开启备电特性的命令。再例如,第二管理系统可以在检测电源系统的状态时,向网元发送开启备电特性的命令。
本申请实施例中对于网元获取电源系统状态的方式并不限定,例如,网元可以向电源系统发送请求信息用于请求电源系统的状态。再例如,电源系统可以定期向网元发送电源系统的状态。
本申请实施例中,第一管理系统可以根据电源系统的状态和备电时长动态的调整备电策略,可以减少由于采取操作对网络性能的影响。
图9示出了本申请实施例提供的一种备电方法的示意性流程图,如图9所示,该方法包括:
S901,管理系统接收第一信息。
在一些实施例中,第一信息包括第一意图,该第一意图可以是意图消费者发送给管理系统的,具体说明请参见针对图4和图5的说明。
在一些实施例中,第一信息包括第一指示信息,该第一管理系统包括第一管理系统和第二管理系统,第一管理系统可以是NMS,第二管理系统可以是EMS,该第一指示信息可以是NMS发送给EMS的,具体说明请参见针对图7的说明。
在一些实施例中,第一信息包括第一指示信息,该第一管理系统包括第一管理系统和第二管理系统,第一管理系统可以是NMS,第二管理系统可以是EMS,该第一指示信息可以是运营商发送给NMS的,具体说明请参见针对图8的说明。
S902,管理系统检测电源系统。
S903,管理系统检测到电源系统满足预设条件,根据第一信息和电源系统的第一状态确定第一操作,其中电源系统的第一状态包括电源系统的第一剩余电量。
S904,管理系统向网元发送第一操作。
S905,网元执行第一操作。
应理解,针对S902-S905的描述,可以参见上文,在此不再赘述。
可选地,在一些实施例中,该方法还包括:
管理系统检测到电源系统的第一状态变为第二状态时,根据第一信息和电源系统的第二状态确定第二操作,其中电源系统的第二状态包括所述电源系统的第二剩余电量;
管理系统向网元发送第二操作;
网元执行第二操作。
可选地,在一些实施例中,S903,管理系统根据所第一信息和电源系统的第一状态确定第一操作,包括:
管理系统根据第一信息确定第一策略,第一策略用于指示备电策略与操作的对应关系;
管理系统根据第一信息和电源系统的第一状态确定第一备电策略,第一备电策略用于指示第一操作;
S904,管理系统向网元发送第一操作,包括:
管理系统向网元发送第一策略;
管理系统向网元发送第一备电策略以指示第一操作。
可选地,在一些实施例中,管理系统向网元发送所述第一备电策略以指示第一操作,包括:
管理系统向网元发送用于指示开启备电特性的指示信息;
管理系统向网元发送第一参数以指示网元执行第一备电策略对应的第一操作,其中第 一参数对应第一备电策略。
可选地,在一些实施例中,管理系统根据第一信息和电源系统的第一状态确定第一备电策略,包括:
管理系统根据电源系统的第一状态确定第一剩余备电时长;
管理系统根据所述第一剩余备电时长和第一信息确定所述第一备电策略。
可选地,在一些实施例中,管理系统根据第一意图和电源系统的第一状态确定第一操作,包括:
管理系统根据电源系统的第一状态确定第一剩余备电时长;
管理系统根据第一剩余备电时长和第一信息确定所述第一操作。
可选地,在一些实施例中,电源系统的第一状态还包括以下中的至少一项:电源系统的第一负载电流、电源系统的剩余备电时长、电源系统的第一温度、电源系统的第一电压。
可选地,在一些实施例中,管理系统检测电源系统,包括:
管理系统通过网元检测所述电源系统的状态,或
管理系统通过数据协调功能DCCF检测电源系统的状态。
可选地,在一些实施例中,预设条件包括:电源系统通过蓄电池向所述网元供电。
上述主要从管理系统和网元之间交互的对本申请实施例提供的备电方法进行了详细的介绍。可以理解的是,上述管理系统等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请实施例描述的各示例的单元及算法操作,本申请能够以硬件或硬件和计算机软件结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对管理系统进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图10示出了本申请实施例提供的一种管理装置1000的结构示意图。该管理装置1000可以用于执行上述实施例中涉及的管理系统的功能。
图10所示的管理装置1000包括:获取模块1010、检测模块1020、处理模块1030。
获取模块1010,用于获取第一信息,该第一信息用于指示备电时长或节电偏好或备电偏好。
在一些实施例中,第一信息包括第一意图,该第一意图用于备电时长或节电偏好或备电偏好。
在一些实施例中,第一信息包括第一指示信息,该第一指示信息用于备电时长或节电偏好或备电偏好。
检测模块1020,用于检测电源系统。
获取模块1010,还用于获取电源系统的第一状态。
处理模块1030,用于当检测到电源系统满足预设条件时,根据第一信息和电源系统 的第一状态确定第一操作,其中电源系统的第一状态包括电源系统的第一剩余电量。
处理模块1030,还用于指示网元执行第一操作以满足所述备电时长或所述节电偏好或所述备电偏好。
可选地,在一些实施例中,处理模块1030,还用于在检测模块1020检测到电源系统的第一状态变为第二状态时,根据第一信息和电源系统的第二状态确定第二操作。
可选地,处理模块1030,还用于指示网元执行第二操作。
可选地,在一些实施例中,处理模块1030,具体用于检测到电源系统满足预设条件时,根据第一信息、电源系统的第一状态和网元的第一QoS确定第一操作。
可选地,在一些实施例中,管理设备1000还包括发送模块1040,其中,处理模块1030,具体用于根据第一信息确定第一策略和根据第一信息和电源系统的第一状态确定第一备电策略。
发送模块1040,用于向网元发送第一策略和第一备电策略以指示网元执行第一操作。
可选地,在一些实施例中,发送模块1040,还用于向网元发送开启备电特性的指示信息。
处理模块1030,具体用于配置备电特性的第一参数以使网元执行第一备电策略对应的第一操作,该第一参数对应第一备电策略。
可选地,在一些实施例中,处理模块1030,具体用于根据电源系统的第一状态确定第一剩余备电时长,并根据第一剩余备电时长和第一意图确定第一备电策略。
可选地,在一些实施例中,处理模块1030,具体用于根据电源系统的第一状态确定第一剩余备电时长,并根据第一剩余备电时长和第一意图确定第一操作。
可选地,在一些实施例中,电源系统的第一状态还包括以下中的至少一项:所述电源系统的第一负载电流、所述电源系统的剩余备电时长、所述电源系统的第一温度、所述电源系统的第一电压。
可选地,在一些实施例中,检测单元1020,具体用于通过网元检测电源系统的状态,或通过数据协调功能DCCF检测电源系统的状态。
可选地,在一些实施例中,预设条件包括:电源系统通过蓄电池向网元供电。
应理解,管理装置1000中各模块执行上述相应步骤的具体过程请参照前文中结合图4-图9的方法实施例的描述,为了简洁,在此不再赘述。
图11所示为本申请实施例提供的网元装置1100的结构示意图,该网元装置1100可以用于执行上述实施例中涉及的网元的功能。
网元装置1100包括:获取模块1110、检测模块1120、处理模块1130。获取模块1110,用于获取第一意图,该第一意图用于指示备电时长或节电偏好或备电偏好。
检测模块1120,用于检测电源系统。
获取模块1110,还用于获取电源系统的第一状态。
处理模块1130,用于当检测到满足预设条件时,根据第一意图和电源系统的第一状态确定第一操作。
处理模块1130,还用于执行第一操作。
可选地,在一些实施例中,处理模块1130,还用于在检测模块1120检测到电源系统的第一状态变为第二状态时,根据第一意图和电源系统的第二状态确定第二操作。
可选地,处理模块1130,还用于执行第二操作。
可选地,在一些实施例中,处理模块1130,具体用于根据电源系统的第一状态确定第一剩余备电时长,并根据第一剩余备电时长和第一意图确定第一操作。
可选地,在一些实施例中,电源系统的第一状态包括电源系统的第一剩余电量和第一负载电流,或
电源系统的第一状态为电源系统的第一剩余备电时长。
可选地,在一些实施例中,电源系统的第一状态还包括:电源系统的第一电压和第一温度。
可选地,在一些实施例中,预设条件包括:电源系统通过蓄电池向网元供电。
应理解,网元装置1100中各模块执行上述相应步骤的具体过程请参照前文中结合图4-图6的方法实施例的描述,为了简洁,在此不再赘述。
图12是根据本申请实施例提供的管理设备的结构框图。如图12所示,管理设备包括处理器1201、存储器1202和收发器1203。存储器1202主要用于存储软件程序和数据,处理器701可以用于执行存储器中的软件程序以使管理设备执行上述实施例中的备电方法。
为便于说明,图12中仅示出了一个存储器和处理器。在实际的管理设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的电路视为管理设备的收发器903,将具有处理功能的处理器视为管理设备的处理模块。收发器也可以称为收发模块、收发机、收发装置等。处理模块也可以称为处理器,处理单板,处理模块、处理装置等。
可选的,可以将收发器1203中用于实现接收功能的器件视为接收单元,将收发器1203中用于实现发送功能的器件视为发送单元,即收发器1203包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
处理器1201、存储器1202和收发器1203之间通过内部连接通路互相通信,传递控制和/或数据信号
上述本申请实施例揭示的方法可以应用于处理器1201中,或者由处理器1201实现。处理器1201可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1201中的硬件的集成逻辑电路或者软件形式的指令完成。
图13是根据本申请实施例提供的网元设备1300的结构框图。如图13所示,网元设备包括处理器1301、存储器1302和收发器1303。存储器1302主要用于存储软件程序和数据,处理器801可以用于执行存储器中的软件程序以使网元设备执行上述实施例中的备电方法。
为便于说明,图13中仅示出了一个存储器和处理器。在实际的网元产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的电路视为网元设备的收发器1303,将具有处理功能的处理器视为网元设备的处理模块。收发器也可以称为收发模块、收发机、收发装置等。处理模块也可以称为处理器,处理单板,处理模块、处理装置等。
可选的,可以将收发器1303中用于实现接收功能的器件视为接收单元,将收发器1303中用于实现发送功能的器件视为发送单元,即收发器1303包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
处理器1301、存储器1302和收发器1303之间通过内部连接通路互相通信,传递控制和/或数据信号
上述本申请实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。
本申请各实施例所述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行图4至图6所示方法实施例中管理系统的方法或图4至图6所示方法实施例中网元的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行图4至图6所示方法实施例中管理系统的方法或图4至图6所示方法实施例中网元的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行图4至图6所示方法实施例中管理系统的方法或图4至图6所示方法实施例中网元的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种备电方法,其特征在于,所述方法应用于网络系统,所述网络系统包括管理系统、网元,所述网元由电源系统供电,所述方法包括:
    所述管理系统接收第一信息,所述第一信息用于指示以下中的一项:备电时长、节电偏好和备电偏好;
    所述管理系统检测所述电源系统且确定满足预设条件时,根据所述第一信息和所述电源系统的第一状态确定第一操作,其中所述电源系统的第一状态包括所述电源系统的第一剩余电量;
    所述管理系统指示所述网元执行所述第一操作以满足所述备电时长或所述节电偏好或所述备电偏好。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述管理系统检测到所述电源系统的第一状态变为第二状态时,根据所述第一信息和所述电源系统的第二状态确定第二操作,其中所述电源系统的第二状态包括所述电源系统的第二剩余电量;
    所述管理系统指示所述网元执行所述第二操作以满足所述备电时长或所述节电偏好或所述备电偏好。
  3. 根据权利要求1或2所述的方法,其特征在于,所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一操作,包括:
    所述管理系统根据所述第一信息、所述电源系统的第一状态和所述网元的第一服务质量QoS确定第一操作。
  4. 根据权利要求1或2所述的方法,其特征在于,所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一操作,包括:
    所述管理系统根据所述第一信息确定第一策略,所述第一策略用于指示备电策略与操作的对应关系;
    所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一备电策略,所述第一备电策略用于指示所述第一操作;
    所述管理系统指示所述网元执行所述第一操作,包括:
    所述管理系统向所述网元发送所述第一策略;
    所述管理系统向所述网元发送所述第一备电策略以指示所述网元执行所述第一备电策略对应的所述第一操作。
  5. 根据权利要求4所述的方法,其特征在于,所述管理系统向所述网元发送所述第一备电策略以指示所述网元执行所述第一备电策略对应的所述第一操作,包括:
    所述管理系统向所述网元发送用于指示开启备电特性的指示信息;
    所述管理系统向所述网元发送第一参数以指示所述网元执行所述第一备电策略对应的所述第一操作,其中所述第一参数对应所述第一备电策略。
  6. 根据权利要求4或5所述的方法,其特征在于,所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一备电策略,包括:
    所述管理系统根据所述电源系统的第一状态确定第一剩余备电时长;
    所述管理系统根据所述第一剩余备电时长和所述第一信息确定所述第一备电策略。
  7. 根据权利要求1或2所述的方法,其特征在于,所述管理系统根据所述第一意图和所述电源系统的第一状态确定第一操作,包括:
    所述管理系统根据所述电源系统的第一状态确定第一剩余备电时长;
    所述管理系统根据所述第一剩余备电时长和所述第一信息确定所述第一操作。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述电源系统的第一状态还包括以下中的至少一项:所述电源系统的第一负载电流、所述电源系统的剩余备电时长、所述电源系统的第一温度、所述电源系统的第一电压。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述管理系统通过所述网元检测所述电源系统的状态,或
    所述管理系统通过数据协调功能DCCF检测所述电源系统的状态。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述预设条件包括:
    所述电源系统通过蓄电池向所述网元供电。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一信息包括第一意图,所述管理系统部署有意图系统,所述第一意图用于指示以下中的一项:所述备电时长、所述节电偏好和所述备电偏好。
  12. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一信息包括第一指示信息,所述第一意图用于指示以下中的一项:所述备电时长、所述节电偏好和所述备电偏好。
  13. 一种管理装置,其特征在于,所述管理装置应用于包括网元和管理装置的网络系统中,所述管理装置包括:
    获取模块,用于获取第一信息,所述述第一信息用于指示以下中的一项:备电时长、节电偏好和备电偏好;
    检测模块,用于检测电源系统;
    所述获取模块,还用于获取所述电源系统的第一状态;
    处理模块,用于在所述电源系统满足预设条件的情况下,根据所述第一信息和所述电源系统的第一状态确定第一操作,其中所述电源系统的第一状态包括所述电源系统的第一剩余电量;
    所述处理模块,还用于指示所述网元执行所述第一操作以满足所述备电时长或所述节电偏好或所述备电偏好。
  14. 根据权利要求13所述的管理装置,其特征在于,
    所述处理模块,还用于在所述检测模块检测到所述电源系统的第一状态变为第二状态时,根据所述电源系统的第二状态和所述第一意图确定第二操作;
    所述处理模块,还用于指示所述网元执行所述第二操作以满足所述备电时长或所述节电偏好或所述备电偏好。
  15. 根据权利要求13或14所述的管理装置,其特征在于,所述处理模块,具体用于在所述电源系统满足预设条件的情况下,根据所述第一信息、所述电源系统的第一状态和所述网元的第一服务质量QoS确定所述第一操作。
  16. 根据权利要求13或14所述的管理装置,其特征在于,所述管理装置还包括发送模块,其中,
    所述处理模块,具体用于根据所述第一信息确定第一策略,所述第一策略用于指示备电策略与操作的对应关系,以及根据所述第一信息和所述电源系统的第一状态确定第一备电策略,所述第一备电策略用于指示所述第一操作;
    所述发送模块,用于向所述网元发送所述第一策略和所述第一备电策略以使所述网元执行所述第一操作。
  17. 根据权利要求16所述的管理装置,其特征在于,
    所述发送模块,还用于向所述网元发送用于开启备电特性的指示信息;
    所述处理模块,具体用于配置所述备电特性的第一参数以使所述网元执行所述第一备电策略对应的所述第一操作,其中所述第一参数对应所述第一备电策略。
  18. 根据权利要求13或14所述的管理装置,其特征在于,
    所述处理模块,具体用于根据所述电源系统的第一状态确定第一剩余备电时长,并根据所述第一剩余备电时长和所述第一信息确定所述第一备电策略。
  19. 根据权利要求13或14所述的管理装置,其特征在于,
    所述处理模块,具体用于根据所述电源系统的第一状态确定第一剩余备电时长,并根据所述第一剩余备电时长和所述第一意图确定所述第一操作。
  20. 根据权利要求13至19中任一项所述的管理装置,其特征在于,所述电源系统的第一状态还包括以下中的至少一项:所述电源系统的第一负载电流、所述电源系统的剩余备电时长、所述电源系统的第一温度、所述电源系统的第一电压。
  21. 根据权利要求13至20中任一项所述的管理装置,其特征在于,所述检测模块通过所述网元检测所述电源系统的状态,或通过数据协调功能DCCF检测所述电源系统的状态。
  22. 根据权利要求13至21中任一项所述的管理装置,所述预设条件为所述电源系统通过蓄电池向所述网元供电。
  23. 根据权利要求13至22中任一项所述的管理装置,所述第一信息包括第一意图,所述管理装置部署有意图系统,所述第一意图用于指示以下中的一项:所述备电时长、所述节电偏好和所述备电偏好。
  24. 根据权利要求13至22中任一项所述的管理装置,所述第一信息包括第一指示信息,所述第一指示信息用于指示以下中的一项:所述备电时长、所述节电偏好和所述备电偏好。
  25. 一种备电方法,其特征在于,所述方法应用于网络系统,所述网络系统包括管理系统、网元,所述网元由电源系统供电,所述方法包括:
    所述管理系统接收第一信息,所述第一信息用于指示以下中的一项:备电时长、节电偏好和备电偏好;
    所述管理系统检测所述电源系统且确定满足预设条件时,根据所述第一信息和所述电源系统的第一状态确定第一操作,其中所述电源系统的第一状态包括所述电源系统的第一剩余电量;
    所述管理系统指示所述网元执行所述第一操作;
    所述网元执行所述第一操作。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述管理系统检测到所述电源系统的第一状态变为第二状态时,根据所述第一信息和所述电源系统的第二状态确定第二操作,其中所述电源系统的第二状态包括所述电源系统的第二剩余电量;
    所述管理系统指示所述网元执行所述第二操作;
    所述网元执行所述第二操作。
  27. 根据权利要求25或26所述的方法,其特征在于,所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一操作,包括:
    所述管理系统根据所述第一信息、所述电源系统的第一状态和所述网元的第一服务质量QoS确定第一操作。
  28. 根据权利要求25或26所述的方法,其特征在于,所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一操作,包括:
    所述管理系统根据所述第一信息确定第一策略,所述第一策略用于指示备电策略与操作的对应关系;
    所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一备电策略,所述第一备电策略用于指示所述第一操作;
    所述管理系统指示所述网元执行所述第一操作,包括:
    所述管理系统向所述网元发送所述第一策略;
    所述管理系统向所述网元发送所述第一备电策略以指示所述网元执行所述第一备电策略对应的所述第一操作。
  29. 根据权利要求28所述的方法,其特征在于,所述管理系统向所述网元发送所述第一备电策略以指示所述网元执行所述第一备电策略对应的所述第一操作,包括:
    所述管理系统向所述网元发送用于指示开启备电特性的指示信息;
    所述管理系统向所述网元发送第一参数以指示所述网元执行所述第一备电策略对应的所述第一操作,其中所述第一参数对应所述第一备电策略。
  30. 根据权利要求28或29所述的方法,其特征在于,所述管理系统根据所述第一信息和所述电源系统的第一状态确定第一备电策略,包括:
    所述管理系统根据所述电源系统的第一状态确定第一剩余备电时长;
    所述管理系统根据所述第一剩余备电时长和所述第一信息确定所述第一备电策略。
  31. 根据权利要求25或26所述的方法,其特征在于,所述管理系统根据所述第一意图和所述电源系统的第一状态确定第一操作,包括:
    所述管理系统根据所述电源系统的第一状态确定第一剩余备电时长;
    所述管理系统根据所述第一剩余备电时长和所述第一信息确定所述第一操作。
  32. 根据权利要求25至31中任一项所述的方法,其特征在于,所述电源系统的第一状态还包括以下中的至少一项:所述电源系统的第一负载电流、所述电源系统的剩余备电时长、所述电源系统的第一温度、所述电源系统的第一电压。
  33. 根据权利要求25至32中任一项所述的方法,其特征在于,所述方法还包括:
    所述管理系统通过所述网元检测所述电源系统的状态,或
    所述管理系统通过数据协调功能DCCF检测所述电源系统的状态。
  34. 根据权利要求25至33中任一项所述的方法,其特征在于,所述预设条件包括:
    所述电源系统通过蓄电池向所述网元供电。
  35. 根据权利要求25至34中任一项所述的方法,其特征在于,所述第一信息包括第一意图,所述管理系统部署有意图系统,所述第一意图用于指示以下中的一项:所述备电时长、所述节电偏好和所述备电偏好。
  36. 根据权利要求25至35中任一项所述的方法,其特征在于,所述第一信息包括第一指示信息,所述第一意图用于指示以下中的一项:所述备电时长、所述节电偏好和所述备电偏好。
PCT/CN2022/132236 2021-11-17 2022-11-16 一种备电方法和装置 WO2023088297A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111364745.2 2021-11-17
CN202111364745 2021-11-17
CN202211343233.2 2022-10-31
CN202211343233.2A CN116137579A (zh) 2021-11-17 2022-10-31 一种备电方法和装置

Publications (1)

Publication Number Publication Date
WO2023088297A1 true WO2023088297A1 (zh) 2023-05-25

Family

ID=86334389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132236 WO2023088297A1 (zh) 2021-11-17 2022-11-16 一种备电方法和装置

Country Status (2)

Country Link
CN (1) CN116137579A (zh)
WO (1) WO2023088297A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239730A (zh) * 2011-04-15 2011-11-09 华为技术有限公司 基站设备的供电管理方法和装置
CN102387570A (zh) * 2010-09-02 2012-03-21 中兴通讯股份有限公司 一种无线网络的节能控制方法及系统
JP2012253621A (ja) * 2011-06-03 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> 基地局装置
US20140171140A1 (en) * 2011-07-08 2014-06-19 Kyocera Corporation Communication control method and base station
WO2017000104A1 (zh) * 2015-06-29 2017-01-05 华为技术有限公司 一种站点设备的节能控制方法、装置及系统
CN112421701A (zh) * 2019-08-22 2021-02-26 上海华为技术有限公司 一种备电控制方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387570A (zh) * 2010-09-02 2012-03-21 中兴通讯股份有限公司 一种无线网络的节能控制方法及系统
CN102239730A (zh) * 2011-04-15 2011-11-09 华为技术有限公司 基站设备的供电管理方法和装置
JP2012253621A (ja) * 2011-06-03 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> 基地局装置
US20140171140A1 (en) * 2011-07-08 2014-06-19 Kyocera Corporation Communication control method and base station
WO2017000104A1 (zh) * 2015-06-29 2017-01-05 华为技术有限公司 一种站点设备的节能控制方法、装置及系统
CN112421701A (zh) * 2019-08-22 2021-02-26 上海华为技术有限公司 一种备电控制方法、装置及系统

Also Published As

Publication number Publication date
CN116137579A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN112865998B (zh) 意图处理方法和相关装置
EP2811764B1 (en) Mbms service reception and capability transmission method and device
CN107318095B (zh) 一种用于功率管理的计算机实施的方法、装置以及介质
US10827430B2 (en) Signaling for controlling power usage in radio access networks
WO2011110121A2 (zh) 管理电源的方法、终端设备、网络侧设备和通信系统
US20210120487A1 (en) Energy-saving method and device for base station device
EP3297346A1 (en) Paging method and device
CN102387525B (zh) 载波配置方法、装置及系统
EP2942984A1 (en) Method, base station and user equipment for data transmission and acquisition
US9961641B2 (en) Method for user equipment power saving, apparatus, and user equipment
WO2013071756A1 (zh) 载频控制方法及装置
WO2022042600A1 (zh) 一种通信方法、装置及系统
CN113300789A (zh) 信道监听及其控制方法及装置
US20120155381A1 (en) Method and apparatus for using a wireless device with multiple radios
KR20200119269A (ko) 인터-라디오 액세스 기술 핸드오버 방법
US10284467B2 (en) Method and apparatus for controlling packet transmission and network functions virtualization system
CN113179531B (zh) 一种基于5g切片的终端工作时长预测、优化方法及系统
US11489737B2 (en) Network performance assurance method and apparatus
WO2023088297A1 (zh) 一种备电方法和装置
CN111385842A (zh) 一种终端控制方法、终端及网络侧设备
Pedram et al. Energy efficiency in 5G cellular network systems
KR102543556B1 (ko) 보조 캐리어 상태를 전환하는 방법, 단말 장치와 네트워크 장치
WO2022253112A1 (zh) 终端的节电方法、装置、无线接入设备、电子设备和介质
US20240080164A1 (en) Switching of search space set group of target cell, and control method and apparatus therefor
WO2023027621A1 (en) Wireless device, network node, and methods performed thereby for handling a configuration of one or more thresholds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894829

Country of ref document: EP

Kind code of ref document: A1