WO2023088274A1 - 显示光栅、3d显示装置及3d显示方法 - Google Patents

显示光栅、3d显示装置及3d显示方法 Download PDF

Info

Publication number
WO2023088274A1
WO2023088274A1 PCT/CN2022/132116 CN2022132116W WO2023088274A1 WO 2023088274 A1 WO2023088274 A1 WO 2023088274A1 CN 2022132116 W CN2022132116 W CN 2022132116W WO 2023088274 A1 WO2023088274 A1 WO 2023088274A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
grating
display
beam set
liquid crystal
Prior art date
Application number
PCT/CN2022/132116
Other languages
English (en)
French (fr)
Inventor
贺曙
高炜
Original Assignee
广东未来科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东未来科技有限公司 filed Critical 广东未来科技有限公司
Publication of WO2023088274A1 publication Critical patent/WO2023088274A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources

Definitions

  • the present application belongs to the field of naked-eye 3D, and in particular relates to a display grating, a 3D display device and a 3D display method.
  • the slit grating is an optical element that uses the principle of light occlusion.
  • the pixel set of the display panel can form a complete image vision in the left and right eyes, so that the observer can produce stereoscopic vision.
  • the slit grating is an optical element composed of a series of equidistant parallel grooves.
  • the slit grating is made of reflective material, which can reflect light back to the backlight panel. After multiple reflections in the backlight panel, it is emitted from the light-transmitting area, effectively prompt Increased the brightness of the 3D display.
  • the purpose of this application is to provide a display grating, a 3D display device and a 3D display method, which solve the problem of poor 2D display effect of the traditional slit grating by supplementing the light blocked by the slit grating by supplementing the light source, and at the same time provide a
  • the 3D display method uses human eye tracking technology and cooperates with slit grating to realize 3D display.
  • the first aspect of the embodiment of the present application provides a display grating, the display grating includes:
  • the first outer surface of the grating substrate is provided with a plurality of sequentially arranged reflective structures
  • the first inner surface of the grating substrate is provided with a plurality of sequentially arranged scattering structures, and the scattering structures include a plurality of light exit points;
  • the first side of the grating substrate is provided with a plurality of sequentially arranged light emitting sources.
  • the second aspect of the present application provides a 3D display device, including:
  • the display grating is arranged between the backlight panel and the liquid crystal display panel;
  • the first outer surface of the display grating is provided with a plurality of sequentially arranged reflective structures
  • the first inner surface of the display grating is provided with a plurality of scattering structures arranged in sequence, and the scattering structure includes a plurality of light-emitting points;
  • the first side of the display grating is provided with a plurality of sequentially arranged light emitting sources
  • the controller is connected to the light source through a control line, and is used to control the light source to be turned off or turned on;
  • the controller controls the lighting of the light source through the control line;
  • the controller controls the light source to turn off through the control line.
  • the third aspect of the present application provides a 3D display method, including:
  • the 3D display device When the 3D display device performs 3D display, determine the spatial position of the human eyes of the target user, the target user is a user who watches the 3D image displayed by the 3D display device at a preset distance, and the 3D display device includes a display grating, the display grating is arranged between the backlight panel of the 3D display device and the liquid crystal display panel, the first outer surface of the display grating is provided with a plurality of reflective structures arranged in sequence, the first of the display grating The inner surface is provided with a plurality of scattering structures arranged in sequence, and the scattering structure includes a plurality of light-emitting points, and the first side of the display grating is provided with a plurality of light emitting sources arranged in sequence, and the controller and the light emitting sources pass through The control line is connected to control the light-emitting source to turn off or light up.
  • the controller controls the light-emitting source to light up through the control line; when the display grating is in the In the 3D working state, the controller controls the light-emitting source to turn off through the control line;
  • the backlight panel being a display panel corresponding to the 3D display
  • the beams in the left beam set and the right beam set correspond to pixels passing through the liquid crystal display panel
  • the liquid crystal display panel into a left view pixel set and a right view pixel set according to the left beam set and the right beam set;
  • a left image and a right image are respectively displayed on the liquid crystal display panel based on the left-view pixel set and the right-view pixel set, and the left image and the right image correspond to the 3D image.
  • displaying the left image and the right image on the liquid crystal display panel based on the left-view pixel set and the right-view pixel set respectively includes:
  • the right image pixels corresponding to the right image are displayed in the second position set.
  • the determining according to the spatial position that the beams emitted by the backlight panel reach the left beam set of the left eye of the target user and the right beam set of the right eye of the target user includes:
  • the light source is turned on when 2D display is performed, Complements the loss of brightness caused by the reflective structure reflecting the light emitted by the backlight panel.
  • the light source is turned off when the power is turned off, so that the display grating can cooperate with the liquid crystal display panel for 3D display, and then 2D display and 3D display can be realized. switch.
  • FIG. 1 is a schematic diagram of the spectral characteristics of a slit grating provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a display grating provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a first outer surface of a display grating provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of a first inner surface of a display grating provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for preparing a display grating provided in an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a 3D display device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a 3D display device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a 3D display method provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of the spectral characteristics of the slit grating provided in the embodiment of the present application, including:
  • the pixel sets in the display panel 101 through which the left and right eye rays respectively pass can form a complete image vision for the user's left eye and right eye respectively, so that the user can have a stereoscopic vision.
  • FIG. 2 is a schematic structural diagram of a display grating provided by an embodiment of the present application.
  • the display grating includes:
  • the grating substrate 200 can be glass material, of course, it can also be other materials, such as acrylic material, as long as it can transmit light, there is no specific limitation;
  • the first outer surface 201 of the grating substrate 200 is provided with a plurality of reflective structures 201a arranged in sequence, and the first inner surface 202 of the grating substrate 200 is provided with a plurality of scattering structures 202a arranged in sequence, and the scattering structures includes a plurality of light exit points, it can be understood that the first outer surface 201 is the surface of the grating substrate 200, the first inner surface 202 is disposed inside the grating substrate 200, and is in contact with the grating substrate 200 The distance between the first outer surfaces 201 is the depth of the scattering structure 202a;
  • the first side 203 of the grating substrate 200 is provided with a plurality of light emitting sources 203a arranged in sequence, wherein the light emitting sources 203a can be LED lamp beads, or other light emitting sources, which are not specifically limited, as long as they can be
  • the grating substrate 200 only needs to provide a controllable light source.
  • the grating substrate 200 is also provided with a control line (not shown in the figure), and the control line is connected to the light source 203a, that is, when the display grating is in a 2D working state, it is controlled by the control line
  • the light emitting source 203a is turned on, and when the display grating is in a 3D working state, the light emitting source 203 is controlled to be turned off through the control line.
  • the light emitting source 203a is provided on the display grating 200 for controlling the light emitting source 203a to light up through the control line when the display grating 200 is in a 2D working state, so as to supplement the light reflected by the reflective structure 201a.
  • FIG. 3 is a schematic diagram of the first outer surface 201 of the display grating provided by the embodiment of the present application, wherein, The first outer surface 201 includes a first light-transmitting region 201b, and the first light-transmitting region 201b is an area of the first outer surface 201 other than the reflective structure 201a.
  • the reflective The structure 201a may be a square area, and the first transparent area 201b is an area around the square area.
  • the reflective structure 201a may also be a rectangular area or a circular area, which is not specifically limited.
  • FIG. 4 is a schematic diagram of the first inner surface 202 of the display grating provided by the embodiment of the present application, wherein the first inner surface 202 includes a second light-transmitting region 202b, and the second light-transmitting region 202b is the area of the first inner surface 202 except the scattering structure 202a, as shown in FIG. 4, the scattering structure 202a may be a square area, and the second transparent area 202b is the area, of course, the scattering structure 202a may also be a rectangular area or a circular area, which is not specifically limited.
  • the scattering structure 202a corresponds to the reflective structure 201a, that is, how many reflective structures 201a are provided on the first outer surface 201, the first inner surface 202 will correspond to How many scattering structures 202a are provided, and the area of the scattering structure 202a is smaller than or equal to the area of the reflecting structure 201a, the center line of the scattering structure 202a coincides with the center line of the reflecting structure 201a, the The reflective structure 201 a is higher than the first outer surface 201 by a predetermined distance, that is, the reflective structure 201 a is higher than the grating substrate 200 .
  • the scattering structure 202a is etched on the first outer surface 201 with a plurality of sequentially arranged pits with a depth of a preset distance, and the bottom of the pits is provided with a plurality of light-emitting points.
  • the plurality of light exit points are used to scatter the light emitted by the light emitting source 203 to supplement the light reflected by the reflective structure 201a.
  • FIG. 5 is a schematic flow chart of the method for preparing the display grating provided in the embodiment of the present application, including:
  • the material used for the grating substrate can be firstly determined, and the material of the grating substrate can be glass material, of course, it can also be other materials, such as acrylic material, as long as It only needs to be able to transmit light, and there is no specific limitation. Then, the specification of the grating substrate is selected according to the needs. For example, a 5-inch glass material needs to be prepared as the grating substrate. Therefore, a 5-inch glass can be selected as the grating substrate. The grating substrate.
  • a plurality of sequentially arranged scattering structures may be etched on the first outer surface of the grating substrate, the scattering structures are pits with a preset depth, and the A plurality of light emitting points are arranged in the pit. As shown in FIG.
  • the first outer surface 201 is the surface of the grating substrate 200, and a plurality of sequentially arranged scattering structures 201a are etched on the first outer surface 201, that is, on the first outer surface 201 Etching a plurality of fine pits arranged in sequence, the depth of the pits is a preset depth, and a plurality of light-emitting points are arranged at the bottom of the pits, and the light emitted by the light emitting source 203a corresponding to the grating substrate 200 Scattering is performed to complement the light shielding effect caused by the grating.
  • the etched first inner surface 202 is shown in FIG. 4 , and the etched first inner surface 202 includes a scattering structure 202a and a light-transmitting region 202b.
  • a printing mold corresponding to the grating substrate may be provided, and a first protective layer and a second protective layer are printed on the first outer surface according to the printing mold, and the first protective layer is located on the first outer surface.
  • the first outer surface after printing the protective layer is etched by corrosive liquid (or the first outer surface is etched by other means, such as laser, The details are not limited), to obtain a plurality of scattering structures arranged in sequence, and to clean the etched grating substrate, and then remove the second protective layer, and after removing the second protective layer
  • the corresponding reflective material is plated on the area of the scattering structure, and the first outer surface after the plated reflective material is shown in FIG. 3 , and then cleaned again, and the first protective layer is removed to obtain a display grating.
  • FIG. 6 is a schematic structural diagram of the 3D display device provided by the embodiment of the present application, including:
  • the display grating 602 is disposed between the backlight panel 601 and the liquid crystal display panel 603, and the first outer surface of the display grating 602 is provided with a plurality of reflective structures 602a arranged in sequence, and the display grating 602
  • the first inner surface of the first inner surface is provided with a plurality of scattering structures 602b arranged in sequence, and the scattering structures 602b include a plurality of light-emitting points;
  • the first side 602c of the display grating 602 is provided with a plurality of sequentially arranged light emitting sources 602d;
  • the controller is connected with the light emitting source 602d through a control line, and is used to control the light emitting source 602d to be turned off or on, that is, when the display grating 602 is in a 2D working state, the controller controls the light emitting source through a control line 602d is lit to supplement the light blocking effect caused by the grating.
  • the controller controls the light emitting source 602d to turn off through the control line.
  • the 3D display device is in the 2D working state, since the display grating 602 is between the backlight panel 601 and the liquid crystal display panel 603, part of the light emitted by the backlight panel 601 will be captured by the display grating 602.
  • the set reflective structure 602a is reflective, therefore, the light emitting source 602d is set on the first side 602c of the display grating 602, and is used to control the display grating 602 through a control line when the display grating 602 is in a 2D working state.
  • the light source 602d is turned on to supplement the light reflected by the reflective structure 602a.
  • the first outer surface includes a first light-transmitting region, and the first light-transmitting region is an area of the first outer surface other than the reflective structure 602a, please refer to FIG. 3 for details. It has been explained above, and details are not repeated here.
  • the first inner surface includes a second light-transmitting area, and the second light-transmitting area is the area outside the scattering structure 602b on the first inner surface. Please refer to FIG. 4 for details, which have been described in detail above. , the details will not be repeated here.
  • the scattering structure 602b corresponds to the reflective structure 602a on the display grating 602, that is, how many reflective structures 602a are arranged on the first outer surface, correspondingly How many scattering structures 602b are correspondingly arranged on the first inner surface, and the area of the scattering structure 602b is smaller than or equal to the area of the reflecting structure 602a, the corresponding number of the second light-transmitting region The area is greater than or equal to the area of the first light-transmitting region, the centerline of the scattering structure 602b coincides with the centerline of the reflective structure 602a, and the reflective structure 602a is higher than the first outer surface by default. distance.
  • the scattering structure 602b is a plurality of sequentially arranged pits with a preset distance etched on the first outer surface, and the bottom of the pits is provided with a plurality of light-emitting points.
  • the light emitting points are used to scatter the light emitted by the light emitting source 602d to complement the light reflected by the reflective structure 602a.
  • the first outer surface is the surface of the display grating 602 close to the backlight panel 601, and the first inner surface is the interior of the display grating 602 with a predetermined distance from the first outer surface. an inner surface of the distance;
  • the distance between the reflective structure 602a provided on the display grating 602 and the liquid crystal display panel 603 can be calculated by the following formula:
  • L is the distance between the user and the liquid crystal display panel 603 (that is, the distance for the user to watch the liquid crystal display panel 603, such as 60 cm)
  • P is the pixel pitch corresponding to the liquid crystal display panel 603
  • Q is the user's interpupillary distance.
  • the 3D display device also includes a shielding cover 604, the backlight panel 601 is installed on the bottom of the shielding cover 604, the display grating 602 is installed on the upper part of the backlight panel 601, and the liquid crystal display panel 603 is installed on the upper part of the display grating 602, and the light emitting source 602d is connected to the first side 602c of the display grating 602 through optical coupling glue.
  • the light source 602d is controlled to be turned on through the control line, and the light is totally reflected between the two inner surfaces of the display grating and reflected at the shielding cover. Scattering occurs when reaching the light exit point, and a part of the light is directed to the liquid crystal display panel 603, so as to compensate for the light blocked by the slit, so that all pixels are visible to the left and right eyes.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a 3D display device provided by an embodiment of the present application, including:
  • the backlight panel 703 is installed on the bottom of the shielding cover 704, the display grating 701 is installed on the top of the backlight panel 703, and a liquid crystal display panel (not shown in the figure) is installed on the top of the display grating 701.
  • the grating light source 702 is connected to the first side of the display grating 701 through optical coupling glue, and the control line 705 is connected to the grating light source 702 for controlling the grating light source 702 to turn off or turn on On, that is, when the display grating 701 is in the 2D working state, the grating light source 702 is controlled to be turned off through the control line 705; when the display grating 701 is in the 3D working state, it is controlled by the control line 705
  • the grating light source 702d is turned on, and since the display grating 701 is located between the backlight panel 703 and the liquid crystal display panel, part of the light emitted by the backlight panel 703 will be captured by the display grating 701
  • the reflective structure (not shown in the figure) is reflective.
  • the grating light source 702 is arranged on the first side of the display grating 701 for passing through the display grating 701 when it is in a 2D working state.
  • the control line 705 controls the grating light source 702 to light up, so as to supplement the light reflected by the reflective structure.
  • FIG. 8 is a schematic flowchart of a 3D display method provided by an embodiment of the present application.
  • the 3D display method includes:
  • the 3D display device when the 3D display device performs 3D display, the 3D display device can determine the spatial position of the target user's human eyes, wherein the target user is the one who watches the 3D display device at a preset distance. Corresponding to the user who displayed the image. It is not specifically limited here to determine the spatial position of the human eyes of the target user, for example, capture by an eye tracker, and of course, other ways can also be used for determination.
  • the 3D display device includes a display grating, the display grating is arranged between the backlight panel and the liquid crystal display panel of the 3D display device, and the first outer surface of the display grating is provided with a plurality of sequentially arranged Reflective structure, the first inner surface of the display grating is provided with a plurality of sequentially arranged scattering structures, the scattering structure includes a plurality of light-emitting points, and the first side of the display grating is provided with a plurality of sequentially arranged light sources,
  • the controller is connected with the light emitting source through a control line, and is used to control the light emitting source to be turned off or on. When the display grating is in the 2D working state, the controller controls the lighting of the light source through the control line; when the display grating is in the 3D working state, the controller controls the light emitting source through the control line The above light source goes out.
  • the light beams emitted by the backlight panel corresponding to the 3D display device can respectively reach the target users according to the spatial position calculation.
  • the left beam set of the left eye of the target user and the right beam set of the right eye of the target user wherein the beams in the left beam set and the right beam set correspond to the pixels passing through the liquid crystal display panel, and That is, the left beam set and the right beam set respectively include a number of beams, the number of the beams corresponds to the light-transmitting area on the display grating corresponding to the 3D display device, and each beam is related to the light-transmitting area on the display grating corresponding to the 3D display device.
  • the pixels of the liquid crystal display panel where the light beam reaches the human eye correspond to each other.
  • the left light beam set and the right light beam set of the target user’s right eye can be determined firstly according to the spatial position, the initial left light beam set and the light beam emitted by the backlight panel reaching the target user’s left eye and reaching the The initial right beam set of the right eye of the target user, and then match the initial left beam set with the initial right beam set to obtain a matched beam set that can reach both the left eye and the right eye at the same time, and then match the initial left beam set A beam set except the matching beam set in the sets is determined as the left beam set, and a beam set in the initial right beam set except the matching beam set is determined as the right beam set.
  • the 3D display device determines the set of left beams reaching the left eye and the set of right beams reaching the right eye, since each beam in the set of left beams and the set of right beams There is a one-to-one correspondence with the pixels of the liquid crystal display panel that pass through the light beam and reach the human eye, so that the liquid crystal display panel can be divided into a left-view pixel set and a right-view pixel set according to the left light beam set and the right light beam set.
  • a set of view pixels that is, determine the pixel corresponding to the left light beam set on the liquid crystal display panel as the left view pixel set, and determine the pixel corresponding to the right light beam set on the liquid crystal display panel as the A collection of right view pixels.
  • the 3D display device divides the liquid crystal display panel into the left-view pixel set and the right-view pixel set, based on the left-view pixel set and the right-view pixel set, respectively Displaying a left image and a right image on the liquid crystal display panel, wherein the left image and the right image correspond to images to be displayed in 3D by the 3D display device.
  • a first set of positions of the set of left-view pixels in the liquid crystal display panel may be determined, and a second set of positions of the set of right-view images in the liquid crystal display panel may be determined; The corresponding left image pixels are displayed in the first position set; the right image pixels corresponding to the right image are displayed in the second position set.
  • the 3D display device displays a 3D image in a left-right format on the liquid crystal display panel
  • the pixels of the left image corresponding to the left image are placed at the positions corresponding to each pixel in the left-view pixel set and displaying, displaying the pixels of the right image corresponding to the right image at the positions corresponding to the pixels in the right view pixel set.
  • the corresponding pixels on the liquid crystal display panel are not divided into the left-view pixel set and the right-view pixel set. When displayed, it appears as low-brightness pixels.
  • the pixels of the image displayed on the backlight panel are normally arranged, and at the same time, the grating on the display grating corresponding to the 3D display device is The light source is illuminated to complement the light blocking effect caused by the display grating.
  • the light beams emitted by the backlight panel are divided into a left beam set and a right beam set through the reflective structure in the display grating provided on the 3D display device, and then, according to the left
  • the beam set and the right beam set divide the display panel into a left-view pixel set and a right-view pixel set, and then respectively display the left image and the right image of the image to be displayed in 3D on the liquid crystal according to the left-view pixel set and the right-view pixel set
  • the display panel realizes 3D display effect.
  • the pixels of the image displayed on the liquid crystal display panel can be normally arranged to achieve a 2D display effect.

Abstract

一种显示光栅、3D显示装置及3D显示方法,可以实现2D显示效果和3D显示效果的自由切换。显示光栅包括:光栅基材(200);光栅基材(200)的第一外表面(201)设置有多个依次排列的反射结构(201a);光栅基材(200)的第一内表面(202)设置有多个依次排列的散射结构(202a),散射结构(202a)包含多个出光点;光栅基材(200)的第一侧面(203)设置有多个依次排列的发光源(203a)。

Description

显示光栅、3D显示装置及3D显示方法 技术领域
本申请属于裸眼3D领域,特别涉及一种显示光栅、3D显示装置及3D显示方法。
背景技术
狭缝光栅是利用光线遮挡原理的一种光学元件,通过调节背光光源与狭缝的间隔,使得恰好左眼看到的光线右眼看不见,而右眼看到的光线左眼看不见,左右眼光线分别通过的显示面板像素集合能在左右眼各形成完整图像视觉,使得观察者产生立体视觉。
狭缝光栅是由一系列等距平行刻线组成的光学元件,狭缝光栅由反光材料制作,可以将光线反射回背光面板,在背光面板中经过多次反射,从透光区域射出,有效提示了3D显示的亮度。
目前裸眼3D主要技术之一是通过狭缝光栅来实现的,然而传统的狭缝光栅并不能实现2D显示和3D显示的切换,仅仅只能实现3D显示的效果,即使能显示2D效果,显示的2D效果也差强人意。
发明内容
本申请的目的在于提供一种显示光栅、3D显示装置及3D显示方法,通过补光光源补充被狭缝光栅所遮挡的光线,解决了传统狭缝光栅2D显示效果差的问题,同时提供一种3D显示方法,利用人眼追踪技术,配合狭缝光栅实现3D显示。
本申请实施例第一方面提供了一种显示光栅,所述显示光栅包括:
光栅基材;
所述光栅基材的第一外表面设置有多个依次排列的反射结构;
所述光栅基材的第一内表面设置有多个依次排列的散射结构,所述散射结构包含多个出光点;
所述光栅基材的第一侧面设置有多个依次排列的发光源。
本申请第二方面提供了一种3D显示装置,包括:
背光面板、显示光栅、液晶显示面板以及控制器;
所述显示光栅设置于所述背光面板和所述液晶显示面板中间;
所述显示光栅的第一外表面设置有多个依次排列的反射结构;
所述显示光栅的第一内表面设置有多个依次排列的散射结构,所述散射结构包含多个出光点;
所述显示光栅的第一侧面设置有多个依次排列的发光源;
所述控制器与所述发光源通过控制线连接,用于控制所述发光源熄灭或点亮;
当所述显示光栅处于2D工作状态时,所述控制器通过所述控制线控制所述发光源点亮;
当所述显示光栅处于3D工作状态时,所述控制器通过所述控制线控制所述发光源熄灭。
本申请第三方面提供了一种3D显示方法,包括:
当3D显示装置进行3D显示时,确定目标用户的人眼所处的空间位置,所述目标用户为在预设距离观看所述3D显示装置显示的3D图像的用户,所述3D显示装置包括显示光栅,所述显示光栅设置于所述3D显示装置的背光面板和所述液晶显示面板中间,所述显示光栅的第一外表面设置有多个依次排列的反射结构,所述显示光栅的第一内表面设置有多个依次排列的散射结构,所述散射结构包含多个出光点,所述显示光栅的第一侧面设置有多个依次排列的发光源,所述控制器与所述发光源通过控制线连接,用于控制所述发光源熄灭或点亮,当所述显示光栅处于2D工作状态时,所述控制器通过所述控制线控制所述发光源点亮;当所述显示光栅处于3D工作状态时,所述控制器通过所述控制线控制所述发光源熄灭;
根据所述空间位置确定背光面板发出的光束到达所述目标用户的左眼的左光束集合以及所述目标用户的右眼的右光束集合,所述背光面板为所述3D显示所对应的显示面板,且所述左光束集合和所述右光束集合中的光束与通过所述液晶显示面板的像素相对应;
根据所述左光束集合以及所述右光束集合将所述液晶显示面板划分为左视图像素集合和右视图像素集合;
基于所述左视图像素集合以及所述右视图像素集合分别将左图像和右图像显示于所述液晶显示面板,所述左图像和所述右图像与所述3D图像相对应。
一种可能的设计中,所述基于所述左视图像素集合以及所述右视图像素集合分别将左图像和右图像显示于所述液晶显示面板包括:
确定所述左视图像素集合在所述液晶显示面板中的第一位置集合和所述右视图图像集合在所述液晶显示面板中的第二位置集合;
将所述左图像所对应的左图像像素显示于所述第一位置集合;
将所述右图像所对应的右图像像素显示于所述第二位置集合。
一种可能的设计中,所述根据所述空间位置确定背光面板发出的光束到达所述目标用户的左眼的左光束集合以及所述目标用户的右眼的右光束集合包括:
根据所述空间位置确定所述背光面板发出的光束到达所述目标用户的左眼的初始左光束集合和所述目标用户的右眼的初始右光束集合;
将所述初始左光束集合与所述初始右光束集合进行匹配,得到匹配光束集合;
将所述初始左光束集合中除所述匹配光束集合之外的光束集合确定为所述左光束集合;
将所述初始右光束集合中除所述匹配光束集合之外的光束集合确定为所述右光束集合。
相对于相关技术,本申请提供的实施例中,通过在显示光栅上设置散射结构和反射结构,同时在光栅基材的侧面设置发光源,由此在进行2D显示时,发光源通电点亮,补充由于反射结构反射背光面板发出的光线所造成的亮度损失,在进行3D显示时,发光源断电熄灭,使得显示光栅可以与液晶显示面板相配合进行3D显示,进而可以实现2D显示和3D显示的切换。
附图说明
图1为本申请实施例提供的狭缝光栅的分光特性的示意图;
图2为本申请实施例提供的显示光栅的结构示意图;
图3为本申请实施例提供的显示光栅的第一外表面的示意图;
图4为本申请实施例提供的显示光栅的第一内表面的示意图;
图5为本申请实施例提供的显示光栅的制备方法的流程示意图;
图6为本申请实施例提供的3D显示装置的结构示意图;
图7为本申请实施例提供的3D显示装置的立体结构示意图;
图8为本申请实施例提供的3D显示方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的狭缝光栅的分光特性示意图,包括:
显示面板101,狭缝光栅102以及背光光源103;
其中,由于所述狭缝光栅102的分光特性,通过调整所述狭缝光栅102与所述背光光源103之间的间隔,使得用户的左眼看到的光线右眼看不见,同时右眼看到的光线左眼看不见,左右眼光线分别通过的所述显示面板101中的像素集合可以在用户的左眼和右眼各自形成完整图像视觉,使得用户产生立体视觉。
请参阅图2,图2为本申请实施例提供的显示光栅的一个结构示意图,所述显示光栅包括:
光栅基材200,所述光栅基材200的材质可以为玻璃材质,当然也还可以为其他的材质,例如亚克力材质,只要能透光即可,具体不做限定;
所述光栅基材200的第一外表面201设置有多个依次排列的反射结构201a,所述光栅基材200的第一内表面202设置有多个依次排列的散射结构202a,所述散射结构包含多个出光点,可以理解的是,所述第一外表面201为所述光栅 基材200的表面,所述第一内表面202设置于所述光栅基材200的内部,且与所述第一外表面201之间的距离为所述散射结构202a的深度;
所述光栅基材200的第一侧面203设置有多个依次排列的发光源203a,其中,该发光源203a可以为LED灯珠,也可以是其他的发光源,具体不做限定,只要能为所述光栅基材200提供可控的光源即可。
所述光栅基材200还设置有控制线(图中未示出),所述控制线与所述发光源203a连接,也即当所述显示光栅处于2D工作状态时,通过所述控制线控制所述发光源203a点亮,当所述显示光栅处于3D工作状态时,通过所述控制线控制所述发光源203熄灭。由于所述光栅基材200处于背光面板和显示面板之间,在进行2D显示时,背光面板发出的光线会有一部分被所述光栅基材200上设置的所述反射结构201a进行反射,因此,在所述显示光栅200上设置所述发光源203a,用于在显示光栅200处于2D工作状态时,通过控制线控制所述发光源203a点亮,以补充所述反射结构201a反射的光线。
下面结合图3以及图4对第一外表面201和第一内表面202进行详细说明,请参阅图3,图3为本申请实施例提供的显示光栅的第一外表面201的示意图,其中,所述第一外表面201包括第一透光区域201b,所述第一透光区域201b为第一外表面201中除所述反射结构201a之外的区域,如图2所示,所述反射结构201a可以为正方形区域,所述第一透光区域201b为该正方形区域周围的区域,当然所述反射结构201a还可以是长方形区域或者圆形区域具体不做限定。
请参阅图4,图4为本申请实施例提供的显示光栅的第一内表面202的示意图,其中,所述第一内表面202包括第二透光区域202b,所述第二透光区域202b为所述第一内表面202中除所述散射结构202a之外的区域,如图4所示,所述散射结构202a可以为正方形区域,所述第二透光区域202b为该正方形区域周围的区域,当然所述散射结构202a还可以为长方形区域或者圆形区域,具体不做限定。
需要说明的是,所述散射结构202a与所述反射结构201a相对应,也即在所述第一外表面201上设置有多少个所述反射结构201a,所述第一内表面202上会对应的设置多少个所述散射结构202a,且所述散射结构202a的面积小于或等于所述反射结构201a的面积,所述散射结构202a的中心线与所述反射结构201a的中心线重合,所述反射结构201a高出所述第一外表面201预设距离,也即所 述反射结构201a会高出所述光栅基材200。
还需要说明的是,所述散射结构202a为所述第一外表面201上蚀刻得到的多个依次排列的深度为预设距离的凹坑,且该凹坑底部设置有多个出光点,该多个出光点用于将所述发光源203发出的光线进行散射,补充所述反射结构201a反射的光线。
下面结合图5对本申请提供的显示光栅的制备方法进行说明,请参阅图5,图5为本申请实施例提供的显示光栅的制备方法的流程示意图,包括:
501、提供光栅基材。
本实施例中,在显示光栅进行制备时,可以首先确定所述光栅基材所用的材质,所述光栅基材的材质可以为玻璃材质,当然也还可以为其他的材质,例如亚克力材质,只要能透光即可,具体不做限定,之后根据需要选定所述光栅基材的规格,例如需要制备的是5英寸材质为玻璃的所述光栅基材,由此可以选择5英寸的玻璃作为所述光栅基材。
502、在光栅基材的第一外表面蚀刻多个依次排列的散射结构。
本实施例中,在选定所述光栅基材之后,可以在所述光栅基材的第一外表面蚀刻多个依次排列的散射结构,所述散射结构为预设深度的凹坑,且该凹坑内设置有多个出光点。如图2所示,所述第一外表面201为所述光栅基材200的表面,在所述第一外表201蚀刻多个依次排列的散射结构201a,也即在所述第一外表面201蚀刻多个依次排列的细密凹坑,该凹坑的深度为预先设置的深度,并且在凹坑的底部设置多个出光点,将所述光栅基材200所对应的发光源203a所发出的光线进行散射,以补充光栅导致的光线遮挡效果,蚀刻完成的所述第一内表面202如图4所示,蚀刻后的所述第一内表面202包括散射结构202a和透光区域202b。
503、在散射结构上镀反射材料。
本实施例中,在所述光栅基材的所述第一外表面蚀刻多个依次排列的所述散射结构之后,可以在所述散射结构上镀反射材料,镀所述反射材料后的散射结构高出所述第一外表面,且镀所述反射材料的面积大于或等于所述散射结构的面积。具体的,可以提供与所述光栅基材所对应的印刷模具,并根据该印刷模具在所述第一外表面印刷第一保护层和第二保护层,所述第一保护层位于所述第二保护层与所述第一外表面的中间,之后通过腐蚀液对印刷保护层后的所 述第一外表面进行蚀刻(或者通过其他的方式对所述第一外表面进行蚀刻,例如激光,具体不做限定),得到多个与依次排列的所述散射结构,并将蚀刻后的所述光栅基材进行清洗,之后出去所述第二保护层,并在去除所述第二保护层后的散射结构区域镀相应的所述反射材料,镀所述反射材料后的所述第一外表面如图3所示,之后再次进行清洗,并去除所述第一保护层,得到显示光栅。
下面结合图6对本申请实施例提供的3D显示装置进行说明,请参阅图6,图6为本申请实施例提供的3D显示装置的结构示意图,包括:
背光面板601、显示光栅602、液晶显示面板603以及控制器(图中未示出);
其中,所述显示光栅602设置于所述背光面板601与所述液晶显示面板603中间,且所述显示光栅602的第一外表面设置有多个依次排列的反射结构602a,所述显示光栅602的第一内表面设置有多个依次排列的散射结构602b,所述散射结602b构包含多个出光点;
所述显示光栅602的第一侧面602c设置有多个依次排列的发光源602d;
控制器与所述发光源602d通过控制线连接,用于控制所述发光源602d熄灭或点亮,也即当所述显示光栅602处于2D工作状态时,控制器通过控制线控制所述发光源602d点亮,补充光栅导致的光线遮挡效果,当所述显示光栅602处于3D工作状态时,控制器通过控制线控制所述发光源602d熄灭。在3D显示装置处于2D工作状态时,由于所述显示光栅602处于所述背光面板601和所述液晶显示面板603之间,所述背光面板601发出的光线会有一部分被所述显示光栅602上设置的所述反射结构602a进行反射,因此,在所述显示光栅602的所述第一侧面602c设置所述发光源602d,用于在所述显示光栅602处于2D工作状态时,通过控制线控制所述发光源602d点亮,以补充所述反射结构602a反射的光线。
一个实施例中,所述第一外表面包括第一透光区域,所述第一透光区域为所述第一外表面中除所述反射结构602a之外的区域,具体请参阅图3,上述已经进行了说明,具体此处不在赘述。
所述第一内表面包括第二透光区域,所述第二透光区域为所述第一内表面中所述散射结构602b之外的区域,具体请参阅图4,上述已经进行了详细说明,具体此处不再赘述。
需要说明的是,所述散射结构602b与所述反射结构602a在所述显示光栅 602上是相对应的,也即在所述第一外表面上设置有多少个所述反射结构602a,相应的在所述第一内表面上即对应的设置有多少个所述散射结构602b,且所述散射结构602b的面积小于或等于所述反射结构602a的面积,相应的所述第二透光区域的面积也就大于或等于所述第一透光区域的面积,所述散射结构602b的中心线与所述反射结构602a的中心线重合,所述反射结构602a高出所述第一外表面预设距离。
还需要说明的是,所述散射结构602b为所述第一外表面上蚀刻得到的多个依次排列的深度为预设距离的凹坑,且该凹坑底部设置有多个出光点,该多个出光点用于将所述发光源602d发出的光线进行散射,补充所述反射结构602a反射的光线。
可以理解的是,所述第一外表面为所述显示光栅602靠近所述背光面板601的表面,所述第一内表面为所述显示光栅602内部与所述第一外表面距离为预设距离的一内表面;
所述显示光栅602上设置的所述反射结构602a与所述液晶显示面板603之间的距离可以通过如下公式进行计算:
M=L*P/Q;
其中,L为用户与所述液晶显示面板603之间的距离(也即用户观看所述液晶显示面板603的距离,例如60厘米),P为所述液晶显示面板603所对应的像素间距,Q为用户的人眼瞳距。
需要说明的是,该3D显示装置还包括屏蔽罩604,所述背光面板601安装于所述屏蔽罩604的底部,所述显示光栅602安装于所述背光面板601的上部,所述液晶显示面板603安装于所述显示光栅602的上部,所述发光源602d通过光耦合胶连接在所述显示光栅602的第一侧面602c。当所述显示光栅处于2D工作状态时,通过所述控制线控制所述发光源602d点亮,光线在所述显示光栅两个内表面之间发生全反射,在屏蔽罩处发生反射,当遇到出光点时发生散射,一部分光线射向所述液晶显示面板603,从而达到弥补狭缝所遮挡的光线,使得所有像素左右眼均可见。
请参阅图7,图7为本申请实施例提供的3D显示装置的立体结构示意图,包括:
显示光栅701、光栅发光源702、背光面板703、屏蔽罩704、控制线705以及背光发光源706;
其中,所述背光面板703安装于所述屏蔽罩704的底部,所述显示光栅701安装于所述背光面板703的上部,液晶显示面板(图中未示出)安装于所述显示光栅701的上部,所述光栅发光源702通过光耦合胶连接在所述显示光栅701的第一侧面,所述控制线705与所述光栅发光源702连接,用于控制所述光栅发光源702熄灭或点亮,也即当所述显示光栅701处于2D工作状态时,通过所述控制线705控制所述光栅发光源702熄灭,当所述显示光栅701处于3D工作状态时,通过所述控制线705控制所述光栅发光源702d点亮,由于所述显示光栅701处于所述背光面板703和所述液晶显示面板之间,所述背光面板703发出的光线会有一部分被所述显示光栅701上设置的反射结构(图中未示出)进行反射,因此,在所述显示光栅701的所述第一侧面设置所述光栅发光源702,用于在所述显示光栅701处于2D工作状态时,通过所述控制线705控制所述光栅发光源702点亮,以补充所述反射结构反射的光线。
请参阅图8,图8为本申请实施例提供的3D显示方法的流程示意图,该3D显示方法包括:
801、当3D显示装置进行3D显示时,确定目标用户的人眼所处的空间位置。
本实施例中,当所述3D显示装置进行3D显示时,所述3D显示装置可以确定目标用户的人眼所处的空间位置,其中,所述目标用户为在预设距离观看3D显示装置所对应的显示图像的用户。此处具体不限定确定所述目标用户人眼所处的空间位置,例如通过眼动仪来捕获,当然也还可以通过其他的方式进行确定。
需要说明的是,所述3D显示装置包括显示光栅,所述显示光栅设置于所述3D显示装置的背光面板和液晶显示面板中间,所述显示光栅的第一外表面设置有多个依次排列的反射结构,所述显示光栅的第一内表面设置有多个依次排列的散射结构,所述散射结构包含多个出光点,所述显示光栅的第一侧面设置有多个依次排列的发光源,控制器与所述发光源通过控制线连接,用于控制所述发光源熄灭或点亮。当所述显示光栅处于2D工作状态时,所述控制器通过所述控制线控制所述发光源点亮,当所述显示光栅处于3D工作状态时,所述控制器 通过所述控制线控制所述发光源熄灭。
802、根据空间位置确定背光面板发出的光束到达目标用户的左眼的左光束集合以及目标用户的右眼的右光束集合。
本实施例中,通过所述3D显示装置上设置的所述显示光栅的分光特性,将所述3D显示装置所对应的所述背光面板发出的光束,根据空间位置计算分别能到达所述目标用户的左眼的左光束集合以及到达所述目标用户的右眼的右光束集合,其中,所述左光束集合和所述右光束集合中的光束与通过所述液晶显示面板的像素相对应,也即所述左光束集合和所述右光束集合中分别包括若干光束,该若干光束的数量与所述3D显示装置所对应的所述显示光栅上的透光区域相对应,每个光束与透过该光束到达人眼的所述液晶显示面板的像素一一对应。
需要说明的是,从所述3D显示装置的所述背光面板发出的光束显然会存在一些既能到达左眼又能达到右眼的光束,因此,在确定到达所述目标用户的左眼的所述左光束集合以及所述目标用户的右眼的所述右光束集合时,可以首先根据空间位置确定所述背光面板发出的光束达到所述目标用户的左眼的初始左光束集合和到达所述目标用户的右眼的初始右光束集合,之后将所述初始左光束集合和所述初始右光束集合进行匹配,得到可以同时到达左眼和右眼的匹配光束集合,之后将所述初始左光束集合中除匹配光束集合之外的光束集合确定为所述左光束集合,将所述初始右光束集合中除匹配光束集合之外的光束集合确定为所述右光束集合。
803、根据左光束集合以及右光束集合将液晶显示面板划分为左视图像素集合和右视图像素集合。
本实施例中,所述3D显示装置在确定到达左眼的所述左光束集合和到达右眼的所述右光束集合之后,由于所述左光束集合和所述右光束集合中的每个光束与透过该光束到达人眼的所述液晶显示面板的像素一一对应,由此,可以根据所述左光束集合以及所述右光束集合将所述液晶显示面板划分为左视图像素集合和右视图像素集合,也即将所述左光束集合在所述液晶显示面板上对应的像素确定为所述左视图像素集合,将所述右光束集合在所述液晶显示面板上对应的像素确定为所述右视图像素集合。
804、基于左视图像素集合以及右视图像素集合分别将左图像和右图像显示于液晶显示面板。
本实施例中,所述3D显示装置在所述将液晶显示面板划分为所述左视图像素集合和所述右视图像素集合之后,可以基于所述左视图像素集合以及所述右视图像素集合分别将左图像和右图像显示于所述液晶显示面板,其中,所述左图像和所述右图像与所述3D显示装置待进行3D显示的图像相对应。具体的,可以确定所述左视图像素集合在所述液晶显示面板中的第一位置集合,并确定所述右视图图像集合在所述液晶显示面板中的第二位置集合;将所述左图像所对应的左图像像素显示于所述第一位置集合;将所述右图像所对应的右图像像素显示于所述第二位置集合。也即,所述3D显示装置在所述液晶显示面板显示左右格式的3D图像时,将所述左图像所对应的所述左图像像素在所述左视图像素集合中各个像素所对应的位置上进行显示,将所述右图像所对应的所述右图像像素在所述右视图像素集合中各个像素所对应的位置进行显示。
需要说明的是,对于既能到达左眼又能到达右眼的光束,其所对应的所述液晶显示面板上的像素,不划分入所述左视图像素集合和所述右视图像素集合,在进行显示时,显示为低亮度像素。
一个实施例中,所述3D显示装置在进行2D显示时,将所述背光面板上显示的图像的像素进行正常排列,同时将所述3D显示装置所对应的所述显示光栅上的所述光栅发光源点亮,以补充所述显示光栅所导致的光线遮挡效果。
综上所述,可以看出,本申请提供的实施例中,通过3D显示装置上设置的显示光栅中的反射结构将背光面板发出的光束划分为左光束集合和右光束集合,之后,根据左光束集合以及右光束集合将显示面板划分为左视图像素集合和右视图像素集合,之后根据左视图像素集合以及右视图像素集合分别将待进行3D显示的图像的左图像和右图像分别显示于液晶显示面板,实现3D显示效果。同时,还可以在进行2D显示时,将液晶显示面板上显示的图像的像素进行正常排列,实现2D的显示效果。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种显示光栅,其特征在于,包括:
    光栅基材;
    所述光栅基材的第一外表面设置有多个依次排列的反射结构;
    所述光栅基材的第一内表面设置有多个依次排列的散射结构,所述散射结构包含多个出光点;
    所述光栅基材的第一侧面设置有多个依次排列的发光源。
  2. 根据权利要求1所述的显示光栅,其特征在于,
    所述显示光栅还设置有控制线,所述控制线与所述发光源连接;
    当所述显示光栅处于2D工作状态时,通过所述控制线控制所述发光源点亮;
    当所述显示光栅处于3D工作状态时,通过所述控制线控制所述发光源熄灭。
  3. 根据权利要求2所述的显示光栅,其特征在于,
    所述第一外表面包括第一透光区域,所述第一透光区域为所述第一外表面中除所述反射结构之外的区域;
    所述散射结构与所述反射结构相对应,所述散射结构的面积小于或等于所述反射结构的面积,所述散射结构的中心线与所述反射结构的中心线重合,所述反射结构高出所述第一外表面预设距离;
    所述第一内表面包括第二透光区域,所述第二透光区域为所述第一内表面中除所述散射结构之外的区域;
    所述第二透光区域的面积大于或等于所述第一透光区域的面积。
  4. 根据权利要求7所述的方法,其特征在于,
    所述散射结构为在所述光栅基材的第一外表面蚀刻多个依次排列预设深度的凹坑,所述凹坑内设置有多个所述出光点;
  5. 一种3D显示装置,其特征在于,包括:
    背光面板、显示光栅、液晶显示面板以及控制器;
    所述显示光栅设置于所述背光面板和所述液晶显示面板中间;
    所述显示光栅的第一外表面设置有多个依次排列的反射结构;
    所述显示光栅的第一内表面设置有多个依次排列的散射结构,所述散射结 构包含多个出光点;
    所述显示光栅的第一侧面设置有多个依次排列的发光源;
    所述控制器与所述发光源通过控制线连接,用于控制所述发光源熄灭或点亮;
    当所述显示光栅处于2D工作状态时,所述控制器通过所述控制线控制所述发光源点亮;
    当所述显示光栅处于3D工作状态时,所述控制器通过所述控制线控制所述发光源熄灭。
  6. 根据权利要求5所述的3D显示装置,其特征在于,
    所述第一外表面包括第一透光区域,所述第一透光区域为所述第一外表面中除所述反射结构之外的区域;
    所述散射结构与所述反射结构相对应,所述散射结构的面积小于或等于所述反射结构的面积,所述散射结构的中心线与所述反射结构的中心线重合,所述反射结构高出所述第一外表面预设距离;
    所述第一内表面包括第二透光区域,所述第二透光区域为所述第一内表面中除所述散射结构之外的区域;
    所述第二透光区域的面积大于或等于所述第一透光区域的面积。
  7. 根据权利要求5或6所述的3D显示装置,其特征在于,
    所述第一外表面为所述显示光栅靠近所述背光面板的表面,所述第一内表面为所述显示光栅内部与所述第一外表面距离为预设距离的一层内表面;
    所述反射结构与所述液晶显示面板之间的距离为:
    M=L*P/Q;
    其中,L为用户与所述液晶显示面板之间的距离,P为所述液晶显示面板所对应的像素间距,Q为所述用户的人眼瞳距。
  8. 一种3D显示方法,其特征在于,包括:
    当3D显示装置进行3D显示时,确定目标用户的人眼所处的空间位置,所述目标用户为在预设距离观看所述3D显示装置显示的3D图像的用户,所述3D显示装置包括显示光栅,所述显示光栅设置于所述3D显示装置的背光面板和所 述液晶显示面板中间,所述显示光栅的第一外表面设置有多个依次排列的反射结构,所述显示光栅的第一内表面设置有多个依次排列的散射结构,所述散射结构包含多个出光点,所述显示光栅的第一侧面设置有多个依次排列的发光源,所述控制器与所述发光源通过控制线连接,用于控制所述发光源熄灭或点亮,当所述显示光栅处于2D工作状态时,所述控制器通过所述控制线控制所述发光源点亮;当所述显示光栅处于3D工作状态时,所述控制器通过所述控制线控制所述发光源熄灭;
    根据所述空间位置确定背光面板发出的光束到达所述目标用户的左眼的左光束集合以及所述目标用户的右眼的右光束集合,所述背光面板为所述3D显示所对应的背光面板,且所述左光束集合和所述右光束集合中的光束与通过所述液晶显示面板的像素相对应;
    根据所述左光束集合以及所述右光束集合将所述液晶显示面板划分为左视图像素集合和右视图像素集合;
    基于所述左视图像素集合以及所述右视图像素集合分别将左图像和右图像显示于所述液晶显示面板,所述左图像和所述右图像与所述3D图像相对应。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述左视图像素集合以及所述右视图像素集合分别将左图像和右图像显示于所述液晶显示面板包括:
    确定所述左视图像素集合在所述液晶显示面板中的第一位置集合和所述右视图图像集合在所述液晶显示面板中的第二位置集合;
    将所述左图像所对应的左图像像素显示于所述第一位置集合;
    将所述右图像所对应的右图像像素显示于所述第二位置集合。
  10. 根据权利要求8或9所述的方法,其特征在于,所述根据所述空间位置确定背光面板发出的光束到达所述目标用户的左眼的左光束集合以及所述目标用户的右眼的右光束集合包括:
    根据所述空间位置确定所述背光面板发出的光束到达所述目标用户的左眼的初始左光束集合和所述目标用户的右眼的初始右光束集合;
    将所述初始左光束集合与所述初始右光束集合进行匹配,得到匹配光束集合;
    将所述初始左光束集合中除所述匹配光束集合之外的光束集合确定为所述左光束集合;
    将所述初始右光束集合中除所述匹配光束集合之外的光束集合确定为所述右光束集合。
PCT/CN2022/132116 2021-11-17 2022-11-16 显示光栅、3d显示装置及3d显示方法 WO2023088274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111360048.XA CN114200693A (zh) 2021-11-17 2021-11-17 显示光栅、3d显示装置、显示光栅的制备及3d显示方法
CN202111360048.X 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023088274A1 true WO2023088274A1 (zh) 2023-05-25

Family

ID=80647759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132116 WO2023088274A1 (zh) 2021-11-17 2022-11-16 显示光栅、3d显示装置及3d显示方法

Country Status (2)

Country Link
CN (1) CN114200693A (zh)
WO (1) WO2023088274A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200693A (zh) * 2021-11-17 2022-03-18 广东未来科技有限公司 显示光栅、3d显示装置、显示光栅的制备及3d显示方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113327A (ko) * 2010-04-09 2011-10-17 이효진 2d/3d 겸용 디스플레이 장치
CN102297350A (zh) * 2010-06-25 2011-12-28 索尼公司 光源装置和立体显示设备
CN102563401A (zh) * 2010-09-27 2012-07-11 索尼公司 光源设备和立体显示设备
CN102692722A (zh) * 2012-05-07 2012-09-26 上海交通大学 基于视差屏障的 2d/3d可切换自动立体显示设备和方法
CN105866967A (zh) * 2016-06-25 2016-08-17 武汉华星光电技术有限公司 显示屏及显示器
CN107329360A (zh) * 2017-08-29 2017-11-07 成都菲斯特科技有限公司 正投影透光投影屏幕及投影系统
CN114200693A (zh) * 2021-11-17 2022-03-18 广东未来科技有限公司 显示光栅、3d显示装置、显示光栅的制备及3d显示方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674023B2 (ja) * 2011-01-27 2015-02-18 ソニー株式会社 光源デバイスおよび表示装置
JP5768447B2 (ja) * 2011-03-31 2015-08-26 大日本印刷株式会社 立体液晶表示装置
JP5852383B2 (ja) * 2011-09-26 2016-02-03 エフ・エーシステムエンジニアリング株式会社 映像表示装置
CN106383417A (zh) * 2016-08-29 2017-02-08 合肥惠科金扬科技有限公司 一种液晶显示屏背光结构生产方法
CN106324847B (zh) * 2016-10-21 2018-01-23 京东方科技集团股份有限公司 一种三维显示装置
CN106647039A (zh) * 2017-03-01 2017-05-10 武汉亿维登科技发展有限公司 一种透红外的背光模组
CN110139092A (zh) * 2019-05-20 2019-08-16 中国科学院长春光学精密机械与物理研究所 立体显示系统、图像处理方法、装置、设备及存储介质
CN110286495B (zh) * 2019-07-08 2023-12-29 成都工业学院 一种基于光源阵列的逆反射立体显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113327A (ko) * 2010-04-09 2011-10-17 이효진 2d/3d 겸용 디스플레이 장치
CN102297350A (zh) * 2010-06-25 2011-12-28 索尼公司 光源装置和立体显示设备
CN102563401A (zh) * 2010-09-27 2012-07-11 索尼公司 光源设备和立体显示设备
CN102692722A (zh) * 2012-05-07 2012-09-26 上海交通大学 基于视差屏障的 2d/3d可切换自动立体显示设备和方法
CN105866967A (zh) * 2016-06-25 2016-08-17 武汉华星光电技术有限公司 显示屏及显示器
CN107329360A (zh) * 2017-08-29 2017-11-07 成都菲斯特科技有限公司 正投影透光投影屏幕及投影系统
CN114200693A (zh) * 2021-11-17 2022-03-18 广东未来科技有限公司 显示光栅、3d显示装置、显示光栅的制备及3d显示方法

Also Published As

Publication number Publication date
CN114200693A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP4930631B2 (ja) 立体表示装置
JP6804522B2 (ja) 回折バックライトディスプレイおよびシステム
EP3014174B1 (en) Waveguide including light turning gaps
KR102377759B1 (ko) 지향성 백라이트
US20140036529A1 (en) Light source device, display unit, and electronic apparatus
US10670866B2 (en) Method for providing composite image based on optical transparency and apparatus using the same
CN103454704B (zh) 显示方法
EP3136159A1 (en) Backlight unit and 3d image display apparatus
JP6817738B2 (ja) 曲面型バックライトユニット、及びそれを含む曲面型ディスプレイ装置
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
KR101652401B1 (ko) 입체 영상 디스플레이 장치 및 입체 영상 표시 방법
CA3134527C (en) Time-multiplexed backlight, multiview display, and method
CN102608768A (zh) 基于led的双面光栅立体显示装置及其制作方法
CN110297331A (zh) 显示装置及显示方法
CN110954983B (zh) 一种彩色光波导结构及显示装置
CN103032761A (zh) 光源装置、显示设备和电子装置
CN106873169A (zh) 三维显示器
WO2023088274A1 (zh) 显示光栅、3d显示装置及3d显示方法
CN101017248A (zh) 回收式背光照明自由立体成像装置及其方法
CN111580276B (zh) 基于定向散射波导的近眼光场显示装置和方法
CN107748442B (zh) 一种可快速切换图像深度的增强现实显示装置
CN109427303A (zh) 显示面板及其制造方法、显示方法、显示装置
CN105425471B (zh) 一种阵列基板及其制作方法、显示装置
CN207352294U (zh) 立体浮空图像系统
CN108469684B (zh) 一种透明显示器及一种显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894807

Country of ref document: EP

Kind code of ref document: A1