WO2023088203A1 - 一种波束成型权值计算方法以及相关装置 - Google Patents

一种波束成型权值计算方法以及相关装置 Download PDF

Info

Publication number
WO2023088203A1
WO2023088203A1 PCT/CN2022/131645 CN2022131645W WO2023088203A1 WO 2023088203 A1 WO2023088203 A1 WO 2023088203A1 CN 2022131645 W CN2022131645 W CN 2022131645W WO 2023088203 A1 WO2023088203 A1 WO 2023088203A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
resource block
sub
user
block group
Prior art date
Application number
PCT/CN2022/131645
Other languages
English (en)
French (fr)
Inventor
郭森宝
李桂宝
秦恒
吕芳芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023088203A1 publication Critical patent/WO2023088203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a beamforming weight calculation method and a related device.
  • a multiple in multiple out (MIMO) system considering that the power of each antenna unit is limited, the traditional power normalization algorithm per resource element has limited application in actual systems, and all antennas need The power of the maximum power antenna is normalized, which will cause the power of other antennas to be sent at not full power except for the maximum power antenna, resulting in power waste.
  • PEBF power limited-eigen beamforming
  • the current algorithm ideas mainly include the interior point iteration method and the sub-gradient optimal gradient descent method, both of which have the risk of slow convergence or non-convergence, and the implementation complexity is high, and some algorithms are based on maximizing the minimum user throughput.
  • the goal is not necessarily to maximize the user's throughput, which refers to the data throughput.
  • the embodiment of the present application proposes a beamforming weight calculation method, including:
  • the scheduled resource block group determine X sub-resource block groups, one sub-resource block group in the X sub-resource block groups includes part of the resource block groups in the resource block group, and the resources in each sub-resource block group The block group is fully occupied by users, and the X is a positive integer greater than 1;
  • the beamforming weight calculation method includes: normalized eigenbeamforming NEBF, or power-dependent Limited eigenbeamforming PEBF;
  • the weighted data is sent.
  • PEBF power limited-eigen beamforming
  • NEBF normalized-eigen Beamforming
  • the PEBF can ensure that the power of the antenna port with the highest power does not exceed the standard.
  • NEBF can realize that the power of each antenna reaches the maximum power value of the antenna.
  • the weight is used for weighting the data to be sent.
  • j is a positive integer.
  • multi-user weights Since multiple users send data in the same resource block group, different weights need to be used when performing weighted operations on different user data. In addition, the weights of different users need to minimize data interference with each other, or maximize data throughput. Therefore, the above weights are also called multi-user weights.
  • the beamforming weight calculation method used by each of the sub-resource block groups, where the beamforming weight calculation method includes: NEBF, or PEBF; according to each The beamforming weight calculation method corresponding to the subresource block group obtains the beamforming weight corresponding to each subresource block group; weights the data based on the beamforming weight; sends the weighted data .
  • Network devices In a multi-user multiple-input multiple-output (Multi-User Multiple-Input Multiple-Output, MU-MIMO) system, in order to avoid the transmission power of the antenna exceeding the maximum value, it will affect the orthogonality between multiple users.
  • Network devices generally use a beamforming weight calculation method to normalize the maximum transmit power of multiple antennas to obtain beamforming weights. The data is weighted based on the beamforming weights, and then the network device sends the weighted data.
  • PEBF power limited-eigen beamforming
  • NEBF normalized-eigen Beamforming
  • the PEBF can ensure that the power of the antenna port with the highest power does not exceed the standard.
  • the specific calculation process of PEBF is introduced as follows:
  • the weight is used for weighting the data to be sent.
  • j is a positive integer.
  • multi-user weights Since multiple users send data in the same resource block group, different weights need to be used when performing weighted operations on different user data. In addition, the weights of different users need to minimize data interference with each other, or maximize data throughput. Therefore, the above weights are also called multi-user weights.
  • nth element of is the weight of the l-th layer in the j-th RBG, and the weight of the l-th layer in the j-th RBG is M is a positive integer, represent vector
  • N BfRbgNum is the number of RBGs that use PEBF to calculate weights in the network device
  • M is the number of physical antennas in the network device
  • L layer, j is the number of pairing layers on the jth RBG, and the number of pairing layers refers to a
  • PA j,l is the configured power factor of a certain user in the jth RBG, and the value of PA j,l is based on the power allocation (power allocation, PA) interface
  • the index value is the linear value searched in the time division duplexing (TDD) interface and the index table
  • p j,l is the lth flow weight in the jth RBG of the current time interval (transmission time interval, TTI)
  • the power proportional coefficient of the power proportional coefficient refers to the percentage of the power of the first layer to the total power of all layers; is the power value of the nth element of the lth layer in the jth RBG
  • the weight power adjustment factor ⁇ PEBF based on PEBF obtains the beamforming weight of the jth RBG
  • NEBF can realize that the power of each antenna reaches the maximum power value of the antenna.
  • the specific calculation process of NEBF is introduced as follows:
  • the weight is used for weighting processing on the data to be sent, and j is a positive integer.
  • n is the weight of the l-th layer in the j-th RBG, and the weight of the l-th layer in the j-th RBG is M is a positive integer, represent vector
  • N BfRbgNum is the number of RBGs that use NEBF to calculate weights in the network device
  • M is the number of physical antennas in the network device
  • L layer,j is the number of pairing layers on the jth RBG, and the number of pairing layers refers to a
  • PA j,l is the configured power factor of a user in the jth RBG
  • the value of PA j,l is the index value of the PA interface in the TDD interface and index table
  • p j,l is the power proportional coefficient of the l-th flow weight in the j-th RBG of the current TTI, and the power proportional coefficient refers to the percentage of the power of the l-th layer to the total power of all layers; is the power value of the nth element of the lth layer in the jth RBG.
  • the beamforming weights of the jth RBG based on the above intermediate variables Among them, the beamforming weights The nth row element of is
  • An embodiment of the present application proposes a method for calculating beamforming weights, which maximizes power utilization while minimizing interference between users. Specifically, according to the scheduled resource block group, determine multiple sub-resource block groups, and users in each sub-resource block group schedule the same resource block group; according to multiple sub-resource block groups, determine the beamforming weight used by each sub-resource block group Value calculation method, the beamforming weight calculation method includes NEBF or PEBF; then, according to the beamforming weight calculation method corresponding to each subresource block group, obtain the beamforming weight corresponding to each subresource block group; finally based on the beamforming The weights weight the data and send the weighted data.
  • each sub-resource block group adaptively determines the corresponding beamforming weight calculation method, and obtains the corresponding beamforming weight according to the determined beamforming calculation method, thereby realizing performance optimization. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the determining the beamforming weight calculation method used by each sub-resource block group based on the X sub-resource block groups includes:
  • the first preset condition includes one or more of the following:
  • the average modulation and coding strategy MCS of multiple users in the sub-resource block group is less than the first threshold
  • the difference between the first SINR and the second SINR is smaller than the second threshold, where the first SINR is calculated according to the first weight power of the sub-resource block group Signal-to-interference and noise ratio, the second signal-to-interference and noise ratio is the signal-to-interference and noise ratio calculated by the second power of the sub-resource block group, and the first weight power is calculated by using NEBF for the sub-resource block group Weight power, the second weight power is the weight power calculated by using PEBF for the sub-resource block group,
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than a third threshold.
  • the network device when it detects that a single user is scheduled in the sub-resource block group, it determines that the sub-resource block group uses NEBF to obtain the beamforming weight corresponding to the sub-resource block group.
  • using NEBF to obtain the beamforming weight corresponding to the sub-resource block group is also called using NEBF to calculate the beamforming weight corresponding to the sub-resource block group.
  • the RBG that uses NEBF to calculate the beamforming weight is called the NEBF set, wherein the NEBF set is also called the NEBF RBG, and the NEBF RBG includes one or more sub-resource block groups, and each sub-resource block in the NEBF RBG The group computes beamforming weights using NEBF.
  • the network device divides sub-resource block groups that are scheduled for a single user into NEBF sets (NEBF RBGs). After the network device determines that the sub-resource block group uses NEBF, the processing method (using NEBF to calculate the beamforming weight of the sub-resource block) is passed through the media access control (media access control, MAC) layer (MAC layer is also called L2 layer) to the physical layer (the physical layer is also called the L1 layer).
  • media access control media access control, MAC layer is also called L2 layer
  • the network device detects that multiple users are scheduled in the sub-resource block group, the network device further detects whether the sub-resource block group satisfies the first preset condition.
  • the first preset condition includes one or more of the following:
  • the average modulation and coding scheme (modulation and coding scheme, MCS) of multiple users in the sub-resource block group is less than the first threshold.
  • the difference between the first SINR and the second SINR is less than the second threshold
  • the first SINR is the SINR calculated according to the first weight power of the sub-resource block group Noise ratio
  • the second signal-to-interference and noise ratio is the signal-to-interference-noise ratio calculated by the second power of the sub-resource block group
  • the first weight power is the weight power calculated by using NEBF for the sub-resource block group
  • the second weight power is The sub-resource block group uses the weight power calculated by PEBF.
  • the network device uses NEBF to calculate the weight power of the sub-resource block group, and the obtained weight power is called the first weight power; the network device uses PEBF to calculate the weight power of the sub-resource block group, and the obtained weight power It is called the second weight power.
  • the network device calculates the SINR (signal to interference plus noise ratio, SINR) according to the first weight power, and the obtained SINR is called the first SINR; the network device calculates the signal to interference plus noise ratio according to the second weight power SINR, the obtained SINR is called the second SINR.
  • SINR signal to interference plus noise ratio
  • the network device detects whether the difference between the first SINR and the second SINR (the difference is called ⁇ SINR average in the embodiment of the present application) is smaller than the second threshold (the second threshold in the embodiment of the present application is called Thr2), if it is less than the first preset condition, then determine the sub-resource block group and use NEBF to calculate the beamforming weight of the sub-resource block group; if it is greater than or equal to the second threshold, then the first preset condition is not satisfied conditions, it is determined that the sub-resource block group uses PEBF to calculate the beamforming weight of the sub-resource block group. That is, when ⁇ SINR average ⁇ Thr2, the RBG uses NEBF to calculate the beamforming weight; when ⁇ SINR average ⁇ Thr2, the RBG uses PEBF to calculate the beamforming weight.
  • the channel correlation or weight value correlation between users in the sub-resource block group is smaller than the third threshold.
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than the third threshold.
  • the channel correlation and the weight correlation can be represented by a correlation measure (normalized mean square prediction error, NMSE), and can also be represented by a normalized mean square error, which is not limited here.
  • NMSE normalized mean square prediction error
  • the channel correlation or weight correlation between users in the sub-resource block group is called ⁇ Corr average
  • the third threshold is called Thr3.
  • each sub-resource block group adaptively determines a corresponding beamforming weight calculation method, and obtains a corresponding beamforming weight according to the determined beamforming calculation method, thereby realizing performance optimization. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the beamforming weights of the users sensitive to weight direction changes in the sub-resource block group are not calculated.
  • the user who is sensitive to the change of weight direction still uses the original weight to weight the data.
  • the users who are sensitive to weight direction changes can be understood as users whose user performance will be significantly reduced when the weight direction changes.
  • TM4 transmission mode 4
  • the beamforming weights of the TM4 users in the sub-resource block group are not calculated.
  • the TM4 user still uses the original weight to weight the data.
  • calculating the beamforming weight according to the beamforming weight calculation method corresponding to the subresource block group includes:
  • NEBF Using NEBF to calculate the average transmit power of the NEBF set, where the NEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the NEBF set use NEBF to calculate the beamforming weight;
  • NEBF Using NEBF to calculate the weight power of the NEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the network device determines a NEBF set, and the NEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the NEBF set use the NEBF to calculate beamforming weights.
  • the NEBF set is also called NEBF RBG.
  • the sub-resource block groups determined by the network device include: a first sub-resource block group, a second sub-resource block group, a third sub-resource block group, and a fourth sub-resource block group.
  • the network device determines that the sub-resource block group (that is, the NEBF set) that uses the NEBF to calculate the beamforming weight includes: the first sub-resource block group and the second sub-resource block group.
  • the network device uses NEBF to calculate the average transmit power of the NEBF set, that is, uses NEBF to calculate the average transmit power of each RBG in the NEBF RBG. For example: use NEBF to calculate the average transmission power of the first sub-resource block group and the second sub-resource block group. Specifically, the following methods can be used to calculate:
  • E NEBF,aver is the average transmission power of the NEBF set; N NEBF is the number of RBGs included in the NEBF RBG; L layer,j is the number of paired layers on the jth RBG, and the number of paired layers refers to the number of RBGs in an RBG.
  • PA j,l is the configured power factor of a certain user in the jth RBG, and the value of PA j,l is searched in the TDD interface and index table according to the index value of the PA interface
  • the linear value of p j,l is the power proportional coefficient of the l-th flow weight in the j-th RBG of the current TTI, and the power proportional coefficient refers to the percentage of the power of the l-th layer to the total power of all layers.
  • NEBF uses NEBF to calculate the weighted power of the NEBF set at the nth antenna, where n is an integer greater than or equal to 0.
  • n is an integer greater than or equal to 0.
  • the number of pairing layers above, the number of pairing layers refers to the total number of data streams sent by multiple users in one RBG; PA j,l is the power factor configured for a certain user in the jth RBG, and the number of PA j,l
  • the value is the linear value that the index value of the PA interface looks up in the TDD interface and index table; is the power value of the nth antenna of the lth layer in the jth RBG.
  • the network device is based on the average transmit power E NEBF,aver of the NEBF set, and the weight power of the nth antenna of the NEBF set Determine the average transmit power of the NEBF set on the nth antenna. Specifically, the following methods can be used to calculate:
  • E NEBF,aver is the average transmit power of the NEBF set
  • the average transmit power on the nth antenna based on the NEBF set The weights on the nth antenna are normalized to obtain the beamforming weights. Specifically, the following methods can be used to calculate:
  • ⁇ NEBF is the weight power adjustment factor based on NEBF, ⁇ NEBF can be calculated according to the full-power bandwidth (FPBW) power, and ⁇ NEBF can also be calculated according to ⁇ PEBF is calculated, for example: That is, ⁇ NEBF can be greater than 1.
  • calculating the beamforming weight according to the beamforming weight calculation method corresponding to the subresource block group includes:
  • PEBF Using PEBF to calculate the average transmit power of the PEBF set, where the PEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the PEBF set use PEBF to calculate the beamforming weight;
  • n is an integer greater than or equal to 0;
  • the network device determines a PEBF set, and the PEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the PEBF set use PEBF to calculate beamforming weights.
  • the PEBF set is also called PEBF RBG.
  • the sub-resource block groups determined by the network device include: a first sub-resource block group, a second sub-resource block group, a third sub-resource block group, and a fourth sub-resource block group.
  • the network device determines that the sub-resource block group (that is, the PEBF set) for calculating the beamforming weight by using the PEBF includes: the first sub-resource block group and the second sub-resource block group.
  • the network device uses PEBF to calculate the average transmit power of the PEBF set, that is, uses PEBF to calculate the average transmit power of each RBG in the PEBF RBG.
  • PEBF is used to calculate the average transmission power of the first sub-resource block group and the second sub-resource block group.
  • the following methods can be used to calculate:
  • E PEBF,aver is the average transmission power of the PEBF set; N PEBF is the number of RBGs included in the PEBF RBG; L layer,j is the number of paired layers on the jth RBG, and the number of paired layers refers to the number of RBGs in an RBG.
  • PA j,l is the configured power factor of a certain user in the jth RBG, and the value of PA j,l is searched in the TDD interface and index table according to the index value of the PA interface
  • the linear value of p j,l is the power proportional coefficient of the l-th flow weight in the j-th RBG of the current TTI, and the power proportional coefficient refers to the percentage of the power of the l-th layer to the total power of all layers.
  • the PEBF is used to calculate the weighted power of the nth antenna of the PEBF set, where n is an integer greater than or equal to 0. Specifically, the following methods can be used to calculate:
  • n is the weight power of the nth antenna in the PEBF set
  • N NEBF is the number of RBGs included in the PEBF RBG;
  • L layer, j is the number of paired layers on the jth RBG , the number of pairing layers refers to the total number of data streams sent by multiple users in one RBG;
  • PA j,l is the power factor configured for a certain user in the jth RBG, and the value of PA j,l is the PA interface
  • the index value is the linear value looked up in the TDD interface and the index table; is the power value of the nth antenna of the lth layer in the jth RBG.
  • the network device is based on the average transmit power E PEBF,aver of the PEBF set, and the weight power of the nth antenna of the PEBF set Determine the average transmit power of the PEBF set on the nth antenna. Specifically, the following methods can be used to calculate:
  • E PEBF,aver is the average transmit power of the PEBF set
  • the weights on the nth antenna are normalized to obtain the beamforming weights. Specifically, the following methods can be used to calculate:
  • the power factor, the value of PA j, l is the linear value searched in the time division duplex (time division duplexing, TDD) interface and index table according to the index value of the power allocation (power allocation, PA) interface; p j, l is the current
  • TTI transmission time interval
  • the determining the beamforming weight calculation method used by each sub-resource block group based on the X sub-resource block groups includes:
  • the first weight power is the weight power calculated by using PEBF for the sub-resource block group
  • the second weight power is the weight power calculated by using NEBF for the sub-resource block group
  • the first weight power and the second weight power calculate the sum of the signal-to-interference-noise ratio difference of each user in the sub-resource block group, where the signal-to-interference-noise ratio difference of each user in the sub-resource block group
  • the noise ratio difference is the SINR calculated by the first weight power of each user in the sub-resource block group and the SINR calculated by the second weight power of each user in the sub-resource block group ratio difference;
  • the beamforming weight calculation method used by the X sub-resource block groups is PEBF;
  • the beamforming weight calculation method used by the X sub-resource block groups is NEBF.
  • the calculating the sum of the SINR difference of each user in the sub-resource block group according to the first weight power and the second weight power includes: calculating the sub-resource block The first weight power and the second weight power of the group are subjected to enhanced zero-forcing processing, and according to the first weight power after the enhanced zero-forcing processing and the second weight after the enhanced zero-forcing processing Calculate the power of each row of antennas according to the value power; calculate the power utilization rate according to the sum of the power of all antennas in the power of each row of antennas and the maximum power of the power of each row of antennas; according to the power of each row of antennas Calculate the power correlation of the power of each row of antennas with the full power multi-user weight vector; calculate the signal of the lth user in the sub-resource block group according to the power correlation and the power utilization rate
  • the interference-to-noise ratio difference, l is a positive integer; calculate the sum of the signal-to-interference-to-noise ratio differences of each
  • the network device determines the first weight power and the second weight power of the sub-resource block group, wherein the first weight power is the weight power obtained by the network device using PEBF to calculate the sub-resource block group, and the second weight power The value power is the weight power obtained by the network device using NEBF to calculate the sub-resource block group.
  • the power utilization rate is calculated. Specifically, the following method can be used to calculate the power utilization rate:
  • ⁇ PEBF is the power utilization factor
  • max(P n ) is the maximum power of the antenna in each row of antennas
  • P REF [1, 1, ... 1] M ⁇ 1
  • P REF is a full-power multi-user weight vector
  • ⁇ P,NEBF is the power correlation.
  • ⁇ interf, nebf are interference adjustment parameters, is the weight correlation between the first weight power and the second weight power;
  • p k represents the power assigned to the kth flow,
  • RB Num is the number of sub-resource block groups,
  • RB Num X,
  • CQI k is the kth flow channel quality indication (CQI) information of a stream,
  • SINR 1 Delta is the SINR difference of the lth user in the subresource block group, and the SINR difference is the first weight of the user The difference between the SINR calculated by the power and the SINR calculated by the user's second weight power.
  • the sum of the SINR difference of the X sub-resource block groups is determined. Specifically, the following method can be used to calculate the X sub-resource block The sum of the SINR differences of the groups:
  • SINR Delta is the sum of the SINR differences of X sub-resource block groups.
  • the network device calculates the sum of the SINR differences of the X sub-resource block groups, determine the beamforming calculation method used by the X sub-resource block groups based on the sum of the SINR differences of the X sub-resource block groups .
  • the sum of SINR differences of the X sub-resource block groups is greater than 0, it is determined that the X sub-resource block groups use PEBF.
  • the sum of the SINR differences of the X sub-resource block groups is less than or equal to 0, it is determined that the X sub-resource block groups use NEBF.
  • multiple sub-resource block groups adaptively determine the corresponding beamforming weight calculation method by calculating the channel capacity of PEBF and NEBF, and obtain the corresponding beamforming weight value according to the determined beamforming calculation method, In order to achieve the optimization of performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • PEBF is used to calculate the initial power of the first sub-resource block group
  • the power of the first sub-resource block group and the power of the second sub-resource block group according to the initial power of the first sub-resource block group and the initial power of the second sub-resource block group, wherein, The sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the maximum power of the same antenna.
  • the network device uses PEBF to calculate the normalized power of the first sub-resource block group, and the power is called the initial power of the first sub-resource block group.
  • the network device uses the NEBF to calculate the normalized power of the second sub-resource block group, and the power is called the initial power of the second sub-resource block group.
  • the network device determines the maximum power of each antenna, for example: the maximum power of the same antenna is 2.
  • the power of the first sub-resource block group and the power of the second sub-resource block group needs to be equal to the maximum power of the same antenna.
  • the maximum power of each antenna is 2, and the power corresponding to each sub-resource block group in each antenna is equal (the maximum power of each sub-resource block group in each antenna is 1).
  • the power utilization ratios of the first sub-resource block group at antenna 1-antenna 6 are: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , and ⁇ 2 are respectively A real number greater than 0 and less than or equal to 1.
  • NEBF Using NEBF to calculate the initial powers of the second sub-resource block group in antenna 1-antenna 6 are 1, 1, 1, 1, 1, and 1, respectively.
  • the above-mentioned remaining power can be shared with the second sub-resource block group, so that the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the same The maximum power of the antenna.
  • the powers of the second sub-resource block group in antenna 1-antenna 6 are: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • multiple sub-resource block groups in the same antenna in the network device can realize power sharing, so that the sum of the powers of the multiple sub-resource block groups in the same antenna reaches the maximum power of the antenna, and the antenna in the network device is improved.
  • the power utilization so as to achieve the optimization of performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the users scheduled in the sub-resource block group include a first user and a second user, and the first user is sensitive to weight direction changes user, the second user is a user insensitive to weight direction changes; the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna.
  • the sub-resource block group includes a first user and a second user as an example.
  • the first user is a user sensitive to weight direction changes, such as a TM4 user; the second user is not sensitive to weight direction changes.
  • users such as TM9 users.
  • the network device uses PEBF or NEBF to calculate the normalized power of the sub-resource block group, and then obtains the power values of different users in the sub-resource block group on different layers in the same antenna.
  • PEBF Packet Control Function
  • the power utilization ratio of the first user in layer 1-layer 6 is respectively: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , and ⁇ 2 are respectively greater than 0 and less than or a real number equal to 1. Then let the initial power of the first user in layer 1-layer 6 be 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 respectively. Then the remaining powers of the first user in layer 1-layer 6 are: 0, 0, 0, 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 .
  • the channel estimation value using the pilot needs to be consistent with the channel estimation value of the data, so the power of the first user does not need to be adjusted.
  • the remaining power of the first user in the same layer in each antenna can be shared with the second user in the same layer in the same antenna, so that the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna power.
  • the remaining power of the first user in the above layer 1-layer 6 is respectively: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 can be shared with the second user, so that the same The sum of the power of the first user and the power of the second user in the antenna is equal to the maximum power of the same antenna. Then the powers of the second user in layer 1-layer 6 are respectively: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • multiple users in the same layer of the same antenna of the network device can realize power sharing, so that the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna, improving the network The power utilization of the equipment, so as to realize the optimization of performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the users scheduled in the sub-resource block group include a first user and a second user, and the first user is sensitive to weight direction changes user, the second user is a user who is not sensitive to weight direction changes; according to the modulation mode of the first user, the power of the first user is raised, wherein the raised power of the first user is the same as The sum of the power of the second user is the same as the sum of the power of the first user and the power of the second user before the lifting.
  • the power of users who are sensitive to weight direction changes in the same sub-resource block group can achieve power boosting
  • power boosting refers to raising the power upper limit of users who are sensitive to weight direction changes. Dynamically adjust the power of each user according to different modulation modes of users to improve the power utilization rate of network equipment and the data throughput of network equipment.
  • the network device uses PEBF or NEBF to calculate the normalized power of the sub-resource block group, and then obtains the power values of different users in the sub-resource block group on different layers in the same antenna.
  • the network device including layer 1-layer 6 as an example (this layer refers to the physical layer), the maximum power of each layer is 2.
  • the maximum power of the first user group in each layer is the same as the maximum power of the second user group, both of which are 1.
  • the power utilization ratio of the first user group in layer 1-layer 6 is respectively: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , ⁇ 2 are greater than 0 A real number less than or equal to 1. Then let the initial powers of the first user group in layer 1-layer 6 be 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 respectively. Then the remaining powers of the first user group in layer 1-layer 6 are: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 .
  • the channel estimation value using the pilot needs to be consistent with the channel estimation value of the data, so the impact of different modulation methods on the first user needs to be considered .
  • the upper limit of the power increase of the first user is different.
  • the remaining power of the first user group in the above layer 1-layer 6 is respectively: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 can be shared with the first user in the second user group , realizing the power boost of the first user in the second user group.
  • the sum of the power of the first user and the power of the second user after the lifting in the same antenna is equal to the sum of the power of the first user and the power of the second user before the lifting, which is equal to the maximum power of the same antenna.
  • the powers of the second user group in layer 1-layer 6 are respectively: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • the power of the users sensitive to weight direction changes in the same sub-resource block group can be boosted.
  • the power boost refers to raising the power upper limit of users sensitive to weight direction changes.
  • the power of each user is dynamically adjusted according to the different modulation modes of the user to improve the power utilization rate of the network equipment and the data throughput of the network equipment. Improve the power utilization of network equipment to optimize performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • increasing the power of the first user according to the modulation mode of the first user includes: when the modulation mode of the first user is positive When cross-phase shift keying is used for QPSK, the upper limit of the first user's power increase is double the maximum power threshold value; when the modulation mode of the first user is 16 quadrature amplitude modulation QAM, the first user The upper limit of increasing the user's power is twice the maximum power threshold value; when the modulation mode of the first user is 64QAM or 256QAM, the power of the first user cannot be increased.
  • the upper limit of the power increase of the first user is 1.5 times the maximum power threshold value.
  • the modulation mode of the first user is 16 quadrature amplitude modulation (QAM)
  • the upper limit of the power increase of the first user is 1.8 times the maximum power threshold value, which is not limited here.
  • the maximum power threshold value is a preset power threshold value, and the maximum power threshold value corresponds to a modulation mode. When the power exceeds the maximum power threshold value, the demodulation performance of the constellation point corresponding to the modulation mode is likely to be reduced.
  • the power of the first user (such as a TM4 user) in the same subresource block group is increased, while the power upper limit of another second user (such as a TM9 user) is lowered to maintain the same subresource block group
  • the total power of the users in the block group does not change.
  • the first users in the same sub-resource block group include the first user A, the first user B, and the first user C as an example for illustration.
  • the power of some users among the first users (for example, the first user A) is raised, while the power upper limit of other users among the first users is lowered (for example, the power upper limit of the first user B is lowered, or the power upper limit of the first user C is lowered). decrease, or decrease the power upper limit of the first user B and the first user C together), so as to keep the total power of the users in the same sub-resource block group (or the sum of the power of each user) unchanged.
  • the embodiment of the present application proposes a communication device, including:
  • a processing module configured to determine X sub-resource block groups according to the scheduled resource block groups, one sub-resource block group in the X sub-resource block groups includes part of the resource block groups in the resource block group, each of the sub-resource block groups
  • the resource block groups in the resource block groups are all occupied by users, and the X is a positive integer greater than 1;
  • the processing module is further configured to determine a beamforming weight calculation method used by each of the subresource block groups based on the X subresource block groups, wherein the beamforming weight calculation method includes: a normalized feature Beamforming NEBF, or, power-limited eigenbeamforming PEBF;
  • the processing module is further configured to obtain the beamforming weight corresponding to each sub-resource block group according to the beamforming weight calculation method corresponding to each sub-resource block group;
  • the processing module is further configured to weight the data based on the beamforming weights
  • the transceiver module is configured to send the weighted data.
  • the processing module is further configured to detect the number of users scheduled in the sub-resource block group
  • the processing module is further configured to determine that the sub-resource block group uses NEBF when a single-user SU is scheduled in the sub-resource block group;
  • the processing module is further configured to detect whether the sub-resource block group satisfies a first preset condition when a multi-user MU is scheduled in the sub-resource block group, wherein all the sub-resource block groups that meet the first preset condition
  • the sub-resource block group uses NEBF, and the sub-resource block group that does not meet the first preset condition uses PEBF;
  • the first preset condition includes one or more of the following:
  • the average modulation and coding strategy MCS of multiple users in the sub-resource block group is less than the first threshold
  • the difference between the first SINR and the second SINR is smaller than the second threshold, where the first SINR is calculated according to the first weight power of the sub-resource block group Signal-to-interference and noise ratio, the second signal-to-interference and noise ratio is the signal-to-interference and noise ratio calculated by the second power of the sub-resource block group, and the first weight power is calculated by using NEBF for the sub-resource block group Weight power, the second weight power is the weight power calculated by using PEBF for the sub-resource block group,
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than a third threshold.
  • the processing module is further configured to not calculate the user sensitive to weight direction change when the users scheduled in the sub-resource block group include users sensitive to weight direction change The beamforming weight of the user in the sub-resource block group.
  • the processing module is further configured to use NEBF to calculate the average transmission power of the NEBF set, where the NEBF set includes one or more sub-resource block groups, and the sub-resource block in the NEBF set The group uses NEBF to calculate the beamforming weights;
  • the processing module is further configured to use NEBF to calculate the weight power of the NEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processing module is further configured to determine the power of the NEBF set on the nth antenna according to the average transmit power of the NEBF set and the weight power of the NEBF set on the nth antenna Average transmit power;
  • the processing module is further configured to perform normalization processing on the weights corresponding to the sub-resource block groups in the NEBF set based on the average transmit power of the NEBF set on the nth antenna, to obtain the The beamforming weights corresponding to the sub-resource block groups.
  • the processing module is further configured to use PEBF to calculate the average transmit power of the PEBF set, where the PEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the PEBF set The group uses PEBF to calculate the beamforming weights;
  • the processing module is further configured to use PEBF to calculate the weight power of the PEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processing module is further configured to determine the power of the PEBF set on the nth antenna according to the average transmit power of the PEBF set and the weight power of the PEBF set on the nth antenna. Average transmit power;
  • the processing module is further configured to perform normalization processing on the weights corresponding to the sub-resource block groups in the PEBF set based on the average transmit power of the PEBF set on the nth antenna, to obtain the The beamforming weights corresponding to the sub-resource block groups.
  • the processing module is further configured to determine a first weight power of the sub-resource block group, where the first weight power is a weight calculated by the sub-resource block group using PEBF. value power;
  • the processing module is further configured to determine a second weight power of the sub-resource block group, where the second weight power is the weight power calculated by using NEBF for the sub-resource block group;
  • the processing module is further configured to calculate the sum of the signal-to-interference-noise ratio difference of each user in the sub-resource block group according to the first weight power and the second weight power, wherein the sub-resource The SINR difference of each user in the block group is the SINR calculated by the first weight power of each user in the sub-resource block group and the second SINR of each user in the sub-resource block group The difference of the signal-to-interference-noise ratio calculated by the weighted power;
  • the processing module is further configured to determine the sum of the SINR differences of the X sub-resource block groups according to the sum of the SINR differences of each user in the sub-resource block groups;
  • the processing module is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is PEBF when the sum of the SINR differences of the X sub-resource block groups is greater than 0;
  • the processing module is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is NEBF when the sum of the SINR differences of the X sub-resource block groups is less than or equal to 0.
  • the processing module is further configured to perform enhanced zero-forcing processing on the first weight power and the second weight power of the sub-resource block group, and according to the Calculate the power of each row of antennas by increasing the first weight power after the zero-forcing process and the second weight power after the enhanced zero-forcing process;
  • the processing module is further configured to calculate the power utilization rate according to the sum of the power of all antennas in the power of each row of antennas and the maximum power of the power of each row of antennas;
  • the processing module is further configured to calculate the power correlation of the power of each row of antennas according to the power of each row of antennas and the full-power multi-user weight vector;
  • the processing module is further configured to calculate the signal-to-interference-noise ratio difference of the lth user in the sub-resource block group according to the power correlation and the power utilization rate, where l is a positive integer;
  • the processing module is further configured to calculate a sum of SINR differences of users in the sub-resource block group.
  • the processing module is further configured to use PEBF to calculate the initial power of the first sub-resource block group;
  • the processing module is further configured to use NEBF to calculate the initial power of the second sub-resource block group;
  • the processing module is further configured to determine the power of the first sub-resource block group and the power of the second sub-resource block group according to the initial power of the first sub-resource block group and the initial power of the second sub-resource block group.
  • the power of the resource block group, wherein the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the processing module is further configured to increase the power of the first user according to the modulation mode of the first user, wherein the sum of the raised power of the first user and the power of the second user is, The sum of the power of the first user and the power of the second user before lifting is the same.
  • the modulation mode of the first user is quadrature phase shift keying (QPSK)
  • the upper limit of the power increase of the first user is double the maximum power threshold value
  • the upper limit of the power increase of the first user is twice the maximum power threshold value
  • the modulation mode of the first user is 64QAM or 256QAM, the power of the first user cannot be increased.
  • the embodiment of the present application proposes a communication device, including:
  • a processor configured to determine X sub-resource block groups according to the scheduled resource block groups, one sub-resource block group of the X sub-resource block groups includes part of the resource block groups in the resource block group, and each of the sub-resource block groups
  • the resource block groups in the resource block groups are all occupied by users, and the X is a positive integer greater than 1;
  • the processor is further configured to determine, based on the X sub-resource block groups, a beamforming weight calculation method used by each of the sub-resource block groups, wherein the beamforming weight calculation method includes: a normalized feature Beamforming NEBF, or, power-limited eigenbeamforming PEBF;
  • the processor is further configured to obtain the beamforming weight corresponding to each sub-resource block group according to the beamforming weight calculation method corresponding to each sub-resource block group;
  • the processor is further configured to weight data based on the beamforming weights
  • a transceiver configured to send the weighted data.
  • the processor is further configured to detect the number of users scheduled in the sub-resource block group
  • the processor is further configured to determine that the sub-resource block group uses NEBF when a single-user SU is scheduled in the sub-resource block group;
  • the processor is further configured to detect whether the sub-resource block group satisfies a first preset condition when a multi-user MU is scheduled in the sub-resource block group, wherein all the sub-resource block groups that meet the first preset condition
  • the sub-resource block group uses NEBF, and the sub-resource block group that does not meet the first preset condition uses PEBF;
  • the first preset condition includes one or more of the following:
  • the average modulation and coding strategy MCS of multiple users in the sub-resource block group is less than the first threshold
  • the difference between the first SINR and the second SINR is smaller than the second threshold, where the first SINR is calculated according to the first weight power of the sub-resource block group Signal-to-interference and noise ratio, the second signal-to-interference and noise ratio is the signal-to-interference and noise ratio calculated by the second power of the sub-resource block group, and the first weight power is calculated by using NEBF for the sub-resource block group Weight power, the second weight power is the weight power calculated by using PEBF for the sub-resource block group,
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than a third threshold.
  • the processor is further configured to not calculate the user sensitive to weight direction change when the users scheduled in the sub-resource block group include users sensitive to weight direction change The beamforming weight of the user in the sub-resource block group.
  • the processor is further configured to use NEBF to calculate the average transmit power of the NEBF set, where the NEBF set includes one or more sub-resource block groups, and the sub-resource block in the NEBF set The group uses NEBF to calculate the beamforming weights;
  • the processor is further configured to use NEBF to calculate the weight power of the NEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processor is further configured to determine the power of the NEBF set on the nth antenna according to the average transmit power of the NEBF set and the weight power of the NEBF set on the nth antenna Average transmit power;
  • the processor is further configured to perform normalization processing on weights corresponding to the sub-resource block groups in the NEBF set based on the average transmit power of the NEBF set on the nth antenna, to obtain the The beamforming weights corresponding to the sub-resource block groups.
  • the processor is further configured to use PEBF to calculate the average transmit power of the PEBF set, where the PEBF set includes one or more sub-resource block groups, and the sub-resource block in the PEBF set The group uses PEBF to calculate the beamforming weights;
  • the processor is further configured to use PEBF to calculate the weight power of the PEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processor is further configured to determine the power of the PEBF set on the nth antenna according to the average transmit power of the PEBF set and the weight power of the PEBF set on the nth antenna Average transmit power;
  • the processor is further configured to perform normalization processing on weights corresponding to the sub-resource block groups in the PEBF set based on the average transmit power of the PEBF set on the nth antenna, to obtain the The beamforming weights corresponding to the sub-resource block groups.
  • the processor is further configured to determine a first weight power of the sub-resource block group, where the first weight power is a weight calculated by using PEBF for the sub-resource block group value power;
  • the processor is further configured to determine a second weight power of the sub-resource block group, where the second weight power is the weight power calculated by using NEBF for the sub-resource block group;
  • the processor is further configured to calculate, according to the first weight power and the second weight power, the sum of the signal-to-interference-noise ratio difference of each user in the sub-resource block group, wherein the sub-resource The SINR difference of each user in the block group is the SINR calculated by the first weight power of each user in the sub-resource block group and the second SINR of each user in the sub-resource block group The difference of the signal-to-interference-noise ratio calculated by the weighted power;
  • the processor is further configured to determine the sum of the SINR differences of the X sub-resource block groups according to the sum of the SINR differences of the users in the sub-resource block groups;
  • the processor is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is PEBF when the sum of the SINR differences of the X sub-resource block groups is greater than 0;
  • the processor is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is NEBF when the sum of the SINR differences of the X sub-resource block groups is less than or equal to 0.
  • the processor is further configured to perform enhanced zero-forcing processing on the first weight power and the second weight power of the sub-resource block group, and according to the Calculate the power of each row of antennas by increasing the first weight power after the zero-forcing process and the second weight power after the enhanced zero-forcing process;
  • the processor is further configured to calculate the power utilization rate according to the sum of the power of all antennas in the power of each row of antennas and the maximum power of the power of each row of antennas;
  • the processor is further configured to calculate the power correlation of the power of each row of antennas according to the power of each row of antennas and the full-power multi-user weight vector;
  • the processor is further configured to calculate the signal-to-interference-noise ratio difference of the lth user in the sub-resource block group according to the power correlation and the power utilization rate, where l is a positive integer;
  • the processor is further configured to calculate a sum of SINR differences of users in the sub-resource block group.
  • the processor is further configured to use PEBF to calculate the initial power of the first sub-resource block group
  • the processor is further configured to use NEBF to calculate the initial power of the second sub-resource block group
  • the processor is further configured to determine the power of the first sub-resource block group and the power of the second sub-resource block group according to the initial power of the first sub-resource block group and the initial power of the second sub-resource block group.
  • the power of the resource block group, wherein the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the processor is further configured to increase the power of the first user according to the modulation mode of the first user, where the sum of the raised power of the first user and the power of the second user is, The sum of the power of the first user and the power of the second user before lifting is the same.
  • the modulation mode of the first user is quadrature phase shift keying (QPSK)
  • the upper limit of the power increase of the first user is double the maximum power threshold value
  • the upper limit of the power increase of the first user is twice the maximum power threshold value
  • the modulation mode of the first user is 64QAM or 256QAM, the power of the first user cannot be increased.
  • the embodiment of the present application provides a communication device, which can realize the functions performed by the network device or the terminal device in the method mentioned in the first aspect above.
  • the communication device includes a processor, a memory, a receiver connected to the processor, and a transmitter connected to the processor; the memory is used to store program codes and transmit the program codes to the processor; the processor is used for According to the instructions in the program code, the receiver and the transmitter are driven to execute the method of the first aspect above; the receiver and the transmitter are respectively connected to the processor, so as to execute the network device or the terminal device in the method of each aspect above operate.
  • the transmitter can perform the operation of sending, and the receiver can perform the operation of receiving.
  • the receiver and the transmitter can be a radio frequency circuit, and the radio frequency circuit can receive and send messages through an antenna; the receiver and the transmitter can also be a communication interface, and the processor is connected to the communication interface through a bus, and the processing The device can receive or send messages through the communication interface.
  • the implementation of the present application provides a communication system, including: a sending end and a receiving end.
  • the sending end executes the method of the first aspect; the receiving end is used to receive data from the sending end.
  • the sending end may be a network device, and the receiving end may be other network devices or terminal devices.
  • the sending end may be a terminal device, and the receiving end may be other terminal devices or network devices.
  • the embodiment of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes any one of the above-mentioned first aspects. a possible implementation.
  • the embodiments of the present application provide a computer program product (or computer program) storing one or more computer-executable instructions.
  • the processor executes the aforementioned first aspect. any possible implementation.
  • the present application provides a chip system, which includes a processor, configured to support a computer device to implement the functions involved in the above aspect.
  • the chip system further includes a memory, and the memory is used for storing necessary program instructions and data of the computer device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application provides a chip system, the chip system includes at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to Carry out the method of the first aspect.
  • the communication interface in the chip system may be an input/output interface, a pin or a circuit, and the like.
  • Figure 1a is a schematic diagram of an application scenario proposed by the embodiment of the present application.
  • Figure 1b is a schematic diagram of the architecture of the CU-DU used in the communication system
  • FIG. 1c is a schematic diagram of an architecture of a CU
  • FIG. 2 is a schematic diagram of the hardware structure of the communication device in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of a beamforming weight calculation method proposed in an embodiment of the present application
  • FIG. 4 is a schematic diagram of an embodiment of a beamforming weight calculation method proposed in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of an embodiment of a communication device in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a processing device proposed in an embodiment of the present application.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) Communication System, Fifth Generation (5th Generation, 5G) System or NR and the future Sixth generation communication system, etc.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • FDD frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the part operated by an operator in various communication systems may be referred to as an operator network.
  • the operator network can also be called the PLMN network, which is a network established and operated by the government or an operator approved by the government for the purpose of providing land mobile communication services to the public, mainly mobile network operators (MNO) A public network that provides mobile broadband access services to users.
  • the operator network or PLMN network described in the embodiments of the present application may be a network conforming to the requirements of the third generation partnership project (3rd generation partnership project, 3GPP) standard, referred to as a 3GPP network.
  • 3GPP third generation partnership project
  • 3GPP networks are operated by operators, including but not limited to the fifth-generation mobile communication (5th-generation, 5G) network (referred to as 5G network), the fourth-generation mobile communication (4th-generation, 4G) network (referred to as 4G network) Or a third-generation mobile communication technology (3rd-generation, 3G) network (3G network for short). Also includes future 6G networks.
  • 5G network the fifth-generation mobile communication
  • 4G network the fourth-generation mobile communication (4th-generation, 4G) network
  • 3G network for short
  • 3G network for short.
  • an operator network such as a mobile network operator (mobile network operator, MNO) network
  • MNO mobile network operator
  • FIG. 1a is a schematic diagram of an application scenario proposed by an embodiment of the present application.
  • the sending end involved in this embodiment of the present application may be a network device, and the receiving end may be a terminal device.
  • a terminal device may also be called a user equipment (user equipment, UE), or a user.
  • the terminal device involved in the embodiment of the present application is a device with a wireless transceiver function, and can communicate with one or more core networks (core network, CN) via the access network device in the network device.
  • a terminal device may also be called an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless network device, user agent, or user device, among others.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons, and satellites, etc.).
  • the terminal device can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a mobile phone, a wireless local loop (WLL) station, personal digital assistant (PDA), which can be a handheld device with wireless communication capabilities, a computing device or other device connected to a wireless modem, in-vehicle device, wearable device, drone device or Internet of Things, vehicle Terminals in the network, terminals in the fifth generation (fifth generation, 5G) network and future networks, relay user equipment, or in the future evolution of the public land mobile network (PLMN) A terminal, etc., wherein the relay user equipment may be, for example, a 5G residential gateway (residential gateway, RG).
  • the terminal device can be a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving (self-driving), a remote Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • remote Wireless terminals in remote medical wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home wireless terminals, etc.
  • the embodiment of the present application does not limit this.
  • a network device may provide a sub-network of an operator's network, for example, provide an implementation system between a service node and a terminal device in an operator's network.
  • the terminal equipment To access the operator's network, the terminal equipment first passes through the network equipment, and then can be connected to the service node of the operator's network through the network equipment.
  • the terminal equipment To access the operator's network, the terminal equipment first passes through the network equipment, and then can be connected to the service node of the operator's network through the network equipment.
  • the network device in the embodiment of the present application is a device that provides a wireless communication function for a terminal device, and may also be called a (wireless) access network ((radio) access network, (R)AN) device.
  • Network equipment includes but is not limited to: next generation node base station (gNB) in 5G system, evolved node B (evolved node B, eNB) in long term evolution (LTE), wireless network Controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), base band unit (base band unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), small base station equipment (pico), mobile switching center, or Network equipment in the future network, etc.
  • gNB next generation node base station
  • eNB evolved node B
  • LTE long term evolution
  • RNC wireless network Controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB,
  • Fig. 1b is a schematic diagram of an architecture using a CU-DU in a communication system.
  • the access network device may include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU).
  • the access network device may further include a radio unit (radio unit, RU) (not shown in the figure).
  • An open radio access network (open RAN, O-RAN) may include one or more network elements in the above-mentioned CU-DU architecture.
  • the functions of the access network equipment are split. Some functions of the access network equipment are deployed in a CU, and other functions of the access network equipment are deployed in the DU.
  • the number of DUs can be one or more.
  • a CU represents an access network device connected to a core network through an interface (for example, an Ng interface).
  • the function segmentation of CU and DU can be divided according to the protocol stack.
  • One of the possible ways is to deploy radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer and service data adaptation (Service Data Adaptation Protocol, SDAP) layer in the CU.
  • the radio link control protocol Radio Link Control, RLC
  • media access control Media Access Control, MAC
  • physical layer physical layer
  • the CU has the processing capability of RRC, PDCP and SDAP.
  • DU has RLC, MAC, and PHY processing capabilities.
  • the above function segmentation is just an example, and there may be other segmentation methods.
  • the CU includes RRC, PDCP, RLC and SDAP processing capabilities
  • the DU has MAC and PHY processing capabilities.
  • the CU includes the processing capabilities of RRC, PDCP, RLC, SDAP, and part of the MAC (for example, adding a MAC header), and the DU has the processing capabilities of the PHY and part of the MAC (for example, scheduling).
  • the names of CU and DU may change, as long as the access network nodes that can realize the above functions can be regarded as CU and DU in this patent application.
  • FIG. 1c is a schematic diagram of an architecture of a CU.
  • the CU includes a control plane CU (CU-CP) and a user plane CU (CU-UP).
  • CU-CP and CU-UP can be on different physical devices.
  • CU-CP and CU-UP can also be on the same physical device.
  • CU-CP and CU-UP are connected through an interface (for example, E1 interface).
  • the CU-CP represents an access network device connected to the core network through an interface (for example, an Ng interface).
  • the CU-CP is connected to the DU through an interface (eg, F1-C interface), and the CU-UP is connected to the DU through an interface (eg, F1-U interface).
  • the number of CU-CPs may be one, and the number of CU-UPs may be one or more. Multiple CU-UPs can share one CU-CP.
  • the CU-CP mainly has a control plane function.
  • CU-UP mainly has user plane functions.
  • One of the possible implementation methods is: for 5G access network equipment, the RRC layer can be deployed on the CU-CP, while the SDAP layer is not deployed on the CU-CP.
  • the CU-CP may also have some functions of the control plane of the PDCP layer, for example, it may perform signaling radio bearer (signaling radio bearer, SRB) processing.
  • the SDAP layer can be deployed in the CU-UP, but the RRC layer is not deployed in the CU-UP.
  • the CU-UP may also have some functions of the user plane of the PDCP layer, such as performing data radio bearer (DRB) processing.
  • DRB data radio bearer
  • Each of the above-mentioned network elements may be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or an instance of a virtualization function on an appropriate platform.
  • the above-mentioned virtualization platform may be a cloud platform .
  • a beamforming weight calculation method provided by this application can be applied to various communication systems, for example, it can be the Internet of Things (Internet of Things, IoT), narrowband Internet of Things (NB-IoT), Long term evolution (long term evolution, LTE) can also be the fifth generation (5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be 5G new radio (new radio, NR) system and future communication development new communication systems, etc.
  • the 5G communication system of the present application may include at least one of a non-standalone (NSA) 5G communication system and a standalone (standalone, SA) 5G communication system.
  • NSA non-standalone
  • SA standalone
  • the communication system may also be a public land mobile network (public land mobile network, PLMN) network, a device-to-device (device-to-device, D2D) network, a machine-to-machine (machine to machine, M2M) network or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine to machine
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies, such as 6G and the like.
  • the network architecture and business scenarios described in this application are to illustrate the technical solution of this application more clearly, and do not constitute a limitation to the technical solution provided by this application.
  • Those of ordinary skill in the art know that with the evolution of network architecture and new business scenarios
  • the technical solutions provided by this application are also applicable to similar technical problems.
  • FIG. 2 is a schematic diagram of a hardware structure of a communication device in an embodiment of the present application.
  • the communication device may be a possible implementation manner of the network device in the embodiment of the present application, and may also be a possible implementation manner of the terminal device in the embodiment of the present application.
  • the communication device at least includes a processor 204 , a memory 203 , and a transceiver 202 , and the memory 203 is further used to store instructions 2031 and data 2032 .
  • the communication device may further include an antenna 206 , an I/O (input/output, Input/Output) interface 210 and a bus 212 .
  • the transceiver 202 further includes a transmitter 2021 and a receiver 2022 .
  • the processor 204 , the transceiver 202 , the memory 203 and the I/O interface 210 are communicatively connected to each other through the bus 212 , and the antenna 206 is connected to the transceiver 202 .
  • the processor 204 can be a general-purpose processor, such as but not limited to, a central processing unit (Central Processing Unit, CPU), and can also be a special-purpose processor, such as but not limited to, a digital signal processor (Digital Signal Processor, DSP), application Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • the processor 204 may also be a neural network processing unit (neural processing unit, NPU).
  • the processor 204 may also be a combination of multiple processors.
  • the processor 204 may be used to execute the relevant steps of the beamforming weight calculation method in the subsequent method embodiments.
  • the processor 204 may be a processor specially designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 2031 stored in the memory 203.
  • the processor 204 The data 2032 may be needed during the execution of the above steps and/or operations.
  • the transceiver 202 includes a transmitter 2021 and a receiver 2022.
  • the transmitter 2021 is used to send signals through the antenna 206.
  • the receiver 2022 is used for receiving signals through at least one antenna among the antennas 206 .
  • the transmitter 2021 can be specifically used to implement through at least one antenna among the antennas 206, for example, in the following method embodiments, a beamforming weight calculation method is applied to For network devices, the operations performed by the receiving module or sending module in the network device.
  • the transceiver 202 can be used to support receiving or sending air interface signals between network devices, between terminal devices, and between network devices and terminal devices, and the transceiver 202 can be connected to multiple antennas.
  • the transceiver 202 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas can receive air interface signals, and the receiver Rx of the transceiver 202 is used to receive the air interface signals from the antennas, convert the air interface signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband
  • the signal or digital intermediate frequency signal is provided to the processor 204, so that the processor 204 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 202 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 204, and convert the modulated digital baseband signal or digital intermediate frequency signal into an air interface signal, and pass a or multiple antennas to send the air interface signal.
  • the transceiver 202 is used to support the communication device to perform the aforementioned receiving function and sending function.
  • a processor having a processing function is considered to be the processor 204 .
  • the receiver 2022 may also be called an input port, a receiving circuit, etc., and the transmitter 2021 may be called a transmitting port or a transmitting circuit, etc.
  • the processor 204 can be used to execute the instructions stored in the memory 203 to control the transceiver 202 to receive messages and/or send messages, so as to complete the functions of the communication device in the method embodiments of the present application.
  • the function of the transceiver 202 may be considered to be realized by a transceiver circuit or a dedicated chip for transceiver.
  • receiving a message by the transceiver 202 may be understood as an input message by the transceiver 202
  • sending a message by the transceiver 202 may be understood as an output message by the transceiver 202.
  • Memory 203 can be various types of storage media, such as random access memory (Random Access Memory, RAM), read-only memory (Read Only Memory, ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), can Programmable ROM (Programmable ROM, PROM), erasable PROM (Erasable PROM, EPROM), electrically erasable PROM (Electrically Erasable PROM, EEPROM), flash memory, optical memory and registers, etc.
  • the memory 203 is specifically used to store instructions 2031 and data 2032.
  • the processor 204 can read and execute the instructions 2031 stored in the memory 203 to perform the steps and/or operations in the method embodiments of the present application.
  • the data 2032 may be required during the operations and/or steps in the example.
  • the communication device may further include an I/O interface 210, which is used for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • I/O interface 210 is used for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the communication device may be a chip, a network device or a terminal device, and the like.
  • the communication device may be a chip
  • the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • Chips can be used in terminals or base stations or other network equipment.
  • the communication device may be a terminal or a base station or other network equipment
  • the transceiver module may be a transceiver, a radio frequency chip, and the like.
  • the communication device includes means for generating data and means for sending data.
  • the functions of generating data means and sending data means can be implemented by one or more processors.
  • data may be generated by one or more processors, transmitted by a transceiver, or input/output circuitry, or an interface of a chip.
  • data please refer to the relevant description in the examples of this application.
  • the communication device includes means for receiving data and means for sending uplink data.
  • data and how to send the uplink data according to the data please refer to the relevant description in the embodiments of the present application.
  • Data may be received, for example, via a transceiver, or an input/output circuit, or an interface of a chip.
  • Network devices In a multi-user multiple-input multiple-output (Multi-User Multiple-Input Multiple-Output, MU-MIMO) system, in order to avoid the transmission power of the antenna exceeding the maximum value, it will affect the orthogonality between multiple users.
  • Network devices generally use a beamforming weight calculation method to normalize the maximum transmit power of multiple antennas to obtain beamforming weights. The data is weighted based on the beamforming weights, and then the network device sends the weighted data.
  • PEBF power limited-eigen beamforming
  • NEBF normalized-eigen Beamforming
  • the PEBF can ensure that the power of the antenna port with the highest power does not exceed the standard.
  • the specific calculation process of PEBF is introduced as follows:
  • the weight is used for weighting the data to be sent.
  • j is a positive integer.
  • multi-user weights Since multiple users send data in the same resource block group, different weights need to be used when performing weighted operations on different user data. In addition, the weights of different users need to minimize data interference with each other, or maximize data throughput. Therefore, the above weights are also called multi-user weights.
  • nth element of is the weight of the l-th layer in the j-th RBG, and the weight of the l-th layer in the j-th RBG is M is a positive integer, represent vector
  • N BfRbgNum is the number of RBGs that use PEBF to calculate weights in the network device
  • M is the number of physical antennas in the network device
  • L layer, j is the number of pairing layers on the jth RBG, and the number of pairing layers refers to a
  • PA j,l is the configured power factor of a certain user in the jth RBG, and the value of PA j,l is based on the power allocation (power allocation, PA) interface
  • the index value is the linear value searched in the time division duplexing (TDD) interface and the index table
  • p j,l is the lth flow weight in the jth RBG of the current time interval (transmission time interval, TTI)
  • the power proportional coefficient of the power proportional coefficient refers to the percentage of the power of the first layer to the total power of all layers; is the power value of the nth element of the lth layer in the jth RBG
  • the weight power adjustment factor ⁇ PEBF based on PEBF obtains the beamforming weight of the jth RBG
  • NEBF can realize that the power of each antenna reaches the maximum power value of the antenna.
  • the specific calculation process of NEBF is introduced as follows:
  • the weight is used for weighting processing on the data to be sent, and j is a positive integer.
  • n is the weight of the l-th layer in the j-th RBG, and the weight of the l-th layer in the j-th RBG is M is a positive integer, represent vector
  • N BfRbgNum is the number of RBGs that use NEBF to calculate weights in the network device
  • M is the number of physical antennas in the network device
  • L layer,j is the number of pairing layers on the jth RBG, and the number of pairing layers refers to a
  • PA j,l is the configured power factor of a user in the jth RBG
  • the value of PA j,l is the index value of the PA interface in the TDD interface and index table
  • p j,l is the power proportional coefficient of the l-th flow weight in the j-th RBG of the current TTI, and the power proportional coefficient refers to the percentage of the power of the l-th layer to the total power of all layers; is the power value of the nth element of the lth layer in the jth RBG.
  • the beamforming weights of the jth RBG based on the above intermediate variables Among them, the beamforming weights The nth row element of is
  • the current algorithm ideas mainly include the interior point iteration method and the sub-gradient optimal gradient descent method, both of which have the risk of slow convergence or non-convergence, and the implementation complexity is high, and some algorithms are based on maximizing the minimum user throughput. goals, not necessarily maximizing user throughput.
  • an embodiment of the present application proposes a method for calculating beamforming weights, which maximizes power utilization while minimizing interference between users. Specifically, according to the scheduled resource block group, determine multiple sub-resource block groups, and users in each sub-resource block group schedule the same resource block group; according to multiple sub-resource block groups, determine the beamforming weight used by each sub-resource block group Value calculation method, the beamforming weight calculation method includes NEBF or PEBF; then, according to the beamforming weight calculation method corresponding to each subresource block group, obtain the beamforming weight corresponding to each subresource block group; finally based on the beamforming The weights weight the data and send the weighted data.
  • each sub-resource block group adaptively determines the corresponding beamforming weight calculation method, and obtains the corresponding beamforming weight according to the determined beamforming calculation method, thereby realizing performance optimization. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the beamforming weight calculation method proposed in the embodiment of the present application may be applied to network devices, and may also be applied to terminal devices.
  • the beamforming weight calculation method applied to network equipment is the same as the application of the beamforming weight calculation method to The specific implementation manners of the network devices are similar and will not be repeated here.
  • the beamforming weight calculation method may be applied to a chip of a network device, or a chip of a terminal device, which is not limited in this embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of a beamforming weight calculation method proposed in an embodiment of the present application.
  • a beamforming weight calculation method proposed in the embodiment of the present application includes:
  • the network device first determines the resource block group scheduled by each of the one or more users managed by the network device, wherein the scheduled resource block group can also be understood as the resource block group allocated by the network device for the user . Secondly, the network device determines X sub-resource block groups according to the scheduled resource block groups, one sub-resource block group in the X sub-resource block groups includes part of the resource block groups in the resource block group, and each of the sub-resource block groups The resource block groups in the block groups are all occupied by users, and the X is a positive integer greater than 1.
  • two sub-resource block groups include: a first sub-resource block group and a second sub-resource block group.
  • Users in the first sub-resource block group schedule RBG1, RBG2 and RBG3.
  • Users in the second sub-resource block group schedule RBG4, RBG5 and RBG6.
  • the network device detects the number of users scheduled in each sub-resource block group among the X sub-resource block groups.
  • the network device determines the beamforming weight calculation method used by each sub-resource block group based on the number of users scheduled in each sub-resource block group of the X sub-resource block groups.
  • the sub-resource block when one user is scheduled in the sub-resource block group, the sub-resource block schedules a single user. When multiple users are scheduled in the sub-resource block group, the sub-resource block group schedules multiple users (or called: multi-user multiplexing in the sub-resource block group; or called: the sub-resource block group multiple users for scheduling multiplexing).
  • the sub-resource block group schedules multiple users (multi user, MU), go to step 304.
  • the sub-resource block group schedules a single user (single user, SU) go to step 303.
  • step 303 when the network device detects that a single user is scheduled in the sub-resource block group, it determines that the sub-resource block group uses NEBF to obtain the beamforming weight corresponding to the sub-resource block group.
  • using NEBF to obtain the beamforming weight corresponding to the sub-resource block group is also called using NEBF to calculate the beamforming weight corresponding to the sub-resource block group.
  • the RBG that uses NEBF to calculate the beamforming weight is called the NEBF set, wherein the NEBF set is also called the NEBF RBG, and the NEBF RBG includes one or more sub-resource block groups, and each sub-resource block in the NEBF RBG The group computes beamforming weights using NEBF.
  • the network device divides sub-resource block groups that are scheduled for a single user into NEBF sets (NEBF RBGs). After the network device determines that the sub-resource block group uses NEBF, the processing method (using NEBF to calculate the beamforming weight of the sub-resource block) is passed through the media access control (media access control, MAC) layer (MAC layer is also called L2 layer) to the physical layer (the physical layer is also called the L1 layer).
  • media access control media access control, MAC layer is also called L2 layer
  • step 307 the beamforming weight of the sub-resource block group is acquired by using NEBF.
  • NEBF For a specific method of using the NEBF to obtain beamforming weights, please refer to the foregoing embodiments, which will not be repeated here.
  • step 304 when the network device detects that multiple users are scheduled in the sub-resource block group, the network device further detects whether the sub-resource block group satisfies the first preset condition.
  • the first preset condition includes one or more of the following:
  • the average modulation and coding scheme (modulation and coding scheme, MCS) of multiple users in the sub-resource block group is less than the first threshold.
  • the difference between the first SINR and the second SINR is less than the second threshold
  • the first SINR is the SINR calculated according to the first weight power of the sub-resource block group Noise ratio
  • the second signal-to-interference and noise ratio is the signal-to-interference-noise ratio calculated by the second power of the sub-resource block group
  • the first weight power is the weight power calculated by using NEBF for the sub-resource block group
  • the second weight power is The sub-resource block group uses the weight power calculated by PEBF.
  • the channel correlation or weight value correlation between users in the sub-resource block group is smaller than the third threshold.
  • MCS average,j is the average MCS of multiple users in the jth RBG.
  • the sub-resource block group (the jth RBG) satisfies the first preset condition, and step 305 is entered.
  • the MCS average,j is greater than or equal to the first threshold, the first preset condition is not met, and step 306 is entered. That is: if MCS average,j ⁇ Thr1, then the RBG uses NEBF to calculate the beamforming weight; if MCS average,j ⁇ Thr1, then the RBG uses PEBF to calculate the beamforming weight.
  • the network device uses NEBF to calculate the weight power of the sub-resource block group, and the obtained weight power is called the first weight power; the network device uses PEBF to calculate the weight power of the sub-resource block group, and obtains The weight power of is called the second weight power.
  • the network device calculates the SINR (signal to interference plus noise ratio, SINR) according to the first weight power, and the obtained SINR is called the first SINR; the network device calculates the signal to interference plus noise ratio according to the second weight power SINR, the obtained SINR is called the second SINR.
  • SINR signal to interference plus noise ratio
  • the network device detects whether the difference between the first SINR and the second SINR (the difference is called ⁇ SINR average in the embodiment of the present application) is smaller than the second threshold (the second threshold in the embodiment of the present application is called Thr2), if it is less than the first preset condition, go to step 305; if it is greater than or equal to the second threshold, then the first preset condition is not satisfied, go to step 306. That is, when ⁇ SINR average ⁇ Thr2, the RBG uses NEBF to calculate the beamforming weight; when ⁇ SINR average ⁇ Thr2, the RBG uses PEBF to calculate the beamforming weight.
  • Channel correlation or weight value correlation between users in the sub-resource block group is smaller than the third threshold.
  • Channel correlation and weight correlation can be represented by a correlation metric (normalized mean square prediction error, NMSE), or can be represented by a normalized mean square error, which is not limited here.
  • the channel correlation or weight correlation between users in the sub-resource block group is called ⁇ Corr average
  • the third threshold is called Thr3.
  • the sub-resource block group (the jth RBG) satisfies the first preset condition, and proceeds to step 305 .
  • the first preset condition is not satisfied, and step 306 is entered. That is, when ⁇ Corr average ⁇ Thr3, the RBG uses NEBF to calculate the beamforming weight; when ⁇ Corr average ⁇ Thr3, the RBG uses PEBF to calculate the beamforming weight.
  • step 305 when the sub-resource block group satisfies the first preset condition, the sub-resource block group is determined to use NEBF to calculate the beamforming weight of the sub-resource block group.
  • step 307 using NEBF to calculate the beamforming weight of the sub-resource block group.
  • step 306 when the sub-resource block group does not satisfy the first preset condition, the sub-resource block group is determined to use PEBF to calculate the beamforming weight of the sub-resource block group.
  • step 307 use PEBF to obtain the beamforming weight of the sub-resource block group.
  • using PEBF to obtain the beamforming weight corresponding to the sub-resource block group is also referred to as using PEBF to calculate the beamforming weight corresponding to the sub-resource block group.
  • the network device determines a NEBF set, and the NEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the NEBF set use the NEBF to calculate beamforming weights.
  • the NEBF set is also called NEBF RBG.
  • the sub-resource block groups determined by the network device include: a first sub-resource block group, a second sub-resource block group, a third sub-resource block group, and a fourth sub-resource block group.
  • the network device determines that the sub-resource block group (that is, the NEBF set) that uses the NEBF to calculate the beamforming weight includes: the first sub-resource block group and the second sub-resource block group.
  • the network device uses NEBF to calculate the average transmit power of the NEBF set, that is, uses NEBF to calculate the average transmit power of each RBG in the NEBF RBG. For example: use NEBF to calculate the average transmission power of the first sub-resource block group and the second sub-resource block group. Specifically, the following methods can be used to calculate:
  • E NEBF,aver is the average transmission power of the NEBF set; N NEBF is the number of RBGs included in the NEBF RBG; L layer,j is the number of paired layers on the jth RBG, and the number of paired layers refers to the number of RBGs in an RBG.
  • PA j,l is the configured power factor of a certain user in the jth RBG, and the value of PA j,l is searched in the TDD interface and index table according to the index value of the PA interface
  • the linear value of p j,l is the power proportional coefficient of the l-th flow weight in the j-th RBG of the current TTI, and the power proportional coefficient refers to the percentage of the power of the l-th layer to the total power of all layers.
  • NEBF uses NEBF to calculate the weighted power of the NEBF set at the nth antenna, where n is an integer greater than or equal to 0.
  • n is an integer greater than or equal to 0.
  • the number of pairing layers above, the number of pairing layers refers to the total number of data streams sent by multiple users in one RBG; PA j,l is the power factor configured for a certain user in the jth RBG, and the number of PA j,l
  • the value is the linear value that the index value of the PA interface looks up in the TDD interface and index table; is the power value of the nth antenna of the lth layer in the jth RBG.
  • the network device is based on the average transmit power E NEBF,aver of the NEBF set, and the weight power of the nth antenna of the NEBF set Determine the average transmit power of the NEBF set on the nth antenna. Specifically, the following methods can be used to calculate:
  • E NEBF,aver is the average transmit power of the NEBF set
  • the average transmit power on the nth antenna based on the NEBF set The weights on the nth antenna are normalized to obtain the beamforming weights. Specifically, the following methods can be used to calculate:
  • ⁇ NEBF is the weight power adjustment factor based on NEBF, ⁇ NEBF can be calculated according to the full-power bandwidth (FPBW) power, and ⁇ NEBF can also be calculated according to ⁇ PEBF is calculated, for example: That is, ⁇ NEBF can be greater than 1.
  • the network device determines a PEBF set, and the PEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the PEBF set use PEBF to calculate beamforming weights.
  • the PEBF set is also called PEBF RBG.
  • the sub-resource block groups determined by the network device include: a first sub-resource block group, a second sub-resource block group, a third sub-resource block group, and a fourth sub-resource block group.
  • the network device determines that the sub-resource block group (that is, the PEBF set) for calculating the beamforming weight by using the PEBF includes: the first sub-resource block group and the second sub-resource block group.
  • the network device uses PEBF to calculate the average transmit power of the PEBF set, that is, uses PEBF to calculate the average transmit power of each RBG in the PEBF RBG.
  • PEBF is used to calculate the average transmission power of the first sub-resource block group and the second sub-resource block group.
  • the following methods can be used to calculate:
  • E PEBF,aver is the average transmission power of the PEBF set; N PEBF is the number of RBGs included in the PEBF RBG; L layer,j is the number of paired layers on the jth RBG, and the number of paired layers refers to the number of RBGs in an RBG.
  • PA j,l is the configured power factor of a certain user in the jth RBG, and the value of PA j,l is searched in the TDD interface and index table according to the index value of the PA interface
  • the linear value of p j,l is the power proportional coefficient of the l-th flow weight in the j-th RBG of the current TTI, and the power proportional coefficient refers to the percentage of the power of the l-th layer to the total power of all layers.
  • the PEBF is used to calculate the weighted power of the nth antenna of the PEBF set, where n is an integer greater than or equal to 0. Specifically, the following methods can be used to calculate:
  • n is the weight power of the nth antenna in the PEBF set
  • N NEBF is the number of RBGs included in the PEBF RBG;
  • L layer, j is the number of pairing layers on the jth RBG , the number of pairing layers refers to the total number of data streams sent by multiple users in one RBG;
  • PA j,l is the power factor configured for a certain user in the jth RBG, and the value of PA j,l is the PA interface
  • the index value is the linear value looked up in the TDD interface and the index table; is the power value of the nth antenna of the lth layer in the jth RBG.
  • the network device is based on the average transmit power E PEBF,aver of the PEBF set, and the weight power of the nth antenna of the PEBF set Determine the average transmit power of the PEBF set on the nth antenna. Specifically, the following methods can be used to calculate:
  • E PEBF,aver is the average transmit power of the PEBF set
  • the weights on the nth antenna are normalized to obtain the beamforming weights. Specifically, the following methods can be used to calculate:
  • the power factor, the value of PA j, l is the linear value searched in the time division duplex (time division duplexing, TDD) interface and index table according to the index value of the power allocation (power allocation, PA) interface; p j, l is the current
  • TTI transmission time interval
  • the beamforming weights of the users sensitive to weight direction changes in the sub-resource block group are not calculated.
  • the user who is sensitive to the change of weight direction still uses the original weight to weight the data.
  • the users who are sensitive to weight direction changes can be understood as users whose user performance will be significantly reduced when the weight direction changes.
  • TM4 transmission mode 4
  • the beamforming weights of the TM4 users in the sub-resource block group are not calculated.
  • the TM4 user still uses the original weight to weight the data.
  • each sub-resource block group adaptively determines a corresponding beamforming weight calculation method, and obtains a corresponding beamforming weight according to the determined beamforming calculation method, thereby realizing performance optimization.
  • Effectively improve the power utilization rate of downlink data transmission in network equipment effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the beamforming weight calculation method (called AEBF) proposed in the embodiment of this application has a larger gain in average power utilization and cell average throughput. For example, AEBF Compared with PEBF, the gain of average power utilization rate reaches 6%; compared with PEBF, the gain of average cell throughput of APBF reaches 5%.
  • FIG. 4 is a schematic diagram of an embodiment of a beamforming weight calculation method proposed in an embodiment of the present application.
  • a beamforming weight calculation method proposed in the embodiment of the present application includes:
  • Step 401 is consistent with the foregoing step 301, and details are not repeated here.
  • the network device determines the first weight power and the second weight power of the sub-resource block group, wherein the first weight power is the weight power obtained by the network device using PEBF to calculate the sub-resource block group, and the second The weight power is the weight power obtained by the network device using NEBF to calculate the sub-resource block group.
  • the first weight power is the weight power obtained by the network device using PEBF to calculate the sub-resource block group
  • the second The weight power is the weight power obtained by the network device using NEBF to calculate the sub-resource block group.
  • step 403 after determining the first weighted power and the second weighted power of the sub-resource block group, calculate the power of each row of antennas according to the first weighted power and the second weighted power, specifically, the following method can be used to calculate Power per antenna row:
  • the second weighted power calculates the power of each row of antennas.
  • the power utilization rate is calculated. Specifically, the following method can be used to calculate the power utilization rate:
  • ⁇ PEBF is the power utilization factor
  • max(P n ) is the maximum power of the antenna in each row of antennas
  • P REF [1, 1, ... 1] M ⁇ 1
  • P REF is a full-power multi-user weight vector
  • ⁇ P,NEBF is the power correlation.
  • ⁇ interf, nebf interference adjustment parameters
  • ⁇ P,NEBF is the weight correlation between the first weight power and the second weight power
  • p k represents the power assigned to the kth flow
  • RB Num is the number of sub-resource block groups
  • RB Num X
  • CQI k is the channel quality indication (CQI) information of the kth stream
  • SINR 1,Delta is the SINR difference of the lth user in the sub-resource block group
  • the SINR difference is the user's The difference between the signal-to-interference and noise ratio calculated with the first weight power and the signal-to-interference and noise ratio calculated with the second weight power of the user.
  • the sum of the SINR difference of the X sub-resource block groups is determined. Specifically, the following method can be used to calculate the X sub-resource block The sum of the SINR differences of the groups:
  • SINR Delta is the sum of the SINR differences of X sub-resource block groups.
  • the network device calculates the sum of the SINR differences of the X sub-resource block groups, determine the beamforming calculation method used by the X sub-resource block groups based on the sum of the SINR differences of the X sub-resource block groups .
  • steps 404-405 according to the relationship between the sum of the SINR differences of the X sub-resource block groups and the threshold value 0, determine the beamforming calculation used by the X sub-resource block groups method.
  • the threshold may also be other values, which are not limited here.
  • step 404 or 405 go to step 406.
  • Step 406 is similar to the aforementioned step 307, and will not be repeated here.
  • multiple sub-resource block groups adaptively determine the corresponding beamforming weight calculation method by calculating the channel capacity of PEBF and NEBF, and obtain the corresponding beamforming weight value according to the determined beamforming calculation method, In order to achieve the optimization of performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell. Since the beamforming weight calculation method shown in Figure 4 is based on SINR to determine whether to use PEBF or NEBF, NEBF can also be used to calculate beamforming weights for sub-resource block groups in some high-order modulation scenarios, which effectively improves the antenna power. .
  • the beamforming weight calculation method proposed in the embodiment of the present application (namely AEBF) has a larger gain in the average power utilization rate and the average throughput of the cell, for example, the AEBF Compared with PEBF, the gain of average power utilization rate reaches 10%; compared with PEBF, the gain of average cell throughput of APBF reaches 7.6%.
  • FIG. 5 is a schematic diagram of power involved in the beamforming weight calculation method proposed in the embodiment of the present application. It is described by taking the X sub-resource block groups determined by the network device according to the scheduled resource block groups as an example, including the first sub-resource block group and the second sub-resource block group. It can be understood that the method shown in FIG. 5 can also be applied to scenarios of more sub-resource block groups, and details are not described here.
  • the network device uses PEBF to calculate the normalized power of the first sub-resource block group, and the power is called the initial power of the first sub-resource block group.
  • the network device uses the NEBF to calculate the normalized power of the second sub-resource block group, and the power is called the initial power of the second sub-resource block group.
  • the network device determines the maximum power of each antenna. Taking FIG. 5 as an example for illustration, the maximum power of the same antenna is 2.
  • the power of the first sub-resource block group and the power of the second sub-resource block group needs to be equal to the maximum power of the same antenna.
  • the maximum power of each antenna is 2, and the power corresponding to each sub-resource block group in each antenna is equal (each sub-resource block group in each antenna The maximum power is 1).
  • the power utilization ratios of the first sub-resource block group at antenna 1-antenna 6 are: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , and ⁇ 2 are respectively A real number greater than 0 and less than or equal to 1.
  • NEBF Using NEBF to calculate the initial powers of the second sub-resource block group in antenna 1-antenna 6 are 1, 1, 1, 1, 1, and 1, respectively.
  • the above-mentioned remaining power can be shared with the second sub-resource block group, so that the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the same The maximum power of the antenna.
  • the powers of the second sub-resource block group in antenna 1-antenna 6 are: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • multiple sub-resource block groups in the same antenna in the network device can realize power sharing, so that the sum of the powers of the multiple sub-resource block groups in the same antenna reaches the maximum power of the antenna, and the antenna in the network device is improved.
  • the power utilization so as to achieve the optimization of performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell. Since the beamforming weight calculation method shown in Figure 5 is based on SINR to determine whether to use PEBF or NEBF, NEBF can also be used to calculate beamforming weights for sub-resource block groups in some high-order modulation scenarios, which effectively improves the antenna power. .
  • the beamforming weight calculation method proposed in the embodiment of the present application (that is, AEBF) has a larger gain in the average power utilization rate and the average throughput of the cell, for example, the AEBF Compared with PEBF, the gain of average power utilization is 14.29%; compared with PEBF, the gain of average cell throughput of APBF is 8.56%.
  • FIG. 6 is a schematic diagram of power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • the sub-resource block group includes a first user and a second user as an example.
  • the first user is a user sensitive to weight direction changes, such as a TM4 user; the second user is a user insensitive to weight direction changes. For example, a TM9 user.
  • the network device uses PEBF or NEBF to calculate the normalized power of the sub-resource block group, and then obtains the power values of different users in the sub-resource block group on different layers in the same antenna.
  • PEBF PEBF or NEBF
  • the maximum power of each layer is 2, and the power corresponding to each user in each layer is equal ( The maximum power per user in each layer is 1).
  • the power utilization ratio of the first user in layer 1-layer 6 is respectively: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , and ⁇ 2 are respectively greater than 0 and less than or a real number equal to 1. Then let the initial power of the first user in layer 1-layer 6 be 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 respectively. Then the remaining powers of the first user in layer 1-layer 6 are: 0, 0, 0, 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 .
  • the channel estimation value using the pilot needs to be consistent with the channel estimation value of the data, so the power of the first user does not need to be adjusted.
  • the remaining power of the first user in the same layer in each antenna can be shared with the second user in the same layer in the same antenna, so that the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna power.
  • the remaining power of the first user in the above layer 1-layer 6 is respectively: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 can be shared with the second user, so that the same The sum of the power of the first user and the power of the second user in the antenna is equal to the maximum power of the same antenna. Then the powers of the second user in layer 1-layer 6 are respectively: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • multiple users in the same layer of the same antenna of the network device can realize power sharing, so that the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna, improving the network The power utilization of the equipment, so as to realize the optimization of performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell. Since power sharing can be implemented among users of the same sub-resource block group, the power efficiency of the antenna in the network device can be improved.
  • the beamforming weight calculation method proposed in the embodiment of the present application (that is, AEBF) has a larger gain in the average power utilization rate and the average throughput of the cell, for example, the AEBF Compared with PEBF, the gain of average power utilization rate reaches 14.29%; compared with PEBF, the gain of average cell throughput of APBF reaches 9.1%.
  • FIG. 7 is a schematic diagram of power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • the sub-resource block group includes a first user and a second user as an example.
  • the first user is a user sensitive to weight direction changes, such as a TM4 user; the second user is a user insensitive to weight direction changes. For example, a TM9 user.
  • the network device uses PEBF or NEBF to calculate the normalized power of the sub-resource block group, and then obtains the power values of different users in the sub-resource block group on different layers in the same antenna.
  • the maximum power of each layer is 2.
  • the maximum power of the first user group in each layer is the same as the maximum power of the second user group, both of which are 1.
  • the power utilization ratio of the first user group in layer 1-layer 6 is respectively: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , ⁇ 2 are greater than 0 A real number less than or equal to 1. Then let the initial powers of the first user group in layer 1-layer 6 be 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 respectively. Then the remaining powers of the first user group in layer 1-layer 6 are: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 .
  • the channel estimation value using the pilot needs to be consistent with the channel estimation value of the data, so the impact of different modulation methods on the first user needs to be considered .
  • the upper limit of the power increase of the first user is different.
  • Modulation power up limit Quadrature Phase Shift Keying QPSK double the maximum power threshold 16 quadrature amplitude modulation QAM twice the maximum power threshold 64QAM or 256QAM not liftable
  • the upper limit of the power increase of the first user is 1.5 times the maximum power threshold value.
  • the modulation mode of the first user is 16 quadrature amplitude modulation (QAM)
  • the upper limit of the power increase of the first user is 1.8 times the maximum power threshold value, which is not limited here.
  • the maximum power threshold value is a preset power threshold value, and the maximum power threshold value corresponds to a modulation mode. When the power exceeds the maximum power threshold value, the demodulation performance of the constellation point corresponding to the modulation mode is likely to be reduced.
  • the power of the first user (such as a TM4 user) in the same subresource block group is increased, while the power upper limit of another second user (such as a TM9 user) is lowered to maintain the same subresource block group
  • the total power of the users in the block group does not change.
  • the first users in the same sub-resource block group include the first user A, the first user B, and the first user C as an example for illustration.
  • the power of some users among the first users (for example, the first user A) is raised, while the power upper limit of other users among the first users is lowered (for example, the power upper limit of the first user B is lowered, or the power upper limit of the first user C is lowered). decrease, or decrease the power upper limit of the first user B and the first user C together), so as to keep the total power of the users in the same sub-resource block group (or the sum of the power of each user) unchanged.
  • the remaining power of the first user group in the above layer 1-layer 6 is respectively: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 can be shared with the second user group
  • the first user uses it to increase the power of the first user in the second user group.
  • the sum of the power of the first user and the power of the second user after the lifting in the same antenna is equal to the sum of the power of the first user and the power of the second user before the lifting, which is equal to the maximum power of the same antenna.
  • the powers of the second user group in layer 1-layer 6 are respectively: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • the power of the users sensitive to weight direction changes in the same sub-resource block group can be boosted.
  • the power boost refers to raising the power upper limit of users sensitive to weight direction changes.
  • the beamforming weight calculation method proposed in the embodiment of the present application (that is, AEBF) has a larger gain in the average power utilization rate and the average throughput of the cell, for example, the AEBF Compared with PEBF, the gain of average power utilization rate reaches 14.29%; compared with PEBF, the gain of average cell throughput of APBF reaches 9.28%.
  • the power of users who are sensitive to weight direction changes in the same sub-resource block group can achieve power boost, and the power of users who are not sensitive to weight direction changes can also achieve power boost.
  • Power boost refers to is to increase the power upper limit of users who are sensitive to weight direction changes. Dynamically adjust the power of each user according to different modulation modes of users to improve the power utilization rate of network equipment and the data throughput of network equipment. Description will be made below in conjunction with the accompanying drawings. Please refer to FIG. 8 .
  • FIG. 8 is a schematic diagram of power involved in the beamforming weight calculation method proposed in the embodiment of the present application.
  • the sub-resource block group includes a first user and a second user as an example.
  • the first user is a user sensitive to weight direction changes, such as a TM4 user; the second user is a user insensitive to weight direction changes. For example, a TM9 user.
  • the network device uses PEBF or NEBF to calculate the normalized power of the sub-resource block group, and then obtains the power values of different users in the sub-resource block group on different layers in the same antenna.
  • PEBF PEBF or NEBF
  • the maximum power of each layer is 2.
  • the users in each layer are grouped, specifically divided into a third user group and a fourth user group, wherein the third user group includes one or more first users and one or more second users, and the fourth user group Including one or more first users and one or more second users, the first user in the third user group is different from the first user in the fourth user group, the second user in the third user group is different from the first user in the fourth user group The second users in the four-user group are different.
  • the maximum power of the third user group in each layer is the same as the maximum power of the fourth user group, both of which are 1.
  • the power utilization ratio of the third user group in layer 1-layer 6 is respectively: 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 , where ⁇ 0 , ⁇ 1 , ⁇ 2 are greater than 0 A real number less than or equal to 1. Then let the initial powers of the third user group in layer 1-layer 6 be 1, 1, 1, ⁇ 0 , ⁇ 1 , ⁇ 2 respectively. Then the remaining powers of the third user group in layer 1-layer 6 are: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 .
  • the channel estimation value using the pilot needs to be consistent with the channel estimation value of the data, so the impact of different modulation methods on the first user needs to be considered .
  • the upper limit of the power increase of the first user is different.
  • Modulation power up limit Quadrature Phase Shift Keying QPSK double the maximum power threshold 16 quadrature amplitude modulation QAM twice the maximum power threshold 64QAM or 256QAM not liftable
  • the upper limit of the power increase of the second user is 1.5 times the maximum power threshold value.
  • the modulation mode of the second user is 16 quadrature amplitude modulation QAM
  • the upper limit of the power increase of the second user is 1.8 times the maximum power threshold value, which is not limited here.
  • the power of the second user (for example, TM4 user) in the same subresource block group is increased, while the power upper limit of the other first user (for example, TM9 user) is decreased to maintain the same subresource block group
  • the total power of the users in the block group does not change.
  • description is made by taking the second user in the same sub-resource block group including the second user A, the second user B, and the second user C as an example.
  • the power of some of the second users increases, while the power upper limit of other users in the second user decreases (for example: the power upper limit of the second user B decreases, or the power upper limit of the second user C decreases. decrease, or decrease the power upper limit of the second user B and the second user C together), so as to keep the total power of the users in the same sub-resource block group (or the sum of the power of each user) unchanged.
  • the remaining power of the third user group in the above layer 1-layer 6 is respectively: 0, 0, 0 , 1- ⁇ 0 , 1- ⁇ 1 , 1- ⁇ 2 can be shared with the fourth user group
  • the first user and/or the second user uses to implement power boosting of the first user and/or the second user in the fourth user group.
  • the sum of the power of the first user and/or the second user and the power of other users after lifting in the same antenna is equal to the sum of the power of the first user and/or second user before lifting and the power of other users, equal to The maximum power of that same antenna.
  • the powers of the fourth user group in layer 1-layer 6 are: 1, 1, 1, 2- ⁇ 0 , 2- ⁇ 1 , 2- ⁇ 2 .
  • the power of users who are sensitive to weight direction changes in the same sub-resource block group can achieve power boost, and the power of users who are not sensitive to weight direction changes can also achieve power boost.
  • Power boost refers to boosting Power cap for users sensitive to changes in weight direction. Dynamically adjust the power of each user according to different modulation modes of users to improve the power utilization rate of network equipment and the data throughput of network equipment. Improve the power utilization of network equipment to optimize performance. Effectively improve the power utilization rate of downlink data transmission in network equipment, effectively improve the spectrum efficiency of the cell, and increase the average throughput of the cell.
  • the beamforming weight calculation method proposed in the embodiment of the present application (that is, AEBF) has a larger gain in the average power utilization rate and the average throughput of the cell, for example, the AEBF Compared with PEBF, the gain of average power utilization rate reaches 14.29%; compared with PEBF, the gain of average cell throughput of APBF reaches 10.18%.
  • the network device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiments of the present application may divide the encoding device into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 9 is a schematic diagram of an embodiment of a communication device in an embodiment of this application.
  • the communication device 900 includes:
  • the processing module 901 is configured to determine X sub-resource block groups according to the scheduled resource block groups, one sub-resource block group in the X sub-resource block groups includes part of the resource block groups in the resource block group, each of the The resource block groups in the sub-resource block groups are all occupied by users, and the X is a positive integer greater than 1;
  • the processing module 901 is further configured to determine, based on the X sub-resource block groups, a beamforming weight calculation method used by each of the sub-resource block groups, wherein the beamforming weight calculation method includes: normalization Eigenbeamforming NEBF, or, power-limited eigenbeamforming PEBF;
  • the processing module 901 is further configured to obtain the beamforming weight corresponding to each sub-resource block group according to the beamforming weight calculation method corresponding to each sub-resource block group;
  • the processing module 901 is further configured to weight the data based on the beamforming weight
  • the transceiver module 902 is configured to send the weighted data.
  • the processing module 901 is further configured to detect the number of users scheduled in the sub-resource block group;
  • the processing module 901 is further configured to determine that the sub-resource block group uses NEBF when a single-user SU is scheduled in the sub-resource block group;
  • the processing module 901 is further configured to detect whether the sub-resource block group satisfies a first preset condition when a multi-user MU is scheduled in the sub-resource block group, wherein the sub-resource block group that meets the first preset condition
  • the sub-resource block group uses NEBF, and the sub-resource block group that does not meet the first preset condition uses PEBF;
  • the first preset condition includes one or more of the following:
  • the average modulation and coding strategy MCS of multiple users in the sub-resource block group is less than the first threshold
  • the difference between the first SINR and the second SINR is smaller than the second threshold, where the first SINR is calculated according to the first weight power of the sub-resource block group Signal-to-interference and noise ratio, the second signal-to-interference and noise ratio is the signal-to-interference and noise ratio calculated by the second power of the sub-resource block group, and the first weight power is calculated by using NEBF for the sub-resource block group Weight power, the second weight power is the weight power calculated by using PEBF for the sub-resource block group,
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than a third threshold.
  • the processing module 901 is further configured to not calculate the weight direction change-sensitive The beamforming weights of the users in the sub-resource block group.
  • the processing module 901 is further configured to use NEBF to calculate the average transmit power of the NEBF set, where the NEBF set includes one or more sub-resource block groups, and the sub-resources in the NEBF set The block group uses NEBF to calculate the beamforming weights;
  • the processing module 901 is further configured to use NEBF to calculate the weight power of the NEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processing module 901 is further configured to determine that the NEBF set is on the nth antenna according to the average transmit power of the NEBF set and the weight power of the NEBF set on the nth antenna The average transmit power of
  • the processing module 901 is further configured to perform normalization processing on the weights corresponding to the sub-resource block groups in the NEBF set based on the average transmit power of the NEBF set on the nth antenna, to obtain The beamforming weight corresponding to the sub-resource block group.
  • the processing module 901 is further configured to use PEBF to calculate the average transmit power of the PEBF set, where the PEBF set includes one or more sub-resource block groups, and the sub-resources in the PEBF set
  • the block group uses PEBF to calculate the beamforming weights
  • the processing module 901 is further configured to use PEBF to calculate the weight power of the PEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processing module 901 is further configured to determine that the PEBF set is on the nth antenna according to the average transmit power of the PEBF set and the weight power of the PEBF set on the nth antenna The average transmit power of
  • the processing module 901 is further configured to perform normalization processing on the weights corresponding to the sub-resource block groups in the PEBF set based on the average transmit power of the PEBF set on the nth antenna, to obtain The beamforming weight corresponding to the sub-resource block group.
  • the processing module 901 is further configured to determine the first weight power of the sub-resource block group, where the first weight power is calculated by using PEBF for the sub-resource block group weight power;
  • the processing module 901 is further configured to determine a second weight power of the sub-resource block group, where the second weight power is the weight power calculated by using NEBF for the sub-resource block group;
  • the processing module 901 is further configured to calculate the sum of the signal-to-interference-noise ratio difference of each user in the sub-resource block group according to the first weight power and the second weight power, wherein the sub-resource block group
  • the SINR difference of each user in the resource block group is the SINR calculated by the first weight power of each user in the sub-resource block group and the first weighted power of each user in the sub-resource block group The difference between the signal-to-interference-noise ratio calculated by the two weighted powers;
  • the processing module 901 is further configured to determine the sum of the SINR differences of the X sub-resource block groups according to the sum of the SINR differences of each user in the sub-resource block groups;
  • the processing module 901 is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is PEBF when the sum of the SINR differences of the X sub-resource block groups is greater than 0;
  • the processing module 901 is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is NEBF when the sum of the SINR differences of the X sub-resource block groups is less than or equal to 0.
  • the processing module 901 is further configured to perform enhanced zero-forcing processing on the first weight power and the second weight power of the sub-resource block group, and perform Calculate the power of each row of antennas with the first weight power after the enhanced zero-forcing processing and the second weight power after the enhanced zero-forcing processing;
  • the processing module 901 is further configured to calculate the power utilization rate according to the sum of the power of all antennas in the power of each row of antennas and the maximum power of the power of each row of antennas;
  • the processing module 901 is further configured to calculate the power correlation of the power of each row of antennas according to the power of each row of antennas and the full-power multi-user weight vector;
  • the processing module 901 is further configured to calculate the SINR difference of the lth user in the sub-resource block group according to the power correlation and the power utilization rate, where l is a positive integer;
  • the processing module 901 is further configured to calculate a sum of SINR differences of users in the sub-resource block group.
  • the processing module 901 is further configured to use PEBF to calculate the initial power of the first sub-resource block group;
  • the processing module 901 is further configured to use NEBF to calculate the initial power of the second sub-resource block group;
  • the processing module 901 is further configured to determine, according to the initial power of the first sub-resource block group and the initial power of the second sub-resource block group, the power of the first sub-resource block group and the second The power of the sub-resource block group, wherein the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the processing module 901 is further configured to increase the power of the first user according to the modulation mode of the first user, wherein the sum of the raised power of the first user and the power of the second user is , which is the same as the sum of the power of the first user and the power of the second user before the lift.
  • the modulation mode of the first user is quadrature phase shift keying (QPSK)
  • the upper limit of the power increase of the first user is double the maximum power threshold value
  • the upper limit of the power increase of the first user is twice the maximum power threshold value
  • the modulation mode of the first user is 64QAM or 256QAM, the power of the first user cannot be increased.
  • the embodiment of the present application also provides a processing device, please refer to FIG. 10 , which is a schematic diagram of a processing device proposed in the embodiment of the present application.
  • the processing device includes a processor 1001 and an interface 1002; the processor 1001 is configured to execute the beamforming weight calculation method in any one of the above method embodiments.
  • the processor 1001 is configured to determine X sub-resource block groups according to the scheduled resource block groups, one sub-resource block group in the X sub-resource block groups includes part of the resource block groups in the resource block groups, each of the The resource block groups in the sub-resource block groups are all occupied by users, and the X is a positive integer greater than 1;
  • the processor 1001 is further configured to determine, based on the X sub-resource block groups, a beamforming weight calculation method used by each of the sub-resource block groups, wherein the beamforming weight calculation method includes: normalization Eigenbeamforming NEBF, or, power-limited eigenbeamforming PEBF;
  • the processor 1001 is further configured to obtain the beamforming weight corresponding to each sub-resource block group according to the beamforming weight calculation method corresponding to each sub-resource block group;
  • the processor 1001 is further configured to weight the data based on the beamforming weight
  • the interface 1002 is configured to send the weighted data.
  • the processor 1001 is further configured to detect the number of users scheduled in the sub-resource block group;
  • the processor 1001 is further configured to determine that the sub-resource block group uses NEBF when a single-user SU is scheduled in the sub-resource block group;
  • the processor 1001 is further configured to detect whether the sub-resource block group satisfies a first preset condition when a multi-user MU is scheduled in the sub-resource block group, wherein the sub-resource block group that meets the first preset condition
  • the sub-resource block group uses NEBF, and the sub-resource block group that does not meet the first preset condition uses PEBF;
  • the first preset condition includes one or more of the following:
  • the average modulation and coding strategy MCS of multiple users in the sub-resource block group is less than the first threshold
  • the difference between the first SINR and the second SINR is smaller than the second threshold, where the first SINR is calculated according to the first weight power of the sub-resource block group Signal-to-interference and noise ratio, the second signal-to-interference and noise ratio is the signal-to-interference and noise ratio calculated by the second power of the sub-resource block group, and the first weight power is calculated by using NEBF for the sub-resource block group Weight power, the second weight power is the weight power calculated by using PEBF for the sub-resource block group,
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than a third threshold.
  • the processor 1001 is further configured to not calculate the weight direction change-sensitive The beamforming weights of the users in the sub-resource block group.
  • the processor 1001 is further configured to use NEBF to calculate the average transmit power of the NEBF set, where the NEBF set includes one or more sub-resource block groups, and the sub-resources in the NEBF set The block group uses NEBF to calculate the beamforming weights;
  • the processor 1001 is further configured to use NEBF to calculate the weight power of the NEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processor 1001 is further configured to determine that the NEBF set is on the nth antenna according to the average transmit power of the NEBF set and the weight power of the NEBF set on the nth antenna The average transmit power of
  • the processor 1001 is further configured to perform normalization processing on weights corresponding to the sub-resource block groups in the NEBF set based on the average transmit power of the NEBF set on the nth antenna, to obtain The beamforming weight corresponding to the sub-resource block group.
  • the processor 1001 is further configured to use PEBF to calculate the average transmit power of the PEBF set, where the PEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the PEBF set
  • the block group uses PEBF to calculate the beamforming weights
  • the processor 1001 is further configured to use PEBF to calculate the weight power of the PEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • the processor 1001 is further configured to determine that the PEBF set is on the nth antenna according to the average transmit power of the PEBF set and the weight power of the PEBF set on the nth antenna The average transmit power of
  • the processor 1001 is further configured to perform normalization processing on weights corresponding to the sub-resource block groups in the PEBF set based on the average transmit power of the PEBF set on the nth antenna, to obtain The beamforming weight corresponding to the sub-resource block group.
  • the processor 1001 is further configured to determine a first weight power of the sub-resource block group, where the first weight power is calculated by using PEBF for the sub-resource block group weight power;
  • the processor 1001 is further configured to determine a second weight power of the sub-resource block group, where the second weight power is the weight power calculated by using NEBF for the sub-resource block group;
  • the processor 1001 is further configured to calculate, according to the first weight power and the second weight power, the sum of the signal-to-interference-noise ratio difference of each user in the sub-resource block group, wherein the sub-resource block group
  • the SINR difference of each user in the resource block group is the SINR calculated by the first weight power of each user in the sub-resource block group and the first weighted power of each user in the sub-resource block group The difference between the signal-to-interference-noise ratio calculated by the two weighted powers;
  • the processor 1001 is further configured to determine the sum of the SINR differences of the X sub-resource block groups according to the sum of the SINR differences of the users in the sub-resource block groups;
  • the processor 1001 is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is PEBF when the sum of the SINR differences of the X sub-resource block groups is greater than 0;
  • the processor 1001 is further configured to determine that the beamforming weight calculation method used by the X sub-resource block groups is NEBF when the sum of the SINR differences of the X sub-resource block groups is less than or equal to 0.
  • the processor 1001 is further configured to perform enhanced zero-forcing processing on the first weight power and the second weight power of the sub-resource block group, and perform Calculate the power of each row of antennas with the first weight power after the enhanced zero-forcing processing and the second weight power after the enhanced zero-forcing processing;
  • the processor 1001 is further configured to calculate a power utilization rate according to the sum of the powers of all antennas in the power of each row of antennas and the maximum power of the powers of the antennas in each row;
  • the processor 1001 is further configured to calculate the power correlation of the power of each row of antennas according to the power of each row of antennas and the full-power multi-user weight vector;
  • the processor 1001 is further configured to calculate the signal-to-interference-noise ratio difference of the lth user in the sub-resource block group according to the power correlation and the power utilization rate, where l is a positive integer;
  • the processor 1001 is further configured to calculate a sum of SINR differences of users in the sub-resource block group.
  • the processor 1001 is further configured to use PEBF to calculate the initial power of the first sub-resource block group;
  • the processor 1001 is further configured to use NEBF to calculate the initial power of the second sub-resource block group;
  • the processor 1001 is further configured to determine, according to the initial power of the first sub-resource block group and the initial power of the second sub-resource block group, the power of the first sub-resource block group and the The power of the sub-resource block group, wherein the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the processor 1001 is further configured to increase the power of the first user according to the modulation mode of the first user, where the sum of the raised power of the first user and the power of the second user is , which is the same as the sum of the power of the first user and the power of the second user before the lift.
  • the modulation mode of the first user is quadrature phase shift keying (QPSK)
  • the upper limit of the power increase of the first user is double the maximum power threshold value
  • the upper limit of the power increase of the first user is twice the maximum power threshold value
  • the modulation mode of the first user is 64QAM or 256QAM, the power of the first user cannot be increased.
  • the above-mentioned processing device may be a chip, and the processor 1001 may be implemented by hardware or by software.
  • the processor 1001 may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor 1001 may be a general-purpose processor, which is implemented by reading software codes stored in a memory.
  • the memory may be integrated in the processor 1001, or may be located outside the processor 1001 and exist independently.
  • the hardware processing circuit may be composed of discrete hardware components, or may be an integrated circuit. In order to reduce power consumption and size, it is usually implemented in the form of an integrated circuit.
  • the hardware processing circuit can include ASIC (application-specific integrated circuit, application-specific integrated circuit), or PLD (programmable logic device, programmable logic device); wherein, PLD can include FPGA (field programmable gate array, field programmable gate array) , CPLD (complex programmable logic device, complex programmable logic device) and so on.
  • These hardware processing circuits can be a semiconductor chip packaged separately (such as packaged into an ASIC); they can also be integrated with other circuits (such as CPU, DSP) and packaged into a semiconductor chip, for example, can be formed on a silicon base.
  • a variety of hardware circuits and CPUs are packaged separately into a chip.
  • This chip is also called SoC, or circuits and CPUs for realizing FPGA functions can also be formed on a silicon base, and separately sealed into a chip.
  • SoPC system on a programmable chip, programmable system on a chip.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when run on a computer, enable the computer to control the code end to execute any of the implementations shown in the foregoing method embodiments, including:
  • Step A Determine X sub-resource block groups according to the scheduled resource block groups, one sub-resource block group in the X sub-resource block groups includes part of the resource block groups in the resource block group, each of the sub-resource block groups
  • the resource block groups in the group are all occupied by users, and the X is a positive integer greater than 1;
  • Step B based on the X sub-resource block groups, determine a beamforming weight calculation method used by each of the sub-resource block groups, wherein the beamforming weight calculation method includes: normalized eigenbeamforming NEBF, or , the power-limited eigenbeamforming PEBF;
  • Step C obtaining beamforming weights corresponding to each sub-resource block group according to the beamforming weight calculation method corresponding to each sub-resource block group;
  • Step D weighting the data based on the beamforming weights
  • Step E sending the weighted data.
  • the step is to detect the number of users scheduled in the sub-resource block group
  • Step F when a single-user SU is scheduled in the sub-resource block group, then determine that the sub-resource block group uses NEBF;
  • Step G when the multi-user MU is scheduled in the sub-resource block group, check whether the sub-resource block group satisfies a first preset condition, wherein the sub-resource block group that satisfies the first preset condition using NEBF, and using PEBF for the sub-resource block groups that do not meet the first preset condition;
  • the first preset condition includes one or more of the following:
  • the average modulation and coding strategy MCS of multiple users in the sub-resource block group is less than the first threshold
  • the difference between the first SINR and the second SINR is smaller than the second threshold, where the first SINR is calculated according to the first weight power of the sub-resource block group Signal-to-interference and noise ratio, the second signal-to-interference and noise ratio is the signal-to-interference and noise ratio calculated by the second power of the sub-resource block group, and the first weight power is calculated by using NEBF for the sub-resource block group Weight power, the second weight power is the weight power calculated by using PEBF for the sub-resource block group,
  • the channel correlation or weight correlation between users in the sub-resource block group is smaller than a third threshold.
  • step H when the users scheduled in the sub-resource block group include users sensitive to weight direction changes, do not calculate the number of users sensitive to weight direction changes in the sub-resource block group The beamforming weights of the resource block group.
  • step 1 use NEBF to calculate the average transmission power of the NEBF set, where the NEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the NEBF set use the NEBF to calculate the the beamforming weights;
  • Step J using NEBF to calculate the weight power of the NEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • Step K Determine the average transmit power of the NEBF set on the nth antenna according to the average transmit power of the NEBF set and the weighted power of the NEBF set on the nth antenna;
  • Step L based on the average transmission power of the NEBF set on the nth antenna, normalize the weights corresponding to the sub-resource block groups in the NEBF set to obtain the sub-resource block groups corresponding to the beamforming weights.
  • step M is to use PEBF to calculate the average transmit power of the PEBF set, where the PEBF set includes one or more sub-resource block groups, and the sub-resource block groups in the PEBF set use PEBF to calculate the the beamforming weights;
  • Step N using PEBF to calculate the weight power of the PEBF set on the nth antenna, where n is an integer greater than or equal to 0;
  • Step 1 determining the average transmit power of the PEBF set on the nth antenna according to the average transmit power of the PEBF set and the weighted power of the PEBF set on the nth antenna;
  • Step P Based on the average transmission power of the PEBF set on the nth antenna, normalize the weights corresponding to the sub-resource block groups in the PEBF set to obtain the sub-resource block groups corresponding to the beamforming weights.
  • step Q is to determine the first weight power of the sub-resource block group, where the first weight power is the weight power calculated by using PEBF for the sub-resource block group;
  • Step R determining the second weight power of the sub-resource block group, where the second weight power is the weight power calculated by using NEBF for the sub-resource block group;
  • Step S Calculate the sum of the SINR difference of each user in the sub-resource block group according to the first weight power and the second weight power, wherein each user in the sub-resource block group
  • the SINR difference is the SINR calculated by the first weight power of each user in the sub-resource block group and the SINR calculated by the second weight power of each user in the sub-resource block group SINR difference;
  • Step T determining the sum of the SINR differences of the X sub-resource block groups according to the sum of the SINR differences of the users in the sub-resource block groups;
  • Step U when the sum of the SINR differences of the X sub-resource block groups is greater than 0, then determine that the beamforming weight calculation method used by the X sub-resource block groups is PEBF;
  • Step V when the sum of the SINR differences of the X sub-resource block groups is less than or equal to 0, then determine that the beamforming weight calculation method used by the X sub-resource block groups is NEBF.
  • step W is to perform enhanced zero-forcing processing on the first weight power and the second weight power of the sub-resource block group, and perform the enhanced zero-forcing processing according to the The first weight power and the second weight power after the enhanced zero-forcing processing are used to calculate the power of each row of antennas;
  • Step X calculating the power utilization rate according to the sum of the power of all antennas in the power of each row of antennas and the maximum power in the power of each row of antennas;
  • Step Y calculating the power correlation of the power of each row of antennas according to the power of each row of antennas and the full-power multi-user weight vector;
  • Step Z calculating the SINR difference of the lth user in the sub-resource block group according to the power correlation and the power utilization rate, where l is a positive integer;
  • Step AA calculating the sum of SINR differences of each user in the sub-resource block group.
  • step AB uses PEBF to calculate the initial power of the first sub-resource block group
  • Step AC using NEBF to calculate the initial power of the second sub-resource block group
  • Step AD according to the initial power of the first sub-resource block group and the initial power of the second sub-resource block group, determine the power of the first sub-resource block group and the power of the second sub-resource block group , wherein the sum of the power of the first sub-resource block group and the power of the second sub-resource block group in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • the sum of the power of the first user and the power of the second user in the same antenna is equal to the maximum power of the same antenna.
  • the users scheduled in the sub-resource block group include a first user and a second user, the first user is a user sensitive to weight direction changes, and the second user is a user sensitive to weight direction changes. Users who are not sensitive to weight direction changes;
  • Step AE Raise the power of the first user according to the modulation mode of the first user, wherein the sum of the power of the first user after the raising and the power of the second user is the same as the power of the second user before the raising The sum of the power of the first user and the power of the second user is the same.
  • the modulation mode of the first user is quadrature phase shift keying (QPSK)
  • the upper limit of the power increase of the first user is double the maximum power threshold value
  • the upper limit of the power increase of the first user is twice the maximum power threshold value
  • the modulation mode of the first user is 64QAM or 256QAM, the power of the first user cannot be increased.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on the computer, the computer is made to execute any one of the implementation manners shown in the foregoing method embodiments.
  • the embodiment of the present application also provides a chip system, including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the chip performs any implementation as shown in the foregoing method embodiments Way.
  • the embodiment of the present application also provides a chip system, including a processor, and the processor is configured to call and run a computer program, so that the chip executes any one of the implementation manners shown in the foregoing method embodiments.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units , which can be located in one place, or can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between the modules indicates that they have communication connections, which can be specifically implemented as one or more communication buses or signal lines.
  • the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device execute the method described in each embodiment of the present application.
  • a readable storage medium such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, network device, computing A device or data center communicates with another website site, computer, network device, computing device or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission.
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a network device or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束成型权值计算方法,包括:确定X个子资源块组,X个子资源块组中的1个子资源块组包含资源块组中部分资源块组,每个子资源块组中资源块组被用户全部占用,X为大于1的正整数;基于X个子资源块组,确定各个子资源块组使用的波束成型权值计算方法,其中,波束成型权值计算方法包括:归一化特征波束成型,或者,功率受限特征波束成型;根据每个子资源块组对应的波束成型权值计算方法获得每个子资源块组对应的波束成型权值。每个子资源块组自适应的确定对应的波束成型权值计算方法,并获取对应的波束成型权值。有效提升通信装置中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。

Description

一种波束成型权值计算方法以及相关装置
本申请要求于2021年11月19日提交中国国家知识产权局、申请号为202111401057.9、发明名称为“一种波束成型权值计算方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束成型权值计算方法以及相关装置。
背景技术
在多进多出(multiple in multiple out,MIMO)系统中,考虑到每个天线单元的功率是受限的,传统的单位资源元素功率归一化算法在实际系统中应用受限,所有天线需要对最大功率天线功率归一化,这样会导致除最大功率天线外,其他天线的功率不是满功率发送,进而导致功率浪费。例如使用功率受限特征波束成型(power limited-eigen beamforming,PEBF)权值计算方法,平均功率利用率较低。
为了解决上述问题,目前算法思路主要包括内点迭代法和子梯度最优梯度下降法,都存在收敛慢或者不收敛的风险,而且实现复杂度较高,部分算法还以最大化最小用户吞吐量为目标,不一定能最大化用户的吞吐量,该吞吐量指的是数据吞吐量。
因此,亟需一种新的波束成型权值计算方法,在保证用户间干扰最小化的同时满足功率利用率最大化。
发明内容
第一方面,本申请实施例提出一种波束成型权值计算方法,包括:
根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
基于所述波束成型权值对数据进行加权;
发送加权后的所述数据。
具体的,目前常用的波束成型计算方法包括:功率受限特征波束成型(power limited-eigen beamforming,PEBF)和归一化特征波束成型(Normalized-Eigen Beamforming,NEBF)。PEBF可以保证功率最大的天线端口的功率不超标。NEBF可以实现每个天线的功率达到该天线的最大功率值。
以第j个资源块组(resource block group,RBG)对应的多用户权值(MU权值,后文简称为权值)为例进行说明,该权值用于对待发送的数据进行加权处理,j为正整数。
关于多用户权值:由于多个用户在同一个资源块组中发送数据,因此需要对不同的用户数据执行加权操作时需要使用不同的权值。并且,不同用户的权值需要保证彼此数据干扰最小化,或者,使得数据吞吐量最大化。因此,上述权值又称为多用户权值。
具体的,首先网络设备确定网络设备管理的一个或多个用户中每个用户所调度的资源块组,其中,调度的资源块组也可以理解为网络设备为该用户所分配的资源块组。其次,网络设备根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数。例如:X=2,则根据调度的资源块组确定2个子资源块组包括:第一子资源块组和第二子资源块组。第一子资源块组中的用户调度RBG1、RBG2和RBG3。第二子资源块组中的用户调度RBG4、RBG5和RBG6。
然后,基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:NEBF,或者,PEBF;根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;基于所述波束成型权值对数据进行加权;发送加权后的所述数据。
1、波束成型权值计算方法。
在多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)系统中,为了避免天线的发射功率超出最大值,对多用户之间的正交性产生的影响。网络设备一般会采用波束成型权值计算方法对多个天线的发射功率进行最大发射功率归一化处理,得到波束成型权值。基于波束成型权值对数据进行加权,然后网络设备发送加权后的数据。
目前常用的波束成型计算方法包括:功率受限特征波束成型(power limited-eigen beamforming,PEBF)和归一化特征波束成型(Normalized-Eigen Beamforming,NEBF)。
2、PEBF。
PEBF可以保证功率最大的天线端口的功率不超标。下面介绍PEBF的具体计算流程:
以第j个资源块组(resource block group,RBG)对应的多用户权值(MU权值,后文简称为权值)为例进行说明,该权值用于对待发送的数据进行加权处理,j为正整数。
关于多用户权值:由于多个用户在同一个资源块组中发送数据,因此需要对不同的用户数据执行加权操作时需要使用不同的权值。并且,不同用户的权值需要保证彼此数据干扰最小化,或者,使得数据吞吐量最大化。因此,上述权值又称为多用户权值。
Figure PCTCN2022131645-appb-000001
其中,
Figure PCTCN2022131645-appb-000002
为第j个RBG中第l层的权值,第j个RBG中第l层的权值为
Figure PCTCN2022131645-appb-000003
M为正整数,
Figure PCTCN2022131645-appb-000004
表示矢量
Figure PCTCN2022131645-appb-000005
的第n个元素,该第n个元素对应第n个天线的权值,n为大于或等于0的整数,n=0,1,…,M-1,M为大于1的整数,M为网络设备的天线端口数;
令中间变量:
Figure PCTCN2022131645-appb-000006
其中,N BfRbgNum为该网络设备中使用PEBF计算权值的RBG的数量;M为网络设备中 物理天线数;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据功率分配(power allocation,PA)接口的索引值在时分双工(time division duplexing,TDD)接口与索引表中查找的线性值;p j,l为当前时间间隔(transmission time interval,TTI)的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比;
Figure PCTCN2022131645-appb-000007
为第j个RBG中第l层第n个元素的功率值。
基于上述中间变量E n,计算PEBF的权值功率调整因子τ PEBF
Figure PCTCN2022131645-appb-000008
基于PEBF的权值功率调整因子τ PEBF获得第j个RBG的波束成型权值
Figure PCTCN2022131645-appb-000009
Figure PCTCN2022131645-appb-000010
3、NEBF。
NEBF可以实现每个天线的功率达到该天线的最大功率值。下面介绍NEBF的具体计算流程:
以第j个RBG对应的权值为例进行说明,该权值用于对待发送的数据进行加权处理,j为正整数。
Figure PCTCN2022131645-appb-000011
其中,
Figure PCTCN2022131645-appb-000012
为第j个RBG中第l层的权值,第j个RBG中第l层的权值为
Figure PCTCN2022131645-appb-000013
M为正整数,
Figure PCTCN2022131645-appb-000014
表示矢量
Figure PCTCN2022131645-appb-000015
的第n个元素,该第n个元素对应第n个天线的权值,n为大于或等于0的整数,n=0,1,…,M-1;
令中间变量:
Figure PCTCN2022131645-appb-000016
其中,N BfRbgNum为该网络设备中使用NEBF计算权值的RBG的数量;M为网络设备中物理天线数;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为PA接口的索引值在TDD接口与索引表中查找的线性值;p j,l为当前TTI的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比;
Figure PCTCN2022131645-appb-000017
为第j个RBG中第l层第n个元素的功率值。
基于上述中间变量获得第j个RBG的波束成型权值
Figure PCTCN2022131645-appb-000018
其中,波束成型权值
Figure PCTCN2022131645-appb-000019
的第n行元素为
Figure PCTCN2022131645-appb-000020
Figure PCTCN2022131645-appb-000021
本申请实施例提出一种波束成型权值计算方法,在保证用户间干扰最小化的同时满足功率利用率最大化。具体的,根据调度的资源块组,确定多个子资源块组,每个子资源块组中的用户调度相同的资源块组;根据多个子资源块组,确定每个子资源块组使用的波束成型权值计算方法,该波束成型权值计算方法包括NEBF或者PEBF;然后,根据每个子资源块组对应的波束成型权值计算方法获取每个子资源块组对应的波束成型权值;最后基于 该波束成型权值对数据进行加权并发送加权后的数据。通过上述方法,每个子资源块组自适应的确定对应的波束成型权值计算方法,并根据所确定的波束成型计算方法获取对应的波束成型权值,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
结合第一方面,在第一方面的一种可能的实现方式中,所述基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,包括:
检测所述子资源块组中调度的用户数量;
当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
所述第一预设条件包括以下一项或多项:
所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
具体的,当网络设备检测该子资源块组中调度的是单用户时,则确定该子资源块组使用NEBF获取该子资源块组对应的波束成型权值。本申请实施例中,使用NEBF获取该子资源块组对应的波束成型权值又称为使用NEBF计算该子资源块组对应的波束成型权值。
本申请实施例中将使用NEBF计算波束成型权值的RBG称为NEBF集合,其中,NEBF集合又称为NEBF RBG,NEBF RBG中包括一个或多个子资源块组,NEBF RBG中的各个子资源块组使用NEBF计算波束成型权值。
网络设备将调度的是单用户的子资源块组划分为NEBF集合(NEBF RBG)。网络设备确定该子资源块组使用NEBF后,将该处理方式(使用NEBF计算该子资源块的波束成型权值)通过媒体接入控制(media access control,MAC)层(MAC层又称为L2层)下发至物理层(物理层又称为L1层)。
当网络设备检测该子资源块组中调度的是多用户时,则网络设备进一步检测子资源块组是否满足第一预设条件。第一预设条件包括以下一项或多项:
(A)、子资源块组中多用户的平均调制与编码策略(modulation and coding scheme,MCS)小于第一门限。
(B)、第一信干噪比与第二信干噪比的差值小于第二门限,其中,第一信干噪比为根据子资源块组的第一权值功率计算得到的信干噪比,第二信干噪比为子资源块组的第二功率计算得到的信干噪比,第一权值功率为子资源块组使用NEBF计算的权值功率,第二权值功率为子资源块组使用PEBF计算的权值功率。
首先,网络设备使用NEBF计算该子资源块组的权值功率,得到的权值功率称为第一权值功率;网络设备使用PEBF计算该子资源块组的权值功率,得到的权值功率称为第二权值功率。其次,网络设备根据第一权值功率计算信干噪比(signal to interference plus noise ratio,SINR),得到的信干噪比称为第一信干噪比;网络设备根据第二权值功率计算信干噪比,得到的信干噪比称为第二信干噪比。再次,网络设备检测第一信干噪比与第二信干噪比的差值(本申请实施例中该差值称为ΔSINR average)是否小于第二门限(本申请实施例中该第二门限称为Thr2),若小于则满足第一预设条件,则确定子资源块组使用NEBF计算该子资源块组的波束成型权值;若大于或等于第二门限,则不满足第一预设条件,则确定子资源块组使用PEBF计算该子资源块组的波束成型权值。即,当ΔSINR average<Thr2,则该RBG使用NEBF计算波束成型权值;当ΔSINR average≥Thr2,则该RBG使用PEBF计算波束成型权值。
(C)、子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。信道相关性与权值相关性可以使用相关性度量(normalized mean square prediction error,NMSE)表示,也可以使用归一化均方误差表示,此处不做限制。本申请实施例中,将该子资源块组中各个用户之间的信道相关性或者权值相关性称为ΔCorr average,将第三门限称为Thr3。当ΔCorr average<Thr3,则该RBG使用NEBF计算波束成型权值;当ΔCorr average≥Thr3,则该RBG使用PEBF计算波束成型权值。
本申请实施例中,每个子资源块组自适应的确定对应的波束成型权值计算方法,并根据所确定的波束成型计算方法获取对应的波束成型权值,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
结合第一方面,在第一方面的一种可能的实现方式中,当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
需要说明的是,当子资源组中调度的用户包括对权值方向改变敏感的用户时,不计算对权值方向改变敏感的用户在子资源块组的波束成型权值。该对权值方向改变敏感的用户仍然使用原本的权值对数据进行加权。该对权值方向改变敏感的用户可以理解为当权值方向发生改变时,用户性能会明显降低的用户。例如:当子资源组中调度的用户包括传输模式4(TM4)用户时,不计算TM4用户在子资源块组的波束成型权值。该TM4用户仍然沿用原有的权值对数据进行加权处理。
结合第一方面,在第一方面的一种可能的实现方式中,所述根据所述子资源块组对应的所述波束成型权值计算方法计算所述波束成型权值,包括:
使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
首先,网络设备确定NEBF集合,NEBF集合包括包括一个或多个子资源块组,NEBF集合中的子资源块组使用NEBF计算波束成型权值。换言之,网络设备中所有使用NEBF计算波束成型权值的子资源块组称为NEBF集合。在本申请实施例中,NEBF集合又称为NEBF RBG。
例如:网络设备所确定的子资源块组包括:第一子资源块组、第二子资源块组、第三子资源块组和第四子资源块组。通过前述方法,网络设备确定使用NEBF计算波束成型权值的子资源块组(即NEBF集合)包括:第一子资源块组和第二子资源块组。
其次,网络设备使用NEBF计算NEBF集合的平均发射功率,即使用NEBF计算NEBF RBG中各个RBG的平均发射功率。例如:使用NEBF计算第一子资源块组和第二子资源块组的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000022
其中,E NEBF,aver为NEBF集合的平均发射功率;N NEBF为NEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据PA接口的索引值在TDD接口与索引表中查找的线性值;p j,l为当前TTI的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比。
再次,使用NEBF计算NEBF集合在第n个天线的权值功率,其中,n为大于或等于0的整数。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000023
其中,
Figure PCTCN2022131645-appb-000024
为NEBF集合在第n个天线的权值功率,M为网络设备中物理天线数,n=0~M-1;N NEBF为NEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为PA接口的索引值在TDD接口与索引表中查找的线性值;
Figure PCTCN2022131645-appb-000025
为第j个RBG中第l层第n个天线的功率值。
再次,网络设备根据NEBF集合的平均发射功率E NEBF,aver,和NEBF集合在第n个天线的权值功率
Figure PCTCN2022131645-appb-000026
确定NEBF集合在第n个天线上的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000027
其中,
Figure PCTCN2022131645-appb-000028
为NEBF集合在第n个天线上的平均发射功率,E NEBF,aver为NEBF集合的平均发射功率,
Figure PCTCN2022131645-appb-000029
为NEBF集合在第n个天线的权值功率。
最后,基于NEBF集合在第n个天线上的平均发射功率
Figure PCTCN2022131645-appb-000030
对第n个天线上的权值 进行归一化处理,得到波束成型权值。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000031
其中,
Figure PCTCN2022131645-appb-000032
为第j个RBG中第l层第n个天线的波束成型权值;
Figure PCTCN2022131645-appb-000033
为第j个RBG中第l层的权值;
Figure PCTCN2022131645-appb-000034
为NEBF集合在第n个天线上的平均发射功率;τ NEBF为基于NEBF的权值功率调整因子,τ NEBF可以根据全功率带宽(full-power bandwidth,FPBW)功率计算,τ NEBF也可以根据τ PEBF计算得到,例如:
Figure PCTCN2022131645-appb-000035
即τ NEBF可以大于1。
结合第一方面,在第一方面的一种可能的实现方式中,所述根据所述子资源块组对应的所述波束成型权值计算方法计算所述波束成型权值,包括:
使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
首先,网络设备确定PEBF集合,PEBF集合包括包括一个或多个子资源块组,PEBF集合中的子资源块组使用PEBF计算波束成型权值。换言之,网络设备中所有使用PEBF计算波束成型权值的子资源块组称为PEBF集合。在本申请实施例中,PEBF集合又称为PEBF RBG。
例如:网络设备所确定的子资源块组包括:第一子资源块组、第二子资源块组、第三子资源块组和第四子资源块组。通过前述方法,网络设备确定使用PEBF计算波束成型权值的子资源块组(即PEBF集合)包括:第一子资源块组和第二子资源块组。
其次,网络设备使用PEBF计算PEBF集合的平均发射功率,即使用PEBF计算PEBF RBG中各个RBG的平均发射功率。例如:使用PEBF计算第一子资源块组和第二子资源块组的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000036
其中,E PEBF,aver为PEBF集合的平均发射功率;N PEBF为PEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据PA接口的索引值在TDD接口与索引表中查找的线性值;p j,l为当前TTI的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比。
再次,使用PEBF计算PEBF集合在第n个天线的权值功率,其中,n为大于或等于0的整数。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000037
其中,
Figure PCTCN2022131645-appb-000038
为PEBF集合在第n个天线的权值功率,M为网络设备中物理天线数,n=; N NEBF为PEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为PA接口的索引值在TDD接口与索引表中查找的线性值;
Figure PCTCN2022131645-appb-000039
为第j个RBG中第l层第n个天线的功率值。
再次,网络设备根据PEBF集合的平均发射功率E PEBF,aver,和PEBF集合在第n个天线的权值功率
Figure PCTCN2022131645-appb-000040
确定PEBF集合在第n个天线上的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000041
其中,
Figure PCTCN2022131645-appb-000042
为PEBF集合在第n个天线上的平均发射功率,E PEBF,aver为PEBF集合的平均发射功率,
Figure PCTCN2022131645-appb-000043
为PEBF集合在第n个天线的权值功率。
最后,基于PEBF集合在第n个天线上的平均发射功率
Figure PCTCN2022131645-appb-000044
对第n个天线上的权值进行归一化处理,得到波束成型权值。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000045
其中,
Figure PCTCN2022131645-appb-000046
为第j个RBG中第l层第n个天线的波束成型权值,
Figure PCTCN2022131645-appb-000047
为第j个RBG中第l层的权值,max
Figure PCTCN2022131645-appb-000048
为PEBF集合在第n个天线上的平均发射功率的最大值,τ PEBF为基于PEBF的权值功率调整因子,
Figure PCTCN2022131645-appb-000049
Figure PCTCN2022131645-appb-000050
其中,n为大于或等于0的整数,n=0,1,…,M-1,N BfRbgNum为该网络设备中使用PEBF计算权值的RBG的数量;M为网络设备中物理天线数;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据功率分配(power allocation,PA)接口的索引值在时分双工(time division duplexing,TDD)接口与索引表中查找的线性值;p j,l为当前时间间隔(transmission time interval,TTI)的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比;
Figure PCTCN2022131645-appb-000051
为第j个RBG中第l层第n个天线的功率值。
结合第一方面,在第一方面的一种可能的实现方式中,所述基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,包括:
确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干 噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
可选的,所述根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,包括:对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;计算所述子资源块组中各个用户的信干噪比差之和。
具体的,网络设备确定子资源块组的第一权值功率和第二权值功率,其中,第一权值功率为网络设备使用PEBF计算该子资源块组得到的权值功率,第二权值功率为网络设备使用NEBF计算该子资源块组得到的权值功率。
当确定子资源块组的第一权值功率和第二权值功率后,根据该第一权值功率和第二权值功率计算每一行天线的功率,具体可以采用如下方法计算每一行天线的功率:
P=P n=[P 0P 1…P M-1],其中,P n为第n个天线的功率,n=0,1,…,M-1,M为大于1的整数,M为网络设备的天线端口数。
其次,根据每一行天线的功率中所有天线的功率之和与每一行天线的功率中的最大功率,计算功率利用率,具体可以采用如下方法计算功率利用率:
Figure PCTCN2022131645-appb-000052
其中,γ PEBF为功率利用率,max(P n)为每一行天线中天线的最大功率,
Figure PCTCN2022131645-appb-000053
为每一行天线的功率中所有天线的功率之和。
再次,根据每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性,具体可以采用如下方法计算每一行天线的功率的功率相关性:
Figure PCTCN2022131645-appb-000054
其中,P REF=[1,1,…1] M×1,P REF为满功率的多用户权值矢量,ρ P,NEBF为该功率相关性。
再次,根据上述功率利用率和功率相关性,计算子资源块组中第l个用户的信干噪比差,l为正整数,具体可以采用如下方法计算子资源块组中第l个用户的信干噪比差:
Figure PCTCN2022131645-appb-000055
其中,β interf,nebf为干扰调整参数,
Figure PCTCN2022131645-appb-000056
为第一权值功率和第二权值功率的权值相关性;p k表示第k个流分到的功率,RB Num为子资源块组的数目,RB Num=X,CQI k为第k个流的信道质量指示(channel quality indication,CQI)信息,SINR l,Delta为子资源块组中第l个用户的信干噪比差,该信干噪比差为该用户的第一权值功率计算的信干噪比与该用户的第二权值功率计算的信干噪比的差值。
最后,根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和,具体的,可以采用以下方法计算X个子资源块组的信干噪比差之和:
Figure PCTCN2022131645-appb-000057
其中,
Figure PCTCN2022131645-appb-000058
为该子资源块组中各个用户的信干噪比差之和,SINR Delta为X个子资源块组的信干噪比差之和。
当网络设备计算得到X个子资源块组的信干噪比差之和后,基于该X个子资源块组的信干噪比差之和,确定该X个子资源块组所使用的波束成型计算方法。当X个子资源块组的信干噪比差之和大于0,则确定该X个子资源块组使用PEBF。当X个子资源块组的信干噪比差之和小于或等于0,则确定该X个子资源块组使用NEBF。
本申请实施例中,多个子资源块组通过计算PEBF与NEBF的信道容量,自适应的确定对应的波束成型权值计算方法,并根据所确定的波束成型计算方法获取对应的波束成型权值,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
结合第一方面,在第一方面的一种可能的实现方式中,使用PEBF计算第一子资源块组的初始功率;
使用NEBF计算第二子资源块组的初始功率;
根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
首先,网络设备使用PEBF计算得到第一子资源块组的归一化功率,该功率称为第一子资源块组的初始功率。网络设备使用NEBF计算得到第二子资源块组的归一化功率,该功率称为第二子资源块组的初始功率。
其次,网络设备确定每个天线的最大功率,例如:该同一天线的最大功率为2。
再次,为了提高网络设备的功率利用率,以同一天线上仅用于收发第一子资源块组的数据和第二子资源块组的数据为例,则第一子资源块组的功率和第二子资源块组的功率之和需要等于该同一天线的最大功率。
以网络设备包括天线1-天线6为例,每一个天线的最大功率为2,并且每一个天线中 对应每个子资源块组的功率相等(每个子资源块组在每一个天线中的最大功率为1)。第一子资源块组的功率利用率在天线1-天线6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。
那么使用PEBF计算第一子资源块组在天线1-天线6中的初始功率分别为1、1、1、α 0、α 1、α 2。则天线1-天线6中关于第一子资源块组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
使用NEBF计算第二子资源块组在天线1-天线6中的初始功率分别为1、1、1、1、1、1。
为了进一步提升网络设备的功率利用率,上述剩余功率可以共享给第二子资源块组使用,使得同一天线中第一子资源块组的功率和第二子资源块组的功率之和等于该同一天线的最大功率。则天线1-天线6中关于第二子资源块组的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,网络设备中同一个天线内多个子资源块组可以实现功率共享,使得在同一天线内的多个子资源块组的功率之和达到该天线的最大功率,提升网络设备中天线的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
结合第一方面,在第一方面的一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
具体的,以子资源块组包括第一用户和第二用户为例进行说明,第一用户为对权值方向改变敏感的用户,例如是TM4用户;第二用户为对权值方向改变不敏感的用户,例如是TM9用户。
首先,网络设备使用PEBF或者NEBF计算得到子资源块组的归一化功率,进而得到该子资源块组中不同用户在同一天线中不同层的功率值。以网络设备包括层1-层6为例(该层指的是物理层),每一个层的最大功率为2,并且每一个层中对应每个用户的功率相等(每一个层中每个用户的最大功率为1)。
第一用户的功率利用率在层1-层6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。那么使第一用户在层1-层6中的初始功率分别为1、1、1、α 0、α 1、α 2。则层1-层6中关于第一用户的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
由于第一用户为对权值方向改变敏感的用户,而第一用户具有以下特征:利用导频的信道估计值需要与数据的信道估计值一致,因此第一用户的功率无需进行调整。第一用户在各个天线中同一层的剩余功率可以共享给该同一天线中同一层的第二用户,以实现同一天线中第一用户的功率与第二用户的功率之和等于该同一天线的最大功率。
具体的,上述层1-层6中关于第一用户的剩余功率分别为:0、0、0、1-α 0、1-α 1、1- α 2可以共享给第二用户使用,使得同一天线中第一用户的功率与第二用户的功率之和等于该同一天线的最大功率。则层1-层6中关于第二用户的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,网络设备的同一天线中同一个层内多个用户可以实现功率共享,使得同一天线中第一用户的功率与第二用户的功率之和等于同一天线的最大功率,提升网络设备的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
结合第一方面,在第一方面的一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
具体的,同一个子资源块组内对权值方向改变敏感的用户的功率可以实现功率抬升,功率抬升指的是提升对权值方向改变敏感的用户的功率上限。根据用户的不同调制方式动态调整各个用户的功率,以提升网络设备的功率利用率,提升网络设备的数据吞吐量。
首先,网络设备使用PEBF或者NEBF计算得到子资源块组的归一化功率,进而得到该子资源块组中不同用户在同一天线中不同层的功率值。以网络设备包括层1-层6为例(该层指的是物理层),每一个层的最大功率为2。对每一个层中的用户进行分组,具体分为第一用户分组和第二用户分组,其中,第一用户分组包括一个或多个第一用户,第二用户分组包括一个或多个第一用户和一个或多个第二用户,第一用户分组中的第一用户与第二用户分组中的第一用户不相同。每一个层中第一用户分组的最大功率与第二用户分组的最大功率相同,均为1。
第一用户分组的功率利用率在层1-层6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。那么使第一用户分组在层1-层6中的初始功率分别为1、1、1、α 0、α 1、α 2。则层1-层6中关于第一用户分组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
由于第一用户为对权值方向改变敏感的用户,而第一用户具有以下特征:利用导频的信道估计值需要与数据的信道估计值一致,因此需要考虑不同调制方式对第一用户的影响。针对不同的调制方式,第一用户的功率的抬升上限不同。
上述层1-层6中第一用户分组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2可以共享给第二用户分组中的第一用户使用,实现第二用户分组中第一用户的功率抬升。同一天线中抬升后的第一用户的功率与第二用户的功率之和,与抬升前的第一用户的功率与第二用户的功率之和相等,等于该同一天线的最大功率。则层1-层6中关于第二用户分组的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,同一个子资源块组内对权值方向改变敏感的用户的功率可以实现功率抬升,功率抬升指的是提升对权值方向改变敏感的用户的功率上限。根据用户的不同调 制方式动态调整各个用户的功率,以提升网络设备的功率利用率,提升网络设备的数据吞吐量。提升网络设备的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
结合第一方面,在第一方面的一种可能的实现方式中,根据所述第一用户的调制方式,提升所述第一用户的功率,包括:当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
可以理解的是,针对不同调制方法,第一用户的功率的抬升上限可以有其它的实现方式。例如:当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为1.5倍的最大功率门限值。当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为1.8倍的所述最大功率门限值,此处不作限定。
该最大功率门限值为预设的功率门限值,该最大功率门限值与调制方式对应。功率超过该最大功率门限值时,容易导致该调制方式所对应的星座点的解调性能降低。
在一种可能的实现方式中,同一子资源块组中第一用户(例如是TM4用户)的功率抬升,而另外的第二用户(例如是TM9用户)的功率上限下降,以保持同一子资源块组中用户的总功率(或者各个用户的功率之和)不变。
在一种可能的实现方式中,以同一子资源块组中的第一用户包括第一用户A、第一用户B和第一用户C为例进行说明。第一用户中的部分用户(例如第一用户A)的功率抬升,而该第一用户中的其它用户功率上限下降(例如:第一用户B的功率上限下降,或者第一用户C的功率上限下降,又或者第一用户B和第一用户C的功率上限一同下降),以保持同一子资源块组中用户的总功率(或者各个用户的功率之和)不变。
第二方面,本申请实施例提出一种通信装置,包括:
处理模块,用于根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
所述处理模块,还用于基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
所述处理模块,还用于根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
所述处理模块,还用于基于所述波束成型权值对数据进行加权;
收发模块,用于发送加权后的所述数据。
在一种可能的实现方式中,所述处理模块,还用于检测所述子资源块组中调度的用户数量;
所述处理模块,还用于当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
所述处理模块,还用于当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
所述第一预设条件包括以下一项或多项:
所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
在一种可能的实现方式中,所述处理模块,还用于当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
在一种可能的实现方式中,所述处理模块,还用于使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
所述处理模块,还用于使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理模块,还用于根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
所述处理模块,还用于基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理模块,还用于使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
所述处理模块,还用于使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理模块,还用于根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
所述处理模块,还用于基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理模块,还用于确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
所述处理模块,还用于确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
所述处理模块,还用于根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
所述处理模块,还用于根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
所述处理模块,还用于当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
所述处理模块,还用于当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
在一种可能的实现方式中,所述处理模块,还用于对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
所述处理模块,还用于根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
所述处理模块,还用于根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
所述处理模块,还用于根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;
所述处理模块,还用于计算所述子资源块组中各个用户的信干噪比差之和。
在一种可能的实现方式中,所述处理模块,还用于使用PEBF计算第一子资源块组的初始功率;
所述处理模块,还用于使用NEBF计算第二子资源块组的初始功率;
所述处理模块,还用于根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
所述处理模块,还用于根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
在一种可能的实现方式中,当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
第三方面,本申请实施例提出一种通信装置,包括:
处理器,用于根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
所述处理器,还用于基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
所述处理器,还用于根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
所述处理器,还用于基于所述波束成型权值对数据进行加权;
收发器,用于发送加权后的所述数据。
在一种可能的实现方式中,所述处理器,还用于检测所述子资源块组中调度的用户数量;
所述处理器,还用于当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
所述处理器,还用于当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
所述第一预设条件包括以下一项或多项:
所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
在一种可能的实现方式中,所述处理器,还用于当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
在一种可能的实现方式中,所述处理器,还用于使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
所述处理器,还用于使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理器,还用于根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
所述处理器,还用于基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理器,还用于使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
所述处理器,还用于使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理器,还用于根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
所述处理器,还用于基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理器,还用于确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
所述处理器,还用于确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
所述处理器,还用于根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
所述处理器,还用于根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
所述处理器,还用于当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
所述处理器,还用于当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
在一种可能的实现方式中,所述处理器,还用于对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
所述处理器,还用于根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
所述处理器,还用于根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
所述处理器,还用于根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;
所述处理器,还用于计算所述子资源块组中各个用户的信干噪比差之和。
在一种可能的实现方式中,所述处理器,还用于使用PEBF计算第一子资源块组的初始功率;
所述处理器,还用于使用NEBF计算第二子资源块组的初始功率;
所述处理器,还用于根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
所述处理器,还用于根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
在一种可能的实现方式中,当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
第四方面,本申请实施例提供了一种通信装置,该通信装置可以实现上述第一方面所涉及方法中网络设备或者终端设备所执行的功能。该通信装置包括处理器、存储器以及与该处理器连接的接收器和与该处理器连接的发射器;该存储器用于存储程序代码,并将该程序代码传输给该处理器;该处理器用于根据该程序代码中的指令驱动该接收器和该发射器执行如上述第一方面的方法;接收器和发射器分别与该处理器连接,以执行上述各个方面的方法中网络设备或者终端设备的操作。具体地,发射器可以进行发送的操作,接收器可以进行接收的操作。可选的,该接收器与发射器可以是射频电路,该射频电路通过天线 实现接收与发送消息;该接收器与发射器还可以是通信接口,处理器与该通信接口通过总线连接,该处理器通过该通信接口实现接收或发送消息。
第五方面,本申请实施提供了一种通信系统,包括:发送端和接收端。
其中,所述发送端执行前述第一方面的方法;所述接收端用于接收来自该发送端的数据。
可选的,该发送端可以是网络设备,则接收端可以是其它的网络设备或者终端设备。
可选的,该发送端可以是终端设备,则接收端可以是其它的终端设备或者网络设备。
第六方面,本申请实施例提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,当该计算机执行指令被处理器执行时,该处理器执行如前述第一方面中任意一种可能的实现方式。
第七方面,本申请实施例提供一种存储一个或多个计算机执行指令的计算机程序产品(或称计算机程序),当该计算机执行指令被该处理器执行时,该处理器执行前述第一方面任意一种可能的实现方式。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机设备实现上述方面中所涉及的功能。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存计算机设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第一方面的方法。
其中,芯片系统中的通信接口可以为输入/输出接口、管脚或电路等。
附图说明
图1a为本申请实施例提出的一种应用场景示意图;
图1b为通信系统中采用CU-DU的架构示意图;
图1c为CU的一种架构示意图;
图2为本申请实施例中通信装置的硬件结构示意图;
图3为本申请实施例提出的一种波束成型权值计算方法的实施例示意图;
图4为本申请实施例提出的一种波束成型权值计算方法的实施例示意图;
图5为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图;
图6为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图;
图7为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图;
图8为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图;
图9为本申请实施例中通信装置的一种实施例示意图;
图10为本申请实施例提出的一种处理装置示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统,LTE频分双工(frequency division duplex,FDD)系统,LTE时分双工(time division duplex,TDD),通用移动通信系统(universal mobile telecommunication system,UMTS),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)系统或NR以及未来的第六代通信系统等。
各种通信系统中由运营者运营的部分可称为运营商网络。运营商网络也可称为PLMN网络,是由政府或政府所批准的经营者,以为公众提供陆地移动通信业务为目的而建立和经营的网络,主要是移动网络运营商(mobile network operator,MNO)为用户提供移动宽带接入服务的公共网络。本申请实施例中所描述的运营商网络或PLMN网络,可以为符合第三代合作伙伴项目(3rd generation partnership project,3GPP)标准要求的网络,简称3GPP网络。通常3GPP网络由运营商来运营,包括但不限于第五代移动通信(5th-generation,5G)网络(简称5G网络),第四代移动通信(4th-generation,4G)网络(简称4G网络)或第三代移动通信技术(3rd-generation,3G)网络(简称3G网络)。还包括未来的6G网络。为了方便描述,本申请实施例中将以运营商网络(如移动网络运营商(mobile network operator,MNO)网络)为例进行说明。
为了便于理解本申请实施例,介绍本方案的一些应用场景。请参阅图1a,图1a为本申请实施例提出的一种应用场景示意图。在一种可选的实现方式中,本申请实施例涉及的发送端可以是网络设备,接收端可以是终端设备。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE),或者用户。本申请实施例中所涉及的终端设备作为一种具有无线收发功能的设备,可以经网络设备中的接入网设备与一个或多个核心网(core network,CN)进行通信。终端设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用 户终端、无线网络设备、用户代理或用户装置等。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA),可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(fifth generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对此并不限定。
网络设备可以提供运营商网络的子网络,例如提供运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过网络设备,进而可通过网络设备与运营商网络的业务节点连接。终端设备要接入运营商网络,首先是经过网络设备,进而可通过网络设备与运营商网络的业务节点连接。本申请实施例中的网络设备,是一种为终端设备提供无线通信功能的设备,也可以称为(无线)接入网((radio)access network,(R)AN)设备。网络设备包括但不限于:5G系统中的下一代基站节点(next generation node base station,gNB)、长期演进(long term evolution,LTE)中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心,或者未来网络中的网络设备等。采用不同无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同。
图1b为通信系统中采用CU-DU的架构示意图。如图1b所示,接入网设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。可选的,接入网设备还可以包括无线电单元(radio unit,RU)(图中未示出)。开放式无线接入网(open RAN,O-RAN)中可以包括上述CU-DU架构中的一个或多个网元。接入网设备的功能进行了拆分,接入网设备的部分功能部署在一个CU,接入网设备的另外部分功能部署在DU。DU的数量可以是一个或多个。多个DU可以共用一个CU,以节省成本,易于网络扩展。CU和DU之间通过接口(例如,F1接口)连接。CU代表接入网设备通过接口(例如,Ng接口)和核心网连接。CU和DU的功能切分可以按照协议栈进行切分。其中一种可能的方式是将无线资源控制(radio resource control,RRC)以及分组数据汇聚协议(packet data convergence  protocol,PDCP)层和业务数据适应(Service Data Adaptation Protocol,SDAP)层部署在CU。无线链路层控制协议(Radio Link Control,RLC)、媒体接入控制(Media Access Control,MAC)、物理层(physical layer,PHY)部署在DU。相应地,CU具有RRC、PDCP和SDAP的处理能力。DU具有RLC、MAC、和PHY的处理能力。值得注意的是,上述功能切分只是一个例子,还有可能有其他切分的方式。例如,CU包括RRC、PDCP、RLC和SDAP的处理能力,DU具有MAC、和PHY的处理能力。又例如CU包括RRC、PDCP、RLC、SDAP和部分MAC(例如加MAC包头)的处理能力,DU具有PHY和部分MAC(例如调度)的处理能力。CU、DU的名字可能会发生变化,只要能实现上述功能的接入网节点都可以看做是本专利申请中的CU、DU。
图1c为CU的一种架构示意图。如图1c所示,CU包括控制面CU(CU-CP)和用户面CU(CU-UP)。CU-CP和CU-UP可以在不同的物理设备上。CU-CP和CU-UP也可以在相同的物理设备上。CU-CP和CU-UP通过接口(例如,E1接口)连接。CU-CP代表接入网设备通过接口(例如,Ng接口)和核心网连接。CU-CP通过接口(例如,F1-C接口)和DU连接,CU-UP通过接口(例如:F1-U接口)和DU连接。CU-CP的数量可以是一个,CU-UP的数量可以是一个或多个。多个CU-UP可以共用一个CU-CP。CU-CP主要具有控制面功能。CU-UP主要具有用户面功能。其中一种可能的实现方式为:对于5G的接入网设备,RRC层可以部署在CU-CP,而SDAP层不部署在CU-CP。CU-CP还可以具有PDCP层的控制面部分功能,例如可以进行信令无线承载(signaling radio bearer,SRB)的处理。SDAP层可以部署在CU-UP,但RRC层不部署在CU-UP。CU-UP还可以具有PDCP层的用户面部分功能,例如进行数据无线承载(DRB)的处理。具体协议栈在CU-UP与DU之间的划分不做限制。本申请中要求PDCP-U的处理属于CU-UP的逻辑功能。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
本申请提供的一种波束成型权值计算方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统以及未来通信发展中出现的新的通信系统等。本申请的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其它网络。
此外,本申请实施例还可以适用于面向未来的其它通信技术,例如6G等。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例中通信装置的硬件结构示意图。该通信装置可以是本申请实施例 中网络设备的一种可能的实现方式,也可以是本申请实施例中终端设备的一种可能的实现方式。如图2所示,通信装置至少包括处理器204,存储器203,和收发器202,存储器203进一步用于存储指令2031和数据2032。可选的,该通信装置还可以包括天线206,I/O(输入/输出,Input/Output)接口210和总线212。收发器202进一步包括发射器2021和接收器2022。此外,处理器204,收发器202,存储器203和I/O接口210通过总线212彼此通信连接,天线206与收发器202相连。
处理器204可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP),应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。该处理器204还可以是神经网络处理单元(neural processing unit,NPU)。此外,处理器204还可以是多个处理器的组合。特别的,在本申请实施例提供的技术方案中,处理器204可以用于执行,后续方法实施例中波束成型权值计算方法的相关步骤。处理器204可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器203中存储的指令2031来执行上述步骤和/或操作的处理器,处理器204在执行上述步骤和/或操作的过程中可能需要用到数据2032。
收发器202包括发射器2021和接收器2022,在一种可选的实现方式中,发射器2021用于通过天线206发送信号。接收器2022用于通过天线206之中的至少一根天线接收信号。特别的,在本申请实施例提供的技术方案中,发射器2021具体可以用于通过天线206之中的至少一根天线执行,例如,后续方法实施例中一种波束成型权值计算方法应用于网络设备时,网络设备中接收模块或发送模块所执行的操作。
收发器202可以用于支持网络设备与网络设备之间,终端设备与终端设备之间,网络设备与终端设备之间空口信号的接收或者发送,收发器202可以与多个天线相连。收发器202包括发射机Tx和接收机Rx。具体地,一个或多个天线可以接收空口信号,该收发器202的接收机Rx用于从天线接收所述空口信号,并将空口信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器204,以便处理器204对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器202中的发射机Tx还用于从处理器204接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为空口信号,并通过一个或多个天线发送所述空口信号。
在本申请实施例中,收发器202用于支持通信装置执行前述的接收功能和发送功能。将具有处理功能的处理器视为处理器204。接收器2022也可以称为输入端口、接收电路等,发射器2021可以称为发射端口或者发射电路等。
处理器204可用于执行该存储器203存储的指令,以控制收发器202接收消息和/或发送消息,完成本申请方法实施例中通信装置的功能。作为一种实现方式,收发器202的功能可以考虑通过收发电路或者收发的专用芯片实现。本申请实施例中,收发器202接收消息可以理解为收发器202输入消息,收发器202发送消息可以理解为收发器202输出消息。
存储器203可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),非易失性RAM(Non-Volatile RAM,NVRAM),可编程ROM(Programmable ROM,PROM),可擦除PROM(Erasable PROM,EPROM),电可擦除PROM(Electrically Erasable PROM,EEPROM),闪存,光存储器和寄存器等。存储器203具体用于存储指令2031和数据2032,处理器204可以通过读取并执行存储器203中存储的指令2031,来执行本申请方法实施例中的步骤和/或操作,在执行本申请方法实施例中操作和/或步骤的过程中可能需要用到数据2032。
可选的,该通信装置还可以包括I/O接口210,该I/O接口210用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
该通信装置可以是芯片,网络设备或者终端设备等。例如,该通信装置可以为芯片,收发单元可以是芯片的输入和/或输出电路,或者通信接口。芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,收发模块可以为收发器,射频芯片等。
在一种可能的设计中,通信装置包括用于生成数据的部件(means),以及用于发送数据的部件(means)。可以通过一个或多个处理器来实现生成数据的means以及发送数据的means的功能。例如可以通过一个或多个处理器生成数据,通过收发器、或输入/输出电路、或芯片的接口发送数据。数据可以参见本申请实施例中的相关描述。
在一种可能的设计中,通信装置包括用于接收数据的部件(means),以及用于发送上行数据的部件(means)。数据以及如何根据该数据,发送上行数据可以参见本申请实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收数据。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束成型权值计算方法。
在多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)系统中,为了避免天线的发射功率超出最大值,对多用户之间的正交性产生的影响。网络设备一般会采用波束成型权值计算方法对多个天线的发射功率进行最大发射功率归一化处理,得到波束成型权值。基于波束成型权值对数据进行加权,然后网络设备发送加权后的数据。
目前常用的波束成型计算方法包括:功率受限特征波束成型(power limited-eigen beamforming,PEBF)和归一化特征波束成型(Normalized-Eigen Beamforming,NEBF)。
2、PEBF。
PEBF可以保证功率最大的天线端口的功率不超标。下面介绍PEBF的具体计算流程:
以第j个资源块组(resource block group,RBG)对应的多用户权值(MU权值,后文简称为权值)为例进行说明,该权值用于对待发送的数据进行加权处理,j为正整数。
关于多用户权值:由于多个用户在同一个资源块组中发送数据,因此需要对不同的用户数据执行加权操作时需要使用不同的权值。并且,不同用户的权值需要保证彼此数据干扰最小化,或者,使得数据吞吐量最大化。因此,上述权值又称为多用户权值。
Figure PCTCN2022131645-appb-000059
其中,
Figure PCTCN2022131645-appb-000060
为第j个RBG中第l层的权值,第j个RBG中第l层的权值为
Figure PCTCN2022131645-appb-000061
M为正整数,
Figure PCTCN2022131645-appb-000062
表示矢量
Figure PCTCN2022131645-appb-000063
的第n个元素,该第n个元素对应第n个天线的权值,n为大于或等于0的整数,n=0,1,…,M-1,M为大于1的整数,M为网络设备的天线端口数;
令中间变量:
Figure PCTCN2022131645-appb-000064
其中,N BfRbgNum为该网络设备中使用PEBF计算权值的RBG的数量;M为网络设备中物理天线数;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据功率分配(power allocation,PA)接口的索引值在时分双工(time division duplexing,TDD)接口与索引表中查找的线性值;p j,l为当前时间间隔(transmission time interval,TTI)的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比;
Figure PCTCN2022131645-appb-000065
为第j个RBG中第l层第n个元素的功率值。
基于上述中间变量E n,计算PEBF的权值功率调整因子τ PEBF
Figure PCTCN2022131645-appb-000066
基于PEBF的权值功率调整因子τ PEBF获得第j个RBG的波束成型权值
Figure PCTCN2022131645-appb-000067
Figure PCTCN2022131645-appb-000068
3、NEBF。
NEBF可以实现每个天线的功率达到该天线的最大功率值。下面介绍NEBF的具体计算流程:
以第j个RBG对应的权值为例进行说明,该权值用于对待发送的数据进行加权处理,j为正整数。
Figure PCTCN2022131645-appb-000069
其中,
Figure PCTCN2022131645-appb-000070
为第j个RBG中第l层的权值,第j个RBG中第l层的权值为
Figure PCTCN2022131645-appb-000071
M为正整数,
Figure PCTCN2022131645-appb-000072
表示矢量
Figure PCTCN2022131645-appb-000073
的第n个元素,该第n个元素对应第n个天线的权值,n为大于或等于0的整数,n=0,1,…,M-1;
令中间变量:
Figure PCTCN2022131645-appb-000074
其中,N BfRbgNum为该网络设备中使用NEBF计算权值的RBG的数量;M为网络设备中物理天线数;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为PA接口的索引值在TDD接口与索引表中查找的线性值;p j,l为当前TTI的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比;
Figure PCTCN2022131645-appb-000075
为第j个RBG中第l层第n个元素的功率值。
基于上述中间变量获得第j个RBG的波束成型权值
Figure PCTCN2022131645-appb-000076
其中,波束成型权值
Figure PCTCN2022131645-appb-000077
的第n行元素为
Figure PCTCN2022131645-appb-000078
Figure PCTCN2022131645-appb-000079
在MIMO系统中,考虑到每个天线单元的功率是受限的,传统的单位资源元素功率归一化算法在实际系统中应用受限,所有天线需要对最大功率天线功率归一化,这样会导致除最大功率天线外,其他天线的功率不是满功率发送,进而导致功率浪费。例如使用PEBF权值计算方法,平均功率利用率较低。为了解决上述问题,目前算法思路主要包括内点迭代法和子梯度最优梯度下降法,都存在收敛慢或者不收敛的风险,而且实现复杂度较高,部分算法还以最大化最小用户吞吐量为目标,不一定能最大化用户的和吞吐量。
基于此,本申请实施例提出一种波束成型权值计算方法,在保证用户间干扰最小化的同时满足功率利用率最大化。具体的,根据调度的资源块组,确定多个子资源块组,每个子资源块组中的用户调度相同的资源块组;根据多个子资源块组,确定每个子资源块组使用的波束成型权值计算方法,该波束成型权值计算方法包括NEBF或者PEBF;然后,根据每个子资源块组对应的波束成型权值计算方法获取每个子资源块组对应的波束成型权值;最后基于该波束成型权值对数据进行加权并发送加权后的数据。通过上述方法,每个子资源块组自适应的确定对应的波束成型权值计算方法,并根据所确定的波束成型计算方法获取对应的波束成型权值,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。
下面,结合附图对本申请实施例进行详细说明。需要说明的是,本申请实施例提出的波束成型权值计算方法可以应用于网络设备,也可以应用于终端设备。接下来以该波束成型权值计算方法应用于网络设备为例介绍本方案,可以理解的是,该波束成型权值计算方法应用于终端设备的具体实现方式与该波束成型权值计算方法应用于网络设备的具体实现方式类似,此处不作赘述。进一步的,该波束成型权值计算方法可以应用于网络设备的芯片中,或者,终端设备的芯片中,本申请实施例对此不作限制。
首先介绍根据每个子资源块组中的用户数量,确定该子资源块组对应的波束成型权值计算方法。请参阅图3,图3为本申请实施例提出的一种波束成型权值计算方法的实施例示意图。本申请实施例提出的一种波束成型权值计算方法包括:
301、根据调度的资源块组,确定X个子资源块组。
步骤301中,首先网络设备确定网络设备管理的一个或多个用户中每个用户所调度的资源块组,其中,调度的资源块组也可以理解为网络设备为该用户所分配的资源块组。其次,网络设备根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数。
例如:X=2,则根据调度的资源块组确定2个子资源块组包括:第一子资源块组和第二子资源块组。第一子资源块组中的用户调度RBG1、RBG2和RBG3。第二子资源块组中的用户调度RBG4、RBG5和RBG6。
302、检测子资源块组中调度的用户数量。
步骤302中,网络设备检测X个子资源块组中,各个子资源块组中调度的用户数量。网络设备基于X个子资源块组中各个子资源块组中调度的用户数量,确定各个子资源块组使用的波束成型权值计算方法。
具体的,当子资源块组中调度的一个用户时,该子资源块调度的是单用户。当子资源块组中调度的是多个用户时,该子资源块组调度的是多用户(或者称为:该子资源块组中多用户复用;又或者称为:该子资源块组调度复用的多个用户)。
当子资源块组调度的是多用户(multi user,MU),则进入步骤304。当子资源块组调度的是单用户(single user,SU),则进入步骤303。
303、当子资源块组中调度的是单用户,则确定子资源块组使用NEBF。
步骤303中,当网络设备检测该子资源块组中调度的是单用户时,则确定该子资源块组使用NEBF获取该子资源块组对应的波束成型权值。本申请实施例中,使用NEBF获取该子资源块组对应的波束成型权值又称为使用NEBF计算该子资源块组对应的波束成型权值。
本申请实施例中将使用NEBF计算波束成型权值的RBG称为NEBF集合,其中,NEBF集合又称为NEBF RBG,NEBF RBG中包括一个或多个子资源块组,NEBF RBG中的各个子资源块组使用NEBF计算波束成型权值。
网络设备将调度的是单用户的子资源块组划分为NEBF集合(NEBF RBG)。网络设备确定该子资源块组使用NEBF后,将该处理方式(使用NEBF计算该子资源块的波束成型权值)通过媒体接入控制(media access control,MAC)层(MAC层又称为L2层)下发至物理层(物理层又称为L1层)。
当子资源块组中调度的是单用户,则确定子资源块组使用NEBF,并进入步骤307。在步骤307中,使用NEBF获取该子资源块组的波束成型权值。具体的使用NEBF获取波束成型权值的方法,请参阅前述实施例,此处不作赘述。
304、当子资源块组中调度的是多用户,则检测子资源块组是否满足第一预设条件。
步骤304中,当网络设备检测该子资源块组中调度的是多用户时,则网络设备进一步检测子资源块组是否满足第一预设条件。
第一预设条件包括以下一项或多项:
(A)、子资源块组中多用户的平均调制与编码策略(modulation and coding scheme,MCS)小于第一门限。
(B)、第一信干噪比与第二信干噪比的差值小于第二门限,其中,第一信干噪比为根据子资源块组的第一权值功率计算得到的信干噪比,第二信干噪比为子资源块组的第二功率计算得到的信干噪比,第一权值功率为子资源块组使用NEBF计算的权值功率,第二权值功率为子资源块组使用PEBF计算的权值功率。
(C)、子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
下面分别进行说明:
(A)、假设第j个RBG中调度的用户个数为N j,该用户指的是RBG中MU配对用户, 该配对用户复用相同的频域资源进行数据传输。第j个RBG中第i个用户的MCS为MCS i,j,则第j个RBG中多用户的平均MCS可以根据下式计算得到:
Figure PCTCN2022131645-appb-000080
其中,MCS average,j为第j个RBG中多用户的平均MCS。
当MCS average,j小于第一门限(Thr1,本申请实施例中将第一门限称为Thr1),则该子资源块组(第j个RBG)满足第一预设条件,进入步骤305。当MCS average,j大于或等于第一门限,则不满足第一预设条件,进入步骤306。即:MCS average,j<Thr1,则该RBG使用NEBF计算波束成型权值;MCS average,j≥Thr1,则该RBG使用PEBF计算波束成型权值。
(B)、首先,网络设备使用NEBF计算该子资源块组的权值功率,得到的权值功率称为第一权值功率;网络设备使用PEBF计算该子资源块组的权值功率,得到的权值功率称为第二权值功率。其次,网络设备根据第一权值功率计算信干噪比(signal to interference plus noise ratio,SINR),得到的信干噪比称为第一信干噪比;网络设备根据第二权值功率计算信干噪比,得到的信干噪比称为第二信干噪比。再次,网络设备检测第一信干噪比与第二信干噪比的差值(本申请实施例中该差值称为ΔSINR average)是否小于第二门限(本申请实施例中该第二门限称为Thr2),若小于则满足第一预设条件,进入步骤305;若大于或等于第二门限,则不满足第一预设条件,进入步骤306。即,当ΔSINR average<Thr2,则该RBG使用NEBF计算波束成型权值;当ΔSINR average≥Thr2,则该RBG使用PEBF计算波束成型权值。
(C)、子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。信道相关性与权值相关性可以使用相关性度量(normalized mean square prediction error,NMSE)表示,也可以使用归一化均方误差表示,此处不做限制。
本申请实施例中,将该子资源块组中各个用户之间的信道相关性或者权值相关性称为ΔCorr average,将第三门限称为Thr3。
当ΔCorr average小于第三门限,则该子资源块组(第j个RBG)满足第一预设条件,进入步骤305。当ΔCorr average大于或等于第三门限,则不满足第一预设条件,进入步骤306。即,当ΔCorr average<Thr3,则该RBG使用NEBF计算波束成型权值;当ΔCorr average≥Thr3,则该RBG使用PEBF计算波束成型权值。
可以理解的是,上述第一预设条件(A、B或C)中,任意满足其中的一项或多项视为满足第一预设条件。
305、子资源块组满足第一预设条件,则确定子资源块组使用NEBF。
步骤305中,当子资源块组满足第一预设条件,则确定子资源块组使用NEBF计算该子资源块组的波束成型权值。进入步骤307,使用NEBF计算该子资源块组的波束成型权值。
306、子资源块组不满足第一预设条件,则确定子资源块组使用PEBF。
步骤306中,当子资源块组不满足第一预设条件,则确定子资源块组使用PEBF计算该子资源块组的波束成型权值。进入步骤307,使用PEBF获取该子资源块组的波束成型权 值。本申请实施例中,使用PEBF获取该子资源块组对应的波束成型权值又称为使用PEBF计算该子资源块组对应的波束成型权值。
307、根据每个子资源块组对应的波束成型权值计算方法获得每个子资源块组对应的波束成型权值。
下面分别介绍使用NEBF与PEBF计算子资源块组对应的波束成型权值。具体的计算方法如下,以单扇区场景为例进行说明:
(AA)、NEBF:
首先,网络设备确定NEBF集合,NEBF集合包括包括一个或多个子资源块组,NEBF集合中的子资源块组使用NEBF计算波束成型权值。换言之,网络设备中所有使用NEBF计算波束成型权值的子资源块组称为NEBF集合。在本申请实施例中,NEBF集合又称为NEBF RBG。
例如:网络设备所确定的子资源块组包括:第一子资源块组、第二子资源块组、第三子资源块组和第四子资源块组。通过前述方法,网络设备确定使用NEBF计算波束成型权值的子资源块组(即NEBF集合)包括:第一子资源块组和第二子资源块组。
其次,网络设备使用NEBF计算NEBF集合的平均发射功率,即使用NEBF计算NEBF RBG中各个RBG的平均发射功率。例如:使用NEBF计算第一子资源块组和第二子资源块组的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000081
其中,E NEBF,aver为NEBF集合的平均发射功率;N NEBF为NEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据PA接口的索引值在TDD接口与索引表中查找的线性值;p j,l为当前TTI的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比。
再次,使用NEBF计算NEBF集合在第n个天线的权值功率,其中,n为大于或等于0的整数。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000082
其中,
Figure PCTCN2022131645-appb-000083
为NEBF集合在第n个天线的权值功率,M为网络设备中物理天线数,n=0~M-1;N NEBF为NEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为PA接口的索引值在TDD接口与索引表中查找的线性值;
Figure PCTCN2022131645-appb-000084
为第j个RBG中第l层第n个天线的功率值。
再次,网络设备根据NEBF集合的平均发射功率E NEBF,aver,和NEBF集合在第n个天线的权值功率
Figure PCTCN2022131645-appb-000085
确定NEBF集合在第n个天线上的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000086
其中,
Figure PCTCN2022131645-appb-000087
为NEBF集合在第n个天线上的平均发射功率,E NEBF,aver为NEBF集合的 平均发射功率,
Figure PCTCN2022131645-appb-000088
为NEBF集合在第n个天线的权值功率。
最后,基于NEBF集合在第n个天线上的平均发射功率
Figure PCTCN2022131645-appb-000089
对第n个天线上的权值进行归一化处理,得到波束成型权值。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000090
其中,
Figure PCTCN2022131645-appb-000091
为第j个RBG中第l层第n个天线的波束成型权值;
Figure PCTCN2022131645-appb-000092
为第j个RBG中第l层的权值;
Figure PCTCN2022131645-appb-000093
为NEBF集合在第n个天线上的平均发射功率;τ NEBF为基于NEBF的权值功率调整因子,τ NEBF可以根据全功率带宽(full-power bandwidth,FPBW)功率计算,τ NEBF也可以根据τ PEBF计算得到,例如:
Figure PCTCN2022131645-appb-000094
即τ NEBF可以大于1。
(BB)、PEBF:
首先,网络设备确定PEBF集合,PEBF集合包括包括一个或多个子资源块组,PEBF集合中的子资源块组使用PEBF计算波束成型权值。换言之,网络设备中所有使用PEBF计算波束成型权值的子资源块组称为PEBF集合。在本申请实施例中,PEBF集合又称为PEBF RBG。
例如:网络设备所确定的子资源块组包括:第一子资源块组、第二子资源块组、第三子资源块组和第四子资源块组。通过前述方法,网络设备确定使用PEBF计算波束成型权值的子资源块组(即PEBF集合)包括:第一子资源块组和第二子资源块组。
其次,网络设备使用PEBF计算PEBF集合的平均发射功率,即使用PEBF计算PEBF RBG中各个RBG的平均发射功率。例如:使用PEBF计算第一子资源块组和第二子资源块组的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000095
其中,E PEBF,aver为PEBF集合的平均发射功率;N PEBF为PEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据PA接口的索引值在TDD接口与索引表中查找的线性值;p j,l为当前TTI的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比。
再次,使用PEBF计算PEBF集合在第n个天线的权值功率,其中,n为大于或等于0的整数。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000096
其中,
Figure PCTCN2022131645-appb-000097
为PEBF集合在第n个天线的权值功率,M为网络设备中物理天线数,n=;N NEBF为PEBF RBG中包括的RBG数量;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为PA接口的索引值在TDD接口与索引表中查找的线性值;
Figure PCTCN2022131645-appb-000098
为第j个RBG中第l层第n个天线的功率值。
再次,网络设备根据PEBF集合的平均发射功率E PEBF,aver,和PEBF集合在第n个天线的权值功率
Figure PCTCN2022131645-appb-000099
确定PEBF集合在第n个天线上的平均发射功率。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000100
其中,
Figure PCTCN2022131645-appb-000101
为PEBF集合在第n个天线上的平均发射功率,E PEBF,aver为PEBF集合的平均发射功率,
Figure PCTCN2022131645-appb-000102
为PEBF集合在第n个天线的权值功率。
最后,基于PEBF集合在第n个天线上的平均发射功率
Figure PCTCN2022131645-appb-000103
对第n个天线上的权值进行归一化处理,得到波束成型权值。具体的,可以采用以下方法计算:
Figure PCTCN2022131645-appb-000104
其中,
Figure PCTCN2022131645-appb-000105
为第j个RBG中第l层第n个天线的波束成型权值,
Figure PCTCN2022131645-appb-000106
为第j个RBG中第l层的权值,max
Figure PCTCN2022131645-appb-000107
为PEBF集合在第n个天线上的平均发射功率的最大值,τ PEBF为基于PEBF的权值功率调整因子,
Figure PCTCN2022131645-appb-000108
Figure PCTCN2022131645-appb-000109
其中,n为大于或等于0的整数,n=0,1,…,M-1,N BfRbgNum为该网络设备中使用PEBF计算权值的RBG的数量;M为网络设备中物理天线数;L layer,j为第j个RBG上的配对层数,配对层数指的是一个RBG内多个用户发送的总的数据流数;PA j,l为第j个RBG中某个用户被配置的功率因子,PA j,l的值为根据功率分配(power allocation,PA)接口的索引值在时分双工(time division duplexing,TDD)接口与索引表中查找的线性值;p j,l为当前时间间隔(transmission time interval,TTI)的第j个RBG中的第l流权值的功率比例系数,该功率比例系数指的是第l层的功率占所有层总功率的百分比;
Figure PCTCN2022131645-appb-000110
为第j个RBG中第l层第n个天线的功率值。
需要说明的是,当子资源组中调度的用户包括对权值方向改变敏感的用户时,不计算对权值方向改变敏感的用户在子资源块组的波束成型权值。该对权值方向改变敏感的用户仍然使用原本的权值对数据进行加权。该对权值方向改变敏感的用户可以理解为当权值方向发生改变时,用户性能会明显降低的用户。例如:当子资源组中调度的用户包括传输模式4(TM4)用户时,不计算TM4用户在子资源块组的波束成型权值。该TM4用户仍然沿用原有的权值对数据进行加权处理。
可以理解的是,对于其他场景例如:小区劈裂扇区场景,与上述的单扇区场景中获取子资源块组的波束成型权值类似,此处不作赘述。
308、基于波束成型权值对数据进行加权。
309、发送加权后的数据。
本申请实施例中,每个子资源块组自适应的确定对应的波束成型权值计算方法,并根据所确定的波束成型计算方法获取对应的波束成型权值,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。在一种可能的仿真实验结果中,本申请实施例提出的波束成型权值计算方法(称为AEBF)相较于PEBF,平均功率利用率与小区平均吞吐量均有较大增益,例如AEBF相较 于PEBF,平均功率利用率的增益达6%;APBF相较于PEBF,小区平均吞吐量的增益达5%。
接下来,在前述实施例的基础上介绍本申请实施例提出的又一种波束成型权值计算方法。介绍根据每个子资源块组采用PEBF计算的权值功率的信号干扰噪声比与该子资源块组采用NEBF计算的权值功率的信号干扰噪声比,并根据该信号干扰噪声比的差值确定所有的子资源块组对应的波束成型权值计算方法。请参阅图4,图4为本申请实施例提出的一种波束成型权值计算方法的实施例示意图。本申请实施例提出的一种波束成型权值计算方法包括:
401、根据调度的资源块组,确定X个子资源块组。
步骤401与前述步骤301一致,此处不做赘述。
402、确定子资源块组的第一权值功率和第二权值功率。
步骤402中,网络设备确定子资源块组的第一权值功率和第二权值功率,其中,第一权值功率为网络设备使用PEBF计算该子资源块组得到的权值功率,第二权值功率为网络设备使用NEBF计算该子资源块组得到的权值功率。具体计算方法请参阅前述实施例,此处不作赘述。
403、根据第一权值功率和第二权值功率计算该子资源块组中各个用户的信干噪比差之和。
步骤403中,当确定子资源块组的第一权值功率和第二权值功率后,根据该第一权值功率和第二权值功率计算每一行天线的功率,具体可以采用如下方法计算每一行天线的功率:
P=P n=[P 0 P 1…P M-1],其中,P n为第n个天线的功率,n=0,1,…,M-1,M为大于1的整数,M为网络设备的天线端口数。
可选的,可以对第一权值功率和第二权值功率分别增强迫零(enhanced zero forcing,EZF)处理后,根据增强迫零处理后的第一权值功率与增强迫零处理后的第二权值功率计算每一行天线的功率。
其次,根据每一行天线的功率中所有天线的功率之和与每一行天线的功率中的最大功率,计算功率利用率,具体可以采用如下方法计算功率利用率:
Figure PCTCN2022131645-appb-000111
其中,γ PEBF为功率利用率,max(P n)为每一行天线中天线的最大功率,
Figure PCTCN2022131645-appb-000112
为每一行天线的功率中所有天线的功率之和。
再次,根据每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性,具体可以采用如下方法计算每一行天线的功率的功率相关性:
Figure PCTCN2022131645-appb-000113
其中,P REF=[1,1,…1] M×1,P REF为满功率的多用户权值矢量,ρ P,NEBF为该功率相关性。
再次,根据上述功率利用率和功率相关性,计算子资源块组中第l个用户的信干噪比差,l为正整数,具体可以采用如下方法计算子资源块组中第l个用户的信干噪比差:
Figure PCTCN2022131645-appb-000114
其中,β interf,nebf为干扰调整参数,
Figure PCTCN2022131645-appb-000115
ρ P,NEBF为第一权值功率和第二权值功率的权值相关性;p k表示第k个流分到的功率,RB Num为子资源块组的数目,RB Num=X,CQI k为第k个流的信道质量指示(channel quality indication,CQI)信息,SINR l,Delta为子资源块组中第l个用户的信干噪比差,该信干噪比差为该用户的第一权值功率计算的信干噪比与该用户的第二权值功率计算的信干噪比的差值。
最后,根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和,具体的,可以采用以下方法计算X个子资源块组的信干噪比差之和:
Figure PCTCN2022131645-appb-000116
其中,
Figure PCTCN2022131645-appb-000117
为该子资源块组中各个用户的信干噪比差之和,SINR Delta为X个子资源块组的信干噪比差之和。
当网络设备计算得到X个子资源块组的信干噪比差之和后,基于该X个子资源块组的信干噪比差之和,确定该X个子资源块组所使用的波束成型计算方法。
一种可能的实现方式中,如步骤404-405,根据该X个子资源块组的信干噪比差之和与阈值0之间的关系,确定该X个子资源块组所使用的波束成型计算方法。
可以理解的是,该阈值除了0以外,也可以是其它数值,此处不作限制。
404、当X个子资源块组的信干噪比差之和大于0,则确定该X个子资源块组使用PEBF。
405、当X个子资源块组的信干噪比差之和小于或等于0,则确定该X个子资源块组使用NEBF。
步骤404或405后,进入步骤406。
406、根据每个子资源块组对应的波束成型权值计算方法获得每个子资源块组对应的波束成型权值。
步骤406与前述步骤307类似,此处不作赘述。
407、基于波束成型权值对数据进行加权。
408、发送加权后的数据。
本申请实施例中,多个子资源块组通过计算PEBF与NEBF的信道容量,自适应的确定对应的波束成型权值计算方法,并根据所确定的波束成型计算方法获取对应的波束成型权值,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。由于图4示意的波束成型权值计算方法是基于SINR进行判决采用PEBF或者NEBF,因此,对于部分高阶调制场景中的子资源块组同样可以采用NEBF计算波束成型权值,有效提升了天线功率。在一种可能的仿真实验结果中, 本申请实施例提出的波束成型权值计算方法(即AEBF)相较于PEBF,平均功率利用率与小区的平均吞吐量均有较大增益,例如AEBF相较于PEBF,平均功率利用率的增益达10%;APBF相较于PEBF,小区平均吞吐量的增益达7.6%。
在前述实施例的基础上,不同的子资源块组的功率可以实现功率互助,以实现同一个天线中该多个子资源块组的功率之和达到该天线的最大功率。下面结合附图进行说明。请参阅图5,图5为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图。以网络设备根据调度的资源块组,确定的X个子资源块组包括第一子资源块组和第二子资源块组为例进行说明。可以理解的是,图5示意的方法还可以适用于更多的子资源块组的场景,此处不作赘述。
首先,网络设备使用PEBF计算得到第一子资源块组的归一化功率,该功率称为第一子资源块组的初始功率。网络设备使用NEBF计算得到第二子资源块组的归一化功率,该功率称为第二子资源块组的初始功率。
其次,网络设备确定每个天线的最大功率,以图5为例进行说明,则该同一天线的最大功率为2。
再次,为了提高网络设备的功率利用率,以同一天线上仅用于收发第一子资源块组的数据和第二子资源块组的数据为例,则第一子资源块组的功率和第二子资源块组的功率之和需要等于该同一天线的最大功率。
结合图5,以网络设备包括天线1-天线6为例,每一个天线的最大功率为2,并且每一个天线中对应每个子资源块组的功率相等(每个子资源块组在每一个天线中的最大功率为1)。第一子资源块组的功率利用率在天线1-天线6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。
那么使用PEBF计算第一子资源块组在天线1-天线6中的初始功率分别为1、1、1、α 0、α 1、α 2。则天线1-天线6中关于第一子资源块组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
使用NEBF计算第二子资源块组在天线1-天线6中的初始功率分别为1、1、1、1、1、1。
为了进一步提升网络设备的功率利用率,上述剩余功率可以共享给第二子资源块组使用,使得同一天线中第一子资源块组的功率和第二子资源块组的功率之和等于该同一天线的最大功率。则天线1-天线6中关于第二子资源块组的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,网络设备中同一个天线内多个子资源块组可以实现功率共享,使得在同一天线内的多个子资源块组的功率之和达到该天线的最大功率,提升网络设备中天线的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。由于图5示意的波束成型权值计算方法是基于SINR进行判决采用PEBF或者NEBF,因此,对于部分高阶调制场景中的子资源块组同样可以采用NEBF计算波束成型权值,有效提升了天线功率。在一种可能的仿真实 验结果中,本申请实施例提出的波束成型权值计算方法(即AEBF)相较于PEBF,平均功率利用率与小区的平均吞吐量均有较大增益,例如AEBF相较于PEBF,平均功率利用率的增益达14.29%;APBF相较于PEBF,小区平均吞吐量的增益达8.56%。
在前述实施例的基础上,同一个子资源块组内不同用户的功率在同一天线内可以实现功率互助,以实现同一个子资源块组中该多个用户的功率之和达到该天线的最大功率。下面结合附图进行说明。请参阅图6,图6为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图。以子资源块组包括第一用户和第二用户为例进行说明,第一用户为对权值方向改变敏感的用户,例如是TM4用户;第二用户为对权值方向改变不敏感的用户,例如是TM9用户。
首先,网络设备使用PEBF或者NEBF计算得到子资源块组的归一化功率,进而得到该子资源块组中不同用户在同一天线中不同层的功率值。结合图6示意的场景,以网络设备包括层1-层6为例(该层指的是物理层),每一个层的最大功率为2,并且每一个层中对应每个用户的功率相等(每一个层中每个用户的最大功率为1)。
第一用户的功率利用率在层1-层6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。那么使第一用户在层1-层6中的初始功率分别为1、1、1、α 0、α 1、α 2。则层1-层6中关于第一用户的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
由于第一用户为对权值方向改变敏感的用户,而第一用户具有以下特征:利用导频的信道估计值需要与数据的信道估计值一致,因此第一用户的功率无需进行调整。第一用户在各个天线中同一层的剩余功率可以共享给该同一天线中同一层的第二用户,以实现同一天线中第一用户的功率与第二用户的功率之和等于该同一天线的最大功率。
具体的,上述层1-层6中关于第一用户的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2可以共享给第二用户使用,使得同一天线中第一用户的功率与第二用户的功率之和等于该同一天线的最大功率。则层1-层6中关于第二用户的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,网络设备的同一天线中同一个层内多个用户可以实现功率共享,使得同一天线中第一用户的功率与第二用户的功率之和等于同一天线的最大功率,提升网络设备的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。由于同一个子资源块组的用户之间可以实现功率共享,因此可以提升网络设备中天线的功率效率。在一种可能的仿真实验结果中,本申请实施例提出的波束成型权值计算方法(即AEBF)相较于PEBF,平均功率利用率与小区的平均吞吐量均有较大增益,例如AEBF相较于PEBF,平均功率利用率的增益达14.29%;APBF相较于PEBF,小区平均吞吐量的增益达9.1%。
在前述实施例的基础上,同一个子资源块组内对权值方向改变敏感的用户的功率可以实现功率抬升,功率抬升指的是提升对权值方向改变敏感的用户的功率上限。根据用户的 不同调制方式动态调整各个用户的功率,以提升网络设备的功率利用率,提升网络设备的数据吞吐量。下面结合附图进行说明。请参阅图7,图7为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图。以子资源块组包括第一用户和第二用户为例进行说明,第一用户为对权值方向改变敏感的用户,例如是TM4用户;第二用户为对权值方向改变不敏感的用户,例如是TM9用户。
首先,网络设备使用PEBF或者NEBF计算得到子资源块组的归一化功率,进而得到该子资源块组中不同用户在同一天线中不同层的功率值。结合图7示意的场景,以网络设备包括层1-层6为例(该层指的是物理层),每一个层的最大功率为2。对每一个层中的用户进行分组,具体分为第一用户分组和第二用户分组,其中,第一用户分组包括一个或多个第一用户,第二用户分组包括一个或多个第一用户和一个或多个第二用户,第一用户分组中的第一用户与第二用户分组中的第一用户不相同。每一个层中第一用户分组的最大功率与第二用户分组的最大功率相同,均为1。
第一用户分组的功率利用率在层1-层6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。那么使第一用户分组在层1-层6中的初始功率分别为1、1、1、α 0、α 1、α 2。则层1-层6中关于第一用户分组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
由于第一用户为对权值方向改变敏感的用户,而第一用户具有以下特征:利用导频的信道估计值需要与数据的信道估计值一致,因此需要考虑不同调制方式对第一用户的影响。针对不同的调制方式,第一用户的功率的抬升上限不同。下面结合表1说明一种可能的实现方式:
表1
调制方式 功率的抬升上限
正交相移键控QPSK 一倍的最大功率门限值
16正交幅度调制QAM 二倍的最大功率门限值
64QAM或256QAM 不可抬升
可以理解的是,针对不同调制方法,第一用户的功率的抬升上限可以有其它的实现方式。例如:当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为1.5倍的最大功率门限值。当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为1.8倍的所述最大功率门限值,此处不作限定。
该最大功率门限值为预设的功率门限值,该最大功率门限值与调制方式对应。功率超过该最大功率门限值时,容易导致该调制方式所对应的星座点的解调性能降低。
在一种可能的实现方式中,同一子资源块组中第一用户(例如是TM4用户)的功率抬升,而另外的第二用户(例如是TM9用户)的功率上限下降,以保持同一子资源块组中用户的总功率(或者各个用户的功率之和)不变。
在一种可能的实现方式中,以同一子资源块组中的第一用户包括第一用户A、第一用户B和第一用户C为例进行说明。第一用户中的部分用户(例如第一用户A)的功率抬升,而该第一用户中的其它用户功率上限下降(例如:第一用户B的功率上限下降,或者第一 用户C的功率上限下降,又或者第一用户B和第一用户C的功率上限一同下降),以保持同一子资源块组中用户的总功率(或者各个用户的功率之和)不变。
结合图7,上述层1-层6中第一用户分组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2可以共享给第二用户分组中的第一用户使用,实现第二用户分组中第一用户的功率抬升。同一天线中抬升后的第一用户的功率与第二用户的功率之和,与抬升前的第一用户的功率与第二用户的功率之和相等,等于该同一天线的最大功率。则层1-层6中关于第二用户分组的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,同一个子资源块组内对权值方向改变敏感的用户的功率可以实现功率抬升,功率抬升指的是提升对权值方向改变敏感的用户的功率上限。根据用户的不同调制方式动态调整各个用户的功率,以提升网络设备的功率利用率,提升网络设备的数据吞吐量。提升网络设备的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。在一种可能的仿真实验结果中,本申请实施例提出的波束成型权值计算方法(即AEBF)相较于PEBF,平均功率利用率与小区的平均吞吐量均有较大增益,例如AEBF相较于PEBF,平均功率利用率的增益达14.29%;APBF相较于PEBF,小区平均吞吐量的增益达9.28%。
在前述实施例的基础上,同一个子资源块组内对权值方向改变敏感的用户的功率可以实现功率抬升,对权值方向改变不敏感的用户的功率也可以实现功率抬升,功率抬升指的是提升对权值方向改变敏感的用户的功率上限。根据用户的不同调制方式动态调整各个用户的功率,以提升网络设备的功率利用率,提升网络设备的数据吞吐量。下面结合附图进行说明。请参阅图8,图8为本申请实施例提出的波束成型权值计算方法所涉及的功率示意图。以子资源块组包括第一用户和第二用户为例进行说明,第一用户为对权值方向改变敏感的用户,例如是TM4用户;第二用户为对权值方向改变不敏感的用户,例如是TM9用户。
首先,网络设备使用PEBF或者NEBF计算得到子资源块组的归一化功率,进而得到该子资源块组中不同用户在同一天线中不同层的功率值。结合图8示意的场景,以网络设备包括层1-层6为例(该层指的是物理层),每一个层的最大功率为2。对每一个层中的用户进行分组,具体分为第三用户分组和第四用户分组,其中,第三用户分组包括一个或多个第一用户和一个或多个第二用户,第四用户分组包括一个或多个第一用户和一个或多个第二用户,第三用户分组中的第一用户与第四用户分组中的第一用户不相同,第三用户分组中的第二用户与第四用户分组中的第二用户不相同。每一个层中第三用户分组的最大功率与第四用户分组的最大功率相同,均为1。
第三用户分组的功率利用率在层1-层6的功率利用率分别为:1、1、1、α 0、α 1、α 2,其中,α 0、α 1、α 2分别为大于0小于或等于1的实数。那么使第三用户分组在层1-层6中的初始功率分别为1、1、1、α 0、α 1、α 2。则层1-层6中关于第三用户分组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2
由于第一用户为对权值方向改变敏感的用户,而第一用户具有以下特征:利用导频的信道估计值需要与数据的信道估计值一致,因此需要考虑不同调制方式对第一用户的影响。针对不同的调制方式,第一用户的功率的抬升上限不同。
而对于第二用户,同样需要考虑不同调制方式对第二用户的影响,针对不同的调整方式,第二用户的功率的抬升上限不同。下面结合表2说明一种可能的实现方式:
表2
调制方式 功率的抬升上限
正交相移键控QPSK 一倍的最大功率门限值
16正交幅度调制QAM 二倍的最大功率门限值
64QAM或256QAM 不可抬升
可以理解的是,针对不同调制方法,第二用户的功率的抬升上限可以有其它的实现方式。例如:当所述第二用户的调制方式为正交相移键控QPSK时,所述第二用户的功率的抬升上限为1.5倍的最大功率门限值。当所述第二用户的调制方式为16正交幅度调制QAM时,所述第二用户的功率的抬升上限为1.8倍的所述最大功率门限值,此处不作限定。
在一种可能的实现方式中,同一子资源块组中第二用户(例如是TM4用户)的功率抬升,而另外的第一用户(例如是TM9用户)的功率上限下降,以保持同一子资源块组中用户的总功率(或者各个用户的功率之和)不变。
在一种可能的实现方式中,以同一子资源块组中的第二用户包括第二用户A、第二用户B和第二用户C为例进行说明。第二用户中的部分用户(例如第二用户A)的功率抬升,而该第二用户中的其它用户功率上限下降(例如:第二用户B的功率上限下降,或者第二用户C的功率上限下降,又或者第二用户B和第二用户C的功率上限一同下降),以保持同一子资源块组中用户的总功率(或者各个用户的功率之和)不变。
结合图8,上述层1-层6中第三用户分组的剩余功率分别为:0、0、0、1-α 0、1-α 1、1-α 2可以共享给第四用户分组中的第一用户和/或第二用户使用,实现第四用户分组中第一用户和/或第二用户的功率抬升。同一天线中抬升后的第一用户和/或第二用户的功率与其它用户的功率之和,与抬升前的第一用户和/或第二用户的功率与其它用户的功率之和相等,等于该同一天线的最大功率。则层1-层6中关于第四用户分组的功率分别为:1、1、1、2-α 0、2-α 1、2-α 2
本申请实施例中,同一个子资源块组内对权值方向改变敏感的用户的功率可以实现功率抬升,对权值方向改变不敏感的用户的功率也可以实现功率抬升,功率抬升指的是提升对权值方向改变敏感的用户的功率上限。根据用户的不同调制方式动态调整各个用户的功率,以提升网络设备的功率利用率,提升网络设备的数据吞吐量。提升网络设备的功率利用率,从而实现性能的最优化。有效提升网络设备中下行数据发送的功率利用率,有效提升小区的频谱效率,提升小区的平均吞吐量。在一种可能的仿真实验结果中,本申请实施例提出的波束成型权值计算方法(即AEBF)相较于PEBF,平均功率利用率与小区的平均吞吐量均有较大增益,例如AEBF相较于PEBF,平均功率利用率的增益达14.29%;APBF相较于PEBF,小区平均吞吐量的增益达10.18%。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对编码设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面对本申请中的通信装置进行详细描述,请参阅图9,图9为本申请实施例中通信装置的一种实施例示意图。通信装置900包括:
处理模块901,用于根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
所述处理模块901,还用于基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
所述处理模块901,还用于根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
所述处理模块901,还用于基于所述波束成型权值对数据进行加权;
收发模块902,用于发送加权后的所述数据。
在一种可能的实现方式中,所述处理模块901,还用于检测所述子资源块组中调度的用户数量;
所述处理模块901,还用于当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
所述处理模块901,还用于当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
所述第一预设条件包括以下一项或多项:
所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
在一种可能的实现方式中,所述处理模块901,还用于当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
在一种可能的实现方式中,所述处理模块901,还用于使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
所述处理模块901,还用于使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理模块901,还用于根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
所述处理模块901,还用于基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理模块901,还用于使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
所述处理模块901,还用于使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理模块901,还用于根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
所述处理模块901,还用于基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理模块901,还用于确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
所述处理模块901,还用于确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
所述处理模块901,还用于根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
所述处理模块901,还用于根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
所述处理模块901,还用于当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
所述处理模块901,还用于当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
在一种可能的实现方式中,所述处理模块901,还用于对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
所述处理模块901,还用于根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
所述处理模块901,还用于根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
所述处理模块901,还用于根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;
所述处理模块901,还用于计算所述子资源块组中各个用户的信干噪比差之和。
在一种可能的实现方式中,所述处理模块901,还用于使用PEBF计算第一子资源块组的初始功率;
所述处理模块901,还用于使用NEBF计算第二子资源块组的初始功率;
所述处理模块901,还用于根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
所述处理模块901,还用于根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
在一种可能的实现方式中,当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
本申请实施例还提供了一种处理装置,请参阅图10,图10为本申请实施例提出的一种处理装置示意图。处理装置包括处理器1001和接口1002;该处理器1001,用于执行上 述任一方法实施例的波束成型权值计算方法。
处理器1001,用于根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
所述处理器1001,还用于基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
所述处理器1001,还用于根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
所述处理器1001,还用于基于所述波束成型权值对数据进行加权;
接口1002,用于发送加权后的所述数据。
在一种可能的实现方式中,所述处理器1001,还用于检测所述子资源块组中调度的用户数量;
所述处理器1001,还用于当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
所述处理器1001,还用于当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
所述第一预设条件包括以下一项或多项:
所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
在一种可能的实现方式中,所述处理器1001,还用于当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
在一种可能的实现方式中,所述处理器1001,还用于使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
所述处理器1001,还用于使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理器1001,还用于根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
所述处理器1001,还用于基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对 应的所述波束成型权值。
在一种可能的实现方式中,所述处理器1001,还用于使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
所述处理器1001,还用于使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
所述处理器1001,还用于根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
所述处理器1001,还用于基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,所述处理器1001,还用于确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
所述处理器1001,还用于确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
所述处理器1001,还用于根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
所述处理器1001,还用于根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
所述处理器1001,还用于当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
所述处理器1001,还用于当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
在一种可能的实现方式中,所述处理器1001,还用于对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
所述处理器1001,还用于根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
所述处理器1001,还用于根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
所述处理器1001,还用于根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;
所述处理器1001,还用于计算所述子资源块组中各个用户的信干噪比差之和。
在一种可能的实现方式中,所述处理器1001,还用于使用PEBF计算第一子资源块组的初始功率;
所述处理器1001,还用于使用NEBF计算第二子资源块组的初始功率;
所述处理器1001,还用于根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
所述处理器1001,还用于根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
在一种可能的实现方式中,当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
应理解,上述处理装置可以是一个芯片,该处理器1001可以通过硬件实现也可以通过软件来实现,当通过硬件实现时,该处理器1001可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器1001可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器1001中,可以位于该处理器1001之外,独立存在。
其中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括ASIC(application-specific integrated circuit,专用集成电路),或者PLD(programmable logic device,可编程逻辑器件);其中,PLD又可包括FPGA(field programmable gate array,现场可编程门阵列)、CPLD(complex programmable logic device,复杂可编程逻辑器件)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为SoPC(system on a programmable chip,可编程片上系统)。
本申请实施例还提供的一种计算机可读存储介质,包括指令,当其在计算机上运行时, 使得计算机控制编码端执行如前述方法实施例所示任一项实现方式,包括:
步骤A,根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
步骤B,基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
步骤C,根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
步骤D,基于所述波束成型权值对数据进行加权;
步骤E,发送加权后的所述数据。
在一种可能的实现方式中,步骤,检测所述子资源块组中调度的用户数量;
步骤F,当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
步骤G,当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
所述第一预设条件包括以下一项或多项:
所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
在一种可能的实现方式中,步骤H,当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
在一种可能的实现方式中,步骤I,使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
步骤J,使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
步骤K,根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
步骤L,基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,步骤M,使用PEBF计算PEBF集合的平均发射功率,其中, PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
步骤N,使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
步骤O,根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
步骤P,基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
在一种可能的实现方式中,步骤Q,确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
步骤R,确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
步骤S,根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
步骤T,根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
步骤U,当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
步骤V,当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
在一种可能的实现方式中,步骤W,对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
步骤X,根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
步骤Y,根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
步骤Z,根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;
步骤AA,计算所述子资源块组中各个用户的信干噪比差之和。
在一种可能的实现方式中,步骤AB,使用PEBF计算第一子资源块组的初始功率;
步骤AC,使用NEBF计算第二子资源块组的初始功率;
步骤AD,根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一 子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
在一种可能的实现方式中,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
步骤AE,根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
在一种可能的实现方式中,当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
本申请实施例还提供的一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括处理器,处理器用于调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献 的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、网络装置、计算设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、网络装置、计算设备或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的网络装置、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的一个或多个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件 可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种波束成型权值计算方法,其特征在于,包括:
    根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
    基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
    根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
    基于所述波束成型权值对数据进行加权;
    发送加权后的所述数据。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,包括:
    检测所述子资源块组中调度的用户数量;
    当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
    当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
    所述第一预设条件包括以下一项或多项:
    所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
    或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
    或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述子资源块组对应的所述波束成型权值计算方法计算所述波束成型权值,包括:
    使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
    使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
    根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
    基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述子资源块组对应的所述波束成型权值计算方法计算所述波束成型权值,包括:
    使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
    使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
    根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
    基于所述PEBF集合在所述第n个天线上的平均发射功率,对所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
  6. 根据权利要求1所述的方法,其特征在于,所述基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,包括:
    确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
    确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
    根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
    根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
    当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
    当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,包括:
    对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
    根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
    根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
    根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪 比差,l为正整数;
    计算所述子资源块组中各个用户的信干噪比差之和。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    使用PEBF计算第一子资源块组的初始功率;
    使用NEBF计算第二子资源块组的初始功率;
    根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
  9. 根据权利要求1-7中任一项所述的方法,其特征在于,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
    同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
  10. 根据权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
    根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
  11. 根据权利要求10所述的方法,其特征在于,根据所述第一用户的调制方式,提升所述第一用户的功率,包括:
    当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
    当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
    当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
  12. 一种通信装置,其特征在于,包括:
    处理模块,用于根据调度的资源块组,确定X个子资源块组,所述X个子资源块组中的1个子资源块组包含所述资源块组中部分资源块组,每个所述子资源块组中资源块组被用户全部占用,所述X为大于1的正整数;
    所述处理模块,还用于基于所述X个子资源块组,确定各个所述子资源块组使用的波束成型权值计算方法,其中,所述波束成型权值计算方法包括:归一化特征波束成型NEBF,或者,功率受限特征波束成型PEBF;
    所述处理模块,还用于根据每个所述子资源块组对应的所述波束成型权值计算方法获得每个所述子资源块组对应的波束成型权值;
    所述处理模块,还用于基于所述波束成型权值对数据进行加权;
    收发模块,用于发送加权后的所述数据。
  13. 根据权利要求12所述的通信装置,其特征在于,
    所述处理模块,还用于检测所述子资源块组中调度的用户数量;
    所述处理模块,还用于当所述子资源块组中调度的是单用户SU,则确定所述子资源块组使用NEBF;
    所述处理模块,还用于当所述子资源块组中调度的是多用户MU,则检测所述子资源块组是否满足第一预设条件,其中满足所述第一预设条件的所述子资源块组使用NEBF,不满足所述第一预设条件的所述子资源块组使用PEBF;
    所述第一预设条件包括以下一项或多项:
    所述子资源块组中多用户的平均调制与编码策略MCS小于第一门限,
    或者,第一信干噪比与第二信干噪比的差值小于第二门限,其中,所述第一信干噪比为根据所述子资源块组的第一权值功率计算得到的信干噪比,所述第二信干噪比为所述子资源块组的第二功率计算得到的信干噪比,所述第一权值功率为所述子资源块组使用NEBF计算的权值功率,所述第二权值功率为所述子资源块组使用PEBF计算的权值功率,
    或者,所述子资源块组中各个用户之间的信道相关性或者权值相关性小于第三门限。
  14. 根据权利要求13所述的通信装置,其特征在于,
    所述处理模块,还用于当所述子资源块组中调度的用户包括对权值方向改变敏感的用户时,不计算所述对权值方向改变敏感的用户在所述子资源块组的所述波束成型权值。
  15. 根据权利要求12-14中任一项所述的通信装置,其特征在于,
    所述处理模块,还用于使用NEBF计算NEBF集合的平均发射功率,其中,NEBF集合中包括一个或多个子资源块组,所述NEBF集合中的子资源块组使用NEBF计算所述波束成型权值;
    所述处理模块,还用于使用NEBF计算所述NEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
    所述处理模块,还用于根据所述NEBF集合的平均发射功率,和所述NEBF集合在所述第n个天线上的权值功率,确定所述NEBF集合在所述第n个天线上的平均发射功率;
    所述处理模块,还用于基于所述NEBF集合在所述第n个天线上的平均发射功率,对所述NEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
  16. 根据权利要求12-14中任一项所述的通信装置,其特征在于,
    所述处理模块,还用于使用PEBF计算PEBF集合的平均发射功率,其中,PEBF集合中包括一个或多个子资源块组,所述PEBF集合中的子资源块组使用PEBF计算所述波束成型权值;
    所述处理模块,还用于使用PEBF计算所述PEBF集合在第n个天线上的权值功率,n为大于或等于0的整数;
    所述处理模块,还用于根据所述PEBF集合的平均发射功率,和所述PEBF集合在所述第n个天线上的权值功率,确定所述PEBF集合在所述第n个天线上的平均发射功率;
    所述处理模块,还用于基于所述PEBF集合在所述第n个天线上的平均发射功率,对 所述PEBF集合中所述子资源块组对应的权值进行归一化处理,得到所述子资源块组对应的所述波束成型权值。
  17. 根据权利要求12所述的通信装置,其特征在于,
    所述处理模块,还用于确定所述子资源块组的第一权值功率,所述第一权值功率为所述子资源块组使用PEBF计算的权值功率;
    所述处理模块,还用于确定所述子资源块组的第二权值功率,所述第二权值功率为所述子资源块组使用NEBF计算的权值功率;
    所述处理模块,还用于根据所述第一权值功率和所述第二权值功率,计算所述子资源块组中各个用户的信干噪比差之和,其中,所述子资源块组中各个用户的信干噪比差为所述子资源块组中各个用户的所述第一权值功率计算的信干噪比与所述子资源块组中各个用户的所述第二权值功率计算的信干噪比的差值;
    所述处理模块,还用于根据所述子资源块组中各个用户的信干噪比差之和,确定所述X个子资源块组的信干噪比差之和;
    所述处理模块,还用于当所述X个子资源块组的信干噪比差之和大于0,则确定所述X个子资源块组使用的波束成型权值计算方法为PEBF;
    所述处理模块,还用于当所述X个子资源块组的信干噪比差之和小于或等于0,则确定所述X个子资源块组使用的波束成型权值计算方法为NEBF。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述处理模块,还用于对所述子资源块组的所述第一权值功率和所述第二权值功率进行增强迫零处理,并根据所述增强迫零处理后的第一权值功率与所述增强迫零处理后的第二权值功率计算每一行天线的功率;
    所述处理模块,还用于根据所述每一行天线的功率中所有天线的功率之和与所述每一行天线的功率中的最大功率,计算功率利用率;
    所述处理模块,还用于根据所述每一行天线的功率与满功率的多用户权值矢量,计算所述每一行天线的功率的功率相关性;
    所述处理模块,还用于根据所述功率相关性和所述功率利用率,计算所述子资源块组中第l个用户的信干噪比差,l为正整数;
    所述处理模块,还用于计算所述子资源块组中各个用户的信干噪比差之和。
  19. 根据权利要求12-18中任一项所述的通信装置,其特征在于,
    所述处理模块,还用于使用PEBF计算第一子资源块组的初始功率;
    所述处理模块,还用于使用NEBF计算第二子资源块组的初始功率;
    所述处理模块,还用于根据所述第一子资源块组的初始功率和所述第二子资源块组的初始功率,确定所述第一子资源块组的功率和所述第二子资源块组的功率,其中,同一天线中所述第一子资源块组的功率与所述第二子资源块组的功率之和等于所述同一天线的最大功率。
  20. 根据权利要求12-18中任一项所述的通信装置,其特征在于,所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第 二用户为对权值方向改变不敏感的用户;
    同一天线中所述第一用户的功率与所述第二用户的功率之和等于所述同一天线的最大功率。
  21. 根据权利要求12-18中任一项所述的通信装置,其特征在于,
    所述子资源块组中调度的用户包括第一用户和第二用户,所述第一用户为对权值方向改变敏感的用户,所述第二用户为对权值方向改变不敏感的用户;
    所述处理模块,还用于根据所述第一用户的调制方式,抬升所述第一用户的功率,其中,抬升后的所述第一用户的功率与所述第二用户的功率之和,与抬升前的所述第一用户的功率与所述第二用户的功率之和相同。
  22. 根据权利要求21所述的通信装置,其特征在于,
    当所述第一用户的调制方式为正交相移键控QPSK时,所述第一用户的功率的抬升上限为一倍的最大功率门限值;
    当所述第一用户的调制方式为16正交幅度调制QAM时,所述第一用户的功率的抬升上限为二倍的所述最大功率门限值;
    当所述第一用户的调制方式为64QAM或256QAM时,所述第一用户的功率不可抬升。
  23. 一种网络设备,其特征在于,包括;
    存储器,存储有指令;
    处理器,用于执行所述指令,使得所述发送端执行如权利要求1-11中任一项所述的方法。
  24. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令被处理器执行时,实现权利要求1-11任一项所述的方法。
  25. 一种计算机程序产品,包括程序,其特征在于,当所述程序被处理器执行时,实现权利要求1-11任一项所述的方法。
  26. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如权利要求1-11中任一所述的方法被实现。
PCT/CN2022/131645 2021-11-19 2022-11-14 一种波束成型权值计算方法以及相关装置 WO2023088203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111401057.9 2021-11-19
CN202111401057.9A CN116156519A (zh) 2021-11-19 2021-11-19 一种波束成型权值计算方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2023088203A1 true WO2023088203A1 (zh) 2023-05-25

Family

ID=86349426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131645 WO2023088203A1 (zh) 2021-11-19 2022-11-14 一种波束成型权值计算方法以及相关装置

Country Status (2)

Country Link
CN (1) CN116156519A (zh)
WO (1) WO2023088203A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283159A (zh) * 2010-12-17 2013-09-04 瑞典爱立信有限公司 用于极化天线阵列的射束形成方法、设备和无线电通信装置及其系统
CN107872252A (zh) * 2016-09-23 2018-04-03 北京大学(天津滨海)新代信息技术研究院 一种基于发射波束成型的同频同时全双工系统终端间干扰消除方法
CN110166091A (zh) * 2018-02-11 2019-08-23 上海华为技术有限公司 多用户配对方法、装置及基站
WO2021142629A1 (en) * 2020-01-14 2021-07-22 Nokia Shanghai Bell Co., Ltd. Downlink beamforming in mu-mimo system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283159A (zh) * 2010-12-17 2013-09-04 瑞典爱立信有限公司 用于极化天线阵列的射束形成方法、设备和无线电通信装置及其系统
CN107872252A (zh) * 2016-09-23 2018-04-03 北京大学(天津滨海)新代信息技术研究院 一种基于发射波束成型的同频同时全双工系统终端间干扰消除方法
CN110166091A (zh) * 2018-02-11 2019-08-23 上海华为技术有限公司 多用户配对方法、装置及基站
WO2021142629A1 (en) * 2020-01-14 2021-07-22 Nokia Shanghai Bell Co., Ltd. Downlink beamforming in mu-mimo system

Also Published As

Publication number Publication date
CN116156519A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2020063923A1 (zh) 信号传输方法、相关设备及系统
US9706529B2 (en) Method and apparatus for transmitting and receiving data in multi-BSS
CN108271175B (zh) 功率控制方法和通信设备
WO2020207269A1 (zh) 干扰测量的方法和装置
US9634821B2 (en) Method and apparatus for channel access in WLAN system
CN106716905B (zh) 用于针对设备到设备链路的空间重用的无线设备、方法以及计算机可读介质
US11778554B2 (en) User Equipment (UE) antenna adaptation for PUCCH Transmission
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
US11050465B2 (en) User equipment initiated channel state feedback codebook selection
US11277801B2 (en) System and method for uplink power control in a communications system with multi-access point coordination
CN106332291B (zh) 以用户为中心网络面向服务质量的下行无线资源分配方法
CN114788337A (zh) 对用于利用基于组的报告而包括的信息的选择
WO2023088203A1 (zh) 一种波束成型权值计算方法以及相关装置
CN109547073B (zh) 基于空间复用的非授权频段异构网络嵌入式友好共存方法及系统
CN113632547A (zh) 用于多ap协调中上行功率控制的系统和方法
WO2023131244A1 (zh) 通信方法和通信装置
WO2023141897A1 (zh) 发送功率的确定方法及装置、终端设备、网络设备
WO2023077382A1 (en) Methods of codebook based and non‐codebook based pusch transmission and related devices
WO2023165375A1 (zh) 一种通信方法及装置
WO2023131108A1 (zh) 通信方法、装置及系统
WO2022110185A1 (zh) 一种功率控制方法、通信设备及系统
WO2022257646A1 (zh) 一种通信方法及装置
WO2022206652A1 (zh) 信息指示的方法与装置
WO2024045146A1 (en) User equipment configuration for dynamic base station antenna port adaptation
Liu et al. Bidirectional mobile offloading in lte-u and wifi coexistence systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894739

Country of ref document: EP

Kind code of ref document: A1