WO2023088139A1 - 音频处理装置及终端设备 - Google Patents

音频处理装置及终端设备 Download PDF

Info

Publication number
WO2023088139A1
WO2023088139A1 PCT/CN2022/130669 CN2022130669W WO2023088139A1 WO 2023088139 A1 WO2023088139 A1 WO 2023088139A1 CN 2022130669 W CN2022130669 W CN 2022130669W WO 2023088139 A1 WO2023088139 A1 WO 2023088139A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
earphone
digital
impedance
amplifier
Prior art date
Application number
PCT/CN2022/130669
Other languages
English (en)
French (fr)
Inventor
陈俊杰
张宽
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023088139A1 publication Critical patent/WO2023088139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication

Definitions

  • the present application relates to the field of circuit technology, and in particular to an audio processing device and terminal equipment.
  • multimedia data such as audio and video are increasingly used in real life scenarios.
  • binaural earphones are very common, and binaural earphones include left channel and right channel earphones, the left channel corresponds to the left earphone, and the right channel corresponds to the right earphone.
  • the present application provides an audio processing device and terminal equipment, which are used to reduce the crosstalk between the left earphone and the right earphone.
  • the present application provides an audio processing device, including: a codec chip, a gain amplifier, and an earphone socket, the codec chip includes: a first power amplifier and a second power amplifier, and the earphone socket includes an earphone socket grounded pins, where
  • the first input end of the first power amplifier is connected to the gain amplifier, the output end of the first power amplifier is connected to the earphone socket, and the second input end of the first power amplifier is used to receive analog audio Signal;
  • the first input end of the second power amplifier is connected to the gain amplifier, the output end of the second power amplifier is connected to the earphone socket, and the second input end of the second power amplifier is used to receive analog audio Signal;
  • the ground pin of the earphone base is connected to the gain amplifier.
  • the first power amplifier includes a positive input terminal and a negative input terminal, wherein,
  • the positive input end of the first power amplifier is used to receive an audio signal
  • the negative input terminal of the first power amplifier is connected with the output terminal of the gain amplifier.
  • the second power amplifier includes a positive input terminal and a negative input terminal, wherein,
  • the positive input terminal of the second power amplifier is used to receive an audio signal
  • the negative input terminal of the second power amplifier is connected to the output terminal of the gain amplifier.
  • the gain value of the gain amplifier is determined according to the first impedance, the second impedance and the third impedance, wherein,
  • the first impedance is the impedance of the earphone line
  • the second impedance is the contact impedance between the earphone socket and the earphone plug;
  • the third impedance is the wiring impedance of the ground pin of the earphone socket.
  • the gain value of the gain amplifier and the first impedance, the second impedance, and the third impedance satisfy the following relationship:
  • the ⁇ is the gain value
  • the Rg1 is the first impedance
  • the Rg2 is the second impedance
  • the Rg3 is the third impedance.
  • the input end of the gain amplifier is connected to the ground pin of the earphone socket;
  • the output terminals of the gain amplifier are respectively connected with the first input terminal of the first power amplifier and the first input terminal of the second power amplifier.
  • the codec chip further includes a digital-to-analog converter, wherein,
  • the input terminal of the digital-to-analog converter is used to receive a digital audio signal
  • Output terminals of the digital-to-analog converter are respectively connected to the first power amplifier and the second power amplifier.
  • the digital-to-analog converter includes a first digital-to-analog converter and a second digital-to-analog converter, wherein,
  • the input end of the first digital-to-analog converter is used to receive a digital audio signal, and the output end of the first digital-to-analog converter is connected to the second input end of the first power amplifier;
  • the input end of the second digital-to-analog converter is used to receive a digital audio signal, and the output end of the second digital-to-analog converter is connected to the second input end of the second power amplifier.
  • the audio processing device further includes a digital signal processing DSP chip, wherein,
  • the DSP chip is connected to the digital-to-analog converter, and the DSP chip is used to output the digital audio signal to the digital-to-analog converter.
  • the present application provides a terminal device, including the audio processing apparatus according to any one of the first aspect.
  • the audio processing device includes: a codec chip, a gain amplifier, and an earphone socket
  • the codec chip includes: a first power amplifier and a second power amplifier
  • the earphone socket includes a grounding pin of the earphone socket , wherein, the first input end of the first power amplifier is connected with the gain amplifier, the output end of the first power amplifier is connected with the headphone socket, and the second input end of the first power amplifier is used for receiving analog audio signals;
  • the second power amplifier's The first input end is connected to the gain amplifier, the output end of the second power amplifier is connected to the earphone socket, and the second input end of the second power amplifier is used to receive analog audio signals;
  • the ground pin of the earphone socket is connected to the gain amplifier.
  • FIG. 1 is a structural schematic diagram 1 of a circuit system in the related art
  • FIG. 2 is a structural schematic diagram 2 of a circuit system in the related art
  • FIG. 3 is a schematic diagram of a circuit structure of an audio processing device provided in an embodiment of the present application.
  • FIG. 4 is a second schematic diagram of the circuit structure of the audio processing device provided by the embodiment of the present application.
  • the headphone mode is gradually favored by more and more users because of its delicate sound quality and real stereo effect.
  • the left and right channels need a certain degree of isolation, that is, the crosstalk between the two channels must be less than a certain standard.
  • the headphone jack includes a 3.5mm headphone jack
  • the 3.5mm headphone jack is widely used in consumer products because of its long history, unified standard, low cost, and stable connection.
  • the implementation of the TypeC headphone jack plus adapter is the same as that of the 3.5mm headphone.
  • due to the contact impedance between the 3.5mm earphone and the TypeC mechanical interface there is impedance in the ground wiring of the earphone, which generates a partial voltage, which crosstalks to another channel and affects the stereo effect.
  • FIG. 1 is a first structural schematic diagram of a circuit system in the related art.
  • the circuit system includes a terminal device and an earphone.
  • Terminal equipment includes: Printed Circuit Board (PCB).
  • PCB Printed Circuit Board
  • a codec chip and an earphone socket are arranged on the printed circuit board, wherein the earphone socket may include a grounding pin of the earphone socket.
  • an earphone cable, a left earphone, and a right earphone may be included in the earphone.
  • the earphone cable is provided with an earphone plug, and the earphone plug is inserted into the earphone socket to realize the connection between the terminal device and the earphone.
  • the digital audio signal corresponding to the audio to be played is sent to the codec chip, and the codec chip is used to perform digital-to-analog conversion processing on the digital audio signal to generate an analog audio signal, and pass the analog audio signal through the power amplifier. After processing, it is sent to the earphone socket, wherein the analog audio signal can be sent to the earphone socket through the positive pole (+) of the power amplifier shown in FIG. 1 .
  • the codec chip includes a first power amplifier and a second power amplifier.
  • the first power amplifier may be a power amplifier corresponding to the left channel
  • the second power amplifier may be a power amplifier corresponding to the right channel.
  • the digital audio signal may be a monophonic signal or a dual-channel signal.
  • the codec chip may perform digital-to-analog conversion processing on the first digital audio signal corresponding to the left channel , to obtain the first analog audio signal, and then input the first analog audio signal to the positive pole of the first power amplifier, and then pass through the transmission of the earphone socket and the earphone cable, and then the signal output by the first power amplifier is sent to the left earphone.
  • the codec chip can perform digital-to-analog conversion processing on the second digital audio signal corresponding to the right channel to obtain a second analog audio signal, and then convert the second digital audio signal to Two analog audio signals are input to the positive pole of the second power amplifier, and then the signal output by the second power amplifier is sent to the right earphone through the transmission of the earphone socket and the earphone cable.
  • the digital audio signal is a two-channel signal, that is to say, both the left channel and the right channel have input, then the corresponding first power amplifier and the second power amplifier also have input, and then through the earphone socket, earphone
  • the signal output by the first power amplifier is transmitted to the left earphone
  • the signal output by the second power amplifier is transmitted to the right earphone through the transmission of the earphone socket and the earphone cable to realize two-channel playback.
  • the user can listen to the audio played by the terminal device through the earphone.
  • the above-mentioned codec chip, earphone socket, earphone cable, and earphones transmit electrical signals. After the electrical signals are transmitted to the left earphone and the right earphone, they need to be grounded by return flow. Continuing to refer to Figure 1, the return process of the electrical signal is as follows: the electrical signals of the left earphone and the right earphone are transmitted through the return flow of the earphone cable and the earphone socket, and finally sent to the ground pin of the earphone socket on the PCB.
  • the impedance inside the earphone cable is abstracted as a resistor Rg1.
  • some impedance will also be generated at the contact part of the earphone plug and the earphone socket.
  • the impedance generated by the contact between the earphone plug and the earphone socket is abstracted as a resistance Rg2.
  • the wiring of the ground pin of the earphone base will also generate some impedance.
  • the impedance is abstracted as a resistor Rg3.
  • the locations of the abstracted resistors Rg1 , Rg2 , and Rg3 in the circuit are shown in FIG. 1 .
  • the left earphone is abstracted as a resistor R
  • the right earphone is abstracted as a resistor R.
  • the resistors R g1 , R g2 , and R g3 generate a certain voltage division on the left earphone resistor R or the right earphone resistor R. According to the crosstalk formula, these divided voltages will cause Crosstalk between. Specifically, the Crosstalk of the right earphone to the left earphone can be expressed as Formula 1:
  • the crosstalk formula of the right earphone to the left earphone is similar to the formulas 1 to 3 above, by reducing (R g1 +R g2 +R g3 ), the crosstalk from the left earphone to the right earphone can also be reduced.
  • FIG. 2 is a circuit system in the related art. Schematic diagram of the structure II.
  • Figure 2 is similar to Figure 1 described above, the difference is that in Figure 2, the ground pin of the earphone socket is directly connected to the first input end of the first power amplifier and the second power amplifier, so the first power amplifier and/or The second power amplifier can receive a feedback signal from the ground pin of the earphone socket, so as to realize the feedback of the voltage of R g3 to the first input end of the first power amplifier and/or the second power amplifier, thereby realizing the voltage division of R g3 Compensation, which in turn reduces crosstalk between the left and right earphones.
  • the implementation shown in FIG. 2 can only realize compensation for the voltage division of R g3 , and the existence of other impedances will still cause crosstalk between the left earphone and the right earphone.
  • the present application proposes the following technical idea: connect the negative input terminal of the first power amplifier to the ground pin of the earphone socket through the gain amplifier, and connect the negative terminal of the second power amplifier to the ground pin of the earphone socket.
  • the input terminal is connected to the ground pin of the earphone base through the gain amplifier, so that the first power amplifier and the second power amplifier can receive the compensation voltage signal after gain amplification from the ground pin of the earphone base and perform compensation to offset the grounding of the earphone base
  • the wiring impedance of the pins, the impedance inside the earphone cable, and the impedance generated by the contact between the earphone plug and the earphone socket can effectively reduce the crosstalk between the left earphone and the right earphone.
  • This application provides an audio processing device and terminal equipment, which can be used to reduce the crosstalk of all types of earphones, for example, earphones with a TypeC interface, earphones with a 3.5mm interface, earphones with a TypeC interface and a 3.5mm adapter, and earphones with a 3.5mm interface and a Headphones with TpyeC adapter, etc.
  • FIG. 3 is a schematic diagram of a circuit structure of an audio processing device provided in an embodiment of the present application.
  • the audio processing device in this embodiment includes a codec chip, a gain amplifier (Programmable Gain Amplifier, PGA) and an earphone socket.
  • a codec chip As shown in FIG. 3 , the audio processing device in this embodiment includes a codec chip, a gain amplifier (Programmable Gain Amplifier, PGA) and an earphone socket.
  • PGA Programmable Gain Amplifier
  • the codec chip includes: a first power amplifier and a second power amplifier
  • the earphone socket includes a grounding pin of the earphone socket.
  • the first power amplifier may also be regarded as a power amplifier corresponding to the left channel.
  • the second power amplifier can also be regarded as a power amplifier corresponding to the right channel.
  • each device is described here, as shown in Figure 3, the first input end of the first power amplifier is connected with the gain amplifier, the output end of the first power amplifier is connected with the headphone jack, and the second end of the first power amplifier is connected with the gain amplifier.
  • the input is used to receive analog audio signals.
  • the first power amplifier includes a positive input terminal (+) and a negative input terminal (-), wherein the positive input terminal can be the second input point introduced above, and the negative input terminal terminal can be the first input terminal described above, then the specific connection of the two input terminals of the first power amplifier can be, for example, that the positive input terminal of the first power amplifier is used to receive audio signals, and the negative input terminal of the first power amplifier The terminal is connected to the output terminal of the gain amplifier.
  • the positive input terminal of the first power amplifier can input the audio signal of the left channel, wherein, for example, the audio signal input to the positive terminal of the first power amplifier has been processed by digital-to-analog conversion, so it is input into the positive terminal of the first power amplifier
  • the audio signal may be an analog audio signal of the left channel.
  • the negative input terminal of the first power amplifier can input the signal output by the gain amplifier.
  • the first power amplifier can process the two input signals, and then output the output signal of the left channel, for example, the HPL (headphone left channel output) in FIG. 3 , this The output signal can be played, for example, via the left earphone.
  • the first input end of the second power amplifier is connected to the gain amplifier, the output end of the second power amplifier is connected to the earphone socket, and the second input end of the second power amplifier is used for receiving analog audio signals.
  • the second power amplifier includes a positive input terminal (+) and a negative input terminal (-), wherein the positive input terminal can be the second input point introduced above, and the negative input terminal terminal can be the first input terminal described above, then the specific connection of the two input terminals of the second power amplifier can be, for example, that the positive input terminal of the second power amplifier is used to receive audio signals, and the negative input terminal of the second power amplifier The terminal is connected to the output terminal of the gain amplifier.
  • the positive input terminal of the second power amplifier can input the audio signal of the right channel, wherein, for example, the audio signal input to the positive terminal of the second power amplifier has been processed by digital-to-analog conversion, so it is input into the positive terminal of the second power amplifier.
  • the audio signal may be an analog audio signal of the right channel.
  • the negative electrode of the second power amplifier can input the signal output by the gain amplifier.
  • the second power amplifier can process the two input signals, and then output the output signal of the right channel, for example, the HPR (headphone right channel output) in FIG. 3 , this The output signal can be played, for example, via the right earphone.
  • the ground pin of the earphone base is connected to the gain amplifier. Therefore, in this embodiment, the ground pin of the earphone base is connected to the first input end of the first power amplifier through the gain amplifier.
  • the gain amplifier is used to amplify the analog reference signal at the ground pin of the earphone base to obtain an analog feedback signal output to the first power amplifier.
  • the ground pin of the earphone socket can input the compensation voltage signal amplified by the gain amplifier to the first power amplifier, so that the compensation voltage signal can compensate the analog audio signal input by the first power amplifier. In this way, the signal output by the first power amplifier is the compensated signal.
  • the impedance generated by the grounding pin of the earphone socket is abstracted as a resistor Rg3, and the impedance inside the earphone cable is abstracted as a resistor Rg1, the impedance generated by the contact between the earphone plug and the earphone socket is abstracted as a resistor Rg2.
  • the compensation voltage signal sent by the ground pin of the headphone base to the first power amplifier through the gain amplifier is specifically the 4-point voltage (4 points in Figure 3) processed by the gain amplifier.
  • the processing of the gain amplifier here can realize the adjustment of the resistance
  • the voltage division of Rg1, resistor Rg2 and resistor Rg3 is compensated. In this way, the signal output by the first power amplifier is the compensated signal.
  • the codec chip Since the codec chip has compensated the voltage division of the resistors Rg1, Rg2, and Rg3, it is equivalent to offsetting Rg1, Rg2, and Rg3 in the above crosstalk formula. , so as to effectively reduce the interference of the right earphone to the left earphone.
  • the ground pin of the earphone base is also connected to the second power amplifier through a gain amplifier.
  • the gain amplifier is used to perform an analog reference signal at the ground pin of the earphone base amplified to obtain an analog feedback signal output to the second power amplifier.
  • the ground pin of the earphone socket can input the compensation voltage signal amplified by the gain amplifier to the second power amplifier, so that the compensation voltage signal can compensate the analog audio signal input by the second power amplifier.
  • the signal output by the second power amplifier is a compensated signal.
  • the impedance generated by the grounding pin of the earphone socket is abstracted as a resistor Rg3
  • the impedance inside the earphone cable is abstracted as a resistor Rg1
  • the impedance generated by the contact between the earphone plug and the earphone socket is abstracted as a resistor Rg2.
  • the compensation voltage signal sent by the ground pin of the headphone base to the second power amplifier through the gain amplifier is specifically the 4-point voltage processed by the gain amplifier. partial pressure to compensate. In this way, the signal output by the second power amplifier is a compensated signal. Afterwards, it is transmitted to the right earphone through the transmission of the earphone socket and the earphone cable.
  • the codec chip Since the codec chip has compensated the voltage division of the resistors Rg1, Rg2, and Rg3, it is equivalent to offsetting Rg1, Rg2, and Rg3 in the above crosstalk formula. , so as to effectively reduce the interference of the right earphone to the left earphone.
  • the gain amplifier in this embodiment directly amplifies the analog signal, that is, the signal at 4 points before the gain amplifier amplifies, and the feedback output to the power amplifier after the gain amplifier amplifies
  • the signals are all analog signals. In this way, there is no need to set an additional resistor in the middle to sample the voltage, and there is no need to perform digital-to-analog conversion processing on the sampled voltage. It directly amplifies the analog signal of the voltage at 4 points through the gain amplifier to obtain the amplified
  • the feedback signal can make the circuit structure simple and the cost low.
  • the gain amplifier is set to amplify the analog signal, thereby ensuring the stability of the circuit, thereby ensuring the stability of the left earphone and the left earphone. Stability with crosstalk resolution between headphones.
  • the gain value of the gain amplifier PGA can be adjusted so that the compensation voltage signal input to the power amplifier can not only compensate the voltage division of Rg3, but also can compensate the voltage division of Rg1 and Rg2 Compensation is performed to cancel Rg1, Rg2, and Rg3 in the above crosstalk formula, that is to say, the crosstalk between the left earphone and the right earphone can be reduced to the greatest extent by adjusting the gain value of the gain amplifier.
  • the specific setting of the gain value can be selected according to actual needs, as long as it can realize the compensation voltage signal processed by the gain amplifier and can also realize the compensation of the divided voltage of Rg1 and Rg2.
  • the audio processing device includes: a codec chip, a gain amplifier, and an earphone socket
  • the codec chip includes: a first power amplifier and a second power amplifier
  • the earphone socket includes a ground pin of the earphone socket, wherein the first The first input end of a power amplifier is connected with the gain amplifier, the output end of the first power amplifier is connected with the headphone socket, and the second input end of the first power amplifier is used for receiving analog audio signals; the first input end of the second power amplifier It is connected with the gain amplifier, the output end of the second power amplifier is connected with the earphone socket, and the second input end of the second power amplifier is used for receiving analog audio signals; the ground pin of the earphone socket is connected with the gain amplifier.
  • the gain value can offset the partial pressure generated by the impedance inside the earphone cable and the impedance generated by the contact between the earphone plug and the earphone socket, thereby effectively reducing the crosstalk between the left earphone and the right earphone to improve Stereo playback effect for headphones.
  • FIG. 4 is a second schematic diagram of a circuit structure of an audio processing device provided in an embodiment of the present application.
  • the input end of the gain amplifier can be connected to the ground pin of the earphone socket, and the output end of the gain amplifier can be connected to the negative input end of the first power amplifier respectively. And the negative input terminal of the second power amplifier is connected.
  • the codec chip may further include a digital-to-analog converter, and the digital-to-analog converter may convert the digital audio signal into an analog audio signal and input it to the power amplifier.
  • the input of the digital-to-analog converter can thus be used to receive digital audio signals.
  • the output terminals of the digital-to-analog converter are respectively connected to the first power amplifier and the second power amplifier, and are used for inputting the converted analog audio signal to the first power amplifier and the second power amplifier.
  • the digital-to-analog converter in this embodiment may include, for example, a first digital-to-analog converter and a second digital-to-analog converter, wherein the input terminal of the first digital-to-analog converter can receive a digital audio signal of the left channel.
  • the audio processing device in this embodiment may further include a DSP chip, wherein the DSP chip is connected to the first digital-to-analog converter, and the DSP chip may output the left channel to the first digital-to-analog converter. digital audio signal.
  • the first digital-to-analog converter performs digital-to-analog conversion processing on the digital audio signal of the left channel, thereby outputting the analog audio signal of the left channel, wherein the output terminal of the first digital-to-analog converter is connected to the second input of the first power amplifier The terminals are connected, so the first digital-to-analog converter can output the analog audio signal of the left channel to the first power amplifier, so that the first power amplifier performs the processing described above.
  • the second input terminal of the second digital-to-analog converter in this embodiment can receive the digital audio signal of the right channel.
  • the DSP chip is also connected to the second digital-to-analog converter, and the DSP chip can output the digital audio signal of the right channel to the second digital-to-analog converter.
  • the second digital-to-analog converter performs digital-to-analog conversion processing on the digital audio signal of the right channel, thereby outputting the analog audio signal of the right channel, wherein the output terminal of the second digital-to-analog converter is connected to the second input of the second power amplifier The terminals are connected, so the second digital-to-analog converter can output the analog audio signal of the right channel to the second power amplifier, so that the second power amplifier performs the processing described above.
  • the left channel is a full-scale signal
  • the right channel is a mute signal, that is to say, in the current situation, the left channel has digital audio signal input (the left channel has sound), and the right channel channel has no digital audio signal input (right channel has no sound). Therefore, there is an input analog audio signal at the positive input end of the first power amplifier, but there is no input analog audio signal at the positive input end of the second power amplifier.
  • the first power amplifier has an input analog audio signal
  • the first power amplifier has an output voltage.
  • the output voltage of the first power amplifier (that is, the voltage at point 1 in Figure 4) is V1
  • the voltage at point 3 V3 is the resistance
  • the voltage division of Rg1, resistor Rg2, and resistor Rg3 on the output voltage V1 of the first power amplifier, that is, the 3-point voltage V3 can be expressed as the following formula 4:
  • the 4-point voltage is the divided voltage of the output voltage V1 of the first power amplifier by the resistor Rg3, that is, the original 4-point voltage V4 can be expressed as the following formula five:
  • the focus is on the voltage of the two points V32 of the right earphone. It is understandable that because the right channel is a mute signal at the current moment, if there is no crosstalk effect from the left earphone, the right earphone In theory, the voltage at the two points of V32 should be 0, so the smaller the voltage at the two points of V32 on the right earphone, the smaller the crosstalk effect of the left channel on the right channel.
  • the gain value of the gain amplifier is also set, so that the voltage compensation signal processed by the gain value of the gain amplifier can also cancel Rg1 and Rg2.
  • the gain value of the gain amplifier can be determined according to the first impedance, the second impedance and the third impedance, wherein the first impedance is the impedance of the earphone line, that is, Rg1 described above;
  • the second impedance is the contact impedance between the headphone socket and the headphone plug, which is Rg2 described above;
  • the third impedance is the wiring impedance of the ground pin of the headphone socket, which is Rg3 described above.
  • the gain value of the gain amplifier and the first impedance, the second impedance and the third impedance may satisfy the relationship shown in the following formula 7, for example:
  • is a gain value
  • Rg1 is a first impedance
  • Rg2 is a second impedance
  • Rg3 is a third impedance
  • V4 after passing through the gain amplifier becomes ⁇ *V4, which is equal to V3.
  • the determination of the gain value ⁇ may further refer to the following formula 8:
  • the ground pin of the earphone base is connected to the first input terminal of the second power amplifier through the gain amplifier, and the gain value is set to be equal to Therefore, the cancellation of Rg1, Rg2, and Rg3 can be effectively realized, and the interference of the left earphone to the right earphone can be effectively reduced.
  • the right channel is a full-scale signal and the left channel is a mute signal. That is to say, in the current situation, the right channel is There is digital audio signal input (the right channel has sound), and the left channel has no digital audio signal input (the left channel has no sound). Therefore, there is an input analog audio signal at the positive input end of the second power amplifier, but there is no input analog audio signal at the positive input end of the first power amplifier.
  • the second power amplifier has an input analog audio signal
  • the second power amplifier has an output voltage.
  • the output voltage of the second power amplifier that is, the voltage at point 2 in Figure 4
  • the voltage at point 3 V3 is the resistance
  • the voltage division of Rg1, resistor Rg2, and resistor Rg3 to the output voltage V2 of the second power amplifier, that is, the 3-point voltage V3 can be expressed as the following formula 9:
  • the 4-point voltage is the divided voltage of the output voltage V2 of the second power amplifier by the resistor Rg3, that is, the original 4-point voltage V4 can be expressed as the following formula ten:
  • the focus is on the voltage of the two points of V31 on the left earphone. It is understandable that because the left channel is a mute signal at the moment, if there is no crosstalk effect from the right earphone, the left earphone In theory, the voltage at the two points of V31 should be 0, so the smaller the voltage at the two points of V31 on the left earphone, the smaller the crosstalk effect of the right channel on the left channel.
  • the gain value of the gain amplifier is also set, so that the voltage compensation signal processed by the gain value of the gain amplifier can also cancel Rg1 and Rg2.
  • the ground pin of the earphone base is connected to the first input end of the first power amplifier through the gain amplifier, and the gain value is set to be equal to Therefore, the cancellation of Rg1, Rg2, and Rg3 can be effectively realized, and the interference of the right earphone to the left earphone can be effectively reduced.
  • both the left channel and the right channel have digital audio signal input (both the left channel and the right channel have sound), so there is an input analog audio signal at the positive input of the first power amplifier, and the second power amplifier The incoming analog audio signal is also present at the positive input of the amplifier.
  • the 3-point voltage V3 can be expressed as:
  • the focus is on the voltage of the two points V31 of the left earphone. It is understandable that because there is also an input signal in the left ear canal, and the input voltage is VR, then if If there is no crosstalk effect from the right earphone, the voltage at the two points V31 of the left earphone should be VR in theory. Similarly, the smaller the voltage at the two points V31 of the left earphone, it means the crosstalk effect of the right channel on the left channel smaller.
  • the gain value of the gain amplifier is also set, so that the voltage compensation signal processed by the gain value of the gain amplifier can also cancel Rg1 and Rg2.
  • the ground pin of the earphone base is connected to the first input end of the first power amplifier through the gain amplifier, and the gain value is set to be equal to Therefore, the cancellation of Rg1, Rg2, and Rg3 can be effectively realized, and the interference of the right earphone to the left earphone can be effectively reduced.
  • the audio processing device provided in this application is connected to the first power amplifier and the first input end of the second power amplifier through the gain amplifier by setting the ground pin of the earphone base, and setting the gain value to be equal to Therefore, the cancellation of Rg1, Rg2, and Rg3 can be effectively realized, and the crosstalk between the right earphone and the left earphone can be effectively reduced.
  • the audio processing device described above may be, for example, a PCB board.
  • Rg3 includes frequency modulation (Frequency Modulation, FM) pair geomagnetic beads, it undertakes the function of isolating FM signals.
  • FM Frequency Modulation
  • DCR Direct Current Resistance
  • HP Hybrid Pulse
  • this embodiment of the present application further provides a terminal device.
  • the terminal device includes the audio processing apparatus in any of the foregoing embodiments. The implementation principles and technical effects are similar, and will not be repeated here.
  • connection should be understood in a broad sense, for example, it can be mechanical connection or electrical connection; it can be A direct connection, or an indirect connection through an intermediary, may be the internal communication of two elements or the interaction relationship between two elements, unless otherwise clearly defined, for those of ordinary skill in the art, it can be understood according to the specific situation The specific meanings of the above terms in this application.
  • circuitry refers to (a) a hardware circuit implementation only (such as an implementation in analog circuits and/or digital circuits); (b) a circuit comprising software and/or firmware instructions stored on one or more computer-readable memories a combination of circuitry and a computer program product, the instructions working together to cause the apparatus to perform one or more of the functions described herein; and (c) requiring software or firmware (even if the software or firmware does not physically exist) in order to operate A circuit, such as a microprocessor or part of a microprocessor.
  • This definition of 'circuitry' also applies to all uses of this term herein, including in any claims.
  • the term 'circuitry' also includes an implementation of one or more processors and/or portion(s) thereof and accompanying software and/or firmware.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)
  • Amplifiers (AREA)

Abstract

本申请提供一种音频处理装置及终端设备,该音频处理装置包括:编解码芯片、增益放大器以及耳机座,编解码芯片包括:第一功率放大器和第二功率放大器,耳机座包括耳机座接地管脚,其中,第一功率放大器的第一输入端与增益放大器连接,第一功率放大器的输出端与耳机座连接,第一功率放大器的第二输入端用于接收模拟音频信号;第二功率放大器的第一输入端与增益放大器连接,第二功率放大器的输出端与耳机座连接,第二功率放大器的第二输入端用于接收模拟音频信号;耳机座接地管脚与增益放大器连接。本申请提供的技术方案能够降低左耳机、右耳机之间的串扰,提高了耳机的立体音播放效果。

Description

音频处理装置及终端设备
本申请要求于2021年11月19日提交中国专利局、申请号为202111398044.0、申请名称为“音频处理装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,尤其涉及一种音频处理装置及终端设备。
背景技术
随着移动网络的普及,音视频等多媒体数据也越来越多的应用在实际生活场景中。
目前,越来越多的用户喜欢将耳机和终端设备配合使用,以实现对音视频等多媒体数据的播放,目前,双声道耳机是非常常见的,其中双声道耳机也就是说包括左声道和右声道的耳机,左声道对应左耳机,右声道对应右耳机。
然而,在实际使用耳机进行多媒体数据播放的过程中,经常出现左耳机、右耳机之间相互串扰的问题,进而导致用户听到的音质降低。
发明内容
本申请提供一种音频处理装置及终端设备,用以降低左耳机、右耳机之间的串扰。
第一方面,本申请提供一种音频处理装置,包括:编解码芯片、增益放大器以及耳机座,所述编解码芯片包括:第一功率放大器和第二功率放大器,所述耳机座包括耳机座接地管脚,其中,
所述第一功率放大器的第一输入端与所述增益放大器连接,所述第一功率放大器的输出端与所述耳机座连接,所述第一功率放大器的第二输入端用于接收模拟音频信号;
所述第二功率放大器的第一输入端与所述增益放大器连接,所述第二功率放大器的输出端与所述耳机座连接,所述第二功率放大器的第二输入端用于接收模拟音频信号;
所述耳机座接地管脚与所述增益放大器连接。
一种可能的实现方式中,所述第一功率放大器包括正极输入端和负极输入端,其中,
所述第一功率放大器的正极输入端用于接收音频信号;
所述第一功率放大器的负极输入端与所述增益放大器的输出端连接。
一种可能的实现方式中,所述第二功率放大器包括正极输入端和负极输入端,其中,
所述第二功率放大器的正极输入端用于接收音频信号;
所述第二功率放大器的负极输入端与所述增益放大器的输出端连接。
一种可能的实现方式中,所述增益放大器的增益值为根据第一阻抗、第二阻抗和 第三阻抗确定得到的,其中,
所述第一阻抗为耳机线的阻抗;
所述第二阻抗为所述耳机座与耳机插头的接触阻抗;
所述第三阻抗为所述耳机座接地管脚的走线阻抗。
一种可能的实现方式中,所述增益放大器的增益值和第一阻抗、第二阻抗和第三阻抗之间满足如下关系:
Figure PCTCN2022130669-appb-000001
其中,所述α为所述增益值,所述Rg1为所述第一阻抗,所述Rg2为所述第二阻抗,所述Rg3为所述第三阻抗。
一种可能的实现方式中,
所述增益放大器的输入端与所述耳机座接地管脚连接;
所述增益放大器的输出端分别与所述第一功率放大器的第一输入端和所述第二功率放大器的第一输入端连接。
一种可能的实现方式中,所述编解码芯片还包括数模转换器,其中,
所述数模转换器的输入端用于接收数字音频信号;
所述数模转换器的输出端分别与所述第一功率放大器和所述第二功率放大器连接。
一种可能的实现方式中,所述数模转换器包括第一数模转换器和第二数模转换器,其中,
所述第一数模转换器的输入端用于接收数字音频信号,所述第一数模转换器的输出端与所述第一功率放大器的第二输入端连接;
所述第二数模转换器的输入端用于接收数字音频信号,所述第二数模转换器的输出端与所述第二功率放大器的第二输入端连接。
一种可能的实现方式中,所述音频处理装置还包括数字信号处理DSP芯片,其中,
所述DSP芯片与所述数模转换器连接,所述DSP芯片用于向所述数模转换器输出所述数字音频信号。
第二方面,本申请提供一种终端设备,包括如第一方面任一项所述的音频处理装置。
本申请提供的音频处理装置及终端设备,该音频处理装置包括:编解码芯片、增益放大器以及耳机座,编解码芯片包括:第一功率放大器和第二功率放大器,耳机座包括耳机座接地管脚,其中,第一功率放大器的第一输入端与增益放大器连接,第一功率放大器的输出端与耳机座连接,第一功率放大器的第二输入端用于接收模拟音频信号;第二功率放大器的第一输入端与增益放大器连接,第二功率放大器的输出端与耳机座连接,第二功率放大器的第二输入端用于接收模拟音频信号;耳机座接地管脚与增益放大器连接。通过将耳机座接地管脚和第一功率放大器的第一输入端以及第二功率放大器的第一输入端连接,并且在耳机座接地管脚和功率放大器的输入端之间设置增益放大器的增益值,实现对耳机线内部的阻抗产生的分压、以及耳机插头与耳机座接触产生的阻抗产生的分压进行抵消,从而可以有效的降低了左耳机、右耳机之间的串扰,以提高耳机的立体音播放效果。
附图说明
图1为相关技术中的一种电路系统的结构示意图一;
图2为相关技术中的一种电路系统的结构示意图二;
图3为本申请实施例提供的音频处理装置的电路结构示意图一;
图4为本申请实施例提供的音频处理装置的电路结构示意图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于理解本申请的技术方案,下面对本申请所涉及的相关技术进行进一步的详细介绍。
随着移动网络普及,音视频等多媒体信息日益被用户所喜爱。耳机模式因其音质细腻,立体声效果真实,逐渐被越来越多用户偏爱。为保证良好立体声效果,左右声道需要一定的隔离度,即两声道串扰需小于一定标准。
例如,耳机接口中包括3.5mm的耳机接口,其中,3.5mm的耳机接口因为历史悠久、标准统一、成本低廉、连接稳定等优点,被广泛应用到消费级产品中。以及TypeC耳机接口再加转接头的实现方案与3.5mm耳机相同。然而,因为3.5mm耳机和TypeC机械接口的接触阻抗,导致耳机地走线存在阻抗,该阻抗产生分压,该分压串扰到另一声道,影响立体声效果。
也就是说,因为阻抗的存在会产生分压,分压的存在会导致声道的串扰,进而对耳机的立体声效果产生影响。
进一步的,为了更好的理解本申请的技术方案,下面首先结合图1对终端设备与耳机之间的信号传输过程进行说明。
图1为相关技术中的一种电路系统的结构示意图一。如图1所示,该电路系统包括终端设备和耳机。终端设备包括:印制电路板(Printed Circuit Board,PCB)。印制电路板上设置有编解码芯片、耳机座,其中耳机座可以包括耳机座接地管脚。
以及,在耳机中可以包括耳机线、左耳机和右耳机。耳机线上设置有耳机插头,耳机插头插入耳机座,实现终端设备与耳机之间的连接。
终端设备播放音频时,待播放音频对应的数字音频信号被输送至编解码芯片,编 解码芯片用于对数字音频信号进行数模转换处理,生成模拟音频信号,并将模拟音频信号经过功率放大器的处理之后输送至耳机座,其中,模拟音频信号可以经图1所示的功率放大器的正极(+)输送至耳机座。
具体的,参见图1,编解码芯片中包括第一功率放大器和第二功率放大器。第一功率放大器可以为左声道对应的功率放大器,第二功率放大器可以为右声道对应的功率放大器。
其中,数字音频信号可能为单声道信号,也可能为双声道信号。
当数字音频信号为单声道信号时,比如说可以是左侧声道存在输入,对应在图1中,例如可以是编解码芯片对左声道对应的第一数字音频信号进行数模转换处理,得到第一模拟音频信号,之后将第一模拟音频信号输入第一功率放大器的正极,之后经过耳机座、耳机线的传输,然后第一功率放大器输出的信号被输送到左耳机。
或者还可以是右侧声道存在输入,对应在图1中,例如可以是编解码芯片对右声道对应的第二数字音频信号进行数模转换处理,得到第二模拟音频信号,之后将第二模拟音频信号输入第二功率放大器的正极,然后第二功率放大器输出的信号经过耳机座、耳机线的传输被输送到右耳机。
当数字音频信号为双声道信号时,也就是说左侧声道和右侧声道均存在输入,那么对应的第一功率放大器和第二功率放大器也都存在输入,之后经过耳机座、耳机线的传输,第一功率放大器输出的信号被输送到左耳机,第二功率放大器输出的信号经过耳机座、耳机线的传输,被输送到右耳机,以实现双声道的播放。
经过上述的信号传输过程,用户通过耳机可以收听到终端设备播放的音频。
上述编解码芯片、耳机座、耳机线、耳机之间传输的是电信号,电信号被传输至左耳机、右耳机之后,还需要回流接地。继续参见图1,电信号的回流过程如下:左耳机和右耳机的电信号经过耳机线、耳机座的回流传输,最终输送至PCB板上的耳机座接地管脚。
在电信号回流传输的过程中,在耳机线内部会产生一些阻抗,本实施例中,将耳机线内部的阻抗抽象为电阻Rg1。并且,耳机插头与耳机座接触部分也会产生一些阻抗,本实施例中,将耳机插头与耳机座接触产生的阻抗抽象为电阻Rg2。进一步的,在电信号由耳机座回流至耳机座接地管脚的过程中,耳机座接地管脚的走线也会产生一些阻抗,本实施例中,将耳机座接地管脚的走线产生的阻抗抽象为电阻Rg3。上述抽象出的电阻Rg1、电阻Rg2、电阻Rg3在电路中的位置如图1所示。另外,为了后续描述方便,将左耳机抽象为电阻R,右耳机抽象为电阻R。
基于上述介绍可以确定的是,左耳机和右耳机之间存在串扰的问题,为了解决左耳机、右耳机之间相互串扰的问题,首先对串扰的产生进行分析:
根据图1所示的电路系统,电阻R g1、电阻R g2、电阻R g3对左耳机电阻R或者右耳机电阻R产生一定的分压,根据串扰公式这些分压会导致左耳机和右耳机之间的串扰。具体的,右耳机对左耳机的串扰Crosstalk可以表示为公式一:
Figure PCTCN2022130669-appb-000002
对上述公式一进行变形,得到公式二:
Figure PCTCN2022130669-appb-000003
对上述公式二进行变形,得到公式三:
Crosstalk(dB)=20*log(R g1+R g2+R g3)-20*log(2*(R g1+R g2+R g3)+R)      公式三
根据上述公式三可见,若减小(R g1+R g2+R g3),则可以有效降低右耳机对左耳机的串扰。
以及,右耳机对左耳机的串扰公式与上述公式一至公式三是类似的,通过减小(R g1+R g2+R g3),也可以降低左耳机对右耳机的串扰。
为了解决左耳机和右耳机之间的串扰,目前存在一种实现方式,用于对R g3的分压的抵消,例如可以结合图2进行介绍,图2为相关技术中的一种电路系统的结构示意图二。
图2与上述介绍的图1类似,不同之处在于,图2中将耳机座接地管脚直接接到第一功率放大器和第二功率放大器的第一输入端,因此第一功率放大器和/或第二功率放大器可以从耳机座接地管脚接收反馈信号,以实现将R g3的电压反馈到第一功率放大器和/或第二功率放大器的第一输入端,从而实现对R g3的分压的补偿,进而可以降低左耳机和右耳机之间的串扰。
然而,图2所示的这种实现方式仅仅能够实现对R g3的分压的补偿,其余阻抗的存在仍然会导致左耳机和右耳机之间的串扰。
因此基于上述的分析,以及现有技术中的问题,本申请提出了如下技术构思:将第一功率放大器的负极输入端通过增益放大器与耳机座接地管脚连接,并将第二功率放大器的负极输入端通过增益放大器与耳机座接地管脚连接,这样的话第一功率放大器和第二功率放大器就可以从耳机座接地管脚接收增益放大后的补偿电压信号,并进行补偿,从而抵消耳机座接地管脚的走线阻抗、耳机线内部的阻抗以及耳机插头与耳机座接触产生的阻抗,以有效降低左耳机、右耳机的串扰。
在上述介绍的内容的基础上,下面对本申请的技术方案进行详细介绍。本申请提供了一种音频处理装置以及终端设备,可用于降低所有类型的耳机的串扰,例如,TpyeC接口的耳机、3.5mm接口的耳机、TpyeC接口加3.5mm转接头的耳机,3.5mm接口加TpyeC转接头的耳机,等等。
下面结合图3对本申请的技术方案进行说明,图3为本申请实施例提供的音频处理装置的电路结构示意图一。
如图3所示,本实施例中的音频处理装置包括编解码芯片、增益放大器(Programmable Gain Amplifier,PGA)以及耳机座。
其中,编解码芯片包括:第一功率放大器和第二功率放大器,耳机座包括耳机座接地管脚。在本实施例中,第一功率放大器也可以认为是左声道对应的功率放大器。第二功率放大器也可以认为是右声道对应的功率放大器。
此处对各个器件的连接关系进行说明,如图3所示,第一功率放大器的第一输入端与增益放大器连接,第一功率放大器的输出端与耳机座连接,第一功率放大器的第二输入端用于接收模拟音频信号。
在一种可能的实现方式中,参照图3,第一功率放大器包括正极输入端(+)和负 极输入端(-),其中的正极输入端可以为上述介绍的第二输入点,以及负极输入端可以为上述介绍的第一输入端,则第一功率放大器的两个输入端的具体连接比如说可以是,第一功率放大器的正极输入端用于接收音频信号,以及第一功率放大器的负极输入端与增益放大器的输出端连接。
也就是说,第一功率放大器的正极输入端可以输入左声道的音频信号,其中,输入第一功率放大器的正极的音频信号例如已经经过了数模转换处理,因此输入第一功率放大器的正极的音频信号可以为左声道的模拟音频信号。以及第一功率放大器的负极输入端可以输入增益放大器所输出的信号。在一种可能的实现方式中,第一功率放大器例如可以对输入的两个信号进行处理,进而输出左声道的输出信号,比如说是图3中的HPL(耳机左声道输出),这个输出信号例如可以通过左耳机进行播放。
以及,第二功率放大器的第一输入端与增益放大器连接,第二功率放大器的输出端与耳机座连接,第二功率放大器的第二输入端用于接收模拟音频信号。
在一种可能的实现方式中,参照图3,第二功率放大器包括正极输入端(+)和负极输入端(-),其中的正极输入端可以为上述介绍的第二输入点,以及负极输入端可以为上述介绍的第一输入端,则第二功率放大器的两个输入端的具体连接比如说可以是,第二功率放大器的正极输入端用于接收音频信号,以及第二功率放大器的负极输入端与增益放大器的输出端连接。
也就是说,第二功率放大器的正极输入端可以输入右声道的音频信号,其中,输入第二功率放大器的正极的音频信号例如已经经过了数模转换处理,因此输入第二功率放大器的正极的音频信号可以为右声道的模拟音频信号。以及第二功率放大器的负极可以输入增益放大器所输出的信号。在一种可能的实现方式中,第二功率放大器例如可以对输入的两个信号进行处理,进而输出右声道的输出信号,比如说是图3中的HPR(耳机右声道输出),这个输出信号例如可以通过右耳机进行播放。
以及,在本实施例的音频处理装置中,耳机座接地管脚与增益放大器连接。因此在本实施例中,耳机座接地管脚会通过增益放大器与第一功率放大器的第一输入端连接。在一种可能的实现方式中,增益放大器用于对耳机座接地管脚处的模拟参考信号进行放大,得到输出给第一功率放大器的模拟反馈信号。
具体的,耳机座接地管脚可以将经过增益放大器放大的补偿电压信号输入至第一功率放大器,使得补偿电压信号对第一功率放大器输入的模拟音频信号进行补偿。这样,第一功率放大器输出的信号就是经过补偿后的信号。
参见图3,由于将耳机座接地管脚的走线产生的阻抗抽象为电阻Rg3,以及将耳机线内部的阻抗抽象为电阻Rg1,将耳机插头与耳机座接触产生的阻抗抽象为电阻Rg2。其中耳机座接地管脚通过增益放大器向第一功率放大器输送的补偿电压信号,具体是经过增益放大器处理后的4点电压(图3中的4点),这里的增益放大器的处理可以实现对电阻Rg1、电阻Rg2以及电阻Rg3的分压进行补偿。这样,第一功率放大器输出的信号就是经过补偿后的信号。之后经过耳机座、耳机线的传输,输送至左耳机,由于编解码芯片已经对电阻Rg1、电阻Rg2以及电阻Rg3的分压进行补偿,相当于抵消掉了上述串扰公式中的Rg1、Rg2、Rg3,从而可以有效降低右耳机对左耳机的干扰。
以及,在本实施例中,耳机座接地管脚还会通过增益放大器与第二功率放大器连 接,在一种可能的实现方式中,增益放大器用于对耳机座接地管脚处的模拟参考信号进行放大,得到输出给第二功率放大器的模拟反馈信号。
具体的,耳机座接地管脚可以将经过增益放大器放大的补偿电压信号输入至第二功率放大器,使得补偿电压信号对第二功率放大器输入的模拟音频信号进行补偿。这样,第二功率放大器输出的信号就是经过补偿后的信号。
参见图3,由于将耳机座接地管脚的走线产生的阻抗抽象为电阻Rg3,以及将耳机线内部的阻抗抽象为电阻Rg1,将耳机插头与耳机座接触产生的阻抗抽象为电阻Rg2。其中耳机座接地管脚通过增益放大器向第二功率放大器输送的补偿电压信号,具体是经过增益放大器处理后的4点电压,这里的增益放大器的处理可以实现对电阻Rg1、电阻Rg2以及电阻Rg3的分压进行补偿。这样,第二功率放大器输出的信号就是经过补偿后的信号。之后经过耳机座、耳机线的传输,输送至右耳机,由于编解码芯片已经对电阻Rg1、电阻Rg2以及电阻Rg3的分压进行补偿,相当于抵消掉了上述串扰公式中的Rg1、Rg2、Rg3,从而可以有效降低右耳机对左耳机的干扰。
此处需要说明的是,本实施例中的增益放大器直接实现的是对模拟信号的放大,也就是说在增益放大器放大之前的4点处的信号,以及增益放大器放大之后输出给功率放大器的反馈信号都是模拟信号。这样的话,就无需在中间设置额外的电阻来进行电压的采样,也无需对采样之后的电压进行数模转换处理,其直接通过增益放大器对4点的电压进行模拟信号的放大,得到放大后的反馈信号,从而可以使得电路结构简单,成本较低。
同时,电路中的器件越少,则电路的稳定性就越高,因此本实施例中通过设置增益放大器来实现对模拟信号的放大,从而可以保障电路的稳定性,进而保证了对左耳机和有耳机之间的串扰解决的稳定性。
在一种可能的实现方式中,例如可以对增益放大器PGA的增益值进行调整,以使得输入至功率放大器的补偿电压信号不仅可以对Rg3的分压进行补偿,还可以对Rg1和Rg2的分压进行补偿,以实现对抵消掉了上述串扰公式中的Rg1、Rg2、Rg3,也就是说可以通过调整增益放大器的增益值,以最大程度的降低左耳机和右耳机之间的串扰。
其中增益值的具体设置可以根据实际需求进行选择,只要其可以实现增益放大器处理之后的补偿电压信号还可以实现对Rg1和Rg2的分压进行补偿即可。
本申请实施例提供的音频处理装置中,包括:编解码芯片、增益放大器以及耳机座,编解码芯片包括:第一功率放大器和第二功率放大器,耳机座包括耳机座接地管脚,其中,第一功率放大器的第一输入端与增益放大器连接,第一功率放大器的输出端与耳机座连接,第一功率放大器的第二输入端用于接收模拟音频信号;第二功率放大器的第一输入端与增益放大器连接,第二功率放大器的输出端与耳机座连接,第二功率放大器的第二输入端用于接收模拟音频信号;耳机座接地管脚与增益放大器连接。通过将耳机座接地管脚和第一功率放大器的第一输入端以及第二功率放大器的第一输入端连接,并且在耳机座接地管脚和功率放大器的第一输入端之间设置增益放大器的增益值,实现对耳机线内部的阻抗产生的分压、以及耳机插头与耳机座接触产生的阻抗产生的分压进行抵消,从而可以有效的降低了左耳机、右耳机之间的串扰,以提高 耳机的立体音播放效果。
在上述介绍的内容的基础上,下面对本申请提供的音频处理装置的各个器件的连接关系以及降低串扰的实现原理进行进一步的介绍。
例如可以结合图4进行进一步的介绍,图4为本申请实施例提供的音频处理装置的电路结构示意图二。
如图4所示,在上述图3介绍的内容的基础上,进一步的,增益放大器的输入端可以与耳机座接地管脚连接,以及增益放大器的输出端分别与第一功率放大器的负极输入端以及第二功率放大器的负极输入端连接。
以及本实施例中编解码芯片还可以包括数模转换器,数模转换器可以将数字音频信号转换为模拟音频信号输入给功率放大器。因此数模转换器的输入端可以用于接收数字音频信号。数模转换器的输出端分别与第一功率放大器和第二功率放大器连接,用于将转换后的模拟音频信号输入给第一功率放大器以及第二功率放大器。
参照图4,本实施例中的数模转换器例如可以包括第一数模转换器以及第二数模转换器,其中第一数模转换器的输入端可以接收左声道的数字音频信号。在一种可能的实现方式中,本实施例中的音频处理装置还可以包括DSP芯片,其中DSP芯片与第一数模转换器连接,DSP芯片可以向第一数模转换器输出左声道的数字音频信号。
之后第一数模转换器对左声道的数字音频信号进行数模转换处理,从而输出左声道的模拟音频信号,其中第一数模转换器的输出端与第一功率放大器的第二输入端连接,因此第一数模转换器可以向第一功率放大器输出左声道的模拟音频信号,以使得第一功率放大器执行上述介绍的处理。
以及参照图4,本实施例中的第二数模转换器的第二输入端可以接收右声道的数字音频信号。在一种可能的实现方式中,DSP芯片还与第二数模转换器连接,DSP芯片可以向第二数模转换器输出右声道的数字音频信号。
之后第二数模转换器对右声道的数字音频信号进行数模转换处理,从而输出右声道的模拟音频信号,其中第二数模转换器的输出端与第二功率放大器的第二输入端连接,因此第二数模转换器可以向第二功率放大器输出右声道的模拟音频信号,以使得第二功率放大器执行上述介绍的处理。
在上述介绍的电路结构的基础上,下面结合各种可能的场景对本申请的技术方案中解决左耳机和右耳机的串扰的具体实现原理进行进一步的说明。
在一种场景下,假设左声道是满幅信号,右声道是静音信号,也就是说当前情况下,左声道是有数字音频信号的输入的(左声道有声音),右声道没有数字音频信号的输入(右声道没有声音)。因此第一功率放大器的正极输入端就存在输入的模拟音频信号,而第二功率放大器的正极输入端就不存在输入的模拟音频信号。
因为第一功率放大器存在输入的模拟音频信号,因此第一功率放大器是存在输出电压的,假设第一功率放大器的输出电压(即图4中1点电压)为V1,那么3点电压V3就是电阻Rg1、电阻Rg2、电阻Rg3对第一功率放大器的输出电压V1的分压,即3点电压V3可以表示为如下公式四:
Figure PCTCN2022130669-appb-000004
以及4点电压就为电阻Rg3对第一功率放大器的输出电压V1的分压,即原4点 电压V4可以表示为如下公式五:
Figure PCTCN2022130669-appb-000005
以及在当前场景下,第二功率放大器的正极输入端就不存在输入的模拟音频信号,但是本实施例中的第二功率放大器的负极输入端是通过增益放大器连接右耳机座接地管脚的,因此第二功率放大器的输出电压(即图4中2点电压)V2就应该等于耳机座接地管脚对应的4点电压,也就是说V2=V4。
以及,当前在确定串扰结果的时候,关注的是右耳机的V32两点的电压,可以理解的是,因为当前时刻右声道为静音信号,因此如果不存在左耳机的串扰影响的话,右耳机的V32两点的电压理论上来讲应该是0,那么右耳机的V32两点的电压越小,就表示左声道对右声道的串扰影响越小。
可以理解的是,V32的推算可以满足如下公式六:
Figure PCTCN2022130669-appb-000006
那么基于公式六可以确定的是,通过将耳机座接地管脚与第二功率放大器的负极连接,就有效实现了对Rg3的分压效果的消除,也就是说实现了对Rg3的抵消,以降低了左耳机对右耳机的干扰。
上述介绍的是增益放大器没有发挥作用的实现过程,仅仅实现了对Rg3的抵消。进一步的,本实施例中还会通过设置增益放大器的增益值,以使得经过增益放大器的增益值处理之后的电压补偿信号,还可以实现对Rg1和Rg2的抵消。
在一种可能的实现方式中,增益放大器的增益值可以为根据第一阻抗、第二阻抗和第三阻抗确定得到的,其中,第一阻抗为耳机线的阻抗,也就是上述介绍的Rg1;第二阻抗为耳机座与耳机插头的接触阻抗,也就是上述介绍的Rg2;第三阻抗为耳机座接地管脚的走线阻抗,也就是上述介绍的Rg3。
其中,增益放大器的增益值和第一阻抗、第二阻抗和第三阻抗之间例如可以满足如下公式七所示的关系:
Figure PCTCN2022130669-appb-000007
其中,α为增益值,Rg1为第一阻抗,Rg2为第二阻抗,Rg3为第三阻抗。
下面对确定上述增益值α的过程进行介绍,可以理解的是,当前如果需要进一步的消除Rg1和Rg2的影响,实际上最终的目的就是需要V32=0。
基于上述介绍可以确定的是,V32=V3-V2=V3-V4,那么例如可以设置可以设置
Figure PCTCN2022130669-appb-000008
这样的话,经过增益放大器之后的V4就变成了α*V4,也就等于V3,这样的话,就可以实现V32=V3-V2=V3-α*V4=V3-V3=0。
具体的,增益值α的确定可以进一步参照如下公式八:
Figure PCTCN2022130669-appb-000009
因此本实施例中通过设置耳机座接地管脚通过增益放大器与第二功率放大器的第一输入端相连接,并且设置增益值等于
Figure PCTCN2022130669-appb-000010
从而可以有效实现对Rg1、Rg2、Rg3 的抵消,进而可以有效的降低左耳机对右耳机的干扰。
上述介绍的是对左声道场景下的降低串扰的原理,在另一种场景下,假设右声道是满幅信号,左声道是静音信号,也就是说当前情况下,右声道是有数字音频信号的输入的(右声道有声音),左声道没有数字音频信号的输入(左声道没有声音)。因此第二功率放大器的正极输入端就存在输入的模拟音频信号,而第一功率放大器的正极输入端就不存在输入的模拟音频信号。
因为第二功率放大器存在输入的模拟音频信号,因此第二功率放大器是存在输出电压的,假设第二功率放大器的输出电压(即图4中2点电压)为V2,那么3点电压V3就是电阻Rg1、电阻Rg2、电阻Rg3对第二功率放大器的输出电压V2的分压,即3点电压V3可以表示为如下公式九:
Figure PCTCN2022130669-appb-000011
以及4点电压就为电阻Rg3对第二功率放大器的输出电压V2的分压,即原4点电压V4可以表示为如下公式十:
Figure PCTCN2022130669-appb-000012
以及在当前场景下,第一功率放大器的正极输入端就不存在输入的模拟音频信号,但是本实施例中的第一功率放大器的负极输入端是通过增益放大器连接有耳机座接地管脚的,因此第一功率放大器的输出电压(即图4中1点电压)V1就应该等于耳机座接地管脚对应的4点电压,也就是说V1=V4。
以及,当前在确定串扰结果的时候,关注的是左耳机的V31两点的电压,可以理解的是,因为当前时刻左声道为静音信号,因此如果不存在右耳机的串扰影响的话,左耳机的V31两点的电压理论上来讲应该是0,那么左耳机的V31两点的电压越小,就表示右声道对左声道的串扰影响越小。
可以理解的是,V31的推算可以满足如下公式十一:
Figure PCTCN2022130669-appb-000013
那么基于公式十一可以确定的是,通过将耳机座接地管脚与第一功率放大器的负极连接,就有效实现了对Rg3的分压效果的消除,也就是说实现了对Rg3的抵消,以降低了右耳机对左耳机的干扰。
上述介绍的是增益放大器没有发挥作用的实现过程,仅仅实现了对Rg3的抵消。进一步的,本实施例中还会通过设置增益放大器的增益值,以使得经过增益放大器的增益值处理之后的电压补偿信号,还可以实现对Rg1和Rg2的抵消。
增益值的实现方式与上述介绍的类似,其中增益值α例如可以为
Figure PCTCN2022130669-appb-000014
类似的,当前如果需要进一步的消除Rg1和Rg2的影响,实际上最终的目的就是需要V31=0。
基于上述介绍可以确定的是,V31=V3-V1=V3-V4,那么例如可以设置可以设置
Figure PCTCN2022130669-appb-000015
这样的话,经过增益放大器之后的V4就变成了α*V4,也就等于V3,这样的话,就可以实现V31=V3-V1=V3-α*V4=V3-V3=0。
因此本实施例中通过设置耳机座接地管脚通过增益放大器与第一功率放大器的第 一输入端相连接,并且设置增益值等于
Figure PCTCN2022130669-appb-000016
从而可以有效实现对Rg1、Rg2、Rg3的抵消,进而可以有效的降低右耳机对左耳机的干扰。
上述介绍的都是单声道场景,下面对双声道场景进行说明,在另一种场景下,假设右声道是满幅信号,左声道也是满幅信号,也就是说当前情况下,左声道和右声道都有数字音频信号的输入的(左声道和右声道都有声音),因此第一功率放大器的正极输入端就存在输入的模拟音频信号,而第二功率放大器的正极输入端也存在输入的模拟音频信号。
首先对双声道场景下,降低右耳机对左耳机的干扰的实现进行说明。对于右耳机来讲,因为第二功率放大器存在输入的模拟音频信号,因此与上述介绍的类似,3点电压V3可以表示为:
Figure PCTCN2022130669-appb-000017
以及4点电压可以表示为:
Figure PCTCN2022130669-appb-000018
以及在当前双声道的场景下,第一功率放大器的正极输入端同样是存在输入的模拟音频信号的(例如表示为VR),以及第一功率放大器的负极输入端还通过增益放大器连接有耳机座接地管脚的,因此当前情况下第一功率放大器的输出电压(即图4中1点电压)V1就应该等于这两个信号之和,也就是说V1=VR+V4。
以及,当前在确定右耳机对左耳机的串扰结果的时候,关注的是左耳机的V31两点的电压,可以理解的是,因为现在左耳道也存在输入信号,输入电压是VR,那么如果不存在右耳机的串扰影响的话,左耳机的V31两点的电压理论上来讲应该是VR,同样的,左耳机的V31两点的电压越小,就表示右声道对左声道的串扰影响越小。
可以理解的是,V31的推算可以满足如下公式十二:
Figure PCTCN2022130669-appb-000019
那么基于公式十二可以确定的是,通过将耳机座接地管脚与第一功率放大器的负极连接,就有效实现了对Rg3的分压效果的消除,也就是说实现了对Rg3的抵消,以降低了右耳机对左耳机的干扰。
上述介绍的是增益放大器没有发挥作用的实现过程,仅仅实现了对Rg3的抵消。进一步的,本实施例中还会通过设置增益放大器的增益值,以使得经过增益放大器的增益值处理之后的电压补偿信号,还可以实现对Rg1和Rg2的抵消。
增益值的实现方式与上述介绍的类似,其中增益值α例如可以为
Figure PCTCN2022130669-appb-000020
类似的,当前如果需要进一步的消除Rg1和Rg2的影响,实际上最终的目的就是需要V31=VR。
基于上述介绍可以确定的是,V31=V3-V1=V3-(VR+V4),那么例如可以设置可以设置
Figure PCTCN2022130669-appb-000021
这样的话,经过增益放大器之后的V4就变成了α*V4,也就等 于V3,这样的话,就可以实现V31=V3-V1=V3-V3-(VR+α*V4)=VR。
因此本实施例中通过设置耳机座接地管脚通过增益放大器与第一功率放大器的第一输入端相连接,并且设置增益值等于
Figure PCTCN2022130669-appb-000022
从而可以有效实现对Rg1、Rg2、Rg3的抵消,进而可以有效的降低右耳机对左耳机的干扰。
以及在当前的双声道场景下,降低右耳机对左耳机的干扰的实现是类似的,此处不再赘述。
综上所述,本申请中提供的音频处理装置,通过设置耳机座接地管脚通过增益放大器与第一功率放大器以及第二功率放大器的第一输入端相连接,并且设置增益值等于
Figure PCTCN2022130669-appb-000023
从而可以有效实现对Rg1、Rg2、Rg3的抵消,进而可以有效的降低右耳机和左耳机之间的串扰。
在一种可能的实现方式中,上述介绍的音频处理装置例如可以为PCB板。
同时,因为Rg3包括调频(Frequency Modulation,FM)对地磁珠,其承担了隔离FM信号功能。通常FM性能好的磁珠直流阻抗(Directive Current Resistance,DCR)较高,而DCR对混合脉冲(Hybrid Pulse,HP)是有影响的,因此在实际实现过程中,需在FM灵敏度和HP性能之间取得平衡。本申请提供的技术方案,因为可以有效实现对Rg3的抵消,因此可以忽略DCR对HP的影响,使得FM磁珠选型更加灵活。
在上述任一实施例的基础上,本申请实施例还提供一种终端设备。终端设备中包括上述任意实施例中的音频处理装置。其实现原理和技术效果类似,此处不做赘述。
在本申请中,除非另有明确的规定和限定,术语“连接”、“相连”、“固定”、“安装”等应做广义理解,例如可以是机械连接,也可以是电连接;可以是直接连接,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定、对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
术语“包括”,还有其衍生表述,均意味着不加限制的包括。术语“或者”是包容性的,表示和/或。
术语“电路”指的是(a)仅硬件电路实现(例如模拟电路和/或数字电路中的实现);(b)包括在一个或多个计算机可读存储器上存储的软件和/或固件指令的电路和计算机程序产品的组合,该指令一起工作以使得装置执行这里所述的一个或多个功能;以及(c)需要软件或固件(即使软件或固件物理上并不存在)以进行操作的电路,例如微处理器或微处理器的一部分。“电路”的这个定义也应用于该术语在此的所有使用,包括在任意权利要求中的使用。作为其他实例,这里,术语“电路”还包括一个或多个处理器和/或其部分以及伴随软件和/或固件的实现。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种音频处理装置,其特征在于,包括:编解码芯片、增益放大器以及耳机座,所述编解码芯片包括:第一功率放大器和第二功率放大器,所述耳机座包括耳机座接地管脚,其中,
    所述第一功率放大器的第一输入端与所述增益放大器连接,所述第一功率放大器的输出端与所述耳机座连接,所述第一功率放大器的第二输入端用于接收模拟音频信号;
    所述第二功率放大器的第一输入端与所述增益放大器连接,所述第二功率放大器的输出端与所述耳机座连接,所述第二功率放大器的第二输入端用于接收模拟音频信号;
    所述耳机座接地管脚与所述增益放大器连接。
  2. 根据权利要求1所述的音频处理装置,其特征在于,所述第一输入端为负极输入端,所述第二输入端为正极输入端,其中,
    所述第一功率放大器的正极输入端用于接收音频信号;
    所述第一功率放大器的负极输入端与所述增益放大器的输出端连接。
  3. 根据权利要求1或2所述的音频处理装置,其特征在于,所述第一输入端为负极输入端,所述第二输入端为正极输入端,其中,
    所述第二功率放大器的正极输入端用于接收音频信号;
    所述第二功率放大器的负极输入端与所述增益放大器的输出端连接。
  4. 根据权利要求1-3任一项所述的音频处理装置,其特征在于,所述增益放大器的增益值为根据第一阻抗、第二阻抗和第三阻抗确定得到的,其中,
    所述第一阻抗为耳机线的阻抗;
    所述第二阻抗为所述耳机座与耳机插头的接触阻抗;
    所述第三阻抗为所述耳机座接地管脚的走线阻抗。
  5. 根据权利要求4所述的音频处理装置,其特征在于,所述增益放大器的增益值和第一阻抗、第二阻抗和第三阻抗之间满足如下关系:
    Figure PCTCN2022130669-appb-100001
    其中,所述α为所述增益值,所述Rg1为所述第一阻抗,所述Rg2为所述第二阻抗,所述Rg3为所述第三阻抗。
  6. 根据权利要求1-5任一项所述的音频处理装置,其特征在于,
    所述增益放大器的输入端与所述耳机座接地管脚连接;
    所述增益放大器的输出端分别与所述第一功率放大器的第一输入端和所述第二功率放大器的第一输入端连接。
  7. 根据权利要求1-6任一项所述的音频处理装置,其特征在于,所述编解码芯片还包括数模转换器,其中,
    所述数模转换器的输入端用于接收数字音频信号;
    所述数模转换器的输出端分别与所述第一功率放大器和所述第二功率放大器连接。
  8. 根据权利要求7所述的音频处理装置,其特征在于,所述数模转换器包括第一数模转换器和第二数模转换器,其中,
    所述第一数模转换器的输入端用于接收数字音频信号,所述第一数模转换器的输出端与所述第一功率放大器的第二输入端连接;
    所述第二数模转换器的输入端用于接收数字音频信号,所述第二数模转换器的输 出端与所述第二功率放大器的第二输入端连接。
  9. 根据权利要求7或8所述的音频处理装置,其特征在于,所述音频处理装置还包括数字信号处理DSP芯片,其中,
    所述DSP芯片与所述数模转换器连接,所述DSP芯片用于向所述数模转换器输出所述数字音频信号。
  10. 一种终端设备,其特征在于,包括如权利要求1至9任一项所述的音频处理装置。
PCT/CN2022/130669 2021-11-19 2022-11-08 音频处理装置及终端设备 WO2023088139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111398044.0A CN113923564A (zh) 2021-11-19 2021-11-19 音频处理装置及终端设备
CN202111398044.0 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023088139A1 true WO2023088139A1 (zh) 2023-05-25

Family

ID=79247923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130669 WO2023088139A1 (zh) 2021-11-19 2022-11-08 音频处理装置及终端设备

Country Status (2)

Country Link
CN (1) CN113923564A (zh)
WO (1) WO2023088139A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923564A (zh) * 2021-11-19 2022-01-11 展讯通信(上海)有限公司 音频处理装置及终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150382104A1 (en) * 2014-06-26 2015-12-31 Apple Inc. Audio apparatus having dynamic ground break resistance
CN109413550A (zh) * 2018-09-30 2019-03-01 华为技术有限公司 音频播放电路和终端
CN112118517A (zh) * 2019-06-19 2020-12-22 华为技术有限公司 一种音频芯片及终端
CN214228452U (zh) * 2021-01-27 2021-09-17 维沃移动通信有限公司 音频电路及电子设备
CN113923564A (zh) * 2021-11-19 2022-01-11 展讯通信(上海)有限公司 音频处理装置及终端设备
CN114302279A (zh) * 2021-12-27 2022-04-08 展讯通信(上海)有限公司 一种耳机电路、耳机电路的调试方法、芯片及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925030B2 (en) * 2006-07-08 2011-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Crosstalk cancellation using load impedence measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150382104A1 (en) * 2014-06-26 2015-12-31 Apple Inc. Audio apparatus having dynamic ground break resistance
CN109413550A (zh) * 2018-09-30 2019-03-01 华为技术有限公司 音频播放电路和终端
CN112118517A (zh) * 2019-06-19 2020-12-22 华为技术有限公司 一种音频芯片及终端
CN214228452U (zh) * 2021-01-27 2021-09-17 维沃移动通信有限公司 音频电路及电子设备
CN113923564A (zh) * 2021-11-19 2022-01-11 展讯通信(上海)有限公司 音频处理装置及终端设备
CN114302279A (zh) * 2021-12-27 2022-04-08 展讯通信(上海)有限公司 一种耳机电路、耳机电路的调试方法、芯片及电子设备

Also Published As

Publication number Publication date
CN113923564A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
KR101607899B1 (ko) 감소된 크로스토크 잡음을 가진 집적 헤드셋 스위치를 위한 방법 및 장치
US8340312B2 (en) Differential mode noise cancellation with active real-time control for microphone-speaker combinations used in two way audio communications
CN113038342B (zh) 音频播放电路和终端
US9020162B2 (en) Electronic device and external equipment with digital noise cancellation and digital audio path
US8369534B2 (en) Mode switching noise cancellation for microphone-speaker combinations used in two way audio communications
US4491694A (en) Telephone to stereo amplifier interface coupling
CN112235692B (zh) 音频切换电路、电子设备和音频切换方法
WO2020010943A1 (zh) 音频处理装置、音频串扰处理方法及装置
WO2023088139A1 (zh) 音频处理装置及终端设备
US20150063585A1 (en) Method and apparatus for reducing crosstalk in an integrated headset
US20100272294A1 (en) Two-channel amplifier with common signal
TW201824880A (zh) 用於耳機單體的耳機放大器電路及其操作方法,以及使用其之具usb介面的耳機裝置
WO2020187024A1 (zh) 音频电路、相关设备及控制方法
CN110321098B (zh) 一种终端设备、音频播放系统以及音频电路
CN114302279A (zh) 一种耳机电路、耳机电路的调试方法、芯片及电子设备
CN112511954A (zh) 立体声组件及终端设备
CN108260040B (zh) 耳机放大器电路及其操作方法,以及耳机装置
US20040151330A1 (en) Audio interface device for public address systems
TWI572212B (zh) 應用於耳機麥克風組的訊號處理電路及訊號處理方法
CN117201998A (zh) 一种耳机音频输出单元、耳机防串扰电路、芯片和耳机
US5914636A (en) Balanced power audio amplification system
CN114051189A (zh) 音频处理装置及终端设备
CN104661149B (zh) 应用于耳机麦克风组的信号处理电路及相关信号处理方法
CN114339522A (zh) 音频处理装置及终端设备
CN213938304U (zh) 音频信号传输装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894676

Country of ref document: EP

Kind code of ref document: A1