WO2023088118A1 - 数据传输方法及装置 - Google Patents
数据传输方法及装置 Download PDFInfo
- Publication number
- WO2023088118A1 WO2023088118A1 PCT/CN2022/130275 CN2022130275W WO2023088118A1 WO 2023088118 A1 WO2023088118 A1 WO 2023088118A1 CN 2022130275 W CN2022130275 W CN 2022130275W WO 2023088118 A1 WO2023088118 A1 WO 2023088118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- relay
- qos
- service
- flow
- quality
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 147
- 230000005540 biological transmission Effects 0.000 title claims abstract description 69
- 238000004891 communication Methods 0.000 claims abstract description 99
- 230000004048 modification Effects 0.000 claims description 47
- 238000012986 modification Methods 0.000 claims description 47
- 238000004590 computer program Methods 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 abstract description 39
- 230000000694 effects Effects 0.000 abstract description 13
- 230000006870 function Effects 0.000 description 58
- 230000000875 corresponding effect Effects 0.000 description 43
- TXZPMHLMPKIUGK-UHFFFAOYSA-N 2-methoxy-N-(3-methyl-2-oxo-1,4-dihydroquinazolin-6-yl)benzenesulfonamide Chemical compound COC1=CC=CC=C1S(=O)(=O)NC1=CC=C(NC(=O)N(C)C2)C2=C1 TXZPMHLMPKIUGK-UHFFFAOYSA-N 0.000 description 36
- JCKGSPAAPQRPBW-OAQYLSRUSA-N 8-fluoro-n-[(2r)-1-oxo-1-pyrrolidin-1-yl-3-[3-(trifluoromethyl)phenyl]propan-2-yl]-1,2,3,4-tetrahydroisoquinoline-6-sulfonamide Chemical compound C([C@@H](NS(=O)(=O)C=1C=C(C=2CNCCC=2C=1)F)C(=O)N1CCCC1)C1=CC=CC(C(F)(F)F)=C1 JCKGSPAAPQRPBW-OAQYLSRUSA-N 0.000 description 34
- 238000010586 diagram Methods 0.000 description 15
- 230000004044 response Effects 0.000 description 15
- 238000007726 management method Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 9
- 238000013475 authorization Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 101150055297 SET1 gene Proteins 0.000 description 4
- 101150117538 Set2 gene Proteins 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 238000013523 data management Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 101100042371 Caenorhabditis elegans set-3 gene Proteins 0.000 description 1
- 101150045592 RSC1 gene Proteins 0.000 description 1
- 101100094096 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RSC2 gene Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920006235 chlorinated polyethylene elastomer Polymers 0.000 description 1
- 238000000136 cloud-point extraction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/24—Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
Definitions
- the present application relates to the technical field of communications, and in particular to a data transmission method and device.
- Extended reality extended reality
- XR extended reality
- MR mixed reality
- the three visual interaction technologies are integrated to realize the "immersion" experience of seamless transition between the virtual world and the real world.
- Media services such as XR have the characteristics of data bursts, so that when the data transmission cannot be guaranteed, such as when the network is congested, the base station will randomize one or more data packets in a set of received data packets. Packet loss handling to alleviate congestion. If the randomly discarded data packets are of high importance, there will be a longer period of freeze, which will affect the video effect.
- the remote (remote) user equipment (user equipment, UE) performs data transmission through the relay (relay) UE, for example, for the uplink, the relay UE receives the uplink data packet from the remote UE , sending the uplink data packet to the service server through the connection between the relay UE and the network; for downlink, the relay UE receives the downlink data packet from the service server, and sends the downlink data packet to the remote UE.
- the relay UE For the transmission of XR services in the relay scenario, how to reduce the impact on the video effect on the remote UE side is a technical problem to be solved urgently.
- the present application provides a data transmission method and device.
- a protocol data unit session supporting hierarchical quality of service can be established, thereby reducing the impact on the video effect on the remote device side.
- the present application provides a data transmission method, and the method may be executed by a relay device or a module in the relay device.
- the method may include: the relay device receives a first message from the remote device, the first message is used to discover the remote device or request to establish a communication connection with the relay device; wherein the first message includes a relay service code, the The protocol data unit session parameter corresponding to the relay service code includes first information; or, the first message includes first information; the first information is used to establish a protocol data unit session supporting hierarchical quality of service, and the protocol data unit session is used for Relay the data of the remote device; the relay device transmits the data of the remote device through the PDU session.
- the relay device can establish a PDU session based on layered QoS, through which the PDU session transmits the XR service in the relay scenario, which can reduce the impact on the video effect on the remote device side.
- the relay device before receiving the first message from the remote device, receives configuration information from the first network device, where the configuration information includes the above-mentioned relay service code, and The protocol data unit session parameter corresponding to the above relay service code, the protocol data unit session parameter includes the first information, so that the relay device performs a discovery process with the remote device based on the relay service code.
- the relay device after establishing the foregoing protocol data unit session, the relay device sends the second message, and the second message is used to determine the first association relationship between the uplink data packet and the first-type QoS flow, wherein the first-type QoS flow is used for data transmission between the relay device and the remote device.
- the first association relationship may represent an association relationship between uplink data packets of different importance and first-type QoS flows of different QoS levels, for example, uplink data packets of high importance may be associated with QoS flows
- a first-class quality of service flow with high importance is associated with a first-class quality of service flow with low quality of service, so that the remote device can map upstream data packets of different importance to different quality of service Class 1 quality of service flow.
- the layered transmission between the remote device and the relay device can be realized through the first association relationship, so that when the resources between the two are limited, the first type of QoS flow mapped to the high QoS can be preferentially transmitted .
- the second message includes a layered QoS rule, and the layered QoS rule is used to determine the first association relationship between the uplink data packet and the first type of QoS flow.
- the relay device when establishing the foregoing protocol data unit session, the relay device sends a user
- the request message includes first information to indicate establishment of the PDU session supporting hierarchical QoS, so as to relay the data of the remote device.
- the relay device when establishing the PDU session, the relay device sends a request message and the first information to the second network device to indicate establishment of a PDU session supporting hierarchical QoS, thereby relaying data of the remote device.
- the second network device may generate the first association relationship, and send the first association relationship to the relay device.
- the relay device receives the first association relationship, it can send it to the remote device.
- the relay device establishes the protocol data unit session In the case of , establish multiple first-type QoS flows with associated relationships, establish multiple second-type QoS flows with associated relationships, and determine the multiple first-type QoS flows and multiple second-type QoS flows Second association relationship between streams.
- the second type of QoS flow is associated with the aforementioned PDU session, and is used for data transmission between the relay device and the third network device.
- the second association relationship is used to associate the first-type QoS flow with the second-type QoS flow, so that the relay device transmits the uplink data packet from the remote device to the third network device.
- the second association relationship is an uplink QoS rule, which is used to map the uplink data packets carried on the first type of QoS flow to the second type of QoS flow.
- the relay device for uplink transmission: receives the QoS flow identified by the first flow identifier from the remote device the first uplink data packet, map the first uplink data packet to the first QoS flow among multiple second-type QoS flows according to the above-mentioned second association relationship, and send the first uplink data packet to the third network device through the first QoS flow data packets, so that the relay device can relay uplink data packets.
- the first flow identifier is used to identify the QoS flow carrying the first uplink data packet among the plurality of QoS flows of the first type
- the second association relationship includes the relationship between the first QoS flow and the QoS flow identified by the first flow ID. relationship.
- the relay device can map the first-type quality of service flow with high importance to the second-type quality of service flow with high quality of service, so as to avoid loss of important data.
- a sixth possible implementation manner of the first aspect when the relay device establishes multiple first-type QoS flows with an association relationship, the multiple In the case of two QoS streams of the second type, a third association relationship between multiple QoS streams of the first type and multiple QoS streams of the second type is also determined, and the third association relationship is used to use the first QoS stream
- the flow is associated with the second-type QoS flow, so that the relay device transmits the downlink data packet from the third network device to the remote device.
- the third association relationship is a downlink quality of service rule, which is used to map the downlink data packets carried on the second type of service quality flow to the first type of service quality flow.
- the relay device receives the QoS flow identified by the second flow identifier from the third For the first downlink data packet of the network device, the first downlink data packet is mapped to the second quality of service flow among the plurality of first-type quality of service flows according to the third association relationship, and the second quality of service flow is sent to the remote device through the second quality of service flow A downlink data packet, so that the relay device can relay the downlink data packet.
- the second flow identifier is used to identify the quality of service flow carrying the first downlink data packet among the plurality of second-type quality of service flows;
- the third association relationship includes the second quality of service flow and the quality of service identified by the second flow identifier relationship between streams.
- the relay device can map the second-type quality of service flow with high importance to the first-type quality of service flow with high quality of service, so as to avoid loss of important data.
- the relay device in the case of limited resources between the remote device and the relay device, if the second quality of service If the priority of the flow is lower than the threshold, the relay device discards the second downlink data packet mapped to the second QoS flow. Once the resources between the remote device and the relay device are limited, the downlink data packets mapped to the second type of QoS flow with low quality of service can be discarded preferentially, so as to ensure the transmission of the second type of QoS flow with high quality of service, Thereby reducing the impact on the video effect.
- the remote device may trigger the relay device to establish multiple first-type QoS flows with an association relationship.
- the relay device receives the first connection message from the remote device, and establishes multiple first-type QoS flows with an association relationship according to the first connection message.
- the first connection message may also indicate an association relationship between multiple first-type QoS flows, so that the relay device establishes multiple first-type QoS flows with an association relationship based on the association relationship.
- the network side may trigger the relay device to establish multiple first-type QoS flows with an association relationship.
- the relay device receives the protocol data unit session modification message including the identification information of the remote device from the second network device, and establishes multiple first-type Quality of service flow.
- the relay device is triggered on the network side to establish multiple first-type QoS flows with an association relationship
- the relay device can update the previously determined second association relationship and/or the third association relationship, so that the relay device can dynamically adjust the association relationship between the first type of QoS flow and the second type of QoS flow,
- network resources can be flexibly utilized.
- the relay device is triggered on the network side to establish multiple first-type QoS flows with an association relationship
- the relay device may notify the remote device of the association relationship between multiple first-type QoS flows.
- the relay device sends a second connection message to the remote device, and the second connection message indicates the association relationship between multiple first-type QoS flows, so that the remote device sends the uplink data packet to the remote device according to the association relationship and the first association relationship. Mapped to the corresponding first-class QoS flow.
- the present application provides a data transmission method, which can be executed by a remote device or a module in the remote device.
- the method may include: the remote device sends a first message to the relay device, the first message is used to discover the remote device, or request to establish a communication connection with the relay device; wherein, the first message includes a relay service code, and the middle
- the protocol data unit session parameter corresponding to the service code includes the first information; or, the first message includes the first information; the first information is used to establish a protocol data unit session supporting hierarchical quality of service, and the protocol data unit session is used in the middle data from the remote device.
- the remote device sends the first information to the relay device so that the relay device establishes a PDU session based on layered quality of service, and the XR service in the relay scenario is transmitted through the PDU session, which can reduce the need for Influenced by the video effect on the remote device side.
- the remote device before sending the first message to the relay device, receives configuration information from the first network device, where the configuration information includes the above-mentioned relay service code, and the above-mentioned A protocol data unit session parameter corresponding to the relay service code, where the protocol data unit session parameter includes first information, so that the remote device performs a discovery process with the relay device based on the relay service code.
- the remote device after sending the first message, the remote device receives the second message from the relay device , the second message is used to determine the first association relationship between the uplink data packet and the first-type QoS flow, where the first-type QoS flow is used for data transmission between the relay device and the remote device.
- the first association relationship may represent an association relationship between uplink data packets of different importance and first-type QoS flows of different QoS levels, for example, uplink data packets of high importance may be associated with QoS flows
- a first-class quality of service flow with high importance is associated with a first-class quality of service flow with low quality of service, so that the remote device can map upstream data packets of different importance to different quality of service Class 1 quality of service flow.
- the layered transmission between the remote device and the relay device can be realized through the first association relationship, so that when the resources between the two are limited, the first type of QoS flow mapped to the high QoS can be preferentially transmitted .
- the remote device when sending the first uplink data packet, the remote device, according to the attribute information of the first uplink data packet, and Combining the first association relationship and the association relationship between multiple first-type service quality flows, determine that the first uplink data packet corresponds to the first flow identifier, and map the first uplink data packet to the first type of service identified by the first flow identifier Quality flow, and send the first uplink data packet to the relay device through the first type of service quality flow identified by the first flow identifier, so as to send uplink data to the relay device based on the layered transmission mechanism between the remote device and the relay device Bag.
- the attribute information includes one or more of a specific application identifier, a triplet, and a quintuple.
- the specific application identifier is used to identify media services such as XR
- the triplet or quintuple is used to identify whether the data packet is for XR. and other media business.
- the association relationship between the above-mentioned multiple first-type QoS flows may be determined by the remote device, and the remote device determines Afterwards, it can be sent to the relay device, so that the relay device can establish a plurality of first-type quality of service flows with an association relationship according to the association relationship.
- the remote device sends a first connection message to the relay device, the first connection message is used to request to establish a plurality of first-type quality of service flows with an association relationship, and the first connection message includes the relationship between.
- the above-mentioned association relationship between the multiple first-type QoS flows may come from a relay device, and the relay device determines the association and send it to the remote device.
- the remote device receives a second connection message from the relay device, and the second connection message includes association relationships among multiple first-type QoS flows.
- the relay device in the case of limited resources between the remote device and the relay device, if the first flow identifier identified If the priority of the quality of service flow is lower than the threshold, the relay device discards the second uplink data packet mapped to the quality of service flow identified by the first flow identifier. Once the resource between the remote device and the relay device is limited, the uplink data packets mapped to the first type of QoS flow with low QoS may be discarded preferentially, so as to ensure the transmission of the first type of QoS flow with high QoS.
- the present application provides a communication device.
- the communication device may be a relay device, or a device in the relay device, or a device that can be matched with the relay device.
- the communication device may also be a system on a chip.
- the communication device can execute the method described in the first aspect.
- the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
- the hardware or software includes one or more units or modules corresponding to the above functions.
- the unit or module can be software and/or hardware.
- the present application provides a communication device.
- the communication device may be a remote device, or a device in the remote device, or a device that can be matched with the remote device.
- the communication device may also be a system on a chip.
- the communication device can execute the method described in the second aspect.
- the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
- the hardware or software includes one or more units or modules corresponding to the above functions.
- the unit or module can be software and/or hardware.
- the present application provides a communication device, the communication device includes a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or The signal from the processor is sent to other communication devices other than the communication device, and the processor uses a logic circuit or executes code instructions to implement the method described in any one of the first aspect and the second aspect. method.
- the present application provides a computer-readable storage medium, where instructions are stored in the storage medium, and when the computer program or instruction is executed by a communication device, any one of the first aspect and the second aspect can be realized. method described in the aspect.
- the present application provides a computer program product including instructions.
- the communication device reads and executes the instructions, the communication device executes the method according to any one of the first aspect and the second aspect.
- the present application provides a communication system, including at least one communication device for performing the method described in the first aspect above, and at least one communication device for performing the method described in the second aspect above.
- Fig. 1 is a schematic diagram of a system architecture applying the present application
- FIG. 2 is a schematic diagram of a 5G system
- FIG. 3 is a schematic diagram of a relay process
- Fig. 4 is a schematic flow chart of the data transmission method provided by the present application.
- FIG. 5 is an example diagram of uplink transmission provided by the present application.
- FIG. 6 is an example diagram of downlink transmission provided by the present application.
- FIG. 7 is a schematic flowchart of a data transmission method provided in Embodiment 1 of the present application.
- Figure 7-1 is a schematic flow diagram of the relay UE establishing a PDU session supporting LQoS
- Figure 7-2 is a schematic diagram of the PDU session modification process
- FIG. 8 is a schematic flowchart of a data transmission method provided in Embodiment 2 of the present application.
- FIG. 9 is a schematic flowchart of a data transmission method provided in Embodiment 3 of the present application.
- Fig. 10 is a schematic diagram of a form of communication between a relay device and a remote device
- Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Fig. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
- At least one (item) means one or more
- multiple means two or more
- at least two (items) means two or three and three
- “and/or” is used to describe the corresponding relationship between associated objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. A case where A and B can be singular or plural.
- the character “/” generally indicates that the contextual objects are an "or” relationship.
- At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
- At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
- FIG. 1 is a schematic diagram of a system architecture applying the present application.
- the system shown in FIG. 1 is a system in a relay scenario, and may include a relay system and a communication system.
- the relay system is such as a layer (layer) 3 relay system, etc.
- the communication system is such as the fifth generation (5 th -generation, 5G ) system or future communication system, etc.
- the system architecture of the 5G system can be referred to in Figure 2.
- the system shown in Figure 1 may include, but not limited to, remote devices, relay devices, access network devices, core networks, and data networks (data network, DN), etc., wherein the remote devices and relay devices may belong to relay System; relay equipment, access network equipment and core network and data network may belong to the communication system.
- Remote devices can also be described as remote UEs, such as smart bracelets, virtual reality terminal devices (such as VR glasses), augmented reality terminal devices (such as AR glasses), wireless terminals in telemedicine, wireless terminals in smart grids, Wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted terminals in Internet of Vehicles, etc.
- the relay device can also be described as a relay UE or a layer 3 UE for network relay (that is, layer-3 UE-to-network relay), such as smart phones, customer premises equipment (CPE), personal computers , mobile station, remote station, access point (access point, AP), etc.
- layer-3 UE-to-network relay such as smart phones, customer premises equipment (CPE), personal computers , mobile station, remote station, access point (access point, AP), etc.
- the device used to implement the function of the relay device may be a relay device, or a device capable of supporting the relay device to realize the function, such as a chip system or a combined device or component that can realize the function of the relay device , the device can be installed in the relay device.
- the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
- the technical solutions provided in the embodiments of the present application are described by taking the relay device as an example for realizing the function of the relay device. The same applies to remote devices. For the convenience of description, the technical solutions provided in the embodiments of the present application are described with a relay UE and a remote UE.
- Access network (access network, RAN) equipment also known as wireless access network (radio access network, RAN) equipment, is a device that connects terminal devices to a wireless network, and can provide wireless resource management for terminal devices , quality of service (quality of service, QoS) management, data encryption and compression and other functions.
- the access network can be a device with wireless transceiver function or a chip that can be set on the device.
- the access network device can include but not limited to: next generation node base station (gNB) in the 5G system, for connecting
- the evolution of the 5G core network is the long term evolution (long term evolution, LTE) base station, the next generation evolved base station (next generation evolved Node B, ng-eNB), the radio network controller (radio network controller, RNC), the node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved nodeB, or home node B, HNB), base band unit (base band unit, BBU ), transmission receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), small base station equipment (pico), mobile switching center, or access network equipment in the future network, etc.
- the communication interface between the relay device and the access network device may be called a Uu port.
- the core network is responsible for maintaining the subscription data of the mobile network, and providing functions such as session management, mobility management, policy management, and security authentication for terminal devices.
- the core network in a 5G system may include the following network elements: user plane function (user plane function, UPF), authentication service function (authentication server function, AUSF), access and mobility management function (access and mobility management function (AMF), session management function (session management function, SMF), service communication proxy (service communication proxy, SCP), network slice selection function (network slice selection function, NSSF), network exposure function (network exposure function, NEF), network function storage function (NF repository function, NRF), policy control function (policy control function, PCF), unified data management (unified data management, UDM) and application function (application function, AF).
- user plane function user plane function
- UPF authentication service function
- AMF access and mobility management function
- SMF session management function
- service communication proxy service communication proxy
- SCP service communication proxy
- network slice selection function network slice selection function
- NEF network exposure function
- AMF can provide mobility management, such as user location update, user registration network, user switching, etc., and can also provide functions such as lawful interception, access authorization, and authentication.
- SMF is mainly responsible for session management in mobile networks, such as session establishment, modification, and release. Specific functions such as assigning Internet protocol (internet protocol, IP) addresses to users, selecting UPFs that provide message forwarding functions, and the like.
- IP Internet protocol
- SCP the main function is signaling forwarding, routing and load balancing.
- UPF is responsible for the forwarding and receiving of user data. It can receive user data from the data network and transmit it to the UE through the access network device; it can also receive user data from the UE through the access network device and forward it to the data network.
- PCF mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the network functions of the control layer, and is responsible for obtaining user subscription information related to policy decisions.
- PCF can provide policies to AMF and SMF, such as QoS policy and slice selection policy.
- AUSF is used to perform security authentication of UE.
- NSSF is used to select a network slice for the UE.
- NEF is mainly used to support the opening of capabilities and events.
- NRF is used to provide storage function and selection function of network function entity information for other network elements.
- UDM is used to store user data, such as subscription data, authentication/authorization data, etc.
- AF a server that provides users with certain types of services, can also be called an application server or a service server, and can be an AF deployed by an operator's network or a third-party AF.
- the data network is used to provide business services for users. It can be a private network, such as a local area network; it can also be an external network that is not controlled by the operator, such as the Internet (Internet); it can also be a proprietary network jointly deployed by the operator , such as a network that provides an IP multimedia subsystem (IP multimedia subsystem, IMS).
- IP multimedia subsystem IP multimedia subsystem
- the UE can access the DN through the established protocol data unit (protocol data unit, PDU) session.
- PDU protocol data unit
- the session where the UE accesses the DN is called a PDU session.
- the PDU session may use other names. This application uses the PDU session as an example.
- Figure 2 takes the communication system as an example of a 5G system.
- the network elements shown in Figure 2 may change.
- the UPF, PCF, SMF, etc. involved in this application can be Replace them with network elements that have the same functions as these network elements in the future communication system.
- video data usually consists of frames, and one frame represents a still image.
- Frames constituting video data may include I frames and P frames.
- An I frame represents a key frame, which can be understood as a complete reservation of this frame, because it contains a complete picture, so only the data of this frame is required for decoding.
- the P frame represents the difference between this frame and a previous key frame (such as an I frame).
- decoding it is necessary to superimpose the difference defined by the frame with the previously cached picture to generate the final picture. If the decoding of the I frame fails, all subsequent P frames will fail to be decoded. Usually, an I frame will be followed by several P frames, which will cause a longer period of freezing.
- a relay mechanism such as a layer 3 relay mechanism, means that the relay UE performs network layer (eg, IP layer) relay for the remote UE. That is, for uplink, the remote UE sends an uplink IP packet to the relay UE, and when the relay UE receives the uplink IP packet, it sends the uplink IP packet to the UPF through the connection between the relay UE and the network; for the downlink, the UPF sends the uplink IP packet to the UPF.
- the relay UE sends the downlink IP packet, and when the relay UE receives the downlink IP packet, it sends the downlink IP packet to the remote UE, and the application layer of the remote UE processes the downlink IP packet.
- network layer eg, IP layer
- Figure 3 is a schematic diagram of the relay process, which may include but not limited to the following steps:
- authorization and provisioning for the relay UE (authorization and provisioning for layer-3 UE-to-network relay).
- the network authorizes and provides parameters to the relay UE.
- the first network device authorizes the relay UE to provide relay services for the remote UE, and provides one or more relay service codes (relay service codes) to the relay UE. service code, RSC), and the PDU session parameters corresponding to each RSC.
- the first network device may be a PCF in the 5G system, or a network element having the same function as the PCF in future communications. This application uses the PCF as an example.
- the PCF sends one or more RSCs and the PDU session parameters corresponding to each RSC to the relay UE.
- the PCF When the PCF sends to the relay UE, it may go through one or more network elements, such as AMF, that is, the PCF sends to the AMF, and then the AMF sends to the relay UE through an access network device (such as a base station).
- AMF Access Management Function
- the RSC may identify a connection service provided by the relay UE to the remote UE, or may identify connection information that the remote UE is interested in or expects.
- PDU session parameters can include PDU session type (type), data network name (data network name, DNN), session and service continuity (session and service continuity, SSC) mode (mode), single network slice selection auxiliary information (single network One or more of slice selection assistance information, S-NSSAI), access type parameter (access type preference), etc.
- authorization and provisioning for remote UE authorization and provisioning for remote UE.
- the PCF also authorizes the remote UE to obtain network services through the relay UE, and provides one or more RSCs and PDU session parameters corresponding to each RSC to the remote UE.
- step 101a and step 101b the RSC and the corresponding PDU session parameters are used in the discovery process of step 103 .
- the relay UE establishes a PDU session.
- the remote UE and the relay UE execute a discovery procedure (discovery procedure).
- the discovery process performed by the remote UE and the relay UE can be implemented through the following mode A or mode B.
- the relay UE In mode A, the relay UE broadcasts the RSC that it can provide to the remote UE to connect to the service.
- the remote UE discovers the relay UE.
- step 104 can be executed.
- the number of RSCs broadcast by the relay UE may be one or more.
- the remote UE In mode B, the remote UE broadcasts its desired RSC.
- the relay UE responds to the remote UE, and the remote UE communicates with the intermediate UE.
- step 104 can be performed.
- the remote UE establishes a unicast connection with the relay UE.
- the remote UE and the relay UE perform a discovery process, and the two establish a unicast connection, that is, establish a communication connection.
- the relay UE may establish a new PDU session, which can be used to relay the data packet between the UPF and the remote UE, so that the remote UE Obtain network services through the connection between the relay UE and the network.
- the unicast connection is a layer 2 connection between the remote UE and the relay UE, that is, a connection establishment request sent between the remote UE and the relay UE
- the source layer 2 identifier and the target layer 2 identifier are carried in the message and the connection establishment response message.
- 105 assigning an IP address.
- the relay UE allocates an IPv4 address or an IPv6 prefix (prefix) to the remote UE.
- modify the unicast connection established in step 104 For example, add, modify, and delete QoS streams on the unicast connection.
- the relay UE sends a remote UE report (remote UE report) to the second network device.
- the second network device receives the remote UE report from the relay UE.
- the second network device may be an SMF in the 5G system, or a network element having the same function as the SMF in the future communication system.
- This application uses the SMF as an example.
- the relay UE sends the remote UE report to the SMF through the access network equipment and the AMF in turn, or the relay UE sends the remote UE report to the SMF through the AMF.
- the remote UE report may include the remote user identifier (such as UE ID, etc.) and remote UE information, such as the IP address of the remote UE, that is, the IP address allocated by the relay UE to the remote UE.
- the remote user identifier such as UE ID, etc.
- remote UE information such as the IP address of the remote UE, that is, the IP address allocated by the relay UE to the remote UE.
- the relay UE transmits the data packet between the UPF and the remote UE in a relay manner.
- the PDU session parameters corresponding to the RSC configured by the PCF for the relay UE and the remote UE may include first information, the first information is used to establish a PDU session supporting hierarchical quality of service, and the PDU session is used for relaying Data of the remote UE.
- hierarchical service quality can be understood as the realization of service quality control through layering, that is, the service data flow of the same application program can be transmitted through multiple QoS flows in the network, and different QoS flows have different QoS guarantees.
- QoS streams are used to transmit data of different importance for the application (for example, one QoS stream transmits I-frame data, another QoS stream transmits P-frame data; or one QoS stream transmits view area data, and another QoS stream transmits non-view area data , the above is just an example, and does not limit how to divide the service data flow in the layered quality of service),
- the layered quality of service can be expressed as layered QoS, referred to as LQoS.
- LQoS layered QoS
- the name layered quality of service is used as an example, and other names can also be used, for example, it can also be called associated QoS and the like.
- the first information may be a parameter, such as QoS control type (control type), the value of this parameter may indicate the establishment of a PDU session supporting LQoS, or indicate the establishment of a PDU session supporting independent QoS, the PDU session of independent QoS is the flow chart in Figure 3 PDU session in.
- QoS control type control type
- RSC->PDU session parameters PDU session type, DNN, SSC mode, S-NSSAI, access type preference, QoS control type.
- RSC1->PDU Session parameters IPv4,cmnet,SSC mode1,MBB,3gpp,LQoS
- LQoS the QoS control type in the PDU session parameters corresponding to RSC1 is LQoS, which is used to indicate the establishment of a PDU session supporting LQoS.
- RSC2->PDU Session parameters indicates that the QoS control type in the PDU session parameters corresponding to RSC2 is independent QoS, which is used to indicate the establishment of a PDU session that supports independent QoS .
- QoS control type indicates the establishment of a PDU session supporting LQoS; when it is 0, it indicates the establishment of a PDU session of independent QoS.
- the remote UE and the relay UE perform a discovery process based on the first information indicating LQoS.
- the relay UE if it supports LQoS, it can broadcast the RSC of LQoS in the associated PDU session parameters.
- the remote UE broadcasts RSC, and the PDU session parameter corresponding to the RSC indicates LQoS, and the relay UE can respond to the remote UE if it supports LQoS.
- QoS flow (flow), or other names used to describe QoS flow.
- QoS control is implemented based on QoS flow granularity.
- QoS flow is the granularity of QoS forwarding processing defined by the 5G system. Data mapped to the same QoS flow will be subject to the same forwarding processing, such as scheduling policies, queuing management policies, rate shaping policies, etc. Different QoS flows can provide different QoS forwarding processing.
- the first type of QoS flow is used to transmit data between the relay UE and the remote UE.
- the relay UE and the remote UE transmit data through the PC5 port, and then the first type of service quality flow can also be called PC5 QoS flow or QoS flow of the first interface, and the first interface is the PC5 port.
- the second type of QoS flow is used to transmit data between the relay UE and the third network device.
- the third network device may be the UPF in the 5G system, or a network element having the same function as the UPF in the future communication system.
- This application uses the UPF as an example.
- the communication interface between the relay UE and the access network device is the Uu interface
- the second type of service quality flow can also be called Uu QoS flow or the QoS flow of the second interface
- the second interface is the Uu interface.
- the first type of service quality flow is described as PC5 QoS flow
- the second type of service quality flow is described as Uu QoS flow.
- This application can be applied to the transmission of XR services in relay scenarios.
- VR/AR glasses For VR/AR glasses to obtain AR video from an XR server, VR/AR glasses are used as remote UEs, and smartphones or CPEs can be used as relay UEs.
- VR/AR The glasses connect to the network through a smartphone or CPE relay, and obtain AR video from the XR server.
- the smart phone can relay for VR/AR glasses through hotspots, or through other methods.
- the vehicle-mounted terminal obtains video data from the XR server, the vehicle-mounted terminal acts as a remote UE, and the smartphone acts as a relay UE.
- the vehicle-mounted terminal connects to the network through a smartphone relay, and obtains video data from the XR server.
- the energy consumption of remote UEs can be saved by relaying UE relays, and the impact of weak signals on remote UEs can be reduced.
- the XR server is a server corresponding to the XR service.
- Figure 4 is a schematic flow chart of the data transmission method provided by this application, which may include but not limited to the following steps:
- a remote UE sends a first message to a relay UE.
- the relay UE receives the first message from the remote UE.
- the first message is used to discover the remote UE, that is, the first message is sent during the discovery process, and is used by the relay UE to discover the remote UE so as to establish a communication connection with the remote UE.
- the first message may be a discovery request message.
- the first message may include the RSC, and the PDU session parameters corresponding to the RSC include the first information.
- the first information may be a parameter, such as QoS control type. The value of this parameter may instruct the relay UE to establish a PDU session supporting LQoS, or instruct the relay UE to establish a PDU session supporting independent QoS. The independent QoS
- the PDU session is the PDU session in the flow chart in Figure 3 .
- the first information may be LQoS, directly instructing the relay UE to establish a PDU session supporting LQoS. The fact that the first message includes the RSC will be described in Embodiment 1.
- the first message includes first information
- the first information may be indication information, such as LQoS indication information, used to instruct the relay UE to establish a PDU session supporting LQoS.
- the discovery request message may also carry LQoS indication information.
- the first message is used to request to establish a communication connection with the relay UE.
- the communication connection may be a unicast connection, and the remote UE may request to establish a connection with the relay UE, or the relay UE may request to establish a communication connection with the relay UE. Request to establish a connection with a remote UE, and the initiator of the connection establishment is not limited in this application.
- the first message is executed after the discovery process is completed. For the discovery process, refer to the discovery process shown in FIG. 3 .
- the first message may be a connection request message, such as a layer 2 connection (L2 link) establishment request message or a direct connection communication request message.
- L2 link layer 2 connection
- the first message may include an RSC
- the PDU session parameters corresponding to the RSC include first information, and indirectly instruct the relay UE to establish a PDU session supporting LQoS through the RSC.
- the first message includes first information, and the first information may be indication information, such as LQoS indication information, used to instruct the relay UE to establish a PDU session supporting LQoS.
- the remote UE determines that the relay service is a media service such as XR, it sends a direct communication request message carrying LQoS indication information to the relay UE.
- the direct connection communication request message carrying LQoS indication information will be described in Embodiment 2.
- the above-mentioned PDU session supporting LQoS is a communication connection established between the relay UE and the network, and is used for the relay UE to relay the data of the remote UE. It may be the downlink data sent by the network to the remote UE.
- the first network device configures and sends configuration information for the remote UE and the relay UE, the configuration information includes the RSC and the PDU session parameters corresponding to the RSC, and the PDU session parameters include the first information, so that The remote UE and the relay UE perform a discovery process based on the RSC corresponding to the PDU session parameter including the first information.
- the first network device may be a PCF in the 5G system, or a network element having the same function as the PCF in future communications. This application uses the PCF as an example.
- the configuration information sent by the PCF to the remote UE or the relay UE may go through one or more network elements, such as through the AMF, that is, the PCF sends the configuration information to the AMF, and then the AMF sends it through the access network device.
- the relay UE establishes a PDU session supporting LQoS.
- the relay UE If the relay UE receives the first message, it establishes a PDU session supporting LQoS. The process of establishing a PDU session supporting LQoS by the relay UE will be described in Embodiment 1.
- the relay UE When the relay UE establishes a PDU session supporting LQoS, it can send a request message for establishing the PDU session to a second network device (such as an SMF in the 5G system, or a network element with the same function as the SMF in the future communication system).
- the relay UE may send the request message to the SMF through the AMF, or send the request message to the SMF through the access network device and the AMF in sequence.
- the request message includes first information, so that the SMF configures a layered QoS flow for the PDU session of the relay UE.
- the SMF can also generate second information according to the first information, and the second information is used to determine the relationship between the uplink data packet and The first association between PC5 QoS flows.
- the relay UE when the relay UE establishes a PDU session supporting LQoS, it sends the first information and a request message for establishing the PDU session to the AMF, and the AMF selects an SMF supporting LQoS according to the first information and sends the selected SMF Send the first information and a request message for establishing the PDU session, and the SMF configures a layered QoS flow for the PDU session of the relay UE.
- the SMF can also generate second information according to the first information, and the second information uses It is used to determine the first association relationship between the uplink data packet and the PC5 QoS flow.
- the uplink data packet may be an uplink IP packet or an uplink Ethernet packet.
- the uplink data packet and the downlink data packet refer to data packets of media services such as XR.
- the LQoS rule is used to determine the first association relationship between the importance of the uplink data packet and the PC5 QoS flow, or described as a mapping relationship between the importance of the uplink data packet and the PC5 QoS flow.
- the LQoS rule can map high-importance uplink data packets to high-QoS PC5 QoS flow, and low-importance uplink data packets to low-QoS PC5 QoS flow to ensure the transmission of high-importance data packets.
- the LQoS rule can be expressed as ⁇ application identifier, triple/quintuple, importance level, identifier of PC5 QoS flow ⁇ , where the application identifier is used to identify the application of the XR service; the triple refers to the source of the uplink data packet IP address, destination IP address and protocol number; five-tuple refers to the source IP address, destination IP address, protocol number, source port and destination port of the uplink data packet; the identification (PC5 QoS flow identity, PFI) of PC5 QoS flow is used for Identifies the PC5 QoS flow.
- the application identifier is used to identify the application of the XR service
- the triple refers to the source of the uplink data packet IP address, destination IP address and protocol number
- five-tuple refers to the source IP address, destination IP address, protocol number, source port and destination port of the uplink data packet
- the identification (PC5 QoS flow identity, PFI) of PC5 QoS flow is used for Identifies
- ⁇ application 1, triplet 1, importance level 1, PFI 1 ⁇ means that the importance level is determined to be 1 according to the triplet 1 of the uplink data packet of application 1, and the uplink data packet can be mapped to PFI
- ⁇ application 2, triplet 2, importance level 2, PFI 2 ⁇ means that the importance level is determined to be 2 according to the triplet 2 of the uplink data packet of application 2, and the uplink data packet can be The packet is mapped to the PC5 QoS flow identified by PFI 2. It should be noted that high QoS and low QoS are relative concepts.
- high QoS can refer to QoS flow with higher QoS guarantee requirements, for example, the resource guarantee type is guaranteed bit rate (Guranteed bit rate, GBR) type, or packet delay budget and packet error rate requirements are relatively high; low QoS can refer to the relatively low QoS guarantee requirements of QoS flow, for example, the resource guarantee type is non-guaranteed bit rate Non-GBR type, and the packet delay budget and packet error rate requirements are relatively low.
- LQoS is used to determine the first association relationship between the priority of the uplink data packet and the PC5 QoS flow, or described as a mapping relationship between the priority of the uplink data packet and the PC5 QoS flow.
- LQoS rule can map high-priority upstream data packets to high-QoS PC5 QoS flow, and low-priority upstream data packets to low-QoS PC5 QoS flow.
- the SMF sends an acceptance message of PDU session establishment to the relay UE.
- the acceptance message of PDU session establishment includes the generated LQoS rule, so that the relay UE performs step 403.
- the SMF sends the PDU session establishment acceptance message to the relay UE, it may pass through the AMF, or pass through the AMF and the access network equipment in sequence.
- the relay UE sends the second message to the remote UE.
- the remote UE receives the second message from the relay UE.
- the second message is used to determine the first association relationship between the uplink data packet and the PC5 QoS flow, and it can be understood that the second message includes the above-mentioned LQoS rule.
- the second message may be a connection response message, such as an L2 link establishment acceptance message or a direct connection communication acceptance message.
- the relay UE establishes multiple PC5 QoS flows with an association relationship, and establishes multiple Uu QoS flows with an association relationship.
- the establishment of multiple PC5 QoS flows with an association relationship by the relay UE can be triggered by the remote UE, and the establishment of multiple Uu QoS flows with an association relationship can be triggered by the remote UE or by the network.
- the remote UE triggers the relay UE to establish multiple Uu QoS flows with an association relationship will be described in Embodiment 1, and the network triggers the relay UE to establish multiple Uu QoS flows with an association relationship will be described in Embodiment 3.
- Multiple PC5 QoS flows with an association relationship are used to realize the hierarchical transmission between the remote UE and the relay UE, that is, to realize the hierarchical transmission of the PC5 port; multiple Uu QoS flows with an association relationship are used to realize the relay UE
- the layered transmission with the UPF that is, the layered transmission of the Uu interface, is specifically used to relay data between the remote UE and the UPF.
- the number of PC5 QoS flows and the number of Uu QoS flows can be the same, for example, both are 2, or they can be different, for example, the number of PC5 QoS flows is 3, the number of Uu QoS flows is 2, or the number of PC5 QoS flows The number of Uu QoS flows is 1, and the number of Uu QoS flows is 2.
- the relay UE can determine the number of associated PC5 QoS flows according to the number of flows supported by the remote UE. In Embodiment 1 to Embodiment 3, take 2 PC5 QoS flows and 2 Uu QoS flows as examples.
- the relay UE determines the second association relationship and/or the third association relationship between multiple PC5 QoS flows and multiple Uu QoS flows. Among them, determining can also be described as generating.
- Step 404 associates multiple PC5 QoS flows, associates multiple Uu QoS flows, but does not associate PC5 QoS flows with Uu QoS flows, and step 405 can realize the association of the two.
- the second association relationship between multiple PC5 QoS flows and multiple Uu QoS flows is used to relay UEs for uplink transmission, specifically for relaying UEs to receive uplinks from remote UEs through PC5 QoS flows
- the data packet is mapped to Uu QoS flow, so as to send the uplink data packet to UPF through Uu QoS flow.
- the second association relationship can be represented by the association relationship between the identifier of the PC5 QoS flow and the identifier of the Uu QoS flow, that is, through the association relationship between the PFI and the QFI.
- the second association relationship between 2 PC5 QoS flows and 2 Uu QoS flows can be expressed as ⁇ (PFI 1->QFI 1),(PFI 2->QFI 2) ⁇ , (PFI 1->QFI 1 ) indicates that the PC5 QoS flow1 identified by PFI 1 has an association relationship with the Uu QoS flow1 identified by QFI1, and the uplink data packet carried by PC5 QoS flow1 can be mapped to Uu QoS flow 1; (PFI 2->QFI 2) indicates that the Uu QoS flow1 identified by PFI 2 PC5 QoS flow 2 has an association relationship with Uu QoS flow 2 identified by QFI 2, and can map the uplink data packets carried by PC5 QoS flow 2 to Uu QoS flow 2.
- the second association relationship may be a QoS rule, such as a UL Uu QoS rule, which is used to determine how to map the uplink data packet carried by the PC5 QoS flow to the Uu QoS flow.
- UL Uu QoS rule may include QFI, PFI associated with QFI, packet filter set (a packet filter set) and priority. Among them, QFI is used to identify Uu QoS flow.
- QFI is used to identify Uu QoS flow.
- a packet filter set can include multiple packet filters.
- a packet filter includes multiple fields that match data packets. These fields can be used in combination.
- the priority is the priority of the QoS flow identified by QFI, for example, the high priority QoS flow can be transmitted first.
- the UL Uu QoS rule can be expressed as ⁇ (QFI 1,PFI 1->QFI 1,packet filter set1,priority 1),(QFI 2,PFI 2->QFI 2,packet filter set2, priority 2) ⁇ , or expressed as ⁇ (QFI 1, PFI 1, packet filter set1, priority 1), (QFI 2, PFI 2, packet filter set2, priority 2) ⁇ .
- the UL Uu QoS rule can be expressed as ⁇ (QFI 1,PFI 1->QFI 1,packet filter set1,priority 1),(QFI 2,PFI 2->QFI 2,packet filter set2, priority 2), (QFI 3, PFI 3->QFI 3, packet filter set3, priority 1) ⁇ .
- the third association relationship between multiple PC5 QoS flows and multiple Uu QoS flows is used to relay UEs for downlink transmission, specifically for relaying UEs to receive downlink data packets from UPF through Uu QoS flows Mapped to PC5 QoS flow, so as to send the downlink data packet to the remote UE through PC5 QoS flow.
- the third association relationship can be represented by the association relationship between the identifier of the PC5 QoS flow and the identifier of the Uu QoS flow, that is, the association relationship between the PFI and the QFI.
- the third relationship between two PC5 QoS flows and two Uu QoS flows can be expressed as ⁇ (QFI 1->PFI 1),(QFI 2->PFI 2) ⁇ , (QFI 1->PFI 1 ) indicates that the Uu QoS flow1 identified by QFI 1 has an association relationship with the PC5 QoS flow1 identified by PFI1, and the downlink data packet carried by Uu QoS flow1 can be mapped to PC5 QoS flow 1; (QFI 2->PFI 2) indicates that the QFI 2 identified Uu QoS flow 2 has an association relationship with Uu QoS flow 2 identified by PFI 2, and can map the uplink data packets carried by Uu QoS flow 2 to PC5 QoS flow 2.
- the third association relationship may be a QoS rule, such as DL PC5 QoS rule, which is used to determine how to map the downlink data packet carried by Uu QoS flow to PC5 QoS flow.
- DL PC5 QoS rule can include PFI, QFI associated with PFI, a packet filter set and priority.
- DL PC5 QoS rule can be expressed as ⁇ (PFI 1,QFI 1->PFI 1,packet filter set1,priority 1),(PFI 2,QFI 2->PFI 2,packet filter set2, priority 2) ⁇ .
- DL Uu QoS rule is used to relay UE to relay downlink data packets from UPF, which can realize hierarchical transmission of Uu interface.
- UL PC5 QoS rule can be generated by the relay UE or by the remote UE to indicate the association between multiple PC5 QoS flows, such as PC5 QoS flow 1 identified by PFI 1 and PC5 QoS flow 2 identified by PFI 2 have an association relationship.
- PC5 QoS flow 1 is associated with PC5 QoS flow 2
- PC5 QoS flow 1 is associated with PC5 QoS flow 3 are related.
- the relay UE may simultaneously determine the second association relationship and the third association relationship, so as to perform uplink and downlink transmission. Or, when uplink transmission is to be performed, the second association relationship is determined; when downlink transmission is to be performed, the third association relationship is determined.
- the above relay UE determines the DL Uu QoS rule for uplink transmission and the Uu PC5 QoS rule for downlink transmission, so that the uplink and downlink transmissions associate PC5 QoS flow with Uu QoS flow through different QoS rules.
- the relay UE determines a QoS rule, which is applicable to both uplink transmission and downlink transmission.
- the QoS rule can be expressed as ⁇ (PFI 1,QFI 1),( PFI 2, QFI 2) ⁇ , (PFI 1, QFI 1) indicates that the PC5 QoS flow1 identified by PFI 1 has an associated relationship with the Uu QoS flow1 identified by QFI 1.
- the downlink data packets carried by Uu QoS flow1 can be mapped To PC5 QoS flow1; for uplink, the uplink data packet carried by PC5 QoS flow1 can be mapped to Uu QoS flow1.
- steps 406 to 409 are the uplink transmission process, and steps 410 to 412 are the downlink transmission process.
- the remote UE maps the first uplink data packet to the PC5 QoS flow identified by the first flow identifier (ie, PFI).
- the data flow can be hierarchically processed according to the importance level of the data flow, for example, it can be divided into important data packets (such as I frame) and unimportant Data packets (such as P frames).
- important data packets such as I frame
- unimportant Data packets such as P frames
- the remote UE combines the first association relationship with the association relationship between multiple PC5 QoS flows according to the attribute information of the first uplink data packet, that is, combines the LQoS rule and the UL PC5 QoS rule, Determining that the first uplink data packet corresponds to the first PFI, thereby mapping the first uplink data packet to the PC5 QoS flow identified by the first PFI.
- the first uplink data packet may be any data packet to be sent.
- the attribute information may include one or more of application-specific identifiers, triplets, and quintuples.
- the application-specific identifier refers to an application identifier corresponding to media services such as XR, and is used to identify which application the uplink data packet is for.
- the triplet is used to identify the source IP address and the destination IP address of the uplink data packet
- the quintuple is used to identify the source IP address, destination IP address, source port and destination port of the uplink data packet.
- the uplink data packet is identified by a triplet or a five-tuple.
- the UL PC5 QoS rule can be generated by the remote UE, or generated by the relay UE and notified to the remote UE.
- the LQoS rule is expressed as ⁇ (importance level 1, PFI 1), (importance level 2, PFI 2) ⁇ , and the UL PC5 QoS rule is expressed as ⁇ PFI 1, PFI 2, packet filter ⁇ , according to UL PC5 QoS rule Unable to determine whether to map the uplink data packet to the PC5 QoS flow identified by PFI 1 or the Uu QoS flow identified by PFI 2; according to the LQoS rule, the uplink data packet with importance level 1 can be mapped to the PC5 QoS flow identified by PFI 1, and the Uplink data packets with importance level 2 are mapped to the PC5 QoS flow identified by PFI 2, but it is not clear how to determine the importance level, nor is it clear that the two PC5 QoS flows are related.
- the remote UE matches the packet filter with the attribute information of the uplink data packet 1, and determines that the importance level of the uplink data packet 1 is 1, corresponding to PFI 1, then the uplink data packet 1 can be mapped to the PFI 1 identified PC5 QoS flow1; match the packet filter with the attribute information of the uplink data packet 2, and determine that the importance level of the uplink data packet 2 is 2, corresponding to PFI 2, then the uplink data packet 2 can be mapped to the PC5 identified by PFI 2 QoS flow2.
- the remote UE may determine or generate a new rule, and the rule is used to determine that the first uplink data packet corresponds to the first PFI, so as to map the first uplink data packet to the first PFI
- the identified PC5 QoS flow can be expressed as ⁇ packet filter, (importance level 1, PFI 1), (importance level 2, PFI 2) ⁇ , match the packet filter with the attribute information of the uplink data packet, so as to determine the importance of the uplink data packet level, map the uplink data packets of importance level 1 to the PC5 QoS flow identified by PFI 1, and map the uplink data packets of importance level 2 to the PC5 QoS flow identified by PFI 2.
- the remote UE can generate a new rule based on the LQoS rule.
- the remote UE can discard the uplink data packets mapped to the PC5 QoS flow identified by the first PFI.
- the priority of the PC5 QoS flow identified by the first PFI is lower than the threshold, which can be understood as the QoS guarantee of the PC5 QoS flow identified by the first PFI is lower or the lowest, and the threshold can be the highest QoS guarantee level or the reference priority stipulated in the agreement. level threshold. Data packets mapped to PC5 QoS flow with lower QoS guarantee can be discarded, thereby reducing the impact on video effects.
- the remote UE sends the first uplink data packet to the relay UE through the PC5 QoS flow identified by the first PFI.
- the relay UE receives the first uplink data packet from the remote UE through the PC5 QoS flow identified by the first PFI.
- the relay UE maps the first uplink data packet to the first Uu QoS flow according to the second association relationship.
- the relay UE maps the first uplink data packet to the first Uu QoS flow according to the packet filter and PFI in the UL Uu QoS rule.
- the contents of the UL Uu QoS rule are shown in Table 1. If the first PFI is PFI 1, the first uplink data packet can be mapped to the Uu QoS flow identified by QFI 1 according to the packet filter and PFI1; if the first PFI For PFI 2, the first uplink data packet can be mapped to the Uu QoS flow identified by QFI 2 according to the packet filter.
- the relay UE sends the first uplink data packet to the third network device through the first Uu QoS flow.
- the third network device receives the first uplink data packet from the relay UE through the first Uu QoS flow.
- the third network device may be the UPF in the 5G system, or may be a network element having the same function as the UPF in future communications. This application uses the UPF as an example.
- the relay UE sends the first uplink data packet to the UPF, which can be transparently transmitted through the access network device.
- the UPF receives the first uplink data packet, it can send the first uplink data packet to the XR server.
- the remote UE determines that the uplink data packet 1 corresponds to PFI 1 and the uplink data packet 2 corresponds to PFI 2 according to the attribute information of the uplink data packet and combines the first association relationship and the association relationship between multiple PC5 QoS flows, and sends the uplink Data packet 1 is mapped to PC5 QoS flow1 identified by PFI 1, and uplink data packet 1 is sent to the relay UE through PC5 QoS flow1; uplink data packet 2 is mapped to PC5 QoS flow2 identified by PFI 2, and passed through PC5 QoS flow2 Send uplink data packet 2 to the relay UE.
- the relay UE When the relay UE receives the uplink data packet 1 and the uplink data packet 2, according to the second association relationship, the uplink data packet 1 is mapped to the Uu QoS flow1 identified by QFI 1, and the uplink data packet is sent to the UPF through Uu QoS flow1 1; Map uplink data packet 2 to Uu QoS flow2 identified by QFI 2, and send uplink data packet 2 to UPF through Uu QoS flow2. If the QoS guarantee of Uu QoS flow2 is higher than that of Uu QoS flow1, then the relay UE maps uplink data packet 1 to Uu QoS flow2 identified by QFI 1 according to the second association relationship, and uplink data packet 2 to Uu QoS flow2 identified by QFI 1 Uu QoS flow1.
- the remote UE may discard the uplink data packet mapped to PC5 QoS flow2.
- the UPF sends the first downlink data packet to the relay UE through the Uu QoS flow identified by the second flow identifier (QFI).
- the relay UE receives the first downlink data packet from the UPF through the Uu QoS flow identified by the second QFI.
- UPF When UPF receives the data flow from the XR server, it sends the data flow to the relay UE through multiple Uu QoS flows according to the importance level of the data flow. For example, there are 2 Uu QoS flows, one Uu QoS flow is used to carry important data packets, and the other Uu QoS flow is used to carry unimportant data packets.
- the relay UE maps the first downlink data packet to the second PC5 QoS flow according to the third association relationship.
- the relay UE maps the first downlink data packet to the second PC5 QoS flow according to the packet filter and QFI in the DL PC5 QoS rule.
- the contents of DL PC5 QoS rule are shown in Table 1. If the second QFI is QFI 1, the first downlink data packet can be mapped to the PC5 QoS flow identified by PFI 1 according to the packet filter and QFI1; if the first The QFI is QFI 2, and the first downlink data packet can be mapped to the PC5 QoS flow identified by PFI 2 according to the packet filter.
- the relay UE may discard the Uu QoS flow mapped to the second QFI.
- the downlink data packet of the identified Uu QoS flow if the priority of the Uu QoS flow identified by the second QFI is lower than the threshold, the relay UE may discard the Uu QoS flow mapped to the second QFI.
- the downlink data packet of the identified Uu QoS flow if the priority of the Uu QoS flow identified by the second QFI is lower than the threshold, it can be understood that the QoS guarantee of the Uu QoS flow identified by the second QFI is lower or the lowest, and the threshold can be the highest QoS guarantee level or the reference priority stipulated in the agreement level threshold. Data packets mapped to PC5 QoS flow with lower QoS guarantee can be discarded, thereby reducing the impact on video effects.
- the relay UE sends the first downlink data packet to the remote UE through the second PC5 QoS flow.
- the remote UE receives the first downlink data packet from the relay UE through the second PC5 QoS flow.
- the uplink transmission shown in step 410 to step 412 may refer to the example diagram shown in FIG. 6 .
- Figure 6 it is assumed that the QoS guarantee of PC5 QoS flow1 is higher than that of PC5 QoS flow2, the QoS guarantee of Uu QoS flow1 is higher than that of Uu QoS flow2, and the importance of uplink data packet 1 is higher than that of uplink data packet 2, for example, uplink data packet 1 is I frame, the uplink data packet 2 is a P frame.
- the remote UE determines that the uplink data packet 1 corresponds to PFI 1 and the uplink data packet 2 corresponds to PFI 2 according to the attribute information of the uplink data packet and combines the first association relationship and the association relationship between multiple PC5 QoS flows, and sends the uplink Data packet 1 is mapped to PC5 QoS flow1 identified by PFI 1, and uplink data packet 1 is sent to the relay UE through PC5 QoS flow1; uplink data packet 2 is mapped to PC5 QoS flow2 identified by PFI 2, and passed through PC5 QoS flow2 Send uplink data packet 2 to the relay UE.
- the relay UE When the relay UE receives the uplink data packet 1 and the uplink data packet 2, according to the second association relationship, the uplink data packet 1 is mapped to the Uu QoS flow1 identified by QFI 1, and the uplink data packet is sent to the UPF through Uu QoS flow1 1; Map uplink data packet 2 to Uu QoS flow2 identified by QFI 2, and send uplink data packet 2 to UPF through Uu QoS flow2. If the QoS guarantee of Uu QoS flow2 is higher than that of Uu QoS flow1, then the relay UE maps uplink data packet 1 to Uu QoS flow2 identified by QFI 1 according to the second association relationship, and uplink data packet 2 to Uu QoS flow2 identified by QFI 1 Uu QoS flow1.
- the relay UE may discard the uplink data packet mapped to PC5 QoS flow2.
- the relay UE establishes a PDU session supporting LQoS according to the first message sent by the remote UE to relay the data between the XR server and the remote UE, thereby reducing the impact on the video effect on the remote UE side. Influence.
- the relay UE Based on the established PDU session supporting LQoS, the relay UE establishes multiple PC5 QoS flows with an association relationship and multiple Uu QoS flows with an association relationship, and associates multiple PC5 QoS flows with multiple Uu QoS flows to achieve
- the remote UE can discard the uplink data packets mapped to the PC5 QoS flow with low QoS guarantee, and the relay UE can discard the downlink data packets mapped to the PC5 QoS flow with low QoS guarantee
- Data packets ensure the transmission of important data, thereby reducing the impact on video effects.
- Figure 7 is a schematic flow chart of the data transmission method provided in Embodiment 1 of the present application, which may include but not limited to the following steps:
- the PCF configures the RSC and the PDU session parameters corresponding to the RSC for the relay UE and the remote UE.
- the PDU session parameters include first information.
- the first information may be a parameter, such as QoS control type, and the value of this parameter may instruct the relay UE to establish a PDU session supporting LQoS, or instruct the relay UE to establish a PDU session supporting independent QoS.
- the first information may be LQoS, directly instructing the relay UE to establish a PDU session supporting LQoS.
- RSC and PDU session parameters can be expressed as RSC->PDU session parameters (PDU session type, DNN, SSC mode, S-NSSAI, access type preference, LQoS), PDU session parameters carry LQoS,
- RSC->PDU session parameters PDU session type, DNN, SSC mode, S-NSSAI, access type preference, LQoS
- PDU session parameters carry LQoS
- the relay UE is instructed to establish a PDU session supporting LQoS.
- the PCF sends the configured RSC and the PDU session parameters corresponding to the RSC to the remote UE and the relay UE respectively.
- the remote UE and the relay UE perform a discovery process.
- the discovery process is performed based on the RSC corresponding to the PDU session parameter including the first information.
- the broadcast associated PDU session parameters include the RSC of LQoS.
- the remote UE broadcasts RSC, and the PDU session parameter corresponding to the RSC indicates LQoS, and the relay UE can respond to the remote UE if it supports LQoS.
- the remote UE broadcasts the RSC, and may broadcast the RSC through a first message.
- the remote UE sends a connection request message to the relay UE.
- the relay UE receives the connection request message from the remote UE.
- the connection request message may be an L2 link establishment request message or a direct connection communication request message, etc., and is used to request to establish a communication connection with the relay UE.
- the relay UE determines to establish a PDU session supporting LQoS according to the RSC in the discovery process. Wherein, the first information included in the PDU session parameter corresponding to the RSC.
- the relay UE establishes a PDU session supporting LQoS.
- the implementation process of step 704 can be referred to as shown in Figure 7-1.
- the process shown in Figure 7-1 may include but not limited to the following steps:
- the relay UE sends a non-access stratum (non-access stratum, NAS) message to the AMF.
- the AMF receives the NAS message from the relay UE.
- the NAS message is used to request to establish a PDU session.
- the NAS message includes a PDU session establishment request message and first information for requesting establishment of a PDU session supporting LQoS.
- the NAS message includes a PDU session establishment request message, the PDU session establishment request message includes first information, and the PDU session establishment request message is used to request establishment of a PDU session supporting LQoS.
- the AMF selects the SMF that supports LQoS.
- the AMF sends a PDU session establishment context request message to the selected SMF.
- the SMF receives the PDU session establishment context request message from the AMF.
- the PDU session establishment context request message includes the PDU session establishment request message and first information, and is used to request establishment of a PDU session supporting LQoS.
- the PDU session establishment context request message includes a PDU session establishment request message, the PDU session establishment request message includes first information, and the PDU session establishment request message is used to request establishment of a PDU session supporting LQoS.
- the relay UE may send the PDU session establishment request message and the first information to the SMF supporting LQoS through the AMF; or, the relay UE may send the PDU session establishment request message to the SMF supporting the LQoS through the AMF, and the PDU session
- the setup request message includes first information.
- the SMF obtains the LQoS information from the PCF.
- the LQoS information includes the packet filter of media services such as XR and the QoS parameters used to implement hierarchical quality of service.
- SMF generates LQoS rule.
- SMF can generate LQoS rule based on LQoS information.
- the LQoS rule can refer to the specific description of the LQoS rule in step 402 in FIG. 4 , which will not be repeated here.
- the SMF sends a PDU session establishment context response message to the AMF.
- the AMF receives the PDU session establishment context response message from the SMF.
- the PDU session establishment context response message includes the LQoS rule, and also includes an LQoS reception indication, which is used to indicate that a PDU session supporting LQoS has been established.
- the AMF sends a PDU session establishment acceptance message to the relay UE.
- the relay UE receives the PDU session establishment acceptance message from the AMF.
- the AMF may send a PDU session establishment acceptance message to the relay UE through the access network device, or directly send a PDU session establishment acceptance message to the relay UE.
- the PDU session establishment acceptance message includes LQoS rule.
- the relay UE sends a connection acceptance message to the remote UE.
- the remote UE receives the connection acceptance message from the relay UE.
- the connection acceptance message is used to respond to the connection request message, which may be an L2 link establishment response message or a direct connection communication response message, etc., and is used to indicate that the relay UE agrees to establish a communication connection.
- connection acceptance message includes the LQoS rule, so that the remote UE can combine it with the association relationship between multiple PC5 QoS flows to determine the PFI corresponding to the uplink data packet.
- the relay UE sends a remote UE report (remote UE report) to the SMF.
- the SMF receives the remote UE report from the relay UE.
- Step 706 and step 707 may refer to step 105 and step 107 in FIG. 3 .
- the remote UE establishes a connection with the XR server in a relay manner.
- the remote UE sends a first connection message to the relay UE.
- the relay UE receives the first connection message from the remote UE.
- the first connection message may be, for example, a connection modification request message, so as to trigger the relay UE to establish multiple PC5 QoS flows with an association relationship.
- the first connection message is used to inform the relay UE that the PC5 QoS flow executing LQoS has an association relationship, that is, indicates the association relationship between multiple PC5 QoS flows.
- the PFI of the associated PC5 QoS flow is added to the PC5 QoS context in the first connection message.
- PC5 QoS context PFI; correlated PFI; PC5 QoS parameter, PC5 QoS rule(PFI, PC5 packet filter, precedence value)
- the PC5 QoS context can include PFI 1 and PFI 2, indicating that the PC5 QoS flow1 identified by PFI 1 is associated with the PC5 QoS flow2 identified by PFI 2.
- the PFI of the associated PC5 QoS flow is added to the PC5 QoS rule in the PC5 QoS context, and the PC5 QoS rule is the UL PC5 QoS rule in Table 1.
- PC5 QoS context PFI; PC5 QoS parameter, PC5 QoS rule (PFI, correlated PFI; PC5 packet filter, precedence value)
- PFI PC5 QoS rule
- the PC5 QoS rule in the PC5 QoS context can include PFI 1 and PFI 2, indicating that the PC5 QoS flow1 identified by PFI 1 is associated with the PC5 QoS flow2 identified by PFI 2.
- the relay UE establishes multiple PC5 QoS flows with an association relationship, and establishes multiple Uu QoS flows with an association relationship.
- the relay UE establishes multiple PC5 QoS flows with associated relationships according to the first connection message.
- the establishment of multiple Uu QoS flows with an association relationship is completed by initiating the PDU session modification process.
- the relay UE maps the Uu QoS parameters through the PC5 QoS parameters requested by the remote UE.
- PC5 QoS parameters can include PC5 port 5G QoS identifier (PC5 5G QoS identifier, PQI), guaranteed flow bit rate (guaranteed flow bit rate, GFBR), maximum flow bit rate (maximum flow bit rate, MFBR), PC5 connection aggregation One or more of the maximum bit rate (PC5link-aggregate maximum bit rate, PC5LINK-AMBR), etc.
- Uu QoS parameters may include one or more of 5G QoS identifier (5G QoS identifier, 5QI), GFBR, MFBR, average window, etc. For example, the 5QI is mapped through the PQI.
- FIG. 7-2 for the PDU session modification process.
- the process shown in Figure 7-2 may include but not limited to the following steps:
- the relay UE sends a PDU session modification request message to the AMF.
- the AMF receives the PDU session modification request message from the relay UE.
- the PDU session modification request message is used to request operations such as adding, modifying, and deleting Uu QoS flow and corresponding QoS parameters.
- the AMF sends a PDU session update context to the SMF.
- the SMF receives the PDU session update context from the AMF, wherein the PDU session update context message includes the PDU session modification request message sent by the UE.
- the SMF sends an N4 session modification request message to the UPF.
- UPF receives the N4 session modification request message from SMF.
- the N4 session modification request message includes a QoS rule
- the QoS rule indicates the association relationship between multiple Uu QoS flows.
- the QoS rule may include (QFI 1, QFI 2), indicating that the Uu QoS flow 1 identified by QFI 1 is associated with the Uu QoS flow 2 identified by QFI 2.
- the SMF sends a PDU session update context response to the AMF.
- the AMF receives the PDU Session Update Context Response from the SMF.
- the PDU session update context response includes the PDU session modification command
- the PDU session modification command includes the QoS rule in step 7103, and the Uu QoS parameter corresponding to the QFI.
- the PDU session modification command includes QoS rule (QFI 1, QFI 2), Uu QoS parameters corresponding to QFI 1, and Uu QoS parameters corresponding to QFI 2.
- the AMF sends a PDU session modification response message to the relay UE.
- the relay UE receives the PDU session modification response message from the AMF.
- the AMF may send the PDU session modification response message to the relay UE through the access network device, or directly send the PDU session modification response message to the relay UE.
- the PDU session modification response message includes the above-mentioned PDU session modification command, so that the relay UE knows the association relationship between multiple Uu QoS flows.
- the process shown in Figure 7-2 can be understood as the remote UE triggers the relay UE to establish a Uu QoS flow with an association relationship.
- the relay UE generates DL PC5 QoS rule and UL Uu QoS rule.
- step 711 reference may be made to step 405 in FIG. 4 , which will not be repeated here.
- the relay UE sends a third connection message to the remote UE.
- the remote UE receives the third connection message from the relay UE.
- the third connection message is used to respond to the first connection message, and may be, for example, a connection modification acceptance message.
- an uplink transmission process refer to steps 406 to 409 in FIG. 4 .
- a downlink transmission process refer to steps 410 to 412 in FIG. 4 .
- the relay UE and the remote UE perform a discovery process based on the RSC corresponding to the PDU session parameters including the first information, and the relay UE establishes a PDU session supporting LQoS according to the first information, so as to Relay data between the XR server and the remote UE, thereby reducing the impact on the video effect on the remote UE side.
- FIG 8 is a schematic flowchart of the data transmission method provided in Embodiment 2 of the present application, which may include but not limited to the following steps:
- a remote UE and a relay UE perform a discovery process.
- step 801 reference may be made to step 103 in FIG. 3 , which will not be repeated here.
- the remote UE sends a connection request message to the relay UE.
- the relay UE receives the connection request message from the remote UE.
- the connection request message is used to request to establish a communication connection with the relay UE, and may be an L2 link establishment request message or a direct connection communication request message.
- the connection request message includes first information
- the first information may be indication information, such as LQoS indication information, used to instruct the relay UE to establish a PDU session supporting LQoS.
- the remote UE determines that the relay service is a media service such as XR, it sends a connection request message carrying LQoS indication information to the relay UE.
- the relay UE determines to establish a PDU session supporting LQoS according to the first information.
- the relay UE establishes a PDU session supporting LQoS.
- the relay UE sends a connection acceptance message to the remote UE.
- the remote UE receives the connection acceptance message from the relay UE.
- the relay UE sends a remote UE report (remote UE report) to the SMF.
- the SMF receives the remote UE report from the relay UE.
- the remote UE establishes a connection with the XR server in a relay manner.
- the remote UE sends a first connection message to the relay UE.
- the relay UE receives the first connection message from the remote UE.
- the first connection message is used to indicate that multiple PC5 QoS flows have an association relationship.
- the relay UE establishes multiple PC5 QoS flows with an association relationship, and establishes multiple Uu QoS flows with an association relationship.
- steps 804 to 810 reference may be made to the description of steps 704 to 710 in FIG. 7 , and details are not repeated here.
- the relay UE generates DL PC5 QoS rule and UL Uu QoS rule.
- step 811 reference may be made to step 405 in FIG. 4 , which will not be repeated here.
- the relay UE sends a third connection message to the remote UE.
- the remote UE receives the third connection message from the relay UE.
- an uplink transmission process refer to steps 406 to 409 in FIG. 4 .
- the downlink transmission process refer to step 410 to step 412 in FIG. 4 .
- the remote UE sends LQoS indication information to the relay UE, instructing the relay UE to establish a PDU session supporting LQoS to relay data between the XR server and the remote UE, thereby reducing The impact on the video effect on the far-end UE side.
- Figure 9 is a schematic flow chart of the data transmission method provided in Embodiment 3 of the present application, which may include but not limited to the following steps:
- Steps 901 to 908 may refer to steps 701 to 708 in FIG. 7 , or refer to steps 801 to 808 in FIG. 8 .
- the XR server and the SMF execute a policy modification process.
- the process may include: the XR server sends a request message to the PCF, the request message includes the requested QoS; the PCF receives the request message, generates a corresponding policy and charging control (policy and charging control, PCC) strategy according to the requested QoS, and Send PCC policy to SMF.
- policy and charging control policy and charging control, PCC
- the SMF determines to trigger the relay UE to establish multiple Uu QoS flows with the association relationship based on the association relationship between the relay UE and the remote UE.
- the association relationship between the relay UE and the remote UE may be obtained based on the report of the remote UE in step 707 or step 807 .
- the SMF can trigger the relay UE to establish multiple Uu QoS flows with an association relationship by initiating a PDU session modification process, and the PDU session modification process can include the following steps 911 to 913.
- the SMF and the UPF execute an N4 session modification process.
- the procedure may include that the SMF sends an N4 session modification request message to the UPF, and the UPF sends an N4 session modification acceptance message to the SMF.
- the SMF sends an N1N2 message to the AMF.
- the AMF receives the N1N2 message from the SMF.
- the N1N2 message can be, for example, Namf_Communication_N1N2MessageTransfer, and the message includes a PDU session modification message, such as a PDU session modification command, and the PDU session modification message can include a QoS rule indicating a relationship between multiple Uu QoS flows.
- the QoS rule includes QFI 1 and QFI 2, indicating that the Uu QoS flow1 identified by QFI 1 is associated with the Uu QoS flow2 identified by QFI 2.
- the QoS rule also includes identification information of the remote UE, such as the user ID and/or IP address of the remote UE, which is used to indicate that multiple Uu QoS flows with an association relationship are established for the remote UE.
- the AMF sends a PDU session modification message to the relay UE.
- the relay UE receives the PDU session modification message from the AMF.
- the AMF When the AMF sends the PDU session modification message to the relay UE, it can be sent directly through the NAS message, or sent to the relay UE through the access network equipment. For example, the AMF sends an N2 message to the access network device, and the N2 message includes a PDU session modification message, and the access network device sends an AN message to the relay UE, and the AN message includes a PDU session modification message.
- the content included in the PDU session modification message can refer to the description of step 912 .
- the relay UE establishes multiple Uu QoS flows with an association relationship, and establishes multiple PC5 QoS flows with an association relationship.
- the relay UE establishes multiple Uu QoS flows with an association relationship for the remote UE according to the above PDU session modification message. According to the established multiple Uu QoS flows with associated relationships, establish multiple PC5 QoS flows with associated relationships, and generate UL PC5 QoS rules.
- the relay UE generates or updates the DL PC5 QoS rule and the UL Uu QoS rule.
- step 915 reference may be made to step 405 in FIG. 4 , which will not be repeated here.
- the relay UE can update the generated DL PC5 QoS rule and/or UL Uu QoS rule, so that the relay UE can dynamically adjust
- the association relationship between PC5 QoS flow and Uu QoS flow is used to flexibly utilize network resources.
- the relay UE sends a second connection message to the remote UE.
- the remote UE receives the first connection message from the relay UE.
- the second connection message is used to indicate that multiple PC5 QoS flows have an association relationship.
- the second connection message may be, for example, a connection modification request message, so as to trigger the remote UE to establish multiple PC5 QoS flows with an association relationship with the relay UE.
- the second connection message is used to inform the remote UE that multiple PC5 QoS flows are associated.
- the PFI of the associated PC5 QoS flow is added to the PC5 QoS context in the second connection message.
- PC5 QoS context PFI; correlated PFI; PC5 QoS parameter, PC5 QoS rule(PFI, PC5 packet filter, precedence value)
- the PC5 QoS context can include PFI 1 and PFI 2, indicating that the PC5 QoS flow1 identified by PFI 1 is associated with the PC5 QoS flow2 identified by PFI 2.
- the PFI of the associated PC5 QoS flow is added to the PC5 QoS rule in the PC5 QoS context, and the PC5 QoS rule is the UL PC5 QoS rule in Table 1.
- PC5 QoS context PFI; PC5 QoS parameter, PC5 QoS rule (PFI, correlated PFI; PC5 packet filter, precedence value)
- PFI PC5 QoS rule
- the PC5 QoS rule in the PC5 QoS context can include PFI 1 and PFI 2, indicating that the PC5 QoS flow1 identified by PFI 1 is associated with the PC5 QoS flow2 identified by PFI 2.
- the remote UE sends a fourth connection message to the relay UE.
- the relay UE receives the fourth connection message from the remote UE.
- the fourth connection message is used to respond to the second connection message, and the fourth connection message may be, for example, a connection modification acceptance message.
- an uplink transmission process refer to steps 406 to 409 in FIG. 4 .
- the downlink transmission process refer to steps 410 to 412 in FIG. 4 .
- the network triggers the relay UE to establish multiple Uu QoS flows with an association relationship, and the relay UE requests to establish multiple PC5 QoS flows with an association relationship with the remote UE, so that the relay UE can dynamically adjust the correlation between PC5 QoS flow and Uu QoS flow, so as to flexibly utilize network resources.
- the remote UE requests the relay UE to establish multiple PC5 QoS flows with an association relationship, and then the relay UE establishes multiple Uu QoS flows with an association relationship.
- Embodiment 1 A data transmission method, the method comprising:
- the relay device receives a first message from the remote device, and the first message is used to discover the remote device or request to establish a communication connection with the relay device; wherein, the first message includes a relay service code, and the relay service code corresponds to
- the protocol data unit session parameter includes first information; or, the first message includes first information; the first information is used to establish a protocol data unit session supporting hierarchical quality of service, and the protocol data unit session is used to relay data of the remote device ;Transmit the data of the remote device through the protocol data unit session.
- Embodiment 2 The method according to Embodiment 1, further comprising: the relay device receives configuration information from the first network device, the configuration information includes a relay service code and a protocol data unit session parameter corresponding to the relay service code, wherein the protocol The data unit session parameters include first information.
- Embodiment 3 The method according to Embodiment 1 or 2, further comprising: the relay device sends a second message to the remote device, and the second message is used to determine the first association between the uplink data packet and the first type of QoS flow relationship, the first type of QoS flow is used to transmit data between the relay device and the remote device.
- Embodiment 4 The method according to Embodiment 1 or 2, further comprising: the relay device sends a request message for establishing a protocol data unit session to the second network device, where the request message includes the first information.
- Embodiment 5 The method according to any one of embodiments 1 to 4, further comprising: the relay device establishes a plurality of first-type QoS flows with an association relationship, and the first-type QoS flow is used for the relay device and the remote device transmit data between them; establish a plurality of second-type quality of service flows with an association relationship, and the plurality of second-type quality of service flows are associated with the protocol data unit session, and are used for data transmission between the relay device and the third network device; A second association relationship between multiple first-type QoS flows and multiple second-type QoS flows is determined.
- Embodiment 6 The method according to Embodiment 5, further comprising: the relay device receives the first uplink data packet from the remote device through the quality of service flow identified by the first flow identifier, and sends the first uplink data packet according to the second association relationship
- the packet is mapped to the first quality of service flow among the plurality of second-type quality-of-service flows; wherein, the first flow identifier is used to identify the quality-of-service flow carrying the first uplink data packet among the plurality of first-type quality-of-service flows; the second association relationship
- the method includes an association relationship between the first quality of service flow and the quality of service flow identified by the first flow identifier; and sends the first uplink data packet to the third network device through the first quality of service flow.
- Embodiment 7 The method according to Embodiment 5 further includes: the relay device determines a third association relationship between multiple first-type QoS flows and multiple second-type QoS flows.
- Embodiment 8 The method according to Embodiment 7, further comprising: the relay device receives the first downlink data packet from the third network device through the quality of service flow identified by the second flow identifier, and assigns the first downlink data packet according to the third association relationship
- a downlink data packet is mapped to a second quality of service flow among a plurality of first-type quality-of-service flows; wherein, the second flow identifier is used to identify the quality of service carrying the first downlink data packet among the plurality of second-type quality-of-service flows flow;
- the third association relationship includes the association relationship between the second quality of service flow and the quality of service flow identified by the second flow identifier; the first downlink data packet is sent to the remote device through the second quality of service flow.
- Embodiment 9 The method according to Embodiment 8, further comprising: when the resource between the remote device and the relay device is limited, if the priority of the second QoS flow is lower than the threshold, the relay device discards the mapping to the second downlink data packet of the second QoS flow.
- Embodiment 10 The method according to Embodiment 5, further comprising: the relay device receives a first connection message from the remote device, and the first connection message is used to request establishment of multiple first-type QoS flows with an association relationship, the first A connection message indicates the association relationship between multiple first-type QoS flows.
- Embodiment 11 The method according to Embodiment 5, further comprising: the relay device receives the protocol data unit session modification message from the second network device, and the protocol data unit session modification message includes the identification information of the remote device;
- the relay device establishes multiple first-type QoS flows with an association relationship, including:
- the relay device establishes multiple first-type QoS flows with an association relationship with the remote device.
- Embodiment 12 The method according to embodiment 11 further includes: the relay device updates the second association relationship and/or the third association relationship.
- Embodiment 13 The method according to Embodiment 11, further comprising: the relay device sends a second connection message to the remote device, and the second connection message indicates the association relationship between multiple first-type QoS flows.
- Embodiment 14 A data transmission method, the method comprising:
- the remote device sends a first message to the relay device, and the first message is used to discover the remote device or request to establish a communication connection with the relay device; wherein, the first message includes a relay service code, and the protocol corresponding to the relay service code
- the data unit session parameter includes first information; or, the first message includes first information; the first information is used to establish a protocol data unit session supporting hierarchical quality of service, and the protocol data unit session is used to relay data of the remote device.
- Embodiment 15 The method according to Embodiment 14, further comprising: the remote device receives configuration information from the first network device, the configuration information includes a relay service code and a protocol data unit session parameter corresponding to the relay service code, wherein the protocol The data unit session parameters include first information.
- Embodiment 16 The method according to embodiment 14 or 15, further comprising: the remote device receives a second message from the relay device, and the second message is used to determine the first link between the uplink data packet and the first type of service quality flow. Association relationship, the first type of service quality flow is used to transmit data between the relay device and the remote device.
- Embodiment 17 The method according to Embodiment 16, further comprising: the remote device determines the first association relationship according to the attribute information of the first uplink data packet and the association relationship between multiple first-type QoS flows.
- An uplink data packet corresponds to the first flow identifier; attribute information includes one or more of specific application identifiers, triplets, and quintuples; the first type of service quality flow is used to transmit data between the relay device and the remote device ; Mapping the first uplink data packet to one QoS flow among the multiple first-type QoS flows identified by the first flow identifier; sending the first uplink data packet to the relay device through the QoS flow identified by the first flow identifier.
- Embodiment 18 The method according to Embodiment 17, further comprising: the remote device sends a first connection message to the relay device, and the first connection message is used to request establishment of multiple first-type QoS flows with an association relationship, and the first The connection message indicates the association relationship between multiple first-type QoS flows.
- Embodiment 19 The method according to embodiment 17, further comprising: the remote device receives a second connection message from the relay device, and the second connection message indicates the association relationship between multiple first-type QoS flows.
- Embodiment 20 The method according to Embodiment 17, further comprising: when the resources between the remote device and the relay device are limited, if the priority of the quality of service flow identified by the first flow identifier is lower than the threshold, discarding Mapping to the second uplink data packet of the QoS flow identified by the first flow identifier.
- the relay device and the remote device may respectively include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- the remote device 20 includes a processor 201 , a memory 202 and a transceiver 203 , and the transceiver 203 includes a transmitter 2031 , a receiver 2032 and an antenna 2033 .
- the receiver 1032 can be used to receive messages through the antenna 1033
- the transmitter 1031 can be used to send messages to the remote device 20 through the antenna 1033 .
- the transmitter 2031 may be used to send a message to the relay device 10 through the antenna 2033
- the receiver 2032 may be used to receive the message sent by the relay device 10 through the antenna 2033 .
- FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses may be used to realize the functions of the relay device or the remote device in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
- the communication device 1100 shown in FIG. 11 may include a communication unit 1101 and a processing unit 1102 .
- the communication unit 1101 may include a sending unit and/or a receiving unit, the sending unit is configured to implement a sending function, the receiving unit is configured to implement a receiving function, and the communication unit 1101 may implement a sending function and/or a receiving function.
- a communication unit may also be described as a transceiving unit.
- the communication device 1100 may be a relay device, or a device in the relay device, or a device having a relay device function.
- the communication apparatus 1100 may perform related operations of the relay device in the above embodiments shown in FIG. 4 , FIG. 6 to FIG. 9 .
- the communication unit 1101 is configured to receive a first message from the remote device; the processing unit 1102 is configured to establish a PDU session supporting hierarchical QoS according to the first message.
- the processing unit 1102 and the communication unit 1101 can be obtained by referring to related descriptions in the embodiments shown in FIG. 4 , and FIG. 7 to FIG. 9 .
- the communication apparatus 1100 may be a remote device, may also be a device in the remote device, and may also be a device having the function of the remote device.
- the communication apparatus 1100 may perform related operations of the remote device in the embodiments shown in FIG. 4 , FIG. 7 to FIG. 9 .
- the communication unit 1101 is configured to send the first message to the relay device.
- a more detailed description about the processing unit 1102 and the communication unit 1101 can be obtained by referring to related descriptions in the embodiments shown in FIG. 4 , and FIG. 7 to FIG. 9 .
- the communication device 1200 shown in FIG. 12 may include a processor 1201 and an interface circuit 1202 .
- the processor 1201 and the interface circuit 1202 are coupled to each other.
- the interface circuit 1202 may be an interface circuit or an input/output interface.
- the communication device 1200 may further include a memory 1203 for storing instructions executed by the processor 1201 or storing input data required by the processor 1201 to execute the instructions or storing data generated by the processor 1201 after executing the instructions.
- the communication device 1200 may be a relay device: the interface circuit 1202 is used to execute 401, 403, 407, 409, 410 and 412 in FIG. 4, 702, 705, 707, 709 and 712 in FIG. 802, 805, 807, 809 and 812 in 8, 913, 916 and 917 in FIG. 9; processor 1201 executes 402, 404, 405, 408 and 411 in FIG. and 711 , 803 , 806 , 810 and 811 in FIG. 8 , and 914 and 915 in FIG. 9 .
- the communication device 1200 may be a remote device: the interface circuit 1202 is used to execute 401, 403, 407, 409, 410 and 412 in FIG. 4, 702, 705, 707, 709 and 712 in FIG. 802, 805, 807, 809, and 812 in 8, 913, 916, and 917 in FIG. 9; the processor 1201 executes 406 in FIG. 4.
- the chip of the relay device implements the function of the relay device in the above method embodiment.
- the chip receives information from other modules (such as radio frequency modules or antennas) in the relay device, and the information is sent to the relay device by the remote device or access network device or core network element; or, the chip sends the relay device Other modules (such as radio frequency modules or antennas) in the router send information, and the information is sent by the relay device to the remote device or the access network device or the network element of the core network.
- the chip of the remote device implements the functions of the remote device in the above method embodiment.
- the chip receives information from other modules in the remote device (such as radio frequency modules or antennas), and the information is sent to the remote device by the relay device; or, the chip sends information to other modules in the remote terminal device (such as radio frequency modules) or antenna) to send information, which is sent from the remote terminal device to the relay device.
- the processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
- a general-purpose processor can be a microprocessor, or any conventional processor.
- the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
- Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, compact disc read-only memory (CD-ROM) or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
- the storage medium may also be a component of the processor.
- the processor and storage medium can be located in the ASIC.
- the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
- all or part of them may be implemented by software, hardware, firmware or any combination thereof.
- software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
- the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
- the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
- the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
- the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
- the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
- the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种数据传输方法及装置,在中继场景下,可建立支持分层服务质量的协议数据单元会话,从而减少对远端设备侧的视频效果的影响。该方法可包括:远端设备向中继设备发送第一消息,以执行发现过程或建立两者之间的通信连接;其中,第一消息包括第一信息,或第一消息包括中继服务码,其对应的协议数据单元会话参数包括第一信息;中继设备根据第一信息建立支持分层服务质量的协议数据单元会话,以中继远端设备与网络之间的数据,从而通过该协议数据单元会话实现中继场景下的XR业务的传输。
Description
本申请要求于2021年11月19日提交中国专利局、申请号为202111373733.6、申请名称为“一种数据传输的方法”的中国专利申请的优先权,以及要求于2022年1月29日提交中国专利局、申请号为202210112569.1、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
扩展现实(extended reality,XR)是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合、可人机交互的环境,是增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)以及混合现实(mixed reality,MR)等多种形式的统称。三者视觉交互技术融合,实现虚拟世界与现实世界之间无缝转换的“沉浸感”体验。XR等媒体类业务,具有数据突发的特点,使得基站在无法保证数据传输的情况下,例如网络拥塞的情况下,会对接收到的一组数据包中的一个或多个数据包进行随机丢包处理,以缓解拥塞情况。若随机丢弃的数据包重要性较高,会产生较长时间卡顿,影响视频效果。
在中继(relay)场景下,远端(remote)用户设备(user equipment,UE)通过中继(relay)UE进行数据传输,例如对于上行,中继UE接收到来自远端UE的上行数据包,将该上行数据包通过中继UE与网络之间的连接发送至业务服务器;对于下行,中继UE接收到来自业务服务器的下行数据包,将该下行数据包发送至远端UE。对于中继场景下的XR业务的传输,如何减少对远端UE侧的视频效果的影响,是亟待解决的技术问题。
发明内容
本申请提供一种数据传输方法及装置,在中继场景下,可建立支持分层服务质量的协议数据单元会话,从而减少对远端设备侧的视频效果的影响。
第一方面,本申请提供一种数据传输方法,该方法可以由中继设备或中继设备中的模块执行。该方法可包括:中继设备接收来自远端设备的第一消息,第一消息用于发现远端设备、或请求与中继设备建立通信连接;其中,第一消息包括中继服务码,该中继服务码对应的协议数据单元会话参数包括第一信息;或,第一消息包括第一信息;第一信息用于建立支持分层服务质量的协议数据单元会话,该协议数据单元会话用于中继远端设备的数据;中继设备通过该协议数据单元会话传输远端设备的数据。
可见,中继设备基于第一信息可建立基于分层服务质量的协议数据单元会话,通过该协议数据单元会话传输中继场景下的XR业务,可减少对远端设备侧的视频效果的影响。
在第一方面的第一种可能的实现方式中,中继设备在接收来自远端设备的第一消息之前,接收来自第一网络设备的配置信息,该配置信息包括上述中继服务码,以及上述中继服务码对应的协议数据单元会话参数,该协议数据单元会话参数包括第一信息,以便中继设备基于该中继服务码与远端设备执行发现过程。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,中继设备在建立上述协议数据单元会话之后,向远端设备发送第二消息,第二消息用 于确定上行数据包与第一类服务质量流之间的第一关联关系,其中第一类服务质量流用于中继设备与远端设备之间传输数据。可以理解的是,第一关联关系可表示不同重要性的上行数据包与不同服务质量等级的第一类服务质量流之间的关联关系,例如可将重要性高的上行数据包关联至服务质量高的一个第一类服务质量流,将重要性低的上行数据包关联至服务质量低的一个第一类服务质量流,以便远端设备将不同重要性的上行数据包映射至不同服务质量的第一类服务质量流。通过第一关联关系可实现远端设备与中继设备之间的分层传输,从而在两者之间的资源受限的情况下,可优先传输映射至服务质量高的第一类服务质量流。
可选的,第二消息包括分层服务质量规则,分层服务质量规则用于确定上行数据包与第一类服务质量流之间的第一关联关系。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,中继设备在建立上述协议数据单元会话时,向第二网络设备发送用于建立上述协议数据单元会话的请求消息,该请求消息包括第一信息,以指示建立支持分层服务质量的协议数据单元会话,从而中继远端设备的数据。或,中继设备在建立上述协议数据单元会话时,向第二网络设备发送请求消息和第一信息,以指示建立支持分层服务质量的协议数据单元会话,从而中继远端设备的数据。
可选的,第二网络设备在建立上述协议数据单元会话的过程中,可生成上述第一关联关系,并将第一关联关系发送至中继设备。中继设备在接收到第一关联关系时,可将其发送至远端设备。
结合第一方面或第一方面的第一种至第三种可能的实现方式中任意一种方法,在第一方面的第四种可能的实现方式中,中继设备在建立上述协议数据单元会话的情况下,建立具有关联关系的多个第一类服务质量流,建立具有关联关系的多个第二类服务质量流,并确定多个第一类服务质量流与多个第二类服务质量流之间的第二关联关系。其中,第二类服务质量流与上述协议数据单元会话相关联,用于中继设备与第三网络设备之间传输数据。第二关联关系用于将第一类服务质量流与第二类服务质量流进行关联,以便中继设备将来自远端设备的上行数据包传输至第三网络设备。
可选的,第二关联关系是一个上行服务质量规则,用于将第一类服务质量流上承载的上行数据包映射至第二类服务质量流。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,对于上行传输:中继设备通过第一流标识所标识的服务质量流接收到来自远端设备的第一上行数据包,根据上述第二关联关系将第一上行数据包映射至多个第二类服务质量流中的第一服务质量流,通过第一服务质量流向第三网络设备发送第一上行数据包,从而实现中继设备中继上行数据包。
其中,第一流标识用于标识多个第一类服务质量流中承载第一上行数据包的服务质量流,第二关联关系包括第一服务质量流与第一流标识所标识的服务质量流之间的关联关系。
通过第二关联关系,中继设备可将重要性高的第一类服务质量流映射至服务质量高的第二类服务质量流,以避免重要数据的丢失。
结合第一方面的第四种可能的实现方式,在第一方面的第六种可能的实现方式中,中继设备在建立具有关联关系的多个第一类服务质量流,具有关联关系的多个第二类服务质量流的情况下,还确定多个第一类服务质量流与多个第二类服务质量流之间的第三关联关系,第三关联关系用于将第一类服务质量流与第二类服务质量流进行关联,以便中继设备将来自第三网络设备的下行数据包传输至远端设备。
可选的,第三关联关系是一个下行服务质量规则,用于将第二类服务质量流上承载的下行数据包映射至第一类服务质量流。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,对于下行传输:中继设备通过第二流标识所标识的服务质量流接收到来自第三网络设备的第一下行数据包,根据第三关联关系将第一下行数据包映射至多个第一类服务质量流中的第二服务质量流,通过第二服务质量流向远端设备发送第一所述下行数据包,从而实现中继设备中继下行数据包。
其中,第二流标识用于标识多个第二类服务质量流中承载第一下行数据包的服务质量流;第三关联关系包括第二服务质量流与第二流标识所标识的服务质量流之间的关联关系。
通过第三关联关系,中继设备可将重要性高的第二类服务质量流映射至服务质量高的第一类服务质量流,以避免重要数据的丢失。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,在远端设备与中继设备之间的资源受限的情况下,若第二服务质量流的优先级低于阈值,那么中继设备丢弃映射至第二服务质量流的第二下行数据包。一旦远端设备与中继设备之间的资源受限,可优先丢弃映射至服务质量低的第二类服务质量流的下行数据包,以保证服务质量高的第二类服务质量流的传输,从而减少对视频效果的影响。
结合第一方面的第四种可能的实现方式,在第一方面的第九种可能的实现方式中,远端设备可触发中继设备建立具有关联关系的多个第一类服务质量流。中继设备接收来自远端设备的第一连接消息,根据第一连接消息建立具有关联关系的多个第一类服务质量流。第一连接消息还可指示多个第一类服务质量流之间的关联关系,以便中继设备基于该关联关系建立具有关联关系的多个第一类服务质量流。
结合第一方面的第四种可能的实现方式,在第一方面的第十种可能的实现方式中,网络侧可触发中继设备建立具有关联关系的多个第一类服务质量流。中继设备接收来自第二网络设备的包括远端设备的标识信息的协议数据单元会话修改消息,根据该协议数据单元会话修改消息,与远端设备之间建立具有关联关系的多个第一类服务质量流。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,在网络侧触发中继设备建立具有关联关系的多个第一类服务质量流的情况下,中继设备可对之前确定的第二关联关系和/或第三关联关系进行更新,使得中继设备可动态调整第一类服务质量流与第二类服务质量流之间的关联关系,从而灵活地利用网络资源。
结合第一方面的第十种可能的实现方式,在第一方面的第十二种可能的实现方式中,在网络侧触发中继设备建立具有关联关系的多个第一类服务质量流的情况下,中继设备可将多个第一类服务质量流之间的关联关系告知远端设备。中继设备向远端设备发送第二连接消息,第二连接消息指示多个第一类服务质量流之间的关联关系,以便远端设备根据该关联关系和第一关联关系,将上行数据包映射至相应的第一类服务质量流。
第二方面,本申请提供一种数据传输方法,该方法可以由远端设备或远端设备中的模块执行。该方法可包括:远端设备向中继设备发送第一消息,第一消息用于发现远端设备、或请求与中继设备建立通信连接;其中,第一消息包括中继服务码,该中继服务码对应的协议数据单元会话参数包括第一信息;或,第一消息包括第一信息;第一信息用于建立支持分层服务质量的协议数据单元会话,该协议数据单元会话用于中继远端设备的数据。
可见,远端设备通过向中继设备发送第一信息,以使中继设备建立基于分层服务质量的协议数据单元会话,通过该协议数据单元会话传输中继场景下的XR业务,可减少对远端设 备侧的视频效果的影响。
在第二方面的第一种可能的实现方式中,远端设备在向中继设备的第一消息之前,接收来自第一网络设备的配置信息,该配置信息包括上述中继服务码,以及上述中继服务码对应的协议数据单元会话参数,该协议数据单元会话参数包括第一信息,以便远端设备基于该中继服务码与中继设备执行发现过程。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,远端设备在发送第一消息之后,接收来自中继设备的第二消息,第二消息用于确定上行数据包与第一类服务质量流之间的第一关联关系,其中第一类服务质量流用于中继设备与远端设备之间传输数据。可以理解的是,第一关联关系可表示不同重要性的上行数据包与不同服务质量等级的第一类服务质量流之间的关联关系,例如可将重要性高的上行数据包关联至服务质量高的一个第一类服务质量流,将重要性低的上行数据包关联至服务质量低的一个第一类服务质量流,以便远端设备将不同重要性的上行数据包映射至不同服务质量的第一类服务质量流。通过第一关联关系可实现远端设备与中继设备之间的分层传输,从而在两者之间的资源受限的情况下,可优先传输映射至服务质量高的第一类服务质量流。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,远端设备在发送第一上行数据包时,根据第一上行数据包的属性信息,并结合第一关联关系和多个第一类服务质量流之间的关联关系,确定第一上行数据包对应于第一流标识,将第一上行数据包映射至第一流标识所标识的第一类服务质量流,并通过第一流标识所标识的第一类服务质量流向中继设备发送第一上行数据包,从而基于远端设备与中继设备之间的分层传输机制向中继设备发送上行数据包。
其中,属性信息包括特定应用标识、三元组、五元组中的一种或多种,特定应用标识用于标识XR等媒体业务,三元组或五元组用于识别数据包是否针对XR等媒体业务。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式,上述多个第一类服务质量流之间的关联关系可由远端设备确定,远端设备确定之后,可将其发送至中继设备,以便中继设备根据该关联关系建立具有关联关系的多个第一类服务质量流。例如,远端设备向中继设备发送第一连接消息,第一连接消息用于请求建立具有关联关系的多个第一类服务质量流,第一连接消息包括多个第一类服务质量流之间的关联关系。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式,上述多个第一类服务质量流之间的关联关系可来自中继设备,中继设备确定该关联关系并将其发送至远端设备。例如,远端设备接收来自中继设备的第二连接消息,第二连接消息包括多个第一类服务质量流之间的关联关系。
结合第二方面的第三种可能的实现方式,在第二方面的第六种可能的实现方式,在远端设备与中继设备之间的资源受限的情况下,若第一流标识所标识的服务质量流的优先级低于阈值,那么中继设备丢弃映射至第一流标识所标识的服务质量流的第二上行数据包。一旦远端设备与中继设备之间的资源受限,可优先丢弃映射至服务质量低的第一类服务质量流的上行数据包,以保证服务质量高的第一类服务质量流的传输。
第三方面,本申请提供了一种通信装置,该通信装置可以是中继设备,也可以是中继设备中的装置,或者是能够和中继设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方 面所述的方法以及有益效果。
第四方面,本申请提供了一种通信装置,该通信装置可以是远端设备,也可以是远端设备中的装置,或者是能够和远端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果。
第五方面,本申请提供了一种通信装置,通信装置包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第一方面和第二方面中任一方面所述的方法。
第六方面,本申请提供了一种计算机可读存储介质,所述存储介质中存储有指令,当所述计算机程序或指令被通信装置执行时,实现如第一方面和第二方面中任一方面所述的方法。
第七方面,本申请提供一种包括指令的计算机程序产品,当通信装置读取并执行该指令时,使得通信装置执行如第一方面和第二方面中任一方面中任意一项的方法。
第八方面,本申请提供了一种通信系统,包括至少一个用于执行上述第一方面所述的方法的通信装置,以及至少一个用于执行上述第二方面所述方法的通信装置。
图1是应用本申请的一种系统架构的示意图;
图2是一种5G系统的示意图;
图3是中继流程的示意图;
图4是本申请提供的数据传输方法的流程示意图;
图5是本申请提供的上行传输的示例图;
图6是本申请提供的下行传输的示例图;
图7是本申请实施例一提供的数据传输方法的流程示意图;
图7-1是中继UE建立支持LQoS的PDU会话的流程示意图;
图7-2是PDU会话修改流程的示意图;
图8是本申请实施例二提供的数据传输方法的流程示意图;
图9是本申请实施例三提供的数据传输方法的流程示意图;
图10是一个中继设备和一个远端设备之间进行通信的一种形式的示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的另一种通信装置的结构示意图。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施 例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了能够更好地理解本申请,下面对应用本申请的系统架构进行介绍:
请参阅图1,是应用本申请的一种系统架构的示意图。图1所示的系统为中继场景下的系统,可包括中继系统和通信系统,中继系统例如层(layer)3中继系统等,通信系统例如第五代(5
th-generation,5G)系统或未来通信系统等,5G系统的系统架构可参阅图2。图1所示的系统可以包括但不限于远端设备、中继设备、接入网设备、核心网和数据网络(data network,DN)等,其中,远端设备和中继设备可以属于中继系统;中继设备、接入网设备和核心网和数据网络可以属于通信系统。
在中继系统中,将获取中继服务的终端设备称为远端(remote)设备,将提供中继服务的终端设备称为中继(relay)设备。中继设备与远端设备之间的通信接口可以称为PC5口。远端设备也可以描述为远端UE,例如智能手环、虚拟现实终端设备(例如VR眼镜)、增强现实终端设备(例如AR眼镜)、远程医疗中的无线终端、智能电网中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、车联网中的车载终端等。中继设备也可以描述为中继UE或用于网络中继的层3UE(即layer-3 UE-to-network relay)等,例如智能手机、用户驻地设备(customer premises equipment,CPE)、个人计算机、移动站、远程站、接入点(access point,AP)等。
在本申请中,用于实现中继设备的功能的装置可以是中继设备,也可以是能够支持中继设备实现该功能的装置,例如芯片系统或可实现中继设备功能的组合器件、部件,该装置可以被安装在中继设备中。其中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现中继设备的功能的装置是中继设备为例,描述本申请实施例提供的技术方案。同理远端设备。为了描述方便,本申请实施例提供的技术方案中以中继UE和远端UE进行阐述。
接入网(access network,RAN)设备,也可以称为无线接入网(radio access network,RAN)设备,是一种将终端设备接入到无线网络的设备,可以为终端设备提供无线资源管理、服务质量(quality of service,QoS)管理、数据加密和压缩等功能。接入网可为具有无线收发功能的设备或可设置于该设备的芯片,该接入网设备可以包括但不限于:5G系统中的下一代基站(next generation node basestation,gNB)、用于连接5G核心网的演进的长期演进(long term evolution,LTE)基站的下一代演进型基站(next generation evolved Node B,ng-eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交 换中心,或者未来网络中的接入网设备等。中继设备与接入网设备之间的通信接口可以称为Uu口。
核心网,负责维护移动网络的签约数据,为终端设备提供会话管理、移动性管理、策略管理以及安全认证等功能。如图2所示,5G系统中的核心网可以包括如下网元:用户面功能(user plane function,UPF)、认证服务功能(authentication server function,AUSF)、接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、服务通信代理(service communication proxy,SCP)、网络切片选择功能(network slice selection function,NSSF)、网络开放功能(network exposure function,NEF)、网络功能仓储功能(NF repository function,NRF)、策略控制功能(policy control function,PCF)、统一数据管理(unified data management,UDM)和应用功能(application function,AF)。
AMF,可以提供移动性管理,例如用户位置更新、用户注册网络、用户切换等,还可提供合法监听、接入授权以及鉴权等功能。SMF,主要负责移动网络中的会话管理,例如会话建立、修改、释放。具体功能例如为用户分配互联网协议(internet protocol,IP)地址,选择提供报文转发功能的UPF等。SCP,主要功能是信令转发,路由选择和负载均衡。UPF,负责用户数据的转发和接收,可以从数据网络接收用户数据,通过接入网络设备传输给UE;还可以通过接入网设备从UE接收用户数据,转发至数据网络。PCF,主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。PCF可以向AMF、SMF提供策略,例如QoS策略、切片选择策略等。AUSF,用于执行UE的安全认证。NSSF,用于为UE选择网络切片。NEF,主要用于支持能力和事件的开放。NRF,用于为其它网元提供网络功能实体信息的存储功能和选择功能。UDM,用于存储用户数据,例如签约数据、鉴权/授权数据等。AF,为用户提供某种类型业务的服务器端,也可以称为应用服务器或业务服务器,可以是运营商网络部署的AF,也可以是第三方AF。
数据网络(DN)用于为用户提供业务服务,可以是私有网络,例如局域网;也可以是不受运营商管控的外部网络,例如互联网(Internet);还可以是运营商共同部署的专有网络,例如提供IP多媒体子系统(IP multimedia subsystem,IMS)的网络。UE可通过建立的协议数据单元(protocol data unit,PDU)会话,来访问DN。在5G系统中,UE访问DN的会话称为PDU会话,随着标准的演进,未来通信系统中,PDU会话可能采用其他名称,本申请以PDU会话为例。
图2以通信系统为5G系统为例进行阐述,随着标准的演进和通信技术的发展,图2所示的网元可能会有所变化,本申请所涉及的UPF、PCF、SMF等,可以替换为未来通信系统中与这些网元具有相同功能的网元。
下面对本申请涉及的相关技术或名称进行阐述。
1.XR业务
XR等媒体类业务,其视频数据通常由帧构成,一帧代表一幅静止的图像。构成视频数据的帧可包括I帧和P帧。I帧表示关键帧,可以理解为这一帧画面的完整保留,因为包含完整画面,因此解码时只需要本帧数据就可完成。P帧表示这一帧与之前的一个关键帧(例如I帧)之间的差别,解码时需要用之前缓存的画面叠加上该帧定义的差别,从而生成最终画面。若I帧解码失败,会造成后续P帧全部解码失败,通常一个I帧后面会跟随若干个P帧,从而会造成较长时间的卡顿。
2.中继机制
中继机制例如层3中继机制,是指中继UE为远端UE执行网络层(例如IP层)的中继。即对于上行,远端UE向中继UE发送上行IP包,中继UE在接收到该上行IP包时,将该上行IP包通过中继UE与网络的连接发送至UPF;对于下行,UPF向中继UE发送下行IP包,中继UE接收到该下行IP包时,向远端UE发送该下行IP包,远端UE的应用层对该下行IP包进行处理。
请参阅图3,是中继流程的示意图,该流程可包括但不限于如下步骤:
101a,针对中继UE的授权和参数提供(authorization and provisioning for layer-3 UE-to-network relay)。
网络对中继UE进行授权和参数提供,在这个过程中,第一网络设备授权中继UE可以为远端UE提供中继服务,并向中继UE提供一个或多个中继服务码(relay service code,RSC),以及各个RSC对应的PDU会话参数。其中,第一网络设备可以是5G系统中的PCF,还可以是未来通信中与PCF具有相同功能的网元,本申请以PCF为例。PCF向中继UE发送一个或多个RSC,以及各个RSC对应的PDU会话参数。PCF向中继UE发送时,可以经历一个或多个网元,例如经历AMF,即PCF向AMF发送,再由AMF通过接入网设备(例如基站)向中继UE发送。
RSC可标识中继UE提供给远端UE的一种连接服务,或可标识远端UE感兴趣的或期望的连接信息。PDU会话参数可以包括PDU会话类型(type)、数据网络名称(data network name,DNN)、会话和服务连续性(session and service continuity,SSC)模式(mode)、单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)、接入类型参数(access type preference)等中的一项或多项。
101b,针对远端UE的授权和参数提供(authorization and provisioning for remote UE)。
与步骤101a类似,同样PCF授权远端UE可以通过中继UE获取网络服务,并向远端UE提供一个或多个RSC,以及各个RSC对应的PDU会话参数。
步骤101a和步骤101b中,RSC以及对应的PDU会话参数用于步骤103的发现过程。
可选的,102,中继UE建立PDU会话。
103,远端UE与中继UE执行发现过程(discovery procedure)。
远端UE与中继UE执行发现过程可通过如下模式A或模式B实现。
模式A,中继UE广播其可以提供给远端UE连接服务的RSC,当远端UE期望的RSC与中继UE广播的RSC匹配(例如相同)时,远端UE便发现了中继UE,从而可执行步骤104。中继UE广播的RSC的数量可以是一个或多个。
模式B,远端UE广播其自身期望的RSC,当中继UE可以提供给远端UE连接服务的RSC与远端UE广播的RSC匹配时,中继UE响应于远端UE,远端UE与中继UE即执行了发现过程,从而可执行步骤104。
104,远端UE与中继UE建立单播连接。
远端UE与中继UE执行了发现过程,两者建立单播连接,即建立通信连接。可选的,在执行步骤104的过程中或步骤104执行完,中继UE可能建立一个新的PDU会话,该PDU会话可用于中继UPF与远端UE之间的数据包,使得远端UE通过中继UE与网络的连接获取网络服务,可选的,该单播连接为远端UE与中继UE之间的层2连接,即远端UE与中继UE之间发送的连接建立请求消息与连接建立响应消息中携带源层2标识及目标层2标识。
可选的,105,IP地址分配。例如,中继UE为远端UE分配IPv4地址或IPv6前缀(prefix)。
可选的,106,对通过步骤104建立的单播连接进行修改。例如在该单播连接上进行QoS流的增加、修改、删除等。
107,中继UE向第二网络设备发送远端UE报告(remote UE report)。相应的,第二网络设备接收来自中继UE的远端UE报告。
其中,第二网络设备可以是5G系统中的SMF,还可以未来通信系统中与SMF具有相同功能的网元,本申请以SMF为例。中继UE依次通过接入网设备和AMF向SMF发送远端UE报告,或中继UE通过AMF向SMF发送远端UE报告。
其中,远端UE报告可包括远端用户标识(例如UE ID等)和远端UE信息,例如远端UE的IP地址,即中继UE为远端UE分配的IP地址。
步骤107之后,中继UE以中继方式传输UPF与远端UE之间的数据包。
在本申请中,PCF为中继UE和远端UE配置的RSC对应的PDU会话参数可包括第一信息,第一信息用于建立支持分层服务质量的PDU会话,该PDU会话用于中继远端UE的数据。其中,分层服务质量可以理解为通过分层实现服务质量控制,即同一个应用程序的业务数据流,可在网络内通过多个QoS流传输,不同的QoS流具有不同的QoS保障,不同的QoS流用于传输该应用程序的不同重要性的数据(例如一个QoS流传输I帧数据,另一个QoS流传输P帧数据;或者一个QoS流传输视野区数据,另一个QoS流传输非视野区数据,以上仅为举例,并不限定分层服务质量中如何对业务数据流进行划分),分层服务质量可表示为layered QoS,简称为LQoS。分层服务质量这个名称用于举例,还可以采用其他名称,例如还可以称为关联的QoS等。第一信息可以是一个参数,例如QoS控制类型(control type),该参数的取值可指示建立支持LQoS的PDU会话,或指示建立支持独立QoS的PDU会话,独立QoS的PDU会话即图3流程中的PDU会话。
示例性的,RSC与PDU会话参数之间的对应关系可表示为:RSC->PDU session parameters(PDU session type,DNN,SSC mode,S-NSSAI,access type preference,QoS control type)。例如,RSC1->PDU Session parameters(IPv4,cmnet,SSC mode1,MBB,3gpp,LQoS),表示RSC1对应的PDU会话参数中的QoS control type为LQoS,用于指示建立支持LQoS的PDU会话。再例如,RSC2->PDU Session parameters(IPv6,cmnet,SSC mode3 MBB,3gpp,independent QoS),表示RSC2对应的PDU会话参数中的QoS control type为independent QoS,用于指示建立支持独立QoS的PDU会话。或者,QoS control type的取值为1时,指示建立支持LQoS的PDU会话;为0时,指示建立独立QoS的PDU会话。
进而,远端UE和中继UE基于指示LQoS的第一信息执行发现过程。对于模式A,中继UE支持LQoS,则可以广播关联的PDU会话参数中包括LQoS的RSC。对于模式B,远端UE广播RSC,该RSC对应的PDU会话参数指示LQoS,中继UE在支持LQoS的情况下,可响应于远端UE。
3.第一类服务质量流和第二类服务质量流
服务质量流即QoS流(flow),或其他用于描述QoS flow的名称。5G系统中,QoS控制基于QoS flow粒度实现。QoS flow是5G系统定义的QoS转发处理的粒度,映射到相同QoS flow上的数据会受到相同的转发处理,例如调度策略、排队管理策略、速率整型策略等,不同的QoS flow可以提供不同的QoS转发处理。
在本申请中,第一类服务质量流用于中继UE与远端UE之间传输数据。中继UE与远端UE通过PC5口传输数据,进而第一类服务质量流也可以称为PC5 QoS flow或第一接口的QoS flow等,第一接口即PC5口。
在本申请中,第二类服务质量流用于中继UE与第三网络设备之间传输数据。其中,第三网络设备可以是5G系统中的UPF,还可以是未来通信系统中与UPF具有相同功能的网元,本申请以UPF为例。中继UE与接入网设备之间的通信接口为Uu口,第二类服务质量流也可以称为Uu QoS flow或第二接口的QoS flow等,第二接口即Uu口。
下述实施例中将第一类服务质量流描述为PC5 QoS flow,将第二类服务质量流描述为Uu QoS flow。
本申请可应用于中继场景下的XR业务的传输,例如对于VR/AR眼镜从XR服务器获取AR视频,VR/AR眼镜作为远端UE,智能手机或CPE可作为中继UE,VR/AR眼镜通过智能手机或CPE中继的方式连接网络,从XR服务器获取AR视频。其中,智能手机可通过热点方式为VR/AR眼镜中继,或通过其他方式中继。再例如,车载终端从XR服务器获取视频数据,车载终端作为远端UE,智能手机作为中继UE,车载终端通过智能手机中继的方式连接网络,从XR服务器获取视频数据。在信号弱覆盖的区域,例如地下停车场、隧道、房间的角落等,通过中继UE中继的方式,可节省远端UE的耗能,并可减少信号弱对远端UE的影响。其中,XR服务器即XR业务对应的服务器。
下面对本申请提供的数据传输的方法进行阐述。
请参阅图4,是本申请提供的数据传输方法的流程示意图,该方法可以包括但不限于如下步骤:
401,远端UE向中继UE发送第一消息。相应的,中继UE接收来自远端UE的第一消息。
在第一种实现方式中,第一消息用于发现远端UE,即第一消息在发现过程中发送,用于中继UE发现远端UE,以便与远端UE建立通信连接。例如,第一消息可以是发现请求消息。
该方式下,第一消息可包括RSC,该RSC对应的PDU会话参数包括第一信息。可选的,第一信息可以是一个参数,例如QoS control type,该参数的取值可指示中继UE建立支持LQoS的PDU会话,或指示中继UE建立支持独立QoS的PDU会话,独立QoS的PDU会话即图3流程中的PDU会话。可选的,第一信息可以是LQoS,直接指示中继UE建立支持LQoS的PDU会话。第一消息包括RSC将在实施例一进行阐述。
或,该方式下,第一消息包括第一信息,第一信息可以是一个指示信息,例如LQoS指示信息,用于指示中继UE建立支持LQoS的PDU会话。例如,发现请求消息除了可携带远端UE期望的RSC(其对应的PDU会话参数不包括QoS control type)之外,还可以携带LQoS指示信息。
在第二种实现方式中,第一消息用于请求与中继UE建立通信连接,该通信连接可以是单播连接,可以由远端UE请求与中继UE建立连接,也可以由中继UE请求与远端UE建立连接,本申请中对于连接建立的发起方不做限定。第一消息在发现过程执行完成后执行,发现过程可参考图3所示的发现过程。第一消息可以是连接请求消息,例如层2连接(L2 link)建立请求消息或直连通信请求消息等。
该方式下,第一消息可包括RSC,该RSC对应的PDU会话参数包括第一信息,通过该RSC间接指示中继UE建立支持LQoS的PDU会话。
该方式下,第一消息包括第一信息,第一信息可以是一个指示信息,例如LQoS指示信息,用于指示中继UE建立支持LQoS的PDU会话。例如,远端UE确定中继业务是XR等媒体业务时,向中继UE发送携带LQoS指示信息的直连通信请求消息。直连通信请求消息 携带LQoS指示信息将在实施例二进行阐述。
上述支持LQoS的PDU会话是中继UE与网络之间建立的通信连接,用于中继UE中继远端UE的数据,被中继的数据可以是远端UE向网络发送的上行数据,也可以是网络向远端UE发送的下行数据。
可选的,在步骤401之前,第一网络设备为远端UE和中继UE配置并下发配置信息,该配置信息包括RSC以及RSC对应的PDU会话参数,PDU会话参数包括第一信息,以便远端UE与中继UE基于包括第一信息的PDU会话参数对应的RSC执行发现过程。其中,第一网络设备可以是5G系统中的PCF,还可以是未来通信中与PCF具有相同功能的网元,本申请以PCF为例。PCF向远端UE或中继UE发送配置信息,可以经历一个或多个网元,例如经历AMF,即PCF向AMF发送,再由AMF通过接入网设备发送。
402,中继UE建立支持LQoS的PDU会话。
中继UE在接收到第一消息的情况下,建立支持LQoS的PDU会话。中继UE建立支持LQoS的PDU会话的过程将在实施例一进行阐述。
中继UE在建立支持LQoS的PDU会话时,可向第二网络设备(例如5G系统中SMF,或未来通信系统中与SMF具有相同功能的网元)发送用于建立该PDU会话的请求消息。中继UE可经过AMF向SMF发送该请求消息,或依次经过接入网设备和AMF向SMF发送该请求消息。该请求消息包括第一信息,以便SMF为中继UE的PDU会话配置分层的QoS流,可选的,SMF还可根据第一信息生成第二信息,第二信息用于确定上行数据包与PC5 QoS flow之间的第一关联关系。
另一种实现方式,中继UE在建立支持LQoS的PDU会话时,向AMF发送第一信息和用于建立该PDU会话的请求消息,AMF根据第一信息选择支持LQoS的SMF并向选择的SMF发送第一信息和用于建立该PDU会话的请求消息,SMF为中继UE的PDU会话配置分层的QoS流,可选的,SMF还可根据第一信息生成第二信息,第二信息用于确定上行数据包与PC5 QoS flow之间的第一关联关系。
本申请将第二信息描述为LQoS rule,即LQoS rule用于确定上行数据包与PC5 QoS flow之间的第一关联关系。其中,上行数据包可以是上行IP包或上行以太包等。本申请中,上行数据包和下行数据包指的是XR等媒体业务的数据包。
可选的,LQoS rule用于确定上行数据包的重要性与PC5 QoS flow之间的第一关联关系,或描述为上行数据包的重要性与PC5 QoS flow之间的映射关系。LQoS rule可将重要性高的上行数据包映射至高QoS的PC5 QoS flow,将重要性低的上行数据包映射至低QoS的PC5 QoS flow,以保证重要性高的数据包的传输。例如,LQoS rule可表示为{应用标识,三元组/五元组,重要等级,PC5 QoS flow的标识},其中,应用标识用于标识XR业务的应用;三元组指上行数据包的源IP地址、目的IP地址和协议号;五元组指上行数据包的源IP地址、目的IP地址、协议号、源端口和目的端口;PC5 QoS flow的标识(PC5 QoS flow identity,PFI)用于标识PC5 QoS flow。举例来说,{应用1,三元组1,重要等级1,PFI 1},表示根据应用1的上行数据包的三元组1确定出重要等级为1,可将该上行数据包映射至PFI 1所标识的PC5 QoS flow;{应用2,三元组2,重要等级2,PFI 2},表示根据应用2的上行数据包的三元组2确定出重要等级为2,可将该上行数据包映射至PFI 2所标识的PC5 QoS flow。需要说明,高QoS和低QoS为相对的概念,其中,高QoS可以指QoS flow的QoS保障要求更高,例如资源保障类型为保障比特速率(guranteed bit rate,GBR)类型,或者包时延预算和包误码率要求相对高;低QoS可以指QoS flow的QoS保障要求相对低,例如资源保障类型为非保障 比特速率Non-GBR类型,包时延预算和包误码率要求相对低。可选的,LQoS用于确定上行数据包的优先级与PC5 QoS flow之间的第一关联关系,或描述为上行数据包的优先级与PC5 QoS flow之间的映射关系。LQoS rule可将优先级高的上行数据包映射至高QoS的PC5 QoS flow,将优先级低的上行数据包映射至低QoS的PC5 QoS flow。
SMF向中继UE发送PDU会话建立的接受消息,可选的,PDU会话建立的接受消息包括其生成的LQoS rule,以便中继UE执行步骤403。SMF在向中继UE发送PDU会话建立的接受消息时,可经过AMF,或依次经过AMF和接入网设备。
403,中继UE向远端UE发送第二消息。相应的,远端UE接收来自中继UE的第二消息。
其中,第二消息用于确定上行数据包与PC5 QoS flow之间的第一关联关系,可以理解为第二消息包括上述LQoS rule。第二消息可以是连接响应消息,例如L2 link建立接受消息或直连通信接受消息等。
404,中继UE建立具有关联关系的多个PC5 QoS flow,建立具有关联关系的多个Uu QoS flow。
中继UE建立具有关联关系的多个PC5 QoS flow可由远端UE触发,建立具有关联关系的多个Uu QoS flow可由远端UE触发或由网络触发。远端UE触发中继UE建立具有关联关系的多个Uu QoS flow将在实施例一进行阐述,网络触发中继UE建立具有关联关系的多个Uu QoS flow将在实施例三进行阐述。
具有关联关系的多个PC5 QoS flow用于实现远端UE与中继UE之间的分层传输,即实现PC5口的分层传输;具有关联关系的多个Uu QoS flow用于实现中继UE与UPF之间的分层传输,即Uu口的分层传输,具体用于中继远端UE与UPF之间的数据。
PC5 QoS flow的数量与Uu QoS flow的数量可以相同,例如均为2个,也可以不相同,例如PC5 QoS flow的数量为3个,Uu QoS flow的数量为2个,或者PC5 QoS flow的数量为1个,Uu QoS flow的数量为2个。中继UE可根据远端UE所支持的流数,确定具有关联关系的PC5 QoS flow的数量。在实施例一至实施例三中,以2个PC5 QoS flow和2个Uu QoS flow为例。
405,中继UE确定多个PC5 QoS flow与多个Uu QoS flow之间的第二关联关系,和/或第三关联关系。其中,确定也可以描述为生成。
步骤404将多个PC5 QoS flow进行关联,将多个Uu QoS flow进行关联,但是未将PC5 QoS flow与Uu QoS flow进行关联,步骤405便可实现这两者的关联。
本申请中,多个PC5 QoS flow与多个Uu QoS flow之间的第二关联关系用于中继UE进行上行传输,具体用于中继UE将通过PC5 QoS flow接收的来自远端UE的上行数据包映射至Uu QoS flow,以便通过Uu QoS flow向UPF发送该上行数据包。第二关联关系可通过PC5 QoS flow的标识与Uu QoS flow的标识之间的关联关系表示,即通过PFI与QFI之间的关联关系表示。例如,2个PC5 QoS flow与2个Uu QoS flow之间的第二关联关系可表示为{(PFI 1->QFI 1),(PFI 2->QFI 2)},(PFI 1->QFI 1)表示PFI 1标识的PC5 QoS flow1与QFI1标识的Uu QoS flow1具有关联关系,可将PC5 QoS flow1承载的上行数据包映射至Uu QoS flow 1;(PFI 2->QFI 2)表示PFI 2标识的PC5 QoS flow2与QFI 2标识的Uu QoS flow 2具有关联关系,可将PC5 QoS flow 2承载的上行数据包映射至Uu QoS flow 2。
可选的,第二关联关系可以是一个QoS rule,例如UL Uu QoS rule,用于确定如何将PC5 QoS flow承载的上行数据包映射至Uu QoS flow。UL Uu QoS rule可包括QFI,与QFI关联的 PFI,包过滤器集合(a packet filter set)和优先级。其中,QFI用于标识Uu QoS flow。通过使用a packet filter set可以将满足某些匹配特性的数据包放在同一个QoS flow中,其作用是数据包分类。a packet filter set可以包括多个packet filter,一个packet filter包括多个匹配数据包的字段,这些字段可以组合使用,当某个字段不存在时,默认可以匹配所有的数据包。优先级即QFI所标识的QoS flow的优先级,例如高优先级的QoS flow可优先传输。例如,对于2个Uu QoS flow,UL Uu QoS rule可表示为{(QFI 1,PFI 1->QFI 1,packet filter set1,优先级1),(QFI 2,PFI 2->QFI 2,packet filter set2,优先级2)},或表示为{(QFI 1,PFI 1,packet filter set1,优先级1),(QFI 2,PFI 2,packet filter set2,优先级2)}。再例如,对于3个Uu QoS flow,UL Uu QoS rule可表示为{(QFI 1,PFI 1->QFI 1,packet filter set1,优先级1),(QFI 2,PFI 2->QFI 2,packet filter set2,优先级2),(QFI 3,PFI 3->QFI 3,packet filter set3,优先级1)}。
本申请中,多个PC5 QoS flow与多个Uu QoS flow之间的第三关联关系用于中继UE进行下行传输,具体用于中继UE将通过Uu QoS flow接收的来自UPF的下行数据包映射至PC5 QoS flow,以便通过PC5 QoS flow向远端UE发送该下行数据包。第三关联关系可通过PC5 QoS flow的标识与Uu QoS flow的标识之间的关联关系表示,即通过PFI与QFI之间的关联关系表示。例如,2个PC5 QoS flow与2个Uu QoS flow之间的第三关联关系可表示为{(QFI 1->PFI 1),(QFI 2->PFI 2)},(QFI 1->PFI 1)表示QFI 1标识的Uu QoS flow1与PFI1标识的PC5 QoS flow1具有关联关系,可将Uu QoS flow1承载的下行数据包映射至PC5 QoS flow 1;(QFI 2->PFI 2)表示QFI 2标识的Uu QoS flow2与PFI 2标识的Uu QoS flow 2具有关联关系,可将Uu QoS flow 2承载的上行数据包映射至PC5 QoS flow 2。
可选的,第三关联关系可以是一个QoS rule,例如DL PC5 QoS rule,用于确定如何将Uu QoS flow承载的下行数据包映射至PC5 QoS flow。DL PC5 QoS rule可包括PFI,与PFI关联的QFI,a packet filter set和优先级。例如,对于2个PC5 QoS flow,DL PC5 QoS rule可表示为{(PFI 1,QFI 1->PFI 1,packet filter set1,优先级1),(PFI 2,QFI 2->PFI 2,packet filter set2,优先级2)}。
示例性的,以2个Uu QoS flow和2个PC5 QoS flow为例,涉及的QoS rule可参见下表1所示。
表1
表1中,DL Uu QoS rule用于中继UE中继来自UPF的下行数据包,可实现Uu口的分层传输。UL PC5 QoS rule可由中继UE生成或由远端UE生成,用于指示多个PC5 QoS flow之间的关联关系,例如PFI 1所标识的PC5 QoS flow 1与PFI 2所标识的PC5 QoS flow 2具有关联关系。再例如,对于3个PC5 QoS flow,UL PC5 QoS rule可指示PC5 QoS flow 1与PC5 QoS flow 2具有关联关系,PC5 QoS flow 2与PC5 QoS flow 3具有关联关系,PC5 QoS flow 1与PC5 QoS flow 3具有关联关系。
需要说明的是,表1中几个QoS rule的名称用于举例,并不构成对本申请的限定。
中继UE可以同时确定第二关联关系和第三关联关系,以便进行上下行传输。或,在将 进行上行传输时,确定第二关联关系;在将进行下行传输时,确定第三关联关系。
上述中继UE针对上行传输,确定DL Uu QoS rule,针对下行传输,确定Uu PC5 QoS rule,使得上下行传输通过不同的QoS rule将PC5 QoS flow与Uu QoS flow进行关联。在另一种可能的实现方式中,中继UE确定一种QoS rule,该QoS rule既适用于上行传输又适用于下行传输,例如该QoS rule可表示为{(PFI 1,QFI 1),(PFI 2,QFI 2)},(PFI 1,QFI 1)表示PFI 1所标识的PC5 QoS flow1与QFI 1所标识的Uu QoS flow1具有关联关系,对于下行,Uu QoS flow1承载的下行数据包可映射至PC5 QoS flow1;对于上行,PC5 QoS flow1承载的上行数据包可映射至Uu QoS flow1。
下述步骤406至步骤409为上行传输过程,步骤410至步骤412为下行传输过程。
406,远端UE将第一上行数据包映射至第一流标识(即PFI)所标识的PC5 QoS flow。
可选的,远端UE在将上行数据包映射至PC5 QoS flow之前,可根据数据流的重要等级对数据流进行分层处理,例如分为重要的数据包(例如I帧)和不重要的数据包(例如P帧)。
在一种可能的实现方式中,远端UE根据第一上行数据包的属性信息,并结合第一关联关系和多个PC5 QoS flow之间的关联关系,即结合LQoS rule和UL PC5 QoS rule,确定第一上行数据包对应于第一PFI,从而将第一上行数据包映射至第一PFI所标识的PC5 QoS flow。其中,第一上行数据包可以是待发送的任意一个数据包。属性信息可以包括特定应用标识、三元组、五元组中的一种或多种。特定应用标识指的是XR等媒体业务对应的应用标识,用于标识上行数据包针对哪种应用。三元组用于标识上行数据包的源IP地址和目的IP地址,五元组用于标识上行数据包的源IP地址、目的IP地址、源端口和目的端口。采用三元组或五元组对上行数据包进行标识。UL PC5 QoS rule可由远端UE生成,或由中继UE生成并告知远端UE。
示例性的,LQoS rule表示为{(重要等级1,PFI 1),(重要等级2,PFI 2)},UL PC5 QoS rule表示为{PFI 1,PFI 2,packet filter},根据UL PC5 QoS rule无法确定将上行数据包映射至PFI 1所标识的PC5 QoS flow还是PFI 2所标识的Uu QoS flow;根据LQoS rule可将重要等级1的上行数据包映射至PFI 1所标识的PC5 QoS flow,将重要等级2的上行数据包映射至PFI 2所标识的PC5 QoS flow,但是不清楚如何确定出重要等级,也不清楚这两个PC5 QoS flow具有关系关系。将LQoS rule与UL PC5 QoS rule结合,从而将packet filter与上行数据包的属性信息进行匹配,从而确定上行数据包的重要等级,将重要等级1的上行数据包映射至PFI 1所标识的PC5 QoS flow,将重要等级2的上行数据包映射至PFI 2所标识的PC5 QoS flow。例如,远端UE将packet filter与上行数据包1的属性信息进行匹配,确定出上行数据包1的重要等级为1,对应于PFI 1,那么可将上行数据包1映射至PFI 1所标识的PC5 QoS flow1;将packet filter与上行数据包2的属性信息进行匹配,确定出上行数据包2的重要等级为2,对应于PFI 2,那么可将上行数据包2映射至PFI 2所标识的PC5 QoS flow2。
在另一种可能的实现方式中,远端UE可确定或生成一个新的rule,该rule用于确定第一上行数据包对应于第一PFI,从而将第一上行数据包映射至第一PFI所标识的PC5 QoS flow。例如,该rule可表示为{packet filter,(重要等级1,PFI 1),(重要等级2,PFI 2)},将packet filter与上行数据包的属性信息进行匹配,从而确定上行数据包的重要等级,将重要等级1的上行数据包映射至PFI 1所标识的PC5 QoS flow,将重要等级2的上行数据包映射至PFI 2所标识的PC5 QoS flow。远端UE可基于LQoS rule生成新的rule。
可选的,在远端UE与中继UE之间的资源受限的情况下,即PC5资源受限,例如PC5口的网络拥塞,若第一PFI所标识的PC5 QoS flow的优先级低于阈值,远端UE可丢弃映射 至第一PFI所标识的PC5 QoS flow的上行数据包。其中,第一PFI所标识的PC5 QoS flow的优先级低于阈值可以理解为第一PFI所标识的PC5 QoS flow的QoS保障较低或最低,阈值可以是最高QoS保障等级或协议规定的参考优先级阈值。对于映射至QoS保障较低的PC5 QoS flow的数据包,可丢弃,从而减少对视频效果的影响。
407,远端UE通过第一PFI所标识的PC5 QoS flow向中继UE发送第一上行数据包。相应的,中继UE通过第一PFI所标识的PC5 QoS flow接收来自远端UE的第一上行数据包。
408,中继UE根据第二关联关系,将第一上行数据包映射至第一Uu QoS flow。
可选的,中继UE根据UL Uu QoS rule中的packet filter和PFI将第一上行数据包映射至第一Uu QoS flow。例如,UL Uu QoS rule包括的内容如表1所示,若第一PFI为PFI 1,根据packet filter和PFI1可将第一上行数据包映射至QFI 1所标识的Uu QoS flow;若第一PFI为PFI 2,根据packet filter可将第一上行数据包映射至QFI 2所标识的Uu QoS flow。
409,中继UE通过第一Uu QoS flow向第三网络设备发送第一上行数据包。相应的,第三网络设备通过第一Uu QoS flow接收来自中继UE的第一上行数据包。其中,第三网络设备可以是5G系统中的UPF,还可以是未来通信中与UPF具有相同功能的网元,本申请以UPF为例。
中继UE向UPF发送第一上行数据包,可通过接入网设备透传。UPF在接收到第一上行数据包的情况下,可将第一上行数据包发送至XR服务器。
示例性的,步骤406至步骤409所示的上行传输可参见图5所示的示例图。图5中,假设PC5 QoS flow1的QoS保障高于PC5 QoS flow2,Uu QoS flow1的QoS保障高于Uu QoS flow2,上行数据包1的重要性高于上行数据包2,例如上行数据包1为I帧,上行数据包2为P帧。远端UE根据上行数据包的属性信息,并结合第一关联关系和多个PC5 QoS flow之间的关联关系,确定上行数据包1对应于PFI 1,上行数据包2对应于PFI 2,将上行数据包1映射至PFI 1所标识的PC5 QoS flow1,并通过PC5 QoS flow1向中继UE发送上行数据包1;将上行数据包2映射至PFI 2所标识的PC5 QoS flow2,并通过PC5 QoS flow2向中继UE发送上行数据包2。中继UE在接收到上行数据包1和上行数据包2时,根据第二关联关系,将上行数据包1映射至QFI 1所标识的Uu QoS flow1,并通过Uu QoS flow1向UPF发送上行数据包1;将上行数据包2映射至QFI 2所标识的Uu QoS flow2,并通过Uu QoS flow2向UPF发送上行数据包2。若Uu QoS flow2的QoS保障高于Uu QoS flow1,那么中继UE根据第二关联关系,将上行数据包1映射至QFI 1所标识的Uu QoS flow2,上行数据包2映射至QFI 1所标识的Uu QoS flow1。
可选的,在远端UE与中继UE之间的PC5资源受限的情况下,远端UE可丢弃映射至PC5 QoS flow2的上行数据包。
410,UPF通过第二流标识(QFI)所标识的Uu QoS flow向中继UE发送第一下行数据包。相应的,中继UE通过第二QFI所标识的Uu QoS flow接收来自UPF的第一下行数据包。
UPF在接收到来自XR服务器的数据流时,根据数据流的重要等级将数据流通过多个Uu QoS flow发送至中继UE。例如2个Uu QoS flow,一个Uu QoS flow用于承载重要的数据包,另一个Uu QoS flow用于承载不重要的数据包。
411,中继UE根据第三关联关系将第一下行数据包映射至第二PC5 QoS flow。
可选的,中继UE根据DL PC5 QoS rule中的packet filter和QFI将第一下行数据包映射至第二PC5 QoS flow。例如,DL PC5 QoS rule包括的内容如表1所示,若第二QFI为QFI 1,根据packet filter和QFI1可将第一下行数据包映射至PFI 1所标识的PC5 QoS flow;若第一 QFI为QFI 2,根据packet filter可将第一下行数据包映射至PFI 2所标识的PC5 QoS flow。
可选的,在远端UE与中继UE之间的资源受限的情况下,若第二QFI所标识的Uu QoS flow的优先级低于阈值,中继UE可丢弃映射至第二QFI所标识的Uu QoS flow的下行数据包。其中,第二QFI所标识的Uu QoS flow的优先级低于阈值可以理解为第二QFI所标识的Uu QoS flow的QoS保障较低或最低,阈值可以是最高QoS保障等级或协议规定的参考优先级阈值。对于映射至QoS保障较低的PC5 QoS flow的数据包,可丢弃,从而减少对视频效果的影响。
412,中继UE通过第二PC5 QoS flow向远端UE发送第一下行数据包。相应的,远端UE通过第二PC5 QoS flow接收来自中继UE的第一下行数据包。
示例性的,步骤410至步骤412所示的上行传输可参见图6所示的示例图。图6中,假设PC5 QoS flow1的QoS保障高于PC5 QoS flow2,Uu QoS flow1的QoS保障高于Uu QoS flow2,上行数据包1的重要性高于上行数据包2,例如上行数据包1为I帧,上行数据包2为P帧。远端UE根据上行数据包的属性信息,并结合第一关联关系和多个PC5 QoS flow之间的关联关系,确定上行数据包1对应于PFI 1,上行数据包2对应于PFI 2,将上行数据包1映射至PFI 1所标识的PC5 QoS flow1,并通过PC5 QoS flow1向中继UE发送上行数据包1;将上行数据包2映射至PFI 2所标识的PC5 QoS flow2,并通过PC5 QoS flow2向中继UE发送上行数据包2。中继UE在接收到上行数据包1和上行数据包2时,根据第二关联关系,将上行数据包1映射至QFI 1所标识的Uu QoS flow1,并通过Uu QoS flow1向UPF发送上行数据包1;将上行数据包2映射至QFI 2所标识的Uu QoS flow2,并通过Uu QoS flow2向UPF发送上行数据包2。若Uu QoS flow2的QoS保障高于Uu QoS flow1,那么中继UE根据第二关联关系,将上行数据包1映射至QFI 1所标识的Uu QoS flow2,上行数据包2映射至QFI 1所标识的Uu QoS flow1。
可选的,在远端UE与中继UE之间的PC5资源受限的情况下,中继UE可丢弃映射至PC5 QoS flow2的上行数据包。
在图4中,中继UE根据远端UE发送的第一消息,建立支持LQoS的PDU会话,以中继XR服务器与远端UE之间的数据,从而减少对远端UE侧的视频效果的影响。基于建立的支持LQoS的PDU会话,中继UE建立具有关联关系的多个PC5 QoS flow以及具有关联关系的多个Uu QoS flow,并将多个PC5 QoS flow与多个Uu QoS flow关联,以实现中继场景下的分层传输,在PC5资源受限,远端UE可丢弃映射至低QoS保障的PC5 QoS flow的上行数据包,中继UE可丢弃映射至低QoS保障的PC5 QoS flow的下行数据包,保证重要数据的传输,从而减少对视频效果的影响。
请参阅图7,是本申请实施例一提供的数据传输方法的流程示意图,该方法可以包括但不限于如下步骤:
700,PCF为中继UE和远端UE配置RSC以及RSC对应的PDU会话参数。
其中,PDU会话参数包括第一信息。在一种实现方式中,第一信息可以是一个参数,例如QoS control type,该参数的取值可指示中继UE建立支持LQoS的PDU会话,或指示中继UE建立支持独立QoS的PDU会话。在另一种实现方式中,第一信息可以是LQoS,直接指示中继UE建立支持LQoS的PDU会话。示例性的,RSC与PDU会话参数之间的对应关系可表示为RSC->PDU session parameters(PDU session type,DNN,SSC mode,S-NSSAI,access type preference,LQoS),PDU会话参数携带LQoS,默认指示中继UE建立支持LQoS的PDU会话。
PCF将其配置的RSC以及RSC对应的PDU会话参数分别发送至远端UE和中继UE。
701,远端UE与中继UE执行发现过程。基于包括第一信息的PDU会话参数对应的RSC执行发现过程。
对于模式A,中继UE支持LQoS,则广播关联的PDU会话参数中包括LQoS的RSC。
对于模式B,远端UE广播RSC,该RSC对应的PDU会话参数指示LQoS,中继UE在支持LQoS的情况下,可响应于远端UE。远端UE广播该RSC,可通过第一消息广播该RSC。
702,远端UE向中继UE发送连接请求消息。相应的,中继UE接收来自远端UE的连接请求消息。其中,连接请求消息可以是L2 link建立请求消息或直连通信请求消息等,用于请求与中继UE建立通信连接。
703,中继UE根据发现过程中的RSC确定建立支持LQoS的PDU会话。其中,RSC对应的PDU会话参数包括的第一信息。
704,中继UE建立支持LQoS的PDU会话。步骤704的实现过程可参见图7-1所示,图7-1所示的流程可包括但不限于如下步骤:
7041,中继UE向AMF发送非接入层(non-access stratum,NAS)消息。相应的,AMF接收来自中继UE的NAS消息。
其中,NAS消息用于请求建立PDU会话。在一种实现方式中,NAS消息包括PDU会话建立请求消息和第一信息,用于请求建立支持LQoS的PDU会话。在另一种实现方式中,NAS消息包括PDU会话建立请求消息,PDU会话建立请求消息包括第一信息,PDU会话建立请求消息用于请求建立支持LQoS的PDU会话。
7042,AMF选择支持LQoS的SMF。
7043,AMF向所选的SMF发送PDU会话建立上下文请求消息。相应的,SMF接收来自AMF的PDU会话建立上下文请求消息。
在一种实现方式中,PDU会话建立上下文请求消息包括PDU会话建立请求消息和第一信息,用于请求建立支持LQoS的PDU会话。在另一种实现方式中,PDU会话建立上下文请求消息包括PDU会话建立请求消息,PDU会话建立请求消息包括第一信息,PDU会话建立请求消息用于请求建立支持LQoS的PDU会话。
可以理解的是,中继UE可经过AMF向支持LQoS的SMF发送PDU会话建立请求消息和第一信息;或,中继UE可经过AMF向支持LQoS的SMF发送PDU会话建立请求消息,该PDU会话建立请求消息包括第一信息。
7044,SMF从PCF获取LQoS信息。其中,LQoS信息包括XR等媒体业务的packet filter以及用于执行分层服务质量的QoS参数。
7045,SMF生成LQoS rule。
可选的,SMF可基于LQoS信息生成LQoS rule。其中,LQoS rule可参考图4中步骤402对LQoS rule的具体描述,在此不再赘述。
7046,SMF向AMF发送PDU会话建立上下文响应消息。相应的,AMF接收来自SMF的PDU会话建立上下文响应消息。
其中,PDU会话建立上下文响应消息包括LQoS rule,还包括LQoS接收指示,用于指示已建立支持LQoS的PDU会话。
7047,AMF向中继UE发送PDU会话建立接受消息。相应的,中继UE接收来自AMF的PDU会话建立接受消息。AMF可通过接入网设备向中继UE发送PDU会话建立接受消息,或直接向中继UE发送PDU会话建立接受消息。
其中,PDU会话建立接受消息包括LQoS rule。
705,中继UE向远端UE发送连接接受消息。相应的,远端UE接收来自中继UE的连接接受消息。其中,连接接受消息用于响应连接请求消息,可以是L2 link建立响应消息或直连通信响应消息等,用于指示中继UE同意建立通信连接。
连接接受消息包括LQoS rule,以便远端UE将其与多个PC5 QoS flow之间的关联关系结合,确定上行数据包对应的PFI。
706,IP地址分配。
707,中继UE向SMF发送远端UE报告(remote UE report)。相应的,SMF接收来自中继UE的远端UE报告。
步骤706和步骤707可参考图3中的步骤105和步骤107。
708,远端UE通过中继方式与XR服务器建立连接。
709,远端UE向中继UE发送第一连接消息。相应的,中继UE接收来自远端UE的第一连接消息。第一连接消息例如可以是连接修改请求消息,以触发中继UE建立具有关联关系的多个PC5 QoS flow。
其中,第一连接消息用于告知中继UE,执行LQoS的PC5 QoS flow具有关联关系,即指示多个PC5 QoS flow之间的关联关系。
在一种实现方式中,在第一连接消息中的PC5 QoS context中增加关联的PC5 QoS flow的PFI。示例性的,PC5 QoS context(PFI;correlated PFI;PC5 QoS参数,PC5 QoS rule(PFI,PC5 packet filter,precedence value))。举例来说,2个PC5 QoS flow,PC5 QoS context可包括PFI 1和PFI 2,表示PFI 1所标识的PC5 QoS flow1与PFI 2所标识的PC5 QoS flow2关联。
在另一种实现方式中,在PC5 QoS context中的PC5 QoS rule中增加关联的PC5 QoS flow的PFI,该PC5 QoS rule即表1中的UL PC5 QoS rule。示例性的,PC5 QoS context(PFI;PC5 QoS参数,PC5 QoS rule(PFI,correlated PFI;PC5packet filter,precedence value))。举例来说,2个PC5 QoS flow,PC5 QoS context中的PC5 QoS rule可包括PFI 1和PFI 2,表示PFI 1所标识的PC5 QoS flow1与PFI 2所标识的PC5 QoS flow2关联。
710,中继UE建立具有关联关系的多个PC5 QoS flow,建立具有关联关系的多个Uu QoS flow。
中继UE根据第一连接消息,建立具有关联关系的多个PC5 QoS flow。建立具有关联关系的多个Uu QoS flow通过发起PDU会话修改流程完成。中继UE通过远端UE请求的PC5 QoS参数映射出Uu QoS参数。其中,PC5 QoS参数可包括PC5口5G QoS标识(PC5 5G QoS identifier,PQI)、保障流比特速率(guaranteed flow bit rate,GFBR)、最大流比特速率(maximum flow bit rate,MFBR)、PC5连接聚合最大比特速率(PC5link-aggregate maximum bit rate,PC5LINK-AMBR)等中的一种或多种。Uu QoS参数可包括5G QoS标识(5G QoS identifier,5QI)、GFBR、MFBR、平均窗口等中的一种或多种。例如通过PQI映射出5QI。
PDU会话修改流程可参见图7-2所示,图7-2所示的流程可包括但不限于如下步骤:
7101,中继UE向AMF发送PDU会话修改请求消息。相应的,AMF接收来自中继UE的PDU会话修改请求消息。其中,PDU会话修改请求消息用于请求对Uu QoS flow进行增加、修改、删除等操作以及对应的QoS参数等。
7102,AMF向SMF发送PDU会话更新上下文。相应的,SMF接收来自AMF的PDU会话更新上下文,其中PDU会话更新上下文消息中包括UE发送的PDU会话修改请求消息。
7103,SMF向UPF发送N4会话修改请求消息。相应的,UPF接收来自SMF的N4会话 修改请求消息。
其中,N4会话修改请求消息包括QoS rule,该QoS rule指示多个Uu QoS flow之间的关联关系。例如,该QoS rule可包括(QFI 1,QFI 2),表示QFI 1所标识的Uu QoS flow 1与QFI 2所标识的Uu QoS flow 2具有关联关系。
7104,SMF向AMF发送PDU会话更新上下文响应。相应的,AMF接收来自SMF的PDU会话更新上下文响应。
其中,PDU会话更新上下文响应包括PDU会话修改命令,PDU会话修改命令包括步骤7103中的QoS rule,以及QFI对应的Uu QoS参数。例如,PDU会话修改命令包括QoS rule(QFI 1,QFI 2),QFI 1对应的Uu QoS参数,QFI 2对应的Uu QoS参数。
7105,AMF向中继UE发送PDU会话修改响应消息。相应的,中继UE接收来自AMF的PDU会话修改响应消息。AMF可通过接入网设备向中继UE发送PDU会话修改响应消息,或直接向中继UE发送PDU会话修改响应消息。
其中,PDU会话修改响应消息包括上述PDU会话修改命令,以便中继UE获知多个Uu QoS flow之间的关联关系。
图7-2所示的流程可以理解为远端UE触发中继UE建立具有关联关系的Uu QoS flow。
711,中继UE生成DL PC5 QoS rule和UL Uu QoS rule。步骤711可参考图4中的步骤405,在此不再赘述。
712,中继UE向远端UE发送第三连接消息。相应的,远端UE接收来自中继UE的第三连接消息。第三连接消息用于响应第一连接消息,例如可以是连接修改接受消息。
713,上行传输过程,可参考图4中的步骤406至步骤409。
714,下行传输过程,可参考图4中的步骤410至步骤412。
在图7所示的实施例一中,中继UE与远端UE基于包括第一信息的PDU会话参数对应的RSC执行发现过程,中继UE根据第一信息建立支持LQoS的PDU会话,以中继XR服务器与远端UE之间的数据,从而减少对远端UE侧的视频效果的影响。
请参阅图8,是本申请实施例二提供的数据传输方法的流程示意图,该方法可以包括但不限于如下步骤:
801,远端UE与中继UE执行发现过程。步骤801可参考图3中的步骤103,在此不再赘述。
802,远端UE向中继UE发送连接请求消息。相应的,中继UE接收来自远端UE的连接请求消息。其中,连接请求消息用于请求与中继UE建立通信连接,可以是L2 link建立请求消息或直连通信请求消息等。
其中,连接请求消息包括第一信息,第一信息可以是一个指示信息,例如LQoS指示信息,用于指示中继UE建立支持LQoS的PDU会话。举例来说,远端UE确定中继的业务是XR等媒体业务时,向中继UE发送携带LQoS指示信息的连接请求消息。
803,中继UE根据第一信息确定建立支持LQoS的PDU会话。
804,中继UE建立支持LQoS的PDU会话。
805,中继UE向远端UE发送连接接受消息。相应的,远端UE接收来自中继UE的连接接受消息。
806,IP地址分配。
807,中继UE向SMF发送远端UE报告(remote UE report)。相应的,SMF接收来自中继UE的远端UE报告。
808,远端UE通过中继方式与XR服务器建立连接。
809,远端UE向中继UE发送第一连接消息。相应的,中继UE接收来自远端UE的第一连接消息。其中,第一连接消息用于指示多个PC5 QoS flow具有关联关系。
810,中继UE建立具有关联关系的多个PC5 QoS flow,建立具有关联关系的多个Uu QoS flow。
步骤804至步骤810可参考图7中的步骤704至步骤710的描述,在此不再赘述。
811,中继UE生成DL PC5 QoS rule和UL Uu QoS rule。步骤811可参考图4中的步骤405,在此不再赘述。
812,中继UE向远端UE发送第三连接消息。相应的,远端UE接收来自中继UE的第三连接消息。
813,上行传输过程,可参考图4中的步骤406至步骤409。
814,下行传输过程,可参考图4中的步骤410至步骤412。
在图8所示的实施例二中,远端UE向中继UE发送LQoS指示信息,指示中继UE建立支持LQoS的PDU会话,以中继XR服务器与远端UE之间的数据,从而减少对远端UE侧的视频效果的影响。
请参阅图9,是本申请实施例三提供的数据传输方法的流程示意图,该方法可以包括但不限于如下步骤:
步骤901至步骤908可参考图7中的步骤701至步骤708,或参考图8中的步骤801至步骤808。
909,XR服务器与SMF执行策略修改流程。
该流程可包括:XR服务器向PCF发送请求消息,请求消息包括请求的QoS;PCF接收到该请求消息,根据请求的QoS生成相应的策略与计费控制(policy and charging control,PCC)策略,并向SMF发送PCC策略。
910,SMF基于中继UE与远端UE之间的关联关系,确定触发中继UE建立具有关联关系的多个Uu QoS flow。
其中,中继UE与远端UE之间的关联关系可基于步骤707或步骤807中的远端UE报告获得。SMF可通过发起PDU会话修改流程,来触发中继UE建立具有关联关系的多个Uu QoS flow,PDU会话修改流程可包括下述步骤911至步骤913。
911,SMF与UPF执行N4会话修改流程。该流程可包括SMF向UPF发送N4会话修改请求消息,UPF向SMF发送N4会话修改接受消息。
912,SMF向AMF发送N1N2消息。相应的,AMF接收来自SMF的N1N2消息。
其中,N1N2消息例如可以是Namf_Communication_N1N2MessageTransfer,该消息包括PDU会话修改消息,例如PDU会话修改命令,PDU会话修改消息可包括QoS rule,该QoS rule指示多个Uu QoS flow之间的关联关系。例如,对于2个Uu QoS flow,该QoS rule包括QFI 1和QFI 2,表示QFI 1所标识的Uu QoS flow1与QFI 2所标识的Uu QoS flow2具有关联关系。该QoS rule还包括远端UE的标识信息,例如远端UE的用户标识和/或IP地址,用于指示针对远端UE建立具有关联关系的多个Uu QoS flow。
913,AMF向中继UE发送PDU会话修改消息。相应的,中继UE接收来自AMF的PDU会话修改消息。
AMF向中继UE发送PDU会话修改消息时,可通过NAS消息直接发送,或通过接入网设备向中继UE发送。例如,AMF向接入网设备发送N2消息,该N2消息包括PDU会话修 改消息,接入网设备向中继UE发送AN消息,该AN消息包括PDU会话修改消息。其中,PDU会话修改消息包括的内容可参考步骤912对其的描述。
914,中继UE建立具有关联关系的多个Uu QoS flow,建立具有关联关系的多个PC5 QoS flow。
中继UE根据上述PDU会话修改消息,针对远端UE建立具有关联关系的多个Uu QoS flow。根据建立的具有关联关系的多个Uu QoS flow,建立具有关联关系的多个PC5 QoS flow,并生成UL PC5 QoS rule。
915,中继UE生成或更新DL PC5 QoS rule和UL Uu QoS rule。步骤915可参考图4中的步骤405,在此不再赘述。
可选的,若中继UE已生成DL PC5 QoS rule和UL Uu QoS rule,那么中继UE可对已生成的DL PC5 QoS rule和/或UL Uu QoS rule进行更新,使得中继UE可以动态调整PC5 QoS flow与Uu QoS flow之间的关联关系,以灵活地利用网络资源。
916,中继UE向远端UE发送第二连接消息。相应的,远端UE接收来自中继UE的第一连接消息。其中,第二连接消息用于指示多个PC5 QoS flow具有关联关系。第二连接消息例如可以是连接修改请求消息,以触发远端UE与中继UE建立具有关联关系的多个PC5 QoS flow。
其中,第二连接消息用于告知远端UE,多个PC5 QoS flow具有关联关系。
在一种实现方式中,在第二连接消息中的PC5 QoS context中增加关联的PC5 QoS flow的PFI。示例性的,PC5 QoS context(PFI;correlated PFI;PC5 QoS参数,PC5 QoS rule(PFI,PC5 packet filter,precedence value))。举例来说,2个PC5 QoS flow,PC5 QoS context可包括PFI 1和PFI 2,表示PFI 1所标识的PC5 QoS flow1与PFI 2所标识的PC5 QoS flow2关联。
在另一种实现方式中,在PC5 QoS context中的PC5 QoS rule中增加关联的PC5 QoS flow的PFI,该PC5 QoS rule即表1中的UL PC5 QoS rule。示例性的,PC5 QoS context(PFI;PC5 QoS参数,PC5 QoS rule(PFI,correlated PFI;PC5packet filter,precedence value))。举例来说,2个PC5 QoS flow,PC5 QoS context中的PC5 QoS rule可包括PFI 1和PFI 2,表示PFI 1所标识的PC5 QoS flow1与PFI 2所标识的PC5 QoS flow2关联。
917,远端UE向中继UE发送第四连接消息。相应的,中继UE接收来自远端UE的第四连接消息。其中,第四连接消息用于响应第二连接消息,第四连接消息例如可以是连接修改接受消息。
918,上行传输过程,可参考图4中的步骤406至步骤409。
919,下行传输过程,可参考图4中的步骤410至步骤412。
在图9所示的实施例三中,由网络触发中继UE建立具有关联关系的多个Uu QoS flow,中继UE请求与远端UE建立具有关联关系的多个PC5 QoS flow,使得中继UE可动态调整PC5 QoS flow与Uu QoS flow之间的关联关系,从而灵活地利用网络资源。而图7或图8所示的实施例中,由远端UE请求中继UE建立具有关联关系的多个PC5 QoS flow,进而中继UE建立具有关联关系的多个Uu QoS flow。
本申请还提供如下实施例:
实施例1.一种数据传输方法,该方法包括:
中继设备接收来自远端设备的第一消息,第一消息用于发现远端设备、或请求与中继设备建立通信连接;其中,第一消息包括中继服务码,中继服务码对应的协议数据单元会话参 数包括第一信息;或,第一消息包括第一信息;第一信息用于建立支持分层服务质量的协议数据单元会话,协议数据单元会话用于中继远端设备的数据;通过协议数据单元会话传输远端设备的数据。
实施例2.根据实施例1的方法,还包括:中继设备接收来自第一网络设备的配置信息,配置信息包括中继服务码以及中继服务码对应的协议数据单元会话参数,其中,协议数据单元会话参数包括第一信息。
实施例3.根据实施例1或2的方法,还包括:中继设备向远端设备发送第二消息,第二消息用于确定上行数据包与第一类服务质量流之间的第一关联关系,第一类服务质量流用于中继设备与远端设备之间传输数据。
实施例4.根据实施例1或2的方法,还包括:中继设备向第二网络设备发送用于建立协议数据单元会话的请求消息,请求消息包括第一信息。
实施例5.根据实施例1至4任一项的方法,还包括:中继设备建立具有关联关系的多个第一类服务质量流,第一类服务质量流用于中继设备与远端设备之间传输数据;建立具有关联关系的多个第二类服务质量流,多个第二类服务质量流与协议数据单元会话相关联,用于中继设备与第三网络设备之间传输数据;确定多个第一类服务质量流与多个第二类服务质量流之间的第二关联关系。
实施例6.根据实施例5的方法,还包括:中继设备通过第一流标识所标识的服务质量流接收到来自远端设备的第一上行数据包,根据第二关联关系将第一上行数据包映射至多个第二类服务质量流中的第一服务质量流;其中,第一流标识用于标识多个第一类服务质量流中承载第一上行数据包的服务质量流;第二关联关系包括第一服务质量流与第一流标识所标识的服务质量流之间的关联关系;通过第一服务质量流向第三网络设备发送第一上行数据包。
实施例7.根据实施例5的方法,还包括:中继设备确定多个第一类服务质量流与多个第二类服务质量流之间的第三关联关系。
实施例8.根据实施例7的方法,还包括:中继设备通过第二流标识所标识的服务质量流接收到来自第三网络设备的第一下行数据包,根据第三关联关系将第一下行数据包映射至多个第一类服务质量流中的第二服务质量流;其中,第二流标识用于标识多个第二类服务质量流中承载第一下行数据包的服务质量流;第三关联关系包括第二服务质量流与第二流标识所标识的服务质量流之间的关联关系;通过第二服务质量流向远端设备发送第一下行数据包。
实施例9.根据实施例8的方法,还包括:在远端设备与中继设备之间的资源受限的情况下,若第二服务质量流的优先级低于阈值,中继设备丢弃映射至第二服务质量流的第二下行数据包。
实施例10.根据实施例5的方法,还包括:中继设备接收来自远端设备的第一连接消息,第一连接消息用于请求建立具有关联关系的多个第一类服务质量流,第一连接消息指示多个第一类服务质量流之间的关联关系。
实施例11.根据实施例5的方法,还包括:中继设备接收来自第二网络设备的协议数据单元会话修改消息,协议数据单元会话修改消息包括远端设备的标识信息;
中继设备建立具有关联关系的多个第一类服务质量流,包括:
中继设备根据协议数据单元会话修改消息,与远端设备之间建立具有关联关系的多个第一类服务质量流。
实施例12.根据实施例11的方法,还包括:中继设备更新第二关联关系和/或第三关联关系。
实施例13.根据实施例11的方法,还包括:中继设备向远端设备发送第二连接消息,第二连接消息指示多个第一类服务质量流之间的关联关系。
其中,实施例1~实施例13中中继设备的相关操作,可参见图4、图7至图9中对中继设备的相关描述,在此不赘述。
实施例14.一种数据传输方法,该方法包括:
远端设备向中继设备发送第一消息,第一消息用于发现远端设备、或请求与中继设备建立通信连接;其中,第一消息包括中继服务码,中继服务码对应的协议数据单元会话参数包括第一信息;或,第一消息包括第一信息;第一信息用于建立支持分层服务质量的协议数据单元会话,协议数据单元会话用于中继远端设备的数据。
实施例15.根据实施例14的方法,还包括:远端设备接收来自第一网络设备的配置信息,配置信息包括中继服务码以及中继服务码对应的协议数据单元会话参数,其中,协议数据单元会话参数包括第一信息。
实施例16.根据实施例14或15的方法,还包括:远端设备接收来自中继设备的第二消息,第二消息用于确定上行数据包与第一类服务质量流之间的第一关联关系,第一类服务质量流用于中继设备与远端设备之间传输数据。
实施例17.根据实施例16的方法,还包括:远端设备根据第一上行数据包的属性信息,并结合第一关联关系和多个第一类服务质量流之间的关联关系,确定第一上行数据包对应于第一流标识;属性信息包括特定应用标识、三元组、五元组中的一种或多种;第一类服务质量流用于中继设备与远端设备之间传输数据;将第一上行数据包映射至第一流标识所标识的多个第一类服务质量流中的一个服务质量流;过第一流标识所标识的服务质量流向中继设备发送第一上行数据包。
实施例18.根据实施例17的方法,还包括:远端设备向中继设备发送第一连接消息,第一连接消息用于请求建立具有关联关系的多个第一类服务质量流,第一连接消息指示多个第一类服务质量流之间的关联关系。
实施例19.根据实施例17的方法,还包括:远端设备接收来自中继设备的第二连接消息,第二连接消息指示多个第一类服务质量流之间的关联关系。
实施例20.根据实施例17的方法,还包括:在远端设备与中继设备之间的资源受限的情况下,若第一流标识所标识的服务质量流的优先级低于阈值,丢弃映射至第一流标识所标识的服务质量流的第二上行数据包。
其中,实施例14~实施例20中远端设备的相关操作,可参见图4、图7至图9中对远端设备的相关描述,在此不赘述。
为了实现本申请实施例提供的数据传输方法,中继设备和远端设备可以分别包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
图10所示一个中继设备和一个远端设备之间进行通信的一种形式,如图10所示,中继设备10包括处理器101、存储器102和收发器103,收发器103包括发射机1031、接收机1032和天线1033。远端设备20包括处理器201、存储器202和收发器203,收发器203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收消息,发射机1031可以用于通过天线1033向远端设备20发送消息。发射机2031可以用于通过天线2033 向中继设备10发送消息,接收机2032可以用于通过天线2033接收中继设备10发送的消息。
图11和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中中继设备或远端设备的功能,因此也能实现上述方法实施例所具备的有益效果。
图11所示的通信装置1100可包括通信单元1101和处理单元1102。通信单元1101可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元1101可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
通信装置1100可以是中继设备,也可以中继设备中的装置,还可以具有中继设备功能的装置。
一种实施方式中,通信装置1100可执行上述图4、图6至图9所示实施例中中继设备的相关操作。例如,在图4所示的实施例中,通信单元1101,用于接收来自远端设备的第一消息;处理单元1102,用于根据第一消息建立支持分层服务质量的协议数据单元会话。其中,有关上述处理单元1102和通信单元1101更详细的描述可以参考图4、图7至图9所示实施例中相关描述得到。
通信装置1100可以是远端设备,也可以是远端设备中的装置,还可以是具有远端设备功能的装置。
一种实施方式中,通信装置1100可执行上述图4、图7至图9所示实施例中远端设备的相关操作。例如,在图4所示的实施例中,通信单元1101用于向中继设备发送第一消息。其中,有关上述处理单元1102和通信单元1101更详细的描述可以参考图4、图7至图9所示实施例中相关描述得到。
图12所示的通信装置1200可包括处理器1201和接口电路1202。处理器1201和接口电路1202之间相互耦合。可以理解的是,接口电路1202可以为接口电路或输入输出接口。可选的,通信装置1200还可以包括存储器1203,用于存储处理器1201执行的指令或存储处理器1201运行指令所需要的输入数据或存储处理器1201运行指令后产生的数据。
比如,所述通信装置1200可以为中继设备:接口电路1202用于执行图4中的401、403、407、409、410和412,图7中的702、705、707、709和712,图8中的802、805、807、809和812,图9中的913、916和917;处理器1201执行图4中的402、404、405、408和411,图7中的703、706、710和711,图8中的803、806、810和811,图9中的914和915。
比如,所述通信装置1200可以为远端设备:接口电路1202用于执行图4中的401、403、407、409、410和412,图7中的702、705、707、709和712,图8中的802、805、807、809和812,图9中的913、916和917;处理器1201执行图4中的406。
当上述通信装置为应用于中继设备的芯片时,该中继设备的芯片实现上述方法实施例中中继设备的功能。该芯片从中继设备中的其它模块(如射频模块或天线)接收信息,该信息是远端设备或接入网设备或核心网网元发送给中继设备的;或者,该芯片向中继设备中的其它模块(如射频模块或天线)发送信息,该信息是中继设备发送给远端设备或接入网设备或核心网网元的。
当上述通信装置为应用于远端设备的芯片时,该远端设备的芯片实现上述方法实施例中远端设备的功能。该芯片从远端设备中的其它模块(如射频模块或天线)接收信息,该信息是中继设备发送给远端设备的;或者,该芯片向远端终端设备中的其它模块(如射频模块或天线)发送信息,该信息是远端终端设备发送给中继设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。设备(中继设备或远端设备)发送信息时,通过芯片的接口电路输出信息;设备接收信息时,向芯片的接口电路输入信息。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、光盘只读存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
Claims (23)
- 一种数据传输方法,其特征在于,所述方法包括:中继设备接收来自远端设备的第一消息,所述第一消息用于发现所述远端设备、或请求与所述中继设备建立通信连接;其中,所述第一消息包括中继服务码,所述中继服务码对应的协议数据单元会话参数包括第一信息;或,所述第一消息包括第一信息;所述第一信息用于建立支持分层服务质量的协议数据单元会话,所述协议数据单元会话用于中继所述远端设备的数据;所述中继设备通过所述协议数据单元会话传输所述远端设备的数据。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述中继设备接收来自第一网络设备的配置信息,所述配置信息包括所述中继服务码以及所述中继服务码对应的协议数据单元会话参数,其中,所述协议数据单元会话参数包括所述第一信息。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:所述中继设备向所述远端设备发送第二消息,所述第二消息用于确定上行数据包与第一类服务质量流之间的第一关联关系,所述第一类服务质量流用于所述中继设备与所述远端设备之间传输数据。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:所述中继设备向第二网络设备发送用于建立所述协议数据单元会话的请求消息,所述请求消息包括所述第一信息。
- 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:所述中继设备建立具有关联关系的多个第一类服务质量流,所述第一类服务质量流用于所述中继设备与所述远端设备之间传输数据;所述中继设备建立具有关联关系的多个第二类服务质量流,所述多个第二类服务质量流与所述协议数据单元会话相关联,用于所述中继设备与第三网络设备之间传输数据;所述中继设备确定所述多个第一类服务质量流与所述多个第二类服务质量流之间的第二关联关系。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述中继设备通过第一流标识所标识的服务质量流接收到来自所述远端设备的第一上行数据包,根据所述第二关联关系将所述第一上行数据包映射至所述多个第二类服务质量流中的第一服务质量流;其中,所述第一流标识用于标识所述多个第一类服务质量流中承载所述第一上行数据包的服务质量流;所述第二关联关系包括所述第一服务质量流与所述第一流标识所标识的服务质量流之间的关联关系;所述中继设备通过所述第一服务质量流向所述第三网络设备发送所述第一上行数据包。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述中继设备确定所述多个第一类服务质量流与所述多个第二类服务质量流之间的第三关联关系。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:所述中继设备通过第二流标识所标识的服务质量流接收到来自所述第三网络设备的第一下行数据包,根据所述第三关联关系将所述第一下行数据包映射至所述多个第一类服务质量流中的第二服务质量流;其中,所述第二流标识用于标识所述多个第二类服务质量流中承载 所述第一下行数据包的服务质量流;所述第三关联关系包括所述第二服务质量流与所述第二流标识所标识的服务质量流之间的关联关系;所述中继设备通过所述第二服务质量流向所述远端设备发送第一所述下行数据包。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括:在所述远端设备与所述中继设备之间的资源受限的情况下,若所述第二服务质量流的优先级低于阈值,所述中继设备丢弃映射至所述第二服务质量流的第二下行数据包。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述中继设备接收来自所述远端设备的第一连接消息,所述第一连接消息用于请求建立具有关联关系的多个第一类服务质量流,所述第一连接消息指示所述多个第一类服务质量流之间的关联关系。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述中继设备接收来自所述第二网络设备的协议数据单元会话修改消息,所述协议数据单元会话修改消息包括所述远端设备的标识信息;所述中继设备建立具有关联关系的多个第一类服务质量流,包括:所述中继设备根据所述协议数据单元会话修改消息,与所述远端设备之间建立具有关联关系的多个第一类服务质量流。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:所述中继设备更新所述第二关联关系和/或所述第三关联关系。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:所述中继设备向所述远端设备发送第二连接消息,所述第二连接消息指示所述多个第一类服务质量流之间的关联关系。
- 一种数据传输方法,其特征在于,所述方法包括:远端设备向中继设备发送第一消息,所述第一消息用于发现所述远端设备、或请求与所述中继设备建立通信连接;其中,所述第一消息包括中继服务码,所述中继服务码对应的协议数据单元会话参数包括第一信息;或,所述第一消息包括第一信息;所述第一信息用于建立支持分层服务质量的协议数据单元会话,所述协议数据单元会话用于中继所述远端设备的数据。
- 根据权利要求14所述的方法,其特征在于,所述方法还包括:所述远端设备接收来自第一网络设备的配置信息,所述配置信息包括所述中继服务码以及所述中继服务码对应的协议数据单元会话参数,其中,所述协议数据单元会话参数包括所述第一信息。
- 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:所述远端设备接收来自所述中继设备的第二消息,所述第二消息用于确定上行数据包与第一类服务质量流之间的第一关联关系,所述第一类服务质量流用于所述中继设备与所述远端设备之间传输数据。
- 根据权利要求16所述的方法,其特征在于,所述方法还包括:所述远端设备根据第一上行数据包的属性信息,并结合所述第一关联关系和多个第一类服务质量流之间的关联关系,确定所述第一上行数据包对应于第一流标识;所述属性信息包括特定应用标识、三元组、五元组中的一种或多种;所述第一类服务质量流用于所述中继设备与所述远端设备之间传输数据;所述远端设备将所述第一上行数据包映射至所述第一流标识所标识的所述多个第一类服 务质量流中的一个服务质量流;所述远端设备通过所述第一流标识所标识的服务质量流向所述中继设备发送所述第一上行数据包。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:所述远端设备向所述中继设备发送第一连接消息,所述第一连接消息用于请求建立具有关联关系的多个第一类服务质量流,所述第一连接消息指示所述多个第一类服务质量流之间的关联关系。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:所述远端设备接收来自所述中继设备的第二连接消息,所述第二连接消息指示所述多个第一类服务质量流之间的关联关系。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:在所述远端设备与所述中继设备之间的资源受限的情况下,若所述第一流标识所标识的服务质量流的优先级低于阈值,丢弃映射至所述第一流标识所标识的服务质量流的第二上行数据包。
- 一种通信装置,其特征在于,包括用于执行如权利要求1至13中的任一项所述方法的模块,或包括用于执行如权利要求14至20中的任一项所述方法的模块。
- 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法,或者,用于实现如权利要求14至20中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法,或实现如权利要求14至20中任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111373733.6 | 2021-11-19 | ||
CN202111373733 | 2021-11-19 | ||
CN202210112569.1 | 2022-01-29 | ||
CN202210112569.1A CN116156668A (zh) | 2021-11-19 | 2022-01-29 | 数据传输方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023088118A1 true WO2023088118A1 (zh) | 2023-05-25 |
Family
ID=86339455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/130275 WO2023088118A1 (zh) | 2021-11-19 | 2022-11-07 | 数据传输方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116156668A (zh) |
WO (1) | WO2023088118A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190349951A1 (en) * | 2017-01-09 | 2019-11-14 | Idac Holdings, Inc. | Relay for wireless communication system |
CN111901847A (zh) * | 2020-02-13 | 2020-11-06 | 中兴通讯股份有限公司 | sidelink中继通信方法、装置、设备及介质 |
CN112752240A (zh) * | 2019-10-30 | 2021-05-04 | 大唐移动通信设备有限公司 | 直接通信的处理方法、装置、中继终端及远端终端 |
CN113543053A (zh) * | 2020-04-17 | 2021-10-22 | 华为技术有限公司 | 业务保障的方法和装置 |
-
2022
- 2022-01-29 CN CN202210112569.1A patent/CN116156668A/zh active Pending
- 2022-11-07 WO PCT/CN2022/130275 patent/WO2023088118A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190349951A1 (en) * | 2017-01-09 | 2019-11-14 | Idac Holdings, Inc. | Relay for wireless communication system |
CN112752240A (zh) * | 2019-10-30 | 2021-05-04 | 大唐移动通信设备有限公司 | 直接通信的处理方法、装置、中继终端及远端终端 |
CN111901847A (zh) * | 2020-02-13 | 2020-11-06 | 中兴通讯股份有限公司 | sidelink中继通信方法、装置、设备及介质 |
CN113543053A (zh) * | 2020-04-17 | 2021-10-22 | 华为技术有限公司 | 业务保障的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116156668A (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11917498B2 (en) | Communication method and communications apparatus | |
US11477689B2 (en) | Method and apparatus for establishing guaranteed bit rate (GBR) quality of service (QoS) flow in session | |
US11071167B2 (en) | Method, apparatus, system, and device for managing a session corresponding to multiple session management function network elements | |
US10397188B2 (en) | Access control apparatus, system, and method | |
US20190223154A1 (en) | Message Sending Method And Apparatus | |
CN113691969B (zh) | 通信方法和装置 | |
WO2023280121A1 (zh) | 一种获取边缘服务的方法和装置 | |
WO2022033558A1 (zh) | 一种中继管理方法及通信装置 | |
WO2019037779A1 (zh) | 用户面模式的选择方法、调整方法、装置、设备及介质 | |
US10778590B2 (en) | Method, apparatus, and system for data transmission | |
CA3175487A1 (en) | Communication method and apparatus | |
WO2022033543A1 (zh) | 一种中继通信方法及通信装置 | |
WO2021051420A1 (zh) | 一种dns缓存记录的确定方法及装置 | |
US20230388863A1 (en) | Communication method and apparatus | |
US20220263879A1 (en) | Multicast session establishment method and network device | |
WO2021056573A1 (zh) | 建立会话的方法和终端设备 | |
US20240080716A1 (en) | Wireless communication method, communication apparatus, and communication system | |
CN115915196A (zh) | 一种链路状态检测方法、通信装置及通信系统 | |
CN113950029A (zh) | 一种通信方法及装置 | |
US20220210690A1 (en) | Data transmission method and apparatus, system, and storage medium | |
WO2020103086A1 (zh) | 无线通信方法、网络节点和终端设备 | |
US20220182910A1 (en) | Data Processing Method, Apparatus, And System | |
WO2023088118A1 (zh) | 数据传输方法及装置 | |
WO2018054336A1 (zh) | 消息的发送方法和装置 | |
WO2024012376A1 (zh) | 一种通信方法、通信装置及通信系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22894655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |