WO2023088000A1 - 自适应线性偏置电路、射频功率放大器及射频芯片 - Google Patents

自适应线性偏置电路、射频功率放大器及射频芯片 Download PDF

Info

Publication number
WO2023088000A1
WO2023088000A1 PCT/CN2022/125442 CN2022125442W WO2023088000A1 WO 2023088000 A1 WO2023088000 A1 WO 2023088000A1 CN 2022125442 W CN2022125442 W CN 2022125442W WO 2023088000 A1 WO2023088000 A1 WO 2023088000A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
resistor
adaptive linear
bias circuit
Prior art date
Application number
PCT/CN2022/125442
Other languages
English (en)
French (fr)
Inventor
李书伦
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023088000A1 publication Critical patent/WO2023088000A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only

Definitions

  • the utility model relates to the technical field of wireless communication, in particular to an adaptive linear bias circuit, a radio frequency power amplifier and a radio frequency chip applied in the WIFI65GHz frequency band.
  • Radio frequency power amplifiers are widely used in wireless communication devices, and the bias state of the power amplifier is a decisive factor for determining the working state of the power amplifier. Therefore, the bias circuit is particularly important.
  • the power amplifier used in WIFI6 needs to have a high-performance index. It adopts a three-stage amplifier circuit design, and each stage of the three-stage amplifier circuit adopts the same bias circuit setting, including resistor divider bias. circuit and current mirror bias circuit.
  • the principle of the resistor divider bias circuit uses the divider voltage of the series resistor to adjust the base DC voltage of the RF power tube.
  • the resistor divider circuit is simple in design, but the collector current is greatly affected by the resistance of the divider resistor.
  • a linearized capacitor is connected to the base of the RF power tube to reduce the impedance of the bias circuit.
  • the input impedance of the bias circuit should be much larger than the input impedance of the amplifier circuit during design, so that the RF signal can enter the amplifier circuit as much as possible.
  • the power of the input signal will continue to increase, so the DC current of the final stage of the amplifying circuit increases, and the DC impedance from the base to the emitter decreases, so that the bias voltage decreases and the gain decreases. At this time There is a nonlinear phenomenon in the amplifier circuit.
  • the utility model proposes an adaptive linear bias circuit, a radio frequency power amplifier and a radio frequency chip with high linearity and control precision.
  • the embodiment of the utility model provides an adaptive linear bias circuit, including a temperature compensation circuit, a third power tube and a second resistor connected in sequence;
  • the temperature compensation circuit includes a first power tube, a second power tube, a first resistor, a third resistor, and a fourth resistor; the base of the first power tube is connected to the emitter of the second power tube, so The emitter of the first power tube is connected to the ground, and the collector of the first power tube is connected to the reference voltage source after being connected in series with the first resistor; the base of the second power tube is connected to the first The collector of the power tube, the collector of the second power tube is connected to a bias voltage source; the emitter of the second power tube is used as the output end of the temperature compensation circuit after being connected in series with the fourth resistor; The base of the second power transistor is also connected to the output end of the temperature compensation circuit after connecting the third resistor in series;
  • the base of the third power transistor is connected to the collector of the first power transistor, the collector of the third power transistor is connected to the bias voltage source, and the emitter of the third transistor is connected to the The output end of the temperature compensation circuit, and the emitter of the third transistor is used as the output end of the adaptive linear bias circuit after being connected in series with the second resistor.
  • the adaptive linear bias circuit further includes a bypass capacitor, the first end of the bypass capacitor is connected to the base of the third power transistor, and the second end of the bypass capacitor is connected to the ground .
  • the adaptive linear bias circuit further includes a first capacitor connected in parallel with the second resistor.
  • the adaptive linear bias circuit is manufactured based on AWSC's InGaP/GaAs HBT design process, wherein the emitter area of the first power transistor and the emitter area of the second power transistor are both 80um 2 , the emitter area of the third power tube is 360um 2 .
  • the embodiment of the utility model also provides a radio frequency power amplifier, including the above-mentioned adaptive linear bias circuit provided by the embodiment of the utility model.
  • the RF power amplifier includes a first-stage power amplifying circuit, a second-stage power amplifying circuit, and a third-stage power amplifying circuit connected in sequence, and the adaptive linear bias circuit is used to provide the first-stage power At least one of the amplifying circuit, the second-stage power amplifying circuit and the third-stage power amplifying circuit provides a bias current.
  • the adaptive linear bias circuit is used to provide bias current for the third-stage power amplifier circuit.
  • the embodiment of the utility model also provides a radio frequency chip, and the radio frequency chip includes the above-mentioned radio frequency power amplifier provided by the embodiment of the utility model.
  • the adaptive linear bias circuit includes a temperature compensation circuit, a third power tube and a second resistor connected in sequence, so that the The working current of the self-adaptive linear bias circuit can be increased with the increase of the power signal, which makes the linearity and average efficiency of the RF power amplifier significantly improved, and the design of the temperature compensation circuit provides a stable temperature of the whole circuit The stability and the control accuracy of the output current effectively suppress the drift of the DC operating point of the RF power amplifier as the temperature changes.
  • Fig. 1 is the schematic diagram of the circuit structure of the radio frequency power amplifier that adopts three-stage amplification applied to WIFI6 in the related art;
  • FIG. 2 is a schematic structural diagram of a resistive voltage-dividing bias circuit of a radio frequency power amplifier of the related art
  • FIG. 3 is a schematic structural diagram of a current mirror bias circuit of a radio frequency power amplifier of the related art
  • Fig. 4 is the structural diagram of the self-adaptive linear bias circuit applied to WIFI6 provided by the utility model, wherein the self-adaptive linear bias circuit has been connected to the third stage amplifier circuit of the radio frequency power amplifier circuit;
  • Fig. 5 is when the self-adaptive linear bias circuit that the utility model provides is used in the radio frequency power amplifier, its linearity and the simulation graph of gain about the first resistor R1 and the second resistor R2 ;
  • Fig. 6 is when the self-adaptive linear bias circuit provided by the utility model is applied to the radio frequency power amplifier, and its linearity is about the simulation graph of bypass capacitance C p ;
  • Fig. 7 is when the self-adaptive linear bias circuit provided by the utility model is applied to the radio frequency power amplifier, its linearity is about the simulation curve graph 1 of the 3rd resistance R 3 and the 4th resistance R 4 ;
  • Fig. 8 is when the self-adaptive linear bias circuit provided by the present invention is used in the radio frequency power amplifier, its temperature compensation circuit is about the simulation graph 1 of the 3rd resistance R 3 and the 4th resistance R 4 ;
  • Fig. 9 is when the self-adaptive linear bias circuit provided by the present invention is used in the radio frequency power amplifier, its linearity is about the simulation curve figure 2 of the 3rd resistance R 3 and the 4th resistance R 4 ;
  • FIG. 10 is the second simulation curve of the temperature compensation circuit for the third resistor R3 and the fourth resistor R4 when the adaptive linear bias circuit provided by the present invention is applied to a radio frequency power amplifier.
  • FIG. 1 is a schematic diagram of a circuit structure of a radio frequency power amplifier with three stages of amplification applied to WIFI6 in the related art.
  • the RF power amplifier of the related art includes a first-stage amplifying circuit, a second-stage amplifying circuit and a third-stage amplifying circuit connected in sequence, and each stage of amplifying circuit provides a bias current through a bias circuit, and in the related art, because of the use of Due to the high performance index requirements of the RF power amplifier circuit in the WIFI 6 5G frequency band, the bias circuit of each stage of the three-stage amplifier adopts the same bias circuit design.
  • FIG. 2 it is a schematic structural diagram of a resistive voltage-dividing bias circuit of a radio frequency power amplifier in the related art.
  • the principle of the resistor divider bias circuit in the related art uses the voltage divider of series resistors to adjust the base DC voltage of the radio frequency power tube.
  • the resistor divider circuit design is simple, but the collector current is greatly affected by the resistance of the divider resistor.
  • the voltage of the base and emitter of the specific RF power tube is derived as follows:
  • I S in formula 1.2 is expressed as saturation current
  • V T is expressed as temperature-voltage equivalent
  • I S in formula 1.2 is expressed as saturation current
  • V T is expressed as temperature-voltage equivalent
  • I c can be expressed as:
  • FIG. 3 it is a schematic structural diagram of a current mirror bias circuit of a radio frequency power amplifier in the related art.
  • the bias current is I 1
  • a linearized capacitor C b is connected to the base of the power transistor Q 1 to reduce the impedance of the bias circuit part.
  • the input impedance of the bias circuit should be much larger than that of the amplifier circuit during design, so that the RF signal can enter the amplifier circuit as much as possible.
  • the power of the input signal will continue to increase, so the final stage DC current I_OUT of the amplifying circuit increases, and the decrease of the DC impedance from the base to the emitter stage leads to a decrease in the bias voltage, resulting in a decrease in gain.
  • the amplifier circuit has a nonlinear phenomenon.
  • the embodiment of the utility model provides an adaptive linear bias circuit.
  • the utility model provides a schematic structural diagram of an adaptive linear bias circuit applied to WIFI6, wherein the adaptive linear bias circuit has been connected to the third-stage amplifier circuit of the radio frequency power amplifier circuit.
  • the adaptive linear bias circuit 100 includes a temperature compensation circuit 1 , a third power transistor Q 3 and a second resistor R 2 connected in sequence.
  • the temperature compensation circuit 1 includes a first power transistor Q 1 , a second power transistor Q 2 , a first resistor R 1 , a third resistor R 3 and a fourth resistor R 4 .
  • the base of the first power transistor Q1 is connected to the emitter of the second power transistor Q2 , the emitter of the first power transistor Q1 is connected to ground, and the set of the first power transistor Q1
  • the electrodes are connected to the reference voltage source V reg after being connected in series with the first resistor R 1 .
  • the base of the second power transistor Q2 is connected to the collector of the first power transistor Q1 , and the collector of the second power transistor Q2 is connected to a bias voltage source V Bias ; the second power The emitter of the tube Q2 is used as the output terminal of the temperature compensation circuit 1 after being connected in series with the fourth resistor R4.
  • the base of the second power transistor Q2 is also connected to the output terminal of the temperature compensation circuit 1 through the third resistor R3 connected in series.
  • the base of the third power transistor Q3 is connected to the collector of the first power transistor Q1 , the collector of the third power transistor Q3 is connected to the bias voltage source V Bias , and the first power transistor Q3 is connected to the collector of the first power transistor Q1.
  • the emitter of the third transistor Q3 is connected to the output terminal of the temperature compensation circuit 1, and the emitter of the third transistor Q3 is used as the adaptive linear bias circuit 100 after being connected in series with the second resistor R2 The output terminal, the output bias current I Bias .
  • part of the signal leaks into the adaptive linear bias circuit 100 with the input of the radio frequency signal, and the voltage between the base and the emitter of the third power transistor Q3 will also decrease accordingly.
  • the adaptive linear bias circuit 100 also includes a bypass capacitor Cp , the first end of the bypass capacitor Cp is connected to the base of the third power transistor Q3 , and the bypass capacitor Cp The second end is connected to ground.
  • the design of the bypass capacitor Cp can short-circuit the radio frequency signal to the end, ensuring that the base voltage of the third power transistor Q3 of the adaptive linear bias circuit 100 remains unchanged, and at this time the overall base voltage in the amplifying circuit will be height, the reduced base and emitter voltages are compensated, so the bias point of the power transistor in the circuit remains unchanged at high power, and gain compression is thus suppressed.
  • FIG. 6 is a simulation curve diagram of the linearity of the adaptive linear bias circuit provided by the present invention with respect to the capacitance C p when it is applied to a radio frequency power amplifier. From the simulation data in Figure 6, it can be seen that with the increase of the capacitance value, the gain linearity improvement at high frequency is more obvious.
  • the existence of the bypass capacitor Cp makes the gain of the radio frequency power amplifier produce an anti-compression phenomenon that first increases and then decreases with the increase of the input signal power, which can make the three-stage radio frequency using the adaptive linear bias circuit 100
  • the amplifier circuit effectively improves the AM-AM (amplitude distortion caused by amplitude distortion) and AM-PM (phase distortion caused by amplitude distortion) characteristics of the third-stage amplifier, thereby improving the linearity of the third-stage amplifier.
  • the adaptive linear bias circuit 100 further includes a first capacitor C 1 connected in parallel with the second resistor R 2 .
  • Fig. 5 shows that when the self-adaptive linear bias circuit provided by the present invention is applied to a radio frequency power amplifier, its linearity and gain are related to the first resistance R 1 and the second resistance R 2 Simulation graph. From the simulation data in FIG. 5, it can be seen that while keeping the value of the second resistor R2 constant, as the value of the first resistor R1 increases, both the gain and the linearity decrease.
  • the second resistor R 2 is connected in parallel with a first capacitor C 1 , which can reduce circuit loss. When the gain expansion occurs in the power amplifier, it is not necessary to add the first capacitor C 1 , otherwise the gain expansion may be aggravated.
  • the self-adaptive linear bias circuit 100 proposed by the utility model also has a temperature compensation function.
  • the temperature characteristic of Q2 is the same as that of the power tube Q4 in the third-stage amplifier circuit.
  • the base voltage of the base of Q3 and the power tube Q4 of the amplifying circuit will also decrease accordingly, and the current through the power tube Q4 in the amplifying circuit will be reduced to a normal value.
  • the addition of the third resistor R3 and the fourth resistor R4 further improves the temperature stability.
  • Fig. 8 is when the self-adaptive linear bias circuit that the utility model provides is applied to radio frequency power amplifier, its temperature compensating circuit is about the 3rd resistor R 3 and the 4th resistor
  • the simulation curve figure one of R4 is when the self-adaptive linear bias circuit provided by the utility model is applied to the radio frequency power amplifier, and its temperature compensation circuit is about the simulation curve figure two of the 3rd resistance R3 and the 4th resistance R4 .
  • FIG. 7 is when the self-adaptive linear bias circuit provided by the present invention is applied to radio frequency power amplifier, its linearity is about the third resistance R 3 and the fourth resistance R 4 Simulation graph 1;
  • FIG. 9 is simulation graph 2 of the linearity of the adaptive linear bias circuit provided by the present invention with respect to the third resistor R 3 and the fourth resistor R 4 when it is applied to a radio frequency power amplifier. It can be seen from FIG. 7 and FIG. 9 that the third resistor R3 and the fourth resistor R4 can not only adjust the temperature compensation characteristic, but also can adjust the linearity and gain.
  • the first power tube Q 1 , the second power tube Q 2 , and the first resistor R 1 , the third resistor R 3 and the fourth resistor R 4 form a temperature compensation circuit that can effectively suppress the self-heating effect caused by power dissipation.
  • the adaptive linear bias circuit 100 of this embodiment is manufactured based on the InGaP/GaAs HBT design process of AWSC, wherein the emitter area of the first power transistor and the area of the second power transistor The emission stage areas are all 80um 2 , and the emission stage area of the third power tube is 360um 2 .
  • the embodiment of the present utility model also provides a radio frequency power amplifier, including the above-mentioned adaptive linear bias circuit 100 as provided in the embodiment of the present utility model.
  • the radio frequency power amplifier includes a first-stage power amplifying circuit, a second-stage power amplifying circuit and a third-stage power amplifying circuit connected in sequence, and the adaptive linear bias circuit 100 is used for the first At least one of the stage power amplifying circuit, the second stage power amplifying circuit and the third stage power amplifying circuit provides a bias current.
  • the adaptive linear bias circuit 100 is used to provide a bias current for the third-stage power amplifier circuit (refer to FIG. 4 ). According to the above circuit structure design, with the input of the radio frequency signal, part of the signal will leak into the adaptive linear bias circuit 100, and the voltage between the base of the third power transistor Q3 and the transmitter stage will also decrease accordingly. When the radio frequency signal When increasing, the overall base and emitter voltages of the power transistor Q4 in the third-stage amplifying circuit will also decrease accordingly.
  • the embodiment of the utility model also provides a radio frequency chip, and the radio frequency chip includes the above-mentioned radio frequency power amplifier provided by the embodiment of the utility model.
  • the adaptive linear bias circuit includes a temperature compensation circuit, a third power tube and a second resistor connected in sequence, so that the The working current of the self-adaptive linear bias circuit can be increased with the increase of the power signal, which makes the linearity and average efficiency of the RF power amplifier significantly improved, and the design of the temperature compensation circuit provides a stable temperature of the whole circuit The stability and the control accuracy of the output current effectively suppress the drift of the DC operating point of the RF power amplifier as the temperature changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

一种自适应线性偏置电路(100),包括依次连接的温度补偿电路(1)、第三功率管(Q 3)和第二电阻(R 2);温度补偿电路(1)包括第一功率管(Q 1)、第二功率管(Q 2)、第一电阻(R 1)、第三电阻(R 3)以及第四电阻(R 4);自适应线性偏置电路(100)的工作电流可以随着功率信号的增大而增大,使得功率放大器的线性度明显提高,其温度补偿电路(1)提高了整体电路温度的稳定性以及电流的控制精度。还提供一种射频功率放大器及射频芯片。与现有技术相比,自适应线性偏置电路、射频功率放大器及射频芯片的线性度和控制精度高。

Description

自适应线性偏置电路、射频功率放大器及射频芯片 技术领域
本实用新型涉及无线通信技术领域,尤其涉及一种运用于WIFI6 5GHz频段的自适应线性偏置电路、射频功率放大器及射频芯片。
背景技术
射频功率放大器广泛应用于无线通信设备中,功率放大器的偏置状态是决定功率放大器的工作状态的决定因素,因此,偏置电路尤为重要。
相关技术中运用于WIFI6的功率放大器需要有高性能指标,其采用三级放大电路设计,三级放大电路的每一级偏置电路都采用同种偏置电路设,包括电阻分压式偏置电路和电流镜偏置电路。电阻分压式偏置电路其原理利用串联电阻的分压调节射频功率管的基极直流电压。电阻分压式电路设计简单,但是集电极电流受到分压电阻阻值的影响较大。电流镜偏置电路,在射频功率管的基极处接了一个线性化的电容用来减小偏置电路部分的阻抗。为了防止射频信号进入到偏置电路中,设计时偏置电路的输入阻抗要远远大于放大电路的输入阻抗,这样才能使得射频信号才能够尽可能的进入放大电路中。在放大电路工作的过程中,输入信号的功率会不断地增加,因此放大电路的末级直流电流增大,基极到发射级直流阻抗的减小,从而偏置电压下降导致增益减少,此时放大电路出现了非线性的现象。
实用新型内容
针对以上相关技术的不足,本实用新型提出一种线性度和控制精度高的自适应线性偏置电路、射频功率放大器及射频芯片。
为了解决上述技术问题,本实用新型实施例提供了一种自适应线性偏置电路,包括依次连接的温度补偿电路、第三功率管和第二电阻;
所述温度补偿电路包括第一功率管、第二功率管、第一电阻、第三电阻以及第四电阻;所述第一功率管的基极连接至所述第二功率管的发射极,所述第一功率管的发射极连接至接地,所述第一功率管的集电极通过串联所述第一电阻后连接至基准电压源;所述第二功率管的基极连接至所述第一功率管的集电极,所述第二功率管的集电极连接至偏置电压源;所述第二功率管的发射极通过串联所述第四电阻后作为所述温度补偿电路的输出端;所述第二功率管的基极还通过串联所述第三电阻后连接至所述温度补偿电路的输出端;
所述第三功率管的基极连接至所述第一功率管的集电极,所述第三功率管的集电极连接至所述偏置电压源,所述第三晶体管的发射极连接至所述温度补偿电路的输出端,且所述第三晶体管的发射极通过串联所述第二电阻后作为所述自适应线性偏置电路的输出端。
优选的,所述自适应线性偏置电路还包括旁路电容,所述旁路电容的第一端连接至所述第三功率管的基极,所述旁路电容的第二端连接至接地。
优选的,所述自适应线性偏置电路还包括第一电容,所述第一电容与所述第二电阻并联。
优选的,所述自适应线性偏置电路基于AWSC的InGaP/GaAs HBT设计工艺制成,其中,所述第一功率管的发射极面积和所述第二功率管的发射级面积均为80um 2,所述第三功率管的发射级面积为360um 2
本实用新型实施例还提供一种射频功率放大器,包括如本实用新型实施例提供的上述自适应线性偏置电路。
优选的,所述射频功率放大器包括依次连接的第一级功率放大电 路、第二级功率放大电路和第三级功率放大电路,所述自适应线性偏置电路用于为所述第一级功率放大电路、所述第二级功率放大电路和所述第三级功率放大电路中的至少一个提供偏置电流。
优选的,所述自适应线性偏置电路用于为所述第三级功率放大电路提供偏置电流。
本实用新型实施例还提供一种射频芯片,所述射频芯片包括如本实用新型实施例提供的上述射频功率放大器。
与相关技术相比,本实用新型的自适应线性偏置电路、射频功率放大器及射频芯片中,自适应线性偏置电路包括依次连接的温度补偿电路、第三功率管和第二电阻,从而所述自适应线性偏置电路的工作电流可以随着功率信号的增大而增大,进而使得射频功率放大器的线性度和平均效率明显提高,而且,温度补偿电路的设计提供了整体电路温度的稳定性及输出电流的控制精度,有效的抑制了射频功率放大器的直流工作点随着温度变化漂移的情况。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中:
图1为相关技术的应用于WIFI6的采用三级放大的射频功率放大器的电路结构原理图;
图2为相关技术的射频功率放大器的电阻分压式偏置电路结构示意图;
图3为相关技术的射频功率放大器的电流镜偏置电路结构示意图;
图4为本实用新型提供的运用于WIFI6的自适应线性偏置电路结构示意图,其中已将所述自适应线性偏置电路连接至射频功率放大电路的第三级放大电路;
图5为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度和增益关于第一电阻R 1和第二电阻R 2的仿真曲线图;
图6为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度关于旁路电容C p的仿真曲线图;
图7为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度关于第三电阻R 3和第四电阻R 4的仿真曲线图一;
图8为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其温度补偿电路关于第三电阻R 3和第四电阻R 4的仿真曲线图一;
图9为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度关于第三电阻R 3和第四电阻R 4的仿真曲线图二;
图10为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其温度补偿电路关于第三电阻R 3和第四电阻R 4的仿真曲线图二。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
以下各实施例的说明是参考附加的图式,用以例示本实用新型可 用以实施的特定实施例。本实用新型所提到的方向用语,例如上、下、前、后、左、右、内、外、侧面等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本实用新型,而非用以限制本实用新型。
请结合图1所示,为相关技术的应用于WIFI6的采用三级放大的射频功率放大器的电路结构原理图。相关技术的射频功率放大器包括依次连接的第一级放大电路、第二级放大电路和第三级放大电路,每一级放大电路均通过偏置电路提供偏置电流,而相关技术中,因为运用于WIFI 6 5G频段的射频功率放大器的电路的高性能指标要求,三级放大器的每一级偏置电路都采用同种偏置电路设计。
如图2所示,为相关技术的射频功率放大器的电阻分压式偏置电路结构示意图。相关技术的电阻分压式偏置电路,其原理利用串联电阻的分压调节射频功率管的基极直流电压。电阻分压式电路设计简单,但是集电极电流受到分压电阻阻值的影响较大,具体射频功率管的基极与发射极的电压推导如下:
Figure PCTCN2022125442-appb-000001
射频功率管的输入特性表达式可以表示为:
Figure PCTCN2022125442-appb-000002
其中式1.2中的I S表示为饱和电流,V T表示为温度电压当量,其中室温当量是300k的时候V T=26mV。相比于发射极与集电极,基极的电流相对很小因此可以不计,因此I c可以表示为:
Figure PCTCN2022125442-appb-000003
因此公式1.3中,可以得出R 2或者V Bias的数值的小幅度变化会导致集电极电流指数级的变化。同时偏置电路的供电电压的变化也会导致功率管的偏置点产生很大的偏移,由此可知,电阻分压式偏置电路在大信号工作状态时会导致信号的严重失真。
如图3所示,为相关技术的射频功率放大器的电流镜偏置电路结构示意图。相关技术的电流镜偏置电路,偏置电流为I 1,在功率管Q 1基极处接了一个线性化的电容C b用来减小偏置电路部分的阻抗。为了防止射频信号进入到偏置电路中,设计时偏置电路的输入阻抗要远远大于放大电路的输入阻抗,这样才能使得射频信号才能够尽可能的进入放大电路中。在放大电路工作的过程中,输入信号的功率会不断地增加,因此放大电路的末级直流电流I _OUT增大,基极到发射级直流阻抗的减小从而偏置电压下降导致增益减少,此时放大电路出现了非线性的现象。
基于此,本实用新型实施例提供了一种自适应线性偏置电路。如图4所示,本实用新型提供的运用于WIFI6的自适应线性偏置电路结构示意图,其中已将所述自适应线性偏置电路连接至射频功率放大电路的第三级放大电路。自适应线性偏置电路100包括依次连接的温度补偿电路1、第三功率管Q 3和第二电阻R 2
所述温度补偿电路1包括第一功率管Q 1、第二功率管Q 2、第一电阻R 1、第三电阻R 3以及第四电阻R 4
所述第一功率管Q 1的基极连接至所述第二功率管Q 2的发射极,所述第一功率管Q 1的发射极连接至接地,所述第一功率管Q 1的集电极通过串联所述第一电阻R 1后连接至基准电压源V reg
所述第二功率管Q 2的基极连接至所述第一功率管Q 1的集电极,所述第二功率管Q 2的集电极连接至偏置电压源V Bias;所述第二功率管Q 2的发射极通过串联所述第四电阻R 4后作为所述温度补偿电路1的输出端。
所述第二功率管Q 2的基极还通过串联所述第三电阻R 3后连接至所述温度补偿电路1的输出端。
所述第三功率管Q 3的基极连接至所述第一功率管Q 1的集电极,所述第三功率管Q 3的集电极连接至所述偏置电压源V Bias,所述第三晶体管Q 3的发射极连接至所述温度补偿电路1的输出端,且所述第三晶 体管Q 3的发射极通过串联所述第二电阻R 2后作为所述自适应线性偏置电路100的输出端,输出偏置电流I Bias
上述电路结构设计,随着射频信号的输入会有部分信号泄漏到自适应线性偏置电路100中,第三功率管Q 3的基极与发射级的电压也会随之减少。
所述自适应线性偏置电路100还包括旁路电容C p,所述旁路电容C p的第一端连接至所述第三功率管Q 3的基极,所述旁路电容C p的第二端连接至接地。旁路电容C p的设计可以将射频信号短路到底,保证了自适应线性偏置电路100的第三功率管Q 3的基极电压保持不变,这时放大电路中整体的基极电压就会身高,减少了的基极和发射级电压就会得到补偿,因此电路中的功率管的偏置点在高功率的情况下保持不变,增益压缩从而得到抑制。
请结合图4和图6所示,其中图6为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度关于电容C p的仿真曲线图。从图6的仿真数据中可以看出随着电容值的增大,在高频处的增益线性度提升越是明显。旁路电容Cp的存在使得射频功率放大器的增益随着输入信号功率的增大产生先增大后又减小的反压缩现象,这能够使得运用所述自适应线性偏置电路100的三级射频放大器电路,有效改善第三级放大器的AM-AM(幅值失真引起的幅值失真)以及AM-PM(幅值失真引起的相位失真)特性,从而提升第三级放大器的线性度。
更优的,所述自适应线性偏置电路100还包括第一电容C 1,所述第一电容C 1与所述第二电阻R 2并联。请结合图4和图5所示,其中图5为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度和增益关于第一电阻R 1和第二电阻R 2的仿真曲线图。从图5的仿真数据中可以看出在保持第二电阻R 2值不变的情况下,随着第一电阻R 1值的增大,增益和线性度都在降低。第二电阻R 2并联一个第一电容C 1,这样能够起到减少电路损耗的作用,当功放出现增益 膨胀的现象时不必加上第一电容C 1,不然可能会使得增益膨胀加剧。
本实用新型所提出的自适应线性偏置电路100同样具有温度补偿功能,当基运用于采用三级放大电路的射频放大器的第三级放大电路时,第一功率管Q 1与第二功率管Q 2的温度特性与第三级放大电路中的功率管Q 4温度特性相同,当第一功率管Q 1与第二功率管Q 2的基极与发射级的电压降低时,第三功率管Q 3的基极和放大电路的功率管Q 4的基极电压也会跟着降低,通过放大电路中的功率管Q 4电流减到正常值。第三电阻R 3和第四电阻R 4的加入使得温度稳定性进一步提高。
具体的仿真数据如图8和图10所示,其中,图8为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其温度补偿电路关于第三电阻R 3和第四电阻R 4的仿真曲线图一;图10为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其温度补偿电路关于第三电阻R 3和第四电阻R 4的仿真曲线图二。第四电阻R 4分别为500Ω和1000Ω时第三电阻R 3分别取10Ω,100Ω和1000Ω的温度直流仿真数据可以得出,以R 3=R 4=1000Ω为例随着温度TEMP的变化从-40℃到85℃时,输出电流的最大值210mA与最小值214mA相差只有4mA。
请再结合图7和图9所示,其中,图7为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度关于第三电阻R 3和第四电阻R 4的仿真曲线图一;图9为本实用新型提供的自适应线性偏置电路运用于射频功率放大器时,其线性度关于第三电阻R 3和第四电阻R 4的仿真曲线图二。从图7和图9可以看出,第三电阻R3和第四电阻R4不仅可以调节温度补偿特性,同样也可以调节线性度和增益。因此第一功率管Q 1、第二功率管Q 2,和第一电阻R 1、第三电阻R 3及第四电阻R 4构成温度补偿电路可以有效的抑制功率耗散产生的自热效应导致的电流偏置点的漂移和电流增益塌陷的现象。
需要说明的是,本实施方式的所述自适应线性偏置电路100基于AWSC的InGaP/GaAs HBT设计工艺制成,其中,所述第一功率管的 发射极面积和所述第二功率管的发射级面积均为80um 2,所述第三功率管的发射级面积为360um 2
本实用新型实施例还提供一种射频功率放大器,包括如本实用新型实施例提供的上述自适应线性偏置电路100。
更优的,所述射频功率放大器包括依次连接的第一级功率放大电路、第二级功率放大电路和第三级功率放大电路,所述自适应线性偏置电路100用于为所述第一级功率放大电路、所述第二级功率放大电路和所述第三级功率放大电路中的至少一个提供偏置电流。本实施方式中,所述自适应线性偏置电路100用于为所述第三级功率放大电路提供偏置电流(参图4所示)。上述电路结构设计,随着射频信号的输入会有部分信号泄漏到自适应线性偏置电路100中,第三功率管Q 3的基极与发射级的电压也会随之减少,当射频信号的增大时候,第三级放大电路中功率管Q 4整体的基极与发射级的电压也会随之减小。
本实用新型实施例还提供一种射频芯片,所述射频芯片包括如本实用新型实施例提供的上述射频功率放大器。
与相关技术相比,本实用新型的自适应线性偏置电路、射频功率放大器及射频芯片中,自适应线性偏置电路包括依次连接的温度补偿电路、第三功率管和第二电阻,从而所述自适应线性偏置电路的工作电流可以随着功率信号的增大而增大,进而使得射频功率放大器的线性度和平均效率明显提高,而且,温度补偿电路的设计提供了整体电路温度的稳定性及输出电流的控制精度,有效的抑制了射频功率放大器的直流工作点随着温度变化漂移的情况。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它 实施例的全部或一部分来使用。

Claims (8)

  1. 一种自适应线性偏置电路,其特征在于,包括依次连接的温度补偿电路、第三功率管和第二电阻;
    所述温度补偿电路包括第一功率管、第二功率管、第一电阻、第三电阻以及第四电阻;所述第一功率管的基极连接至所述第二功率管的发射极,所述第一功率管的发射极连接至接地,所述第一功率管的集电极通过串联所述第一电阻后连接至基准电压源;所述第二功率管的基极连接至所述第一功率管的集电极,所述第二功率管的集电极连接至偏置电压源;所述第二功率管的发射极通过串联所述第四电阻后作为所述温度补偿电路的输出端;所述第二功率管的基极还通过串联所述第三电阻后连接至所述温度补偿电路的输出端;
    所述第三功率管的基极连接至所述第一功率管的集电极,所述第三功率管的集电极连接至所述偏置电压源,所述第三晶体管的发射极连接至所述温度补偿电路的输出端,且所述第三晶体管的发射极通过串联所述第二电阻后作为所述自适应线性偏置电路的输出端。
  2. 根据权利要求1所述的自适应线性偏置电路,其特征在于,所述自适应线性偏置电路还包括旁路电容,所述旁路电容的第一端连接至所述第三功率管的基极,所述旁路电容的第二端连接至接地。
  3. 根据权利要求1所述的自适应线性偏置电路,其特征在于,所述自适应线性偏置电路还包括第一电容,所述第一电容与所述第二电阻并联。
  4. 根据权利要求1-3任意一项所述的自适应线性偏置电路,其特征在于,所述自适应线性偏置电路基于AWSC的InGaP/GaAs HBT设计工艺制成,其中,所述第一功率管的发射极面积和所述第二功率管的发射级面积均为80um 2,所述第三功率管的发射级面积为360um 2
  5. 一种射频功率放大器,其特征在于,包括如权利要求1-4任意一项所述的自适应线性偏置电路。
  6. 根据权利要求5所述的射频功率放大器,其特征在于,所述射频功率放大器包括依次连接的第一级功率放大电路、第二级功率放大电路和第三级功率放大电路,所述自适应线性偏置电路用于为所述第一级功率放大电路、所述第二级功率放大电路和所述第三级功率放大电路中的至少一个提供偏置电流。
  7. 根据权利要求6所述的射频功率放大器,其特征在于,所述自适应线性偏置电路用于为所述第三级功率放大电路提供偏置电流。
  8. 一种射频芯片,其特征在于,所述射频芯片包括如权利要求5-7任意一项所述的射频功率放大器。
PCT/CN2022/125442 2021-11-18 2022-10-14 自适应线性偏置电路、射频功率放大器及射频芯片 WO2023088000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122838866.8 2021-11-18
CN202122838866.8U CN216437157U (zh) 2021-11-18 2021-11-18 自适应线性偏置电路、射频功率放大器及射频芯片

Publications (1)

Publication Number Publication Date
WO2023088000A1 true WO2023088000A1 (zh) 2023-05-25

Family

ID=81338931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125442 WO2023088000A1 (zh) 2021-11-18 2022-10-14 自适应线性偏置电路、射频功率放大器及射频芯片

Country Status (2)

Country Link
CN (1) CN216437157U (zh)
WO (1) WO2023088000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116827278A (zh) * 2023-08-30 2023-09-29 成都嘉纳海威科技有限责任公司 一种低功耗自适应补偿线性放大器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216437157U (zh) * 2021-11-18 2022-05-03 深圳飞骧科技股份有限公司 自适应线性偏置电路、射频功率放大器及射频芯片
CN216904823U (zh) * 2021-12-07 2022-07-05 深圳飞骧科技股份有限公司 GaAs基HBT工艺MMIC手机射频功率放大器及线性化偏置电路
CN217428086U (zh) * 2022-06-01 2022-09-13 深圳飞骧科技股份有限公司 温度补偿偏置电路和功率放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079598A (zh) * 2006-04-10 2007-11-28 松下电器产业株式会社 高频功率放大器和通信设备
CN101394152A (zh) * 2007-09-20 2009-03-25 锐迪科微电子(上海)有限公司 射频功率放大器电路
CN111200408A (zh) * 2020-03-19 2020-05-26 四川和芯微电子股份有限公司 线性补偿功率放大器
CN113271069A (zh) * 2021-05-14 2021-08-17 广东工业大学 一种射频功率放大器温度补偿偏置电路和射频功率放大器
CN216437157U (zh) * 2021-11-18 2022-05-03 深圳飞骧科技股份有限公司 自适应线性偏置电路、射频功率放大器及射频芯片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079598A (zh) * 2006-04-10 2007-11-28 松下电器产业株式会社 高频功率放大器和通信设备
CN101394152A (zh) * 2007-09-20 2009-03-25 锐迪科微电子(上海)有限公司 射频功率放大器电路
CN111200408A (zh) * 2020-03-19 2020-05-26 四川和芯微电子股份有限公司 线性补偿功率放大器
CN113271069A (zh) * 2021-05-14 2021-08-17 广东工业大学 一种射频功率放大器温度补偿偏置电路和射频功率放大器
CN216437157U (zh) * 2021-11-18 2022-05-03 深圳飞骧科技股份有限公司 自适应线性偏置电路、射频功率放大器及射频芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116827278A (zh) * 2023-08-30 2023-09-29 成都嘉纳海威科技有限责任公司 一种低功耗自适应补偿线性放大器
CN116827278B (zh) * 2023-08-30 2023-12-26 成都嘉纳海威科技有限责任公司 一种低功耗自适应补偿线性放大器

Also Published As

Publication number Publication date
CN216437157U (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2023088000A1 (zh) 自适应线性偏置电路、射频功率放大器及射频芯片
CN110677132B (zh) 一种射频线性功率放大器电路
CN110311632B (zh) 一种具有高温漂抑制能力的自适应偏置电路
WO2023082933A1 (zh) 射频功率放大器
CN107171647B (zh) 具有低损耗和温度补偿的自适应偏置电路及无线发射系统
JP4088177B2 (ja) バイアス電流供給回路及び増幅回路
CN109560777A (zh) 一种有源偏置Cascode射频放大器
WO2020228133A1 (zh) 一种自适应线性化射频偏置模块及其使用电路
CN113114121A (zh) 一种用于射频功率放大器的偏置电路
CN111200408A (zh) 线性补偿功率放大器
CN114679140B (zh) 高线性度射频功率放大器
CN112543004A (zh) 一种线性化偏置电路及射频功率放大器
CN112653402A (zh) 一种基于硅基bjt工艺的低压中功率射频放大器
WO2024109420A1 (zh) 增益曲线调整电路、功率放大器及射频芯片
CN113489461A (zh) 一种射频预失真线性化电路及射频功率放大器
WO2023103742A1 (zh) GaAs基HBT工艺MMIC手机射频功率放大器及线性化偏置电路
CN204361999U (zh) 一种达林顿结构的宽带放大器电路
CN114531121B (zh) 一种对温度不敏感的线性功率放大器
CN214380828U (zh) 功率放大系统
CN210075170U (zh) 一种具有高温漂抑制能力的自适应偏置电路
CN214507011U (zh) 一种线性化偏置电路及射频功率放大器
CN104539247A (zh) 一种达林顿结构的宽带放大器电路
US6400222B1 (en) Linearizer
CN212163282U (zh) 线性补偿功率放大器
CN107222174A (zh) 一种低损耗自适应偏置电路及无线发射系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894537

Country of ref document: EP

Kind code of ref document: A1