WO2023087923A1 - 一种用户面网元分离的确定方法及通信装置 - Google Patents

一种用户面网元分离的确定方法及通信装置 Download PDF

Info

Publication number
WO2023087923A1
WO2023087923A1 PCT/CN2022/121387 CN2022121387W WO2023087923A1 WO 2023087923 A1 WO2023087923 A1 WO 2023087923A1 CN 2022121387 W CN2022121387 W CN 2022121387W WO 2023087923 A1 WO2023087923 A1 WO 2023087923A1
Authority
WO
WIPO (PCT)
Prior art keywords
user plane
network element
plane network
control plane
node identifier
Prior art date
Application number
PCT/CN2022/121387
Other languages
English (en)
French (fr)
Inventor
陈阳
屈琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023087923A1 publication Critical patent/WO2023087923A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method for determining separation of user plane network elements and a communication device.
  • the user plane and control plane may be deployed centrally or separately.
  • the user plane and the control plane are separated, for example, most of the control plane NEs are deployed in provincial capitals or regional centers, and the user plane NEs are deployed in prefectures and cities close to users.
  • the terminal device can easily cross the area managed by the user plane service network element during the movement process.
  • the user plane network element is usually anchored unchanged.
  • an evolved packet core network (evolved packet core, EPC) scenario or a fifth generation (5th generation, 5G) terminal device activates a session and service continuity (session and service continuity, SSC) mode 1 (Mode1) protocol data unit (PDU) session
  • EPC evolved packet core network
  • 5th generation, 5G fifth generation
  • SSC session and service continuity
  • Mode1 Mode1 protocol data unit
  • PDU protocol data unit
  • 3rd generation partnership project, 3GPP 3rd generation partnership project
  • Embodiments of the present application provide a method for determining separation of user plane network elements and a communication device, in order to realize whether separation of user plane network elements occurs in a scenario of a user plane and a control plane.
  • a method for determining the separation of user plane and network elements is provided, and the method can be applied to a scenario where the control plane and the user plane are separated, or the method can be applied to a communication system where the control plane and the user plane are separated.
  • the method may be executed by the first control plane network element, or may be executed by components of the first control plane network element.
  • the method may be implemented through the following steps: the first control plane network element obtains the first node identifier of the first user plane network element and the second node identifier of the second user plane network element Identification, the first control plane network element includes the control plane service gateway SGW-C (may be recorded as the first SGW-C), the control plane data network PDN gateway PGW-C (may be recorded as the first PGW-C), session management function A network element SMF, or an intermediate session management function network element I-SMF.
  • the first user plane network element is a user plane anchor point.
  • the first control plane network element determines whether the first user plane network element is separated from the second user plane network element according to the first node identifier and the second node identifier. By comparing the node identifiers of two user plane network elements with the first control plane network element, it is judged whether the user plane network elements are separated, which can realize whether the user plane gateway is separated in the scenario where the user plane and the control plane are separated, and improve the user plane Gateway separation judges efficiency and accuracy, so that measures can be taken in time to avoid traffic detour when the user plane gateway is separated.
  • the first control plane network element is the first SGW-C or the first PGW-C
  • the following possible designs may be provided.
  • the method may be implemented through the following steps: the first control plane network element acquires the node identifier of the first PGW-U and the node identifier of the first SGW-U, and the first control plane network element obtains the node identifier of the first PGW-U according to the The node identifier of the first SGW-U and the node identifier of the first SGW-U are used to determine whether the separation of the user plane gateway occurs.
  • the user plane gateway includes the SGW-U and the PGW-U, which are recorded as the first SGW-U and the first PGW-U.
  • the first control plane network element judges whether the first SGW-U is separated from the first PGW-U according to the node identifier of the first PGW-U and the node identifier of the first SGW-U.
  • the first PGW-U is a user plane anchor point for the terminal device to access the PDN.
  • the first control plane network element may be the first SGW-C, or the first PGW-C, through the first control plane network element according to the node identifier of the first PGW-U and the node identifier of the first SGW-U , judging whether the first SGW-U is separated from the first PGW-U, can realize whether the user plane network element is separated in the CUPS scenario, improve the efficiency and accuracy of user plane network element separation judgment, and thus can be used in the user plane network Take timely measures to avoid traffic detours when elements are separated.
  • the first control plane network element is SGW-C
  • the first control plane network element obtains the node identifier of the first PGW-U, which can be realized in the following manner: SGW-C obtains the node identifier of the first PGW-U from PGW-C. A node identifier of PGW-U, wherein PGW-C is the control plane anchor point for the terminal device to access the PDN.
  • SGW-C and PGW-C are deployed on the same control plane gateway node, SGW-C can obtain the node identifier of the first PGW-U from the local PGW-C, that is, obtain the node identifier of the first PGW-U through internal messages , can save the signaling overhead, and does not need to modify the signaling of the existing protocol.
  • the PGW-C can obtain the node identifier of the first PGW-U through an interaction message with the SGW-C.
  • the SGW-C receives a modify bearer response (modify bearer response) message from the PGW-C, and the modify bearer response message carries the node identifier of the first PGW-U.
  • the node identifier can be carried in the existing signaling for judging the separation of the user plane network elements.
  • the first control plane network element is PGW-C
  • PGW-C is the control plane anchor point for terminal equipment to access the PDN
  • the first control plane network element obtains the node identifier of the first SGW-U, which can be obtained through It is implemented in the following manner: the PGW-C acquires the node identifier of the first SGW-U from the SGW-C.
  • PGW-C can obtain the node identifier of the first SGW-U from the local SGW-C, that is, obtain the node identifier of the first SGW-U through internal messages , can save the signaling overhead, and does not need to modify the signaling of the existing protocol.
  • the SGW-C may acquire the node identifier of the first PGW-U through an interaction message with the PGW-C.
  • the PGW-C receives a modify bearer request (modify bearer request) message from the SGW-C, where the modify bearer request message carries the node identifier of the first SGW-U.
  • modify bearer request modify bearer request
  • the node identifier can be carried in the existing signaling for judging the separation of the user plane network elements.
  • the node identifier of the first SGW-U and the node identifier of the first PGW-U can be respectively represented by the first node identifier and the second node ID to express.
  • the first control plane network element judges whether the first SGW-U and the first PGW-U are separated according to the first node identifier and the second node identifier, which may include the following judgment methods: if the first node If the identifier is the same as the second node identifier, it is determined that the first SGW-U is not separated from the first PGW-U; if the first node identifier is different from the second node identifier, it is determined that the first SGW-U is separated from the first PGW-U .
  • This judgment method is relatively strict and accurate, and using this judgment method to judge the separation of user plane network elements can help improve the judgment accuracy.
  • the node ID does not need to use a structured name. If the node ID is already configured for the device on the network, the device on the network does not need to modify the node ID.
  • the first control plane network element judges whether the first SGW-U is separated from the first PGW-U according to the first node identifier and the second node identifier, and may also include the following judgment method: if the first If the first information in the node identification is the same as the second information in the second node identification, it is determined that the first SGW-U is not separated from the first PGW-U; if the first information in the first node identification is the same as the second information in the second node identification If the information is different, it is determined that the first SGW-U is separated from the first PGW-U; wherein, the first information is used to indicate the area where the first SGW-U is located, and the second information is used to indicate the area where the first PGW-U is located.
  • the first control plane network element judges whether the first SGW-U is separated from the first PGW-U according to the first node identifier and the second node identifier, and may also include the following judgment method: if the first If the node ID and the second node ID are in the same group, it is determined that the first SGW-U is not separated from the first PGW-U; if the first node ID and the second node ID are not in the same group, then it is determined that the first SGW-U - U is separated from the first PGW-U; wherein the SGW-U and PGW-U in one group are located in the same area.
  • the first control plane network element determines that the first SGW-U is separated from the first PGW-U, it initiates reestablishment of the PDN connection of the terminal device.
  • the first control plane network element determines that the first SGW-U is separated from the first PGW-U, it initiates the reconstruction of the PDN connection of the terminal device.
  • the SGW -C can initiate the reestablishment of the PDN connection of the terminal device when the S1 connection of the terminal device is released.
  • the SGW-C may start a timer when the S1 connection of the terminal device is released, and initiate the re-establishment of the PDN connection of the terminal device after the timer expires. It should be noted that, it may initiate the re-establishment of part or all of the terminal device PDN connections. By starting the timer when the S1 connection of the terminal equipment is released, it is possible to avoid impact on ongoing data and voice services.
  • the first control plane network element determines that the first SGW-U is separated from the first PGW-U, it initiates the reconstruction of the PDN connection of the terminal device.
  • the PGW -C can initiate the reestablishment of the PDN connection of the terminal device when the terminal device has no traffic within the set time, so as to avoid impact on ongoing data and voice services.
  • the first control plane network element when the first control plane network element initiates the re-establishment of the PDN connection of the terminal device, it may send a delete bearer request to the MME.
  • the delete bearer request carries deletion reason information, and the deletion reason information is used to indicate the request Reactivate.
  • the terminal equipment By carrying the information of the deletion reason, the terminal equipment can be activated again.
  • the first control plane network element selects the integrated SGW-U/PGW-U for the terminal equipment, so that the user plane network elements can be integrated. Make the forwarding path of data or voice traffic more optimal.
  • the first control plane network element is an SMF or an I-SMF
  • the following possible designs may be provided.
  • the method can be implemented through the following steps: the first control plane network element acquires the node identifier of the first PSA-UPF and the node identifier of the first I-UPF, and the first control plane network element obtains the node identifier of the first I-UPF according to the node identifier of the I-UPF ID and PSA-UPF node ID to determine whether user plane network element separation occurs.
  • User plane network elements include I-UPF and PSA-UPF, which are recorded as the first I-UPF and the first PSA-UPF.
  • the first control plane network element judges whether the first I-UPF is separated from the first PSA-UPF according to the node identifier of the I-UPF and the node identifier of the PSA-UPF.
  • the first PSA-UPF is the user plane anchor point of the terminal device.
  • the first control plane network element is an I-SMF
  • the first control plane network element acquires the node identifier of the first PSA-UPF, which may be implemented in the following manner: the I-SMF acquires the first PSA from the SMF - Node ID of the UPF.
  • the I-SMF can obtain the node identifier of the first PSA-UPF through an interaction message with the SMF.
  • the SMF may send a PDU session establishment response (Nsmf_PDUSession_Create Response) message to the I-SMF, where the PDU session establishment response message carries the node identifier of the first PSA-UPF, and the I-SMF receives the PDU session establishment response from the SMF message, the I-SMF acquires the node identifier of the first PSA-UPF from the PDU session establishment response message.
  • the node identifier can be carried in the existing signaling for judging the separation of the user plane network elements.
  • the first control plane network element is an SMF; the first control plane network element obtains the node identifier of the first I-UPF, which may be implemented in the following manner:
  • the SMF can obtain the node identifier of the first I-UPF through an interaction message with the I-SMF.
  • the I-SMF may send a PDU session establishment request (Nsmf_PDUSession_Create Request) message to the SMF, and the PDU session establishment request message may carry the node identifier of the first I-UPF.
  • the SMF receives the PDU session establishment request message from the I-SMF, and acquires the node identifier of the first I-UPF from the PDU session establishment request message. In this way, the node identifier can be carried in the existing signaling for judging the separation of the user plane network elements.
  • the node identifier of the first I-UPF and the node identifier of the first PSA-UPF can be respectively represented by the first node identifier and the second node ID to express.
  • the first control plane network element judges whether the first I-UPF and the first PSA-UPF are separated according to the first node identifier and the second node identifier, which may include the following judgment methods: if the first node If the identifier is the same as the second node identifier, it is determined that the first I-UPF is not separated from the first PSA-UPF; if the first node identifier is different from the second node identifier, then it is determined that the first I-UPF is separated from the first PSA-UPF .
  • This judgment method is relatively strict and accurate, and using this judgment method to judge the separation of user plane network elements can help improve the judgment accuracy.
  • the first control plane network element judges whether the first I-UPF is separated from the first PSA-UPF according to the first node identifier and the second node identifier, and may also include the following judgment method: if the first The first information in the node identification is the same as the second information in the second node identification, then it is determined that the first I-UPF is not separated from the first PSA-UPF; if the first information in the first node identification is the same as the second information in the second node identification If the information is different, it is determined that the first I-UPF is separated from the first PSA-UPF; wherein, the first information is used to indicate the area where the first I-UPF is located, and the second information is used to indicate the area where the first PSA-UPF is located.
  • the first control plane network element judges whether the first I-UPF is separated from the first PSA-UPF according to the first node identifier and the second node identifier, and may also include the following judgment method: if the first If the node ID and the second node ID are in the same group, it is determined that the first I-UPF is not separated from the first PSA-UPF; if the first node ID and the second node ID are not in the same group, then determine that the first I-UPF is not separated from the first PSA-UPF; - The UPF is separated from the first PSA-UPF; wherein the I-UPF and the PSA-UPF in one group are located in the same area.
  • the first control plane network element determines that the first I-UPF is separated from the first PSA-UPF, it initiates reestablishment of the PDU session of the terminal device.
  • the first control plane network element determines that the first I-UPF is separated from the first PSA-UPF, then initiate the reconstruction of the PDN connection of the terminal device.
  • the first control plane network element is an I-SMF
  • I - The SMF can initiate the re-establishment of the PDU session of the terminal device when the N1/N2 connection of the terminal device is released.
  • the I-SMF can start a timer when the N1/N2 connection of the terminal device is released, and initiate the reconstruction of the PDU session of the terminal device after the timer expires. It should be noted that it can initiate the reconstruction of the part of the terminal device or all PDU sessions. By starting the timer when the N1/N2 connection of the terminal equipment is released, the impact on ongoing data and voice services can be avoided.
  • the first control plane network element determines that the first I-UPF is separated from the first PSA-UPF, it initiates the reconstruction of the PDU session of the terminal device.
  • the first control plane network element is an SMF
  • the SMF can be in PDU session/When the terminal device has no traffic within the set time, it initiates the reconstruction of the PDU session of the terminal device, which can avoid affecting the ongoing data and voice services.
  • the first control plane network element when the first control plane network element initiates the reestablishment of the PDU session of the terminal device, it may send a delete bearer request to the AMF.
  • the delete bearer request carries deletion reason information, and the deletion reason information is used to indicate the request Reactivate.
  • the terminal device By carrying the information of the deletion reason, the terminal device can be activated again.
  • the first control plane network element selects the nearest PSA-UPF for the terminal device, avoiding I-UPF insertion, and making the forwarding path of data or voice traffic better. .
  • a method for determining separation of user plane network elements is provided, and the method may be executed by a control plane serving gateway SGW-C, or by components of the control plane serving gateway SGW-C.
  • this method can be implemented through the following steps: SGW-C obtains the address of the first PGW-C, and SGW-C according to the address of the first PGW-C and the preset address, Judging whether the user plane service gateway SGW-U is separated from the first PGW-U, or, SGW-C judges whether to re-establish the PDN connection of the terminal device according to the address of the first PGW-C and the preset address; wherein, the preset address Including the addresses of one or more PGW-Cs located in the same area as the SGW-C; the first PGW-U is the user plane anchor point for the terminal device to access the PDN, and the first PGW-C is the control plane anchor point for the terminal device to access
  • the preset address is the address of the PGW-C in the same area as the SGW-C. In this way, the area can be divided according to the service requirements, so as to set the preset address, which makes it more flexible to judge the separation of the user plane network elements and suit the service requirements.
  • the judgment granularity is relatively large, which can reduce the judgment result of user plane separation, and further reduce the operations after determining user plane separation, such as PDN re-establishment, thereby reducing signaling overhead.
  • control plane serving gateway SGW-C and the first control plane data network PDN gateway PGW-C are located at different control plane gateway nodes.
  • SGW-C and the first PGW-C are located at different control plane gateway nodes, that is, when the control plane gateways are separated, it is considered that the user plane network elements are separated by default.
  • the SGW-C and the first PGW-C are located at different control plane gateway nodes, it is necessary to further determine whether the user plane network elements are separated according to the address of the first PGW-C and the preset address.
  • the operator requires that when the SGW-U and the PGW-U cross a relatively large area, it is considered that separation occurs.
  • the solution in the second aspect can be adapted to the service needs of the operators.
  • SGW-C judges whether the user plane serving gateway SGW-U is separated from the first PGW-U according to the address of the first PGW-C and the preset address, which can be realized in the following manner: If the address includes the address of the first PGW-C, then SGW-C determines that SGW-U is not separated from the first PGW-U; if the preset address does not include the address of the first PGW-C, then SGW-C determines that SGW-U Separated from the first PGW-U.
  • the SGW-C determines that the SGW-U is separated from the first PGW-U, it initiates reestablishment of the PDN connection of the terminal device.
  • SGW-C Based on SGW-C, if it is determined that SGW-U is separated from the first PGW-U, it will initiate the re-establishment of the PDN connection of the terminal device.
  • the SGW-C will initiate the re-establishment of the PDN connection of the terminal device when the S1 connection of the terminal device is released. , so as to avoid impact on ongoing data and voice services.
  • the SGW-C may start a timer when the S1 connection of the terminal device is released, and initiate reestablishment of the PDN connection of the terminal device after the timer expires. By starting the timer when the S1 connection of the terminal equipment is released, it is possible to avoid impact on ongoing data and voice services.
  • the SGW-C when the SGW-C initiates the re-establishment of the PDN connection of the terminal device, it may send a delete bearer request to the MME.
  • the delete bearer request carries deletion reason information, and the deletion reason information is used to indicate the request for reactivation.
  • the terminal device By carrying the information of the reason for deletion, the terminal device can be activated again.
  • SGW-C selects the unified SGW-U/PGW-U for the terminal device, which can realize the integration of network elements in the user plane, so that data or The path for voice traffic forwarding is better.
  • a method for determining separation of user plane network elements may be executed by a first control plane network element, or may be executed by components of the first control plane network element, and the first control plane network element may be a PGW -C.
  • the method can be realized through the following steps: PGW-C obtains the address of the first SGW-C; PGW-C judges the address of PGW-U based on the address of the first SGW-C and the preset address.
  • the preset address includes the addresses of one or more SGW-Cs located in the same area as PGW-C; PGW-U is the user plane anchor for the terminal device to access the PDN PGW-C is the control plane anchor point for terminal equipment to access the PDN.
  • the preset address is the address of the SGW-C in the same area as the PGW-C.
  • the area can be divided according to the service requirements, so as to set the preset address, which makes it more flexible and appropriate to determine the separation of user plane network elements.
  • the judgment granularity is relatively large, which can reduce the judgment results of user plane separation, and further reduce the operations after determining user plane separation, such as PDN reconstruction, thereby reducing signaling overhead.
  • the PGW-C and the first SGW-C are located at different control plane gateway nodes.
  • the SGW-C and the first PGW-C are located at different control plane gateway nodes, that is, when the control plane gateways are separated, it is considered that the user plane network elements are separated by default.
  • the operator requires that when the SGW-U and the PGW-U cross a relatively large area, it is considered that separation occurs.
  • the solution in the third aspect can be adapted to the service needs of the operators.
  • PGW-C judges whether PGW-U and the first user plane service gateway SGW-U are separated according to the address of the first SGW-C and the preset address, which can be realized in the following manner: If the address includes the address of the first SGW-C, then PGW-C determines that PGW-U is not separated from the first SGW-U; if the preset address does not include the address of the first SGW-C, then PGW-C determines that PGW-U Separated from the first SGW-U.
  • the PGW-C determines that the PGW-U is separated from the first SGW-U, it initiates reestablishment of the PDN connection of the terminal device.
  • PGW-C Based on PGW-C, if it is determined that PGW-U is separated from the first SGW-U, it will initiate the reconstruction of the PDN connection of the terminal device. Optionally, PGW-C will initiate the reconstruction of the terminal device when the terminal device has no traffic within the set time PDN connection, so as to avoid impact on ongoing data and voice services.
  • the PGW-C when the PGW-C initiates the re-establishment of the PDN connection of the terminal device, it may send a delete bearer request to the MME.
  • the delete bearer request carries deletion reason information, and the deletion reason information is used to indicate the request for reactivation.
  • the terminal device By carrying the information of the reason for deletion, the terminal device can be activated again.
  • PGW-C selects the unified SGW-U/PGW-U for the terminal device, which can realize the integration of network elements in the user plane, so that data or The path for voice traffic forwarding is better.
  • a method for determining the separation of user plane network elements may be executed by a first control plane network element, or may be executed by components of the first control plane network element, and the first control plane network element may be an I -SMF.
  • the method can be implemented through the following steps: I-SMF obtains the address of the first SMF, and I-SMF judges the I-UPF and the first PSA according to the address of the first SMF and the preset address -Whether the UPF is separated, or whether to initiate the re-establishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more SMFs located in the same area as the I-SMF; the first PSA-UPF is the user plane anchor point of the terminal device, and the first SMF is the control plane anchor point of the terminal device.
  • the I-SMF may trigger reestablishment of the PDU session of the terminal device.
  • the I-SMF judges whether the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address in the following manner: if the preset address includes the address of the first SMF address, the I-SMF determines that the I-UPF is not separated from the first PSA-UPF; if the preset address does not include the address of the first SMF, the I-SMF determines that the I-UPF is separated from the first PSA-UPF.
  • the I-SMF Based on the I-SMF, if it is determined that the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address, it can trigger the reconstruction of the PDU session of the terminal device.
  • the I-SMF is in the terminal device.
  • the N1/N2 connection is released, the PDU session of the terminal device is initiated to be reestablished, so that the impact on the ongoing data and voice services can be avoided.
  • the I-SMF may start a timer when the N1/N2 connection of the terminal device is released, and initiate reestablishment of the PDU session of the terminal device after the timer expires. By starting the timer when the N1/N2 connection of the terminal equipment is released, the impact on ongoing data and voice services can be avoided.
  • a method for determining separation of user plane network elements may be executed by a first control plane network element, or may be executed by components of the first control plane network element.
  • the first control plane network element may be an SMF .
  • the method can be implemented through the following steps: the SMF obtains the address of the first I-SMF, and the SMF judges the PSA-UPF and the first I-UPF according to the address of the first I-SMF and the preset address Whether separation occurs, or, determine whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more I-SMFs located in the same area as the SMF.
  • the PSA-UPF may be the anchor point of the user plane of the terminal device, and the SMF may be the anchor point of the control plane of the terminal device.
  • the SMF judges whether the PSA-UPF is separated from the first I-UPF according to the address of the first I-SMF and the preset address, which can be realized in the following manner: if the preset address includes the first I-UPF - the address of the SMF, the SMF determines that the PSA-UPF is not separated from the first I-UPF; if the preset address does not include the address of the first I-SMF, the SMF determines that the PSA-UPF is separated from the first I-UPF.
  • the SMF determines that the PSA-UPF is separated from the first I-UPF, it initiates reestablishment of the PDU session of the terminal device.
  • the PSA-UPF is separated from the first I-UPF based on the SMF
  • initiate the reconstruction of the PDU session of the terminal device If it is determined that the PSA-UPF is separated from the first I-UPF based on the SMF, then initiate the reconstruction of the PDU session of the terminal device.
  • the SMF initiates the reconstruction of the PDU session of the terminal device when the terminal device has no traffic within the set time, In this way, the impact on ongoing data and voice services can be avoided.
  • a communication device may be a first control plane network element, or may be a component (for example, a chip, or a chip system, or a circuit) located in the first control plane network element.
  • the first control plane network element includes the control plane service gateway SGW-C (may be recorded as the first SGW-C), the control plane data network PDN gateway PGW-C (may be recorded as the first PGW-C), and the session management function network element SMF, or an intermediate session management function network element I-SMF.
  • the device has the function of implementing the first aspect and the method in any possible design of the first aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include an acquiring unit and a judging unit.
  • an obtaining unit configured to obtain a first node identifier of the first user plane network element and a second node identifier of the second user plane network element.
  • the first user plane network element is a user plane anchor point.
  • a judging unit configured to judge whether the first user plane network element is separated from the second user plane network element according to the first node identifier and the second node identifier.
  • the acquiring unit when acquiring the first node identifier of the first user plane network element, is configured to: acquire the first node identifier of the first user plane network element from the second control plane network element; wherein , the device is the SGW-C, and the first user plane network element is a first user plane data network PDN gateway PGW-U; or, the device is the PGW-C, and the first user plane
  • the network element is the first user plane service gateway SGW-U; or, the device is the SMF, and the first user plane network element is an intermediate user plane management function I-UPF; or, the device is the I-UPF -SMF, the first user plane network element is a protocol data unit session anchor user plane management function PSA-UPF.
  • the judging unit uses In: if the first node identifier is the same as the second node identifier, then determine that the first user plane network element is not separated from the second user plane network element; or if the first node identifier is the same as the second node identifier If the identifiers of the second nodes are different, it is determined that the first user plane network element is separated from the second user plane network element.
  • the judging unit when judging whether the first user plane network element is separated from the second user plane network element according to the first node identifier and the second node identifier, the judging unit It is used for: if the first information in the first node identifier is the same as the second information in the second node identifier, determining that the first user plane network element is not separated from the second user plane network element; or If the first information in the first node identifier is different from the second information in the second node identifier, determine that the first user plane network element is separated from the second user plane network element; wherein, the first user plane network element is separated from the second user plane network element; The one piece of information is used to indicate the area where the first user plane network element is located, and the second information is used to indicate the area where the second user plane network element is located.
  • the judging unit when judging whether the first user plane network element is separated from the second user plane network element according to the first node identifier and the second node identifier, the judging unit It is used for: if the first node identifier and the second node identifier are in the same group, determine that the first user plane network element is not separated from the second user plane network element; or if the second user plane network element is not separated; If a node identifier and the second node identifier are not in the same group, it is determined that the first user plane network element is separated from the second user plane network element.
  • the apparatus further includes: a re-establishment unit, configured to initiate re-establishment of the data transmission of the terminal device if it is determined that the first user plane network element is separated from the second user plane network element path.
  • a re-establishment unit configured to initiate re-establishment of the data transmission of the terminal device if it is determined that the first user plane network element is separated from the second user plane network element path.
  • the device is an SGW-C; when initiating re-establishment of the data transmission path of the terminal device, the re-establishment unit is configured to: when the S1 connection of the terminal device is released, initiate re-establishment of the Packet Data Network PDN connection of terminal equipment.
  • the device is an I-SMF; when initiating re-establishment of the data transmission path of the terminal device, the re-establishment unit is configured to: initiate re-establishment when the N1/N2 connection of the terminal device is released A protocol data unit PDU session of the terminal device.
  • the device is the PGW-C or the SMF; when initiating reconstruction of the data transmission path of the terminal device, the reconstruction unit is configured to: When there is no traffic in the network, initiate reconstruction of the data transmission path of the terminal device.
  • a communication device in a seventh aspect, is provided, and the device may be executed by a control plane serving gateway SGW-C, or may be a component in the control plane serving gateway SGW-C.
  • the control plane serving gateway SGW-C and the first control plane data network PDN gateway PGW-C are located at different control plane gateway nodes.
  • the device has the function of realizing the above-mentioned second aspect and the method in any possible design of the second aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include an acquiring unit and a judging unit. Exemplarily:
  • An obtaining unit configured to obtain the address of the first PGW-C.
  • the judging unit is configured to judge whether the user plane serving gateway SGW-U is separated from the first PGW-U according to the address of the first PGW-C and the preset address, or the judging unit is configured to The address and preset address determine whether to re-establish the PDN connection of the terminal device; wherein, the preset address includes the addresses of one or more PGW-Cs located in the same area as the SGW-C; the first PGW-U is the address of the terminal device accessing the PDN A user plane anchor point, the first PGW-C is a control plane anchor point for terminal equipment to access the PDN.
  • the judging unit when judging whether the user plane serving gateway SGW-U is separated from the first PGW-U according to the address of the first PGW-C and the preset address, is specifically configured to: if the preset address If the address of the first PGW-C is included, SGW-C determines that SGW-U is not separated from the first PGW-U; if the preset address does not include the address of the first PGW-C, SGW-C determines that SGW-U and the first A PGW-U separation.
  • the apparatus further includes a re-establishment unit, configured to initiate re-establishment of the PDN connection of the terminal device if the judging unit determines that the SGW-U is separated from the first PGW-U.
  • the reestablishment unit is further configured to initiate reestablishment of the PDN connection of the terminal device when the S1 connection of the terminal device is released.
  • the reestablishment unit may also be used to start a timer when the S1 connection of the terminal device is released, and initiate reestablishment of the PDN connection of the terminal device after the timer expires.
  • a communication device may be a PGW-C, or a component located in the PGW-C.
  • the control plane serving gateway SGW-C and the first control plane data network PDN gateway PGW-C are located at different control plane gateway nodes.
  • the device has the function of implementing the third aspect and the method in any possible design of the third aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include an acquiring unit and a judging unit.
  • the obtaining unit is used to obtain the address of the first SGW-C; the judging unit is used to judge whether the PGW-U and the first user plane service gateway SGW-U are connected according to the address of the first SGW-C and the preset address. Separation; where the preset address includes the address of one or more SGW-Cs located in the same area as PGW-C; PGW-U is the user plane anchor point for terminal equipment to access PDN, and PGW-C is the control for terminal equipment to access PDN face anchor.
  • the judging unit when judging whether the PGW-U and the first user plane service gateway SGW-U are separated according to the address of the first SGW-C and the preset address, is specifically configured to: if the preset The address includes the address of the first SGW-C, then PGW-C determines that PGW-U is not separated from the first SGW-U; if the preset address does not include the address of the first SGW-C, PGW-C determines that PGW-U and The first SGW-U is separated.
  • the apparatus further includes a reestablishment unit, configured to initiate reestablishment of the PDN connection of the terminal device if it is determined that the PGW-U is separated from the first SGW-U.
  • the reestablishment unit may also be used to initiate reestablishment of the PDN connection of the terminal device when the terminal device has no traffic within a set time.
  • a communication device may be an I-SMF, or a component located in the I-SMF.
  • the device has the function of implementing the fourth aspect and the method in any possible design of the fourth aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include an acquiring unit and a judging unit. Exemplarily: an obtaining unit, configured to obtain the address of the first SMF.
  • the judging unit is configured to judge whether the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address, or judge whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more SMFs located in the same area as the I-SMF; the first PSA-UPF is the user plane anchor point of the terminal device, and the first SMF is the control plane anchor point of the terminal device.
  • the device also includes a reconstruction unit.
  • the rebuilding unit is configured to trigger the rebuilding of the PDU session of the terminal device if it is determined that the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address.
  • the judging unit when judging whether the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address, is specifically configured to: if the preset address includes the first PGW-C address, the I-SMF determines that the I-UPF is not separated from the first PSA-UPF; if the preset address does not include the address of the first PGW-C, the I-SMF determines that the I-UPF is separated from the first PSA-UPF.
  • the re-establishment unit may be used to: in the terminal device When the N1/N2 connection is released, the PDU session of the terminal device is initiated to be reestablished, so that the impact on the ongoing data and voice services can be avoided. Further optionally, the re-establishment unit may also be configured to: start a timer when the N1/N2 connection of the terminal device is released, and initiate re-establishment of the PDU session of the terminal device after the timer expires. By starting the timer when the N1/N2 connection of the terminal equipment is released, the impact on ongoing data and voice services can be avoided.
  • a communication device in a tenth aspect, is provided, and the device may be an SMF, or a component located in the SMF.
  • the device has the function of implementing the fifth aspect and the method in any possible design of the fifth aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include an acquiring unit and a judging unit. Exemplarily: the obtaining unit is used to obtain the address of the first I-SMF.
  • the judging unit is used for judging whether the PSA-UPF and the first I-UPF are separated according to the address of the first I-SMF and the preset address, or judging whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more I-SMFs located in the same area as the SMF.
  • the PSA-UPF may be the anchor point of the user plane of the terminal device, and the SMF may be the anchor point of the control plane of the terminal device.
  • the judging unit when judging whether the PSA-UPF and the first I-UPF are separated according to the address of the first I-SMF and the preset address, is specifically configured to: if the preset address includes the first I-UPF - the address of the SMF, it is determined that the PSA-UPF is not separated from the first I-UPF; if the preset address does not include the address of the first I-SMF, the SMF determines that the PSA-UPF is separated from the first I-UPF.
  • the apparatus further includes a re-establishment unit, configured to initiate re-establishment of the PDU session of the terminal device if it is determined that the PSA-UPF is separated from the first I-UPF.
  • a re-establishment unit configured to initiate re-establishment of the PDU session of the terminal device if it is determined that the PSA-UPF is separated from the first I-UPF.
  • the reconstruction unit can also be used to initiate the reconstruction of the terminal device when the terminal device has no traffic within a set time PDU session, so as to avoid impact on ongoing data and voice services.
  • the embodiment of the present application provides a communication device, where the communication device includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor implements the above-mentioned aspects and the methods described in each possible design of the aspects through logic circuits or executing code instructions.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor to other communication devices other than the communication device. It can be understood that the interface circuit may be a transceiver or an input/output interface.
  • the communication device may further include a memory for storing instructions executed by the processor, or storing input data required by the processor to execute the instructions, or storing data generated after the processor executes the instructions.
  • the memory may be a physically independent unit, or may be coupled with the processor, or the processor includes the memory.
  • the embodiment of the present application provides a computer-readable storage medium, where a computer program or readable instruction is stored in the computer-readable storage medium, and when the computer program or readable instruction is executed by a communication device, The method as described in the above aspects or each possible design of the aspects is executed.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor and may further include a memory.
  • the memory is used to store programs, instructions or codes; the processor is used to execute the programs, instructions or codes stored in the memory, so as to implement the methods described in the above aspects or possible designs of each aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer program product containing instructions is provided, and when executed by a communication device, the method described in the fourth aspect or each possible design of each aspect is executed.
  • a communication system in a fifteenth aspect, includes a first control plane network element, a first user plane network element, and a second user plane network element, and the first control plane network element is used to perform the above aspects or The methods described in each possible design of the various aspects.
  • the system includes a second control plane network element, and the second control plane network element may be used to perform the operations performed by the second control plane network element in the above aspects or in each possible design of the aspects.
  • Figure 1a is a schematic diagram of the EPC network architecture of CUPS in the embodiment of the present application.
  • Figure 1b is a schematic diagram of the communication system architecture in the embodiment of the present application.
  • FIG. 2a is one of the schematic flowcharts of the method for determining the separation of user plane network elements in the embodiment of the present application
  • Fig. 2b is the second schematic flow diagram of the method for determining the separation of user plane network elements in the embodiment of the present application;
  • Fig. 2c is the third schematic flow diagram of the method for determining the separation of user plane network elements in the embodiment of the present application.
  • FIG. 3 is one of the flow diagrams for judging the separation of user plane network elements in the embodiment of the present application.
  • FIG. 4 is the second schematic flow diagram of judging the separation of user plane network elements in the embodiment of the present application.
  • FIG. 5 is one of the schematic flow charts of PDN reconstruction in the embodiment of the present application.
  • FIG. 6 is the second schematic flow diagram of PDN reconstruction in the embodiment of the present application.
  • FIG. 7 is the third schematic flow diagram of PDN reconstruction in the embodiment of the present application.
  • FIG. 8 is a fourth schematic flowchart of a method for determining user plane network element separation in an embodiment of the present application.
  • FIG. 9 is the third schematic flow diagram of judging the separation of user plane network elements in the embodiment of the present application.
  • FIG. 10 is a fifth schematic flowchart of a method for determining user plane network element separation in an embodiment of the present application.
  • FIG. 11 is one of the schematic flowcharts of the method for determining the separation of network elements of the user plane of the 5G communication system in the embodiment of the present application;
  • FIG. 12 is the second schematic flow diagram of the method for determining the separation of network elements in the user plane of the 5G communication system in the embodiment of the present application;
  • FIG. 13 is one of the schematic diagrams of the operation process after the user plane network element is separated in the embodiment of the present application.
  • Fig. 14 is the second schematic diagram of the operation flow after the user plane network element is separated in the embodiment of the present application.
  • Fig. 15 is the third schematic diagram of the operation flow after the user plane network element is separated in the embodiment of the present application.
  • FIG. 16 is the sixth schematic flow diagram of the method for determining the separation of user plane network elements in the embodiment of the present application.
  • FIG. 17 is a seventh schematic flowchart of a method for determining user plane network element separation in an embodiment of the present application.
  • FIG. 18 is one of the structural schematic diagrams of the communication device in the embodiment of the present application.
  • FIG. 19 is the second structural diagram of the communication device in the embodiment of the present application.
  • Embodiments of the present application provide a method for determining the separation of user plane network elements and a communication device, in order to realize whether the user plane network elements are separated in a scenario where the user plane and the control plane are separated.
  • the method and the device are conceived based on the same or similar technology, and since the method and the device have similar problem-solving principles, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the method for determining the separation of user plane and network elements provided in the embodiment of the present application can be applied to a fourth generation (4th generation, 4G) communication system, such as long term evolution (long term evolution, LTE), and can also be applied to a 5G communication system, such as 5G New radio (new radio, NR) can also be applied to various communication systems that evolve in the future, such as the sixth generation (6th generation, 6G) communication system, or the air-space-sea-ground integrated communication system.
  • 4G fourth generation
  • LTE long term evolution
  • 5G New radio new radio
  • Fig. 1a and Fig. 1b respectively illustrate the architecture in the 4G communication system and the architecture in the 5G communication system.
  • the 4G communication system architecture is taken as an example for description.
  • the evolved packet core network (evolved packet core, EPC) network architecture is described in the 3GPP protocol, and based on the network architecture, the data flow transmission between the terminal device and the server can be realized.
  • the EPC network architecture includes a serving gateway (serving gateway, SGW) and a packet data network (packet data network, PDN) gateway (PDN gateway, PGW).
  • serving gateway serving gateway
  • PDN gateway packet data network gateway
  • FIG. 1a is an EPC network architecture of CUPS.
  • the network architecture is applicable to the network architecture shown in FIG. 1a for the method for determining user plane gateway separation provided by the embodiment of the present application.
  • CUPS refers to the division of gateways into control plane gateways and user plane gateways according to their functions.
  • the SGW is split into a serving gateway for user plane (SGW-U) and a serving gateway for control plane (SGW-C), where SGW-U can implement non- The user plane function of the SGW in the CUPS EPC network architecture, and the SGW-C can realize the control plane function of the SGW in the non-CUPS EPC network architecture.
  • the PGW is split into a user plane PDN gateway (packet data network gateway for user plane, PGW-U) and a control plane PDN gateway (packet data network gateway for control plane, PGW-C), where PGW-U can To realize the user plane function of PGW in non-CUPS EPC network architecture, PGW-C can realize the control plane function of PGW in non-CUPS EPC network architecture.
  • PGW-U packet data network gateway for user plane
  • PGW-C packet data network gateway for control plane
  • the EPC network architecture also includes terminal equipment.
  • Terminal equipment can also be called user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc., which is a device that provides voice or data connectivity to users.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • Terminal equipment can be: mobile phone (mobile phone), tablet computer, notebook computer, handheld computer, mobile Internet device (mobile internet device, MID), wearable device (such as smart watch, smart bracelet, pedometer, etc.), vehicle-mounted Equipment (such as automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless in industrial control (industrial control) Terminals, smart home devices (such as refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in (smart grid), wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), or wireless terminals in smart home (smart home), flying devices (for example, intelligent robots , hot air balloons, drones, airplanes), etc.
  • the terminal device may also be other devices having a terminal function, for example, the terminal device may
  • the EPC network architecture may also include a mobility management entity (mobility management entity, MME) and a home subscriber server (home subscriber server, HSS), wherein the MME is used to manage the mobile morning and afternoon of the user equipment (userequipment, UE) and session context.
  • MME mobility management entity
  • HSS home subscriber server
  • MME mobility management entity
  • UE user equipment
  • HSS home subscriber server
  • charging gateway CG
  • OCS online charging system
  • LIG lawful interception gateway
  • PGW-C can pass These monitoring network elements realize the monitoring of terminal services, such as charging and legal interception of terminal services.
  • control plane network elements include SGW-C and PGW-C
  • user plane network elements include SGW-U and PGW-U.
  • the control plane network elements (SGW-C and PGW-C) are generally deployed in provincial capitals or regional centers, and the user plane network elements (SGW-U and PGW-U) are deployed in cities and close to users, which can shorten service access path to improve user service experience while saving bearer network transmission bandwidth.
  • the MME can judge the separation of the SGW and the PGW according to the canonical node names (canonical-node-name) of the SGW and the PGW. Specifically, when the SGW changes during the movement of the terminal device, the MME selects a new SGW for the terminal device, and the MME obtains the host name of the new SGW according to the tracking area (Tracking Area, TA) where the terminal device is currently located. The canonical node name (canonical-node-name) is extracted from , and compared with the locally saved canonical node name of the PGW anchored by the terminal device.
  • canonical node name canonical-node-name
  • the MME finds that the canonical node names of the SGW and the PGW are different or some fields of the identification area in the canonical node names are different, it is considered that the separation of the SGW and the PGW has occurred, and the MME triggers PDN re-establishment.
  • control plane network elements SGW-C and PGW-C
  • user plane network elements SGW-U and PGW-U
  • SGW-C and PGW-C are deployed separately in different physical nodes.
  • MME selects a gateway, it queries the hostnames of SGW-C and PGW-C according to TA and access point name (APN) respectively, extracts the canonical node name from them, and finally obtains SGW-C and PGW -C interface Internet protocol (internet protocol, IP) information.
  • SGW-U and PGW-U are selected by SGW-C and PGW-C respectively according to certain principles.
  • the canonical node name is used by the MME to select the network elements of the control plane (SGW-C and PGW-C), but not for the network elements of the user plane (SGW-U and PGW-U).
  • the MME can only judge whether SGW-C and PGW-C are separated by standardizing node names, but cannot judge whether SGW-U and PGW-U are separated.
  • the MME cannot accurately determine whether SGW-U and PGW-U have separated.
  • the principle of network deployment in most areas is that SGW-C and PGW-C are centrally deployed in the center of the region/province, corresponding to the management of regional access in the entire province and all user plane network elements in the entire province.
  • SGW-U and PGW-U are deployed in prefectures and cities.
  • the control plane node where the SGW-C is located remains unchanged, and the judgment mechanism of the MME cannot judge whether the SGW-U and PGW-U are separated after the user moves.
  • the architecture of the communication system may include an access network and a core network.
  • the core network mainly includes the following key logical network elements: access and mobility management function network elements, session management function network elements, user plane function network elements, policy control function network elements, unified data management function network elements, etc.
  • FIG. 1b shows a possible example of the architecture of the communication system, and each network element or device in the architecture of the communication system is shown as a specific example. Specifically, the architecture of the communication system shown in FIG.
  • a terminal device taking UE as an example, an access and mobility management function (access and mobility management function, AMF) network element, a session management function (session Management function (SMF) network element, user plane function (UPF) network element, policy control function (policy control function, PCF) network element, unified data management function network element (unified data management, UDM), authentication server Function (authentication server function, AUSF) network element, network exposure function (network exposure function, NEF) network element, application function (application function, AF) network element, network slice selection function (network slice selection function, NSSF) network element, (wireless) access network ((radio) access network, (R) AN) equipment, network storage function (network repository function, NRF) network element.
  • AMF access and mobility management function
  • AMF access and mobility management function
  • SMF session Management function
  • UPF user plane function
  • policy control function policy control function
  • PCF policy control function
  • UDM unified data management function network element
  • NEF network exposure function
  • NEF network
  • the AMF network element and the access network device can be connected through the N2 interface
  • the access network device and the UPF can be connected through the N3 interface
  • the SMF and the UPF can be connected through the N4 interface
  • the AMF network element and the UE can be connected through the N3 interface. It can be connected through the N1 interface.
  • the name of the interface is just an example, which is not specifically limited in this embodiment of the present application. It should be understood that the embodiment of the present application is not limited to the communication system shown in FIG. 1b. The names of the network elements shown in FIG. Limitation of network elements included.
  • Access and mobility management function network element mainly responsible for signaling processing, such as access control, mobility management, attachment and detachment, and gateway selection.
  • the AMF network element When the AMF network element provides services for the session in the terminal device, it will provide the session with storage resources on the control plane to store the session ID, the SMF network element ID associated with the session ID, and the like.
  • the access and mobility management function network element can be an AMF network element, such as shown in Figure 1b; in future communications, such as in 6G, the access and mobility management function network element can still be an AMF network element , or have other names, which are not limited in this application.
  • the access and mobility management functional network element is an AMF network element, the AMF can provide the Namf service.
  • Session management function network element mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions include assigning IP addresses to users, selecting UPF that provides message forwarding functions, and so on.
  • the session management function network element can be an SMF network element, such as shown in Figure 1b; in future communication, such as in 6G, the session management function network element can still be an SMF network element, or have other names. Applications are not limited.
  • the SMF can provide the Nsmf service.
  • User plane functional network element responsible for forwarding and receiving user data in terminal equipment. It can receive user data from the data network and transmit it to the terminal device through the access network device; the UPF network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions that provide services for terminal equipment in the UPF network element are managed and controlled by the SMF network element.
  • the user plane functional network element can be a UPF network element, such as shown in Figure 1b; in future communication, such as in 6G, the user plane functional network element can still be a UPF network element, or have other names. Applications are not limited.
  • the architecture of the communication system shown in Figure 1b is not limited to include only the network elements shown in the figure, and may also include other devices not shown in Figure 1b, and the specific application will not describe them one by one here. enumerate.
  • the embodiment of the present application does not limit the distribution form of each network element, and the distribution forms shown in FIG. 1a and FIG. 1b are only exemplary, and are not limited in this application.
  • each network element in the core network can also be called a functional entity or device, which can be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or a virtualized network element on a suitable platform.
  • An example of the function, for example, the above-mentioned virtualization platform may be a cloud platform.
  • the control plane network element can be SMF
  • the user plane anchor gateway can be a PDU session anchor UPF (PDU session anchor UPF, PSA-UPF).
  • PDU session anchor UPF PDU session anchor UPF, PSA-UPF
  • the SMF selects an intermediate UPF (intermediate UPF, I-UPF) according to the location of the terminal device and inserts it between the access network device and the PSA-UPF for relay, realizing network End-to-end connection.
  • the SMF needs to judge whether the separation of user plane network elements occurs between the PSA-UPF and the I-UPF.
  • the AMF selects and inserts an intermediate SMF (intermediate SMF, I-SMF) according to the location of the terminal device, and the I-SMF selects the I-UPF for relaying.
  • I-SMF intermediate SMF
  • the I-SMF or the SMF needs to judge whether the separation of user plane network elements occurs between the PSA-UPF and the I-UPF.
  • an embodiment of the present application provides a method for determining the separation of user plane network elements, in order to realize separation judgment of user plane network elements in a scenario where the user plane and the control plane are separated.
  • the embodiment of the present application provides a specific flow of a method for determining separation of user plane network elements as follows.
  • the method may be executed by a first control plane network element, and the first control plane network element may be SGW-C, PGW-C, SMF or I-SMF.
  • the first control plane network element acquires the first node identifier of the first user plane network element and the second node identifier of the second user plane network element.
  • the first user plane network element is a user plane anchor point.
  • the first control plane network element judges whether the user plane network element is separated according to the first node identifier and the second node identifier, that is, judges whether the first user plane network element is separated from the second user plane network element.
  • judging whether the user plane network element is separated it can also be understood as judging whether to rebuild the data transmission path connection of the terminal device, or judging whether to optimize the traffic forwarding path (or data transmission path), or judging whether there is a traffic detour (or roundabout data transmission).
  • the first control plane network element may determine whether the first user plane network element is separated from the second user plane network element according to the first node identifier and the second node identifier, and further perform a post-separation operation when the separation is determined, For example, rebuilding the data transmission path connection of the terminal device; the first control plane network element can also directly judge whether to rebuild the data transmission path connection of the terminal device according to the first node identifier and the second node identifier, and perform data transmission when it is judged to be yes Path reconstruction.
  • the first control plane network element may determine whether there is a traffic detour according to the first node identifier and the second node identifier, and perform processing when it is determined that there is a traffic detour, such as rebuilding the data transmission path of the terminal device.
  • the first control plane network element judges whether the separation of the user plane network elements occurs according to the node identifiers of the two user plane network elements, so that the user plane network element can be judged in the scenario where the user plane and the control plane are separated Whether separation occurs, improve the efficiency and accuracy of user plane network element separation judgment, so that measures can be taken in time to avoid traffic detour when the user plane gateway is separated.
  • the first control plane network element obtains the first node identifier of the first user plane network element and the second node identifier of the second user plane network element, and the first control plane network element may obtain a user obtain the node identifier of another user plane network element from the second control plane network element.
  • the first control plane network elements examples are introduced below.
  • the first control plane network element is SGW-C
  • SGW-C can obtain the node identifier of the first PGW-U from PGW-C
  • PGW-C can obtain the node identifier of the first PGW-U from PGW-C
  • SGW-C obtains the node identifier of the first SGW-U
  • the first control plane network element is an SMF, and when no I-SMF is inserted, the node identifiers of two user plane network elements can be obtained locally
  • the first control plane network element is an SMF, and when an I-SMF is inserted, the SMF can obtain the node identifier of the first I-UPF from the I-SMF; for another example, the first control plane network element is an I-SMF, and the I- The SMF may acquire the node identifier of the first PSA-UPF from the SMF.
  • the flow of the method for determining the separation of user plane network elements is as follows.
  • the first control plane network element acquires the node identifier of the first PGW-U and the node identifier of the first SGW-U.
  • the first PGW-U is a user plane anchor point for the terminal device to access the PDN.
  • the 3GPP protocol stipulates that the PGW-U cannot be changed during the movement of the terminal equipment.
  • the first PGW-U is the user plane anchor point of the terminal equipment, and the first PGW-U cannot be changed during the movement of the terminal equipment.
  • the first control plane network element determines whether the first SGW-U is separated from the first PGW-U according to the node identifier of the first PGW-U and the node identifier of the first SGW-U.
  • the first control plane network element judges whether the first SGW-U is separated from the first PGW-U according to the node identifier of the first PGW-U and the node identifier of the first SGW-U, so that In the CUPS scenario, judge whether the user plane NE is separated, improve the efficiency and accuracy of user plane NE separation judgment, and take timely measures to avoid traffic detour when the user plane NE is separated.
  • the flow of the method for determining the separation of user plane network elements is as follows.
  • the first control plane network element acquires the node identifier of the first PSA-UPF and the node identifier of the first I-UPF.
  • the first PSA-UPF is a user plane anchor point for a terminal device to access a data network (data network, DN).
  • the first PSA-UPF is the user plane anchor point of the terminal device.
  • the first control plane network element determines whether the first I-UPF is separated from the first PSA-UPF according to the node identifier of the first PSA-UPF and the node identifier of the first I-UPF.
  • the first control plane network element judges whether the first I-UPF is separated from the first PSA-UPF according to the node identifier of the first PSA-UPF and the node identifier of the first I-UPF, so that In the scenario where the user plane and the control plane are separated, it is judged whether the user plane network element is separated, and the efficiency and accuracy of the user plane network element separation judgment are improved, so that measures can be taken in time to avoid traffic detour when the user plane network element is separated.
  • the first control plane network element may be the SGW-C or the PGW-C, and the SGW-C may be the SGW-C reselected by the MME for the terminal device when the terminal device moves.
  • the first SGW-U is the SGW-U reselected by the SGW-C for the terminal equipment.
  • PGW-C is the anchor point of the control plane for the terminal equipment to access the PDN.
  • the 3GPP agreement stipulates that the PGW-C cannot be changed during the mobile process of the terminal equipment.
  • the control plane network elements and user plane network elements are interconnected through the Sx interface, and are identified by the node ID (Node ID). That is, when the CUPS is deployed, the SGW-C can obtain the node identifier of the SGW-U through the Sx interface, and the PGW-C can obtain the node identifier of the PGW-U through the Sx interface.
  • the MME can reselect the SGW-C according to the current location of the terminal device, and the SGW-C reselects the SGW-U for the terminal device, and records the node identifier of the SGW-U where the terminal device is located.
  • PGW-C and PGW-U are anchored unchanged during the movement of the terminal equipment. It can be seen that the SGW-C knows the second node identifier of the first SGW-U, and the PGW-C knows the first node identifier of the first PGW-U.
  • SGW-C knows the second node identifier of the first SGW-U (for example, SGW-C obtains the second node identifier of the first SGW-U from local storage), The SGW-C may acquire the first node identifier of the first PGW-U from the PGW-C.
  • PGW-C knows the first node identifier of the first PGW-U (for example, PGW-C obtains the second node identifier of the first PGW-U from local storage), The PGW-C may acquire the second node identifier of the first SGW-U from the SGW-C.
  • An optional implementation manner of obtaining the first node identifier when the first control plane network element is the SGW-C, and an optional implementation manner of obtaining the second node identifier when the first control plane network element is the PGW-C are respectively introduced below.
  • SGW-C and PGW-C can be set up together or separately.
  • Combined configuration means that SGW-C and PGW-C are deployed on the same control plane network element node
  • separate configuration means that SGW-C and PGW-C are deployed on different control plane network element nodes.
  • the node identifiers of the SGW-C and PGW-C may be the same when deployed together, and the node identifiers of the SGW-C and PGW-C may be different when deployed separately.
  • the control plane network element node can also be called a physical device, a physical node or a functional network element.
  • the control plane network element node can be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or a An example of a virtualization function on a suitable platform, for example, the above-mentioned virtualization platform may be a cloud platform.
  • the control plane network element node is, for example, a centralized gateway (centralized gateway, CGW).
  • SGW-C can obtain the first node identifier of the first PGW-U from the local PGW-C, where the local is the control plane network element node,
  • the PGW-C can transmit the first node identifier to the SGW-C through the signaling inside the network element node on the control plane, and the SGW-C can obtain the first node identifier from the PGW-C through the signaling inside the network element node on the control plane.
  • PGW-C can obtain the second node identifier of the first SGW-U from the local SGW-C, where the local is the control plane network Meta node, SGW-C can transmit the second node identifier to PGW-C through the signaling inside the network element node of the control plane, and PGW-C can obtain the second node identifier from SGW-C through the signaling inside the network element node of the control plane .
  • the PGW-C may acquire the second node identifier of the first SGW-U through an interaction message with the SGW-C.
  • the SGW-C may send a modify bearer request (Modify Bearer Request) message to the PGW-C, and the modify bearer request message may carry the second node identifier of the first SGW-U.
  • the PGW-C receives the bearer modification request message from the SGW-C, and acquires the second node identifier of the first SGW-U from the bearer modification request message.
  • the SGW-C may acquire the first node identifier of the first PGW-U through an interactive message with the PGW-C.
  • the PGW-C may send a Modify Bearer Response (Modify Bearer Response) message to the SGW-C, where the Modify Bearer Response message carries the first node identifier of the first PGW-U, and the SGW-C receives the message from the PGW-C In the bearer modification response message, the SGW-C acquires the first node identifier of the first PGW-U from the bearer modification response message.
  • Modify Bearer Response Modify Bearer Response
  • the new side SGW-C will send a modification bearer request message to the PGW-C anchored by the terminal device.
  • the modification bearer request message can be used to update the local IP address of the GTP tunnel and TEID
  • PGW-C returns a modified bearer response message to SGW-C
  • the modified bearer response message carries the GPRS Tunneling Protocol (GPRS Tunneling Protocol, GTP) tunnel local end IP and tunnel end point identifier (tunnel end point identifier, TEID), Complete the S5/S8 path switching.
  • GTP GPRS Tunneling Protocol
  • SGW-C and PGW-C when SGW-C and PGW-C are deployed on different control plane network element nodes, and SGW-C obtains the first node identifier, it can extend the modification bearer response message in the 3GPP 29.274 protocol, and the PGW-C
  • the first private information element is added to the modify bearer response message sent by C to SGW-C, and the first private information element may be used to indicate the first node identifier of the first PGW-U. Fill in the first node identifier of the first PGW-U in the first private information element of the modify bearer response message. In this way, the SGW-C acquires the first node identifier of the first PGW-U from the modify bearer response message.
  • the first control plane network element may be an SMF or an I-SMF.
  • the I-SMF knows the node identifier of the first I-UPF (for example, the I-SMF obtains the node identifier of the first I-UPF from local storage), and the I-SMF may Obtain the node identifier of the first PSA-UPF from the SMF.
  • the SMF can locally obtain the node identifier of the first PSA-UPF and the node identifier of the first I-UPF.
  • the SMF knows the node identifier of the first PSA-UPF (for example, the SMF obtains the node identifier of the first PSA-UPF from local storage), The SMF can acquire the node identifier of the first I-UPF from the I-SMF.
  • the following introduces an optional implementation manner of obtaining the first node identifier when the first control plane network element is an I-SMF, and an optional implementation manner of obtaining the second node identifier by the first control plane network element being an SMF.
  • the SMF can obtain the node identifier of the first I-UPF through an interaction message with the I-SMF.
  • the I-SMF may send a PDU session establishment request (Nsmf_PDUSession_Create Request) message to the SMF, and the PDU session establishment request message may carry the node identifier of the first I-UPF.
  • the SMF receives the PDU session establishment request message from the I-SMF, and acquires the node identifier of the first I-UPF from the PDU session establishment request message.
  • the I-SMF can obtain the node identifier of the first PSA-UPF through an interaction message with the SMF.
  • the SMF may send a PDU session establishment response (Nsmf_PDUSession_Create Response) message to the I-SMF, where the PDU session establishment response message carries the node identifier of the first PSA-UPF, and the I-SMF receives the PDU session establishment response from the SMF message, the I-SMF acquires the node identifier of the first PSA-UPF from the PDU session establishment response message.
  • Nsmf_PDUSession_Create Response PDU session establishment response
  • an I-SMF when an I-SMF is inserted and the I-SMF obtains the first node identifier, it can extend the PDU session establishment response message, and add a private key to the PDU session establishment response message sent by the SMF to the I-SMF.
  • Information element the private information element may be used to indicate the node identity of the first PSA-UPF. Fill in the node identifier of the first PSA-UPF in the private information element of the PDU session establishment response message. In this way, the I-SMF obtains the node identifier of the first PSA-UPF from the PDU session establishment response message.
  • the SMF When an I-SMF is inserted, when the SMF obtains the node identifier of the first I-UPF, it can extend the PDU session establishment request message, and add a private information element in the PDU session establishment request message sent by the I-SMF to the SMF.
  • the private information element may be used to indicate the node identity of the first I-UPF. Fill in the node identifier of the first I-UPF in the private information element of the PDU session establishment request message. In this way, the SMF can obtain the node identifier of the first I-UPF from the PDU session establishment request message.
  • first control plane network element acquires the first node identifier and the second node identifier.
  • first control plane network element judges whether the first user plane network element is separated from the first and second user plane network elements according to the first node identifier and the second node identifier.
  • Judgment mode 1 judge whether the first user plane network element is separated from the second user plane network element by judging whether the first node identifier and the second node identifier are the same.
  • the first control plane network element determines that the first user plane network element is not separated from the second user plane network element; if the first node identifier is different from the second node identifier, Then the first control plane network element determines that the first user plane network element is separated from the second user plane network element.
  • the two user plane network elements SGW-U and PGW-U can also be set up together or separately.
  • Co-located means that two user-plane network elements are deployed on the same user-plane network element node
  • separate configuration means that two user-plane network elements are deployed on different user-plane network element nodes.
  • the judgment method 1 is introduced in detail.
  • the user plane network element node can also be called a physical device, a physical node or a functional network element.
  • the user plane network element node can be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or a An example of a virtualization function on a suitable platform, for example, the above-mentioned virtualization platform may be a cloud platform.
  • the user plane network element node is, for example, a distributed gateway (distributed gateway, DGW).
  • SGW-U and PGW-U When SGW-U and PGW-U are deployed on the same user plane network element node, SGW-U and PGW-U use the same node identification, and the node identification of SGW-U and PGW-U can be set as the user plane network element node or the IP of the user plane network element node or other identifiers of the user plane network element node.
  • the SGW-U and the PGW-U are located at different user plane network element nodes, that is, the SGW-U and the PGW-U are separated.
  • judging manner 1 it may be judged whether the first SGW-U is separated from the first PGW-U by judging whether the first node identifier and the second node identifier are the same.
  • This judgment method is relatively strict and accurate, and using the judgment method 1 to judge the separation of user plane network elements can help improve the judgment accuracy.
  • the first control plane network element determines that the first user plane network element and the second user plane network element are not separated; if the first node ID in If the first information is different from the second information in the second node identifier, it is determined that the first user plane network element is separated from the second user plane network element.
  • the first information is used to indicate the area where the first user plane network element is located
  • the second information is used to indicate the area where the second user plane network element is located.
  • an area may refer to a geographical area, which may be a geographical range agreed between network elements or devices, and the area may be changed according to service requirements.
  • the region can be granular by province, city, or county.
  • the area is city A in province A, and for example, the area is city B in province B.
  • Judgment mode 2 judges whether the first user plane network element is separated from the second user plane network element according to the information used to indicate the area in the node identifier. It can be understood that when the first user plane network element and the second user plane network element When the elements are located in different user plane gateway nodes, the first user plane network element and the second user plane network element can be located in the same area. In this case, although the first user plane network element and the second user plane network element are located at different user plane gateway nodes, but if judgment mode 2 is adopted, the first control plane network element will determine that the first user plane network element is not separated from the second user plane network element.
  • judgment method 2 requires that the first node ID and the second node ID adopt a structured naming method, and some fields are used to identify areas, such as the first node ID The first information used to identify the area in the ID, and the second information used to identify the area in the second node ID.
  • first node identifier and the second node identifier are in the same group, it is determined that the first user plane network element is not separated from the second user plane network element; if the first node identifier and the second node identifier are not in the same group or If the first node identifier and the second node identifier are in different groups, it is determined that the first user plane network element is separated from the second user plane network element;
  • a "group” may also be referred to as a collection, a list, or a combination.
  • the user plane network element in one group and the second user plane network element may be located in the same area.
  • the first control plane network element may be pre-configured with one or more groups, and the node identifiers of the first user plane network element and the second user plane network element in the same area are configured in one group.
  • Judgment mode 3 judges whether the first user plane network element is separated from the second user plane network element according to whether the first node identifier and the second node identifier are in the same group. It can be understood that when the first user plane network element When the second user plane network element and the second user plane network element are located in different user plane gateway nodes, the node identifiers of the first user plane network element and the second user plane network element can also be located in the same group. In this case, although the first user plane network element The network element and the second user plane network element are located at different user plane gateway nodes, but if judgment mode 3 is adopted, the first control plane network element will determine that the first user plane network element and the second user plane network element are not separated.
  • the node identification does not need to use a structured name, and if the device currently on the network has been configured with a node identification, Devices on the network do not need to modify the node ID.
  • judgment mode 1 judgment mode 2
  • judgment mode 3 are introduced with examples in combination with specific application scenarios.
  • the application scenario in the 4G communication system is taken as an example to introduce.
  • scenario 1 the terminal device moves from county a in city A to county b in city A; in scenario 2, the terminal device moves from county b in city A to city B.
  • both the SGW-U and PGW-U are deployed on the same user plane gateway node.
  • SGW-U1 and PGW-U1 are deployed on DGW1.
  • SGW-U2 and PGW-U2 are deployed on DGW2.
  • SGW-U3 and PGW-U3 are deployed on DGW3.
  • County a of city A, county b of city A, and city B belong to province A, and the NEs on the control plane are located in province A.
  • SGW-C and PGW-C are deployed on the same control plane gateway node.
  • SGW-C and PGW-C are deployed on CGW.
  • SGW-C in province A is connected to SGW-U1, SGW-U2 and SGW-U3
  • PGW-C in province A is connected to PGW-U1, PGW-U2 and PGW-U3.
  • Fig. 3 also shows that the SGW-C in province A connects to the MME.
  • the first control plane network element can use the above judgment method 1 to judgment method 3 to judge whether the separation of the user plane network element occurs, and the first control plane network element can be the SGW-C in province A or the PGW-C in province A.
  • the first control plane network element uses the above judgment method 1 to judge whether the separation of the user plane network element occurs in scenario 1, then the first control plane network element can judge whether the node ID of SGW-U2 is the same as that of PGW-U1. For example, the node ID of SGW-U2 is "DGW2", and the node ID of PGW-U1 is "DGW1". U and PGW-U are separated.
  • the first control plane network element uses the above judgment method 2 to judge whether the separation of the user plane network element occurs in scenario 1, then the first control plane network element can judge that the first information in the node identifier of SGW-U2 is consistent with the node of PGW-U1 Whether the second information in the identification is the same, if the same, the user plane network element is not separated, and if not, the user plane network element is separated.
  • the node identifier of SGW-U2 is "DGW2.cityA.provinceA", wherein the first information used to indicate the area where SGW-U2 is located is "cityA.provinceA"; the node identifier of PGW-U1 is "DGW1.cityA.
  • provinceA where the second information used to indicate the area where the PGW-U1 is located is "cityA.provinceA”. If the first information is the same as the second information, the first control plane network element determines that the user plane network element is not separated. It can be seen that the result of the first control plane network element judging whether user plane network element separation occurs in scenario 1 according to the judgment mode 1 and the judgment mode 2 is different.
  • the first control plane network element uses the above judgment method 2 to judge whether the separation of the user plane network element occurs in the second scenario, then the first control plane network element can judge that the first information in the node identifier of SGW-U3 is related to the node of PGW-U2 Whether the second information in the identification is the same, if the same, the user plane network element is not separated, and if not, the user plane network element is separated.
  • the node identifier of SGW-U3 is "DGW3.cityB.provinceA", wherein the first information used to indicate the area where SGW-U3 is located is "cityB.provinceA"; the node identifier of PGW-U2 is "DGW2.cityA. provinceA", wherein the second information used to indicate the area where the PGW-U2 is located is "cityA.provinceA". If the first information is different from the second information, the first control plane network element determines that the user plane network element is separated.
  • the first control plane network element uses the above judgment method 3 to judge whether the separation of the user plane network element occurs in scenario 1, then the first control plane network element can judge whether the node identifier of SGW-U2 and the node identifier of PGW-U1 are the same In the same group, if they are in the same group, the user plane network elements are not separated; otherwise, the user plane network elements are separated.
  • the first control plane network element may preconfigure one or more groups, for example, the first control plane network element configures group 1 as ⁇ DGW1, DGW2 ⁇ ; group 2 as ⁇ DGW3 ⁇ .
  • the node identifier of SGW-U2 is "DGW2”
  • the node identifier of PGW-U1 is "DGW1”
  • the first control plane network element determines that the node identifier of SGW-U2 and the node identifier of PGW-U1 are in the same group. Plane NEs are not separated.
  • the first control plane network element uses the above judgment method 3 to judge whether the separation of the user plane network element occurs in scenario 2, then the first control plane network element can judge whether the node ID of SGW-U3 and the node ID of PGW-U2 are the same In the same group, if they are in the same group, the user plane network elements are not separated; otherwise, the user plane network elements are separated.
  • the first control plane network element may preconfigure one or more groups, for example, the first control plane network element configures group 1 as ⁇ DGW1, DGW2 ⁇ ; group 2 as ⁇ DGW3 ⁇ .
  • the node identifier of SGW-U3 is "DGW3"
  • the node identifier of PGW-U2 is "DGW2”
  • the node identifier of the first control plane network element SGW-U3 and the node identifier of PGW-U3 are not in the same group, then determine the user plane Network element separation.
  • FIG. 3 The example shown in FIG. 3 is that the SGW-C and the PGW-C are deployed on the same control plane network element node.
  • the communication scenario in which the SGW-C and the PGW-C are deployed on different control plane network element nodes is exemplified below by using FIG. 4 . It should be noted that the scenario shown in FIG. 4 illustrates a possible deployment situation, and there may also be a communication scenario in which one DGW is connected to multiple CGWs in actual applications.
  • scenario three the terminal device moves from city B in province A to city C in province A; in scenario four, the terminal device moves from city C in province A to city D in province B.
  • both the SGW-U and PGW-U are deployed on the same user plane gateway node.
  • SGW-U2 and PGW-U2 are deployed on DGW2.
  • SGW-U3 and PGW-U3 are deployed on DGW3.
  • SGW-U4 and PGW-U4 are deployed on DGW4.
  • PGW-C1 in province A is located in CGW1, and PGW-C1 is connected to PGW-U2.
  • SGW-C2 and PGW-C2 in province A are located at CGW2, SGW-C2 is connected to SGW-U3, and PGW-C2 is connected to PGW-U3.
  • SGW-C3 and PGW-C3 of province B are located at CGW3, SGW-C3 is connected to SGW-U4, and PGW-C3 is connected to PGW-U4.
  • Figure 4 also shows that MME1 in province A is connected to CGW2 and CGW2, and MME2 in province B is connected to CGW3.
  • the first control plane network element may obtain the node identifier used for comparison through an exchange message.
  • the first control plane network element may be SGW-C2 or PGW-C1. Messages can be transmitted between PGW-C1 and SGW-C2 to exchange node identifiers of user plane network elements.
  • SGW-C2 may send a modify bearer request (Modify Bearer Request) message to PGW-C1, and the modify bearer request message may carry the node identifier of SGW-U3.
  • PGW-C1 receives the bearer modification request message from SGW-C2, and obtains the node identifier of SGW-U3 from the bearer modification request message.
  • PGW-C1 can send a Modify Bearer Response (Modify Bearer Response) message to SGW-C2.
  • the Modify Bearer Response message carries the node identifier of PGW-U2.
  • SGW-C2 receives the Modify Bearer Response message from PGW-C1.
  • SGW- C2 obtains the node identifier of PGW-U2 from the modify bearer response message.
  • the first control plane network element may use the above judgment mode 1 to judgment mode 3 to judge whether the separation of the user plane network element occurs in the third scenario.
  • the first control plane network element uses the above judgment method 1 to judge whether the separation of the user plane network element occurs in scenario 3, then the first control plane network element can judge whether the node ID of SGW-U3 is the same as that of PGW-U2. For example, the node ID of SGW-U3 is "DGW3", and the node ID of PGW-U2 is "DGW2". NEs are separated.
  • the first control plane network element uses the above judgment method 2 to judge whether the separation of the user plane network element occurs in the third scenario, then the first control plane network element can judge that the first information in the node identifier of SGW-U3 is related to the node of PGW-U2 Whether the second information in the identification is the same, if the same, the user plane network element is not separated, and if not, the user plane network element is separated.
  • the first information and the second information are information indicating areas.
  • the information used to represent an area may be information representing a province.
  • the node identifier of SGW-U3 is "DGW3.cityC.provinceA", wherein the first information used to indicate the area where SGW-U3 is located is “provinceA”; the node identifier of PGW-U2 is “DGW2.cityB.provinceA” , wherein the second information used to indicate the area where the PGW-U1 is located is “provinceA”.
  • "provinceA" "provinceA”
  • the information indicating an area may also be information indicating a city.
  • the node identifier of SGW-U3 is "DGW3.cityC.provinceA", wherein the first information used to indicate the area where SGW-U3 is located is "cityC.provinceA”; the node identifier of PGW-U2 is "DGW2.cityB. provinceA", wherein the second information used to indicate the area where the PGW-U1 is located is "cityB.provinceA”. If the first information is different from the second information, the first control plane network element determines that the user plane network element is separated.
  • the first control plane network element uses the above judgment method 3 to judge whether the separation of the user plane network element occurs in the third scenario, then the first control plane network element can judge whether the node identifier of SGW-U3 and the node identifier of PGW-U2 are the same In the same group, if they are in the same group, the user plane network elements are not separated; otherwise, the user plane network elements are separated.
  • the first control plane network element may preconfigure one or more groups, for example, the first control plane network element configures group 1 as ⁇ DGW1, DGW2, DGW3 ⁇ ; group 2 as ⁇ DGW4 ⁇ .
  • the node ID of SGW-U3 is "DGW3"
  • the node ID of PGW-U2 is "DGW2”
  • the first control plane network element determines that the node ID of SGW-U3 is in the same group as Plane NEs are not separated.
  • the first control plane network element may obtain the node identifier used for comparison through an exchange message.
  • the first control plane network element may be SGW-C3 or PGW-C2. Messages can be transmitted between PGW-C2 and SGW-C3 to exchange node identifiers of user plane network elements.
  • SGW-C3 may send a modify bearer request (Modify Bearer Request) message to PGW-C2, and the modify bearer request message may carry the node identifier of SGW-U4.
  • PGW-C2 receives the bearer modification request message from SGW-C3, and obtains the node identifier of SGW-U4 from the bearer modification request message.
  • PGW-C2 may send a Modify Bearer Response (Modify Bearer Response) message to SGW-C3.
  • the Modify Bearer Response message carries the node identifier of PGW-U3.
  • SGW-C3 receives the Modify Bearer Response message from PGW-C2.
  • SGW- C3 obtains the node identifier of PGW-U3 from the modify bearer response message.
  • the first control plane network element may use the above judgment mode 1 to judgment mode 3 to judge whether separation of the user plane network element occurs in scenario 4.
  • the following uses Judgment Mode 2 and Judgment Mode 3 as examples.
  • the first control plane network element uses the above judgment method 2 to judge whether the separation of the user plane network element occurs in scenario 4, then the first control plane network element can judge that the first information in the node identifier of SGW-U4 is consistent with the node of PGW-U3 Whether the second information in the identification is the same, if the same, the user plane network element is not separated, and if not, the user plane network element is separated.
  • the first information and the second information are information indicating areas.
  • the information used to represent an area may be information representing a province.
  • the node identifier of SGW-U3 is "DGW4.cityD.provinceB", wherein the first information used to indicate the area where SGW-U3 is located is “provinceB”; the node identifier of PGW-U3 is "DGW3.cityC.provinceA” , wherein the second information used to indicate the area where the PGW-U1 is located is “provinceA”.
  • "provinceA" ⁇ "provinceB that is, the first information is different from the second information, and the first control plane network element determines that the user plane network element is separated.
  • the first control plane network element uses the above judgment method 3 to judge whether the separation of the user plane network element occurs in scenario 4, then the first control plane network element can judge whether the node identifier of SGW-U4 and the node identifier of PGW-U3 are the same In the same group, if they are in the same group, the user plane network elements are not separated; otherwise, the user plane network elements are separated.
  • the first control plane network element may preconfigure one or more groups, for example, the first control plane network element configures group 1 as ⁇ DGW1, DGW2, DGW3 ⁇ ; group 2 as ⁇ DGW4 ⁇ .
  • the node identifier of SGW-U4 is "DGW4"
  • the node identifier of PGW-U3 is "DGW3”
  • the first control plane network element determines that the node identifier of SGW-U4 and the node identifier of PGW-U3 are not in the same group. Plane network elements are separated.
  • the first control plane network element judges whether the user plane network element is separated according to the first node identifier and the second node identifier.
  • the following describes subsequent operations that may be performed if the first control plane network element determines that the user plane network element is separated.
  • the first control plane network element determines that the first SGW-U is separated from the first PGW-U, it initiates reestablishment of the PDN connection of the terminal device.
  • the first control plane network element is SGW-C, and if SGW-C determines that the first SGW-U is separated from the first PGW-U, when the S1 connection of the terminal device is released, it initiates the reconstruction of the PDN of the terminal device connection, so as to avoid impacting ongoing data and voice services.
  • the release of the S1 connection may also be replaced by the terminal device not transmitting data for a period of time, or replaced by the terminal device entering an idle state.
  • the first control plane network element is PGW-C, and if PGW-C determines that the first SGW-U is separated from the first PGW-U, when the terminal device has no traffic within the set time, it initiates the reconstruction of the terminal device PDN connection, so as to avoid impact on ongoing data and voice services.
  • the first control plane network element may also use a timer before initiating PDN re-establishment.
  • the first control plane network element is SGW-C, and SGW-C starts a timer when the S1 connection of the terminal device is released. After the timer expires, if the first SGW-U is still separated from the first PGW-U and the terminal If the device is still in the idle state, it initiates to re-establish the PDN connection of the terminal device.
  • the MME reselects the SGW-C according to the location of the terminal device.
  • the reselected SGW-C is the first control plane network element, and the PGW-C remains anchored.
  • the terminal device sends a tracking area update (TAU) request (request) to the network device, and the network device receives the TAU request.
  • TAU tracking area update
  • the network device sends a TAU request to the MME, and the MME receives the TAU request.
  • the MME sends a session establishment request (create session request) to the SGW-C, and the SGW-C receives the session establishment request.
  • the SGW-C sends a modify bearer request to the PGW-C, and the PGW-C receives the modify bearer request.
  • the PGW-C returns a modify bearer response (modify bearer response) to the SGW-C, and the SGW-C receives the modify bearer response.
  • SGW-C judges whether the user plane network element is separated (that is, whether the SGW-U and PGW-U are separated), and if it is determined that the user plane network element is separated, connect to the PDN where the SGW-U and PGW-U are separated. to mark.
  • the user plane network element is separated, that is, the SGW-U and the PGW-U activated by the PDN connection are not in the same physical node/user plane network element.
  • the SGW-C returns a session establishment response (create session response) to the MME, and the MME receives the session establishment response.
  • the MME returns a TAU accept (TAU accept) message to the terminal device.
  • this embodiment takes the SGW reselection caused by the TAU process as an example, other processes (such as the S1/X2 handover process) may also cause SGW reselection, and the process after other processes cause SGW reselection can refer to this implementation example.
  • the MME reselects the SGW-C according to the location of the terminal device.
  • the reselected SGW-C is the first control plane network element, and the PGW-C remains anchored.
  • the SGW-C triggers the re-establishment of the PDN connection for the separation of the SGW-U and the PGW-U.
  • the network device sends an S1 user context release request (S1 UE context release request) to the MME, and the MME receives the S1 user context release request.
  • S1 UE context release request S1 user context release request
  • the MME sends a release connection bearer request (release access bearer request) to the SGW-C, and the SGW-C receives the release connection bearer request.
  • the SGW-C starts the timer.
  • the SGW-C returns a release connection bearer response (release access bearer response) to the MME, and the MME receives the release connection bearer response.
  • the MME returns an S1 user context release command (S1 UE context release command) to the network device, and the network device receives the S1 user context release command.
  • S1 UE context release command S1 user context release command
  • the network device sends a radio resource control (radio resource control, RRC) connection release (RRC connection release) message to the terminal device, and the terminal device receives the RRC connection release message.
  • RRC radio resource control
  • the network device sends an S1 user context release complete (S1 UE context release complete) message to the MME, and the MME receives the S1 user context release complete message.
  • S1 user context release complete S1 UE context release complete
  • the SGW-C determines that the timer expires, and triggers a PDN re-establishment process of the terminal device.
  • the following takes the first control plane network element as SGW-C as an example, and describes in detail the process of the first control plane network element initiating PDN reconstruction in combination with specific scenarios .
  • the MME reselects the SGW-C according to the location of the terminal device.
  • the reselected SGW-C is the first control plane network element, and the PGW-C remains anchored.
  • the SGW-C sends a delete session request (delete session request) to the PGW-C, and the PGW-C receives the delete session request from the SGW-C.
  • the PGW-C sends a delete session response (delete session response) to the SGW-C, and the SGW-C receives the delete session response from the PGW-C.
  • the SGW-C sends a bearer delete request (delete bearer request) to the MME, and the MME receives the bearer delete request.
  • the delete bearer request carries one or more of the following information: an associated evolved packet system (evolved packet system, EPS) bearer identifier, and a deletion reason.
  • EPS evolved packet system
  • the reason for deletion is reactivation requested.
  • the terminal device can be activated again.
  • SGW-C/PGW-C selects the unified SGW-U/PGW-U for the terminal device to realize the integration of network elements in the user plane , making the forwarding path of data or voice traffic more optimal.
  • the MME initiates paging for the terminal device.
  • the MME sends a radio access bearer (E-UTRAN radio access bearer, E-RAB) release command or a deactivation EPS bearer context request (deactive EPS bearer context request) to the network device, and the network device receives the E-RAB release command or Deactivate EPS bearer context request.
  • E-UTRAN radio access bearer E-RAB
  • deactivation EPS bearer context request deactivation EPS bearer context request
  • the network device sends a radio bearer release request (radio bearer release request) to the terminal device, and the terminal device receives the radio bearer release request.
  • the terminal device sends a radio bearer release response (radio bearer release response) to the network device, and the network device receives the radio bearer release response.
  • the network device sends an E-RAB release response (E-RAB release response) to the MME, and the MME receives the E-RAB release response.
  • E-RAB release response E-RAB release response
  • the terminal device sends a deactivated EPS bearer context accept (deactive EPS bearer context accept) message to the network device, and the network device receives the deactivated EPS bearer context accept message.
  • deactivated EPS bearer context accept active EPS bearer context accept
  • the network device sends a deactivated EPS bearer context accept (deactive EPS bearer context accept) message to the MME, and the MME receives the deactivated EPS bearer context accept message.
  • deactivated EPS bearer context accept active EPS bearer context accept
  • the MME sends a delete bearer response (delete bearer response) to the SGW-C, and the SGW-C receives the delete bearer response.
  • FIG. 5 to FIG. 7 illustrate the process of initiating PDN re-establishment by taking the SGW-C as an example of the first control plane network element.
  • the first control plane network element is PGW-C
  • the PGW-C can trigger the PDN re-establishment process of the terminal device after the terminal device has no traffic for a certain period of time.
  • the PGW-C can delete the bearer request to the new SGW-C. After receiving the bearer delete request from the PGW-C, the new SGW-C executes steps S703-S711.
  • the embodiment of the present application also provides a method for determining the separation of user plane network elements, as shown in FIG. 8 , the flow of the method for determining separation of user plane network elements is as follows.
  • the execution body of the method is the SGW-C, and the SGW-C and the first PGW-C are located at different control plane network element nodes.
  • the SGW-C acquires the address of the first PGW-C
  • the SGW-C judges whether the SGW-U is separated from the first PGW-U according to the address of the first PGW-C and the preset address, or judges whether to initiate the reestablishment of the PDN connection of the terminal device.
  • the preset address includes the addresses of one or more PGW-Cs located in the same area as the SGW-C, and the address of the PGW-C can be, for example, the IP address of the S5/S8 interface; the first PGW-U is the address of the terminal device accessing the PDN A user plane anchor point, the first PGW-C is a control plane anchor point for terminal equipment to access the PDN.
  • the SGW-C determines whether the SGW-U is separated from the first PGW-U according to the address of the first PGW-C and the preset address, it may trigger reestablishment of the PDN connection of the terminal device.
  • the SGW-C may also determine whether to reestablish the PDN connection of the terminal device according to the address of the first PGW-C and the preset address.
  • the SGW-C determines that the SGW-U is not separated from the first PGW-U, or determines that no reestablishment of the PDN connection needs to be initiated.
  • the SGW-C determines that the SGW-U is separated from the first PGW-U, or determines to initiate reestablishment of the PDN connection of the terminal device.
  • the SGW-C may obtain the address of the first PGW-C in the following manner.
  • the MME selects a new SGW-C according to the location of the terminal equipment.
  • the MME sends a Create Session Request (Create Session Request) message to the new SGW-C, which carries the terminal equipment anchor
  • the S5/S8 interface address of the first PGW-C The SGW-C judges whether the SGW-U is separated from the first PGW-U according to whether the S5/S8 interface address of the first PGW-C is in the preset address.
  • the embodiment of Figure 8 it is judged whether the user plane network element is separated by the address of the control plane network element, and by presetting the grouping of the control plane network element according to the area, when it is determined that the control plane network element is separated (that is, the address of the first PGW-C not in the preset address), it is determined that the user plane network element is separated.
  • the preset address is the address of the PGW-C in the same area as the SGW-C. In this way, the area can be divided according to the service requirements, so as to set the preset address, which makes it more flexible to judge the separation of the user plane network elements and suit the service requirements.
  • the embodiment in FIG. 8 can be applied to a scenario where user plane network element separation judgment is performed across a large area.
  • the MME judges the separation of the SGW and the PGW according to the standard node names of the SGW and the PGW.
  • the gateway node needs to be named in a standardized and structured way, and the UE is required to be in the 2/3/ During 4/5G interoperability, the name information of the gateway node is guaranteed to be effectively transmitted and not lost.
  • the embodiment in FIG. the embodiment in Figure 8 does not require standardized and structured naming of the gateway nodes, and does not require the UE to ensure that the gateway node name information is effectively transmitted and not lost during 2/3/4/5G interoperability.
  • the embodiment in Figure 8 can judge whether the user plane network element is separated in the scenario where the SGW-U and PGW-U cross the management area of the control plane network element. bigger.
  • a solution A once it is determined that the control plane network element is separated, it is determined that the user plane network element is separated.
  • the SGW-C compares the PGW-C S5/S8 IP in the Create Session Request message with the local PGW-C S5/S8 IP. , it is determined that the SGW-C and itself are not on the same control plane network element node, and it is considered that the user plane network element will also be separated.
  • the embodiment in Fig. 8 has a larger judgment granularity, which can reduce the judgment result of user plane separation, and further reduce the operations after determining the user plane separation, such as PDN reconstruction, thereby reducing signaling overhead.
  • FIG. 8 The embodiment in FIG. 8 will be further described in detail below in combination with specific application scenarios.
  • scenario five the terminal device moves from city B in province A to city C; in scenario six, the terminal device moves from city C in province A to city D in province B.
  • scenario six the terminal device moves from city C in province A to city D in province B.
  • the SGW-U and PGW-U are deployed on the same user plane network element node.
  • SGW-U2 and PGW-U2 are deployed on DGW2.
  • SGW-U3 and PGW-U3 are deployed on DGW3.
  • SGW-U4 and PGW-U4 are deployed on DGW4.
  • PGW-C1 in province A is located in CGW1, and PGW-C1 is connected to PGW-U2.
  • SGW-C2 and PGW-C2 in province A are located at CGW2, SGW-C2 is connected to SGW-U3, and PGW-C2 is connected to PGW-U3.
  • SGW-C3 and PGW-C3 of province B are located at CGW3, SGW-C3 is connected to SGW-U4, and PGW-C3 is connected to PGW-U4.
  • FIG. 9 also shows that MME1 in province A is connected to CGW2 and CGW2, and MME2 in province B is connected to CGW3.
  • the terminal device moves from city B in province A to city C, and the MME reselects SGW-C according to the location of the terminal device, reselecting from the original SGW-C1 to SGW-C2.
  • SGW-C2 will select SGW-U3 for the terminal equipment. In this way, the SGW-U is changed from the original SGW-U2 to SGW-U3.
  • PGW-C1 and PGW-U2 are anchored unchanged.
  • SGW-C2 can obtain the address of PGW-C1 from the create session request message from MME, for example, the address of PGW-C1 is S5/S8IP "1.1.1.1". If the above solution A is used to determine whether the user plane network elements are separated, and SGW-C2 differs the address of PGW-C1 from the address S5/S8IP "2.2.2.2" of the local PGW-C2, it is considered by default that SGW-U and PGW have occurred -U detach. If the solution of the embodiment in FIG. 8 is adopted, a preset address is configured on SGW-C2, and the preset address includes ⁇ 1.1.1.1 ⁇ .
  • the SGW-C2 determines that the address of the PGW-C1 is in the preset address, it considers that the separation between the SGW-U and the PGW-U has not occurred.
  • the address of PGW-C1 is different from the address S5/S8IP "2.2.2.2" of the local PGW-C2, but the address of PGW-C1 is in the preset address, it will also be considered that no SGW-U Separated from PGW-U.
  • scenario 6 when a terminal device moves from city C in province A to city D in province B, the MME reselects SGW-C according to the location of the terminal device, and reselects from the original SGW-C2 to SGW-C3, and SGW-C3 is the terminal The device selects SGW-U4. PGW-C2 and PGW-U3 are anchored unchanged.
  • the preset address ⁇ 4.4.4.4, 5.5.5.5 ⁇ is configured on SGW-C3.
  • SGW-C3 obtains the address of PGW-C2 from the create session request message sent by MME: S5/S8IP "2.2.2.2”, and SGW-C3 determines that the address of PGW-C2 is the same as the local PGW-C3's S5/S8IP "3.3. 3.3", and the address of the PGW-C2 is not in the preset address ⁇ 4.4.4.4, 5.5.5.5 ⁇ , it is considered that SGW-U and PGW-U are separated.
  • the embodiment of the present application also provides a method for determining the separation of user plane network elements, as shown in FIG. 10 , the flow of the method for determining separation of user plane network elements is as follows. The method is executed by the PGW-C, and the PGW-C and the first SGW-C are located at different control plane network element nodes.
  • the PGW-C acquires the address of the first SGW-C;
  • the PGW-C judges whether the PGW-U is separated from the first SGW-U according to the address of the first SGW-C and the preset address, or judges whether to initiate the reestablishment of the PDN connection of the terminal device.
  • the preset address in the embodiment of FIG. 10 may be recorded as a second preset address.
  • the second preset address includes the addresses of one or more SGW-Cs located in the same area as the PGW-C, and the address of the SGW-C may be, for example, the IP address of the S5/S8 interface.
  • PGW-U is the user plane anchor point for terminal devices to access the PDN
  • PGW-C is the control plane anchor point for terminal devices to access the PDN.
  • the PGW-C determines whether the PGW-U is separated from the first SGW-U according to the address of the first SGW-C and the preset address, it may trigger reestablishment of the PDN connection of the terminal device.
  • the PGW-C may also determine whether to reestablish the PDN connection of the terminal device according to the address of the first SGW-C and the preset address.
  • the PGW-C determines that the PGW-U is not separated from the first SGW-U, or determines that it is not necessary to initiate reestablishment of the PDN connection.
  • the PGW-C determines that the PGW-U is separated from the first SGW-U, or determines to initiate reestablishment of the PDN connection of the terminal device.
  • the acquisition of the address of the first SGW-C by the PGW-C may be implemented in the following manner.
  • the MME selects a new SGW-C according to the location of the terminal equipment, that is, the first SGW-C, and the first SGW-C sends a modify bearer request (modify bearer request) message to the PGW-C, which carries S5/S8 interface address of the new SGW-C.
  • the PGW-C judges whether the separation between the PGW-U and the first SGW-U occurs according to whether the S5/S8 interface address of the first SGW-C is in the preset address.
  • the embodiment in FIG. 10 is based on the same technical concept as the embodiment in FIG. 8 , but the execution subject is different. It can be understood that the example of the application scenario based on the embodiment in FIG. 10 can also refer to the application scenario shown in the embodiment in FIG. 9 . Just change the executive body from SGW-C to PGW-C.
  • Figure 10 judges whether the user plane network element is separated by the address of the control plane network element.
  • the preset address is the address of the SGW-C in the same area as the PGW-C. In this way, the area can be divided according to the service requirements, so as to set the preset address, which makes it more flexible and appropriate to determine the separation of user plane network elements.
  • the embodiment in Figure 10 does not require standardized and structured naming of gateway nodes, and the judgment granularity is relatively large, which can reduce the judgment results of user plane separation and further reduce the operation after determining user plane separation , such as PDN reconstruction, thereby reducing signaling overhead.
  • the method for determining the separation of user plane network elements provided by the embodiment in Figure 8 and Figure 10, the operation after determining the separation of user plane network elements, can refer to the operation after determining the separation of user plane network elements in the embodiment of Figure 2b, which is not described here repeat. For example, reestablishing the PDN connection of the terminal device is initiated after it is determined that the user plane network element is separated.
  • the flow of the method for determining the separation of user plane network elements is as follows.
  • the terminal device sends a service request (service request) to the access network device, and the access network device receives the service request from the terminal device.
  • the terminal device When a terminal device moves within the SMF management area, if data services are required, the terminal device will initiate a service request process.
  • the access network device sends N2 information to the AMF, and the AMF receives the N2 information from the access network device.
  • the N2 information carries the service request.
  • the AMF sends a PDU session update context request (Nsmf_PDUsession updateSMcontext request) to the SMF, and the SMF receives the PDU session update context request from the AMF.
  • Nsmf_PDUsession updateSMcontext request a PDU session update context request
  • the SMF selects the UPF.
  • the SMF judges whether the PSA-UPF (that is, the PDU session anchor UPF) can serve the area according to the access area of the terminal device. If not, the SMF selects an I-UPF Carry out relay, communicate with the wireless network in this area, and realize the end-to-end connection of the network.
  • the PSA-UPF that is, the PDU session anchor UPF
  • the SMF sends an N4 session establishment request (N4 Session Establishment Request) to the I-UPF, and the I-UPF receives the N4 session establishment request.
  • N4 Session Establishment Request N4 Session Establishment Request
  • the I-UPF returns an N4 session establishment response (N4 Session Establishment Response) to the SMF, and the SMF receives the N4 session establishment response.
  • N4 Session Establishment Response N4 Session Establishment Response
  • the SMF sends an N4 session modification request (N4 Session modification Request) to the PSA-UPF, and the PSA-UPF receives the N4 session modification request.
  • N4 Session modification Request N4 Session modification Request
  • the PSA-UPF returns an N4 session modification response (N4 Session modification Response) to the SMF, and the SMF receives the N4 session modification response.
  • N4 Session modification Response N4 Session modification Response
  • the SMF judges whether the user plane network element is separated.
  • the SMF determines that the user plane network element is separated, it marks the bearer corresponding to the user plane network element separation.
  • the SMF can make a separate judgment according to the node identifier of the I-UPF and the node identifier of the PSA-UPF, and the judgment method can refer to any one of the judgment method 1 to the judgment method 3 above.
  • the node ID of I-UPF and the node ID of PSA-UPF can be, for example, UPF node ID (UPF Node ID), or other IDs, such as UPF NfInstance Id (3GPP 29.571).
  • the SMF judges whether the user plane is separated according to the node identifier of the PSA-UPF and the node identifier of the I-UPF, that is, judges whether the separation of the PSA-UPF and the I-UPF occurs. When the SMF determines that the PSA-UPF and the I-UPF are separated, it can trigger the reestablishment of the PDU session of the terminal device.
  • the SMF sends a PDU session update context response (Nsmf_PDUsession updateSMcontext response) to the AMF.
  • the AMF receives the PDU Session Update Context Response.
  • the AMF sends an N2 response (N2 request) to the access network device.
  • the access network device receives and responds to the N2 response.
  • the AMF sends a PDU session update context request (Nsmf_PDUsession updateSMcontext request) to the SMF, and the SMF receives the PDU session update context request from the AMF.
  • Nsmf_PDUsession updateSMcontext request a PDU session update context request
  • the SMF sends an N4 session modification request (N4 Session modification Request) to the I-UPF, and the I-UPF receives the N4 session modification request.
  • N4 Session modification Request N4 Session modification Request
  • the I-UPF returns an N4 session modification response (N4 Session modification Response) to the SMF, and the SMF receives the N4 session modification response.
  • N4 Session modification Response N4 Session modification Response
  • the SMF sends a PDU session update context response (Nsmf_PDUsession updateSMcontext response) to the AMF.
  • the AMF receives the PDU Session Update Context Response.
  • the condition for triggering the separation judgment of the user plane network element in the embodiment of FIG. 11 is an example.
  • the SMF finds that there is an I-UPF it will perform the separation judgment of the user plane network element.
  • Others similar to Xn/N2 handover can also be The I-UPF is caused to be inserted, thereby triggering the SMF to judge the separation of the user plane network elements.
  • the flow of the determination method for user plane network element separation is as follows.
  • the terminal device sends a service request (service request) to the access network device, and the access network device receives the service request from the terminal device.
  • service request a service request
  • the access network device receives the service request from the terminal device.
  • the terminal device When a terminal device moves within the SMF management area, if data services are required, the terminal device will initiate a service request process.
  • the access network device sends N2 information to the AMF, and the AMF receives the N2 information from the access network device.
  • the N2 information carries the service request.
  • AMF performs SMF selection.
  • AMF When the terminal device moves out of the SMF service range, AMF will judge that the terminal device has moved out of the original SMF management range according to the access area of the terminal device, and AMF will choose to insert an I-SMF according to the access area of the terminal device.
  • AMF sends a PDU session creation context request (Nsmf_PDUSession_CreateSMContext Request) to I-SMF, and I-SMF receives the PDU session creation context request from AMF.
  • the I-SMF and the SMF transmit the PDU session context.
  • the I-SMF selects the I-UPF for relay, and the I-SMF selects the I-UPF in the new area to communicate with the wireless network in the new area.
  • the I-SMF sends a PDU session establishment request (Nsmf_PDUSession_Create Request) message to the SMF.
  • Nsmf_PDUSession_Create Request PDU session establishment request
  • the Nsmf_PDUSession_Create Request message may carry a private information element, which is used to indicate the node identifier of the I-UPF.
  • the Nsmf_PDUSession_Create Request message may carry the N16a interface address of the I-SMF, for example, the ismfPduSessionUri information element in the PDU session establishment request message may carry the N16a interface address of the I-SMF.
  • the Nsmf_PDUSession_Create Request message may carry the I-SMF node identifier, such as ismId.
  • ismId can be I-SMF NfInstanceId in the 3GPP 29.502 protocol.
  • the SMF sends a PDU session establishment response (Nsmf_PDUSession_Create Response) message to the I-SMF.
  • Nsmf_PDUSession_Create Response PDU session establishment response
  • the PDU session establishment response (Nsmf_PDUSession_Create Response) message sent by the SMF to the I-SMF carries a private information element, which is used to indicate the node identifier of the PSA-UPF.
  • the Nsmf_PDUSession_Create Response message may carry the N16a interface address of the SMF.
  • the address of the N16a interface of the SMF may be carried through the HTTP message header "Location" in the PDU session establishment response message.
  • the Nsmf_PDUSession_Create Response message may carry the node identifier of the SMF, such as smfInstanceId.
  • smfInstanceId can be SMF NfInstanceId in the 3GPP 29.502 protocol.
  • the SMF or the I-SMF performs the separation judgment of the user plane network elements.
  • the SMF or the I-SMF may perform separate judgment according to the node identifier of the I-UPF and the node identifier of the PSA-UPF.
  • the separation of the user plane gateway may be judged through the separation of the control plane gateway.
  • the SMF or I-SMF can judge whether the control plane gateway is separated according to whether the I-SMF node identifier or the SMF node identifier is in the preset group, and further judge the separation of the user plane gateway. It is also possible to judge whether the control plane gateway is separated by comparing whether the I-SMF node identifier and the SMF node identifier are the same, and further judge whether the user plane gateway is separated.
  • I-SMF and SMF When inserting I-SMF in the 5G protocol, when I-SMF and SMF exchange Nsmf_PDUSession_Create Request (ismfId) and Nsmf_PDUSession_Create Response (smfInstanceId) messages, I-SMF and SMF will exchange each other’s node identifiers, namely ismfId and smfinstanceId, I- SMF/SMF can judge whether the control plane gateway is separated by comparing node identifiers, and further judge whether the user plane gateway is separated, and there is no need to compare interface addresses.
  • Nsmf_PDUSession_Create Request ismfId
  • smfInstanceId NsmfInstanceId
  • I- SMF/SMF can judge whether the control plane gateway is separated by comparing node identifiers, and further judge whether the user plane gateway is separated, and there is no need to compare interface addresses.
  • the SMF or the I-SMF may trigger the reestablishment of the PDU session of the terminal device.
  • the I-SMF sends a PDU session establishment context response (Nsmf_PDUSession_CreateSMContextResponse) to the AMF, and the AMF receives the PDU session establishment context response.
  • Nsmf_PDUSession_CreateSMContextResponse a PDU session establishment context response
  • the AMF sends an N2 response (N2 request) to the access network device.
  • the access network device receives and responds to the N2 response.
  • the AMF sends a PDU session update context request (Nsmf_PDUsession updateSMcontext request) to the I-SMF, and the I-SMF receives the PDU session update context request from the AMF.
  • Nsmf_PDUsession updateSMcontext request a PDU session update context request
  • the I-SMF sends a PDU session update context response (Nsmf_PDUsession updateSMcontext response) to the AMF.
  • the AMF receives the PDU Session Update Context Response.
  • the terminal device and the access network device perform an access network connection release ((R)AN Connection Release) process.
  • the process may include that the access network device sends an N2 UE Context Release Request (N2 UE Context Release Request) message to the AMF, and the AMF sends an N2 UE Context Release Command (N2 UE Context Release Command) message to the access network device, and The access network device sends an N2 UE Context Release Complete (N2 UE Context Release Complete) message to the AMF.
  • N2 UE Context Release Request N2 UE Context Release Request
  • N2 UE Context Release Command N2 UE Context Release Command
  • the AMF sends a PDU session update context request to the SMF, and the SMF receives the PDU session update context request.
  • the SMF starts a PDU reconstruction timer.
  • the SMF returns a PDU session update context response to the AMF.
  • the SMF determines that the PDU re-establishment timer expires, and triggers a PDU session re-establishment procedure of the terminal device.
  • the SMF sends an N4 session release request to the PSA-UPF/I-UPF.
  • the PSA-UPF/I-UPF sends an N4 session release response to the SMF.
  • the SMF sends the N1/N2 communication message transfer (Namf_Communication_N1N2MessageTransfer) to the AMF.
  • Namf_Communication_N1N2MessageTransfer N1/N2 communication message transfer
  • the N1 SM container (container) includes a PDU session release command (PDU Session Release Command), and the PDU session release command carries a reason value, and the reason value is Reactivation requested.
  • PDU Session Release Command PDU Session Release Command
  • the AMF sends a PDU session update context request to the SMF.
  • the PDU session update context request includes an N1 SM container, and the N1 SM container carries a PDU session release acknowledgment (ACK) indication.
  • ACK PDU session release acknowledgment
  • the SMF sends a PDU session update context response to the AMF.
  • the SMF sends a PDU session context status notification (Nsmf_PDUSession_SMContextStatusNotify) message to the AMF.
  • the PDU session context status notification message carries a release (Release) indication, and the AMF receives and responds to the PDU session context status notification.
  • the following takes the scenario of inserting I-UPF and inserting I-SMF as an example, combined with the method for determining the separation of user plane network elements provided in Figure 2c, to illustrate the operation after determining the separation of user plane network elements.
  • the terminal device and the access network device perform an access network connection release process.
  • the AMF sends a PDU session update context request to the I-SMF, and the I-SMF receives the PDU session update context request.
  • the I-SMF starts a PDU reconstruction timer.
  • the I-SMF instructs the I-UPF to delete the N3 tunnel information.
  • the I-SMF returns a PDU session update context response to the AMF.
  • the I-SMF determines that the PDU re-establishment timer expires, and triggers the PDU session re-establishment process of the terminal device.
  • the I-SMF instructs the I-UPF to stop forwarding data.
  • the I-SMF sends an N4 session release request (Nsmf_PDUSession_Release Request) to the SMF.
  • Nsmf_PDUSession_Release Request Nsmf_PDUSession_Release Request
  • the SMF sends an N4 session release response (Nsmf_PDUSession_Release Response) to the I-SMF.
  • Nsmf_PDUSession_Release Response Nsmf_PDUSession_Release Response
  • the I-SMF sends the N1/N2 communication message transfer (Namf_Communication_N1N2MessageTransfer) to the AMF.
  • the N1 SM container (container) includes a PDU session release command (PDU Session Release Command), and the PDU session release command carries a reason value, and the reason value is Reactivation requested.
  • PDU Session Release Command PDU Session Release Command
  • the AMF sends a PDU session update context request to the I-SMF.
  • the PDU session update context request includes an N1 SM container, and the N1 SM container carries a PUD session release acknowledgment (ACK) indication.
  • ACK PUD session release acknowledgment
  • the I-SMF sends a PDU session update context response to the AMF.
  • the I-SMF sends a PDU session context status notification (Nsmf_PDUSession_SMContextStatusNotify) message to the AMF, and the PDU session context status notification message carries a release (Release) indication.
  • AMF receives and responds to the notification message.
  • the SMF determines that the terminal device has no traffic within a set time, it initiates the reconstruction of the PDU session of the terminal device.
  • the SMF sends a PDU session update request (Nsmf_PDUSession_Update Request) to the I-SMF.
  • the I-SMF sends the N1/N2 communication message transfer (Namf_Communication_N1N2MessageTransfer) to the AMF.
  • the N1 SM container (container) includes a PDU session release command (PDU Session Release Command), and the PDU session release command carries a reason value, and the reason value is Reactivation requested.
  • PDU Session Release Command PDU Session Release Command
  • the AMF sends a PDU session update context request to the I-SMF.
  • the PDU session update context request includes an N1 SM container, and the N1 SM container carries a PUD session release acknowledgment (ACK) indication.
  • ACK PUD session release acknowledgment
  • the I-SMF sends a PDU session update context response to the AMF.
  • the I-SMF sends a PDU session update response to the SMF.
  • the SMF sends a PDU session status notification (Nsmf_PDUSession_StatusNotify) message to the I-SMF, and the PDU session status notification message carries a release (Release) indication.
  • Nsmf_PDUSession_StatusNotify a PDU session status notification
  • release Release
  • the I-SMF sends a PDU session context status notification (Nsmf_PDUSession_SMContextStatusNotify) message to the AMF, and the PDU session context status notification message carries a release (Release) indication.
  • Nsmf_PDUSession_SMContextStatusNotify a PDU session context status notification
  • release Release
  • the flow of the method for determining the separation of user plane network elements is as follows.
  • the execution subject of this method is I-SMF.
  • the I-SMF acquires the address of the first SMF
  • the I-SMF judges whether the I-UPF is separated from the first PSA-UPF, or judges whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more SMFs located in the same area as the I-SMF; the first PSA-UPF is the user plane anchor point of the terminal device, and the first SMF is the control plane anchor point of the terminal device.
  • the I-SMF may trigger reestablishment of the PDU session of the terminal device.
  • the I-SMF may also determine whether to re-establish the PDU session of the terminal device according to the address of the first SMF and the preset address.
  • the I-SMF determines that the I-UPF and the first PSA-UPF have not been separated, or determines that no reestablishment of the PDU session needs to be initiated.
  • the I-SMF determines that the I-UPF is separated from the first PSA-UPF, or determines to initiate reestablishment of the PDU session of the terminal device.
  • the embodiment in Figure 16 can judge whether the user plane network element is separated in the scenario where I-UPF and PSA-UPF cross the management area of the control plane network element. bigger.
  • a solution B once it is determined that the control plane network element is separated, it is determined that the user plane network element is separated. If the SMF and itself are not on the same control plane network element node, it is considered that the user plane network element will also be separated.
  • the embodiment in Fig. 16 has a larger determination granularity, which can reduce the determination result of user plane separation, and further reduce the operations after determining user plane separation, such as PDU session re-establishment, thereby reducing signaling overhead.
  • this embodiment of the present application also provides a method for determining user plane network element separation, as shown in FIG. 17 , the flow of the method for determining user plane network element separation is as follows.
  • the execution body of the method is the SMF, and the SMF and the first I-SMF are located at different control plane network element nodes.
  • the SMF acquires the address of the first I-SMF
  • the SMF judges whether the PSA-UPF is separated from the first I-UPF according to the address of the first I-SMF and the preset address, or judges whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address in the embodiment of FIG. 17 may be recorded as the third preset address.
  • the third preset address includes addresses of one or more I-SMFs located in the same area as the SMF.
  • the PSA-UPF is the anchor point of the user plane of the terminal equipment
  • the SMF is the anchor point of the control plane of the terminal equipment.
  • the SMF determines whether the PSA-UPF and the first I-UPF are separated according to the address of the first I-SMF and the preset address, it can trigger the re-establishment of the PDU session of the terminal device.
  • the SMF may also determine whether to re-establish the PDU session of the terminal device according to the address of the first I-SMF and the preset address.
  • the SMF determines that the PSA-UPF is not separated from the first I-UPF, or determines that it is not necessary to initiate reestablishment of the PDU session.
  • the SMF determines that the PSA-UPF is separated from the first I-UPF, or determines to initiate reestablishment of the PDU session of the terminal device.
  • the first control plane network element, the SGW-C or the PGW-C includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 18 and FIG. 19 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the first control plane network element, SGW-C, PGW-C, I-SMF or SMF in the above method embodiments, and thus can also realize the beneficial effects of the above method embodiments.
  • the communication device may be the SGW-C as shown in Figure 1a, or the PGW-C as shown in Figure 1a.
  • the communication device may be a module (such as a chip) applied to the SGW-C or PGW-C.
  • the communication device may be an SMF as shown in Fig. 1b.
  • the communication device may be a module (such as a chip) applied to the SMF.
  • a communication device 1800 includes an acquiring unit 1810 and a judging unit 1820 .
  • the communication device 1800 is used to realize the function of the first control plane network element in the method embodiment shown in FIG. 2a, FIG. 2b or FIG. 2c, or to realize the function of the SGW-C in the method embodiment shown in FIG. 8, Or be used to realize or the function of PGW-C in the method embodiment shown in Figure 10, or be used for the function of I-SMF in the method embodiment shown in Figure 16, or be used to realize or the method implementation shown in Figure 17
  • the function of SMF in the example is used to realize the function of the first control plane network element in the method embodiment shown in FIG. 2a, FIG. 2b or FIG. 2c, or to realize the function of the SGW-C in the method embodiment shown in FIG. 8, Or be used to realize or the function of PGW-C in the method embodiment shown in Figure 10, or be used for the function of I-SMF in the method embodiment shown in Figure 16, or be used to realize or the method implementation shown in Figure 17
  • the acquiring unit 1810 is configured to acquire the first node identifier of the first user plane network element and the second node identifier of the second user plane network element, the device includes a control plane service gateway SGW-C, a control plane data network PDN gateway PGW-C , a session management function SMF, or an intermediate session management function I-SMF, where the first user plane network element is a user plane anchor point;
  • the judging unit 1820 is configured to judge whether the first user plane network element is separated from the second user plane network element according to the first node identifier and the second node identifier.
  • the acquiring unit 1810 is configured to: acquire the first node identifier of the first user plane network element from the second control plane network element; wherein, the device is an SGW -C, the first user plane network element is the first user plane data network PDN gateway PGW-U; or, the device is PGW-C, and the first user plane network element is the first user plane serving gateway SGW-U; or, the device If it is an SMF, the first user plane network element is an intermediate user plane management function I-UPF; or, the device is an I-SMF, and the first user plane network element is a protocol data unit session anchor user plane management function PSA-UPF.
  • the judging unit 1820 is configured to: if the first node ID and the second node ID If they are the same, it is determined that the first user plane network element is not separated from the second user plane network element; or if the first node identifier is different from the second node identifier, it is determined that the first user plane network element is separated from the second user plane network element.
  • the judging unit 1820 is configured to: if the first information in the first node identifier is the same as the second information in the second node identifier, determining that the first user plane network element is not separated from the second user plane network element; or if the first information in the first node identifier is different from the second information in the second node identifier, Then it is determined that the first user plane network element is separated from the second user plane network element; wherein, the first information is used to indicate the area where the first user plane network element is located, and the second information is used to indicate the area where the second user plane network element is located.
  • the judging unit 1820 is configured to: if the first node identifier and the second node If the IDs are in the same group, it is determined that the first user plane network element is not separated from the second user plane network element; or if the first node ID and the second node ID are not in the same group, then determine that the first user plane network element Separated from the second user plane network element.
  • the communication apparatus 1800 further includes: a rebuilding unit 1830, configured to initiate rebuilding of the data transmission path of the terminal device if it is determined that the first user plane network element is separated from the second user plane network element.
  • a rebuilding unit 1830 configured to initiate rebuilding of the data transmission path of the terminal device if it is determined that the first user plane network element is separated from the second user plane network element.
  • the communication device 1800 is an SGW-C; when initiating reestablishment of the data transmission path of the terminal device, the reestablishment unit 1830 is configured to: initiate reestablishment of the packet data network PDN connection of the terminal device when the S1 connection of the terminal device is released.
  • the communication device 1800 is an I-SMF; when initiating the reconstruction of the data transmission path of the terminal equipment, the reconstruction unit 1830 is configured to: initiate the reconstruction of the protocol data unit PDU session of the terminal equipment when the N1/N2 connection of the terminal equipment is released .
  • the communication device 1800 is PGW-C or SMF; when initiating reconstruction of the data transmission path of the terminal device, the reconstruction unit 1830 is used to: initiate reconstruction of the data transmission of the terminal device when the terminal device has no traffic within a set time path.
  • the obtaining unit 1810 is configured to obtain a first node identifier of the first user plane data network PDN gateway PGW-U and a second node identifier of the first user plane serving gateway SGW-U.
  • the judging unit 1820 is configured to judge whether the first SGW-U is separated from the first PGW-U according to the first node identifier and the second node identifier.
  • the first control plane network element is SGW-C
  • the acquiring unit 1810 when acquiring the first node identifier of the first PGW-U, is configured to: acquire the first node identifier of the first PGW-U from PGW-C , PGW-C is the control plane anchor point for the terminal device to access the PDN.
  • the first control plane network element is PGW-C
  • PGW-C is the control plane anchor point for the terminal device to access the PDN
  • the acquiring unit 1810 is configured to: from SGW-C acquires the second node identifier of the first SGW-U.
  • the judging unit 1820 is configured to: if the first node identifier is the same as the second node identifier, Then it is determined that the first SGW-U is not separated from the first PGW-U; if the first node identifier is different from the second node identifier, it is determined that the first SGW-U is separated from the first PGW-U.
  • the judging unit 1820 is configured to: if the first information in the first node identifier and the second If the second information in the two node identifiers is the same, it is determined that the first SGW-U is not separated from the first PGW-U; if the first information in the first node identifier is different from the second information in the second node, it is determined that the first SGW-U U is separated from the first PGW-U; wherein, the first information is used to indicate the area where the first SGW-U is located, and the second information is used to indicate the area where the first PGW-U is located.
  • the judging unit 1820 is configured to: if the first node identifier and the second node identifier are in In the same group, it is determined that the first SGW-U is not separated from the first PGW-U; if the first node identifier and the second node identifier are not in the same group, then it is determined that the first SGW-U and the first PGW-U Separation; where the SGW-U and PGW-U in one group are located in the same area.
  • the apparatus 1800 further includes a re-establishment unit 1830, configured to initiate re-establishment of the PDN connection of the terminal device if the judging unit 1820 determines that the first SGW-U is separated from the first PGW-U.
  • a re-establishment unit 1830 configured to initiate re-establishment of the PDN connection of the terminal device if the judging unit 1820 determines that the first SGW-U is separated from the first PGW-U.
  • the first control plane network element is SGW-C; when initiating reestablishment of the PDN connection of the terminal device, the reestablishment unit is configured to: initiate reestablishment of the PDN connection of the terminal device when the S1 connection of the terminal device is released.
  • the first control plane network element is PGW-C; when initiating to re-establish the PDN connection of the terminal device, the re-establishment unit is used to: initiate re-establishment of the terminal device when there is no traffic within the set time PDN connection.
  • the obtaining unit 1810 is configured to obtain the address of the first PGW-C.
  • the judging unit 1820 is configured to judge whether the user plane serving gateway SGW-U is separated from the first PGW-U according to the address of the first PGW-C and the preset address, or the judging unit 1820 is configured to judge whether the user plane service gateway SGW-U is separated from the first PGW-U according to the address of the first PGW-C.
  • the address of C and the preset address are used to determine whether to re-establish the PDN connection of the terminal device; wherein, the preset address includes the addresses of one or more PGW-Cs located in the same area as SGW-C; the first PGW-U is the terminal device access The user plane anchor point of the PDN, the first PGW-C is the control plane anchor point for the terminal device to access the PDN.
  • the judging unit 1820 is specifically configured to: if the preset address includes the first A PGW-C address, then SGW-C determines that SGW-U is not separated from the first PGW-U; if the preset address does not include the address of the first PGW-C, then SGW-C determines that SGW-U and the first PGW -U detach.
  • the apparatus 1800 further includes a reestablishment unit 1830, configured to initiate reestablishment of the PDN connection of the terminal device if the judging unit 1820 determines that the SGW-U is separated from the first PGW-U.
  • a reestablishment unit 1830 configured to initiate reestablishment of the PDN connection of the terminal device if the judging unit 1820 determines that the SGW-U is separated from the first PGW-U.
  • the reestablishment unit 1830 is further configured to initiate reestablishment of the PDN connection of the terminal device when the S1 connection of the terminal device is released.
  • the reestablishment unit 1830 may also be configured to start a timer when the S1 connection of the terminal device is released, and initiate reestablishment of the PDN connection of the terminal device after the timer expires.
  • the obtaining unit 1810 is used to obtain the address of the first SGW-C; the judging unit 1820 is used to judge whether the PGW-U and the first user plane service gateway SGW-U are separated according to the address of the first SGW-C and the preset address; Among them, the preset address includes the address of one or more SGW-Cs located in the same area as PGW-C; PGW-U is the user plane anchor point for terminal equipment to access PDN, and PGW-C is the control plane anchor point for terminal equipment to access PDN point.
  • the judging unit 1820 is specifically configured to: if the preset address includes The address of the first SGW-C, then PGW-C determines that PGW-U is not separated from the first SGW-U; if the preset address does not include the address of the first SGW-C, then PGW-C determines that PGW-U and the first SGW-U separation.
  • the apparatus 1800 further includes a re-establishment unit 1830, configured to initiate re-establishment of the PDN connection of the terminal device if it is determined that the PGW-U is separated from the first SGW-U.
  • a re-establishment unit 1830 configured to initiate re-establishment of the PDN connection of the terminal device if it is determined that the PGW-U is separated from the first SGW-U.
  • the reestablishment unit 1830 may also be configured to initiate reestablishment of the PDN connection of the terminal device when the terminal device has no traffic within a set time.
  • the reestablishment unit 1830 may also be configured to start a timer when the terminal device has no traffic within a set time, and initiate reestablishment of the PDN connection of the terminal device after the timer expires.
  • the obtaining unit 1810 is configured to obtain the address of the first SMF.
  • the judging unit 1820 is configured to judge whether the I-UPF is separated from the first PSA-UPF according to the address of the first SMF and the preset address, or judge whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more SMFs located in the same area as the I-SMF; the first PSA-UPF is the user plane anchor point of the terminal device, and the first SMF is the control plane anchor point of the terminal device.
  • the communication device 1800 further includes a reconstruction unit 1830 .
  • the re-establishment unit 1830 is configured to trigger re-establishment of the PDU session of the terminal device if it is determined that the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address.
  • the judging unit 1820 when judging whether the I-UPF and the first PSA-UPF are separated according to the address of the first SMF and the preset address, is specifically configured to: if the preset address includes the first PGW- C, the I-SMF determines that the I-UPF is not separated from the first PSA-UPF; if the preset address does not include the address of the first PGW-C, the I-SMF determines that the I-UPF is separated from the first PSA-UPF .
  • the re-establishment unit 1830 may be used to: at the terminal device When the N1/N2 connection is released, it initiates the re-establishment of the PDU session of the terminal device. Further optionally, the reestablishment unit 1830 may also be configured to: start a timer when the N1/N2 connection of the terminal device is released, and initiate reestablishment of the PDU session of the terminal device after the timer expires.
  • the acquiring unit 1810 is configured to acquire the address of the first I-SMF.
  • the judging unit 1820 is configured to judge whether the PSA-UPF is separated from the first I-UPF according to the address of the first I-SMF and the preset address, or judge whether to initiate the reestablishment of the PDU session of the terminal device.
  • the preset address includes addresses of one or more I-SMFs located in the same area as the SMF.
  • the PSA-UPF may be the anchor point of the user plane of the terminal device, and the SMF may be the anchor point of the control plane of the terminal device.
  • the judging unit 1820 when judging whether the PSA-UPF and the first I-UPF are separated according to the address of the first I-SMF and the preset address, is specifically configured to: if the preset address includes the first The address of the I-SMF determines that the PSA-UPF is not separated from the first I-UPF; if the preset address does not include the address of the first I-SMF, the SMF determines that the PSA-UPF is separated from the first I-UPF.
  • the communication apparatus 1800 further includes a re-establishment unit 1830, configured to initiate re-establishment of the PDU session of the terminal device if it is determined that the PSA-UPF is separated from the first I-UPF.
  • a re-establishment unit 1830 configured to initiate re-establishment of the PDU session of the terminal device if it is determined that the PSA-UPF is separated from the first I-UPF.
  • the re-establishment unit 1830 may also be used to initiate re-establishment of the terminal when the terminal device has no traffic within a set time The device's PDU session.
  • the acquisition unit 1810, the judgment unit 1820, and the reconstruction unit 1830 can be directly obtained by referring to the relevant descriptions in the method embodiments above, and will not be repeated here.
  • the acquiring unit 1810, the judging unit 1820 and the reconstructing unit 1830 may also perform steps in other method embodiments.
  • a communication device 1900 includes a processor 1910 , and optionally may also include an interface circuit 1920 .
  • the processor 1910 and the interface circuit 1920 are coupled to each other.
  • the interface circuit 1920 may be a transceiver or an input/output interface.
  • the communication device 1900 may further include a memory 1930 for storing instructions executed by the processor 1910 or storing input data required by the processor 1910 to execute the instructions or storing data generated after the processor 1910 executes the instructions.
  • the interface circuit 1920 may be used to implement part of the functions of the acquisition unit 1810 described above.
  • the chip of the first control plane network element implements the functions of the first control plane network element in the above method embodiment.
  • the chip of PGW-C or SGW-C implements the functions of PGW-C or SGW-C in the above method embodiment.
  • the I-SMF or SMF chip implements the functions of the I-SMF or SMF in the above method embodiment.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • Some or all of the operations and functions performed by the first control plane network element, PGW-C, SGW-C, I-SMF or SMF described in the above method embodiments of this application may be implemented by chips or integrated circuits.
  • the embodiment of the present application also provides a chip, including a processor, configured to support the communication device to implement the functions involved in the first control plane network element, PGW-C, SGW-C, I-SMF or SMF in the above method embodiments.
  • the chip is connected to a memory or the chip includes a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • An embodiment of the present application provides a computer-readable storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions, which, when run on a computer, enable the above method embodiments to be realized.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用户面网元分离的确定方法及通信装置,以期实现在用户面和控制面分离场景下判断用户面网元是否发生分离。该方法可以通过以下步骤实现:第一控制面网元获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识,所述第一控制面网元包括控制面服务网关、控制面数据网络网关、会话管理功能、或者中间会话管理功能,所述第一用户面网元为用户面锚点;所述第一控制面网元根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离。

Description

一种用户面网元分离的确定方法及通信装置
相关申请的交叉引用
本申请要求在2021年11月16日提交中华人民共和国知识产权局、申请号为202111356850.1、申请名称为“一种用户面网元分离的确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种用户面网元分离的确定方法及通信装置。
背景技术
用户面和控制面可能会集中部署,也可能会分离部署。在用户面和控制面分离的场景下,举例来说,控制面网元大多会集中在省会或区域中心部署,用户面网元下沉到地市贴近用户部署。这种部署场景下,终端设备在移动过程中很容易跨越用户面服务网元管理的区域。但是,终端设备在移动过程中往往用户面网元锚定不变。例如,演进分组核心网(evolved packet core,EPC)场景或第五代(5th generation,5G)终端设备激活会话和服务连续性(session and service continuity,SSC)模式1(Mode1)的协议数据单元(protocol data unit,PDU)会话时,第三代合作伙伴项目(3rd generation partnership project,3GPP)协议要求终端设备在移动过程中为终端设备提供数据服务的用户面网元锚定不变。这样就可能会出现两个用户面网元分离的情况,产生流量迂回。
基于此,需要对用户面和控制面分离场景下用户面网元是否发生分离进行判断,并进一步采取措施避免流量迂回。因此,如何判断用户面和控制面分离场景下用户面网元是否发生分离是需要解决的问题。
发明内容
本申请实施例提供一种用户面网元分离的确定方法及通信装置,以期实现在用户面和控制面场景下判断用户面网元是否发生分离。
第一方面,提供一种用户面网元分离的确定方法,该方法可以应用于控制面和用户面分离的场景中,或者说该方法可以应用于控制面和用户面分离的通信系统中。该方法可以由第一控制面网元执行,也可以由第一控制面网元的部件执行。以执行主体为第一控制面网元为例,该方法可以通过以下步骤实现:第一控制面网元获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识,第一控制面网元包括控制面服务网关SGW-C(可以记为第一SGW-C)、控制面数据网络PDN网关PGW-C(可以记为第一PGW-C)、会话管理功能网元SMF、或者中间会话管理功能网元I-SMF。第一用户面网元为用户面锚点。第一控制面网元根据所述第一节点标识与所述第二节点标识,判断第一用户面网元与第二用户面网元是否发生分离。通过第一控制面网元比较两个用户面网元的节点标识,来判断用户面网元是否发生分离,能够实现在用户面和控制面分离场景下判断用户面网关是 否发生分离,提高用户面网关分离判断效率和准确度,从而可以在用户面网关分离时及时采取措施避免流量迂回。
以下基于第一控制面网元的类型进行分开说明。
当第一控制面网元是第一SGW-C或者是第一PGW-C时,可以提供以下可能的设计。
基于第一方面,该方法可以通过以下步骤实现:第一控制面网元获取第一PGW-U的节点标识和第一SGW-U的节点标识,第一控制面网元根据第一PGW-U的节点标识与第一SGW-U的节点标识,判断是否发生用户面网关分离,用户面网关包括SGW-U和PGW-U,记为第一SGW-U与第一PGW-U。即,第一控制面网元根据第一PGW-U的节点标识与第一SGW-U的节点标识,判断第一SGW-U与第一PGW-U是否发生分离。第一PGW-U为终端设备访问PDN的用户面锚点。其中,第一控制面网元可以是第一SGW-C,也可以是第一PGW-C,通过第一控制面网元根据第一PGW-U的节点标识和第一SGW-U的节点标识,判断第一SGW-U与第一PGW-U是否发生分离,能够实现在CUPS场景下判断用户面网元是否发生分离,提高用户面网元分离判断效率和准确度,从而可以在用户面网元分离时及时采取措施避免流量迂回。
在一个可能的设计中,第一控制面网元为SGW-C,第一控制面网元获取第一PGW-U的节点标识,可以通过下述方式实现:SGW-C从PGW-C获取第一PGW-U的节点标识,其中,PGW-C为所述终端设备访问PDN的控制面锚点。
如果SGW-C和PGW-C部署于同一个控制面网关节点,则SGW-C可以从本地PGW-C获取第一PGW-U的节点标识,即通过内部消息获取第一PGW-U的节点标识,可以节省信令的开销,也不需要修改现有协议的信令。
如果SGW-C和PGW-C部署于不同的控制面网关节点,则PGW-C可以通过与SGW-C之间的交互消息获取第一PGW-U的节点标识。例如,SGW-C接收来自PGW-C的修改承载响应(modify bearer response)消息,修改承载响应消息中携带第一PGW-U的节点标识。这样可以通过已有信令携带节点标识,以用于判断用户面网元分离。
在一个可能的设计中,第一控制面网元为PGW-C,PGW-C为终端设备访问PDN的控制面锚点;第一控制面网元获取第一SGW-U的节点标识,可以通过下述方式实现:PGW-C从SGW-C获取第一SGW-U的节点标识。
如果SGW-C和PGW-C部署于同一个控制面网关节点,则PGW-C可以从本地SGW-C获取第一SGW-U的节点标识,即通过内部消息获取第一SGW-U的节点标识,可以节省信令的开销,也不需要修改现有协议的信令。
如果SGW-C和PGW-C部署于不同的控制面网关节点,则SGW-C可以通过与PGW-C之间的交互消息获取第一PGW-U的节点标识。例如,PGW-C接收来自所述SGW-C的修改承载请求(modify bearer request)消息,该修改承载请求消息中携带第一SGW-U的节点标识。这样可以通过已有信令携带节点标识,以用于判断用户面网元分离。
在以下描述判断第一SGW-U与第一PGW-U是否发生分离的判断方式的设计中,第一SGW-U的节点标识和第一PGW-U的节点标识,可以分别用第一节点标识和第二节点标识来表述。
在一个可能的设计中,第一控制面网元根据第一节点标识与第二节点标识,判断第一SGW-U与第一PGW-U是否发生分离,可以包括如下判断方式:若第一节点标识与第二节点标识相同,则确定第一SGW-U与第一PGW-U未分离;若第一节点标识与第二节点标识 不同,则确定第一SGW-U与第一PGW-U分离。这种判断方式比较严格且比较精准,使用该判断方式判断用户面网元分离能够有助于提高判断精准度。另一方面,使用这种判断方式,节点标识不需要采用结构化命名,当前在网的设备已经配置了节点标识的情况下,在网的设备不需要对节点标识进行修改。
在一个可能的设计中,第一控制面网元根据第一节点标识与第二节点标识,判断第一SGW-U与第一PGW-U是否发生分离,还可以包括如下判断方式:若第一节点标识中第一信息与第二节点标识中第二信息相同,则确定第一SGW-U与第一PGW-U未分离;若第一节点标识中第一信息与第二节点标识中第二信息不同,则确定第一SGW-U与第一PGW-U分离;其中,第一信息用于指示第一SGW-U所在区域,第二信息用于指示第一PGW-U所在区域。当两个用户面网元不在一个节点但是在一个区域时,路径传输的冗余不是很大,对PDN重建的需求不是很大,使用这种判断方式判断用户面网元是否分离,可以灵活进行分离判断,相比跨用户面网元节点判断为分离的方法来说,用户面网元在跨区域时才会判断为分离,进一步执行分离后的操作,例如PDN重建。能够避免不必要的PDN重建带来的信令消耗。
在一个可能的设计中,第一控制面网元根据第一节点标识与第二节点标识,判断第一SGW-U与第一PGW-U是否发生分离,还可以包括如下判断方式:若第一节点标识和第二节点标识在同一个组中,则确定第一SGW-U与第一PGW-U未分离;若第一节点标识和第二节点标识不在同一个组中,则确定第一SGW-U与第一PGW-U分离;其中,一个组中的SGW-U和PGW-U位于同一区域。当两个用户面网元不在一个节点但是在一个区域时,路径传输的冗余不是很大,对PDN重建的需求不是很大,使用这种判断方式判断用户面网元是否分离,可以灵活进行分离判断,相比跨用户面网元节点判断为分离的方法来说,用户面网元在跨区域时才会判断为分离,进一步执行分离后的操作,例如PDN重建。能够避免不必要的PDN重建带来的信令消耗。另一方面,使用这种判断方式,节点标识不需要采用结构化命名,当前在网的设备已经配置了节点标识的情况下,在网的设备不需要对节点标识进行修改。
在一个可能的设计中,第一控制面网元若确定第一SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接。
基于第一控制面网元若确定第一SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接,可选的,若第一控制面网元为SGW-C,则SGW-C可以在终端设备的S1连接释放时,发起重建终端设备的PDN连接。进一步可选的,SGW-C可以在终端设备的S1连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDN连接,需要说明的是,可以发起重建终端设备的部分或全部的PDN连接。通过在终端设备的S1连接释放时启动定时器,能够避免对正在进行的数据和语音业务造成影响。
基于第一控制面网元若确定第一SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接,可选的,若第一控制面网元为PGW-C,则PGW-C可以在终端设备在设定时间内没有流量时,发起重建终端设备的PDN连接,这样能够避免对正在进行的数据和语音业务造成影响。
在一个可能的设计中,第一控制面网元在发起重建终端设备的PDN连接时,可以向MME发送删除承载请求,该删除承载请求携带删除原因的信息,该删除原因的信息用于指示请求重新激活。通过携带删除原因的信息,可以让终端设备再次激活,在激活过程中, 第一控制面网元为终端设备选择合一的SGW-U/PGW-U,就可以实现用户面网元合一,使得数据或语音流量转发的路径更优。
当第一控制面网元是SMF或者I-SMF时,可以提供以下可能的设计。
基于第一方面,该方法可以通过以下步骤实现:第一控制面网元获取第一PSA-UPF的节点标识和第一I-UPF的节点标识,第一控制面网元根据I-UPF的节点标识与PSA-UPF的节点标识,判断是否发生用户面网元分离,用户面网元包括I-UPF和PSA-UPF,记为第一I-UPF与第一PSA-UPF。即,第一控制面网元根据I-UPF的节点标识与PSA-UPF的节点标识,判断第一I-UPF与第一PSA-UPF是否发生分离。第一PSA-UPF为终端设备的用户面锚点。
在一个可能的设计中,第一控制面网元为I-SMF,第一控制面网元获取第一PSA-UPF的节点标识,可以通过下述方式实现:I-SMF从SMF获取第一PSA-UPF的节点标识。
在有I-SMF插入时,则I-SMF可以通过与SMF之间的交互消息来获取第一PSA-UPF的节点标识。可选的,SMF可以向I-SMF发送PDU会话建立响应(Nsmf_PDUSession_Create Response)消息,该PDU会话建立响应消息中携带第一PSA-UPF的节点标识,I-SMF接收来自SMF的该PDU会话建立响应消息,I-SMF从该PDU会话建立响应消息中获取第一PSA-UPF的节点标识。这样可以通过已有信令携带节点标识,以用于判断用户面网元分离。
在一个可能的设计中,第一控制面网元为SMF;第一控制面网元获取第一I-UPF的节点标识,可以通过下述方式实现:
在有I-SMF插入时,则SMF可以通过与I-SMF之间的交互消息获取第一I-UPF的节点标识。可选的,I-SMF可以向SMF发送PDU会话建立请求(Nsmf_PDUSession_Create Request)消息,该PDU会话建立请求消息中可以携带第一I-UPF的节点标识。SMF接收来自I-SMF的该PDU会话建立请求消息,从该PDU会话建立请求消息中获取第一I-UPF的节点标识。这样可以通过已有信令携带节点标识,以用于判断用户面网元分离。
在以下描述判断第一I-UPF与第一PSA-UPF是否发生分离的判断方式的设计中,第一I-UPF的节点标识和第一PSA-UPF的节点标识,可以分别用第一节点标识和第二节点标识来表述。
在一个可能的设计中,第一控制面网元根据第一节点标识与第二节点标识,判断第一I-UPF与第一PSA-UPF是否发生分离,可以包括如下判断方式:若第一节点标识与第二节点标识相同,则确定第一I-UPF与第一PSA-UPF未分离;若第一节点标识与第二节点标识不同,则确定第一I-UPF与第一PSA-UPF分离。这种判断方式比较严格且比较精准,使用该判断方式判断用户面网元分离能够有助于提高判断精准度。
在一个可能的设计中,第一控制面网元根据第一节点标识与第二节点标识,判断第一I-UPF与第一PSA-UPF是否发生分离,还可以包括如下判断方式:若第一节点标识中第一信息与第二节点标识中第二信息相同,则确定第一I-UPF与第一PSA-UPF未分离;若第一节点标识中第一信息与第二节点标识中第二信息不同,则确定第一I-UPF与第一PSA-UPF分离;其中,第一信息用于指示第一I-UPF所在区域,第二信息用于指示第一PSA-UPF所在区域。当两个用户面网元不在一个节点但是在一个区域时,路径传输的冗余不是很大,对PDU会话重建的需求不是很大,使用这种判断方式判断用户面网元是否分离,可以灵活进行分离判断,用户面网元在跨区域时才会判断为分离,进一步执行分离后的操作,例如PDU会话重建。能够避免不必要的PDU会话重建带来的信令消耗。
在一个可能的设计中,第一控制面网元根据第一节点标识与第二节点标识,判断第一I-UPF与第一PSA-UPF是否发生分离,还可以包括如下判断方式:若第一节点标识和第二节点标识在同一个组中,则确定第一I-UPF与第一PSA-UPF未分离;若第一节点标识和第二节点标识不在同一个组中,则确定第一I-UPF与第一PSA-UPF分离;其中,一个组中的I-UPF和PSA-UPF位于同一区域。当两个用户面网元不在一个节点但是在一个区域时,路径传输的冗余不是很大,对PDU会话重建的需求不是很大,使用这种判断方式判断用户面网元是否分离,可以灵活进行分离判断,用户面网元在跨区域时才会判断为分离,进一步执行分离后的操作,例如PDU会话重建。能够避免不必要的PDU会话重建带来的信令消耗。
在一个可能的设计中,第一控制面网元若确定第一I-UPF与第一PSA-UPF发生分离,则发起重建终端设备的PDU会话。
基于第一控制面网元若确定第一I-UPF与第一PSA-UPF发生分离,则发起重建终端设备的PDN连接,可选的,若第一控制面网元为I-SMF,则I-SMF可以在终端设备的N1/N2连接释放时,发起重建终端设备的PDU会话。进一步可选的,I-SMF可以在终端设备的N1/N2连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDU会话,需要说明的是,可以发起重建终端设备的部分或全部的PDU会话。通过在终端设备的N1/N2连接释放时启动定时器,能够避免对正在进行的数据和语音业务造成影响。
基于第一控制面网元若确定第一I-UPF与第一PSA-UPF发生分离,则发起重建终端设备的PDU会话,可选的,若第一控制面网元为SMF,则SMF可以在PDU会话/终端设备在设定时间内没有流量时,发起重建终端设备的PDU会话,这样能够避免对正在进行的数据和语音业务造成影响。
在一个可能的设计中,第一控制面网元在发起重建终端设备的PDU会话时,可以向AMF发送删除承载请求,该删除承载请求携带删除原因的信息,该删除原因的信息用于指示请求重新激活。通过携带删除原因的信息,可以让终端设备再次激活,在激活过程中,第一控制面网元为终端设备就近选择PSA-UPF,避免I-UPF插入,使得数据或语音流量转发的路径更优。
第二方面,提供一种用户面网元分离的确定方法,该方法可以由控制面服务网关SGW-C执行,也可以由控制面服务网关SGW-C的部件执行。以执行主体为控制面服务网关SGW-C为例,该方法可以通过以下步骤实现:SGW-C获取第一PGW-C的地址,SGW-C根据第一PGW-C的地址和预设地址,判断用户面服务网关SGW-U和第一PGW-U是否发生分离,或者,SGW-C根据第一PGW-C的地址和预设地址,判断是否重建终端设备的PDN连接;其中,预设地址包括与SGW-C位于同一区域的一个或多个PGW-C的地址;第一PGW-U为终端设备访问PDN的用户面锚点,第一PGW-C为终端设备访问PDN的控制面锚点。通过控制面网关的地址判断用户面网元是否发生分离,通过按照区域预设控制面网关的分组,当确定控制面网关分离时(即第一PGW-C的地址不在预设地址中时),确定用户面网元发生分离。预设地址是与SGW-C在同一区域的PGW-C的地址,这样可以根据业务需求来划分区域,从而设置预设地址,这样使得判断用户面网元的分离更加灵活贴切业务需求。另一方面,不需要对网关节点进行规范化和结构化命名。并且,判断粒度比较大,能够减少用户面分离的判定结果,并进一步减少确定用户面分离后的操作,例如PDN重建,从而减少信令的开销。
在一个可能的设计中,控制面服务网关SGW-C与第一控制面数据网络PDN网关PGW-C位于不同的控制面网关节点。一般来说,当SGW-C与第一PGW-C位于不同的控制面网关节点时,即控制面网关分离时,则缺省认为用户面网元分离。在第二方面的方案中,当SGW-C与第一PGW-C位于不同的控制面网关节点时,还需要进一步根据第一PGW-C的地址和预设地址判断用户面网元是否分离。运营商根据业务需要,要求当SGW-U和PGW-U两者跨越较大区域范围时,才认为发生分离。第二方面的方案能够适用于运营商的这种业务需要。
在一个可能的设计中,SGW-C根据第一PGW-C的地址和预设地址,判断用户面服务网关SGW-U和第一PGW-U是否发生分离,可以通过下述方式实现:若预设地址包括第一PGW-C的地址,则SGW-C确定SGW-U与第一PGW-U未分离;若预设地址不包括第一PGW-C的地址,则SGW-C确定SGW-U与第一PGW-U分离。
在一个可能的设计中,SGW-C若确定SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接。
基于SGW-C若确定SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接,可选的,SGW-C在终端设备的S1连接释放时,发起重建终端设备的PDN连接,这样能够避免对正在进行的数据和语音业务造成影响。进一步可选的,SGW-C可以在终端设备的S1连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDN连接。通过在终端设备的S1连接释放时启动定时器,能够避免对正在进行的数据和语音业务造成影响。
在一个可能的设计中,SGW-C在发起重建终端设备的PDN连接时,可以向MME发送删除承载请求,该删除承载请求携带删除原因的信息,该删除原因的信息用于指示请求重新激活。通过携带删除原因的信息,可以让终端设备再次激活,在激活过程中,SGW-C为终端设备选择合一的SGW-U/PGW-U,就可以实现用户面网元合一,使得数据或语音流量转发的路径更优。
第三方面,提供一种用户面网元分离的确定方法,该方法可以由第一控制面网元执行,也可以由第一控制面网元的部件执行,第一控制面网元可以是PGW-C。以执行主体为PGW-C为例,该方法可以通过以下步骤实现:PGW-C获取第一SGW-C的地址;PGW-C根据第一SGW-C的地址和预设地址,判断PGW-U和第一用户面服务网关SGW-U是否发生分离;其中,预设地址包括与PGW-C位于同一区域的一个或多个SGW-C的地址;PGW-U为终端设备访问PDN的用户面锚点,PGW-C为终端设备访问PDN的控制面锚点。通过控制面网关的地址判断用户面网元是否发生分离,通过按照区域预设控制面网关的分组,当确定控制面网关分离时(即第一SGW-C的地址不在预设地址中时),确定用户面网元发生分离。预设地址是与PGW-C在同一区域的SGW-C的地址,这样可以根据业务需求来划分区域,从而设置预设地址,这样使得判断用户面网元的分离更加灵活贴切业务需求。并且不需要对网关节点进行规范化和结构化命名,以及判断粒度比较大,能够减少用户面分离的判定结果,并进一步减少确定用户面分离后的操作,例如PDN重建,从而减少信令的开销。
在一个可能的设计中,PGW-C与第一SGW-C位于不同的控制面网关节点。一般来说,当SGW-C与第一PGW-C位于不同的控制面网关节点时,即控制面网关分离时,则缺省认为用户面网元分离。在第三方面的方案中,当SGW-C与第一PGW-C位于不同的控制面网 关节点时,还需要进一步根据第一PGW-C的地址和预设地址判断用户面网元是否分离。运营商根据业务需要,要求当SGW-U和PGW-U两者跨越较大区域范围时,才认为发生分离。第三方面的方案能够适用于运营商的这种业务需要。
在一个可能的设计中,PGW-C根据第一SGW-C的地址和预设地址,判断PGW-U和第一用户面服务网关SGW-U是否发生分离,可以通过下述方式实现:若预设地址包括第一SGW-C的地址,则PGW-C确定PGW-U与第一SGW-U未分离;若预设地址不包括第一SGW-C的地址,则PGW-C确定PGW-U与第一SGW-U分离。
在一个可能的设计中,PGW-C若确定PGW-U与第一SGW-U发生分离,则发起重建终端设备的PDN连接。
基于PGW-C若确定PGW-U与第一SGW-U发生分离,则发起重建终端设备的PDN连接,可选的,PGW-C在终端设备在设定时间内没有流量时,发起重建终端设备的PDN连接,这样能够避免对正在进行的数据和语音业务造成影响。
在一个可能的设计中,PGW-C在发起重建终端设备的PDN连接时,可以向MME发送删除承载请求,该删除承载请求携带删除原因的信息,该删除原因的信息用于指示请求重新激活。通过携带删除原因的信息,可以让终端设备再次激活,在激活过程中,PGW-C为终端设备选择合一的SGW-U/PGW-U,就可以实现用户面网元合一,使得数据或语音流量转发的路径更优。
第四方面,提供一种用户面网元分离的确定方法,该方法可以由第一控制面网元执行,也可以由第一控制面网元的部件执行,第一控制面网元可以是I-SMF。以执行主体为I-SMF为例,该方法可以通过以下步骤实现:I-SMF获取第一SMF的地址,I-SMF根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。
其中,预设地址包括与I-SMF位于同一区域的一个或多个SMF的地址;第一PSA-UPF为终端设备的用户面锚点,第一SMF为终端设备的控制面锚点。
在一个可能的设计中,I-SMF若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话。
在一个可能的设计中,I-SMF根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离可以通过下述方式实现:若预设地址包括第一SMF的地址,则I-SMF确定I-UPF与第一PSA-UPF未分离;若预设地址不包括第一SMF的地址,则I-SMF确定I-UPF与第一PSA-UPF分离。
基于I-SMF若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话,可选的,I-SMF在终端设备的N1/N2连接释放时,发起重建终端设备的PDU会话,这样能够避免对正在进行的数据和语音业务造成影响。进一步可选的,I-SMF可以在终端设备的N1/N2连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDU会话。通过在终端设备的N1/N2连接释放时启动定时器,能够避免对正在进行的数据和语音业务造成影响。
第五方面,提供一种用户面网元分离的确定方法,该方法可以由第一控制面网元执行,也可以由第一控制面网元的部件执行,第一控制面网元可以是SMF。以执行主体为SMF为例,该方法可以通过以下步骤实现:SMF获取第一I-SMF的地址,SMF根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离,或者,判断是否发起重 建终端设备的PDU会话。其中,预设地址包括与SMF位于同一区域的一个或多个I-SMF的地址。PSA-UPF可以为终端设备的用户面锚点,SMF可以为终端设备的控制面锚点。
在一个可能的设计中,SMF根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离,可以通过下述方式实现:若预设地址包括第一I-SMF的地址,则SMF确定PSA-UPF与第一I-UPF未分离;若预设地址不包括第一I-SMF的地址,则SMF确定PSA-UPF与第一I-UPF分离。
在一个可能的设计中,SMF若确定PSA-UPF与第一I-UPF发生分离,则发起重建终端设备的PDU会话。
基于SMF若确定PSA-UPF与第一I-UPF发生分离,则发起重建终端设备的PDU会话,可选的,SMF在终端设备在设定时间内没有流量时,发起重建终端设备的PDU会话,这样能够避免对正在进行的数据和语音业务造成影响。
第六方面,提供一种通信装置,该装置可以是第一控制面网元,也可以是位于第一控制面网元中的部件(例如,芯片,或者芯片系统,或者电路)。第一控制面网元包括控制面服务网关SGW-C(可以记为第一SGW-C)、控制面数据网络PDN网关PGW-C(可以记为第一PGW-C)、会话管理功能网元SMF、或者中间会话管理功能网元I-SMF。该装置具有实现上述第一方面和第一方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括获取单元和判断单元。示例性地:获取单元,用于获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识。第一用户面网元为用户面锚点。判断单元,用于根据所述第一节点标识与所述第二节点标识,判断第一用户面网元与第二用户面网元是否发生分离。
在一个可能的设计中,在获取第一用户面网元的第一节点标识时,所述获取单元用于:从第二控制面网元获取第一用户面网元的第一节点标识;其中,所述装置为所述SGW-C,所述第一用户面网元为第一用户面数据网络PDN网关PGW-U;或者,所述装置为所述PGW-C,所述第一用户面网元为第一用户面服务网关SGW-U;或者,所述装置为所述SMF,所述第一用户面网元为中间用户面管理功能I-UPF;或者,所述装置为所述I-SMF,所述第一用户面网元为协议数据单元会话锚点用户面管理功能PSA-UPF。
在一个可能的设计中,在根据所述第一节点标识与所述二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离时,所述判断单元用于:若所述第一节点标识与所述第二节点标识相同,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识与所述第二节点标识不同,则确定所述第一用户面网元与所述第二用户面网元分离。
在一个可能的设计中,在根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离时,所述判断单元用于:若所述第一节点标识中第一信息与所述第二节点标识中第二信息相同,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识中第一信息与所述第二节点标识中第二信息不同,则确定所述第一用户面网元与所述第二用户面网元分离;其中,所述第一信息用于指示所述第一用户面网元所在区域,所述第二信息用于指示所述第二用户面网元所在区域。
在一个可能的设计中,在根据所述第一节点标识与所述第二节点标识,判断所述第一 用户面网元与所述第二用户面网元是否发生分离时,所述判断单元用于:若所述第一节点标识和所述第二节点标识在同一个组中,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识和所述第二节点标识不在同一个组中,则确定所述第一用户面网元与所述第二用户面网元分离。
在一个可能的设计中,所述装置还包括:重建单元,用于若确定所述第一用户面网元与所述第二用户面网元发生分离,则发起重建所述终端设备的数据传输路径。
在一个可能的设计中,所述装置为SGW-C;在发起重建所述终端设备的数据传输路径时,所述重建单元用于:在所述终端设备的S1连接释放时,发起重建所述终端设备的分组数据网络PDN连接。
在一个可能的设计中,所述装置为I-SMF;在发起重建所述终端设备的数据传输路径时,所述重建单元用于:在所述终端设备的N1/N2连接释放时,发起重建所述终端设备的协议数据单元PDU会话。
在一个可能的设计中,所述装置为所述PGW-C或所述SMF;在发起重建所述终端设备的数据传输路径时,所述重建单元用于:在所述终端设备在设定时间内没有流量时,发起重建所述终端设备的数据传输路径。
第六方面以及各个可能的设计的有益效果可以参照第一方面及各个可能的设计的介绍,在此不予赘述。
第七方面,提供一种通信装置,该装置可以是控制面服务网关SGW-C执行,也可以是控制面服务网关SGW-C中的部件。控制面服务网关SGW-C与第一控制面数据网络PDN网关PGW-C位于不同的控制面网关节点。该装置具有实现上述第二方面和第二方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括获取单元和判断单元。示例性地:
获取单元,用于获取第一PGW-C的地址。判断单元,用于根据第一PGW-C的地址和预设地址,判断用户面服务网关SGW-U和第一PGW-U是否发生分离,或者,判断单元,用于根据第一PGW-C的地址和预设地址,判断是否重建终端设备的PDN连接;其中,预设地址包括与SGW-C位于同一区域的一个或多个PGW-C的地址;第一PGW-U为终端设备访问PDN的用户面锚点,第一PGW-C为终端设备访问PDN的控制面锚点。
在一个可能的设计中,在根据第一PGW-C的地址和预设地址,判断用户面服务网关SGW-U和第一PGW-U是否发生分离时,判断单元具体用于:若预设地址包括第一PGW-C的地址,则SGW-C确定SGW-U与第一PGW-U未分离;若预设地址不包括第一PGW-C的地址,则SGW-C确定SGW-U与第一PGW-U分离。
在一个可能的设计中,该装置还包括重建单元,用于若判断单元确定SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接。
可选的,重建单元还用于在终端设备的S1连接释放时,发起重建终端设备的PDN连接。
可选的,重建单元还可以用于在终端设备的S1连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDN连接。
第七方面以及各个可能的设计的有益效果可以参照第二方面及各个可能的设计的介绍,在此不予赘述。
第八方面,提供一种通信装置,该装置可以是PGW-C,也可以是位于PGW-C中的部件。控制面服务网关SGW-C与第一控制面数据网络PDN网关PGW-C位于不同的控制面网关节点。该装置具有实现上述第三方面和第三方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括获取单元和判断单元。示例性地:获取单元用于获取第一SGW-C的地址;判断单元用于根据第一SGW-C的地址和预设地址,判断PGW-U和第一用户面服务网关SGW-U是否发生分离;其中,预设地址包括与PGW-C位于同一区域的一个或多个SGW-C的地址;PGW-U为终端设备访问PDN的用户面锚点,PGW-C为终端设备访问PDN的控制面锚点。
在一个可能的设计中,在根据第一SGW-C的地址和预设地址,判断PGW-U和第一用户面服务网关SGW-U是否发生分离时,该判断单元具体用于:若预设地址包括第一SGW-C的地址,则PGW-C确定PGW-U与第一SGW-U未分离;若预设地址不包括第一SGW-C的地址,则PGW-C确定PGW-U与第一SGW-U分离。
在一个可能的设计中,该装置还包括重建单元,用于若确定PGW-U与第一SGW-U发生分离,则发起重建终端设备的PDN连接。
可选的,该重建单元还可以用于在终端设备在设定时间内没有流量时,发起重建终端设备的PDN连接。
第八方面以及各个可能的设计的有益效果可以参照第三方面及各个可能的设计的介绍,在此不予赘述。
第九方面,提供一种通信装置,该装置可以是I-SMF,也可以是位于I-SMF中的部件。该装置具有实现上述第四方面和第四方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括获取单元和判断单元。示例性地:获取单元,用于获取第一SMF的地址。判断单元,用于根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。其中,预设地址包括与I-SMF位于同一区域的一个或多个SMF的地址;第一PSA-UPF为终端设备的用户面锚点,第一SMF为终端设备的控制面锚点。
在一个可能的设计中,该装置还包括重建单元。该重建单元用于若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话。
在一个可能的设计中,在根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离时,判断单元具体用于:若预设地址包括第一PGW-C的地址,则I-SMF确定I-UPF与第一PSA-UPF未分离;若预设地址不包括第一PGW-C的地址,则I-SMF确定I-UPF与第一PSA-UPF分离。
基于若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话,可选的,重建单元可以用于:在终端设备的N1/N2连接释放时,发起重建终端设备的PDU会话,这样能够避免对正在进行的数据和语音业务造成影响。进一步可选的,重建单元还可以用于:可以在终端设备的N1/N2连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDU会话。通过在终端设备的N1/N2连接释放时启动定时器,能够避免对正在进行的数据和语音业务造成影响。
第十方面,提供一种通信装置,该装置可以是SMF,也可以是位于SMF中的部件。该装置具有实现上述第五方面和第五方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括获取单元和判断单元。示例性地:获取单元用于获取第一I-SMF的地址。判断单元用于根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。其中,预设地址包括与SMF位于同一区域的一个或多个I-SMF的地址。PSA-UPF可以为终端设备的用户面锚点,SMF可以为终端设备的控制面锚点。
在一个可能的设计中,在根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离时,判断单元具体用于:若预设地址包括第一I-SMF的地址,则确定PSA-UPF与第一I-UPF未分离;若预设地址不包括第一I-SMF的地址,则SMF确定PSA-UPF与第一I-UPF分离。
在一个可能的设计中,该装置还包括重建单元,用于若确定PSA-UPF与第一I-UPF发生分离,则发起重建终端设备的PDU会话。
基于若确定PSA-UPF与第一I-UPF发生分离,则发起重建终端设备的PDU会话,可选的,重建单元还可以用于在终端设备在设定时间内没有流量时,发起重建终端设备的PDU会话,这样能够避免对正在进行的数据和语音业务造成影响。
第十一方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行代码指令用于实现上述各方面以及各方面的各个可能的设计所描述的方法。接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。可以理解的是,接口电路可以为收发器或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。所述存储器可以是物理上独立的单元,也可以与所述处理器耦合,或者所述处理器包括所述存储器。
第十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或可读指令,当所述计算机序或可读指令被通信装置执行时,使得如上述各方面或各方面各个可能的设计中所述的方法被执行。
第十三方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器。存储器用于存储程序、指令或代码;处理器用于执行存储器存储的程序、指令或代码,以实现上述各方面或各方面各个可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种包含指令的计算机程序产品,当其被通信装置执行时,使得如第各方面或各方面各个可能的设计中所述的方法被执行。
第十五方面,提供一种通信系统,该系统包括第一控制面网元、第一用户面网元和第二用户面网元,该第一控制面网元用于执行如上述各方面或各方面各个可能的设计中所述的方法。
在一个可能的设计中,该系统该包括第二控制面网元,第二控制面网元可以用于执行上述各方面或各方面各个可能的设计中第二控制面网元执行的操作。
附图说明
图1a为本申请实施例中CUPS的EPC网络架构示意图;
图1b为本申请实施例中通信系统架构示意图;
图2a为本申请实施例中用户面网元分离的确定方法的流程示意图之一;
图2b为本申请实施例中用户面网元分离的确定方法的流程示意图之二;
图2c为本申请实施例中用户面网元分离的确定方法的流程示意图之三;
图3为本申请实施例中判断用户面网元分离的流程示意图之一;
图4为本申请实施例中判断用户面网元分离的流程示意图之二;
图5为本申请实施例中PDN重建的流程示意图之一;
图6为本申请实施例中PDN重建的流程示意图之二;
图7为本申请实施例中PDN重建的流程示意图之三;
图8为本申请实施例中用户面网元分离的确定方法的流程示意图之四;
图9为本申请实施例中判断用户面网元分离的流程示意图之三;
图10为本申请实施例中用户面网元分离的确定方法的流程示意图之五;
图11为本申请实施例中5G通信系统用户面网元分离的确定方法的流程示意图之一;
图12为本申请实施例中5G通信系统用户面网元分离的确定方法的流程示意图之二;
图13为本申请实施例中用户面网元分离后的操作流程示意图之一;
图14为本申请实施例中用户面网元分离后的操作流程示意图之二;
图15为本申请实施例中用户面网元分离后的操作流程示意图之三;
图16为本申请实施例中用户面网元分离的确定方法的流程示意图之六;
图17为本申请实施例中用户面网元分离的确定方法的流程示意图之七;
图18为本申请实施例中通信装置结构示意图之一;
图19为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种用户面网元分离的确定方法及通信装置,以期实现在用户面和控制面分离的场景下判断用户面网元是否发生分离。其中,方法和装置是基于相同或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例的描述中,字符“/”一般表示前后关联对象是一种“或”的关系。“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的用户面网元分离的确定方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE),也可以应用于5G通信系统,例如5G新空口(new radio,NR),也可以应用于未来演进的各种通信系统,例如第六代(6th generation,6G)通信系统、或者空天海地一体化通信系统。
下面将结合附图,对本申请实施例进行详细描述。图1a和图1b分别举例示意了4G通信系统中的架构和5G通信系统中的架构。
首先以4G通信系统架构为例进行说明。
在3GPP协议中描述了演进分组核心网(evolved packet core,EPC)网络架构,基于该网络架构能够实现终端设备与服务器之间数据流的传递。通常情况下EPC网络架构包括服务网关(serving gateway,SGW)和分组数据网(packet data network,PDN)网关(PDN gateway,PGW)。在3GPP协议中,描述了EPC网络架构中网关控制面和用户面分离(control and user plane separation,CUPS)的情况。图1a为一种CUPS的EPC网络架构,该网络架构为本申请实施例提供的用户面网关分离的确定方法可以适用于图1a所示的网络架构。CUPS指的是网关根据功能划分为控制面网关和用户面网关。如图1a中,SGW被拆分为用户面服务网关(serving gateway for user plane,SGW-U)和控制面服务网关(serving gateway for control plane,SGW-C),其中,SGW-U可以实现非CUPS的EPC网络架构中SGW的用户面功能,SGW-C可以实现非CUPS的EPC网络架构中SGW的控制面功能。类似的,PGW被拆分为用户面PDN网关(packet data network gateway for user plane,PGW-U)和控制面PDN网关(packet data network gateway for control plane,PGW-C),其中,PGW-U可以实现非CUPS的EPC网络架构中PGW的用户面功能,PGW-C可以实现非CUPS的EPC网络架构中PGW的控制面功能。
EPC网络架构中还包括终端设备。终端设备又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是车联网通信中担任终端功能的设备。
可选的,EPC网络架构中还可以包括移动管理实体(mobility management entity,MME)、归属用户服务器(home subscriber server,HSS),其中,MME用于管理用户设备(userequipment,UE)的移动上下午和会话上下文。此外,还包括计费网关(charging gateway,CG)、在线计费系统(online charging system,OCS)和合法监听网关(lawfulinterception gateway,LIG)等与监测功能相关的监测网元,PGW-C可以通过这些监测网元实现对终端业务的监测,如对终端业务的计费、合法监听等。
在CUPS场景下,控制面网元包括SGW-C和PGW-C,用户面网元包括SGW-U和PGW-U。控制面网元(SGW-C和PGW-C)一般会集中在省会或区域中心部署,用户面网元(SGW-U和PGW-U)下沉到地市贴近用户部署,这样可以缩短业务访问路径,提升用户业务体验,同时节省承载网传输带宽。
如何判断用户面网元是否发生分离是需要解决的问题。在非CUPS场景下,MME可以根据SGW和PGW的规范节点名(canonical-node-name)进行SGW和PGW分离判断。 具体地,终端设备移动过程中发生SGW改变,MME为终端设备选择新的SGW,MME根据终端设备当前所在的跟踪区(Tracking Area,TA)查询获得新SGW的主机名,MME从新SGW的主机名中提取出规范节点名(canonical-node-name),并与本地保存的、终端设备锚定的PGW的规范节点名进行比较。如果MME发现SGW和PGW的规范节点名不同或者规范节点名中标识区域的部分字段不同,则认为发生了SGW和PGW分离,由MME触发PDN重建。
但是非CUPS场景MME判断用户面网元分离的方法不适用于CUPS场景。在CUPS场景下,控制面网元(SGW-C和PGW-C)和用户面网元(SGW-U和PGW-U)分离部署在不同物理节点中。MME在进行网关选择时,根据TA和接入点名称(access point name,APN)分别查询获得SGW-C和PGW-C的主机名,从中提取出规范节点名,最终查询得到SGW-C和PGW-C的接口互联网协议(internet protocol,IP)信息。SGW-U和PGW-U由SGW-C和PGW-C分别根据一定原则选出。由此可见,CUPS场景下,规范节点名是MME用来选择控制面网元(SGW-C和PGW-C)的,而非用于用户面网元(SGW-U和PGW-U)。MME通过规范节点名称仅能判断SGW-C和PGW-C是否发生分离,无法判断SGW-U和PGW-U是否发生分离。
当同一套控制面网元连接多个区域的用户面网元时,终端设备在这些用户面网元之间移动,MME无法准确判断是否发生了SGW-U和PGW-U分离。例如,在CUPS场景下,大部分区域的网络部署原则为SGW-C和PGW-C在大区/省中心集中部署,对应管理整个省的各区域接入和整个省的所有用户面网元,SGW-U和PGW-U下沉在地市部署。这种场景下,用户在省内移动,SGW-C所在的控制面节点不变,MME的判断机制无法判断出用户移动后,SGW-U和PGW-U是否发生分离。
以下基于图1b举例介绍一下5G通信系统架构。
如图1b所示,通信系统的架构中可以包括接入网和核心网。核心网主要包括以下关键逻辑网元:接入和移动性管理功能网元、会话管理功能网元、用户面功能网元、策略控制功能网元、统一数据管理功能网元等。例如,图1b示出了通信系统的架构的一种可能的示例,通信系统的架构中各个网元或设备以具体的示例示出。具体的,图1b所示的通信系统的架构中可以包括:终端设备(以UE为例示出)、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理功能网元(unified data management,UDM)、认证服务器功能(authentication server function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、应用功能(application function,AF)网元、网络切片选择功能(network slice selection function,NSSF)网元、(无线)接入网((radio)access network,(R)AN)设备、网络存储功能(network repository function,NRF)网元。其中,AMF网元与接入网设备之间可以通过N2接口相连,接入网设备与UPF之间可以通过N3接口相连,SMF与UPF之间可以通过N4接口相连,AMF网元与UE之间可以通过N1接口相连。接口名称只是一个示例说明,本申请实施例对此不作具体限定。应理解,本申请实施例并不限于图1b所示通信系统,图1b中所示的网元的名称在这里仅作为一种示例说明,并不作为对本申请的通信方法适用的通信系统架构中包括的网元的限定。
下面对图1b通信系统中的部分网元或设备的功能进行详细描述。
终端设备和接入网设备的描述可以参照图1a中的描述,在此不予赘述。
接入和移动性管理功能网元:主要负责信令处理部分,例如:接入控制、移动性管理、附着与去附着以及网关选择等功能。AMF网元为终端设备中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。例如,在5G中,接入和移动性管理功能网元可以是AMF网元,例如图1b所示;在未来通信,如6G中,接入和移动性管理功能网元仍可以是AMF网元,或有其它的名称,本申请不做限定。当接入和移动性管理功能网元是AMF网元时,AMF可以提供Namf服务。
会话管理功能网元:主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF等。例如,在5G中,会话管理功能网元可以是SMF网元,例如图1b所示;在未来通信,如6G中,会话管理功能网元仍可以是SMF网元,或有其它的名称,本申请不做限定。当会话管理功能网元时SMF网元时,SMF可以提供Nsmf服务。
用户面功能网元:负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;UPF网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。UPF网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。例如,在5G中,用户面功能网元可以是UPF网元,例如图1b所示;在未来通信,如6G中,用户面功能网元仍可以是UPF网元,或有其它的名称,本申请不做限定。
需要说明的是,图1b所示的通信系统的架构中不限于仅包含图中所示的网元,还可以包含其它未在图1b中表示的设备,具体本申请在此处不再一一列举。本申请实施例并不限定各个网元的分布形式,图1a和图1b所示的分布形式只是示例性的,本申请不作限定。
其中,核心网中的各个网元也可以称为功能实体或者设备,既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
为方便说明,本申请后续均以图1b所示的网元为例进行说明,并将XX网元直接简称为XX。应理解,本申请中所有网元的名称仅仅作为示例,在未来通信中还可以称为其它名称,或者在未来通信中本申请涉及的网元还可以通过其它具有相同功能的实体或者设备等来替代,本申请对此均不作限定。这里做统一说明,后续不再赘述。
基于图1b所示的通信系统,控制面网元可以是SMF,用户面锚点网关可以是PDU会话锚点UPF(PDU session anchor UPF,PSA-UPF)。当终端设备移动出PSA-UPF的覆盖范围时,SMF根据终端设备的位置,选择中间UPF(intermediate UPF,I-UPF)插入到接入网设备和PSA-UPF之间进行中继,实现网络的端到端连接。SMF需要判断PSA-UPF和I-UPF是否发生用户面网元分离。当终端设备移动出SMF服务范围时,AMF根据终端设备的位置选择插入中间SMF(intermediate SMF,I-SMF),I-SMF选择I-UPF进行中继。I-SMF或SMF需要判断PSA-UPF和I-UPF是否发生用户面网元分离。
基于此,本申请实施例提供一种用户面网元分离的确定方法,以期实现在用户面和控制面分离场景下进行用户面网元的分离判断。
如图2a所示,本申请实施例提供一种用户面网元分离的确定方法的具体流程如下所述。该方法可以有第一控制面网元执行,该第一控制面网元可以是SGW-C、PGW-C、SMF或 者I-SMF。
S201a.第一控制面网元获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识。
第一用户面网元为用户面锚点。
S202a.第一控制面网元根据第一节点标识与第二节点标识,判断用户面网元是否发生分离,即判断第一用户面网元与第二用户面网元是否发生分离。
本申请中,在判断用户面网元是否发生分离时,也可以理解为判断是否重建终端设备的数据传输路径连接、或者判断是否优化流量转发路径(或数据传输路径)、或者判断是否存在流量迂回(或数据传输迂回)。例如,第一控制面网元可以根据第一节点标识和第二节点标识,判断第一用户面网元与第二用户面网元是否发生分离,并在确定分离时进一步执行分离后的操作,如重建终端设备的数据传输路径连接;第一控制面网元也可以根据第一节点标识和第二节点标识,直接判断是否重建终端设备的数据传输路径连接,并在判断为是时执行数据传输路径的重建。又例如,第一控制面网元可以根据第一节点标识和第二节点标识,判断是否存在流量迂回,并在确定存在流量迂回时进行处理,如重建终端设备的数据传输路径。
图2a实施例,通过第一控制面网元根据两个用户面网元的节点标识,判断是否发生用户面网元的分离,能够实现在用户面和控制面分离的场景下判断用户面网元是否发生分离,提高用户面网元分离判断效率和准确度,从而可以在用户面网关分离时及时采取措施避免流量迂回。
可选的,S201a中,第一控制面网元获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识,第一控制面网元可以从本地获取一个用户面网元的节点标识,并从第二控制面网元获取另一个用户面网元的节点标识。根据第一控制面网元的类型不同,以下分别举例介绍。例如,第一控制面网元为SGW-C,SGW-C可以从PGW-C获取第一PGW-U的节点标识;又例如,第一控制面网元为PGW-C,PGW-C可以从SGW-C获取第一SGW-U的节点标识;又例如,第一控制面网元为SMF,在无I-SMF插入时,可以从本地获取到两个用户面网元的节点标识;又例如,第一控制面网元为SMF,在有I-SMF插入时,SMF可以从I-SMF获取第一I-UPF的节点标识;又例如,第一控制面网元为I-SMF,I-SMF可以从SMF获取第一PSA-UPF的节点标识。
以下基于图2a实施例,分别介绍在第一控制面网元为不同网元时对应的用户面网元分离的确定方法。
如图2b所示,当第一控制面网元为SGW-C或PGW-C时,用户面网元分离的确定方法的流程如下所述。
S201b.第一控制面网元获取第一PGW-U的节点标识和第一SGW-U的节点标识。
其中,第一PGW-U为终端设备访问PDN的用户面锚点。3GPP协议规定终端设备在移动过程中PGW-U不能改变,第一PGW-U为终端设备的用户面锚点,在终端设备移动过程中第一PGW-U不能改变。
S202b.第一控制面网元根据第一PGW-U的节点标识和第一SGW-U的节点标识,判断第一SGW-U与第一PGW-U是否发生分离。
图2b实施例,通过第一控制面网元根据第一PGW-U的节点标识和第一SGW-U的节点标识,判断第一SGW-U与第一PGW-U是否发生分离,能够实现在CUPS场景下判断用 户面网元是否发生分离,提高用户面网元分离判断效率和准确度,从而可以在用户面网元分离时及时采取措施避免流量迂回。
如图2c所示,当第一控制面网元为I-SMF或SMF时,用户面网元分离的确定方法的流程如下所述。
S201c.第一控制面网元获取第一PSA-UPF的节点标识和第一I-UPF的节点标识。
其中,第一PSA-UPF为终端设备访问数据网络(data network,DN)的用户面锚点。第一PSA-UPF为终端设备的用户面锚点。
S202c.第一控制面网元根据第一PSA-UPF的节点标识和第一I-UPF的节点标识,判断第一I-UPF与第一PSA-UPF是否发生分离。
图2c实施例,通过第一控制面网元根据第一PSA-UPF的节点标识和第一I-UPF的节点标识,判断第一I-UPF与第一PSA-UPF是否发生分离,能够实现在用户面和控制面分离场景下判断用户面网元是否发生分离,提高用户面网元分离判断效率和准确度,从而可以在用户面网元分离时及时采取措施避免流量迂回。
以下基于图2b实施例对一些可能的实现方式进行说明。
第一控制面网元可以是SGW-C或者PGW-C,SGW-C可以是终端设备移动时MME为终端设备重新选择的SGW-C。第一SGW-U为SGW-C为终端设备重新选择的SGW-U。PGW-C为终端设备访问PDN的控制面锚点,3GPP协议规定终端设备在移动过程中PGW-C不能改变。
根据3GPP 29.244协议定义,网关CUPS部署时,控制面网元和用户面网元之间通过Sx接口互联,通过节点标识(Node ID)进行标识。即在CUPS部署时,SGW-C可以通过Sx接口获取SGW-U的节点标识,PGW-C可以通过Sx接口获取PGW-U的节点标识。当终端设备跨区域移动时,MME可以根据终端设备当前位置重新选择SGW-C,SGW-C为终端设备重新选择SGW-U,并记录终端设备所在SGW-U的节点标识。PGW-C和PGW-U在终端设备移动过程中锚定不变。可以看出,SGW-C已知第一SGW-U的第二节点标识,PGW-C已知第一PGW-U的第一节点标识。
以下介绍S201b中第一控制面网元获取第一节点标识和第二节点标识的可选实现方式。
当第一控制面网元为SGW-C时,SGW-C已知第一SGW-U的第二节点标识(例如SGW-C从本地存储中获得第一SGW-U的第二节点标识),SGW-C可以从PGW-C获取第一PGW-U的第一节点标识。
当第一控制面网元为PGW-C时,PGW-C已知第一PGW-U的第一节点标识(例如PGW-C从本地存储中获得第一PGW-U的第二节点标识),PGW-C可以从SGW-C获取第一SGW-U的第二节点标识。
下面分别介绍第一控制面网元为SGW-C时获取第一节点标识的可选实现方式,以及第一控制面网元为PGW-C获取第二节点标识的可选实现方式。
SGW-C和PGW-C可以合设也可以分设。合设即SGW-C和PGW-C部署于同一个控制面网元节点,分设即SGW-C和PGW-C部署于不同的控制面网元节点。例如,在合设时SGW-C和PGW-C的节点标识可以是相同的,在分设时SGW-C和PGW-C的节点标识可以是不同的。控制面网元节点还可以称为物理设备、物理节点或功能网元,控制面网元节点既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。控制面网元节点 例如是集中式网关(centralized gateway,CGW)。
如果SGW-C和PGW-C部署于同一个控制面网元节点,则SGW-C可以从本地PGW-C获取第一PGW-U的第一节点标识,其中,本地即控制面网元节点,PGW-C可以通过控制面网元节点内部的信令向SGW-C传递第一节点标识,SGW-C可以通过控制面网元节点内部的信令从PGW-C获取第一节点标识。
类似地,如果SGW-C和PGW-C部署于同一个控制面网元节点,则PGW-C可以从本地SGW-C获取第一SGW-U的第二节点标识,其中,本地即控制面网元节点,SGW-C可以通过控制面网元节点内部的信令向PGW-C传递第二节点标识,PGW-C可以通过控制面网元节点内部的信令从SGW-C获取第二节点标识。
如果SGW-C和PGW-C部署于不同的控制面网元节点,则PGW-C可以通过与SGW-C之间的交互消息获取第一SGW-U的第二节点标识。可选的,SGW-C可以向PGW-C发送修改承载请求(Modify Bearer Request)消息,该修改承载请求消息中可以携带第一SGW-U的第二节点标识。PGW-C接收来自SGW-C的该修改承载请求消息,从该修改承载请求消息中获取第一SGW-U的第二节点标识。
类似地,如果SGW-C和PGW-C部署于不同的控制面网元节点,SGW-C可以通过与PGW-C之间的交互消息来获取第一PGW-U的第一节点标识。可选的,PGW-C可以向SGW-C发送修改承载响应(Modify Bearer Response)消息,该修改承载响应消息中携带第一PGW-U的第一节点标识,SGW-C接收来自PGW-C的该修改承载响应消息,SGW-C从该修改承载响应消息中获取第一PGW-U的第一节点标识。根据3GPP 29.274协议,当终端设备移动时,SGW发生重选,新侧SGW-C会向终端设备锚定的PGW-C发送修改承载请求消息,该修改承载请求消息可用于更新GTP隧道本端IP和TEID,PGW-C向SGW-C返回修改承载响应消息,该修改承载响应消息携带GPRS隧道协议(GPRS Tunneling Protocol,GTP)隧道本端IP和隧道终点标识符(tunnel end point identifier,TEID),完成S5/S8路径切换。本申请实施例中,当SGW-C和PGW-C部署于不同的控制面网元节点,SGW-C获取第一节点标识时,可以对3GPP 29.274协议中修改承载响应消息进行扩展,在PGW-C发给SGW-C的修改承载响应消息中增加第一私有信元,该第一私有信元可以用于指示第一PGW-U的第一节点标识。在修改承载响应消息的第一私有信元中填写第一PGW-U的第一节点标识。这样SGW-C从该修改承载响应消息中获取第一PGW-U的第一节点标识。当SGW-C和PGW-C部署于不同的控制面网元节点,PGW-C获取第二节点标识时,可以对3GPP 29.274协议中修改承载请求消息进行扩展,在SGW-C发给PGW-C的修改承载请求消息中增加第二私有信元,该第二私有信元可以用于指示第一SGW-U的第二节点标识。在修改承载请求消息的第二私有信元中填写第一SGW-U的第二节点标识。这样PGW-C可以从承载请求消息中获取第一SGW-U的第二节点标识。
以下基于图2c实施例对一些可能的实现方式进行说明。
以下介绍S201c中第一控制面网元获取第一PSA-UPF的节点标识和第一I-UPF的节点标识的可选实现方式。
第一控制面网元可以是SMF或者I-SMF。
当第一控制面网元为I-SMF时,I-SMF已知第一I-UPF的节点标识(例如I-SMF从本地存储中获得第一I-UPF的节点标识),I-SMF可以从SMF获取第一PSA-UPF的节点标识。
当第一控制面网元为SMF时,在无I-SMF插入的场景下,SMF可以从本地获取到第 一PSA-UPF的节点标识和第一I-UPF的节点标识。
当第一控制面网元为SMF时,在有I-SMF插入的场景下,SMF已知第一PSA-UPF的节点标识(例如SMF从本地存储中获得第一PSA-UPF的节点标识),SMF可以从I-SMF获取第一I-UPF的节点标识。
下面分别介绍第一控制面网元为I-SMF时获取第一节点标识的可选实现方式,以及第一控制面网元为SMF获取第二节点标识的可选实现方式。
在有I-SMF插入时,则SMF可以通过与I-SMF之间的交互消息获取第一I-UPF的节点标识。可选的,I-SMF可以向SMF发送PDU会话建立请求(Nsmf_PDUSession_Create Request)消息,该PDU会话建立请求消息中可以携带第一I-UPF的节点标识。SMF接收来自I-SMF的该PDU会话建立请求消息,从该PDU会话建立请求消息中获取第一I-UPF的节点标识。
在有I-SMF插入时,则I-SMF可以通过与SMF之间的交互消息来获取第一PSA-UPF的节点标识。可选的,SMF可以向I-SMF发送PDU会话建立响应(Nsmf_PDUSession_Create Response)消息,该PDU会话建立响应消息中携带第一PSA-UPF的节点标识,I-SMF接收来自SMF的该PDU会话建立响应消息,I-SMF从该PDU会话建立响应消息中获取第一PSA-UPF的节点标识。本申请实施例中,在有I-SMF插入时,I-SMF获取第一节点标识时,可以对PDU会话建立响应消息进行扩展,在SMF发给I-SMF的PDU会话建立响应消息中增加私有信元,该私有信元可以用于指示第一PSA-UPF的节点标识。在PDU会话建立响应消息的私有信元中填写第一PSA-UPF的节点标识。这样I-SMF从该PDU会话建立响应消息中获取第一PSA-UPF的节点标识。在有I-SMF插入时,SMF获取第一I-UPF的节点标识时,可以对PDU会话建立请求消息进行扩展,在I-SMF发给SMF的PDU会话建立请求消息中增加私有信元,该私有信元可以用于指示第一I-UPF的节点标识。在PDU会话建立请求消息的私有信元中填写第一I-UPF的节点标识。这样SMF可以从PDU会话建立请求消息中获取第一I-UPF的节点标识。
综上,描述了第一控制面网元获取第一节点标识和第二节点标识的可选实现方式。以下介绍第一控制面网元根据第一节点标识和第二节点标识判断第一用户面网元与第一二用户面网元是否发生分离的可选实现方式。
判断方式1:通过判断第一节点标识和第二节点标识是否相同,来判断第一用户面网元与第二用户面网元是否发生分离。
例如,若第一节点标识与第二节点标识相同,则第一控制面网元确定第一用户面网元与第二用户面网元未分离;若第一节点标识与第二节点标识不同,则第一控制面网元确定第一用户面网元与第二用户面网元分离。
与控制面网元类似,两个用户面网元SGW-U和PGW-U也可以合设或分设。合设即两个用户面网元部署于同一个用户面网元节点,分设即两个用户面网元部署于不同的用户面网元节点。
以用户面网元是SGW-U和PGW-U为例对判断方式1进行详细介绍。
SGW-U和PGW-U合设即SGW-U和PGW-U部署于同一个用户面网元节点,SGW-U 和PGW-U分设即SGW-U和PGW-U部署于不同的用户面网元节点。用户面网元节点还可以称为物理设备、物理节点或功能网元,用户面网元节点既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。用户面网元节点例如是分布式网关(distributed gateway,DGW)。
当SGW-U和PGW-U部署于同一个用户面网元节点,SGW-U和PGW-U使用相同的节点标识,可以将SGW-U和PGW-U的节点标识设置为用户面网元节点的名称或用户面网元节点的IP或用户面网元节点的其它标识。当第一节点标识和第二节点标识不同时,则SGW-U和PGW-U位于不同的用户面网元节点,即SGW-U和PGW-U分离。因此,判断方式1中可以通过判断第一节点标识和第二节点标识是否相同,来判断第一SGW-U与第一PGW-U是否发生分离。这种判断方式比较严格且比较精准,使用判断方式1判断用户面网元分离能够有助于提高判断精准度。
判断方式2:
若第一节点标识中第一信息与第二节点标识中第二信息相同,则第一控制面网元确定第一用户面网元与第二用户面网元未分离;若第一节点标识中第一信息与第二节点标识中第二信息不同,则确定第一用户面网元与第二用户面网元分离。
其中,第一信息用于指示第一用户面网元所在区域,第二信息用于指示第二用户面网元所在区域。
本申请中,区域可以是指地理区域,可以是网元或设备之间约定好的一个地理范围,该区域是可以根据业务的需求进行变化的。该区域可以是以省、市或县为粒度的。例如,区域为A省A市,又例如区域为B省B市。
判断方式2根据节点标识中的用于指示区域的信息判断第一用户面网元与第二用户面网元是否发生分离,可以理解的是,当第一用户面网元与第二用户面网元位于不同的用户面网关节点时,第一用户面网元与第二用户面网元是可以位于同一个区域的,这种情况下,虽然第一用户面网元与第二用户面网元位于不同的用户面网关节点,但是如果采用判断方式2,则第一控制面网元会确定第一用户面网元与第二用户面网元未分离。
当两个用户面网元不在一个节点但是在一个区域时,路径传输的冗余不是很大,对PDN重建的需求不是很大,使用这种判断方式判断用户面网元是否分离,可以灵活进行分离判断,相比跨用户面网元节点判断为分离的方法来说,用户面网元在跨区域时才会判断为分离,进一步执行分离后的操作,能够避免不必要的分离后操作带来的信令消耗。
以两个用户面网元是SGW-U和PGW-U为例,判断方式2需要第一节点标识和第二节点标识采用结构化命名方式,其中部分字段用于标识区域,例如第一节点标识中用于标识区域的第一信息,第二节点标识中用于标识区域的第二信息。
判断方式3:
若第一节点标识和第二节点标识在同一个组中,则确定第一用户面网元与第二用户面网元未分离;若第一节点标识和第二节点标识不在同一个组中或者第一节点标识和第二节点标识在不同的组,则确定第一用户面网元与第二用户面网元分离;
本申请中,“组”也可以称为集合、列表、或组合。可选的,一个组中的用户面网元与第二用户面网元可以位于同一区域。第一控制面网元可以预先配置一个或多个组,处于相同区域的第一用户面网元与第二用户面网元的节点标识配置于一个组内。
判断方式3根据第一节点标识和第二节点标识是否在同一个组内来判断第一用户面网元与第二用户面网元是否发生分离,可以理解的是,当第一用户面网元与第二用户面网元位于不同的用户面网关节点时,第一用户面网元与第二用户面网元的节点标识也是可以位于同一个组的,这种情况下,虽然第一用户面网元与第二用户面网元位于不同的用户面网关节点,但是如果采用判断方式3,则第一控制面网元会确定第一用户面网元与第二用户面网元未分离。
当两个用户面网元不在一个节点但是在一个区域时,路径传输的冗余不是很大,对PDN重建的需求不是很大,使用这种判断方式判断用户面网元是否分离,可以灵活进行分离判断,相比跨用户面网元节点判断为分离的方法来说,用户面网元在跨区域时才会判断为分离,进一步执行分离后的操作,能够避免不必要的分离后操作带来的信令消耗。
当两个用户面网元是SGW-U和PGW-U时,上述判断方式1和判断方式3中,节点标识不需要采用结构化命名,当前在网的设备已经配置了节点标识的情况下,在网的设备不需要对节点标识进行修改。
综上,描述了第一控制面网元根据第一节点标识和第二节点标识判断第一用户面网元与第二用户面网元是否发生分离的可选实现方式。包括判断方式1、判断方式2和判断方式3。
下面结合具体的应用场景,对上述判断方式1、判断方式2和判断方式3进行举例介绍。
首先以4G通信系统中的应用场景为例进行介绍。
如图3所示,示出了终端设备移动过程的两种场景。在场景一,终端设备从A市a县移动到A市b县;在场景二,终端设备从A市b县移动到B市。
在A市a县、A市b县和B市中,SGW-U和PGW-U均部署于同一个用户面网关节点。在A市a县SGW-U1和PGW-U1部署于DGW1。在A市b县SGW-U2和PGW-U2部署于DGW2。在B市SGW-U3和PGW-U3部署于DGW3。A市a县、A市b县和B市属于A省,控制面网元位于A省。SGW-C和PGW-C部署于同一个控制面网关节点,在A省,SGW-C和PGW-C部署于CGW。同一套控制面网元连接多个区域的用户面网元,A省的SGW-C连接SGW-U1、SGW-U2和SGW-U3,A省的PGW-C连接PGW-U1、PGW-U2和PGW-U3。图3还示意了A省的SGW-C连接MME。
从图3可以看出,在场景一中,当终端设备从A市a县移动到A市b县,SGW-U发生重选,由SGW-U1改变至SGW-U2,PGW-U1锚定不变。这样,SGW-U2在DGW2,PGW-U1在DGW1,即SGW-U2和PGW-U1在不同的用户面网关节点。在场景二中,当终端设备从A市b县移动到B市,SGW-U发生重选,由SGW-U2改变至SGW-U3,PGW-U2锚定不变。
第一控制面网元可以采用上述判断方式1~判断方式3判断是否发生用户面网元的分离,第一控制面网元可以是A省的SGW-C也可以是A省的PGW-C。
若第一控制面网元采用上述判断方式1判断场景一是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U2的节点标识与PGW-U1的节点标识是否相同。例如,SGW-U2的节点标识为“DGW2”,PGW-U1的节点标识为“DGW1”,第一控制面网元比较“DGW2”与“DGW1”不同(即DGW2≠DGW1),则认为SGW-U和PGW-U分离。
若第一控制面网元采用上述判断方式2判断场景一是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U2的节点标识中第一信息与PGW-U1的节点标识中的第二信息是否相同,若相同则用户面网元未分离,若不同则用户面网元分离。例如,SGW-U2的节点标识为“DGW2.cityA.provinceA”,其中,用于指示SGW-U2所在区域的第一信息为“cityA.provinceA”;PGW-U1的节点标识为“DGW1.cityA.provinceA”,其中,用于指示PGW-U1所在区域的第二信息为“cityA.provinceA”。第一信息与第二信息相同,则第一控制面网元确定用户面网元未分离。可以看出,第一控制面网元根据判断方式1和判断方式2判断场景一是否发生用户面网元分离的结果是不同的。
若第一控制面网元采用上述判断方式2判断场景二是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U3的节点标识中第一信息与PGW-U2的节点标识中的第二信息是否相同,若相同则用户面网元未分离,若不同则用户面网元分离。例如,SGW-U3的节点标识为“DGW3.cityB.provinceA”,其中,用于指示SGW-U3所在区域的第一信息为“cityB.provinceA”;PGW-U2的节点标识为“DGW2.cityA.provinceA”,其中,用于指示PGW-U2所在区域的第二信息为“cityA.provinceA”。第一信息与第二信息不同,则第一控制面网元确定用户面网元分离。
若第一控制面网元采用上述判断方式3判断场景一是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U2的节点标识与PGW-U1的节点标识是否在同一组中,若在同一组中,则用户面网元未分离,否则用户面网元分离。第一控制面网元可以预先配置一个或多个组,例如第一控制面网元配置组1为{DGW1,DGW2};组2为{DGW3}。SGW-U2的节点标识为“DGW2”,PGW-U1的节点标识为“DGW1”,第一控制面网元确定SGW-U2的节点标识与PGW-U1的节点标识在同一组内,则确定用户面网元未分离。
若第一控制面网元采用上述判断方式3判断场景二是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U3的节点标识与PGW-U2的节点标识是否在同一组中,若在同一组中,则用户面网元未分离,否则用户面网元分离。第一控制面网元可以预先配置一个或多个组,例如第一控制面网元配置组1为{DGW1,DGW2};组2为{DGW3}。SGW-U3的节点标识为“DGW3”,PGW-U2的节点标识为“DGW2”,第一控制面网元SGW-U3的节点标识与PGW-U3的节点标识不在同一组内,则确定用户面网元分离。
图3所示的举例为SGW-C和PGW-C部署于相同的控制面网元节点。以下通过图4来举例SGW-C和PGW-C部署于不同的控制面网元节点的通信场景。需要说明的是,图4所示的场景示意了一种可能的部署情况,实际应用中还可能存在一个DGW连接多个CGW的通信场景。
如图4所示,示出了终端设备移动过程的两种场景。在场景三,终端设备从A省的B市移动到A省的C市;在场景四,终端设备从A省的C市移动到B省的D市。
在A省的B市、A省的C市和B省的D市中,SGW-U和PGW-U均部署于同一个用户面网关节点。在A省的B市SGW-U2和PGW-U2部署于DGW2。在A省的C市SGW-U3和PGW-U3部署于DGW3。在B省的D市中SGW-U4和PGW-U4部署于DGW4。A省的PGW-C1位于CGW1,PGW-C1连接PGW-U2。A省的SGW-C2和PGW-C2位于CGW2,SGW-C2连接SGW-U3,PGW-C2连接PGW-U3。B省的SGW-C3和PGW-C3位于CGW3,SGW-C3连接SGW-U4,PGW-C3连接PGW-U4。图4还示意了A省的MME1连接CGW2和CGW2,B省的MME2连接CGW3。
从图4可以看出,在场景三中,当终端设备从A省的B市移动到A省的C市,MME1会根据终端设备的位置重新选择SGW-C,由原来的SGW-C1重选至SGW-C2。SGW-C2会为终端设备选择SGW-U3。这样SGW-U由原来的SGW-U2改变为SGW-U3。PGW-C1和PGW-U2锚定不变。SGW-C2和PGW-C1在不同的CGW。
第一控制面网元可以通过交互消息来获取用于比较的节点标识。第一控制面网元可以是SGW-C2,也可以是PGW-C1。PGW-C1和SGW-C2之间可以传输消息来交互用户面网元的节点标识。例如,SGW-C2可以向PGW-C1发送修改承载请求(Modify Bearer Request)消息,该修改承载请求消息中可以携带SGW-U3的节点标识。PGW-C1接收来自SGW-C2的该修改承载请求消息,从该修改承载请求消息中获取SGW-U3的节点标识。PGW-C1可以向SGW-C2发送修改承载响应(Modify Bearer Response)消息,该修改承载响应消息中携带PGW-U2的节点标识,SGW-C2接收来自PGW-C1的该修改承载响应消息,SGW-C2从该修改承载响应消息中获取PGW-U2的节点标识。
第一控制面网元可以采用上述判断方式1~判断方式3判断场景三是否发生用户面网元的分离。
若第一控制面网元采用上述判断方式1判断场景三是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U3的节点标识与PGW-U2的节点标识是否相同。例如,SGW-U3的节点标识为“DGW3”,PGW-U2的节点标识为“DGW2”,第一控制面网元比较“DGW3”与“DGW2”不同(即DGW3≠DGW2),则认为用户面网元发生分离。
若第一控制面网元采用上述判断方式2判断场景三是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U3的节点标识中第一信息与PGW-U2的节点标识中的第二信息是否相同,若相同则用户面网元未分离,若不同则用户面网元分离。第一信息和第二信息为用于表示区域的信息。用于表示区域的信息可以为表示省份的信息。例如,SGW-U3的节点标识为“DGW3.cityC.provinceA”,其中,用于指示SGW-U3所在区域的第一信息为“provinceA”;PGW-U2的节点标识为“DGW2.cityB.provinceA”,其中,用于指示PGW-U1所在区域的第二信息为“provinceA”。“provinceA”=“provinceA”,即第一信息与第二信息相同,则第一控制面网元确定用户面网元未分离。用于表示区域的信息也可以为表示市的信息。例如,SGW-U3的节点标识为“DGW3.cityC.provinceA”,其中,用于指示SGW-U3所在区域的第一信息为“cityC.provinceA”;PGW-U2的节点标识为“DGW2.cityB.provinceA”,其中,用于指示PGW-U1所在区域的第二信息为“cityB.provinceA”。第一信息与第二信息不同,则第一控制面网元确定用户面网元分离。
若第一控制面网元采用上述判断方式3判断场景三是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U3的节点标识与PGW-U2的节点标识是否在同一组中,若在同一组中,则用户面网元未分离,否则用户面网元分离。第一控制面网元可以预先配置一个或多个组,例如第一控制面网元配置组1为{DGW1,DGW2,DGW3};组2为{DGW4}。SGW-U3的节点标识为“DGW3”,PGW-U2的节点标识为“DGW2”,第一控制面网元确定SGW-U3的节点标识与PGW-U2的节点标识在同一组内,则确定用户面网元未分离。
如图4所示,在场景四中,当终端设备从A省的C市移动到B省的D市,MME2会根据终端设备的位置重新选择SGW-C,由原来的SGW-C2重选至SGW-C3。SGW-C3会为终端设备选择SGW-U4。这样SGW-U由原来的SGW-U3改变为SGW-U4。PGW-C2和PGW-U3锚定不变。SGW-C3和PGW-C2在不同的CGW。
第一控制面网元可以通过交互消息来获取用于比较的节点标识。第一控制面网元可以是SGW-C3,也可以是PGW-C2。PGW-C2和SGW-C3之间可以传输消息来交互用户面网元的节点标识。例如,SGW-C3可以向PGW-C2发送修改承载请求(Modify Bearer Request)消息,该修改承载请求消息中可以携带SGW-U4的节点标识。PGW-C2接收来自SGW-C3的该修改承载请求消息,从该修改承载请求消息中获取SGW-U4的节点标识。PGW-C2可以向SGW-C3发送修改承载响应(Modify Bearer Response)消息,该修改承载响应消息中携带PGW-U3的节点标识,SGW-C3接收来自PGW-C2的该修改承载响应消息,SGW-C3从该修改承载响应消息中获取PGW-U3的节点标识。
第一控制面网元可以采用上述判断方式1~判断方式3判断场景四是否发生用户面网元的分离。下面以判断方式2和判断方式3进行举例介绍。
若第一控制面网元采用上述判断方式2判断场景四是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U4的节点标识中第一信息与PGW-U3的节点标识中的第二信息是否相同,若相同则用户面网元未分离,若不同则用户面网元分离。第一信息和第二信息为用于表示区域的信息。用于表示区域的信息可以为表示省份的信息。例如,SGW-U3的节点标识为“DGW4.cityD.provinceB”,其中,用于指示SGW-U3所在区域的第一信息为“provinceB”;PGW-U3的节点标识为“DGW3.cityC.provinceA”,其中,用于指示PGW-U1所在区域的第二信息为“provinceA”。“provinceA”≠“provinceB”,即第一信息与第二信息不同,则第一控制面网元确定用户面网元分离。
若第一控制面网元采用上述判断方式3判断场景四是否发生用户面网元的分离,则,第一控制面网元可以判断SGW-U4的节点标识与PGW-U3的节点标识是否在同一组中,若在同一组中,则用户面网元未分离,否则用户面网元分离。第一控制面网元可以预先配置一个或多个组,例如第一控制面网元配置组1为{DGW1,DGW2,DGW3};组2为{DGW4}。SGW-U4的节点标识为“DGW4”,PGW-U3的节点标识为“DGW3”,第一控制面网元确定SGW-U4的节点标识与PGW-U3的节点标识不在同一组内,则确定用户面网元分离。
综上,描述了第一控制面网元根据第一节点标识与第二节点标识判断用户面网元是否发生分离。以下介绍如果第一控制面网元确定用户面网元发生分离,可以执行的后续操作。
在一个实施例中,第一控制面网元若确定第一SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接。可选的,第一控制面网元为SGW-C,SGW-C若确定第一SGW-U与第一PGW-U发生分离,则在终端设备的S1连接释放时,发起重建终端设备的PDN连接,这样能够避免对正在进行的数据和语音业务造成影响。其中,S1连接释放也可以替换为终端设备一段时间内没有数据传输,或者替换为终端设备进入空闲态。或者,第一控制面网元为PGW-C,则PGW-C若确定第一SGW-U与第一PGW-U发生分离,则在终端设备在设定时间内没有流量时,发起重建终端设备的PDN连接,这样能够避免对正在进行的数据和语音业务造成影响。
在一个可能的设计中,第一控制面网元在发起PDN重建之前也可以使用定时器。例如第一控制面网元为SGW-C,SGW-C在终端设备的S1连接释放时,启动定时器,在定时器超时后,若第一SGW-U与第一PGW-U仍然分离且终端设备仍处于空闲态,则发起重建终端设备的PDN连接。
如图5所示,下面以第一控制面网元为SGW-C为例,结合具体场景对第一控制面网元触发分离判断的流程进行说明。终端设备在移动过程中,MME根据终端设备的位置重 选SGW-C,重选的SGW-C即第一控制面网元,PGW-C锚定不变。
S501.终端设备向网络设备发送跟踪区更(tracking area update,TAU)请求(request),网络设备接收该TAU请求。
S502.网络设备向MME发送TAU请求,MME接收该TAU请求。
S503.MME向SGW-C发送建立会话请求(create session request),SGW-C接收该建立会话请求。
S504.SGW-C向PGW-C发送修改承载请求(modify bearer request),PGW-C接收该修改承载请求。
S505.PGW-C向SGW-C返回修改承载响应(modify bearer response),SGW-C接收该修改承载响应。
S506.SGW-C判断用户面网元是否发生分离(即SGW-U与PGW-U是否发生分离),如果确定用户面网元发生分离,则对发生SGW-U和PGW-U分离的PDN连接进行标记。
其中,用户面网元发生分离,即PDN连接激活的SGW-U和PGW-U不在一个物理节点/用户面网元。
S507.SGW-C向MME返回建立会话响应(create session response),MME接收该建立会话响应。
S508.MME向终端设备返回TAU接受(TAU accept)消息。
可以理解的是,本实施例是以TAU流程引起SGW重选为例,其它流程(例如S1/X2切换流程)也可能会引起SGW重选,其它流程引起SGW重选后的流程可以参考本实施例。
基于图5实施例,如图6所示,下面以第一控制面网元为SGW-C为例,结合具体场景对第一控制面网元启动定时器的流程进行说明。终端设备在移动过程中,MME根据终端设备的位置重选SGW-C,重选的SGW-C即第一控制面网元,PGW-C锚定不变。在终端设备的S1连接释放时,SGW-C对于SGW-U和PGW-U分离触发PDN连接重建。
S601.网络设备向MME发送S1用户上下文释放请求(S1UE context release request),MME接收该S1用户上下文释放请求。
S602.MME向SGW-C发送释放连接承载请求(release access bearer request),SGW-C接收该释放连接承载请求。
S603.SGW-C启动定时器。
S604.SGW-C向MME返回释放连接承载响应(release access bearer response),MME接收该释放连接承载响应。
S605.MME向网络设备返回S1用户上下文释放命令(S1 UE context release command),网络设备接收该S1用户上下文释放命令。
S606.网络设备向终端设备发送无线资源控制(radio resource control,RRC)连接释放(RRC connection release)消息,终端设备接收该RRC连接释放消息。
S607.网络设备向MME发送S1用户上下文释放完成(S1 UE context release complete)消息,MME接收该S1用户上下文释放完成消息。
S608.SGW-C确定定时器超时,触发终端设备的PDN重建流程。
基于图5和/或图6实施例,如图7所示,下面以第一控制面网元为SGW-C为例,结合具体场景对第一控制面网元发起PDN重建的流程进行详细说明。终端设备在移动过程中,MME根据终端设备的位置重选SGW-C,重选的SGW-C即第一控制面网元,PGW-C 锚定不变。
S701.SGW-C向PGW-C发送删除会话请求(delete session request),PGW-C接收来自SGW-C的该删除会话请求。
S702.PGW-C向SGW-C发送删除会话响应(delete session response),SGW-C接收来自PGW-C的该删除会话响应。
S703.SGW-C向MME发送删除承载请求(delete bearer request),MME接收该删除承载请求。
该删除承载请求携带以下一种或多种信息:关联的演进分组系统(evolved packet system,EPS)承载标识,删除原因。例如删除原因为请求重激活(reactivation requested)。通过携带删除原因的信息,可以让终端设备再次激活,在激活过程中,SGW-C/PGW-C为终端设备选择合一的SGW-U/PGW-U,就可以实现用户面网元合一,使得数据或语音流量转发的路径更优。
S704.MME发起针对终端设备的寻呼。
S705.MME向网络设备发送无线接入承载(E-UTRAN radio access bearer,E-RAB)释放命令或去激活EPS承载上下文请求(deactive EPS bearer context request),网络设备接收该E-RAB释放命令或去激活EPS承载上下文请求。
S706.网络设备向终端设备发送无线承载释放请求(radio bearer release request),终端设备接收该无线承载释放请求。
S707.终端设备向网络设备发送无线承载释放响应(radio bearer release response),网络设备接收该无线承载释放响应。
S708.网络设备向MME发送E-RAB释放响应(E-RAB release response),MME接收该E-RAB释放响应。
S709.终端设备向网络设备发送去激活EPS承载上下文接受(deactive EPS bearer context accept)消息,网络设备接收该去激活EPS承载上下文接受消息。
S710.网络设备向MME发送去激活EPS承载上下文接受(deactive EPS bearer context accept)消息,MME接收该去激活EPS承载上下文接受消息。
S711.MME向SGW-C发送删除承载响应(delete bearer response),SGW-C接收该删除承载响应。
可以理解的是,图5~图7以第一控制面网元为SGW-C为例对发起PDN重建的流程进行举例说明。如果第一控制面网元为PGW-C可以通过类似的过程得到。需要注意的是,当第一控制面网元为PGW-C时,PGW-C可以在终端设备没有流量一定时间后,触发终端设备的PDN重建流程。PGW-C可以向新SGW-C删除承载请求。新SGW-C在收到来自PGW-C的该删除承载请求后,执行S703~S711的步骤。
基于同一技术构思,本申请实施例还提供一种用户面网元分离的确定方法,如图8所示,该用户面网元分离的确定方法的流程如下所述。该方法的执行主体为SGW-C,SGW-C与第一PGW-C位于不同的控制面网元节点。
S801.SGW-C获取第一PGW-C的地址;
S802.SGW-C根据第一PGW-C的地址和预设地址,判断SGW-U和第一PGW-U是否发生分离,或者,判断是否发起重建终端设备的PDN连接。
其中,预设地址包括与SGW-C位于同一区域的一个或多个PGW-C的地址,PGW-C 的地址例如可以是S5/S8接口IP地址;第一PGW-U为终端设备访问PDN的用户面锚点,第一PGW-C为终端设备访问PDN的控制面锚点。
SGW-C若根据第一PGW-C的地址和预设地址,确定SGW-U和第一PGW-U是否发生分离,则可以触发重建终端设备的PDN连接。
SGW-C也可以根据第一PGW-C的地址和预设地址,判断是否重建终端设备的PDN连接。
可选的,若预设地址中包括第一PGW-C的地址,则SGW-C确定SGW-U和第一PGW-U未发生分离,或确定不需要发起PDN连接的重建。
若预设地址中不包括第一PGW-C的地址,则SGW-C确定SGW-U和第一PGW-U发生分离,或确定发起重建终端设备的PDN连接。
可选的,SGW-C获取第一PGW-C的地址可以通过下述方式实现。终端设备移动过程中,MME根据终端设备的位置选出新SGW-C,根据3GPP 29.274协议,MME会给新SGW-C发送产生会话请求(Create Session Request)消息,该消息中携带终端设备锚定的第一PGW-C的S5/S8接口地址。SGW-C根据第一PGW-C的S5/S8接口地址是否在预设地址中,判断是否发生SGW-U和第一PGW-U的分离。
图8实施例,通过控制面网元的地址判断用户面网元是否发生分离,通过按照区域预设控制面网元的分组,当确定控制面网元分离时(即第一PGW-C的地址不在预设地址中时),确定用户面网元发生分离。预设地址是与SGW-C在同一区域的PGW-C的地址,这样可以根据业务需求来划分区域,从而设置预设地址,这样使得判断用户面网元的分离更加灵活贴切业务需求。图8实施例能够适用于跨较大区域范围进行用户面网元分离判断的场景。在非CUPS场景下MME根据SGW和PGW的规范节点名进行SGW和PGW分离判断,MME判断用户面分离的这种方案中,需要对网关节点进行规范化和结构化命名,要求UE在2/3/4/5G互操作时保证网关节点名称信息有效传递且不丢失,图8实施例与上述MME判断用户面分离的方案相比,图8实施例也能够实现通过控制面网元的地址判断用户面网元分离的效果,但是图8实施例不需要对网关节点进行规范化和结构化命名,并且不需要要求UE在2/3/4/5G互操作时保证网关节点名称信息有效传递且不丢失。
图8实施例可以在SGW-U和PGW-U跨控制面网元的管理区域的场景下,判断用户面网元是否发生分离,在这种场景下,通过图8实施例进行判断,判断粒度比较大。在一个方案A中,一旦确定控制面网元分离则确定用户面网元发生分离,例如,SGW-C对比Create Session Request消息中PGW-C S5/S8 IP与本地PGW-C S5/S8 IP不同,则确定SGW-C与自己不在同一台控制面网元节点上,则认为用户面网元也会发生分离。图8实施例相比于该方案A,判断粒度比较大,能够减少用户面分离的判定结果,并进一步减少确定用户面分离后的操作,例如PDN重建,从而减少信令的开销。
下面结合具体的应用场景,对图8实施例进行进一步详细说明。
如图9所示,示出了终端设备移动过程的两种场景。在场景五,终端设备从A省的B市移动到C市;在场景六,终端设备从A省的C市移动到B省的D市。如图9所示,在A省的B市、C市以及B省的D市,SGW-U和PGW-U均部署于同一个用户面网元节点。在A省的B市SGW-U2和PGW-U2部署于DGW2。在A省的C市SGW-U3和PGW-U3部署于DGW3。在B省的D市中SGW-U4和PGW-U4部署于DGW4。A省的PGW-C1位于CGW1,PGW-C1连接PGW-U2。A省的SGW-C2和PGW-C2位于CGW2,SGW-C2连 接SGW-U3,PGW-C2连接PGW-U3。B省的SGW-C3和PGW-C3位于CGW3,SGW-C3连接SGW-U4,PGW-C3连接PGW-U4。图9还示意了A省的MME1连接CGW2和CGW2,B省的MME2连接CGW3。
在场景五中,终端设备从A省的B市移动到C市,MME根据终端设备的位置重新选择SGW-C,由原来的SGW-C1重选至SGW-C2。SGW-C2会为终端设备选择SGW-U3。这样SGW-U由原来的SGW-U2改变为SGW-U3。PGW-C1和PGW-U2锚定不变。
SGW-C2可以从来自MME的create session request消息中获取PGW-C1的地址,例如,PGW-C1的地址为S5/S8IP“1.1.1.1”。如果采用上述方案A判断用户面网元是否分离,SGW-C2将PGW-C1的地址与本地PGW-C2的地址S5/S8IP“2.2.2.2”不同,则缺省认为发生了SGW-U和PGW-U分离。如果采用图8实施例的方案,SGW-C2上配置有预设地址,该预设地址包括{1.1.1.1}。SGW-C2确定PGW-C1的地址在预设地址中,则认为未发生SGW-U和PGW-U分离。采用图8实施例,虽然PGW-C1的地址与本地PGW-C2的地址S5/S8IP“2.2.2.2”不同,但是该PGW-C1的地址在预设地址中,也会认为未发生SGW-U和PGW-U分离。
在场景六中,终端设备从A省C市移动到B省D市时,MME根据终端设备的位置重新选择SGW-C,由原来的SGW-C2重选至SGW-C3,SGW-C3为终端设备选择SGW-U4。PGW-C2和PGW-U3锚定不变。
SGW-C3上配置预设地址{4.4.4.4,5.5.5.5}。SGW-C3从MME发来的create session request消息中获取PGW-C2的地址:S5/S8IP”2.2.2.2”,SGW-C3确定PGW-C2的地址与本地PGW-C3的S5/S8IP“3.3.3.3”不同,且该PGW-C2的地址不在预设地址{4.4.4.4,5.5.5.5}中,则认为发生了SGW-U和PGW-U分离。
通过图9的场景可以看出,根据图8实施例,当终端设备在A省内移动时,一般未判断为用户面网元分离,当终端设备跨省移动时,会存在用户面分离的判定结果。
与图8实施例的技术构思相同,本申请实施例还提供一种用户面网元分离的确定方法,如图10所示,该用户面网元分离的确定方法的流程如下所述。该方法的执行主体为PGW-C,PGW-C与第一SGW-C位于不同的控制面网元节点。
S1001.PGW-C获取第一SGW-C的地址;
S1002.PGW-C根据第一SGW-C的地址和预设地址,判断PGW-U和第一SGW-U是否发生分离,或者,判断是否发起重建终端设备的PDN连接。为方便区分,图10实施例中的预设地址可以记为第二预设地址。
其中,第二预设地址包括与PGW-C位于同一区域的一个或多个SGW-C的地址,SGW-C的地址例如可以是S5/S8接口IP地址。
PGW-U为终端设备访问PDN的用户面锚点,PGW-C为终端设备访问PDN的控制面锚点。
PGW-C若根据第一SGW-C的地址和预设地址,确定PGW-U和第一SGW-U是否发生分离,则可以触发重建终端设备的PDN连接。
PGW-C也可以根据第一SGW-C的地址和预设地址,判断是否重建终端设备的PDN连接。
可选的,若预设地址中包括第一SGW-C的地址,则PGW-C确定PGW-U和第一SGW-U未发生分离,或确定不需要发起PDN连接的重建。
若预设地址中不包括第一SGW-C的地址,则PGW-C确定PGW-U和第一SGW-U发生分离,或确定发起重建终端设备的PDN连接。
可选的,PGW-C获取第一SGW-C的地址可以通过下述方式实现。终端设备移动过程中,MME根据终端设备的位置选出新SGW-C,即第一SGW-C,第一SGW-C向PGW-C发送修改承载请求(modify bearer request)消息,该消息中携带新SGW-C的S5/S8接口地址。PGW-C根据第一SGW-C的S5/S8接口地址是否在预设地址中,判断是否发生PGW-U和第一SGW-U的分离。
图10实施例与图8实施例基于同一技术构思,只是执行主体不同,可以理解的是,基于图10实施例的应用场景的举例,也可以参考图9实施例所示的应用场景,只需要将执行主体由SGW-C更换为PGW-C即可。
图10实施例所带来的有益效果也可以参考图8实施例所述。图10通过控制面网元的地址判断用户面网元是否发生分离,通过按照区域预设控制面网元的分组,当确定控制面网元分离时(即第一SGW-C的地址不在预设地址中时),确定用户面网元发生分离。预设地址是与PGW-C在同一区域的SGW-C的地址,这样可以根据业务需求来划分区域,从而设置预设地址,这样使得判断用户面网元的分离更加灵活贴切业务需求。类似图8实施例的效果,图10实施例也不需要对网关节点进行规范化和结构化命名,以及判断粒度比较大,能够减少用户面分离的判定结果,并进一步减少确定用户面分离后的操作,例如PDN重建,从而减少信令的开销。
图8和图10实施例提供的用户面网元分离的确定方法,在确定用户面网元分离之后的操作,可以参考图2b实施例在确定用户面网元分离之后的操作,在此不予赘述。例如,在确定用户面网元分离之后发起重建终端设备的PDN连接。
当本申请实施例应用于5G通信系统时,结合图2c提供的用户面网元分离的确定方法,以下通过一些具体的应用场景对用户面网元分离的确定方法作进一步详细介绍。
如图11所示,在5G通信系统下,用户面网元分离的确定方法的流程如下所述。
S1101.终端设备向接入网设备发送服务请求(service request),接入网设备接收来自终端设备的服务请求。
当终端设备在SMF管理区域内移动时,如果需要进行数据业务,终端设备则会发起服务请求流程。
S1102.接入网设备向AMF发送N2信息,AMF接收来自接入网设备的N2信息。
该N2信息中携带该服务请求。
S1103.AMF向SMF发送PDU会话更新上下文请求(Nsmf_PDUsession updateSMcontext request),SMF接收来自AMF的该PDU会话更新上下文请求。
S1104.SMF选择UPF。
当终端设备移动出PSA-UPF的覆盖范围时,SMF根据终端设备接入区域判断PSA-UPF(即PDU会话锚点UPF)是否可以对此区域进行服务,若否,则SMF选择一个I-UPF进行中继,和本区域无线网络互通,实现网络的端到端连接。
S1105.SMF向I-UPF发送N4会话建立请求(N4 Session Establishment Request),I-UPF接收该N4会话建立请求。
S1106.I-UPF向SMF返回N4会话建立响应(N4 Session Establishment Response),SMF接收该N4会话建立响应。
S1107.SMF向PSA-UPF发送N4会话修改请求(N4 Session modification Request),PSA-UPF接收该N4会话修改请求。
S1108.PSA-UPF向SMF返回N4会话修改响应(N4 Session modification Response),SMF接收该N4会话修改响应。
S1109.SMF判断用户面网元是否发生分离。
若SMF确定用户面网元发生分离,则对发生用户面网元分离对应的承载进行标记。
SMF可以根据I-UPF的节点标识和PSA-UPF的节点标识进行分离判断,判断方法可以参考上文中的判断方式1~判断方式3的任一种。I-UPF的节点标识和PSA-UPF的节点标识例如可以是UPF节点标识(UPF Node ID),也可以是其它标识,例如UPF NfInstance Id(3GPP 29.571)。SMF根据PSA-UPF的节点标识和I-UPF的节点标识,判断用户面是否发生分离,即判断PSA-UPF和I-UPF是否发生分离。当SMF确定PSA-UPF和I-UPF发生分离时,可以触发终端设备的PDU会话重建。
S1110.SMF向AMF发送PDU会话更新上下文响应(Nsmf_PDUsession updateSMcontext response)。AMF接收该PDU会话更新上下文响应。
S1111.AMF向接入网设备发送N2应答(N2 request)。接入网设备接收并响应该N2应答。
S1112.AMF向SMF发送PDU会话更新上下文请求(Nsmf_PDUsession updateSMcontext request),SMF接收来自AMF的该PDU会话更新上下文请求。
S1113.SMF向I-UPF发送N4会话修改请求(N4 Session modification Request),I-UPF接收该N4会话修改请求。
S1114.I-UPF向SMF返回N4会话修改响应(N4 Session modification Response),SMF接收该N4会话修改响应。
S1115.SMF向AMF发送PDU会话更新上下文响应(Nsmf_PDUsession updateSMcontext response)。AMF接收该PDU会话更新上下文响应。
可以理解的是,图11实施例触发用户面网元分离判断的条件是一种举例,SMF在发现有I-UPF时会进行用户面网元的分离判断,其它类似于Xn/N2切换也可以引起I-UPF的插入,从而触发SMF进行用户面网元的分离判断。
如图12所示,在5G通信系统下,结合图2c提供的用户面网元分离的确定方法,用户面网元分离的确定方法的流程如下所述。
S1201.终端设备向接入网设备发送服务请求(service request),接入网设备接收来自终端设备的服务请求。
当终端设备在SMF管理区域内移动时,如果需要进行数据业务,终端设备则会发起服务请求流程。
S1202.接入网设备向AMF发送N2信息,AMF接收来自接入网设备的N2信息。
该N2信息中携带该服务请求。
S1203.AMF进行SMF选择。
当终端设备移动出SMF服务范围时,AMF会根据终端设备接入区域判断该终端设备已移出原有SMF管理范围,AMF根据终端设备接入区域选择插入一个I-SMF。
S1204.AMF向I-SMF发送PDU会话创建上下文请求(Nsmf_PDUSession_CreateSMContext Request),I-SMF接收来自AMF的该PDU会话创 建上下文请求。
S1205.I-SMF与SMF进行PDU会话上下文的传输。
S1206.I-SMF与I-UPF之间进行N4会话的建立。
I-SMF选择I-UPF进行中继,I-SMF选择新区域的I-UPF,与新区域无线网络互通。
S1207.I-SMF向SMF发送PDU会话建立请求(Nsmf_PDUSession_Create Request)消息。
其中,该Nsmf_PDUSession_Create Request消息中可以携带私有信元,用于指示I-UPF的节点标识。
或者,该Nsmf_PDUSession_Create Request消息中可以携带I-SMF的N16a接口地址,例如,可以通过PDU会话建立请求消息中的ismfPduSessionUri信元携带I-SMF的N16a接口地址。或者该Nsmf_PDUSession_Create Request消息中可以携带I-SMF的节点标识,例如ismId。其中,ismId可以是3GPP 29.502协议中的I-SMF NfInstanceId。
S1208.SMF与PSA-UPF之间进行N4会话修改流程。
S1209.SMF向I-SMF发送PDU会话建立响应(Nsmf_PDUSession_Create Response)消息。
其中,SMF向I-SMF发送的PDU会话建立响应(Nsmf_PDUSession_Create Response)消息中携带私有信元,用于指示PSA-UPF的节点标识。
或者,该Nsmf_PDUSession_Create Response消息可以携带SMF的N16a接口地址。例如,可以通过PDU会话建立响应消息中的http消息头“Location”携带SMF的N16a接口地址。或者,该Nsmf_PDUSession_Create Response消息可以携带SMF的节点标识,例如smfInstanceId。其中,smfInstanceId可以是3GPP 29.502协议中的SMF NfInstanceId。
S1210.SMF或I-SMF进行用户面网元的分离判断。
SMF或I-SMF进行用户面网元的分离判断的判断方法可以参考上文中的判断方式1~判断方式3的任一种。
例如,SMF或I-SMF可以根据I-UPF的节点标识和PSA-UPF的节点标识进行分离判断。又例如,在跨较大区域范围的场景下进行用户面网关的分离判断时,可以通过控制面网关分离来判断用户面网关分离。SMF或I-SMF可以根据I-SMF节点标识或SMF节点标识是否在预设组中,判断控制面网关分离,进一步判断用户面网关分离。也可以通过比较I-SMF节点标识和SMF节点标识是否相同,来判断控制面网关分离,进一步判断用户面网关分离。
5G协议中在插入I-SMF时,I-SMF和SMF在交互Nsmf_PDUSession_Create Request(ismfId)和Nsmf_PDUSession_Create Response(smfInstanceId)消息时,I-SMF和SMF会交换彼此的节点标识,即ismfId和smfinstanceId,I-SMF/SMF可以通过比较节点标识来判断控制面网关是否分离,进一步判断用户面网关是否分离,不需要比较接口地址了。
当SMF或I-SMF确定PSA-UPF和I-UPF发生分离时,可以触发终端设备的PDU会话重建。
S1211.I-SMF向AMF发送PDU会话建立上下文响应(Nsmf_PDUSession_CreateSMContextResponse),AMF接收该PDU会话建立上下文响应。
S1212.AMF向接入网设备发送N2应答(N2 request)。接入网设备接收并响应该N2应答。
S1213.AMF向I-SMF发送PDU会话更新上下文请求(Nsmf_PDUsession updateSMcontext request),I-SMF接收来自AMF的该PDU会话更新上下文请求。
S1214.I-SMF与I-UPF之间执行N4会话修改流程。
S1215.I-SMF与SMF之间执行PDU会话更新流程。
S1216.I-SMF向AMF发送PDU会话更新上下文响应(Nsmf_PDUsession updateSMcontext response)。AMF接收该PDU会话更新上下文响应。
可以理解的是,图12实施例触发用户面网元分离判断的条件是一种举例,其它类似于Xn/N2切换也可以引起I-SMF的插入,从而触发SMF/I-SMF进行用户面网元的分离判断。
如图13所示,下面以插入I-UPF且无I-SMF插入的场景为例,结合图2c提供的用户面网元分离的确定方法,对用户面网元分离后的操作进行举例说明。
S1301.终端设备与接入网设备执行接入网连接释放((R)AN Connection Release)流程。
S1302.接入网设备与AMF之间执行N2用户设备上下文释放流程。
该过程可以包括接入网设备向AMF发送N2用户设备上下文释放请求(N2 UE Context Release Request)消息、以及AMF向接入网设备发送N2用户设备上下文释放命令(N2 UE Context Release Command)消息、以及接入网设备向AMF发送N2用户设备上下文释放完成(N2 UE Context Release Complete)消息。
S1303.AMF向SMF发送PDU会话更新上下文请求,SMF接收该PDU会话更新上下文请求。
S1304.SMF启动PDU重建定时器。
S1305.SMF与PSA-UPF/I-UPF之间执行N4会话修改流程。
S1306.SMF向AMF返回PDU会话更新上下文响应。
S1307.SMF确定PDU重建定时器超时,触发终端设备的PDU会话重建流程。
S1308.SMF向PSA-UPF/I-UPF发送N4会话释放请求。
S1309.PSA-UPF/I-UPF向SMF发送N4会话释放响应。
S1310.SMF向AMF发送N1/N2通信消息传输(Namf_Communication_N1N2MessageTransfer)。
N1 SM容器(container)中包括PDU会话释放命令(PDU Session Release Command),PDU会话释放命令中携带原因值,该原因值为请求重新激活(Reactivation requested)。
S1311.AMF与UE之间执行PDU会话释放流程。
S1312.AMF向SMF发送PDU会话更新上下文请求。
该PDU会话更新上下文请求中包括N1 SM容器,N1 SM容器中携带PDU会话释放确认(ACK)指示。
S1313.SMF向AMF发送PDU会话更新上下文响应。
S1314.SMF向AMF发送PDU会话上下文状态通知(Nsmf_PDUSession_SMContextStatusNotify)消息,该PDU会话上下文状态通知消息携带释放(Release)的指示,AMF接收并响应该PDU会话上下文状态通知。
如图14所示,下面以插入I-UPF且插入I-SMF的场景为例,结合图2c提供的用户面网元分离的确定方法,对确定用户面网元分离后的操作进行举例说明。
S1401.终端设备与接入网设备执行接入网连接释放流程。
S1402.接入网设备与AMF之间执行N2用户设备上下文释放流程。
S1403.AMF向I-SMF发送PDU会话更新上下文请求,I-SMF接收该PDU会话更新上下文请求。
S1404.I-SMF启动PDU重建定时器。
S1405.I-SMF与I-UPF之间执行N4会话修改流程。
I-SMF指示I-UPF删除N3隧道信息。
S1406.I-SMF向AMF返回PDU会话更新上下文响应。
S1407.I-SMF确定PDU重建定时器超时,触发终端设备的PDU会话重建流程。
S1408.I-SMF与I-UPF之间执行N4会话修改流程。
I-SMF指示I-UPF停止转发数据。
S1409.I-SMF向SMF发送N4会话释放请求(Nsmf_PDUSession_Release Request)。
S1410.SMF与PSA-UPF之间执行N4会话释放流程。
S1411.SMF向I-SMF发送N4会话释放响应(Nsmf_PDUSession_Release Response)。
S1412.I-SMF与I-UPF之间执行N4会话释放流程。
S1413.I-SMF向AMF发送N1/N2通信消息传输(Namf_Communication_N1N2MessageTransfer)。
N1 SM容器(container)中包括PDU会话释放命令(PDU Session Release Command),PDU会话释放命令中携带原因值,该原因值为请求重新激活(Reactivation requested)。
S1414.AMF与UE之间执行PDU会话释放流程。
S1415.AMF向I-SMF发送PDU会话更新上下文请求。
该PDU会话更新上下文请求中包括N1 SM容器,N1 SM容器中携带PUD会话释放确认(ACK)指示。
S1416.I-SMF向AMF发送PDU会话更新上下文响应。
S1417.I-SMF向AMF发送PDU会话上下文状态通知(Nsmf_PDUSession_SMContextStatusNotify)消息,该PDU会话上下文状态通知消息携带释放(Release)的指示。AMF接收并响应该通知消息。
如图15所示,以有I-SMF插入的场景为例,结合图2c提供的用户面网元分离的确定方法,对确定用户面网元分离后的操作进行举例说明。
S1501.SMF确定终端设备在设定时间内没有流量时,发起重建终端设备的PDU会话。
S1502.SMF与PSA-UPF之间执行N4会话修改流程。
S1503.SMF向I-SMF发送PDU会话更新请求(Nsmf_PDUSession_Update Request)。
S1504.I-SMF与I-UPF之间执行N4会话释放流程。
S1505.I-SMF向AMF发送N1/N2通信消息传输(Namf_Communication_N1N2MessageTransfer)。
N1 SM容器(container)中包括PDU会话释放命令(PDU Session Release Command),PDU会话释放命令中携带原因值,该原因值为请求重新激活(Reactivation requested)。
S1506.AMF与UE之间执行PDU会话释放流程。
S1507.AMF向I-SMF发送PDU会话更新上下文请求。
该PDU会话更新上下文请求中包括N1 SM容器,N1 SM容器中携带PUD会话释放确认(ACK)指示。
S1508.I-SMF向AMF发送PDU会话更新上下文响应。
S1509.I-SMF向SMF发送PDU会话更新响应。
S1510.SMF与PSA-UPF之间执行N4会话释放流程。
S1511.SMF向I-SMF发送PDU会话状态通知(Nsmf_PDUSession_StatusNotify)消息,该PDU会话状态通知消息携带释放(Release)的指示。
S1512.I-SMF向AMF发送PDU会话上下文状态通知(Nsmf_PDUSession_SMContextStatusNotify)消息,该PDU会话上下文状态通知消息携带释放(Release)的指示。
以下对5G通信系统中,在跨较大区域范围的场景下进行用户面网元的分离的确定方法作进一步详细描述。
如图16所示,用户面网元的分离的确定方法的流程如下所述。该方法的执行主体为I-SMF。
S1601.I-SMF获取第一SMF的地址;
S1602.I-SMF根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。
其中,预设地址包括与I-SMF位于同一区域的一个或多个SMF的地址;第一PSA-UPF为终端设备的用户面锚点,第一SMF为终端设备的控制面锚点。
I-SMF若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话。
I-SMF也可以根据第一SMF的地址和预设地址,判断是否重建终端设备的PDU会话。
可选的,若预设地址中包括第一SMF的地址,则I-SMF确定I-UPF和第一PSA-UPF未发生分离,或确定不需要发起PDU会话的重建。
若预设地址中不包括第一SMF的地址,则I-SMF确定I-UPF和第一PSA-UPF发生分离,或确定发起重建终端设备的PDU会话。
图16实施例可以在I-UPF和PSA-UPF跨控制面网元的管理区域的场景下,判断用户面网元是否发生分离,在这种场景下,通过图16实施例进行判断,判断粒度比较大。在一个方案B中,一旦确定控制面网元分离则确定用户面网元发生分离,例如,I-SMF对比SMF的地址与本地SMF的地址,确定SMF的地址与本地SMF的地址不同,则确定SMF与自己不在同一台控制面网元节点上,则认为用户面网元也会发生分离。图16实施例相比于该方案B,判断粒度比较大,能够减少用户面分离的判定结果,并进一步减少确定用户面分离后的操作,例如PDU会话重建,从而减少信令的开销。
与图16实施例的技术构思相同,本申请实施例还提供一种用户面网元分离的确定方法,如图17所示,该用户面网元分离的确定方法的流程如下所述。该方法的执行主体为SMF,SMF与第一I-SMF位于不同的控制面网元节点。
S1701.SMF获取第一I-SMF的地址;
S1702.SMF根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。为方便区分,图17实施例中的预设地址可以记为第三预设地址。
其中,第三预设地址包括与SMF位于同一区域的一个或多个I-SMF的地址。
PSA-UPF为终端设备的用户面锚点,SMF为终端设备的控制面锚点。
SMF若根据第一I-SMF的地址和预设地址,确定PSA-UPF和第一I-UPF是否发生分 离,则可以触发重建终端设备的PDU会话。
SMF也可以根据第一I-SMF的地址和预设地址,判断是否重建终端设备的PDU会话。
可选的,若预设地址中包括第一I-SMF的地址,则SMF确定PSA-UPF和第一I-UPF未发生分离,或确定不需要发起PDU会话的重建。
若预设地址中不包括第一I-SMF的地址,则SMF确定PSA-UPF和第一I-UPF发生分离,或确定发起重建终端设备的PDU会话。
图17实施例所带来的有益效果也可以参考图16实施例所述。
可以理解的是,为了实现上述实施例中功能,第一控制面网元、SGW-C或者PGW-C包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图18和图19为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一控制面网元、SGW-C、PGW-C、I-SMF或SMF的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1a所示的SGW-C,也可以是如图1a所示的PGW-C。该通信装置可以是应用于SGW-C或者PGW-C的模块(如芯片)。该通信装置可以是如图1b所示的SMF。该通信装置可以是应用于SMF的模块(如芯片)。
如图18所示,通信装置1800包括获取单元1810和判断单元1820。通信装置1800用于实现上述图2a、图2b或图2c所示的方法实施例中第一控制面网元的功能,或用于实现图8所示的方法实施例中SGW-C的功能,或用于实现或图10所示的方法实施例中PGW-C的功能,或用于图16所示的方法实施例中I-SMF的功能,或用于实现或图17所示的方法实施例中SMF的功能。
当通信装置1800用于实现图2a所示的方法实施例中第一控制面网元的功能时:
获取单元1810,用于获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识,装置包括控制面服务网关SGW-C、控制面数据网络PDN网关PGW-C、会话管理功能SMF、或者中间会话管理功能I-SMF,第一用户面网元为用户面锚点;
判断单元1820,用于根据第一节点标识与第二节点标识,判断第一用户面网元与第二用户面网元是否发生分离。
可选的,在获取第一用户面网元的第一节点标识时,获取单元1810用于:从第二控制面网元获取第一用户面网元的第一节点标识;其中,装置为SGW-C,第一用户面网元为第一用户面数据网络PDN网关PGW-U;或者,装置为PGW-C,第一用户面网元为第一用户面服务网关SGW-U;或者,装置为SMF,第一用户面网元为中间用户面管理功能I-UPF;或者,装置为I-SMF,第一用户面网元为协议数据单元会话锚点用户面管理功能PSA-UPF。
可选的,在根据第一节点标识与二节点标识,判断第一用户面网元与第二用户面网元是否发生分离时,判断单元1820用于:若第一节点标识与第二节点标识相同,则确定第一用户面网元与第二用户面网元未分离;或者若第一节点标识与第二节点标识不同,则确定第一用户面网元与第二用户面网元分离。
可选的,在根据第一节点标识与第二节点标识,判断第一用户面网元与第二用户面网 元是否发生分离时,判断单元1820用于:若第一节点标识中第一信息与第二节点标识中第二信息相同,则确定第一用户面网元与第二用户面网元未分离;或者若第一节点标识中第一信息与第二节点标识中第二信息不同,则确定第一用户面网元与第二用户面网元分离;其中,第一信息用于指示第一用户面网元所在区域,第二信息用于指示第二用户面网元所在区域。
可选的,在根据第一节点标识与第二节点标识,判断第一用户面网元与第二用户面网元是否发生分离时,判断单元1820用于:若第一节点标识和第二节点标识在同一个组中,则确定第一用户面网元与第二用户面网元未分离;或者若第一节点标识和第二节点标识不在同一个组中,则确定第一用户面网元与第二用户面网元分离。
可选的,通信装置1800还包括:重建单元1830,用于若确定第一用户面网元与第二用户面网元发生分离,则发起重建终端设备的数据传输路径。
可选的,通信装置1800为SGW-C;在发起重建终端设备的数据传输路径时,重建单元1830用于:在终端设备的S1连接释放时,发起重建终端设备的分组数据网络PDN连接。
可选的,通信装置1800为I-SMF;在发起重建终端设备的数据传输路径时,重建单元1830用于:在终端设备的N1/N2连接释放时,发起重建终端设备的协议数据单元PDU会话。
可选的,通信装置1800为PGW-C或SMF;在发起重建终端设备的数据传输路径时,重建单元1830用于:在终端设备在设定时间内没有流量时,发起重建终端设备的数据传输路径。
当通信装置1800用于实现图2b所示的方法实施例中第一控制面网元的功能时:
获取单元1810,用于获取第一用户面数据网络PDN网关PGW-U的第一节点标识和第一用户面服务网关SGW-U的第二节点标识。判断单元1820,用于根据第一节点标识与第二节点标识,判断第一SGW-U与第一PGW-U是否发生分离。
可选的,第一控制面网元为SGW-C,在获取第一PGW-U的第一节点标识时,获取单元1810用于:从PGW-C获取第一PGW-U的第一节点标识,PGW-C为终端设备访问PDN的控制面锚点。
可选的,第一控制面网元为PGW-C,PGW-C为终端设备访问PDN的控制面锚点;在获取第一SGW-U的第二节点标识时,获取单元1810用于:从SGW-C获取第一SGW-U的第二节点标识。
可选的,在根据第一节点标识与二节点标识,判断第一SGW-U与第一PGW-U是否发生分离时,判断单元1820用于:若第一节点标识与第二节点标识相同,则确定第一SGW-U与第一PGW-U未分离;若第一节点标识与第二节点标识不同,则确定第一SGW-U与第一PGW-U分离。
可选的,在根据第一节点标识与第二节点标识,判断第一SGW-U与第一PGW-U是否发生分离时,判断单元1820用于:若第一节点标识中第一信息与第二节点标识中第二信息相同,则确定第一SGW-U与第一PGW-U未分离;若第一节点标识中第一信息与第二节点中第二信息不同,则确定第一SGW-U与第一PGW-U分离;其中,第一信息用于指示第一SGW-U所在区域,第二信息用于指示第一PGW-U所在区域。
可选的,在根据第一节点标识与第二节点标识,判断第一SGW-U与第一PGW-U是否 发生分离时,判断单元1820用于:若第一节点标识和第二节点标识在同一个组中,则确定第一SGW-U与第一PGW-U未分离;若第一节点标识和第二节点标识不在同一个组中,则确定第一SGW-U与第一PGW-U分离;其中,一个组中的SGW-U和PGW-U位于同一区域。
可选的,装置1800还包括重建单元1830,用于若判断单元1820确定第一SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接。
在一个可能的设计中,第一控制面网元为SGW-C;在发起重建终端设备的PDN连接时,重建单元用于:在终端设备的S1连接释放时,发起重建终端设备的PDN连接。
在一个可能的设计中,第一控制面网元为PGW-C;在发起重建终端设备的PDN连接时,重建单元用于:在终端设备在设定时间内没有流量时,发起重建终端设备的PDN连接。
当通信装置1800用于实现图8所示的方法实施例中SGW-C的功能时:
获取单元1810,用于获取第一PGW-C的地址。判断单元1820,用于根据第一PGW-C的地址和预设地址,判断用户面服务网关SGW-U和第一PGW-U是否发生分离,或者,判断单元1820,用于根据第一PGW-C的地址和预设地址,判断是否重建终端设备的PDN连接;其中,预设地址包括与SGW-C位于同一区域的一个或多个PGW-C的地址;第一PGW-U为终端设备访问PDN的用户面锚点,第一PGW-C为终端设备访问PDN的控制面锚点。
可选的,在根据第一PGW-C的地址和预设地址,判断用户面服务网关SGW-U和第一PGW-U是否发生分离时,判断单元1820具体用于:若预设地址包括第一PGW-C的地址,则SGW-C确定SGW-U与第一PGW-U未分离;若预设地址不包括第一PGW-C的地址,则SGW-C确定SGW-U与第一PGW-U分离。
可选的,该装置1800还包括重建单元1830,用于若判断单元1820确定SGW-U与第一PGW-U发生分离,则发起重建终端设备的PDN连接。
可选的,重建单元1830还用于在终端设备的S1连接释放时,发起重建终端设备的PDN连接。
可选的,重建单元1830还可以用于在终端设备的S1连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDN连接。
当通信装置1800用于实现图10所示的方法实施例中PGW-C的功能时:
获取单元1810用于获取第一SGW-C的地址;判断单元1820用于根据第一SGW-C的地址和预设地址,判断PGW-U和第一用户面服务网关SGW-U是否发生分离;其中,预设地址包括与PGW-C位于同一区域的一个或多个SGW-C的地址;PGW-U为终端设备访问PDN的用户面锚点,PGW-C为终端设备访问PDN的控制面锚点。
可选的,在根据第一SGW-C的地址和预设地址,判断PGW-U和第一用户面服务网关SGW-U是否发生分离时,该判断单元1820具体用于:若预设地址包括第一SGW-C的地址,则PGW-C确定PGW-U与第一SGW-U未分离;若预设地址不包括第一SGW-C的地址,则PGW-C确定PGW-U与第一SGW-U分离。
可选的,该装置1800还包括重建单元1830,用于若确定PGW-U与第一SGW-U发生分离,则发起重建终端设备的PDN连接。
可选的,该重建单元1830还可以用于在终端设备在设定时间内没有流量时,发起重建终端设备的PDN连接。
可选的,该重建单元1830还可以用于在终端设备在设定时间内没有流量时,启动定时器,在定时器超时后,发起重建终端设备的PDN连接。
当通信装置1800用于实现图16所示的方法实施例中I-SMF的功能时:
获取单元1810,用于获取第一SMF的地址。判断单元1820,用于根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。其中,预设地址包括与I-SMF位于同一区域的一个或多个SMF的地址;第一PSA-UPF为终端设备的用户面锚点,第一SMF为终端设备的控制面锚点。
在一个可能的设计中,该通信装置1800还包括重建单元1830。该重建单元1830用于若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话。
在一个可能的设计中,在根据第一SMF的地址和预设地址,判断I-UPF和第一PSA-UPF是否发生分离时,判断单元1820具体用于:若预设地址包括第一PGW-C的地址,则I-SMF确定I-UPF与第一PSA-UPF未分离;若预设地址不包括第一PGW-C的地址,则I-SMF确定I-UPF与第一PSA-UPF分离。
基于若根据第一SMF的地址和预设地址,确定I-UPF和第一PSA-UPF发生分离,则可以触发重建终端设备的PDU会话,可选的,重建单元1830可以用于:在终端设备的N1/N2连接释放时,发起重建终端设备的PDU会话。进一步可选的,重建单元1830还可以用于:可以在终端设备的N1/N2连接释放时,启动定时器,在定时器超时后,发起重建终端设备的PDU会话。
当通信装置1800用于实现图17所示的方法实施例中SMF的功能时:
获取单元1810用于获取第一I-SMF的地址。判断单元1820用于根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离,或者,判断是否发起重建终端设备的PDU会话。其中,预设地址包括与SMF位于同一区域的一个或多个I-SMF的地址。PSA-UPF可以为终端设备的用户面锚点,SMF可以为终端设备的控制面锚点。
在一个可能的设计中,在根据第一I-SMF的地址和预设地址,判断PSA-UPF和第一I-UPF是否发生分离时,判断单元1820具体用于:若预设地址包括第一I-SMF的地址,则确定PSA-UPF与第一I-UPF未分离;若预设地址不包括第一I-SMF的地址,则SMF确定PSA-UPF与第一I-UPF分离。
在一个可能的设计中,该通信装置1800还包括重建单元1830,用于若确定PSA-UPF与第一I-UPF发生分离,则发起重建终端设备的PDU会话。
基于若确定PSA-UPF与第一I-UPF发生分离,则发起重建终端设备的PDU会话,可选的,重建单元1830还可以用于在终端设备在设定时间内没有流量时,发起重建终端设备的PDU会话。
有关上述获取单元1810、判断单元1820和重建单元1830更详细的描述可以直接参考上文方法实施例中相关描述直接得到,这里不加赘述。获取单元1810、判断单元1820和重建单元1830还可以执行其他方法实施例中的步骤。
如图19所示,通信装置1900包括处理器1910,可选的还可以包括接口电路1920。处理器1910和接口电路1920之间相互耦合。可以理解的是,接口电路1920可以为收发器或输入输出接口。可选的,通信装置1900还可以包括存储器1930,用于存储处理器1910执行的指令或存储处理器1910运行指令所需要的输入数据或存储处理器1910运行指令后 产生的数据。
当通信装置1900用于实现图2a、图2b、图2c、图8、图10、图16或图17所示的方法时,处理器1910可以用于实现上述获取单元1810、判断单元1820、和/或重建单元1830的功能,接口电路1920可以用于实现上述获取单元1810的部分功能。
当上述通信装置为应用于第一控制面网元的芯片时,该第一控制面网元的芯片实现上述方法实施例中第一控制面网元的功能。
当上述通信装置为应用于PGW-C或SGW-C的芯片时,该PGW-C或SGW-C的芯片实现上述方法实施例中PGW-C或SGW-C的功能。
当上述通信装置为应用于I-SMF或SMF的芯片时,该I-SMF或SMF的芯片实现上述方法实施例中I-SMF或SMF的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的第一控制面网元、PGW-C、SGW-C、I-SMF或SMF所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
本申请实施例还提供一种芯片,包括处理器,用于支持通信装置实现上述方法实施例中第一控制面网元、PGW-C、SGW-C、I-SMF或SMF所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (41)

  1. 一种用户面网元分离的确定方法,其特征在于,包括:
    第一控制面网元获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识,所述第一控制面网元包括控制面服务网关、控制面数据网络网关、会话管理功能、或者中间会话管理功能,所述第一用户面网元为用户面锚点;
    所述第一控制面网元根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离。
  2. 如权利要求1所述的方法,其特征在于,所述第一控制面网元获取第一用户面网元的第一节点标识包括:所述第一控制面网元从第二控制面网元获取第一用户面网元的第一节点标识;
    其中,所述第一控制面网元为所述控制面服务网关,所述第二控制面网元为所述控制面数据网络网关,所述第一用户面网元为第一用户面数据网络网关;或者,所述第一控制面网元为所述控制面数据网络网关,所述第二控制面网元为所述控制面服务网关,所述第一用户面网元为第一用户面服务网关;或者,所述第一控制面网元为所述会话管理功能,所述第二控制面网元为所述中间会话管理功能,所述第一用户面网元为中间用户面管理功能;或者,所述第一控制面网元为所述中间会话管理功能,所述第二控制面网元为所述会话管理功能,所述第一用户面网元为协议数据单元会话锚点用户面管理功能。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一控制面网元根据所述第一节点标识与所述二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离,包括:
    若所述第一节点标识与所述第二节点标识相同,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识与所述第二节点标识不同,则确定所述第一用户面网元与所述第二用户面网元分离。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一控制面网元根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离,包括:
    若所述第一节点标识中第一信息与所述第二节点标识中第二信息相同,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识中第一信息与所述第二节点标识中第二信息不同,则确定所述第一用户面网元与所述第二用户面网元分离;
    其中,所述第一信息用于指示所述第一用户面网元所在区域,所述第二信息用于指示所述第二用户面网元所在区域。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一控制面网元根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离,包括:
    若所述第一节点标识和所述第二节点标识在同一个组中,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识和所述第二节点标识不在同一个组中,则确定所述第一用户面网元与所述第二用户面网元分离。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一控制面网元若确定所述第一用户面网元与所述第二用户面网元发生分离,则 发起重建所述终端设备的数据传输路径。
  7. 如权利要求6所述的方法,其特征在于,所述第一控制面网元为控制面服务网关;
    所述发起重建所述终端设备的数据传输路径,包括:所述控制面服务网关在所述终端设备的S1连接释放时,发起重建所述终端设备的分组数据网络PDN连接。
  8. 如权利要求6所述的方法,其特征在于,所述第一控制面网元为中间会话管理功能;
    所述发起重建所述终端设备的数据传输路径,包括:所述中间会话管理功能在所述终端设备的N1/N2连接释放时,发起重建所述终端设备的协议数据单元PDU会话。
  9. 如权利要求6所述的方法,其特征在于,所述第一控制面网关为所述控制面数据网络网关或所述会话管理功能;
    所述发起重建所述终端设备的数据传输路径,包括:所述控制面数据网络网关或所述会话管理功能在所述终端设备在设定时间内没有流量时,发起重建所述终端设备的数据传输路径。
  10. 一种用户面网元分离的确定装置,其特征在于,包括:
    获取单元,用于获取第一用户面网元的第一节点标识和第二用户面网元的第二节点标识,所述装置包括控制面服务网关、控制面数据网络网关、会话管理功能、或者中间会话管理功能,所述第一用户面网元为用户面锚点;
    判断单元,用于根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离。
  11. 如权利要求10所述的装置,其特征在于,在获取第一用户面网元的第一节点标识时,所述获取单元用于:从第二控制面网元获取第一用户面网元的第一节点标识;
    其中,所述装置为所述控制面服务网关,所述第二控制面网元为所述控制面数据网络网关,所述第一用户面网元为第一用户面数据网络网关;或者,所述装置为所述控制面数据网络网关,所述第二控制面网元为所述控制面服务网关,所述第一用户面网元为第一用户面服务网关;或者,所述装置为所述会话管理功能,所述第二控制面网元为所述中间会话管理功能,所述第一用户面网元为中间用户面管理功能;或者,所述装置为所述中间会话管理功能,所述第二控制面网元为所述会话管理功能,所述第一用户面网元为协议数据单元会话锚点用户面管理功能。
  12. 如权利要求10或11所述的装置,其特征在于,在根据所述第一节点标识与所述二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离时,所述判断单元用于:
    若所述第一节点标识与所述第二节点标识相同,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识与所述第二节点标识不同,则确定所述第一用户面网元与所述第二用户面网元分离。
  13. 如权利要求10或11所述的装置,其特征在于,在根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离时,所述判断单元用于:
    若所述第一节点标识中第一信息与所述第二节点标识中第二信息相同,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识中第一信息与所述第二节点标识中第二信息不同,则确定所述第一用户面网元与所述第二用户面网元分离;
    其中,所述第一信息用于指示所述第一用户面网元所在区域,所述第二信息用于指示 所述第二用户面网元所在区域。
  14. 如权利要求10或11所述的装置,其特征在于,在根据所述第一节点标识与所述第二节点标识,判断所述第一用户面网元与所述第二用户面网元是否发生分离时,所述判断单元用于:
    若所述第一节点标识和所述第二节点标识在同一个组中,则确定所述第一用户面网元与所述第二用户面网元未分离;或者若所述第一节点标识和所述第二节点标识不在同一个组中,则确定所述第一用户面网元与所述第二用户面网元分离。
  15. 如权利要求10~14任一项所述的装置,其特征在于,所述装置还包括:
    重建单元,用于若确定所述第一用户面网元与所述第二用户面网元发生分离,则发起重建所述终端设备的数据传输路径。
  16. 如权利要求15所述的装置,其特征在于,所述装置为控制面服务网关;
    在发起重建所述终端设备的数据传输路径时,所述重建单元用于:在所述终端设备的S1连接释放时,发起重建所述终端设备的分组数据网络PDN连接。
  17. 如权利要求15所述的装置,其特征在于,所述装置为中间会话管理功能;
    在发起重建所述终端设备的数据传输路径时,所述重建单元用于:在所述终端设备的N1/N2连接释放时,发起重建所述终端设备的协议数据单元PDU会话。
  18. 如权利要求15所述的装置,其特征在于,所述装置为所述控制面数据网络网关或所述会话管理功能;
    在发起重建所述终端设备的数据传输路径时,所述重建单元用于:在所述终端设备在设定时间内没有流量时,发起重建所述终端设备的数据传输路径。
  19. 一种用户面网元分离的确定方法,其特征在于,包括:
    控制面服务网关获取第一控制面数据网络网关的地址;
    所述控制面服务网关根据所述第一控制面数据网络网关的地址和预设地址,判断用户面服务网关和第一用户面数据网络网关是否发生分离;其中,所述预设地址包括与所述控制面服务网关位于同一区域的一个或多个控制面数据网络网关的地址;所述第一用户面数据网络网关为终端设备访问PDN的用户面锚点,所述第一控制面数据网络网关为终端设备访问PDN的控制面锚点。
  20. 如权利要求19所述的方法,其特征在于,所述控制面服务网关根据所述第一控制面数据网络网关的地址和预设地址,判断用户面服务网关和第一用户面数据网络网关是否发生分离,包括:
    若所述预设地址包括所述第一控制面数据网络网关的地址,则所述控制面服务网关确定所述用户面服务网关与所述第一用户面数据网络网关未分离;若预设地址不包括所述第一控制面数据网络网关的地址,则所述控制面服务网关确定所述用户面服务网关与所述第一用户面数据网络网关分离。
  21. 如权利要求19或20所述的方法,其特征在于,所述方法还包括:
    若确定所述用户面服务网关与所述第一用户面数据网络网关发生分离,则所述控制面服务网关发起重建所述终端设备的PDN连接。
  22. 如权利要求21所述的方法,其特征在于,所述发起重建所述终端设备的PDN连接,包括:所述控制面服务网关在所述终端设备的S1连接释放时,发起重建所述终端设备的PDN连接。
  23. 一种用户面网元分离的确定方法,其特征在于,包括:
    控制面数据网络网关获取第一控制面服务网关的地址;
    所述控制面数据网络网关根据所述第一控制面服务网关的地址和预设地址,判断用户面数据网络网关和第一用户面服务网关是否发生分离;其中,所述预设地址包括与所述控制面数据网络网关位于同一区域的一个或多个控制面服务网关的地址;所述用户面数据网络网关为终端设备访问PDN的用户面锚点,所述控制面数据网络网关为终端设备访问PDN的控制面锚点。
  24. 如权利要求23所述的方法,其特征在于,所述控制面数据网络网关根据所述第一控制面服务网关的地址和预设地址,判断用户面数据网络网关和第一用户面服务网关是否发生分离,包括:
    若所述预设地址包括所述第一控制面服务网关的地址,则所述控制面数据网络网关确定所述用户面数据网络网关与所述第一用户面服务网关未分离;若预设地址不包括所述第一控制面服务网关的地址,则所述控制面数据网络网关确定所述用户面数据网络网关与所述第一用户面服务网关分离。
  25. 如权利要求23或24所述的方法,其特征在于,所述方法还包括:
    所述控制面数据网络网关若确定所述用户面数据网络网关与所述第一用户面服务网关发生分离,则发起重建所述终端设备的PDN连接。
  26. 如权利要求25所述的方法,其特征在于,所述发起重建所述终端设备的PDN连接,包括:所述控制面数据网络网关在所述终端设备在设定时间内没有流量时,发起重建所述终端设备的PDN连接。
  27. 一种用户面网元分离的确定方法,其特征在于,包括:
    中间会话管理功能获取第一会话管理功能的地址;
    所述中间会话管理功能根据第一会话管理功能的地址和预设地址,判断中间用户面管理功能和第一协议数据单元会话锚点用户面管理功能是否发生分离;其中,所述预设地址包括与中间会话管理功能位于同一区域的一个或多个会话管理功能的地址;第一协议数据单元会话锚点用户面管理功能为终端设备的用户面锚点,第一会话管理功能为终端设备的控制面锚点。
  28. 如权利要求27所述的方法,其特征在于,所述中间会话管理功能根据第一会话管理功能的地址和预设地址,判断所述中间用户面管理功能和第一协议数据单元会话锚点用户面管理功能是否发生分离,包括:
    若所述预设地址包括所述第一会话管理功能的地址,则所述中间会话管理功能确定所述中间用户面管理功能和第一协议数据单元会话锚点用户面管理功能未发生分离;若预设地址不包括所述第一会话管理功能的地址,则所述中间会话管理功能确定所述中间用户面管理功能和第一协议数据单元会话锚点用户面管理功能发生分离。
  29. 如权利要求27或28所述的方法,其特征在于,若所述中间会话管理功能确定所述中间用户面管理功能和第一协议数据单元会话锚点用户面管理功能发生分离,所述方法还包括:
    所述中间会话管理功能发起重建终端设备的PDU会话。
  30. 一种用户面网元分离的确定方法,其特征在于,包括:
    会话管理功能获取第一中间会话管理功能的地址;
    所述会话管理功能根据第一中间会话管理功能的地址和预设地址,判断协议数据单元会话锚点用户面管理功能和第一中间用户面管理功能是否发生分离;其中,所述预设地址包括与会话管理功能位于同一区域的一个或多个中间会话管理功能的地址;所述协议数据单元会话锚点用户面管理功能为终端设备的用户面锚点,会话管理功能为终端设备的控制面锚点。
  31. 如权利要求30所述的方法,其特征在于,所述会话管理功能根据第一中间会话管理功能的地址和预设地址,判断协议数据单元会话锚点用户面管理功能和第一中间用户面管理功能是否发生分离,包括:
    若所述预设地址包括所述第一中间会话管理功能的地址,则所述中间会话管理功能确定所述协议数据单元会话锚点用户面管理功能和第一中间用户面管理功能未发生分离;若预设地址不包括所述第一中间会话管理功能的地址,则所述中间会话管理功能确定所述协议数据单元会话锚点用户面管理功能和第一中间用户面管理功能发生分离。
  32. 如权利要求30或31所述的方法,其特征在于,若所述中间会话管理功能确定所述协议数据单元会话锚点用户面管理功能和第一中间用户面管理功能发生分离,所述方法还包括:
    所述中间会话管理功能发起重建终端设备的PDU会话。
  33. 一种用户面网元分离的确定装置,其特征在于,包括:用于执行权利要求19-22任一所述的方法。
  34. 一种用户面网元分离的确定装置,其特征在于,包括:用于执行权利要求23-26任一所述的方法。
  35. 一种用户面网元分离的确定装置,其特征在于,包括:用于执行权利要求27-29任一所述的方法。
  36. 一种用户面网元分离的确定装置,其特征在于,包括:用于执行权利要求30-32任一所述的方法。
  37. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得如权利要求1~9任一项所述的方法被实现,或使得如权利要求19~22任一项所述的方法被实现,或使得如权利要求23~26任一项所述的方法被实现,或使得如权利要求27~29任一所述的方法被实现,或使得如权利要求30~32任一所述的方法被实现。
  38. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,如权利要求1~9中任一项所述的方法,或如权利要求19~22中的任一项所述方法被实现,或如权利要求23~26中的任一项所述方法被实现,或如权利要求27~29任一所述的方法被实现,或如权利要求30~32任一所述的方法被实现。
  39. 一种计算机程序产品,其特征在于,所述程序产品中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,如权利要求1~9中任一项所述的方法,或如权利要求19~22中的任一项所述方法被实现,或如权利要求23~26中的任一项所述方法被实现,或如权利要求27~29任一所述的方法被实现,或如权利要求30~32任一所述的方法被实现。
  40. 一种通信系统,其特征在于,包括第一控制面网元、第一用户面网元和第二用户面 网元,所述第一控制面网元用于执行如权利要求1~9中任一项所述的方法,或如权利要求19~22中的任一项所述方法,或如权利要求23~26中的任一项所述方法,或如权利要求27~29任一所述的方法,或如权利要求30~32任一所述的方法。
  41. 一种芯片,其特征在于,所述芯片包括至少一个处理器,所述处理器被用以执行如权利要求1~9中任一项所述的方法,或如权利要求19~22中的任一项所述方法,或如权利要求23~26中的任一项所述方法,或如权利要求27~29任一所述的方法,或如权利要求30~32任一所述的方法。
PCT/CN2022/121387 2021-11-16 2022-09-26 一种用户面网元分离的确定方法及通信装置 WO2023087923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111356850.1 2021-11-16
CN202111356850.1A CN116137717A (zh) 2021-11-16 2021-11-16 一种用户面网元分离的确定方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023087923A1 true WO2023087923A1 (zh) 2023-05-25

Family

ID=86334154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121387 WO2023087923A1 (zh) 2021-11-16 2022-09-26 一种用户面网元分离的确定方法及通信装置

Country Status (2)

Country Link
CN (1) CN116137717A (zh)
WO (1) WO2023087923A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110650A1 (en) * 2015-12-22 2017-06-29 Nec Corporation Method for selection and relocation of user plane functionality
CN108282770A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种空闲态追踪区更新的方法及装置
US20180295659A1 (en) * 2015-11-06 2018-10-11 Intel IP Corporation User plane resource allocation
CN110149665A (zh) * 2018-02-14 2019-08-20 华为技术有限公司 一种网元的选择方法及装置
CN111246453A (zh) * 2018-11-28 2020-06-05 华为技术有限公司 一种数据传输方法、用户面网元及控制面网元

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180295659A1 (en) * 2015-11-06 2018-10-11 Intel IP Corporation User plane resource allocation
WO2017110650A1 (en) * 2015-12-22 2017-06-29 Nec Corporation Method for selection and relocation of user plane functionality
CN108282770A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种空闲态追踪区更新的方法及装置
CN110149665A (zh) * 2018-02-14 2019-08-20 华为技术有限公司 一种网元的选择方法及装置
CN111246453A (zh) * 2018-11-28 2020-06-05 华为技术有限公司 一种数据传输方法、用户面网元及控制面网元

Also Published As

Publication number Publication date
CN116137717A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN110933623B (zh) 一种通信方法和装置
US10924294B2 (en) Evolved multimedia broadcast/multicast service (EMBMS) system and EMBMS system management method
WO2019184651A1 (zh) 一种通信方法及装置
WO2018145671A1 (zh) 跨系统的切换方法和装置、计算机存储介质
EP2925069A1 (en) Bearer allocation method, user equipment, base station, and serving gateway
WO2021164564A1 (zh) 传输组播业务的方法和装置
WO2022095703A1 (zh) 一种通信方法及装置
CN111586770B (zh) 一种会话管理的方法及装置
EP4192106A1 (en) Communication method and apparatus
CN101500270A (zh) 一种负荷均衡的方法和装置
WO2017162121A1 (zh) 用户面服务网关选择方法及系统
US20240080648A1 (en) Method and apparatus for communication between user equipments
CN113873443B (zh) 通信方法及装置
WO2017080266A1 (zh) 一种网关信息更新的方法及装置
CN113938840A (zh) 通信方法和通信装置
CN109691150B (zh) 一种会话迁移方法及设备
EP4184959A1 (en) Communication method, apparatus and system
WO2019137242A1 (zh) 建立承载方法、装置、处理器及存储介质
CN109819487B (zh) 一种连接管理方法及设备
WO2023087923A1 (zh) 一种用户面网元分离的确定方法及通信装置
EP4044614A1 (en) Method for establishing multicast session and network device
CN114868408A (zh) 一种消息转发方法及装置
CN110582062B (zh) 一种消息发送的方法及装置
WO2022253137A1 (zh) 接入业务的方法、装置和系统
CN113973076B (zh) 一种多播切换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577871

Country of ref document: JP

Kind code of ref document: A