WO2023087840A1 - 电平信号型开关机控制电路 - Google Patents

电平信号型开关机控制电路 Download PDF

Info

Publication number
WO2023087840A1
WO2023087840A1 PCT/CN2022/115611 CN2022115611W WO2023087840A1 WO 2023087840 A1 WO2023087840 A1 WO 2023087840A1 CN 2022115611 W CN2022115611 W CN 2022115611W WO 2023087840 A1 WO2023087840 A1 WO 2023087840A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
level
resistor
voltage dividing
dividing resistor
Prior art date
Application number
PCT/CN2022/115611
Other languages
English (en)
French (fr)
Inventor
马涛
张倩倩
皇志启
刘密
支树播
王晓晓
王文强
朱炳超
Original Assignee
北京卫星制造厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京卫星制造厂有限公司 filed Critical 北京卫星制造厂有限公司
Publication of WO2023087840A1 publication Critical patent/WO2023087840A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Definitions

  • the invention relates to a level signal type switching machine control circuit.
  • the switch command circuit on the star is required to be an isolated control circuit, and most of them are pulse-type command circuits. Some electrical equipment needs to use a level signal type switch command circuit.
  • a comparator When using a comparator to design a switch command circuit, if the anti-interference function is not designed, the comparator is affected by a single particle in the space environment, and it is prone to malfunction and cause power consumption. The corresponding function of the device is interrupted. For electrical equipment with timing requirements, equipment damage may even occur.
  • the present invention provides a level signal type switching machine control circuit, which solves the problem that the existing switching machine command circuit cannot realize the power-on sequence control function and is prone to malfunction due to the influence of single particles in the space environment Problems that interrupt electronic equipment.
  • the present invention provides a level signal type switching machine control circuit, including: a power-on sequence control unit and a switching unit,
  • the power-on sequence control unit is used to output a level signal to the switch unit, and control the turn-on or turn-off action of the switch unit;
  • the switch unit is configured to receive the level signal output by the power-on sequence control unit, and perform a turn-on or turn-off action according to the level signal, so as to realize power supply to the load. .
  • the power-on sequence control unit includes: the first power-on level positive line, the first power-on level return line, a photocoupler, an isolation diode, a first filter resistor, a first discharge resistor, a first a filter capacitor and a second bleeder resistor,
  • the anode of the isolation diode is connected to the positive line of the first power-on level, and the cathode is connected to the first end of the first filter resistor;
  • the second end of the first filter resistor is connected to the first end of the first bleeder resistor, the first end of the first filter capacitor, and the first end of the photocoupler,
  • the second end of the first bleeder resistor is connected to the second end of the first filter capacitor, the second end of the photocoupler and the first power-on level return line;
  • the first end of the second bleeder resistor is connected to the third end of the optocoupler, and the second end is connected to the fifth end of the optocoupler;
  • the photocoupler also includes a fourth terminal.
  • the level signal output by the power-on sequence control unit is transmitted to the switch unit through the fourth terminal and the fifth terminal of the photocoupler,
  • the fourth terminal and the fifth terminal of the optocoupler are respectively the first output terminal and the second output terminal of the power-on sequence control unit.
  • the switch unit includes: a hysteresis power-on level positive line, a hysteresis power-on level return line, a triode, a field effect transistor, a first voltage dividing resistor, a second voltage dividing resistor, a third voltage dividing resistor Resistor, fourth voltage dividing resistor, fifth voltage dividing resistor, sixth voltage dividing resistor, seventh voltage dividing resistor, second filter resistor, second filter capacitor, third filter capacitor, anti-oscillation resistor and diode,
  • the first end of the first voltage dividing resistor is connected to the hysteresis power-on level positive line, the first end of the second voltage dividing resistor and the first end of the fifth voltage dividing resistor, and the second end connected to the second terminal of the second voltage dividing resistor, the first terminal of the third voltage dividing resistor and the first output terminal of the power-on sequence control unit;
  • the first terminal of the third voltage dividing resistor is connected to the second output terminal of the power-on sequence control unit, and the second terminal is connected to the first terminal of the fourth voltage dividing resistor and the first terminal of the second filter resistor. Both ends are connected;
  • the second end of the fourth voltage dividing resistor is connected to the second output end of the power-on sequence control unit and the emitter of the triode;
  • the second end of the second filter resistor is connected to the first end of the second filter capacitor and the base of the triode;
  • the second end of the second filter capacitor is connected to the hysteresis power-up level return line;
  • the collector of the triode is connected to the second end of the fifth voltage dividing resistor, the first end of the sixth voltage dividing resistor and the cathode of the diode;
  • the anode of the diode is connected to the hysteresis power-up level return line;
  • the second end of the sixth voltage dividing resistor is connected to the first end of the seventh voltage dividing resistor, the first end of the anti-oscillation resistor, and the first end of the third filter capacitor;
  • the second end of the seventh voltage dividing resistor is connected to the hysteresis power-up level return line;
  • the second end of the second filter capacitor is connected to the hysteresis power-up level return line;
  • the second end of the anti-oscillation resistor is connected to the drain of the field effect transistor
  • the gate of the field effect transistor is connected to the hysteresis power-up level return line, and the source of the field effect transistor is the output end of the switch unit.
  • the transistor when the circuit is in the initial state, the transistor is turned on and the field effect transistor is turned off by inputting a high level to the positive line of the hysteresis power-on level, so that the switch unit is in an off state.
  • the photocoupler of the power-on sequence control unit when a high level is input through the first power-up level positive line and no level signal is input through the lagging power-up level positive line, the photocoupler of the power-on sequence control unit is turned on, and the The triode of the switch unit is turned off, and the field effect transistor is turned on, so that the switch unit is turned on.
  • the photocoupler of the power-on sequence control unit when a low level is input through the positive line of the first power-on level, the photocoupler of the power-on sequence control unit is turned off, the triode of the switch unit is turned on, and the field effect transistor is turned off, so that The switch unit is turned off.
  • a power-on sequence control circuit and a level signal type command switch circuit are formed by photocouplers, triodes, MOS tubes and their peripheral circuits, and the level signal that is first powered on in the timing requirements is used as a delayed power-on circuit.
  • the flat control signal realizes the self-adaptive power-on sequence control function of the two power sources that do not share the same ground, and does not need the remote control command of the entire satellite to control the power on and off, which can solve the problem of the large increase in the electrical equipment of the entire satellite, especially the load equipment. The problem of insufficient remote control resources.
  • the state of the output terminal of the optocoupler is used to control the state of the base of the triode, since the output terminal of the optocoupler In essence, it is also a triode.
  • the output terminal of the photocoupler is in a low-impedance state, it cannot be guaranteed that the base of the control circuit triode can be clamped to an effective low level. reliable.
  • the present invention designs an ingenious circuit for improving the reliability of the switching machine function, that is, the output terminal of the photocoupler is connected to the base of the control triode after setting the voltage divider to ensure that when the output terminal of the photocoupler is low, the triode
  • the lower base level ensures that the triode cannot be turned on and improves the reliability of the boot function.
  • Fig. 1 schematically shows a schematic diagram of unit composition of a level signal type switching machine control circuit according to an embodiment of the present invention
  • FIG. 2 schematically shows a specific structural diagram of a level signal type switching machine control circuit according to an embodiment of the present invention.
  • FIG. 1 schematically shows the unit composition diagram of the level signal type switching machine control circuit in this embodiment.
  • the level signal switch machine control circuit of this embodiment mainly includes a power-on sequence control unit 101 and a switch unit 102 .
  • the power-on sequence control unit 101 outputs a high-level signal or a low-level signal and transmits it to the switch unit 102 to control the switch unit 102 to complete the turn-on or turn-off action.
  • the switch unit 102 completes the corresponding turn-on or turn-off action by receiving the level signal instruction output by the power-on sequence control unit 101 , and supplies power to the load connected to it at the same time.
  • This circuit is a new type of control circuit designed compatible with the power-on sequence control unit 101 and the switch unit 102. It can solve the technical defect that the current switch circuit cannot realize the power-on sequence control function, and at the same time realize the independent power consumption of multiple electrical equipment on the star. Sequence control and on/off function control further realize the on/off control function of electrical equipment on the star through remote control commands, so as to adapt to the space environment with limited resources.
  • FIG. 2 schematically shows a specific structural diagram of the level signal type switching machine control circuit in this embodiment.
  • the power-on sequence control unit 101 in the level signal type switch control circuit specifically includes: the first power-on level positive line (or called the control level signal positive line), the first power-on level return line (or control level signal loop), photocoupler U1, isolation diode D1, first filter resistor R7, first bleeder resistor R8, first filter capacitor C3 and second bleeder resistor R9.
  • the photocoupler U1 includes a first terminal 1 , a third terminal 4 , a second terminal 6 , a fourth terminal 3 and a fifth terminal 5 .
  • the first end 1 and the second end 6 are respectively the anode and the cathode of the photodiode in the photocoupler U1, and the third end 4, the fourth end 3 and the fifth end 5 are respectively the base of the triode on the secondary side of the photocoupler U1.
  • the fourth terminal 3 and the fifth terminal 5 of the photocoupler U1 are respectively the first output terminal and the second output terminal of the power-on timing control unit 101 .
  • the anode of the isolation diode D1 is connected to the positive line of the first power-on level, and the cathode of the isolation diode D1 is connected to the first end of the first filter resistor R7.
  • the second terminal of the first filter resistor R7 is connected to the first terminal of the first bleeder resistor R8 , the first terminal of the first filter capacitor C3 and the first terminal 1 of the photocoupler U1 .
  • the second terminal of the first bleeder resistor R8 is connected to the second terminal of the first filter capacitor C3, the second terminal 6 of the photocoupler U1 and the first power-up level return line.
  • a first end of the second bleeder resistor R9 is connected to the third end 4 of the photocoupler U1 , and a second end of the second bleeder resistor R9 is connected to the fifth end 5 of the photocoupler U1 .
  • the switch unit 102 in the level signal type switching machine control circuit specifically includes: a hysteresis power-on level positive line (or called an input positive line), a hysteresis power-on level return line (or called an input return line), a transistor Q1 , field effect transistor M1 (MOS tube), the first voltage dividing resistor R1, the second voltage dividing resistor R2, the third voltage dividing resistor R10, the fourth voltage dividing resistor R12, the fifth voltage dividing resistor R3, the sixth voltage dividing resistor R4, the seventh voltage dividing resistor R6, the second filter resistor R11, the second filter capacitor C1, the third filter capacitor C2, the anti-oscillation resistor R5 and the diode Z1.
  • a hysteresis power-on level positive line or called an input positive line
  • a hysteresis power-on level return line or called an input return line
  • a transistor Q1 field effect transistor M1 (MOS tube)
  • MOS tube field effect
  • the first end of the first voltage dividing resistor R1 is connected to the positive line of the hysteresis power-on level, the first end of the second voltage dividing resistor R2 and the first end of the fifth voltage dividing resistor R3, and the first voltage dividing resistor R1
  • the second terminal of the second voltage dividing resistor R2 is connected to the second terminal of the second voltage dividing resistor R2 , the first terminal of the third voltage dividing resistor R10 and the first output terminal of the power-on timing control unit 101 are all connected.
  • the first end of the third voltage dividing resistor R10 is connected to the second output end of the power-on sequence control unit 101, the second end of the third voltage dividing resistor R10 is connected to the first end of the fourth voltage dividing resistor R12 and the first filter resistor
  • the first ends of R11 are all connected.
  • the second terminal of the fourth voltage dividing resistor R12 is connected to the second output terminal of the power-on sequence control unit 101 and the emitter (E terminal) of the transistor Q1 .
  • the second terminal of the second filter resistor R11 is connected to the first terminal of the second filter capacitor C1 and the base (B pole) of the transistor Q1 .
  • the second terminal of the second filter capacitor C1 is connected to the hysteresis power-up level return line.
  • the collector (C pole) of the transistor Q1 is connected to the second end of the fifth voltage dividing resistor R3, the first end of the sixth voltage dividing resistor R4 and the cathode of the diode Z1.
  • the anode of the diode Z1 is connected to the hysteresis power-up level return line.
  • the second terminal of the sixth voltage dividing resistor R4 is connected to the first terminal of the seventh voltage dividing resistor R6, the first terminal of the anti-oscillation resistor R5 and the first terminal of the third filter capacitor C2.
  • the second end of the seventh voltage dividing resistor R6 is connected to the hysteresis power-up level return line.
  • the second end of the third filter capacitor C2 is connected to the hysteresis power-up level return line.
  • the second end of the anti-oscillation resistor R5 is connected to the drain (D pole) of the field effect transistor M1.
  • the gate (G pole) of the field effect transistor M1 is connected to the hysteresis power-up level return line, and the source (S pole) of the field effect transistor M1 is the output terminal of the switch unit 102 .
  • the hysteresis power-on level positive line of the switch unit 102 passes through the first voltage dividing resistor R1, the second voltage dividing resistor R2, the third voltage dividing resistor R10 and the fourth voltage dividing resistor After the resistor R12, it is connected to the base of the triode Q1 through the filter circuit composed of the second filter resistor R11 and the second filter capacitor C1 to control the operation of the triode Q1 under the control signal of the level command of the power-on sequence control unit. on or off.
  • the positive line of the hysteresis power-on level passes through the fifth voltage dividing resistor R3, the sixth voltage dividing resistor R4 and the seventh voltage dividing resistor R6, and is connected to the field effect transistor M1 after passing through the third filter capacitor C2 and the anti-oscillation resistor R5
  • the gate of the gate controls the turn-on or turn-off of the field effect transistor M1, that is, controls whether the hysteresis power-on level is output normally.
  • the field effect transistor M1 is a switch of the switch unit 102, which is connected to a load and provides power for the load.
  • the third filter capacitor C2 has a filtering effect, which slows down the charging of the field effect transistor M1, prevents vibration at startup, and can protect the field effect transistor M1.
  • the function of anti-oscillation resistor R5 can avoid voltage oscillation and current impact.
  • the diode Z1 can prevent the gate voltage of the field effect transistor M1 from being too high, and can stabilize the voltage, thereby protecting the field effect transistor M1 from being damaged.
  • the power-on sequence control unit 101 firstly inputs the level signal on the positive line of the power-on level, passes through the isolation diode D1, passes through the first filter resistor R7, the first bleed resistor R8 and the first filter capacitor C3, and then connects to the photocoupler
  • the anode of the light-emitting diode of U1 passes through the third voltage dividing resistor R10 and the fourth voltage dividing resistor R12, and then passes through the second filter resistor R11 and the second filter capacitor C1.
  • the filtering circuit connected to the base of the triode Q1 controls the turn-on or turn-off of the triode Q1.
  • the function of the isolation diode D1 can prevent the positive and negative electrodes of the input terminal of the power-on sequence control unit 101 from being connected reversely.
  • the circuit composed of the first filter resistor R7, the first bleeder resistor R8 and the first filter capacitor C3 can filter out the interference peak signal generated during the first power-up process of the positive line, avoiding the false conduction of the triode Q1, and then making the The switch unit 102 avoids malfunctions.
  • the filter circuit composed of the second filter resistor R11 and the second filter capacitor C1 can filter out the level control signal output by the power-on sequence control unit 101 or the unintentional interference signal in the level command for the switch unit 102, and improve the reception control of the switch unit 102. signal reliability.
  • both ends of the second bleeder resistor R9 are respectively connected to the base and emitter of the triode on the secondary side of the photocoupler U1, which can prevent static electricity from damaging the photocoupler U1 and protect the photocoupler U1.
  • the switch unit 102 When the circuit is in the initial state, in the process of establishing the positive line voltage signal of the hysteresis power-on level, that is to say, the switch unit 102 inputs a high level through the hysteresis power-on level positive line, and passes through the first voltage dividing resistor R1 to After the voltage dividing circuit composed of the fourth voltage dividing resistor R12, it passes through the above-mentioned filter circuit and is connected to the base of the transistor Q1.
  • the triode Q1 is turned on earlier than the field effect transistor M1.
  • the collector of the triode Q1 is connected to the gate of the field effect transistor M1, the first conduction of the triode Q1 lowers the gate level of the switching field effect transistor M1, so that the field effect transistor M1 is turned off, that is, the switch unit 102 is in the off state. off state.
  • the power-on sequence control unit 101 When the power-on sequence control unit 101 inputs a high level through the positive line of the power-on level first, and does not input a level signal through the positive line of the power-on level behind, a current flows through the light-emitting diode side of the photocoupler U1, so that the photocoupler
  • the PN junction between the collector and the emitter of the triode on the secondary side of U1 is turned on, and the collector of the triode of the photocoupler U1 is at a low level, and the level is a voltage drop of a PN junction.
  • the base voltage of the transistor Q1 After passing through the third voltage-dividing resistor R10 and the fourth voltage-dividing resistor R12, the base voltage of the transistor Q1 is lowered to a lower low level, so that the transistor Q1 cannot be turned on.
  • the gate of the switch field effect transistor M1 is kept at a high level under the action of the voltage division of the positive line of the hysteresis power-on level, the switch field effect transistor M1 is turned on, and the hysteresis power-on level of the switch unit 102 is normally output, which has a reliable boot effect.
  • the level signal type switching machine control circuit of this embodiment adopts the structural design composed of the photocoupler U1 and its peripheral circuit, the transistor Q1 and its peripheral circuit, and the driving peripheral circuit of the MOS tube, and the above-mentioned peripheral circuits Through the selection of components and reasonable setting of resistance and capacitance parameters, the level signal type switch control function and power-on sequence control function can be realized. It has the characteristics of small size, strong anti-interference ability and high reliability of switch machine. By replacing the comparator or relay structure of the existing on/off circuit with the photocoupler U1 and the transistor Q1, the defects of the existing on/off circuit such as complex structure, easy misoperation and inability to realize the power-on sequence control function are overcome.
  • the level control signal is connected to the input terminal of the photocoupler U1, the output terminal of the photocoupler U1 is connected to the B pole of the triode Q1, and the C pole of the triode Q1 is connected to the driving G pole of the MOS tube to form the main functional circuit to realize the power supply.
  • the switch machine control of flat signal is connected to the input terminal of the photocoupler U1, the output terminal of the photocoupler U1 is connected to the B pole of the triode Q1, and the C pole of the triode Q1 is connected to the driving G pole of the MOS tube to form the main functional circuit to realize the power supply.
  • Initial state the input positive line is connected to the B terminal of the transistor Q1 through a voltage dividing resistor, and the C pole of the transistor Q1 is connected to the G pole of the MOS tube.
  • the MOS tube is turned on first, and the driving voltage of the MOS tube is pulled down. At this time, the MOS tube is in the off state, the power link is open, and it is in the shutdown state.
  • the output level signal of the priority power-on is connected to the input terminal of the photocoupler U1 to control whether the output level of the power-on lag is present or not. Due to the design of the photocoupler U1, it can realize Power-on sequence control when the two output power supplies do not share the same ground.
  • the output terminal of the photocoupler U1 When the level signal required to be powered on first establishes a high level, the output terminal of the photocoupler U1 is at a low level at this time, and the B pole of the triode Q1 in the timing control circuit of the subsequent power-on level is pulled down, and the triode The C pole of Q1 presents a high-impedance state, the drive G of the MOS tube is extremely high, the MOS tube is turned on, and the level that lags behind the power-on starts to output a high level.
  • the output terminal of photocoupler U1 When the first power-on level signal turns to low level, the output terminal of photocoupler U1 is at high level at this time, the B of triode Q1 is extremely high, triode Q1 is turned on, C is in an extremely low resistance state, and the MOS tube drives G is extremely low level, the MOS tube is turned off, and there is no output at the level that lags behind the power-on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electronic Switches (AREA)

Abstract

一种电平信号型开关机控制电路,包括:上电时序控制单元(101)和开关单元(102),上电时序控制单元(101),用于生成控制开关单元(102)的开通动作或关断动作的电平信号;开关单元(102),用于接收上电时序控制单元(101)输出的电平信号,并根据电平信号执行完成开通动作或关断动作,以实现对负载的供电。电平信号型开关机控制电路克服现有开关机电路的结构复杂、容易误动作和无法实现上电时序控制功能的缺陷,实现不共地的两路电源的自适应上电时序控制功能,具有体积小、抗干扰能力强和开关机可靠性高的特点。

Description

电平信号型开关机控制电路
本申请要求于2021年11月18日提交中国专利局、申请号为202111368734.1、申请名称为“电平信号型开关机控制电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种电平信号型开关机控制电路。
背景技术
随着航天任务的需求不断增加,星载用电设备的种类也不断增多,但是,卫星的安全性和可靠性随着用电设备的增加在不断下降。为保证在某一用电设备出现故障时,不影响整星的功能、性能和安全可靠性,对各用电设备的开关可控和上电时序提出了新要求。
星上开关机指令电路要求为隔离型控制电路,大多为脉冲型指令电路。某些用电设备需使用电平信号型开关机指令电路,采用比较器设计开关机指令电路时,如果没有设计抗干扰功能,比较器受空间环境中单粒子影响,容易产生误动作造成用电设备的相应功能中断。对于有时序要求的用电设备甚至会发生设备损坏的情况。
在星上电子设备持续增多的情况下,为了降低整星功耗,当某一电子设备关机时,需及时关断其级联的工作的其他电子设备。当整星遥控信号资源有限,无法支持通过遥控指令实现每台设备的开关机控制,需多台设备之间形成自主用电时序控制和开关机功能控制,特别是存在多路输出不共地的情况,需实现有效的上电时序控制。
技术问题
为克服上述现有技术的不足,本发明提供一种电平信号型开关机控制电路,解决现有的开关机指令电路无法实现上电时序控制功能和受空间环境中单粒子影响容易产生误动作使电子设备中断的问题。
技术解决方案
为实现上述发明目的,本发明的技术方案是:
本发明提供一种电平信号型开关机控制电路,包括:上电时序控制单元和开关单元,
所述上电时序控制单元,用于输出电平信号至所述开关单元,并控制所述开关单元的开通动作或关断动作;
所述开关单元,用于接收所述上电时序控制单元输出的电平信号,并根据所述电平信号执行完成开通动作或关断动作,以实现对负载的供电。。
根据本发明的一个方面,所述上电时序控制单元包括:率先上电电平正线、率先上电电平回线、光电耦合器、隔离二极管、第一滤波电阻、第一泄放电阻、第一滤波电容和第二泄放电阻,
所述隔离二极管的正极与所述率先上电电平正线连接,负极与所述第一滤波电阻的第一端连接;
所述第一滤波电阻的第二端与所述第一泄放电阻的第一端、所述第一滤波电容的第一端及所述光电耦合器的第一端均连接,
所述第一泄放电阻的第二端与所述第一滤波电容的第二端、所述光电耦合器的第二端及所述率先上电电平回线均连接;
所述第二泄放电阻的第一端与所述光电耦合器的第三端连接,第二端与所述光电耦合器的第五端连接;
所述光电耦合器还包括第四端。
根据本发明的一个方面,通过所述光电耦合器的第四端和第五端将所述上电时序控制单元输出的电平信号传递至所述开关单元,
其中,所述光电耦合器的第四端和第五端分别为所述上电时序控制单元的第一输出端和第二输出端。
根据本发明的一个方面,所述开关单元包括:滞后上电电平正线、滞后上电电平回线、三极管、场效应管、第一分压电阻、第二分压电阻、第三分压电阻、第四分压电阻、第五分压电阻、第六分压电阻、第七分压电阻、第二滤波电阻、第二滤波电容、第三滤波电容、防振荡电阻和二极管,
所述第一分压电阻的第一端与所述滞后上电电平正线、所述第二分压电阻的第一端及所述第五分压电阻的第一端均连接,第二端与所述第二分压电阻的第二端、所述第三分压电阻的第一端及所述上电时序控制单元的第一输出端均连接;
所述第三分压电阻的第一端与所述上电时序控制单元的第二输出端连接,第二端与所述第四分压电阻的第一端及所述第二滤波电阻的第一端均连接;
所述第四分压电阻的第二端与所述上电时序控制单元的第二输出端及所述三极管的发射极均连接;
所述第二滤波电阻的第二端与所述第二滤波电容的第一端及所述三极管的基极均连接;
所述第二滤波电容的第二端与所述滞后上电电平回线连接;
所述三极管的集电极与所述第五分压电阻的第二端、所述第六分压电阻的第一端及所述二极管的负极均连接;
所述二极管的正极与所述滞后上电电平回线连接;
所述第六分压电阻的第二端与所述第七分压电阻的第一端、所述防振荡电阻的第一端及所述第三滤波电容的第一端均连接;
所述第七分压电阻的第二端与所述滞后上电电平回线连接;
所述第二滤波电容的第二端与所述滞后上电电平回线连接;
所述防振荡电阻的第二端与所述场效应管的漏极连接;
所述场效应管的栅极与所述滞后上电电平回线连接,且所述场效应管的源极为所述开关单元的输出端。
根据本发明的一个方面,当所述电路为初始状态时,通过滞后上电电平正线输入高电平,三极管导通,场效应管关断,使所述开关单元处于关断的状态。
根据本发明的一个方面,当通过率先上电电平正线输入高电平且不通过滞后上电电平正线输入电平信号时,所述上电时序控制单元的光电耦合器导通,所述开关单元的三极管关断,场效应管导通,使所述开关单元开通。
根据本发明的一个方面,当通过率先上电电平正线输入低电平时,所述上电时序控制单元的光电耦合器关断,所述开关单元的三极管导通,场效应管关断,使所述开关单元关断。
有益效果
根据本发明的方案,通过光电耦合器、三极管、MOS管及其外围电路构成上电时序控制电路和电平信号型指令开关电路,将时序要求中率先上电的电平信号作为滞后上电电平的控制信号,实现不共地的两路电源的自适应上电时序控制功能,无需整星的遥控指令进行开关机控制,能够解决随着整星用电设备尤其是载荷设备大量增加情况下遥控资源不足的问题。
根据本发明的一个方案,通过采用光电耦合器和三极管替代继电器或电压比较器的复杂电路结构进行设计,克服了长期工作情况下指令频繁工作时继电器开关次数降额不够,以及空间环境辐照情况下单粒子致使电压比较器易翻转不稳定的缺点,具备可靠性高和体积小的特点。
根据本发明的一个方案,现有技术中使用光电耦合器和三极管作为核心器件实现开关机控制功能时,使用光电耦合器输出端的状态对三极管的基极进行状态控制,由于光电耦合器的输出端本质上也是一种三极管,当光电耦合器输出端为低阻态时,无法保证控制电路三极管的基极能够被嵌位至有效的低电平,三极管存在误导通的可能性,致使开机功能不可靠。本发明设计了一种巧妙的提高开关机功能可靠性的电路,即将光电耦合器的输出端通过设置电压分压后接入到控制三极管的基极,保证光电耦合器输出端为低时,三极管的基极电平更低,保证三极管无法开通,提高开机功能的可靠性。
附图说明
图1示意性表示本发明的一种实施方式的电平信号型开关机控制电路的单元组成示意图;
图2示意性表示本发明的一种实施方式的电平信号型开关机控制电路的具体结构示意图。
本发明的实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
图1示意性表示本实施方式的电平信号型开关机控制电路的单元组成示意图。如图1所示,本实施方式的电平信号型开关机控制电路主要包括上电时序控制单元101和开关单元102。其中,上电时序控制单元101通过输出高电平信号或低电平信号,并将其传递给开关单元102,控制开关单元102完成开通动作或关断动作。开关单元102通过接收到上电时序控制单元101输出的电平信号指令,完成相应的开通动作或关断动作,同时为与其连接的负载供电。该电路为上电时序控制单元101与开关单元102兼容设计的新型控制电路,能够解决目前开关机电路无法实现上电时序控制功能的技术缺陷,同时实现星上多台用电设备的自主用电时序控制和开关机功能控制,进一步地实现通过遥控指令实现星上用电设备的开关机控制功能,以适应资源有限的空间环境。
图2示意性表示本实施方式的电平信号型开关机控制电路的具体结构示意图。如图2所示,该电平信号型开关机控制电路中的上电时序控制单元101具体包括:率先上电电平正线(或称为控制电平信号正线)、率先上电电平回线(或称为控制电平信号回线)、光电耦合器U1、隔离二极管D1、第一滤波电阻R7、第一泄放电阻R8、第一滤波电容C3和第二泄放电阻R9。光电耦合器U1包括第一端1、第三端4、第二端6、第四端3和第五端5。第一端1和第二端6分别是光电耦合器U1中光电二极管的正极和负极,第三端4、第四端3和第五端5分别是光电耦合器U1副边侧的三极管的基极(B极)、发射极(E极)和集电极(C极)。同时,光电耦合器U1的第四端3和第五端5分别为上电时序控制单元101的第一输出端和第二输出端。
其中,隔离二极管D1的正极与率先上电电平正线连接,隔离二极管D1的负极与第一滤波电阻R7的第一端连接。第一滤波电阻R7的第二端与第一泄放电阻R8的第一端、第一滤波电容C3的第一端及光电耦合器U1的第一端1均连接。第一泄放电阻R8的第二端与第一滤波电容C3的第二端、光电耦合器U1的第二端6及率先上电电平回线均连接。第二泄放电阻R9的第一端与光电耦合器U1的第三端4连接,第二泄放电阻R9的第二端与光电耦合器U1的第五端5连接。
该电平信号型开关机控制电路中的开关单元102具体包括:滞后上电电平正线(或称为输入正线)、滞后上电电平回线(或称为输入回线)、三极管Q1、场效应管M1(MOS管)、第一分压电阻R1、第二分压电阻R2、第三分压电阻R10、第四分压电阻R12、第五分压电阻R3、第六分压电阻R4、第七分压电阻R6、第二滤波电阻R11、第二滤波电容C1、第三滤波电容C2、防振荡电阻R5和二极管Z1。
其中,第一分压电阻R1的第一端与滞后上电电平正线、第二分压电阻R2的第一端及第五分压电阻R3的第一端均连接,第一分压电阻R1的第二端与第二分压电阻R2的第二端、第三分压电阻R10的第一端及上电时序控制单元101的第一输出端均连接。第三分压电阻R10的第一端与上电时序控制单元101的第二输出端连接,第三分压电阻R10的第二端与第四分压电阻R12的第一端及第一滤波电阻R11的第一端均连接。第四分压电阻R12的第二端与上电时序控制单元101的第二输出端及三极管Q1的发射极(E极)均连接。第二滤波电阻R11的第二端与第二滤波电容C1的第一端及三极管Q1的基极(B极)均连接。第二滤波电容C1的第二端与滞后上电电平回线连接。三极管Q1的集电极(C极)与第五分压电阻R3的第二端、第六分压电阻R4的第一端及二极管Z1的负极均连接。二极管Z1的正极与滞后上电电平回线连接。第六分压电阻R4的第二端与第七分压电阻R6的第一端、防振荡电阻R5的第一端及第三滤波电容C2的第一端均连接。第七分压电阻R6的第二端与滞后上电电平回线连接。第三滤波电容C2的第二端与滞后上电电平回线连接。防振荡电阻R5的第二端与场效应管M1的漏极(D极)连接。场效应管M1的栅极(G极)与滞后上电电平回线连接,且场效应管M1的源极(S极)为开关单元102的输出端。
在本实施方式如图2所示的电路中,开关单元102的滞后上电电平正线通过上述第一分压电阻R1、第二分压电阻R2、第三分压电阻R10和第四分压电阻R12后,再通过由第二滤波电阻R11和第二滤波电容C1构成的滤波电路接入到三极管Q1的基极,控制三极管Q1在无上电时序控制单元电平指令的控制信号作用下的导通或关断。同时,滞后上电电平正线通过上述第五分压电阻R3、第六分压电阻R4和第七分压电阻R6,并经过第三滤波电容C2和防振荡电阻R5后接入到场效应管M1的栅极,控制场效应管M1的开通或关断,也就是控制滞后上电电平是否正常输出。这里,场效应管M1为开关单元102的开关,连接负载并为负载提供电源。其中,第三滤波电容C2具有滤波作用,使场效应管M1的充电缓慢,防止启动振动,可以保护场效应管M1。防振荡电阻R5的作用可以避免电压振荡和电流冲击。另外,二极管Z1可以防止场效应管M1的栅极电压过高,并起到稳压作用,从而可以保护场效应管M1不受损伤。
上电时序控制单元101通过率先上电电平正线输入电平信号,经过隔离二极管D1,通过第一滤波电阻R7、第一泄放电阻R8和第一滤波电容C3后,接入到光电耦合器U1的发光二极管的正极,光电耦合器U1副边侧的三极管的集电极通过第三分压电阻R10和第四分压电阻R12后,再通过由第二滤波电阻R11和第二滤波电容C1组成的滤波电路接入到三极管Q1的基极,控制三极管Q1的导通或关断。其中,隔离二极管D1的作用可以防止上电时序控制单元101输入端的正负电极接反。第一滤波电阻R7、第一泄放电阻R8和第一滤波电容C3组成的电路可以滤除在率先上电电平正线上电过程中产生的干扰尖峰信号,避免使三极管Q1误导通,进而使开关单元102避免产生误动作。第二滤波电阻R11和第二滤波电容C1组成的滤波电路可以为开关单元102滤除上电时序控制单元101输出的电平控制信号或电平指令中的无意干扰信号,提高开关单元102接收控制信号的可靠度。另外,第二泄放电阻R9的两端分别连接在光电耦合器U1副边侧的三极管的基极和发射极,可以防止静电损伤光电耦合器U1,起到保护光电耦合器U1的作用。
当该电路为初始状态时,在滞后上电电平正线电压信号建立的过程中,也就是说开关单元102通过滞后上电电平正线输入高电平,经过上述由第一分压电阻R1至第四分压电阻R12组成的分压电路后,再经过上述滤波电路并接入到三极管Q1的基极,通过对上述分压电阻、滤波电阻和滤波电容分别设置合理的电阻值和电容值,使得三极管Q1比场效应管M1率先导通。由于三极管Q1的集电极接入到场效应管M1的栅极,三极管Q1的率先导通拉低了开关场效应管M1的栅极电平,使得场效应管M1关断,即开关单元102处于关断状态。
当上电时序控制单元101通过率先上电电平正线输入高电平,且不通过滞后上电电平正线输入电平信号时,光电耦合器U1的发光二极管侧有电流通过,使得光电耦合器U1副边侧的三极管的集电极和发射极之间的PN结导通,光电耦合器U1的三极管的集电极为低电平,电平大小为一个PN结的压降。再通过第三分压电阻R10和第四分压电阻R12后,致使三极管Q1的基极电压为更低的低电平,使三极管Q1无法导通。此时开关场效应管M1的栅极在滞后上电电平正线的分压作用下保持在高电平,开关场效应管M1导通,开关单元102的滞后上电电平正常输出,具有可靠的开机效果。
当通过率先上电电平正线输入低电平时,上电时序控制单元101的光电耦合器U1的发光二极管侧无电流通过,使得光电耦合器U1的副边侧的三极管的集电极和发射极之间的PN结无法导通,光电耦合器U1的三极管的集电极为高阻态,在滞后上电电平正线的作用下,致使三极管Q1的基极电压为高电平,保证三极管Q1的集电极和发射极之间能够导通,此时开关场效应管M1的栅极电平被拉低,开关场效应管M1无法导通,开关单元102的滞后上电电平无输出,达到关机效果。
综上,本实施方式的电平信号型开关机控制电路,采用光电耦合器U1及其外围电路、三极管Q1及其外围电路和MOS管的驱动外围电路组成的结构设计,并对上述各外围电路的元器件进行选型和对阻容参数进行合理设置,即可实现电平信号型开关机控制功能和上电时序控制功能,具有体积小、抗干扰能力强和开关机可靠性高的特点。通过用光电耦合器U1和三极管Q1替换现有的开关机电路的比较器或继电器结构,克服现有开关机电路的结构复杂、容易误动作和无法实现上电时序控制功能的缺陷。
(1)实现电平指令开关机功能
电平控制信号接入光电耦合器U1的输入端,光电耦合器U1输出端连接三极管Q1的B极,三极管Q1的C极接入到MOS管的驱动G极,构成主要的功能电路,实现电平信号的开关机控制。
初始态:输入正线通过分压电阻接入三极管Q1的B端,三极管Q1的C极接入到MOS管的G极,当输入母线逐渐上升时,通过合理的分压设置,使得三极管Q1比MOS管优先开通,将MOS管的驱动电压拉低,此时MOS管处于关断状态,功率链路开路,处于关机状态。
开机控制:当电平控制信号高电平来临时,此时光电耦合器U1输出端开通将三极管Q1的B极拉低,使得三极管Q1处于关断状态,此时三极管Q1的CE处于高阻状态,MOS管的G极电平在输入正线通过分压后处于高电平,MOS管开通,负载开机正常工作。
关机控制:当电平控制信号为低电平时,光电耦合器U1输出端为高阻状态,即三极管Q1的B极处于高电位,三极管Q1的CE导通,将MOS管的G极拉低至零电位,MOS管无法导通,功率链路处于开路状态,负载关机。
(2)实现上电时序控制功能
当负载上电时序有要求时,将优先上电的输出电平信号接入到光电耦合器U1的输入端以控制滞后上电输出电平的有无,由于光电耦合器U1的设计,可以实现两路输出电源不共地的情况下的上电时序控制。
当要求率先上电的电平信号建立高电平后,此时光电耦合器U1的输出端为低电平,将后上电电平的时序控制电路中的三极管Q1的B极拉低,三极管Q1的C极呈现高阻态,MOS管的驱动G极为高电平,MOS管开通,滞后上电的电平开始输出高电平。
当率先上电的电平信号转为低电平时,此时光电耦合器U1的输出端为高电平,三极管Q1的B极为高电平,三极管Q1开通,C极为低阻态,MOS管驱动G极为低电平,MOS管关断,滞后上电的电平无输出。
以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (7)

  1. 一种电平信号型开关机控制电路,其特征在于,包括:上电时序控制单元(101)和开关单元(102),
    所述上电时序控制单元(101),用于生成控制所述开关单元(102)的开通动作或关断动作的电平信号;
    所述开关单元(102),用于接收所述上电时序控制单元(101)输出的电平信号,并根据所述电平信号执行完成开通动作或关断动作,以实现对负载的供电。
  2. 根据权利要求1所述的电平信号型开关机控制电路,其特征在于,所述上电时序控制单元(101)包括:率先上电电平正线、率先上电电平回线、光电耦合器(U1)、隔离二极管(D1)、第一滤波电阻(R7)、第一泄放电阻(R8)、第一滤波电容(C3)和第二泄放电阻(R9),
    所述隔离二极管(D1)的正极与所述率先上电电平正线连接,负极与所述第一滤波电阻(R7)的第一端连接;
    所述第一滤波电阻(R7)的第二端与所述第一泄放电阻(R8)的第一端、所述第一滤波电容(C3)的第一端及所述光电耦合器(U1)的第一端(1)均连接,
    所述第一泄放电阻(R8)的第二端与所述第一滤波电容(C3)的第二端、所述光电耦合器(U1)的第二端(6)及所述率先上电电平回线均连接;
    所述第二泄放电阻(R9)的第一端与所述光电耦合器(U1)的第三端(4)连接,第二端与所述光电耦合器(U1)的第五端(5)连接;
    所述光电耦合器(U1)还包括第四端(3)。
  3. 根据权利要求2所述的电平信号型开关机控制电路,其特征在于,通过所述光电耦合器(U1)的第四端(3)和第五端(5)将所述上电时序控制单元(101)输出的电平信号传递至所述开关单元(102),
    其中,所述光电耦合器(U1)的第四端(3)和第五端(5)分别为所述上电时序控制单元(101)的第一输出端和第二输出端。
  4. 根据权利要求1所述的电平信号型开关机控制电路,其特征在于,所述开关单元(102)包括:滞后上电电平正线、滞后上电电平回线、三极管(Q1)、场效应管(M1)、第一分压电阻(R1)、第二分压电阻(R2)、第三分压电阻(R10)、第四分压电阻(R12)、第五分压电阻(R3)、第六分压电阻(R4)、第七分压电阻(R6)、第二滤波电阻(R11)、第二滤波电容(C1)、第三滤波电容(C2)、防振荡电阻(R5)和二极管(Z1),
    所述第一分压电阻(R1)的第一端与所述滞后上电电平正线、所述第二分压电阻(R2)的第一端及所述第五分压电阻(R3)的第一端均连接,第二端与所述第二分压电阻(R2)的第二端、所述第三分压电阻(R10)的第一端及所述上电时序控制单元(101)的第一输出端均连接;
    所述第三分压电阻(R10)的第一端与所述上电时序控制单元(101)的第二输出端连接,第二端与所述第四分压电阻(R12)的第一端及所述第二滤波电阻(R11)的第一端均连接;
    所述第四分压电阻(R12)的第二端与所述上电时序控制单元(101)的第二输出端及所述三极管(Q1)的发射极均连接;
    所述第二滤波电阻(R11)的第二端与所述第二滤波电容(C1)的第一端及所述三极管(Q1)的基极均连接;
    所述第二滤波电容(C1)的第二端与所述滞后上电电平回线连接;
    所述三极管(Q1)的集电极与所述第五分压电阻(R3)的第二端、所述第六分压电阻(R4)的第一端及所述二极管(Z1)的负极均连接;
    所述二极管(Z1)的正极与所述滞后上电电平回线连接;
    所述第六分压电阻(R4)的第二端与所述第七分压电阻(R6)的第一端、所述防振荡电阻(R5)的第一端及所述第三滤波电容(C2)的第一端均连接;
    所述第七分压电阻(R6)的第二端与所述滞后上电电平回线连接;
    所述第三滤波电容(C2)的第二端与所述滞后上电电平回线连接;
    所述防振荡电阻(R5)的第二端与所述场效应管(M1)的漏极连接;
    所述场效应管(M1)的栅极与所述滞后上电电平回线连接,且所述场效应管(M1)的源极为所述开关单元(102)的输出端。
  5. 根据权利要求1至4任一项所述的电平信号型开关机控制电路,其特征在于,当所述电路为初始状态时,通过滞后上电电平正线输入高电平,三极管(Q1)导通,场效应管(M1)关断,使所述开关单元(102)处于关断的状态。
  6. 根据权利要求1至4任一项所述的电平信号型开关机控制电路,其特征在于,当通过率先上电电平正线输入高电平且不通过滞后上电电平正线输入电平信号时,所述上电时序控制单元(101)的光电耦合器(U1)导通,所述开关单元(102)的三极管(Q1)关断,场效应管(M1)导通,使所述开关单元(102)开通。
  7. 根据权利要求1至4任一项所述的电平信号型开关机控制电路,其特征在于,当通过率先上电电平正线输入低电平时,所述上电时序控制单元(101)的光电耦合器(U1)关断,所述开关单元(102)的三极管(Q1)导通,场效应管(M1)关断,使所述开关单元(102)关断。
PCT/CN2022/115611 2021-11-18 2022-08-29 电平信号型开关机控制电路 WO2023087840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111368734.1A CN114237092A (zh) 2021-11-18 2021-11-18 电平信号型开关机控制电路
CN202111368734.1 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023087840A1 true WO2023087840A1 (zh) 2023-05-25

Family

ID=80749948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115611 WO2023087840A1 (zh) 2021-11-18 2022-08-29 电平信号型开关机控制电路

Country Status (2)

Country Link
CN (1) CN114237092A (zh)
WO (1) WO2023087840A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237092A (zh) * 2021-11-18 2022-03-25 北京卫星制造厂有限公司 电平信号型开关机控制电路

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963792A (zh) * 2010-10-29 2011-02-02 珠海市鑫和电器有限公司 一种时序控制电路及其控制方法
CN106020004A (zh) * 2016-07-25 2016-10-12 珠海格力节能环保制冷技术研究中心有限公司 一种电源上断电时序控制电路及控制方法
CN106371334A (zh) * 2015-07-21 2017-02-01 深圳市奇辉电气有限公司 一种上下电时序控制电路及电源系统
CN107919794A (zh) * 2017-11-13 2018-04-17 中国航空工业集团公司西安航空计算技术研究所 一种机载高压直流控制器缓上电方法
CN208257783U (zh) * 2018-06-13 2018-12-18 河南森源电气股份有限公司 一种多电源上电时序控制电路
US20190115829A1 (en) * 2017-10-13 2019-04-18 Qualcomm Incorporated Power-up sequencing and high voltage protection for charge pump converters
CN110099234A (zh) * 2019-05-08 2019-08-06 深圳创维-Rgb电子有限公司 一种电源启动装置及电视机
CN111865061A (zh) * 2020-08-23 2020-10-30 贵阳航空电机有限公司 一种航空电机控制器上下电管理电路
CN212572501U (zh) * 2020-06-11 2021-02-19 武汉兴通力电源技术有限公司 一种简单易行的可调式输出时序控制电路
CN114237092A (zh) * 2021-11-18 2022-03-25 北京卫星制造厂有限公司 电平信号型开关机控制电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939567B4 (de) * 1999-08-20 2007-07-19 Pilz Gmbh & Co. Kg Vorrichtung zum Steuern von sicherheitskritischen Prozessen
CN201248033Y (zh) * 2008-08-25 2009-05-27 青岛海信电器股份有限公司 时序控制电路及具有所述电路的电视机
JP2014508501A (ja) * 2011-03-15 2014-04-03 サンサン ライティング チャイナ カンパニー リミテッド 電流検出回路、及びその電流検出回路と電力変換回路
CN102809931A (zh) * 2011-05-30 2012-12-05 鸿富锦精密工业(深圳)有限公司 电源时序控制电路
CN103901991A (zh) * 2012-12-26 2014-07-02 鸿富锦精密工业(深圳)有限公司 电源时序电路
CN104635569B (zh) * 2014-12-09 2017-06-30 青岛歌尔声学科技有限公司 一种多模块时序控制电路
CN106773905B (zh) * 2016-11-24 2019-02-05 中国船舶重工集团公司第七一六研究所 一种基于电源时序消抖控制的开关量输出电路
CN209014935U (zh) * 2018-08-20 2019-06-21 合肥华耀电子工业有限公司 一种带互锁功能的开关机时序控制电路
CN212785304U (zh) * 2020-06-03 2021-03-23 百富计算机技术(深圳)有限公司 一种开关机电路及pos机
CN112039028B (zh) * 2020-08-11 2022-10-21 北京卫星制造厂有限公司 一种具有强抗干扰能力的遥控指令和母线欠压保护电路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963792A (zh) * 2010-10-29 2011-02-02 珠海市鑫和电器有限公司 一种时序控制电路及其控制方法
CN106371334A (zh) * 2015-07-21 2017-02-01 深圳市奇辉电气有限公司 一种上下电时序控制电路及电源系统
CN106020004A (zh) * 2016-07-25 2016-10-12 珠海格力节能环保制冷技术研究中心有限公司 一种电源上断电时序控制电路及控制方法
US20190115829A1 (en) * 2017-10-13 2019-04-18 Qualcomm Incorporated Power-up sequencing and high voltage protection for charge pump converters
CN107919794A (zh) * 2017-11-13 2018-04-17 中国航空工业集团公司西安航空计算技术研究所 一种机载高压直流控制器缓上电方法
CN208257783U (zh) * 2018-06-13 2018-12-18 河南森源电气股份有限公司 一种多电源上电时序控制电路
CN110099234A (zh) * 2019-05-08 2019-08-06 深圳创维-Rgb电子有限公司 一种电源启动装置及电视机
CN212572501U (zh) * 2020-06-11 2021-02-19 武汉兴通力电源技术有限公司 一种简单易行的可调式输出时序控制电路
CN111865061A (zh) * 2020-08-23 2020-10-30 贵阳航空电机有限公司 一种航空电机控制器上下电管理电路
CN114237092A (zh) * 2021-11-18 2022-03-25 北京卫星制造厂有限公司 电平信号型开关机控制电路

Also Published As

Publication number Publication date
CN114237092A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN103066978B (zh) 一种开关电路
CN103501031B (zh) 一种超级电容充电控制电路
CN110224456A (zh) 一种卫星低功耗启动供电系统
CN203056953U (zh) 一种驱动器及其母线电容放电电路
WO2023087840A1 (zh) 电平信号型开关机控制电路
CN202586329U (zh) 自放电电路
WO2023071495A1 (zh) 星载电源开关机使能及欠压锁定电路
WO2016124104A1 (zh) 一种适用于晶闸管的混合触发电路
CN203193589U (zh) 一种带缓起控制的电源控制电路及电子产品
CN201657409U (zh) 一种新型单键轻触开关电路
CN101924459B (zh) 基于双光电隔离的开关信号接口电路
CN100527306C (zh) 继电器控制电路
CN203368331U (zh) 一种带输入欠压保护的开关电源
CN209298981U (zh) 一种自动切换电源供电方式的电路
CN103178702A (zh) 电源的软关断无损吸收装置
CN202374353U (zh) 一种电视机及其主板电源短路检测电路
CN203537357U (zh) 一种延时开关机简易电路
CN203734645U (zh) 一种三相正反转固体继电器
CN202797863U (zh) 一种电子产品的时序保护电路
CN205595888U (zh) 一种主备电源切换电路
CN216490220U (zh) 一种改进型pfc开关电路
CN203193507U (zh) 降低电器待机功耗的电源电路
CN114551156B (zh) 一种控制容性负载的继电器触点保护电路
WO2022111416A1 (zh) 开关电源的长时复位电路、印刷电路板及电子设备
CN204013451U (zh) 一种电容延时开关的防瞬开电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894380

Country of ref document: EP

Kind code of ref document: A1