WO2023087701A1 - 一种新型的集成化高压电路通断连接系统 - Google Patents

一种新型的集成化高压电路通断连接系统 Download PDF

Info

Publication number
WO2023087701A1
WO2023087701A1 PCT/CN2022/100021 CN2022100021W WO2023087701A1 WO 2023087701 A1 WO2023087701 A1 WO 2023087701A1 CN 2022100021 W CN2022100021 W CN 2022100021W WO 2023087701 A1 WO2023087701 A1 WO 2023087701A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
contact body
connection
circuit
connection terminal
Prior art date
Application number
PCT/CN2022/100021
Other languages
English (en)
French (fr)
Inventor
周定贤
Original Assignee
恒义超然工业技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒义超然工业技术(上海)有限公司 filed Critical 恒义超然工业技术(上海)有限公司
Publication of WO2023087701A1 publication Critical patent/WO2023087701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • H01R13/6616Structural association with built-in electrical component with built-in single component with resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/68Structural association with built-in electrical component with built-in fuse

Definitions

  • the invention relates to the technical field of high-voltage circuit on-off connection in energy supply equipment, in particular to a novel integrated high-voltage circuit on-off connection system.
  • Electrification technology is developing rapidly in the fields of new energy vehicles, energy storage, photovoltaics, and charging and swapping, among which the controllable and reliable on-off function of the high-voltage circuit is very critical.
  • the main method is to use relay components to indirectly realize the on-off function of closing or breaking the high-voltage electric circuit by controlling the low-voltage electric circuit of the relay.
  • the on-off execution part of each relay has a separate electromagnetic coil to provide circuit switching Break the power of the mechanism.
  • the system-oriented functional requirements such as the positive pole of the main circuit, the negative pole of the main circuit, the pre-charging circuit, and the fast-charging circuit, it is necessary to integrate a large number of individual components such as several independent relays, pre-charging resistors, and current sensors.
  • the present invention provides a new type of integrated high-voltage circuit on-off connection system.
  • the integrated high-voltage circuit on-off connection system After using the integrated high-voltage circuit on-off connection system, in the process of driving the assembly shaft by the power source, by controlling each The time and length of contact and separation between the contact body and the conductive layer are different to realize the establishment and disconnection of the high-voltage circuit, which can be applied to a series of high-voltage positive connection, pre-charge connection, pre-charge process, high-voltage negative connection, pre-charge connection disconnection, etc.
  • Power-on or power-off process of the power battery and realize a high degree of system integration of multiple functions, greatly improve the safety and stability of the high-voltage circuit on-off connection, achieve relatively smooth sliding contact, and reduce or eliminate noise generation.
  • a new type of integrated high-voltage circuit on-off connection system including a high-voltage power supply, a high-voltage load, and a high-voltage on-off connection device.
  • the high-voltage power supply is electrically connected to the high-voltage on-off connection device through a high-voltage connection terminal.
  • the high-voltage The load is electrically connected to the high-voltage on-off connection device through a high-voltage connection terminal, and the high-voltage power supply is connected to the high-voltage load through a connection interface of the high-voltage on-off connection device to form a high-voltage circuit;
  • the high-voltage on-off connection device includes several assembly shafts and several contact bodies, and the assembly shafts are sequentially assembled with the contact bodies at intervals.
  • the surface of the contact bodies is provided with a layer of conductive layer, and several contact bodies pass through after contacting each other.
  • the conductive layer is capable of high-voltage conduction; the assembly shaft is powered by a power source, so that the assembly shaft can rotate or move and drive the contact body it is assembled to perform actions as required.
  • the present invention is in order to solve its technical problem, and the further technical scheme that adopts is:
  • the high-voltage power supply includes a first high-voltage power supply, and the first high-voltage power supply is electrically connected to the high-voltage on-off connection device through the first high-voltage connection terminal and the second high-voltage connection terminal of the high-voltage on-off connection device.
  • the high-voltage load is electrically connected to the high-voltage on-off connection device through the third high-voltage connection terminal and the fourth high-voltage connection terminal of the high-voltage on-off connection device
  • the first high-voltage power supply is connected to the high-voltage load through
  • the connection interface of the high-voltage on-off connection device is connected to form a high-voltage circuit, and the high-voltage on-off connection device is fixedly connected through a structure.
  • the high-voltage on-off connection device includes a first assembly shaft, a first contact body, a second contact body, a third contact body, a second assembly shaft, a fourth contact body, a fifth contact body and a sixth contact body.
  • the first assembly axis is spaced apart from the first contact body, the second contact body, and the third contact body in turn, and the second assembly axis is spaced apart from the fourth contact body and the fifth contact body in sequence.
  • the sixth contact body, the surfaces of the first contact body, the second contact body, the third contact body, the fourth contact body, the fifth contact body and the sixth contact body are all provided with a first conductive layer, and the After the first contact body, the second contact body, the third contact body, the fourth contact body, the fifth contact body and the sixth contact body are in contact with each other, they can conduct high-voltage conduction through the first conductive layer.
  • first assembly shaft and the second assembly shaft are powered by a first power source, so that the first assembly shaft and the second assembly shaft can rotate or move and drive the assembled first assembly shaft
  • the first contact body, the second contact body, the third contact body, the fourth contact body, the fifth contact body and the sixth contact body perform actions as required.
  • first contact body, the second contact body and the first high-voltage connection terminal can conduct high-voltage conduction through the first conductive layer; the fourth contact body, the fifth contact body and the third high-voltage connection terminal High-voltage conduction can be conducted through the first conductive layer; the sixth contact body and the fourth high-voltage connection terminal can be conducted at high voltage through the first conductive layer.
  • first high-voltage connection terminal, the second high-voltage connection terminal, the third high-voltage connection terminal, the fourth high-voltage connection terminal, and the first conductive layer are all equipped with test points, and the test points are temperature test points or voltage The test point is used to detect and collect the temperature value or voltage value in the high voltage circuit in real time.
  • test point is electrically connected in series with a circuit protector, and the circuit protector is a current sensor or a fuse; the current sensor is used to monitor the current value in the high-voltage circuit in real time; the fuse is used to In the high-voltage circuit, actively or passively disconnect the high-voltage circuit and stop the overcurrent of the high-voltage circuit.
  • the circuit protector is a current sensor or a fuse; the current sensor is used to monitor the current value in the high-voltage circuit in real time; the fuse is used to In the high-voltage circuit, actively or passively disconnect the high-voltage circuit and stop the overcurrent of the high-voltage circuit.
  • the integrated high-voltage circuit on-off connection system further includes a controller, and the controller is electrically connected to the circuit protector.
  • N first high-voltage power supplies may be provided, and the N first high-voltage power supplies are electrically connected in series or in parallel; wherein, N is greater than or equal to 1.
  • the high-voltage on-off connection device correspondingly adds 2N high-voltage connection terminals and contact bodies electrically connected to the first high-voltage power supply, and adds no more than N a power source.
  • a third assembly shaft is connected between every two high-voltage connection terminals, and the third assembly shaft is powered by the power source, so that the third assembly shaft can rotate or move and drive its Assembled contact bodies perform actions as required.
  • the high-voltage on-off connection device further includes an electrical device, and the electrical device is electrically connected to the first high-voltage connection terminal, the first contact body, and the second contact body through the first conductive layer. connected and capable of high-voltage conduction; the electrical device is a heat dissipation resistor device.
  • first assembly axis, the second assembly axis and the third assembly axis are all radiator structures.
  • the present invention drives the assembly shaft through a power source, and can rotate around the second assembly shaft or move along the direction of the second assembly shaft.
  • the contact body on the second assembly shaft and the first conductive layer on it follow the movement, and the drive path Among them, the second high-voltage connection terminal realizes electrical conduction with the fourth high-voltage connection terminal through the first conductive layer of the third contact body and the first conductive layer of the sixth contact body; the first high-voltage connection terminal passes through the first contact body
  • the first conductive layer of the fourth contact body is contacted and connected with the first conductive layer of the fourth contact body to realize electrical conduction with the third high-voltage connection terminal, and it can also be connected through electrical devices such as heat dissipation resistors, the first conductive layer of the second contact body and the fifth contact body.
  • the contact connection of the first conductive layer of the contact body realizes electrical conduction with the third high-voltage connection terminal; in the process of driving the second assembly shaft by the first power source, by controlling the contact and separation time of each contact body and the first conductive layer in time Long difference, realize the establishment and disconnection of the high-voltage circuit, and can be applied to a series of power-on or power-off processes such as high-voltage positive connection, pre-charge connection, pre-charge process, high-voltage negative connection, and pre-charge connection disconnection;
  • the first power source of the present invention can provide power, and the contact body assembled by it can be driven to act according to the requirements through the rotation or movement of the assembly shaft.
  • temperature test points can be installed on each high-voltage connection terminal and the first conductive layer Or voltage test point, used to detect and collect the temperature value or voltage value in the high-voltage circuit in real time, to prevent the occurrence of failure or safety accident caused by the temperature exceeding the design threshold, the test point is electrically connected in series with the circuit protector, and the circuit protector is a current sensor Or fuse, the current sensor is used to monitor the current value in the high-voltage circuit in real time, report it to the controller, and perform high-voltage power-off.
  • the high-voltage circuit realizes a high degree of system integration of multiple functions, greatly improving the safety and stability of the on-off connection of the high-voltage circuit;
  • the first power source of the present invention can maintain an appropriate shift between the first conductive layers within a certain period of time after the first conductive layers are in contact according to actual needs, so as to maintain electrical conduction and avoid adhesion, and, in the first power source In the process of the source driving the second assembly axis, the first conductive layer on the fourth contact body, the fifth contact body, and the sixth contact body and the first conductive layer on the first contact body, the second contact body, and the third contact body A relatively smooth sliding contact is achieved upon contact, which can reduce or eliminate noise generation.
  • Fig. 1 is a schematic structural view of a novel integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention
  • Fig. 2 is a schematic structural diagram of a novel integrated high-voltage circuit on-off connection system described in Embodiment 2 of the present invention
  • Fig. 3 is one of the structural schematic diagrams of the electrical devices described in Embodiment 1, Embodiment 2 and Embodiment 3 of the present invention
  • Fig. 4 is the second structural diagram of the electrical device described in Embodiment 1, Embodiment 2 and Embodiment 3 of the present invention.
  • FIG 5 is a schematic structural view of the assembly shaft described in Embodiment 1, Embodiment 2, and Embodiment 3 of the present invention as a heat sink (taking the first assembly shaft as an example);
  • Fig. 6 is one of the structural schematic diagrams of the structure described in Embodiment 1, Embodiment 2 and Embodiment 3 of the present invention as a radiator;
  • Fig. 7 is the second structural schematic diagram of the structure described in Embodiment 1, Embodiment 2 and Embodiment 3 of the present invention as a radiator;
  • Fig. 8 is one of the execution diagrams of a novel integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention (establishing a high-voltage circuit);
  • Fig. 9 is the second execution action diagram (establishment of high-voltage circuit) of a new type of integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention.
  • Fig. 10 is the third execution action diagram of a new type of integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention (establishing a high-voltage circuit);
  • Fig. 11 is the fourth execution diagram of a novel integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention (establishing a high-voltage circuit);
  • Fig. 12 is the fifth execution diagram of a novel integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention (establishing a high-voltage circuit);
  • Fig. 13 is the fifth execution diagram of a novel integrated high-voltage circuit on-off connection system described in Embodiment 1 of the present invention (disconnecting the high-voltage circuit);
  • Fig. 14 is a schematic diagram of the structure of a new type of integrated high-voltage circuit on-off connection system described in Embodiment 2 of the present invention to establish a high-voltage circuit under the series relationship of multiple high-voltage power supplies (taking the series relationship of two high-voltage power supplies as an example);
  • Fig. 15 is a schematic diagram of the structure of a new type of integrated high-voltage circuit on-off connection system described in Embodiment 2 of the present invention to establish a high-voltage circuit under the parallel relationship of multiple high-voltage power supplies (taking the parallel relationship of two high-voltage power supplies as an example);
  • Fig. 16 is a structural schematic diagram of a new type of integrated high-voltage circuit on-off connection system described in Embodiment 3 of the present invention (the high-voltage on-off connection device has a socket);
  • High voltage on-off connection device 100 structural body 110, first contact body 111, second contact body 112, third contact body 113, fourth contact body 114, fifth contact body 115, sixth contact body 116, first conductive Layer 117, first assembly shaft 118, second assembly shaft 119, first high voltage connection terminal 120, connection interface 121, third high voltage connection terminal 122, fourth high voltage connection terminal 123, second high voltage connection terminal 124, circuit protector 125, electrical device 126, test point 127, first high-voltage power supply 128, high-voltage load 129, first power source 130, seventh contact body 131, eighth contact body 132, sixth high-voltage connection terminal 133, fifth high-voltage connection terminal 134, the third assembly shaft 135, the second high-voltage power supply 136, the third high-voltage power supply 137, the third power source 139, the fourth power source 140, the heat dissipation interface 141, the heat dissipation element 142, the heat dissipation medium 143, the heat dissipation body
  • a new type of integrated high-voltage circuit on-off connection system includes a first high-voltage power supply 128, a high-voltage load 129 and a high-voltage on-off connection device 100, and the first high-voltage power supply 128 passes through the high-voltage
  • the first high-voltage connection terminal 120 and the second high-voltage connection terminal 124 of the on-off connection device 100 are electrically connected to the high-voltage on-off connection device 100.
  • the high-voltage load 129 passes through the third high-voltage connection terminal 122 and the fourth high-voltage connection terminal 122 of the high-voltage on-off connection device 100
  • the high-voltage connection terminal 123 is electrically connected to the high-voltage on-off connection device 100 , the first high-voltage power source 128 and the high-voltage load 129 are connected through the connection interface 121 of the high-voltage on-off connection device 100 to form a high-voltage circuit, and the high-voltage on-off connection device 100 passes through the structure 110 fixed connection;
  • the high-voltage on-off connection device 100 includes a first assembly shaft 118, a first contact body 111, a second contact body 112, a third contact body 113, a second assembly shaft 119, a fourth contact body 114, a fifth contact body 115 and a Six contact bodies 116, the first assembly axis 118 is spaced apart from the first contact body 111, the second contact body 112, and the third contact body 113, and the second assembly axis 119 is spaced apart from the fourth contact body 114 and the fifth contact body.
  • Body 115, the sixth contact body 116, the surfaces of the first contact body 111, the second contact body 112, the third contact body 113, the fourth contact body 114, the fifth contact body 115 and the sixth contact body 116 are all provided with a layer
  • the first conductive layer 117, the first contact body 111, the second contact body 112, the third contact body 113, the fourth contact body 114, the fifth contact body 115 and the sixth contact body 116 are in contact with each other through the first conductive layer 117 Capable of high voltage conduction;
  • the first assembly shaft 118 and the second assembly shaft 119 are powered by the first power source 130, so that the first assembly shaft 118 and the second assembly shaft 119 can rotate or move and drive the first contact body 111, the second The contact body 112, the third contact body 113, the fourth contact body 114, the fifth contact body 115 and the sixth contact body 116 perform actions as required;
  • the first contact body 111, the second contact body 112 and the first high-voltage connection terminal 120 can conduct high-voltage conduction through the first conductive layer 117;
  • the fourth contact body 114, the fifth contact body 115 and the third high-voltage connection terminal 122 can pass through the first A conductive layer 117 conducts at high voltage;
  • the sixth contact body 116 and the fourth high-voltage connection terminal 123 can conduct at high voltage through the first conductive layer 117;
  • the first high-voltage connection terminal 120, the second high-voltage connection terminal 124, the third high-voltage connection terminal 122, the fourth high-voltage connection terminal 123, and the first conductive layer 117 are all equipped with test points 127, which are temperature test points or voltage test points. points for real-time detection and collection of temperature or voltage values in the high-voltage circuit;
  • the test point 127 is electrically connected in series with a circuit protector 125, and the circuit protector 125 is a current sensor or a fuse; the current sensor is used to monitor the current value in the high-voltage circuit in real time; the fuse is used to actively or passively disconnect the high-voltage circuit in the high-voltage circuit. circuit, stop high-voltage circuit overcurrent;
  • the integrated high-voltage circuit on-off connection system also includes a controller, which is electrically connected to the circuit protector 125;
  • the high-voltage on-off connection device 100 also includes an electrical device 126, which is electrically connected to the first high-voltage connection terminal 120, the first contact body 111, and the second contact body 112 through the first conductive layer 117 and capable of high-voltage conduction; 126 is a heat dissipation resistor device.
  • the third high-voltage connection terminal 122 and the fourth high-voltage connection terminal 123 are connected through the connection interface 121 to form a high-voltage circuit;
  • Two contact bodies 112, the 3rd contact body 113, the second assembly shaft 119 assembles the 4th contact body 114, the 5th contact body 115 and the 6th contact body 116 by a certain distance;
  • the conductive layer 117 is connected to the first high voltage connection terminal 120, the conductive layer of the first contact body 111 and the conductive layer of the second contact body 112; the conductive layer of the fourth contact body 114 and the fifth contact body 115 is connected to the third high voltage
  • the connecting terminal 122 conducts at high voltage;
  • the conductive layer of the sixth contact body 116 contacts with the fourth high
  • the first power source 130 can provide power, through the rotation or movement of the assembly shaft, it can drive the assembled contact body to act as required.
  • temperature test points or voltage test points can be installed on each high-voltage connection terminal and conductive layer. It is used to detect and collect the temperature value or voltage value in the high-voltage circuit in real time to prevent the occurrence of faults or safety accidents caused by the temperature exceeding the design threshold.
  • the test point is connected in series with the circuit protector.
  • the circuit protector is a current sensor or a fuse. The sensor is used to monitor the current value in the high-voltage circuit in real time, report it to the controller, and perform high-voltage power-off.
  • the fuse can be used to actively or passively disconnect the high-voltage circuit in the high-voltage circuit when the current in the high-voltage circuit exceeds the design threshold.
  • a current sensor or a fuse on the high-voltage connection terminal as required.
  • the current sensor is used to collect the current information of the high-voltage on-off connection device, and the fuse is used to disconnect the high-voltage circuit of the high-voltage on-off connection device.
  • the high system integration of these functions greatly improves the safety and stability of the high-voltage circuit on-off connection; the high-voltage on-off connection device 100 fixes, supports, protects, and strengthens all components through the structure 110 .
  • the electric device 126 such as a heat dissipation resistor device, is designed as a heat dissipation interface 141, and the heat can pass through the heat dissipation interface 141 directly exchanges heat with the air, or the heat can be exchanged through the heat dissipation element 142 and the heat dissipation medium 143, and the heat can also be indirectly exchanged with the air through the structure 110 or the heat exchange between the heat dissipation element 142 and the heat dissipation medium 143;
  • the first assembly axis 118 and the second assembly axis 119 can be configured as a heat sink 144, through the heat sink 144
  • the heat dissipation medium 145 exchanges heat to the cold end
  • the heat can also pass through the structure 110 indirectly through the heat dissipation medium 145 and Air heat exchange, or conduct heat exchange to the cold end through the heat dissipation medium 145, heat sink 147 and heat transfer body 148;
  • the first high-voltage connection terminal 120 and the second high-voltage connection terminal 124 are respectively connected to the first high-voltage power supply 128 such as the positive and negative poles of the power battery, and the third high-voltage connection terminal 122 and the fourth high-voltage connection terminal 123 are respectively connected to the positive and negative poles of the high-voltage load 129; the butt connection between the first high-voltage connection terminal 120 and the second high-voltage connection terminal 124 does not limit the positive and negative poles, and the third high-voltage connection terminal 122 and the fourth high-voltage connection terminal 123 docking does not limit the positive and negative poles, but the positive and negative poles of the first high-voltage connection terminal 120 and the second high-voltage connection terminal 124 must be consistent, and the positive and negative poles of the third high-voltage connection terminal 122 and the fourth high-voltage connection terminal 123 must be consistent , the reason for the consistency is not limited to the physical form
  • the first contact body 111 is not in contact with the fourth contact body 114
  • the second contact body is with the fifth contact body 115
  • the third contact body 113 is with the sixth contact body 116
  • the first high-voltage connection terminal 120 Disconnected from the third high-voltage connection terminal 122, and disconnected from the second high-voltage connection terminal 124 from the fourth high-voltage connection terminal 123;
  • the third contact body 113 is in contact with the conductive layer of the sixth contact body 116, and the second high voltage connection terminal 124 is connected to the fourth high voltage connection terminal 123;
  • the third contact body 113 is connected to the conductive layer of the sixth contact body 116
  • the second contact body 112 is connected to the conductive layer of the fifth contact body 115
  • the second high voltage connection terminal 124 is connected to the fourth high voltage contact body.
  • the connecting terminal 123 is turned on, and the first high-voltage connecting terminal 120 and the third high-voltage connecting terminal 122 are turned on through an electrical device 126 such as a heat dissipation resistor device, which can realize charging of the high-voltage circuit and increase the circuit voltage of the high-voltage load end;
  • the third contact body 113 is connected to the conductive layer of the sixth contact body 116
  • the second contact body 112 is connected to the conductive layer of the fifth contact body 115
  • the first contact body 111 is connected to the fourth contact body.
  • the conductive layer of 114 is connected in contact
  • the second high-voltage connection terminal 124 is connected to the fourth high-voltage connection terminal 123
  • the first high-voltage connection terminal 120 and the third high-voltage connection terminal 122 pass through an electrical device 126 such as a heat dissipation resistor device and the first contact body 111 It conducts with the fourth contact body 114 .
  • the third contact body 113 is in contact with the conductive layer of the sixth contact body 116
  • the first contact body 111 is in contact with the conductive layer of the fourth contact body 114
  • the second high-voltage connection terminal 124 is connected to the fourth high-voltage connection terminal 124.
  • the connection terminal 123 conducts, and the first high-voltage connection terminal 120 and the third high-voltage connection terminal 122 conduct through the first contact body 111 and the fourth contact body 114 .
  • the first high-voltage power source 128 such as a power battery and the high-voltage load 129 establish a high-voltage circuit through the high-voltage on-off connection device 100 . If the above process is reversed (the arrow shows the reverse direction), the disconnection operation of the high voltage circuit can be realized. At the same time, in some necessary scenarios, as shown in Figure 13, the first contact body 111 and the fourth contact body 114, the third contact body 113 and the sixth contact body 116 can be directly disconnected, compared with the inversion process in Figure 8 to Figure 12 Less intermediate links, faster.
  • the high-voltage on-off connection device 100 can be expanded. Taking two high-voltage power supplies as an example, as shown in Fig.
  • the first One pole of the second high-voltage power supply 136 is connected with the first high-voltage connection terminal 120, and the other pole is connected with the fifth high-voltage connection terminal 134 to realize equipotential with the second high-voltage connection terminal 124;
  • the high-voltage connection terminal 124 is connected, and the other pole is connected to the sixth high-voltage connection terminal 133 to realize equipotentiality with the first high-voltage connection terminal 120;
  • the third assembly shaft 135 is a radiator structure; generally, the second high-voltage power supply 136 and the first The parallel relationship of the three high-voltage power sources 137, the high-voltage circuit channel is marked by an arrow;
  • the sixth high-voltage connection terminal 133 conducts with the conductive layer of the seventh contact body 131
  • the fifth high-voltage connection terminal 134 conducts with the conductive layer of the eighth contact body 132.
  • One pole of the second high-voltage power supply 136 is connected to the first high-voltage connection terminal 120, and the other pole is connected to the fifth high-voltage connection terminal 134 to realize equipotential with the sixth high-voltage connection terminal 133;
  • one pole of the third high-voltage power supply 137 is connected to the first high-voltage connection terminal 133;
  • Two high-voltage connection terminals 124 are connected, the other pole is connected to the sixth high-voltage connection terminal 133, and the third assembly shaft 135 is a radiator structure; generally, the series relationship between the second high-voltage power supply 136 and the third high-voltage power supply 137 is realized, and the high-voltage
  • the loop channel is marked by an arrow;
  • the fourth power source 140 drives the seventh contact body 131 and the eighth contact body 132 to contact the fifth high voltage connection terminal 134, the sixth high voltage connection terminal 133 and the conductive layer, and drives the fifth contact body 115,
  • the sixth contact body 116 is in contact with the third high-voltage connection terminal 122 , the second high-voltage connection terminal 124 and the conductive layer, and generally realizes the series relationship and the parallel connection relationship of the second high-voltage power supply 136 and the third high-voltage power supply 137 .
  • the high-voltage on-off connection device 100 can be integrated and expanded with similar quick-plug connectors. Taking Figure 16 as an example, it is a high-voltage on-off connection device 150 with a quick-plug connection function. Eight high-voltage connection terminals 152 can be connected to the fourth high-voltage power supply 168, and the ninth high-voltage connection terminal 158 and the tenth high-voltage connection terminal 159 can be connected to the outside of the high-voltage on-off connection device 150 with a quick-plug connection function. The eleventh high-voltage connection terminal 164 and the twelfth high-voltage connection terminal 165 on the external component 166;
  • the electrical components inside the high-voltage on-off connection device 150 with the function of quick-plug connection such as the resistor 156, the ninth contact body 153 and the tenth contact body 154, the second conductive layer 155, and the second power source 160, are in accordance with the high-voltage on-off connection device 100 Principle integration achieves the same function.
  • the high-voltage on-off connection device 150 with quick-plug connection function can be installed and fixed with the male plug-in 167 through the installation interface of the female plug-in 162;
  • one end of the conducting body 157 is connected to the resistor 156, and the other end is connected to the seventh high-voltage connection terminal 151; the fourth assembly axis 161 is sequentially assembled with the ninth contact body 153 and the tenth contact body 154 at intervals, the ninth contact body 153, the tenth contact body A layer of second conductive layer 155 is provided on the surfaces of the contact bodies 154 , and the ninth contact body 153 and the tenth contact body 154 can conduct high-voltage conduction through the second conductive layer 155 after being in contact with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明公开了一种新型的集成化高压电路通断连接系统,包括高压电源、高压负载及高压通断连接装置,高压电源通过高压连接端子与高压通断连接装置电性连接,高压负载通过高压连接端子与高压通断连接装置电性连接,高压电源与高压负载通过高压通断连接装置的连接接口连接形成高压回路;高压通断连接装置包括若干装配轴和若干接触体,装配轴间隔距离依次装配接触体,接触体的表面设有一层导电层,若干接触体相互接触后通过导电层能够高压导通;装配轴通过动力源提供动力,使得装配轴能够旋转或移动并带动其所装配的接触体按要求执行动作。本发明实现高压回路通断,系统高度集成化,高压通断安全稳定,平滑滑动接触,能够降低噪声产生。

Description

一种新型的集成化高压电路通断连接系统 技术领域
本发明涉及能源供能设备中高压电路通断连接技术领域,特别涉及一种新型的集成化高压电路通断连接系统。
背景技术
电气化技术在新能源汽车、储能、光伏以及充换电等领域快速发展,其中实现高压回路可控和可靠的通断功能十分关键。
目前主要的方法为采用继电器部件,通过控制继电器的低压电回路间接地实现闭合或断开高压电回路的通断功能,每个继电器的通断执行部分均有单独的电磁线圈以提供电路通断机构的动力。为实现面向系统诸如主回路正极、主回路负极、预充回路、快充回路等功能需求,需采用若干个独立的继电器、预充电阻、电流传感器等多数量的单独部件集成来实现。
但是,此类松散部件集成而成的总成存在部件分散、集成复杂、连接节点多;继电器粘连失效是行业普遍的技术难题;对于诸如快充大电流的解决方案是采用线性的加大零部件尺寸;因部件分散造成诸如电磁线圈、结构零件等成本高;高压回路切换时产生多次噪音。
为此,亟需设计一种能够克服上述问题的新型的集成化高压电路通断连接系统。
发明内容
针对现有技术存在的问题,本发明提供了一种新型的集成化高压电路通断连接系统,使用该集成化高压电路通断连接系统后,在动力源驱动装配轴的过程中,通过控制各个接触体和导电层接触与脱离的时刻及时长差异,实现高压回路的建立和断开,能够适用于高压正极连接、预充电连接、预充电过程、高压负极连接、预充电连接断开等一系列的动力电池上电或下电过程,并且实现多种功能的高度系统集成化,大大提高高压电路通断连接的安全稳定性,实现相对平滑的滑动接触,能够降低或消除噪声产生。
为解决上述技术问题,本发明采用的技术方案是:
提供一种新型的集成化高压电路通断连接系统,包括高压电源、高压负载及高压通断连接装置,所述高压电源通过高压连接端子与所述高压通断连接装置电性连接,所述高压负载通过高压连接端子与所述高压通断连接装置电性连接,所述高压电源与所述高压负载通过所述高压通断连接装置的连接接口连接形成高压回路;
所述高压通断连接装置包括若干装配轴和若干接触体,所述装配轴间隔距离依次装配所述接触体,所述接触体的表面设有一层导电层,若干所述接触体相互接触后通过所述导电层能够高压导通;所述装配轴通过动力源提供动力,使得所述装配轴能够旋转或移动并带动其所装配的接触体按要求执行动作。
本发明为了解决其技术问题,所采用的进一步技术方案是:
进一步地说,所述高压电源包括第一高压电源,所述第一高压电源通过所述高压通断连接装置的第一高压连接端子、第二高压连接端子与所述高压通断连接装置电性连接,所述高压负载通过所述高压通断连接装置的第三高压连接端子、第四高压连接端子与所述高压通断连接装置电性连接,所述第一高压电源与所述高压负载通过所述高压通断连接装置的连接接口连接形成高压回路,所述高压通断连接装置通过结构体固定连接。
进一步地说,所述高压通断连接装置包括第一装配轴、第一接触体、第二接触体、第三接触体、第二装配轴、第四接触体、第五接触体和第六接触体,所述第一装配轴间隔距离依次装配所述第一接触体、第二接触体、第三接触体,所述第二装配轴间隔距离依次装配所述第四接触体、第五接触体、第六接触体,所述第一接触体、第二接触体、第三接触体、第四接触体、第五接触体和第六接触体的表面皆设有一层第一导电层,所述第一接触体、第二接触体、第三接触体、第四接触体、第五接触体和第六接触体相互接触后通过所述第一导电层能够高压导通。
进一步地说,所述第一装配轴及所述第二装配轴通过第一动力源提供动力,使得所述第一装配轴及所述第二装配轴能够旋转或移动并带动其所装配的第一接触体、第二接触体、第三接触体、第四接触体、第五接触体和第六接触体按 要求执行动作。
进一步地说,所述第一接触体、第二接触体及第一高压连接端子能够通过所述第一导电层高压导通;所述第四接触体、第五接触体及第三高压连接端子能够通过所述第一导电层高压导通;所述第六接触体及第四高压连接端子能够通过所述第一导电层高压导通。
进一步地说,所述第一高压连接端子、第二高压连接端子、第三高压连接端子、第四高压连接端子、第一导电层皆安装有测试点,所述测试点为温度测试点或电压测试点,用以实时检测和采集高压回路中的温度值或电压值。
进一步地说,所述测试点串联电连接有电路保护器,所述电路保护器为电流传感器或熔断器;所述电流传感器用以实时监控高压回路中电流值的大小;所述熔断器用以在高压回路中主动或被动断开高压回路、中止高压回路过流。
进一步地说,所述集成化高压电路通断连接系统还包括控制器,所述控制器与所述电路保护器电性连接。
进一步地说,所述第一高压电源可以设置N个,N个所述第一高压电源串联或并联电连接;其中,N大于等于1。
进一步地说,当所述第一高压电源设置N个时,所述高压通断连接装置相应增设2N个与所述第一高压电源电连接的高压连接端子、接触体,并增设不多于N个的动力源。
进一步地说,每两个所述高压连接端子之间连接有第三装配轴,所述第三装配轴通过所述动力源提供动力,使得所述第三装配轴能够旋转或移动并带动其所装配的接触体按要求执行动作。
进一步地说,所述高压通断连接装置还包括电器件,所述电器件通过所述第一导电层与所述第一高压连接端子、所述第一接触体、所述第二接触体电连接并能够高压导通;所述电器件为散热电阻器件。
进一步地说,所述第一装配轴、所述第二装配轴及所述第三装配轴皆为散热体结构。
本发明的有益效果是:
一、本发明通过动力源对装配轴驱动,可以绕第二装配轴转动或沿第二装 配轴方向移动,第二装配轴上的接触体和其上的第一导电层随动,在驱动路径中,第二高压连接端子通过第三接触体的第一导电层与第六接触体的第一导电层接触连接实现与第四高压连接端子的电导通;第一高压连接端子通过第一接触体的第一导电层与第四接触体的第一导电层接触连接实现与第三高压连接端子的电导通,也可以通过电器件如散热电阻器件、第二接触体的第一导电层与第五接触体的第一导电层接触连接实现与第三高压连接端子的电导通;在第一动力源驱动第二装配轴的过程中,通过控制各个接触体和第一导电层接触与脱离的时刻及时长差异,实现高压回路的建立和断开,能够适用于高压正极连接、预充电连接、预充电过程、高压负极连接、预充电连接断开等一系列的动力电池上电或下电过程;
二、本发明第一动力源可以提供动力,通过装配轴旋转或移动带动其所装配的接触体按要求动作,按具体需求和要求,可在各个高压连接端子和第一导电层安装温度测试点或电压测试点,用以实时检测和采集高压回路中的温度值或电压值,防止温度超过设计阀值引起故障或安全事故的发生,测试点串联电连接电路保护器,电路保护器为电流传感器或熔断器,电流传感器用以实时监控高压回路中电流值的大小,上报至控制器,执行高压下电,熔断器可以在高压回路电流超过设计阀值时,用以在高压回路中主动或被动断开高压回路、中止高压回路过流,根据需要在高压连接端子上集成电流传感器或熔断器,电流传感器用于采集高压通断连接装置的电流信息,熔断器用于断开高压通断连接装置的高压回路,实现多种功能的高度系统集成化,大大提高高压电路通断连接的安全稳定性;
三、本发明第一动力源可根据实际需要,在第一导电层接触后的一定时间内保持第一导电层之间的适当错动,能够保持电导通和避免粘连,并且,在第一动力源驱动第二装配轴过程中,第四接触体、第五接触体、第六接触体上的第一导电层与第一接触体、第二接触体、第三接触体上的第一导电层接触时实现相对平滑的滑动接触,能够降低或消除噪声产生。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附 图详细说明如后。
附图说明
图1是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的结构示意图;
图2是本发明实施例2所述的一种新型的集成化高压电路通断连接系统的结构示意图;
图3是本发明实施例1、实施例2和实施例3中所述电器件的结构示意图之一;
图4是本发明实施例1、实施例2和实施例3中所述电器件的结构示意图之二;
图5是本发明实施例1、实施例2和实施例3中所述装配轴作为散热体的的结构示意图(以第一装配轴为例);
图6是本发明实施例1、实施例2和实施例3中所述结构体作为散热体的结构示意图之一;
图7是本发明实施例1、实施例2和实施例3中所述结构体作为散热体的结构示意图之二;
图8是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的执行动作图之一(建立高压回路);
图9是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的执行动作图之二(建立高压回路);
图10是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的执行动作图之三(建立高压回路);
图11是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的执行动作图之四(建立高压回路);
图12是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的执行动作图之五(建立高压回路);
图13是本发明实施例1所述的一种新型的集成化高压电路通断连接系统的执行动作图之五(断开高压回路);
图14是本发明实施例2所述的一种新型的集成化高压电路通断连接系统在多个高压电源串联关系下建立高压回路的结构示意图(以2个高压电源串联关系为例);
图15是本发明实施例2所述的一种新型的集成化高压电路通断连接系统在多个高压电源并联关系下建立高压回路的结构示意图(以2个高压电源并联关系为例);
图16是本发明实施例3所述的一种新型的集成化高压电路通断连接系统的结构示意图(高压通断连接装置具有插接部);
附图中各部分标记如下:
高压通断连接装置100、结构体110、第一接触体111、第二接触体112、第三接触体113、第四接触体114、第五接触体115、第六接触体116、第一导电层117、第一装配轴118、第二装配轴119、第一高压连接端子120、连接接口121、第三高压连接端子122、第四高压连接端子123、第二高压连接端子124、电路保护器125、电器件126、测试点127、第一高压电源128、高压负载129、第一动力源130、第七接触体131、第八接触体132、第六高压连接端子133、第五高压连接端子134、第三装配轴135、第二高压电源136、第三高压电源137、第三动力源139、第四动力源140、散热界面141、散热件142、散热媒介143、散热体144、散热介质145、散热片147、传热体148、具备快插连接功能的高压通断连接装置150、第七高压连接端子151、第八高压连接端子152、第九接触体153、第十接触体154、第二导电层155、电阻156、导通体157、第九高压连接端子158、第十高压连接端子159、第二动力源160、第四装配轴161、母插件162、第十一高压连接端子164、第十二高压连接端子165、外部部件166、公插件167和第四高压电源168。
具体实施方式
以下通过特定的具体实施例说明本发明的具体实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的优点及功效。本发明也可以其它不同的方式予以实施,即,在不背离本发明所揭示的范畴下,能予不同的修饰与改变。
实施例1
一种新型的集成化高压电路通断连接系统,如图1、图3-图13所示,包括第一高压电源128、高压负载129及高压通断连接装置100,第一高压电源128通过高压通断连接装置100的第一高压连接端子120、第二高压连接端子124与高压通断连接装置100电性连接,高压负载129通过高压通断连接装置100的第三高压连接端子122、第四高压连接端子123与高压通断连接装置100电性连接,第一高压电源128与高压负载129通过高压通断连接装置100的连接接口121连接形成高压回路,高压通断连接装置100通过结构体110固定连接;
高压通断连接装置100包括第一装配轴118、第一接触体111、第二接触体112、第三接触体113、第二装配轴119、第四接触体114、第五接触体115和第六接触体116,第一装配轴118间隔距离依次装配第一接触体111、第二接触体112、第三接触体113,第二装配轴119间隔距离依次装配第四接触体114、第五接触体115、第六接触体116,第一接触体111、第二接触体112、第三接触体113、第四接触体114、第五接触体115和第六接触体116的表面皆设有一层第一导电层117,第一接触体111、第二接触体112、第三接触体113、第四接触体114、第五接触体115和第六接触体116相互接触后通过第一导电层117能够高压导通;
第一装配轴118及第二装配轴119通过第一动力源130提供动力,使得第一装配轴118及第二装配轴119能够旋转或移动并带动其所装配的第一接触体111、第二接触体112、第三接触体113、第四接触体114、第五接触体115和第六接触体116按要求执行动作;
第一接触体111、第二接触体112及第一高压连接端子120能够通过第一导电层117高压导通;第四接触体114、第五接触体115及第三高压连接端子122能够通过第一导电层117高压导通;第六接触体116及第四高压连接端子123能够通过第一导电层117高压导通;
第一高压连接端子120、第二高压连接端子124、第三高压连接端子122、第四高压连接端子123、第一导电层117皆安装有测试点127,测试点127为温度测试点或电压测试点,用以实时检测和采集高压回路中的温度值或电压值;
测试点127串联电连接有电路保护器125,电路保护器125为电流传感器或熔断器;电流传感器用以实时监控高压回路中电流值的大小;熔断器用以在高压回路中主动或被动断开高压回路、中止高压回路过流;
集成化高压电路通断连接系统还包括控制器,控制器与电路保护器125电性连接;
高压通断连接装置100还包括电器件126,电器件126通过第一导电层117与第一高压连接端子120、第一接触体111、第二接触体112电连接并能够高压导通;电器件126为散热电阻器件。
第一高压电源128,如动力电池组;高压负载129,如高压逆变器;第一高压电源128和高压负载129与高压通断连接装置100的第一高压连接端子120、第二高压连接端子124、第三高压连接端子122、第四高压连接端子123通过连接接口121连接形成高压回路;在高压通断连接装置100中,第一装配轴118上按一定距离装配第一接触体111、第二接触体112、第三接触体113,第二装配轴119按一定距离装配第四接触体114、第五接触体115和第六接触体116;各接触体的表面(按需要)均有一层第一导电层117,通过第一导电层117可实现高压连接端子的高压导通;各接触体相互接触后,通过第一导电层117高压导通;电器件126如散热电阻器件,通过第一导电层117与第一高压连接端子120、第一接触体111的导电层和第二接触体112的导电层高压导通;第四接触体114和第五接触体115的导电层与第三高压连接端子122高压导通;第六接触体116的导电层与第四高压连接端子123接触后高压导通;
第一动力源130可以提供动力,通过装配轴旋转或移动带动其所装配的接触体按要求动作,按具体需求和要求,可在各个高压连接端子和导电层安装温度测试点或电压测试点,用以实时检测和采集高压回路中的温度值或电压值,防止温度超过设计阀值引起故障或安全事故的发生,测试点串联电连接电路保护器,电路保护器为电流传感器或熔断器,电流传感器用以实时监控高压回路中电流值的大小,上报至控制器,执行高压下电,熔断器可以在高压回路电流超过设计阀值时,用以在高压回路中主动或被动断开高压回路、中止高压回路过流,根据需要在高压连接端子上集成电流传感器或熔断器,电流传感器用于 采集高压通断连接装置的电流信息,熔断器用于断开高压通断连接装置的高压回路,实现多种功能的高度系统集成化,大大提高高压电路通断连接的安全稳定性;高压通断连接装置100通过结构体110将所有部件固定、支撑、防护和强度等。
如图3和图4所示,为防止电器件126在运行过程中因热效应超过温度范围而引起高压下电的问题,在电器件126如散热电阻器件设计成散热界面141,热量可通过散热界面141直接与空气热交换,或热量可通过散热件142和散热媒介143热交换,热量也可以通过结构体110间接与空气热交换或散热件142和散热媒介143热交换;
如图5所示,为了防止各接触体与第一导电层117导通电路的热效应负影响,可以把第一装配轴118、第二装配轴119配置成散热体144,通过散热体144内的散热介质145把热量交换至冷端;
如图6和图7所示,以第六接触体116为例,为了防止各接触体与第一导电层117导通电路的热效应负影响,热量也可以通过结构体110间接通过散热介质145与空气热交换,或通过散热介质145、散热片147及传热体148进行热交换至冷端;
如图8-图13所示,以电气化的动力系统为例,第一高压连接端子120和第二高压连接端子124分别与第一高压电源128如动力电池正、负极连接,第三高压连接端子122和第四高压连接端子123分别与高压负载129正、负极连接;第一高压连接端子120和第二高压连接端子124对接不限定正负极,第三高压连接端子122和第四高压连接端子123对接不限定正负极,但是第一高压连接端子120和第二高压连接端子124对接的正、负极需一致,第三高压连接端子122和第四高压连接端子123对接的正负极需一致,一致的原因不限于物理形式,包含电气回路实际情况,其中,箭头方向表征电流通路,电流方向可与图示逆向;
如图8所示,第一接触体111与第四接触体114、第二接触体与第五接触体115、第三接触体113与第六接触体116均未接触,第一高压连接端子120与第三高压连接端子122断开,第二高压连接端子124与第四高压连接端子123断 开;
如图9所示,第三接触体113与第六接触体116的导电层接触连接,第二高压连接端子124与第四高压连接端子123导通;
如图10所示,第三接触体113与第六接触体116的导电层接触连接,第二接触体112与第五接触体115的导电层接触连接,第二高压连接端子124与第四高压连接端子123导通,第一高压连接端子120与第三高压连接端子122通过电器件126如散热电阻器件导通,可实现对高压回路充电,提升高压负载端的回路电压;
如图11所示,第三接触体113与第六接触体116的导电层接触连接,第二接触体112与第五接触体115的导电层接触连接,第一接触体111与第四接触体114的导电层接触连接,第二高压连接端子124与第四高压连接端子123导通,第一高压连接端子120与第三高压连接端子122通过电器件126如散热电阻器件和第一接触体111与第四接触体114导通。
如图12所示,第三接触体113与第六接触体116的导电层接触连接,第一接触体111与第四接触体114的导电层接触连接,第二高压连接端子124与第四高压连接端子123导通,第一高压连接端子120与第三高压连接端子122通过第一接触体111与第四接触体114导通。
从图8到图12中,实现了第一高压电源128如动力电池与高压负载129通过高压通断连接装置100建立高压回路。如果将以上的过程倒置(箭头图示反向),则可实现高压回路的断开操作。同时,在某些必要场景下,如图13,第一接触体111与第四接触体114、第三接触体113与第六接触体116可以直接断开,比图8到图12的倒置过程中间环节少,更快捷。
实施例2
如图2、图14和图15所示,在多个高压电源且需不同组合形式的场景下,高压通断连接装置100可以拓展,以两个高压电源为例,如图14所示,第二高压电源136的一极与第一高压连接端子120连接,另一极通过与第五高压连接端子134连接实现和第二高压连接端子124等电位;第三高压电源137的一极与第二高压连接端子124连接,另一极通过与第六高压连接端子133连接实现 和第一高压连接端子120等电位;第三装配轴135为散热体结构;总体上实现了第二高压电源136和第三高压电源137的并联关系,高压回路通道如箭头标识;
当第七接触体131和第八接触体132变换位置后,第六高压连接端子133与第七接触体131的导电层导通,第五高压连接端子134与第八接触体132的导电层导通,第七接触体131和第八接触体132导通。第二高压电源136的一极与第一高压连接端子120连接,另一极通过与第五高压连接端子134连接实现与第六高压连接端子133等电位;第三高压电源137的一极与第二高压连接端子124连接,另一极通过与第六高压连接端子133连接,第三装配轴135为散热体结构;总体上实现了第二高压电源136和第三高压电源137的串联关系,高压回路通道如箭头标识;
通过第四动力源140驱动第七接触体131和第八接触体132与第五高压连接端子134、第六高压连接端子133和导电层接触,通过第三动力源139驱动第五接触体115、第六接触体116与第三高压连接端子122、第二高压连接端子124和导电层接触,总体上实现了第二高压电源136和第三高压电源137的串联关系和并联关系。
实施例3
如图16所示,高压通断连接装置100可以与类似快插连接器集成拓展,以图16为例,为具备快插连接功能的高压通断连接装置150,第七高压连接端子151和第八高压连接端子152可以与第四高压电源168连接,第九高压连接端子158和第十高压连接端子159可与具备快插连接功能的高压通断连接装置150外部实现快插式连接,如与外部部件166上的第十一高压连接端子164与第十二高压连接端子165;
具备快插连接功能的高压通断连接装置150内部的电气件如电阻156、第九接触体153与第十接触体154、第二导电层155、第二动力源160按高压通断连接装置100原理集成实现相同功能。具备快插连接功能的高压通断连接装置150可与公插件167通过母插件162安装界面安装固定;
其中,导通体157一端连接电阻156,另一端连接第七高压连接端子151; 第四装配轴161间隔距离依次装配第九接触体153、第十接触体154,第九接触体153、第十接触体154的表面均设有一层第二导电层155,第九接触体153、第十接触体154相互接触后通过第二导电层155能够高压导通。
以上所述仅为本发明的实施例,并非因此以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种新型的集成化高压电路通断连接系统,包括高压电源、高压负载(129)及高压通断连接装置(100),其特征在于:所述高压电源通过高压连接端子与所述高压通断连接装置(100)电性连接,所述高压负载(129)通过高压连接端子与所述高压通断连接装置(100)电性连接,所述高压电源与所述高压负载(129)通过所述高压通断连接装置(100)的连接接口(121)连接形成高压回路;
    所述高压通断连接装置(100)包括若干装配轴和若干接触体,所述装配轴间隔距离依次装配所述接触体,所述接触体的表面设有一层导电层,若干所述接触体相互接触后通过所述导电层能够高压导通;所述装配轴通过动力源提供动力,使得所述装配轴能够旋转或移动并带动其所装配的接触体按要求执行动作。
  2. 根据权利要求1所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述高压电源包括第一高压电源(128),所述第一高压电源(128)通过所述高压通断连接装置(100)的第一高压连接端子(120)、第二高压连接端子(124)与所述高压通断连接装置(100)电性连接,所述高压负载(129)通过所述高压通断连接装置(100)的第三高压连接端子(122)、第四高压连接端子(123)与所述高压通断连接装置(100)电性连接,所述第一高压电源(128)与所述高压负载(129)通过所述高压通断连接装置(100)的连接接口(121)连接形成高压回路,所述高压通断连接装置(100)通过结构体(110)固定连接。
  3. 根据权利要求2所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述高压通断连接装置(100)包括第一装配轴(118)、第一接触体(111)、第二接触体(112)、第三接触体(113)、第二装配轴(119)、第四接触体(114)、第五接触体(115)和第六接触体(116),所述第一装配轴(118)间隔距离依次装配所述第一接触体(111)、第二接触体(112)、第三接触体(113),所述第二装配轴(119)间隔距离依次装配所述第四接触体(114)、第五接触体(115)、第六接触体(116),所述第一接触体(111)、第二接触体(112)、第三接触体(113)、第四接触体(114)、第五接触体(115)和 第六接触体(116)的表面皆设有一层第一导电层(117),所述第一接触体(111)、第二接触体(112)、第三接触体(113)、第四接触体(114)、第五接触体(115)和第六接触体(116)相互接触后通过所述第一导电层(117)能够高压导通。
  4. 根据权利要求3所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述第一装配轴(118)及所述第二装配轴(119)通过第一动力源(130)提供动力,使得所述第一装配轴(118)及所述第二装配轴(119)能够旋转或移动并带动其所装配的第一接触体(111)、第二接触体(112)、第三接触体(113)、第四接触体(114)、第五接触体(115)和第六接触体(116)按要求执行动作。
  5. 根据权利要求4所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述第一接触体(111)、第二接触体(112)及第一高压连接端子(120)能够通过所述第一导电层(117)高压导通;所述第四接触体(114)、第五接触体(115)及第三高压连接端子(122)能够通过所述第一导电层(117)高压导通;所述第六接触体(116)及第四高压连接端子(123)能够通过所述第一导电层(117)高压导通。
  6. 根据权利要求2所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述第一高压连接端子(120)、第二高压连接端子(124)、第三高压连接端子(122)、第四高压连接端子(123)、第一导电层(117)皆安装有测试点(127),所述测试点(127)为温度测试点或电压测试点,用以实时检测和采集高压回路中的温度值或电压值。
  7. 根据权利要求6所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述测试点(127)串联电连接有电路保护器(125),所述电路保护器(125)为电流传感器或熔断器;所述电流传感器用以实时监控高压回路中电流值的大小;所述熔断器用以在高压回路中主动或被动断开高压回路、中止高压回路过流。
  8. 根据权利要求7所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述集成化高压电路通断连接系统还包括控制器,所述控制器与所述电路保护器(125)电性连接。
  9. 根据权利要求2所述的一种新型的集成化高压电路通断连接系统,其特征在于:所述第一高压电源(128)可以设置N个,N个所述第一高压电源(128)串联或并联电连接;其中,N大于等于1。
  10. 根据权利要求9所述的一种新型的集成化高压电路通断连接系统,其特征在于:当所述第一高压电源(128)设置N个时,所述高压通断连接装置(100)相应增设2N个与所述第一高压电源(128)电连接的高压连接端子、接触体,所述高压通断连接装置(100)相应增设不多于N个的动力源。
PCT/CN2022/100021 2021-11-19 2022-06-21 一种新型的集成化高压电路通断连接系统 WO2023087701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111392496.8 2021-11-19
CN202111392496.8A CN114094372B (zh) 2021-11-19 2021-11-19 一种集成化高压电路通断连接系统

Publications (1)

Publication Number Publication Date
WO2023087701A1 true WO2023087701A1 (zh) 2023-05-25

Family

ID=80303129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100021 WO2023087701A1 (zh) 2021-11-19 2022-06-21 一种新型的集成化高压电路通断连接系统

Country Status (2)

Country Link
CN (1) CN114094372B (zh)
WO (1) WO2023087701A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094372B (zh) * 2021-11-19 2023-12-15 恒义超然工业技术(上海)有限公司 一种集成化高压电路通断连接系统
CN115782592A (zh) * 2023-01-05 2023-03-14 上海鑫悉科技有限公司 一体式高压控制器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610980A (zh) * 2017-09-20 2018-01-19 威马智慧出行科技(上海)有限公司 继电器及使用该继电器的动力电池电路
CN212968802U (zh) * 2020-08-31 2021-04-13 八达电气有限公司 一种电动隔离配电装置
CN113314901A (zh) * 2021-07-29 2021-08-27 南通市通州区精华电器有限公司 一种防触电的接线板
CN214164900U (zh) * 2020-11-30 2021-09-10 东风越野车有限公司 一种新能源汽车高压配电盒
CN114094372A (zh) * 2021-11-19 2022-02-25 恒义超然工业技术(上海)有限公司 一种新型的集成化高压电路通断连接系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610980A (zh) * 2017-09-20 2018-01-19 威马智慧出行科技(上海)有限公司 继电器及使用该继电器的动力电池电路
CN212968802U (zh) * 2020-08-31 2021-04-13 八达电气有限公司 一种电动隔离配电装置
CN214164900U (zh) * 2020-11-30 2021-09-10 东风越野车有限公司 一种新能源汽车高压配电盒
CN113314901A (zh) * 2021-07-29 2021-08-27 南通市通州区精华电器有限公司 一种防触电的接线板
CN114094372A (zh) * 2021-11-19 2022-02-25 恒义超然工业技术(上海)有限公司 一种新型的集成化高压电路通断连接系统

Also Published As

Publication number Publication date
CN114094372B (zh) 2023-12-15
CN114094372A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023087701A1 (zh) 一种新型的集成化高压电路通断连接系统
US20190229377A1 (en) Battery pack
KR200491964Y1 (ko) 배터리 디스커넥트 유닛
CN103001279B (zh) 车辆充电装置
KR102244431B1 (ko) 하이브리드 차량용 전지 시스템
CN107579695B (zh) 能量回馈保护电路及电机控制系统
CN113629662B (zh) 一种列车的高压联锁系统
WO2015198008A1 (en) Device for a battery assembly
US9472365B1 (en) Relay system having dual relays configured as heat sinks for one another
CN105958437A (zh) 外部回路实现断路器失压跳闸的控制电路
CN106100024A (zh) 一种双枪直流充电机动态切换保护电路
CN202918048U (zh) 一种双电源自动转换开关
CN111231675A (zh) 一种电池管理系统以及车辆
CN103419662B (zh) 电动汽车、电动汽车的动力系统及电池加热方法
CN202905606U (zh) 机械电子组合式继电器
CN213752818U (zh) 电池包的热管理系统以及具有其的车辆
JP7416953B2 (ja) ラインアセンブリの延長部を使用して、直流電流接続を切断するときのアーク放電を回避する技術
US20230178925A1 (en) Plug-in contact apparatus for preventing an arc when disconnecting a dc connection
US10505327B1 (en) Orientation agnostic electrical connector
CN205583832U (zh) 一种交流充电与直流充电相互切换的电气分配盒
CN219513038U (zh) 分断器及浪涌保护器
CN219779166U (zh) 一种温度保护装置及动力电池组
CN212649353U (zh) 即插即用接口电路
CN220359376U (zh) 一种加热器控制电路
CN111137133B (zh) 电动汽车电驱动系统的保护电路及电动汽车电驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894244

Country of ref document: EP

Kind code of ref document: A1