WO2023087397A1 - 一种电容生物电极内阻测试系统及其测试方法 - Google Patents

一种电容生物电极内阻测试系统及其测试方法 Download PDF

Info

Publication number
WO2023087397A1
WO2023087397A1 PCT/CN2021/134686 CN2021134686W WO2023087397A1 WO 2023087397 A1 WO2023087397 A1 WO 2023087397A1 CN 2021134686 W CN2021134686 W CN 2021134686W WO 2023087397 A1 WO2023087397 A1 WO 2023087397A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal resistance
capacitive
dielectric layer
layer
limited
Prior art date
Application number
PCT/CN2021/134686
Other languages
English (en)
French (fr)
Inventor
杨良滔
张翊
吴景龙
王雪
甘鹭
刘新
郑海荣
梁栋
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023087397A1 publication Critical patent/WO2023087397A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present application relates to physiological electrical signal detection technology, in particular to a capacitance bioelectrode internal resistance testing system and testing method.
  • Physiological electrical signals can help study physiological states, be applied to disease diagnosis and treatment, and can also be used in emerging fields of artificial intelligence such as brain-computer interfaces.
  • Physiological electrical signal is one of the most important electrophysiological signals. It is caused by the difference in ion concentration inside and outside the cell membrane. When the organism is at rest, a resting potential is generated, and when an action occurs, an action potential is generated. The generation of each potential is related to the physiological state and behavior of people. Therefore, accurate, real-time and efficient detection of physiological electrical signals is very important.
  • ECG ECG
  • EMG EMG
  • EEG electrocardiogram
  • An electrocardiogram can help doctors understand how the heart is beating. Electromyography is caused by muscle contractions and can help disabled individuals regain some/full mobility. EEG is helpful in the diagnosis and treatment of brain diseases, such as Alzheimer's disease, Parkinson's and other neurodegenerative diseases.
  • Common electrical signal acquisition systems include electrodes, signal amplifiers and converters, signal processors, and displays. Among them, the electrode acquisition of physiological electrical signals is a very important core component and plays an important role.
  • Capacitive bioelectrodes are one of the important technologies for collecting electrophysiological signals. Its internal resistance change is the main factor affecting signal acquisition. However, it is impossible to monitor the change of its internal resistance in real time during the signal acquisition process.
  • a capacitive bioelectrode internal resistance testing system includes: a conductive layer, a dielectric layer, a composite layer, an EEG acquisition module and an impedance testing module, wherein:
  • the conductive layer is placed on the surface of the dielectric layer, the dielectric layer is in contact with the skin surface, the composite layer is arranged between the dielectric layer and the skin surface, the
  • the EEG collection module is electrically connected to the conductive layer, the EEG collection module is used to collect electrophysiological signals, and the two ends of the impedance test module are respectively electrically connected to the conductive layer and the composite layer, and the impedance testing module is used to realize real-time impedance testing.
  • the conductive layer includes but not limited to organic materials and non-polar materials.
  • the organic material includes but not limited to PEDOT, MOF, polyaniline, polypyrrole, polyacetylene.
  • the inorganic materials include but are not limited to graphene, silver-based nanomaterials, carbon nanotubes, and silver powder.
  • the dielectric layer includes but not limited to various types of non-conductive substances.
  • the non-conductive material includes fabric, oxide, plastic, PTFE, PET, PI.
  • the composite layer includes, but is not limited to, conductive devices made of organic or non-polar materials.
  • the conductive devices include but are not limited to PEDOT, MOF, polyaniline, polypyrrole, polyacetylene, graphite, lithium iron phosphate, lithium cobaltate, water, EC, PC, DMC.
  • the electrophysiological signal includes brain electricity, myoelectricity or electrocardiogram.
  • the impedance testing module includes but not limited to AC impedance and DC resistance.
  • the composite layer includes, but is not limited to, placed at the edge or center of the dielectric layer and the skin surface.
  • the contact method between the dielectric layer and the skin surface includes but not limited to using conductive glue.
  • the conductive layer has a thickness of 1 ⁇ m-10 cm; the dielectric layer has a thickness of 10 nm-1 cm; and the composite layer has a thickness of 10 nm-1 cm.
  • the present application also provides a test method of the capacitive bioelectrode internal resistance test system, comprising the following steps:
  • the conductive layer on the surface of the dielectric layer, the dielectric layer is in contact with the skin surface, and the composite layer is arranged between the dielectric layer and the skin surface;
  • the EEG acquisition module is electrically connected to the conductive layer, and the EEG acquisition module acquires electrophysiological signals
  • the two ends of the impedance testing module are respectively electrically connected to the conductive layer and the composite layer, and the impedance testing module realizes real-time impedance testing.
  • the conductive layer is placed on the surface of the dielectric layer, the dielectric layer is in contact with the skin surface, and the composite layer is placed on the between the dielectric layer and the skin surface;
  • the EEG acquisition module is electrically connected to the conductive layer, and the EEG acquisition module collects electrophysiological signals;
  • the impedance test module The two ends are respectively electrically connected to the conductive layer and the composite layer, and the impedance testing module realizes real-time impedance testing.
  • the capacitive bioelectrode internal resistance testing system and its testing method provided by the application adopt the composite layer Structural design, using impedance technology, solves the problem that the electrode internal resistance cannot be monitored, and can realize real-time detection of EEG impedance, thereby realizing the detection of electrode service performance.
  • Fig. 1 is the schematic structural diagram of the capacitive bioelectrode internal resistance testing system that the embodiment 1 of the present application provides;
  • FIG. 2 is a flow chart of the steps of the method for testing the internal resistance of a capacitive bioelectrode provided in Example 2 of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • FIG. 1 is a schematic structural diagram of a capacitive bioelectrode internal resistance testing system provided by an embodiment of the present application, including: a conductive layer 110 , a dielectric layer 120 , a composite layer 130 , an EEG acquisition module 140 and an impedance testing module 150 .
  • a conductive layer 110 a conductive layer 110 , a dielectric layer 120 , a composite layer 130 , an EEG acquisition module 140 and an impedance testing module 150 .
  • the conductive layer 110 is placed on the surface of the dielectric layer 120 .
  • the conductive layer 110 includes but not limited to organic materials and non-polar materials.
  • the organic materials include but not limited to PEDOT, MOF, polyaniline, polypyrrole, polyacetylene.
  • the inorganic materials include but are not limited to graphene, silver-based nanomaterials, carbon nanotubes, and silver powder.
  • the dielectric layer 120 is in contact with the skin surface 100 .
  • the dielectric layer 120 includes but not limited to various types of non-conductive substances.
  • the non-conductive substances include but not limited to fabrics, oxides, plastics, PTFE, PET, PI.
  • the contact method between the dielectric layer 120 and the skin surface includes but is not limited to using conductive glue.
  • the composite layer 130 is disposed between the dielectric layer 120 and the skin surface 100 .
  • the composite layer 130 includes, but is not limited to, conductive devices made of organic or non-polar materials.
  • the conductive devices include but are not limited to PEDOT, MOF, polyaniline, polypyrrole, polyacetylene, graphite, lithium iron phosphate, lithium cobaltate, water, EC, PC, DMC.
  • the composite layer 130 includes, but is not limited to, placed at the edge or center of the dielectric layer 120 and the skin surface.
  • the EEG collection module 140 is electrically connected to the conductive layer 110, and the EEG collection module 140 is used for collecting electrophysiological signals.
  • the electrophysiological signals include EEG or EMG or ECG.
  • the impedance testing module 150 includes but not limited to AC impedance and DC resistance.
  • the thickness of the conductive layer 110 is 1 ⁇ m-10 cm; the thickness of the dielectric layer 120 is 10 nm-1 cm; the thickness of the composite layer 130 is 10 nm-1 cm.
  • the conductive layer is placed on the surface of the dielectric layer, the dielectric layer is in contact with the skin surface, and the composite layer is placed on the between the dielectric layer and the skin surface;
  • the EEG acquisition module is electrically connected to the conductive layer, and the EEG acquisition module collects electrophysiological signals;
  • the two impedance test modules The terminals are electrically connected to the conductive layer and the composite layer respectively, and the impedance testing module realizes real-time impedance testing.
  • the capacitance bioelectrode internal resistance testing system and its testing method provided by the application adopt the composite layer structure
  • the design using impedance technology, solves the problem that the electrode internal resistance cannot be monitored, and can realize real-time detection of EEG impedance, thereby realizing the detection of electrode performance.
  • the testing method of the capacitive bioelectrode internal resistance testing system comprises the following steps:
  • Step S110 placing the conductive layer on the surface of the dielectric layer, the dielectric layer is in contact with the skin surface, and the composite layer is arranged on the dielectric layer and the skin surface between.
  • the conductive layer includes but not limited to organic materials and non-polar materials.
  • the organic material includes but not limited to PEDOT, MOF, polyaniline, polypyrrole, polyacetylene.
  • the inorganic materials include but are not limited to graphene, silver-based nanomaterials, carbon nanotubes, and silver powder.
  • the dielectric layer includes but not limited to various types of non-conductive substances.
  • the non-conductive substances include but not limited to fabrics, oxides, plastics, PTFE, PET, PI.
  • the contact method between the dielectric layer and the skin surface includes but not limited to using conductive glue.
  • the composite layer includes, but is not limited to, conductive devices made of organic or non-polar materials.
  • the conductive devices include but are not limited to PEDOT, MOF, polyaniline, polypyrrole, polyacetylene, graphite, lithium iron phosphate, lithium cobaltate, water, EC, PC, DMC.
  • the composite layer includes, but is not limited to, placed at the edge or center of the dielectric layer 120 and the skin surface.
  • Step S120 The EEG collection module is electrically connected to the conductive layer, and the EEG collection module collects electrophysiological signals.
  • the electrophysiological signals include brain electricity, myoelectricity, or heart electricity.
  • Step S130 Both ends of the impedance testing module are electrically connected to the conductive layer and the composite layer respectively, and the impedance testing module implements real-time impedance testing.
  • the impedance testing module includes but not limited to AC impedance and DC resistance.
  • the conductive layer is placed on the surface of the dielectric layer, the dielectric layer is in contact with the skin surface, and the composite layer is placed on the between the dielectric layer and the skin surface;
  • the EEG acquisition module is electrically connected to the conductive layer, and the EEG acquisition module collects electrophysiological signals;
  • the two impedance test modules The terminals are electrically connected to the conductive layer and the composite layer respectively, and the impedance testing module realizes real-time impedance testing.
  • the capacitance bioelectrode internal resistance testing system and its testing method provided by the application adopt the composite layer structure
  • the design using impedance technology, solves the problem that the electrode internal resistance cannot be monitored, and can realize real-time detection of EEG impedance, thereby realizing the detection of electrode performance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种电容生物电极内阻测试系统及方法,导电层(110)置于介电层(120)的表面,介电层(120)与皮肤表面(100)接触,复合层(130)设置于介电层(120)与皮肤表面(100)之间;脑电采集模块(140)电性连接导电层(110),脑电采集模块(140)采集电生理信号;阻抗测试模块(150)的两端分别电性连接导电层(110)及复合层(130),阻抗测试模块(150)实现阻抗实时测试,通过采用复合层(130)的结构设计,采用阻抗技术,解决了电极内阻的无法监控的难题,能够实现脑电阻抗的实时检测,从而实现电极使役性能的检测。

Description

一种电容生物电极内阻测试系统及其测试方法 技术领域
本申请涉及生理电信号探测技术,特别涉及一种电容生物电极内阻测试系统及测试方法。
背景技术
生理电信号能够帮助研究生理状态,应用于疾病诊断和治疗,同时还能用于脑-机接口等人工智能新兴领域。生理电信号是最重要电生理信号之一。它是由细胞膜内外的离子浓度差造成的。在生物体静止状态下,会产生静止电位,在有动作发生时,会产生动作电位。每一个电位的产生都关系到人的生理状态和行为。因此,精确、实时、高效的探测生理电信号十分重要。
常用的技术包括心电、肌电以及脑电等。心电图能够帮组医生了解心脏的跳动情况。肌电图是由于肌肉收缩导致的,能帮组残障人士恢复部分/全部活动行为。脑电图有助于脑部疾病诊断和治疗,例如阿尔兹海默症、帕金森等神经退行性疾病等。常见的电信号采集系统包括电极、信号放大器和转换器、信号处理器和显示器等部分。其中电极采集生理电信号,是十分重要的核心部件,具有重要的地位。
电容生物电极是采集电电生理信号的重要技术之一。其内阻变化是影响信号采集的主要因素。但是在信号采集过程中无法实时监控其内阻变化。
发明内容
鉴于此,有必要针对现有技术中存在的在电容生物电极信号采集过程中无法实时监控其内阻变化的缺陷,提供一种可实时测试其内阻变化的电容生物电极内阻测试系统。
为解决上述问题,本申请采用下述技术方案:
本申请提供的一种电容生物电极内阻测试系统,包括:导电层、介电层、复合层、脑电采集模块及阻抗测试模块,其中:
所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间,所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块用于采集电生理信号,所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块用于实现阻抗实时测试。
在其中一些实施例中,所述的导电层包括但不限于有机材料和无极材料。
在其中一些实施例中,所述的有机材料包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔。
在其中一些实施例中,所述的无机材料包括但不限于石墨烯、银基纳米材料、碳纳米管、银粉。
在其中一些实施例中,所述的介电层包括但不限于各类不导电物质。
在其中一些实施例中,所述的不导电物质包括织物、氧化物、塑料、PTFE、PET、PI。
在其中一些实施例中,所述的复合层包括但不限于由有机或者无极材料构成的导电器件。
在其中一些实施例中,所述的导电器件包括但不限于PEDOT、MOF、聚 苯胺、聚吡咯、聚乙炔、石墨、磷酸铁锂、钴酸锂、水、EC、PC、DMC。
在其中一些实施例中,所述的电生理信号包括脑电或肌电或心电。
在其中一些实施例中,所述的阻抗测试模块包括但不限于交流阻抗和直流电阻。
在其中一些实施例中,所述的复合层包括但不限于置于所述的介电层与所述的皮肤表面的边缘或中心位置。
在其中一些实施例中,所述的介电层与所述的皮肤表面之间的接触方式包括但不限于使用导电胶。
在其中一些实施例中,所述的导电层厚度为1μm-10cm;所述的介电层厚度为10nm-1cm;所述复合层厚度为10nm-1cm。
另外,本申请还提供了一种所述的电容生物电极内阻测试系统的测试方法,包括下述步骤:
将所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间;
将所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块采集电生理信号;
所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块实现阻抗实时测试。
本申请采用上述技术方案,其有益效果如下:
本申请提供的电容生物电极内阻测试系统及其测试方法,所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间;所述的脑电采集模块电性连接所述的导 电层,所述的脑电采集模块采集电生理信号;所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块实现阻抗实时测试,本申请提供的电容生物电极内阻测试系统及其测试方法,通过采用复合层的结构设计,采用阻抗技术,解决了电极内阻的无法监控的难题,能够实现脑电阻抗的实时检测,从而实现电极使役性能的检测。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1提供的电容生物电极内阻测试系统的结构示意图;
图2为本申请实施例2提供的电容生物电极内阻测试方法的步骤流程图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
实施例1
请参阅图1,为本申请实施例提供的电容生物电极内阻测试系统的结构示意图,包括:导电层110、介电层120、复合层130、脑电采集模块140及阻抗测试模块150。以下详细说明各个部件的具体结构。
所述的导电层110置于所述的介电层120的表面。所述的导电层110包括但不限于有机材料和无极材料。所述的有机材料包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔。所述的无机材料包括但不限于石墨烯、银基纳米材料、碳纳米管、银粉。
所述的介电层120与皮肤表面100接触。所述的介电层120包括但不限于各类不导电物质。所述的不导电物质包括但不限于织物、氧化物、塑料、PTFE、PET、PI。
进一步地,所述的介电层120与所述的皮肤表面之间的接触方式包括但不限于使用导电胶。
所述的复合层130设置于所述的介电层120与所述的皮肤表面100之间。所述的复合层130包括但不限于由有机或者无极材料构成的导电器件。所述的导电器件包括包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔、石墨、磷酸铁锂、钴酸锂、水、EC、PC、DMC。
进一步地,所述的复合层130包括但不限于置于所述的介电层120与所述 的皮肤表面的边缘或中心位置。
所述的脑电采集模块140电性连接所述的导电层110,所述的脑电采集模块140用于采集电生理信号。所述的电生理信号包括脑电或肌电或心电。
所述的阻抗测试模块150的两端分别电性连接所述的导电层110及所述的复合层130,所述的阻抗测试模块150用于实现阻抗实时测试。所述的阻抗测试模块150包括但不限于交流阻抗和直流电阻。
进一步地,所述的导电层110厚度为1μm-10cm;所述的介电层120厚度为10nm-1cm;所述复合层130厚度为10nm-1cm。
本申请上述实施例提供的电容生物电极内阻测试系统,所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间;所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块采集电生理信号;所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块实现阻抗实时测试,本申请提供的电容生物电极内阻测试系统及其测试方法,通过采用复合层的结构设计,采用阻抗技术,解决了电极内阻的无法监控的难题,能够实现脑电阻抗的实时检测,从而实现电极使役性能的检测。
实施例2
请参阅图2,为本申请实施例2提供的电容生物电极内阻测试系统的测试方法,包括下述步骤:
步骤S110:将所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间。
具体地,所述的导电层包括但不限于有机材料和无极材料。所述的有机材 料包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔。所述的无机材料包括但不限于石墨烯、银基纳米材料、碳纳米管、银粉。
具体地,所述的介电层包括但不限于各类不导电物质。所述的不导电物质包括但不限于织物、氧化物、塑料、PTFE、PET、PI。进一步地,所述的介电层与所述的皮肤表面之间的接触方式包括但不限于使用导电胶。
进一步地,所述的复合层包括但不限于由有机或者无极材料构成的导电器件。所述的导电器件包括包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔、石墨、磷酸铁锂、钴酸锂、水、EC、PC、DMC。
进一步地,所述的复合层包括但不限于置于所述的介电层120与所述的皮肤表面的边缘或中心位置。
步骤S120:将所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块采集电生理信号。
具体地,所述的电生理信号包括脑电或肌电或心电。
步骤S130:所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块实现阻抗实时测试。
具体地,所述的阻抗测试模块包括但不限于交流阻抗和直流电阻。
本申请上述实施例提供的电容生物电极内阻测试方法,所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间;所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块采集电生理信号;所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块实现阻抗实时测试,本申请提供的电容生物电极内阻测试系统及其测试方法,通过采用复合层的结构设计,采用阻抗技术,解决了电极内阻的无法监控的难题,能够实现脑电阻抗的实时检测,从而实现电极使役性能的检测。
以上仅为本申请的较佳实施例而已,仅具体描述了本申请的技术原理,这些描述只是为了解释本申请的原理,不能以任何方式解释为对本申请保护范围的限制。基于此处解释,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本申请的其他具体实施方式,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种电容生物电极内阻测试系统,其特征在于,包括:导电层、介电层、复合层、脑电采集模块及阻抗测试模块,其中:
    所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间,所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块用于采集电生理信号,所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块用于实现阻抗实时测试。
  2. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的导电层包括但不限于有机材料和无极材料。
  3. 如权利要求2所述的电容生物电极内阻测试系统,其特征在于,所述的有机材料包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔。
  4. 如权利要求2所述的电容生物电极内阻测试系统,其特征在于,所述的无机材料包括但不限于石墨烯、银基纳米材料、碳纳米管、银粉。
  5. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的介电层包括但不限于各类不导电物质。
  6. 如权利要求5所述的电容生物电极内阻测试系统,其特征在于,所述的不导电物质包括但不限于织物、氧化物、塑料、PTFE、PET、PI。
  7. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的复合层包括但不限于由有机或者无极材料构成的导电器件。
  8. 如权利要求7所述的电容生物电极内阻测试系统,其特征在于,所述的导电器件包括但不限于PEDOT、MOF、聚苯胺、聚吡咯、聚乙炔、石墨、磷酸铁锂、钴酸锂、水、EC、PC、DMC。
  9. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的电生理信号包括脑电或肌电或心电。
  10. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的阻抗测试模块包括但不限于交流阻抗和直流电阻。
  11. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的复合层包括但不限于置于所述的介电层与所述的皮肤表面的边缘或中心位置。
  12. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的介电层与所述的皮肤表面之间的接触方式包括但不限于使用导电胶。
  13. 如权利要求1所述的电容生物电极内阻测试系统,其特征在于,所述的导电层厚度为1μm-10cm;所述的介电层厚度为10nm-1cm;所述复合层厚度为10nm-1cm。
  14. 一种如权利要求1至13任一项所述的电容生物电极内阻测试系统的测试方法,其特征在于,包括下述步骤:
    将所述的导电层置于所述的介电层的表面,所述的介电层与皮肤表面接触,所述的复合层设置于所述的介电层与所述的皮肤表面之间;
    将所述的脑电采集模块电性连接所述的导电层,所述的脑电采集模块采集电生理信号;
    所述的阻抗测试模块的两端分别电性连接所述的导电层及所述的复合层,所述的阻抗测试模块实现阻抗实时测试。
PCT/CN2021/134686 2021-11-22 2021-12-01 一种电容生物电极内阻测试系统及其测试方法 WO2023087397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111386166.8 2021-11-22
CN202111386166.8A CN116138762A (zh) 2021-11-22 2021-11-22 一种电容生物电极内阻测试系统及其测试方法

Publications (1)

Publication Number Publication Date
WO2023087397A1 true WO2023087397A1 (zh) 2023-05-25

Family

ID=86349370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134686 WO2023087397A1 (zh) 2021-11-22 2021-12-01 一种电容生物电极内阻测试系统及其测试方法

Country Status (2)

Country Link
CN (1) CN116138762A (zh)
WO (1) WO2023087397A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199418A (zh) * 2006-12-12 2008-06-18 深圳迈瑞生物医疗电子股份有限公司 脑电阻抗检测电路及脑电检测装置
CN102871657A (zh) * 2012-10-16 2013-01-16 中国人民解放军国防科学技术大学 基于阻抗自适应的脑电信号采集系统及方法
CN105411564A (zh) * 2016-01-20 2016-03-23 蒋淑清 一种检测生物电的电极
CN108309291A (zh) * 2018-03-12 2018-07-24 复旦大学 一种柔性接触脑电电极及其制备方法
CN110301909A (zh) * 2019-07-23 2019-10-08 广西师范大学 一种抗干扰柔性生物电干电极及其制备方法
US20190336038A1 (en) * 2018-05-04 2019-11-07 UNIVERSITé LAVAL Wearable respiration sensor and respiration monitoring system
CN110859618A (zh) * 2019-12-18 2020-03-06 深圳市璞瑞达薄膜开关技术有限公司 脑电电极贴片及其制备方法、脑电传感器
CN112006685A (zh) * 2020-09-07 2020-12-01 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199418A (zh) * 2006-12-12 2008-06-18 深圳迈瑞生物医疗电子股份有限公司 脑电阻抗检测电路及脑电检测装置
CN102871657A (zh) * 2012-10-16 2013-01-16 中国人民解放军国防科学技术大学 基于阻抗自适应的脑电信号采集系统及方法
CN105411564A (zh) * 2016-01-20 2016-03-23 蒋淑清 一种检测生物电的电极
CN108309291A (zh) * 2018-03-12 2018-07-24 复旦大学 一种柔性接触脑电电极及其制备方法
US20190336038A1 (en) * 2018-05-04 2019-11-07 UNIVERSITé LAVAL Wearable respiration sensor and respiration monitoring system
CN110301909A (zh) * 2019-07-23 2019-10-08 广西师范大学 一种抗干扰柔性生物电干电极及其制备方法
CN110859618A (zh) * 2019-12-18 2020-03-06 深圳市璞瑞达薄膜开关技术有限公司 脑电电极贴片及其制备方法、脑电传感器
CN112006685A (zh) * 2020-09-07 2020-12-01 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法

Also Published As

Publication number Publication date
CN116138762A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
Zhang et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring
Li et al. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting
Zahed et al. Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system
Huang et al. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring
Xu et al. Textile-structured electrodes for electrocardiogram
Islam et al. Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications
US20110196220A1 (en) Electrode Assembly for Medical Purposes
Liu et al. Silver nanowire-composite electrodes for long-term electrocardiogram measurements
Yun et al. Stable bioelectric signal acquisition using an enlarged surface-area flexible skin electrode
Das et al. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications
Liu et al. Carbon nanotube-based self-adhesive polymer electrodes for wireless long-term recording of electrocardiogram signals
Sinha et al. Graphene and poly (3, 4-ethylene dioxythiophene): poly (4-styrenesulfonate) on nonwoven fabric as a room temperature metal and its application as dry electrodes for electrocardiography
CN204909445U (zh) 一种检测生物电信号的干电极
Sunwoo et al. Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed pt nanoparticles for wearable and implantable device
Varadan et al. Wireless point-of-care diagnosis for sleep disorder with dry nanowire electrodes
Park et al. Fully screen-printed PI/PEG blends enabled patternable electrodes for scalable manufacturing of skin-conformal, stretchable, wearable electronics
CN205729338U (zh) 传感器附件和传感器组件
Ciucu et al. A non-contact heart-rate monitoring system for long-term assessments of HRV
WO2023087397A1 (zh) 一种电容生物电极内阻测试系统及其测试方法
CN110301909A (zh) 一种抗干扰柔性生物电干电极及其制备方法
Lee et al. Wearable ECG monitoring system using conductive fabrics and active electrodes
Sinha et al. Integrated dry poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate electrodes on finished textiles for continuous and simultaneous monitoring of electrocardiogram, electromyogram and electrodermal activity
Ku et al. Electro-deposited nanoporous platinum electrode for EEG monitoring
JP2014158576A (ja) 生体用電極
CN108992064A (zh) 心电图电缆电极模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964542

Country of ref document: EP

Kind code of ref document: A1