WO2023087220A1 - 微波装置及微波通信站点 - Google Patents

微波装置及微波通信站点 Download PDF

Info

Publication number
WO2023087220A1
WO2023087220A1 PCT/CN2021/131549 CN2021131549W WO2023087220A1 WO 2023087220 A1 WO2023087220 A1 WO 2023087220A1 CN 2021131549 W CN2021131549 W CN 2021131549W WO 2023087220 A1 WO2023087220 A1 WO 2023087220A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
fixed
microwave device
lens antenna
frequency module
Prior art date
Application number
PCT/CN2021/131549
Other languages
English (en)
French (fr)
Inventor
谢勇锋
陈泽峰
赵春雨
喻斌
季魁文
潘明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/131549 priority Critical patent/WO2023087220A1/zh
Publication of WO2023087220A1 publication Critical patent/WO2023087220A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems

Definitions

  • the present application relates to the technical field of antennas, in particular to a microwave device and a microwave communication station equipped with the microwave device.
  • the microwave communication sites used for docking with the base station are also gradually developing from the original tree-shaped network to the star-shaped network.
  • the microwave communication site establishes communication with each base station through microwave devices, and the microwave communication site gradually evolves from a unidirectional small site to a multi-directional large-capacity aggregation site.
  • microwave communication sites want to achieve multi-directional large-capacity functions, they can only increase the number of microwave devices, which brings microwave communication.
  • the installation density of iron towers at the site is high, the load-bearing load increases, wind resistance and many other problems, and the increase in the number of microwave devices will also increase the rental cost of iron towers.
  • the object of the present invention is to provide a microwave device with a smaller volume and realize multi-directional radio frequency signal sending and receiving functions for the deficiencies in the prior art. And, a microwave communication station equipped with the microwave device is also provided.
  • the application specifically includes the following technical solutions:
  • a microwave device including a bracket, and a Lunberg lens antenna and a radio frequency module fixed on the bracket;
  • the radio frequency module includes a waveguide assembly, the bracket is provided with at least two fixed positions, and the waveguide assembly is installed at any fixed position, and can be used in different positions. switch between the fixed positions; when the waveguide components are in different fixed positions, they all extend in the direction close to the geometric center of the Lunberg lens antenna, and the distances from the Lunberg lens antenna are all within the preset first range, and the radio frequency module Through the path formed by the waveguide component and Lunberg lens antenna, the function of transmitting and receiving radio frequency signals is realized.
  • the microwave device of the present application transmits and receives radio frequency signals through the radio frequency module, and uses the waveguide component of the radio frequency module and the Lunberg lens antenna to form the signal transceiving path of the radio frequency module. Because multiple fixing positions are provided, the waveguide component can be installed on different fixing positions, thereby realizing the function of forming different angles of cooperation with the Lunberg lens antenna, and allowing the direction of the radio frequency signal to be adjusted. And because the waveguide assembly is at each fixed position, its geometric center distance relative to the Lunberg lens antenna is equal, which can ensure the cooperation between the waveguide assembly and the Lunberg lens antenna, so that the waveguide assembly can be in any fixed position. Reliable work.
  • each fixing position is located on the first plane.
  • each fixing position is located on the first plane, so that the angle of the waveguide assembly in a direction parallel to the first plane can be adjusted.
  • the distances from each fixed position to the geometric center of the Lunberg lens antenna are all within a preset second range.
  • the distance between the waveguide component of the radio frequency module and the Lunberg lens antenna can be indirectly controlled within the first range.
  • the waveguide assembly includes a fixed section and a sliding section, the sliding section is located between the fixed section and the Lunberg lens antenna, the sliding section is slidably connected to the fixed section, and has at least two As for the coordination sites, at least two coordination sites are located on the second plane, and the second plane intersects the first plane.
  • the waveguide assembly can form at least two matching positions in the direction of the second plane relative to the Lunberg lens antenna, and the second plane intersects the first plane,
  • the adjustment of the matching position can further expand the direction adjustment range of the radio frequency module.
  • the second plane and the first plane are perpendicular to each other.
  • the first plane is a horizontal plane
  • the second plane is a vertical plane
  • the sliding track of the sliding section relative to the fixed section is arc-shaped, and the center of the sliding track coincides with the geometric center of the Lunberg lens antenna.
  • the sliding track of the sliding section is arc-shaped, and its track center coincides with the geometric center of the Lunberg lens antenna, so that the sliding section can always maintain the distance between the Lunberg lens antenna and the Lunberg lens antenna on its sliding track.
  • the distance can form multiple coordination positions, which can improve the direction adjustment capability of the radio frequency module.
  • the two fixed sections are arranged at intervals, and the sliding section is located between the two fixed sections and slides relative to the two fixed sections at the same time.
  • the opposite ends of the sliding section slide with a fixed section respectively, and the sliding track is more stable, which can ensure the relative distance between the sliding section and the Lunberg lens antenna.
  • the two fixed segments transmit signals towards the sliding segment respectively, and are combined on the sliding segment and then transmitted to the Lunberg lens antenna.
  • the two fixed segments transmit signals towards the sliding segment respectively, and the combined circuit is formed by the sliding segment and then transmitted outward, so that the bandwidth or flow of the radio frequency signal can be widened.
  • the signals transmitted by the two fixed segments towards the sliding segment respectively are within the same frequency band.
  • the signals transmitted from the two fixed segments towards the sliding segment have the same polarization direction and different frequency points.
  • the two channels of signals with different frequency points can widen the bandwidth of the radio frequency signal.
  • the signals transmitted by the two fixed segments towards the sliding segment respectively have the same frequency points and different polarization directions.
  • the two channels of signals with different polarization directions can broaden the traffic of radio frequency signals.
  • the radio frequency module includes a first motor and a transmission mechanism, the first motor is fixed relative to the fixed section, the transmission mechanism is connected between the first motor and the sliding section, and the first motor drives the sliding section through the transmission mechanism. The sliding of the segment relative to the fixed segment.
  • the direction of the radio frequency signal can be automatically adjusted through the sliding action of the sliding section driven by the first motor.
  • the radio frequency module includes a switch and a transceiver component, the transceiver component is used to receive or transmit radio frequency signals, and the switch is used to control the opening and closing of the transceiver component.
  • the transceiver component includes a signal processing unit, a frequency converting unit, an amplifying unit, and a filtering unit.
  • the radio frequency module sends a signal
  • the radio frequency signal is formed by the signal processing unit, and after being up-converted by the frequency conversion unit, it is amplified by the amplification unit and filtered by the filter unit to form a radio frequency signal and transmit it to the waveguide component;
  • the radio frequency module receives the signal, it passes through the filter After unit filtering, it is amplified by the amplifying unit and frequency-reduced by the frequency conversion unit, and then sent to the signal processing unit for processing.
  • the frequency conversion unit includes a frequency up conversion unit and a frequency down conversion unit.
  • the up-conversion unit is used to up-convert the transmitted radio frequency signal
  • the down-conversion unit is used to down-convert the received radio frequency signal
  • the amplifying unit includes a power amplifier and a low noise amplifier.
  • the power amplifier is used to amplify the transmitted radio frequency signal
  • the low noise amplifier is used to amplify the received radio frequency signal
  • both the transceiver component and the waveguide component are located at fixed positions.
  • the transceiver component is fixed relative to the bracket, the waveguide component is located at the fixed position, and the transceiver component and the waveguide component are communicatively connected through a transmission line.
  • the number of radio frequency modules is multiple, and the number of radio frequency modules is less than or equal to the number of fixing positions, and the waveguide components of the multiple radio frequency modules are respectively installed in different fixing positions.
  • multiple radio frequency modules are provided, and waveguide components of the radio frequency modules can be respectively provided at multiple fixed positions, thereby realizing the function of transmitting and receiving radio frequency signals in multiple directions.
  • the multiple radio frequency modules include a first radio frequency module and a second radio frequency module, and a frequency band covered by the first radio frequency module is different from a frequency band covered by the second radio frequency module.
  • the frequency bands among the multiple radio frequency modules are different.
  • the maximum angle between the multiple fixing positions is less than or equal to 175°.
  • the maximum angle between the multiple fixing positions is less than or equal to 90°.
  • setting the angle range of multiple fixed positions within 90° can ensure the quality of sending and receiving radio frequency signals and avoid mutual interference between signals.
  • the bracket includes a fixing plate, the fixing part is fixedly connected to the Lunberg lens antenna, and the first plane is configured such that the fixing plate is close to an outer surface of the Lunberg lens antenna.
  • each fixing position is located within the first plane.
  • the bracket includes a positioning component
  • the fixed plate is provided with an arc-shaped groove
  • the projection of the geometric center of the Lunberg lens antenna on the first plane coincides with the center of the arc-shaped groove
  • the positioning component is connected to Between the arc groove and the waveguide component, it is used to form a fixed position.
  • the center of the arc-shaped slot is set corresponding to the geometric center of the Lunberg lens antenna, which can ensure that the distances between the positions of the arc-shaped slot and the Lunberg lens antenna are equal.
  • the geometric center distance of the waveguide component fixed relative to the arc groove by the positioning member relative to the Lunberg lens antenna is also guaranteed.
  • the positioning component is slidably installed in the arc-shaped groove.
  • the sliding of the positioning component relative to the arc-shaped groove can arbitrarily adjust the signal transmission direction of the radio frequency module, and facilitate the adjustment of the included angle between multiple radio frequency modules.
  • the waveguide assembly is plate-shaped, and the waveguide assembly is arranged parallel to the second plane, so that more waveguide assemblies can be accommodated in the microwave device.
  • the bracket further includes a second motor, and the second motor is used to drive the positioning assembly to slide relative to the arc-shaped slot.
  • the sliding of the positioning assembly driven by the second motor can drive the waveguide assembly to rotate relative to the Lunberg lens antenna, thereby achieving the effect of automatically adjusting the direction of the radio frequency signal.
  • the present application also provides a microwave communication station, the microwave communication station includes a column, and the above-mentioned microwave device, the microwave device is fixed on the column and used for sending and receiving signals.
  • the microwave communication site further includes an iron tower and an indoor microwave device.
  • the column is arranged on the iron tower, and the indoor microwave device is connected with the microwave device in communication.
  • the microwave communication station is equipped with the above-mentioned microwave device, it has similar beneficial effects to the above-mentioned microwave device. That is, the radiation angle of the radio frequency signal in the microwave device can be adjusted, and it can realize the functions of single-band large-area coverage and multi-band simultaneous transmission and reception.
  • FIG. 1 is a schematic diagram of a working scene of a microwave communication site provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a multi-base station communication working scenario of a microwave communication site provided by an embodiment of the present application;
  • Fig. 3 is a schematic structural diagram of a microwave device provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an exploded structure of a microwave device provided in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the fixed structure of the Lunberg lens antenna and the bracket in the microwave device provided by the embodiment of the present application;
  • Fig. 5a is a partial schematic diagram of the fixed structure of the Lunberg lens antenna and the upper bracket in the microwave device provided by the embodiment of the present application;
  • Fig. 6 is a schematic diagram of the fixing structure of the radio frequency module and the bracket in the microwave device provided by the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a radio frequency module in a microwave device provided in an embodiment of the present application.
  • Fig. 8 is a schematic side view of the fixing structure of the radio frequency module and the bracket in the microwave device provided by the embodiment of the present application;
  • Fig. 9 is a schematic diagram of the cooperative structure of the radio frequency module and the Lunberg lens antenna in the microwave device provided by the embodiment of the present application;
  • Fig. 10 is a schematic diagram of the frame structure of the internal components of the radio frequency module in the microwave device provided by the embodiment of the present application;
  • Fig. 11 is a schematic diagram of the frame structure of the internal frequency conversion unit and amplification unit of the radio frequency module in the microwave device provided by the embodiment of the present application;
  • Fig. 12 is a schematic structural diagram of a microwave device provided by another embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of the waveguide assembly of the radio frequency module in the microwave device provided by another embodiment of the present application.
  • Fig. 14 is a schematic diagram of the cooperative structure of the radio frequency module and the Lunberg lens antenna in the microwave device provided by another embodiment of the present application;
  • Fig. 15 is a schematic diagram of the cooperative structure of the radio frequency module and the Lunberg lens antenna in the microwave device provided by another embodiment of the present application;
  • Fig. 16 is a schematic structural diagram of a radio frequency module in a microwave device provided by another embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of the waveguide assembly of the radio frequency module in the microwave device provided by another embodiment of the present application.
  • Fig. 18 is a schematic plan view of the fixed plate in the microwave device provided by the embodiment of the present application.
  • Fig. 19 is a partial cross-sectional structural schematic diagram of a radio frequency module and a bracket in a microwave device provided by another embodiment of the present application;
  • Fig. 20 is a schematic plan view of the radio frequency modules respectively arranged on two fixed positions in the microwave device provided by the embodiment of the present application;
  • Fig. 21 is a schematic diagram of the radiation direction of radio frequency signals in the microwave device provided by the embodiment of the present application, where the radio frequency modules are respectively arranged on two fixed positions;
  • Fig. 22 is a schematic plan view of the two radio frequency modules respectively arranged on the fixed plate in the microwave device provided by another embodiment of the present application;
  • Fig. 23 is a schematic diagram of the radiation direction of radio frequency signals in the microwave device provided by another embodiment of the present application, where two radio frequency modules are respectively arranged on the fixed board;
  • Fig. 24 is a schematic structural diagram of a microwave device provided by another embodiment of the present application including multiple radio frequency modules;
  • Fig. 25 is a structural schematic diagram of multiple radio frequency modules simultaneously fixed on a fixed plate in a microwave device provided by another embodiment of the present application;
  • Fig. 26 is a schematic diagram of the radio frequency signal radiation direction in which multiple radio frequency modules are simultaneously fixed on the fixed plate in the microwave device provided by another embodiment of the present application;
  • Fig. 27 is a schematic structural diagram of adding a radio frequency module in a microwave device provided by another embodiment of the present application.
  • Fig. 1 schematically shows a working scene diagram of a microwave communication station 200 provided by an embodiment of the present application.
  • the microwave communication site 200 of this application includes an indoor microwave device 210 , an iron tower 220 , and the microwave device 100 provided by this application.
  • the iron tower 220 is provided with a column 201 , and the microwave device 100 can be erected on the column 201 .
  • the microwave device 100 may also be directly installed on the iron tower 220 .
  • a single column 201 may also be used to replace the structure of the iron tower 220 for fixing the microwave device 100 .
  • the microwave device 100 is communicatively connected with the indoor microwave device 210 , and usually the two are connected through a cable (such as an intermediate frequency cable) for signal transmission.
  • the indoor microwave device 210 can also be connected to the core network 9 through the router 8, to receive the signal sent by the core network 9, and transmit it to the microwave device 100 for external transmission; or transmit the signal received by the microwave device 100 to the core network 9 in.
  • the communication between the indoor microwave device 210 and the router 8 and between the router 8 and the core network 9 can be realized through optical fibers.
  • the microwave device 100 is usually in communication connection with the base station, and the signal obtained by the microwave device 100 from the core network 9 can be sent to the base station, or the signal received by the base station can be transmitted to the core network 9 .
  • a microwave antenna 6 is provided in the base station, and the microwave antenna 6 and the microwave device 100 of the present application transmit signals through microwaves, that is, wireless transmission.
  • the base station is also provided with a base station antenna 3, and both the base station antenna 3 and the microwave antenna 6 can be placed on the antenna frame 7 of the base station.
  • the antenna frame 7 may be the structure of the above-mentioned iron tower 220 , or may be the structure of a separate column 201 .
  • the base station is also provided with a base station indoor unit 4 and a microwave indoor unit 5 . Communication between the two can be realized through the base station service optical fiber.
  • the base station indoor unit 4 is communicatively connected with the base station antenna 3, and sends signals to the terminal (terminal 2 in FIG. 1) or receives signals from the terminal (terminal 1 in FIG. 1) through the base antenna 3.
  • the microwave indoor unit 5 is connected with the microwave antenna 6 to send the signal from the base station indoor unit 4 to the microwave device 100 through microwave, or receive the signal from the microwave device 100 and send it to the base station indoor unit 4 .
  • the microwave communication site 200 of the present application as a link on the transmission path from the core network 9 to the terminal, can realize the communication function between the router 8 and the microwave antenna 6 of the base station.
  • the microwave device 100 can be used for receiving or sending radio frequency signals.
  • the radio frequency signal can cover MHB frequency band, NR frequency band, LB frequency band, wifi 6E frequency band, 5G frequency band, UWB frequency band, or millimeter wave frequency band, etc.
  • the microwave antennas 6 of different base stations send radio frequency signals toward the microwave communication site 200 from different directions, and these signals are generally signals of different frequency bands to avoid mutual interference.
  • the microwave device 100 installed on the microwave communication site 200 is used to receive signals from various channels, so as to merge the signals from each base station into the core network 9 or distribute them from the core network 9 to each base station.
  • each base station has a different orientation relative to the microwave communication site 200
  • the microwave device 100 of the microwave communication site 200 needs to receive and send signals in different directions, and signal frequency bands in different directions may also be different.
  • FIG. 3 schematically shows an external structure of an embodiment of a microwave device 100 provided in the present application.
  • FIG. 4 schematically shows an exploded structure of the microwave device 100 shown in FIG. 3 .
  • the microwave device 100 of the present application includes a bracket 110 , a radio frequency module 120 and a Lunberg lens antenna 130 .
  • the bracket 110 is used to cooperate with the iron tower 220 or the column 201 to fix the microwave device 100 on the iron tower 220 or the column 201 .
  • the radio frequency module 120 and the Lunberg lens antenna 130 are fixed on the bracket 110 , and the radio frequency module 120 and the Lunberg lens antenna 130 cooperate to realize the radio frequency signal receiving and sending functions of the microwave device 100 .
  • the bracket 110 includes an upper bracket 111 and a lower bracket 112 , and a fixing plate 113 between the upper bracket 111 and the lower bracket 112 .
  • the fixing plate 113 is fixed relative to the lower bracket 112 and is used for carrying the radio frequency module 120 and the Lunberg lens antenna 130 .
  • the radio frequency module 120 and the Lunberg lens antenna 130 are also located between the upper bracket 111 and the lower bracket 112 .
  • the support 110 may only include the upper support 111 and the fixing plate 113 , or may only include the lower support 112 and the fixing plate 113 , which does not affect the realization of the solution of the microwave device 100 of the present application.
  • the fixing plate 113 can also be fixed on one side of the upper bracket 111 , and the radio frequency module 120 and Lunberg lens antenna 130 are suspended under the fixing plate 113 .
  • the upper bracket 111 and the lower bracket 112 are arranged at intervals along the length direction of the column 201 , and the Lunberg lens antenna 130 is relatively fixed to the upper bracket 111 and the lower bracket 112 respectively.
  • the side of the Lunberg lens antenna 130 close to the lower support 112 is fixed to the fixing plate 113
  • the side close to the upper support 111 is held and fixed by the pressing member 114 .
  • the Lunberg lens antenna 130 is spherical, and when the Lunberg lens antenna 130 is carried on the fixed plate 113, the pressing member 114 can be located at the other end of the fixed plate 113 relative to the geometric center (i.e. the center of the sphere)
  • the Lunberg lens antenna 130 is supported by opposite ends along the length direction of the column 201 (see FIG. 5 a ), so as to fix the Lunberg lens antenna 130 .
  • the radio frequency module 120 may also be fixed on the fixing plate 113 .
  • a plurality of fixing positions 141 for carrying and fixing the radio frequency module 120 are provided on the bracket 110 (on the fixing plate 113 in this embodiment).
  • all the fixing positions 141 are located on the same plane (defined as the first plane 151 in this embodiment).
  • the outer surface 1131 of the fixing plate 113 is configured as a first plane 151 , and the plurality of fixing positions 141 are all located on the outer surface 1131 .
  • the radio frequency module 120 When the radio frequency module 120 is fixed on the bracket 110 , it needs to be correspondingly arranged on the fixing position 141 to ensure the relative position of the radio frequency module 120 and the Lunberg lens antenna 130 . It can be understood that, in some other embodiments, the fixing position 141 can also be located on different planes, and the relative position between the radio frequency module 120 and the Lunberg lens antenna 130 can also meet preset requirements. For details, please refer to the schematic structural diagram of the radio frequency module 120 shown in FIG. 7 .
  • the radio frequency module 120 includes a main body 121 and a waveguide assembly 122 , and the main body 121 and the waveguide assembly 122 are integrated, which is also described as being fixed to each other between the main body 121 and the waveguide assembly 122 .
  • the above-mentioned position setting based on the fixed position 141 and the radio frequency module 120 is actually used to fix the relative position of the waveguide component 122 and the fixed position 141 . That is, in the microwave device 100 of the present application, the fixed position 141 is used to control the position of the waveguide component 122 .
  • the main body 121 is loaded with components for realizing the functions of receiving and sending radio frequency signals.
  • Both the main body 121 and the waveguide assembly 122 are fixed corresponding to the fixing position 141 (see FIG. 8 ), and are spaced apart from the Lunberg lens antenna 130 .
  • the waveguide assembly 122 is located between the main body 121 and the Lunberg lens antenna 130 . That is, the waveguide assembly 122 extends from the main body 121 toward the Lunberg lens antenna 130 , and forms a resistance fit with the Lunberg lens antenna 130 , or forms a small clearance fit (see FIG. 9 ).
  • the interference fit or small clearance fit here is the limitation of the above-mentioned first range.
  • the waveguide assembly 122 is used to transmit the radio frequency signal formed by the main body 121 of the radio frequency module 120 to the Lunberg lens antenna 130 to realize the transmitting function, and is also used to receive the radio frequency signal at the Lunberg lens antenna 130.
  • the radio frequency signal is transmitted back to the main body 121 to realize the receiving function.
  • the Lunberg lens antenna 130 can be understood as a spherical layered dielectric lens antenna, which can convert the spherical wave or cylindrical wave of a point source or a line source into a plane wave through electromagnetic waves to obtain a pencil-shaped, fan-shaped or other shaped beam antenna. Therefore, the radio frequency signal output by the radio frequency module 120 is transmitted into the space according to the input direction of the waveguide component 122, and at the same time, the space signal in the corresponding direction of the waveguide component 122 can be received and converged to the position of the waveguide component 122, and then input to the radio frequency module 120 for processing.
  • the waveguide component 122 can be understood as a section of radio frequency signal transmission line, which is constructed in the shape of a hollow metal tube, and flanges can be embedded at both ends. Based on the different cross-sectional geometry of the hollow metal tube, the waveguide component 122 may have different structures such as a rectangular waveguide, a circular waveguide, an elliptical waveguide, a single-ridge waveguide, and a double-ridge waveguide. Therefore, in the microwave device 100 of the present application, the Lunberg lens antenna 130 and the waveguide assembly 122 together constitute a signal transceiving path of the radio frequency module 120 .
  • the radio frequency module 120 can realize the function of signal transmission and reception through the transmission and reception path jointly formed by the Lunberg lens antenna 130 and the waveguide assembly 122 .
  • the main body 121 of the radio frequency module 120 is provided with a switch 123 and a transceiver component 124 .
  • the switch 123 is connected in series with the transceiver component 124 , and the switch 123 is used to control the on and off (sleep) of the transceiver component 124 .
  • the transceiver component 124 is used for generating radio frequency signals or receiving radio frequency signals.
  • the transceiver component 124 may be an intermediate frequency transceiver combining processing device, which can simultaneously receive and transmit intermediate frequency signals through cables.
  • the transceiver component 124 includes a signal processing unit 1241 , a frequency conversion unit 1242 , an amplification unit 1243 , and a filtering unit 1244 .
  • the signal processing unit 1241 forms a radio frequency signal
  • the radio frequency signal is up-converted by the frequency conversion unit 1242, then amplified by the amplification unit 1243, and finally filtered by the filter unit 1244 to form the final transmitted radio frequency signal transmission to the waveguide component 122, and transmit to the outside through the transmission path formed by the waveguide component 122 and the Lunberg lens antenna 130.
  • the radio frequency module 120 When the radio frequency module 120 receives a signal, the radio frequency signal received by the Lunberg lens antenna 130 and the waveguide assembly 122 is first transmitted to the filter unit 1244 for filtering, then amplified by the amplification unit 1243, and after being down-frequency by the frequency conversion unit 1242, transmitted to the The signal processing unit 1241 performs processing reception.
  • the signal processing unit 1241 is an intermediate frequency processing unit.
  • the radio frequency signal usually needs to be transmitted after being up-converted to avoid power consumption loss. Therefore, the frequency conversion unit 1242 needs to perform up-frequency or down-frequency processing on the radio frequency signal when sending or receiving it.
  • the frequency conversion unit 1242 includes an up-conversion unit 1242a, and the amplification unit 1243 includes a power amplifier 1243a.
  • the up-conversion unit 1242a is electrically connected to the power amplifier 1243a.
  • the up-conversion unit 1242a is used to up-convert the radio frequency signal
  • the power amplifier 1243a is used to amplify the radio frequency signal
  • the frequency conversion unit 1242 includes a down-conversion unit 1242b
  • an amplification unit 1243 includes a low noise amplifier 1243b.
  • the down conversion unit 1242b is electrically connected to the low noise amplifier 1243b.
  • the low noise amplifier 1243b is used to amplify the received radio frequency signal
  • the frequency down conversion unit 1242b is used to down-convert the received radio frequency signal.
  • the microwave device 100 of the present application please refer to the schematic diagram in FIG. 12 .
  • the structure of the main body 121 of the radio frequency module 120 together with the switch 123 and the transceiver assembly 124 accommodated therein, can be fixed on the iron tower 220 or the column 201 .
  • the main body 121 and the waveguide assembly 122 adopt a separate structure, and the radio frequency module 120 only fixes the waveguide assembly 122 on the fixing position 141 of the bracket 120 to ensure the relative position between the waveguide assembly 122 and the Lunberg lens antenna 130 .
  • the switch 123 and the transceiver assembly 124 can also be arranged outside the bracket 110 and fixed relative to the bracket 110 .
  • the transceiver component 124 can be electrically connected to the waveguide component 122 through a transmission line, and realizes the bidirectional transmission function of radio frequency signals.
  • This type of embodiment can be used for the reuse of radio frequency devices on the microwave communication site 200, that is, using the inherent radio frequency devices on the microwave communication site 200 to connect the signal to the waveguide assembly 122 of the microwave device 100 of the present application through a transmission line, and through The structure of the microwave device 100 of the present application performs transmission and reception.
  • the volume of the waveguide assembly 122 is smaller than that of the radio frequency module 120 (as shown in FIG. 13 ), and this embodiment saves the overall cost of the microwave device 100 and simultaneously reduces the volume of the radio frequency module 120 accordingly.
  • the fixing position 141 provided on the microwave device 100 of the present application is set corresponding to the position of the waveguide assembly 122 , that is, the fixing position 141 is used to fix the relative position between the waveguide assembly 122 and the Lunberg lens antenna 130 . Therefore, it can be compatible with the above-mentioned embodiments shown in FIG. 12 and FIG. 13 in which the main body 121 of the radio frequency module 120 and the waveguide assembly 122 are arranged separately.
  • the main body 121 of the radio frequency module 120 and the waveguide assembly 122 are integrated, by controlling the position between the radio frequency module 120 and the fixed position 141, the position between the waveguide assembly 122 and the fixed position 141 can be indirectly controlled. , and ensure the relative position between the waveguide component 122 and the Lunberg lens antenna 130 .
  • the radio frequency module 120 includes a form in which the main body 121 and the waveguide assembly 122 are integrated, and there are also forms in which the main body 121 and the waveguide assembly 122 are separate structures. That is, in some scenarios, the radio frequency module 120 in the microwave device 100 includes a newly installed radio frequency module 120 and also includes a repurposed radio frequency module 120 . In such a scenario, the fixed position 141 is still used to control the distance between the waveguide assembly 122 of the radio frequency module 120 and the Lunberg lens antenna 130 within the first preset range.
  • some of the fixing positions 141 are used to directly connect with the waveguide assembly 122 and fix the position of the waveguide assembly 122 ; the other part of the fixing positions 141 are connected to the main body 121 to indirectly fix the position of the waveguide assembly 122 .
  • the radio frequency module 120 is in the shape of a plate.
  • the plate-shaped radio frequency module 120 and the outer surface 1131 of the fixing plate 113 form an included angle with each other.
  • the main body 121 of the radio frequency module 120 is roughly rectangular, and the waveguide assembly 122 is located on one side of the main body 121 .
  • the waveguide assembly 122 includes a fixed section 1221 and a sliding section 1222 .
  • the fixed section 1221 is fixedly connected to the main body 121 of the radio frequency module 120 , and the sliding section 1222 is slidably connected to the fixed section 1221 . Further, the sliding section 1222 is located between the fixed section 1221 and the Lunberg lens antenna 130 .
  • the sliding section 1222 includes a sliding end 1223 and a pointing end 1224 .
  • the sliding end 1223 is slidably connected with the fixed section 1221 , and the pointing end 1224 extends toward the Lunberg lens antenna 130 and is used to form a resistance fit or a small clearance fit with the Lunberg lens antenna 130 .
  • the waveguide component 122 realizes the signal transmission function between itself and the Lunberg lens antenna 130 through the cooperation of the pointing end 1224 and the Lunberg lens antenna 130 . That is, the pointing end 1224 of the sliding segment 1222 is located between the sliding end 1223 and the Lunberg lens antenna 130 .
  • the above-mentioned sliding section 1222 is located between the fixed section 1221 and the Lunberg lens antenna 130, and the pointing end 1224 is located between the sliding end 1223 and the Lunberg lens antenna 130, both of which are based on the signal transmission path of the waveguide assembly 122.
  • the defined, but not strictly defined, positional relationship of the actual shape and structure of the waveguide component 122 also follows the above relationship.
  • the sliding section 1222 in the waveguide assembly 122 can slide relative to the fixed section 1221, and the cooperation between the sliding section 1222 and the Lunberg lens antenna 130 meets the preset requirements, that is, the sliding section 1222 and the Lunberg lens
  • the position defining the sliding section 1222 forms a matching position 142 relative to the Lunberg lens antenna 130 .
  • the pointing end 1224 of the sliding section 1222 points to the geometric center A of the Lunberg lens antenna 130, and the distance between the pointing end 1224 and the Lunberg lens antenna 130 can be at a predetermined distance.
  • two or more matching positions 142 can be formed.
  • two or more matching positions 142 can form a preset matching requirement with the Lunberg lens antenna 130 and ensure that the pointing end 1224 points to the geometric center A of the Lunberg lens antenna. It can be understood that when the pointing end 1224 transmits signals toward the Lunberg lens antenna 130 from different matching positions 142, the direction of the radiation wave formed by it also changes accordingly. Therefore, through the above-mentioned structural settings, the microwave device 100 of the present application can realize radiation change of angle.
  • the waveguide assembly 122 forms a different matching position 142 with the Lunberg lens antenna 130, it is realized by sliding the sliding section 1222 relative to the fixed section 1221, so it can also be understood that the radiation of the microwave device 100 of the present application The angle is changed along the sliding direction of the sliding section 1222 relative to the fixed section 1221 .
  • the Lunberg lens antenna 130 is a sphere, to make the sliding section 1222 form a preset cooperation relationship with the Lunberg lens antenna 130 on the matching position 142, it is necessary to ensure the geometric center of each matching position 142 and the Lunberg lens antenna 130 The distances between A are equal, or the difference is smaller than the first range by a preset value.
  • the sliding direction of the sliding section 1222 relative to the fixed section 1221 should be set in an arc shape, and the center of the arc shape coincides with the geometric center A of the Lunberg lens antenna 130 . That is, the sliding track of the sliding section 1222 relative to the fixed section 1221 is an arc, and the center of the sliding track coincides with the geometric center A of the Lunberg lens antenna 130 .
  • any position of the sliding segment 1222 on its sliding track can always keep the same distance from the Lunberg lens antenna 130, or within the preset first range, and then a plurality of matching positions 142 can be formed. , so that the waveguide component 122 can form a multi-angle matching relationship with the Lunberg lens antenna 130 , and improve the direction adjustment range of the radio frequency module 120 .
  • the arc-shaped track may form a plane.
  • the plane formed by the arc trajectory can be defined as the second plane 152 (see FIG. 6 ).
  • the plurality of matching positions 142 formed by the sliding section 1222 and the Lunberg lens antenna 130 are all located on the second plane 152 .
  • the second plane 152 may also pass through the geometric center A of the Lunberg lens antenna 130 .
  • the main body 121 of the radio frequency module 120 provided by the embodiment of the present application can be configured as a plate, so the second plane 152 can also be arranged parallel to the direction of the board plane of the main body 121 . Therefore, the sliding section 1222 slides in a board plane parallel to the main body 121 , which can reduce the volume occupied by the radio frequency module 120 in the microwave device 100 .
  • the plate-shaped radio frequency module 120 and the outer surface 1131 of the fixed plate 113 form an angle with each other
  • the first plane 151 of the microwave device 100 of the present application is arranged on the outer surface 1131, so the second plane 152 is also in line with the first plane. 151 intersect and form an angle with each other.
  • the second plane 152 and the first plane 151 may be set to be perpendicular to each other.
  • the angle adjustment direction of the waveguide assembly 122 relative to the Lunberg lens antenna 130 may be perpendicular to the outer surface 1131 of the fixing plate 113 .
  • the first plane 151 can also be set as a horizontal plane, and at this time, the second plane 152 is a vertical plane.
  • the angle adjustment of the waveguide assembly 122 relative to the Lunberg lens antenna 130 is the angle adjustment in the pitch direction.
  • the waveguide assembly 122 is at a matching position 142 relative to the Lunberg lens antenna 130, and when the waveguide assembly 122 is at the matching position 142 shown in FIG. Lunberg lens antenna 130.
  • the sliding section 1222 of the waveguide assembly 122 slides towards the direction close to the fixed section 1221 and stops at a matching position 142 .
  • the position of the matching position 142 is lower than the geometric center A of the Lunberg lens antenna 130 .
  • the pointing end 1224 forms an included angle with the horizontal direction, and the signal input point of the pointing end 1224 is also lower than the geometric center A of the Lunberg lens antenna 130 .
  • the radio frequency signal transmitted by the waveguide assembly 122 to the Lunberg lens antenna 130 propagates in the upward direction after passing through the Lunberg lens antenna 130; and in the schematic diagram of FIG. 15 , the sliding section 1222 of the waveguide assembly 122 faces away from The fixed section 1221 slides in the same direction and stops at another matching position 142 .
  • the position of the matching position 142 is higher than the geometric center A of the Lunberg lens antenna 130.
  • the pointing end 1224 also forms an included angle with the horizontal direction, and the signal input point of the pointing end 1224 is also higher than the geometric center A of the Lunberg lens antenna 130. .
  • the radio frequency signal transmitted from the waveguide assembly 122 to the Lunberg lens antenna 130 propagates in a pitch-down direction after passing through the Lunberg lens antenna 130 .
  • the angle adjustment of the waveguide assembly 122 relative to the Lunberg lens antenna 130 may be the angle adjustment in the horizontal direction.
  • the first plane 151 may also be set to form a certain angle with the horizontal plane, which does not affect the function of changing the angle of the waveguide assembly 122 relative to the Lunberg lens antenna 130 .
  • the waveguide assembly 122 can be adaptively adjusted within the preset angle range.
  • a first motor (not shown in the figure) and a transmission mechanism (not shown in the figure) can also be placed in the radio frequency module 120, the first motor is fixed in the main body 121 of the radio frequency module 120, and the transmission mechanism The transmission is connected between the first motor and the sliding section 1222 , and the first motor can drive the sliding section 1222 to slide relative to the fixed section 1221 through a transmission mechanism.
  • the microwave device 100 of the present application can realize the automatic adjustment of the direction of the radio frequency signal through the driving of the first motor.
  • the first motor is fixed relative to the fixed section 1221 of the waveguide assembly 122, and can also cooperate with the transmission mechanism to realize the sliding movement of the sliding section 1222 relative to the fixed section 1221 .
  • FIG. 16 there are two fixing sections 1221 , the two fixing sections 1221 are arranged at intervals, and are respectively fixed on the main body 121 of the radio frequency module 120 .
  • the sliding section 1222 is located between the two fixing sections 1221 , and the sliding section 1222 can slide relative to the two fixing sections 1221 at the same time.
  • the two fixed sections 1221 are respectively located at two ends of the sliding track of the sliding section 1222, and the sliding section 1222 is configured as a "T"-shaped structure, so that the sliding section 1222 is slidably connected to the two fixed sections 1221 respectively.
  • the sliding segment 1222 slides between the two fixed segments 1221, and because the opposite ends of the sliding segment 1222 cooperate with a fixed segment 1221 to slide respectively, the sliding track of the sliding segment 1222 is more stable, thereby ensuring that the sliding segment 1222 is compatible with the Lunberg lens.
  • the relative distance between the antennas 130 meets preset requirements. It can be understood that in the embodiment in which there are two fixed sections 1221 shown in FIG. Angular function.
  • FIG. 17 illustrates the structure in which the waveguide assembly 122 is provided with two fixing sections 1221 in an embodiment in which the main body 121 of the radio frequency module 120 is disposed separately from the waveguide assembly 122 .
  • the sliding section 1222 is also slidably disposed between the two fixing sections 1221 at the same time, and can slide relative to the two fixing sections 1221 at the same time.
  • the radio frequency module 120 transmits radio frequency signals towards the sliding section 1222 through the single fixed section 1221 .
  • the radio frequency module 120 can transmit signals towards the sliding section 1222 respectively through the two fixed sections 1221 . After the two signals are combined on the sliding section 1222 , they are transmitted to the Lunberg lens antenna 130 and sent out.
  • Such a setting can differentiate the signals transmitted from the two fixed sections 1221 to the sliding section 1222 , so that the bandwidth of the radio frequency signal formed after the sliding section 1222 is combined is wider, or the flow rate is larger.
  • the signals transmitted by the two fixed sections 1221 towards the sliding section 1222 respectively are within the same frequency band.
  • the radio frequency signal formed by combining on the sliding section 1222 is also a signal in the same frequency band, so that the signal emitted by the Lunberg lens antenna 130 can correspond to cover a preset frequency band.
  • the signals transmitted from the two fixed sections 1221 towards the sliding section 1222 have the same polarization direction and different frequency points.
  • the radio frequency module 120 is used to transmit signals in the 18GHz frequency band.
  • the signal frequency point transmitted by one fixed segment 1221 towards the sliding segment 1222 is 18.03 GHz
  • the signal frequency point transmitted by the other fixed segment 1221 towards the sliding segment 1222 is 18.58 GHz. Because the bandwidth of each frequency point corresponding to each signal tends to be consistent, the RF signal formed by sending two RF signals with different frequency points combined has a wider bandwidth than the RF signal of a single frequency point.
  • the signals transmitted by the two fixed sections 1221 towards the sliding section 1222 respectively have the same frequency points and different polarization directions.
  • the sliding section 1222 is formed as a polarization combiner (Orthogonal Mode Transducer, OMT). After the two radio frequency signals with different polarization directions are combined by the polarization combiner, the traffic of the formed radio frequency signal increases. It can be understood that when the polarization directions of the two radio frequency signals are perpendicular to each other, the traffic of the radio frequency signal formed by combining them is doubled compared with that of a single radio frequency signal.
  • FIG. 18 illustrates the planar structure of the fixing plate 113 .
  • the fixing plate 113 includes a bearing seat 115 and an arc-shaped groove 116 .
  • the bearing seat 115 is located on the outer surface 1131 , and can be flush, protruding or concave relative to the outer surface 1131 .
  • the bearing base 115 is used for bearing the Lunberg lens antenna 130 .
  • the carrying seat 115 cooperates with the pressing part 114 of the aforementioned upper bracket 111 to carry and fix the Lunberg lens antenna 130 .
  • the bearing seat 115 and the pressing member 114 should be arranged symmetrically with respect to the geometric center A of the Luneburg lens antenna 130 , so as to securely hold the Luneburg lens antenna 130 .
  • the bearing seat 115 can be set corresponding to point B.
  • the arc-shaped groove 116 is defined on the periphery of the bearing seat 115 , and the center of the arc-shaped groove 116 may coincide with the above-mentioned point B. As shown in FIG. At this time, at any position of the arc-shaped groove 116, the distance from the point B is the same. Or in some embodiments, at any position of the control arc-shaped groove 116, its distance from point B is within the second range.
  • the bracket 110 further includes a positioning component 117 connected between the radio frequency module 120 and the arc slot 116 for positioning the radio frequency module 120 relative to the arc slot 116 . That is, the positioning component 117 is used to form the above-mentioned fixing position 141 , and through cooperation with the radio frequency module 120 , fix the radio frequency module 120 relative to the fixing plate 113 .
  • the arc-shaped groove 116 runs through the fixing plate 113 .
  • the positioning assembly 117 includes a first bolt 1171 , a second bolt 1172 and an adapter plate 1173 .
  • the first bolt 1171 passes through the arc-shaped slot 116 to fix the adapter plate 1173 and the fixing plate 113
  • the second bolt 1172 passes through the adapter plate 1173 and is fixedly connected to the main body 121 of the radio frequency module 120 .
  • the first bolt 1171 may also be fixedly connected with the main body 121 of the radio frequency module 120 directly, so as to fix the radio frequency module 120 on the fixing plate 113 .
  • the distance value can be understood as the above-mentioned second range. Therefore, the distances of the radio frequency modules 120 connected to the fixing plate 113 through the positioning component 117 relative to the position of point B are also equal. It can be understood that because point B is the projection of the geometric center A of the Lunberg lens antenna 130 on the outer surface 1131, when the radio frequency module 120 is fixed on the arc groove 116 by the positioning component 117, its geometry relative to the Lunberg lens antenna 130 The distances from the centers A are also equal.
  • the positioning component 117 When the positioning component 117 is fixed relative to any position of the arc-shaped groove 116, a fixed position 141 can be formed, and when the radio frequency module 120 is arranged on the fixed position 141, its distance with respect to the Lunberg lens antenna 130 is equal, and It is indirectly ensured that the distance between the waveguide component 121 of the radio frequency module 120 and the geometric center A of the Lunberg lens antenna 130 is within the first range. This can ensure the normal operation of the microwave device 100 . That is, the positioning component 117 can form a plurality of fixing positions 141 on the arc-shaped groove 116 .
  • FIG. 20 shows a schematic diagram of the radio frequency modules 120 respectively disposed on two fixing positions 141 .
  • the radio frequency module 120 may be located at the fixed position 141a, or at the fixed position 141b.
  • the distance between the waveguide component 122 of the radio frequency module 120 and the Lunberg lens antenna 130 is within the first range.
  • the first range can be understood as the waveguide assembly 122 and the Lunberg lens antenna 130 resist, or form a small gap, so that when the radio frequency module 120 is on the two fixed positions 141, the waveguide assembly 122 can be in contact with the Lunberg lens antenna 130. Form a preset mating state. And when the radio frequency module 120 is on the two fixing positions 141 , an included angle C is formed on the outer surface 1131 .
  • the radio frequency module 120 on the fixed position 141a works, it emits a radio frequency signal along the extension direction of the pointing end 1224, and the radio frequency signal passes through the Lunberg lens antenna 130 and radiates outward toward the extension direction of the pointing end 1224 ;
  • the radio frequency module 120 on the fixed position 141b works, it emits a radio frequency signal along the extension direction of the pointing end 1224, and the radio frequency signal also passes through the Lunberg lens antenna 130 and radiates outward toward the extension direction of the pointing end 1224. Because the radio frequency module 120 forms an included angle C on the two fixing positions 141 , an included angle C is also formed between the radiation directions of the two radio frequency signals.
  • the microwave device 100 of the present application realizes the angle adjustment function of the radio frequency module 120 in a direction parallel to the first plane 151 through the arrangement of at least two fixing positions 141 .
  • the radio frequency module 120 can be fixed on each fixing position 141, and form the transmitting and receiving function of the radio frequency signal on its corresponding angle direction, have improved the radio frequency signal in the first plane 151 Angle adjustment capability in direction.
  • the first plane 151 is a horizontal plane
  • the structure of the plurality of fixing positions 141 is used to realize the angle adjustment function of the microwave device 100 in the horizontal direction.
  • the microwave device 100 of the present application has a larger angle adjustment range, a simpler structure, and less space than the prior art using a fixed-direction structure such as a parabolic antenna. small, reducing the load-bearing load of the microwave communication site 200. Therefore, the microwave communication station 200 provided in the present application also has the function of adjusting the angle of the radio frequency signal because it is equipped with the microwave device 100 of the above-mentioned embodiment.
  • a plurality of fixing positions 141 co-located on the first plane 151 can also be formed on the bracket 110 by separately setting a plurality of supporting brackets for fixing, so as to realize the positioning of the radio frequency module 120 relative to the dragon.
  • the positioning of the Lunberg lens antenna 130 is coordinated.
  • the plurality of support frames on the fixing plate 113 may be arranged in an arc shape.
  • the fixed position 141 is used to control the distance between the waveguide assembly 122 and the Lunberg lens antenna 130 .
  • the above-mentioned embodiment in which the radio frequency module 120 cooperates with the fixing position 141 is applicable to the scenario where the main body 121 of the radio frequency module 120 and the waveguide assembly 122 are integrated.
  • the fixed position 141 is used to adjust the angle of the waveguide assembly 122 on the first plane 151, and the fixed part 113 is used to be fixedly connected to the waveguide assembly 122, which can also achieve similar beneficial effect.
  • the positioning component 117 can also be set to slide relative to the arc-shaped slot 116 .
  • the positioning component 117 can arbitrarily adjust the signal transmission angle of the radio frequency module 120 within the range of the arc groove 116 .
  • the bracket 110 can also be provided with a second motor (not shown in the figure), the second motor is fixedly connected with the positioning assembly 117 and used to drive the sliding action of the positioning assembly 117 relative to the arc groove 116 .
  • the second motor drives the positioning assembly 117 to slide in the arc-shaped groove 116, which can drive the radio frequency module 120 to rotate around its geometric center A relative to the Lunberg lens antenna 130, thereby realizing the positioning of the microwave device 100 on the first plane 151.
  • the number of radio frequency modules 120 may be multiple. Multiple radio frequency modules 120 are respectively fixed relative to a fixed position 141 , thereby forming multiple different signal transmission directions on the first plane 151 , achieving the effect of realizing communication with microwave antennas 6 of different base stations.
  • the radio frequency module 120 includes a first radio frequency module 120a and a second radio frequency module 120b, a first fixing position 141a and a second fixing position 141b are respectively formed on the fixing plate 113 through two positioning components 117, and the second An angle D is formed between the first fixing position 141 a and the second fixing position 141 b on the first plane 151 .
  • the first radio frequency module 120a is fixed on the first fixing position 141a
  • the second radio frequency module 120b is fixed on the second fixing position 141b.
  • the first radio frequency module 120a and the second radio frequency module 120b transmit radio frequency signals toward the Lunberg lens antenna 130 on their corresponding fixed positions 141
  • the first radio frequency module 120a and the second radio frequency module 120b also transmit radio frequency signals in the first direction 151.
  • Arranged at an included angle D corresponding to the relative angular relationship of the included angle D is also formed between the emitted radio frequency signals.
  • the microwave device 100 of the present application can transmit radio frequency signals in two different directions through the first radio frequency module 120a and the second radio frequency module 120b at the same time.
  • the first radio frequency module 120a and the second radio frequency module 120b can be used to transmit radio frequency signals of the same frequency band, and to communicate with two different microwave antennas 6 at the same time; and in other embodiments, the first radio frequency module 120a and the second radio frequency module 120b can also be used to transmit radio frequency signals of different frequency bands, so as to avoid the signal interference between the two microwave antennas 6 .
  • the angle between the two radio frequency signals can also be controlled.
  • the maximum value of the included angle between the first radio frequency module 120a and the second radio frequency module 120b is set to not exceed 175°, that is, between two fixed positions The maximum included angle is less than or equal to 175°.
  • the two radio frequency signals can pass through the Lunberg lens antenna 130 to radiate outwards, and will not be blocked by the radio frequency module 120 corresponding to the other radio frequency signal.
  • the maximum angle between the first radio frequency module 120a and the second radio frequency module 120b does not exceed 90°, that is, the maximum angle between two fixed positions is less than or equal to 90° . In this way, the quality of transmitting and receiving radio frequency signals of the first radio frequency module 120a and the second radio frequency module 120b can be guaranteed, and mutual interference between radio frequency signals can be avoided.
  • the positioning component 117 can slide relative to the arc groove 116 , the included angle between the two radio frequency modules 120 can be set arbitrarily. And when the positioning component 117 is provided with a second motor, it can also control the automatic adjustment of the angle relationship between the two radio frequency modules 120 to meet the requirements of different working scenarios.
  • a plurality of radio frequency modules 120 can also be set in the microwave device 100 of the present application.
  • the Lunberg lens antenna 130 transmits radio frequency signals to the outside. It can be understood that the number of radio frequency modules 120 in the microwave device 100 of the present application needs to be less than or equal to the number of fixed positions 141 that can be set, so that each radio frequency module 120 can be fixed corresponding to a fixed position 141, and ensure that each radio frequency module 120 relative to the distance between Lunberg lens antenna 130 .
  • radio frequency modules 120 when multiple radio frequency modules 120 are placed on different fixed positions 141 , they can radiate radio frequency signals in multiple directions through the Lunberg lens antenna 130 .
  • the radio frequency signals may be located in different frequency bands, so that the microwave device 100 of the present application can cover different frequency bands and establish communication with microwave antennas 6 in different directions.
  • the radio frequency signals sent and received by some of the radio frequency modules 120 in the plurality of radio frequency modules 120 are in the same frequency band, and a certain frequency is formed between the radio frequency modules 120 configured to send and receive radio frequency signals in the same frequency band.
  • the microwave device 100 communicates separately with the microwave antennas 6 in the same frequency band but in different directions. Because the radio frequency signal sent from the Lunberg lens antenna 130 is fan-shaped, the radiation area of the frequency band in the preset direction can be better realized by reasonably controlling the angle between the radio frequency modules 120 for sending and receiving radio frequency signals of the same frequency band cover.
  • the radio frequency modules 120 are all plate-like structures, and each radio frequency module 120 is arranged parallel to each other, so that within the same radius range, more radio frequency modules 120 can be accommodated to achieve multi-channel radio frequency Module 120 shares the effect of Lunberg lens antenna 130 . Further, each plate-shaped radio frequency module 120 may be arranged parallel to the second plane 152 . Due to the setting of multiple fixing positions 141 , the microwave device 100 of the present application can also adjust the matching mode of the radio frequency modules 120 according to the requirements, and it is beneficial to adjust the number and included angle of the radio frequency modules 120 based on the usage requirements.
  • each waveguide assembly 122 can be separately arranged in a plate-like structure, and the waveguide assembly 122 can be further arranged parallel to the second plane 152 to achieve a similar beneficial effect.
  • the newly added radio frequency module 120 can be directly fixed on the reserved fixed position 141.
  • the reserved fixing position 141 is located on one side of the assembled multiple radio frequency modules 120 .
  • the reserved fixed position 141 may also be located at any position among the assembled multiple radio frequency modules 120 .
  • the space for the fixed position 141 can be reserved for the radio frequency modules 120 to be added at the preset positions, and then the newly added radio frequency modules 120 can be inserted into the assembled radio frequency modules. Between multiple radio frequency modules 120 , the operation of adding radio frequency modules 120 can be completed.
  • the microwave device 100 of the present application also has the feature of easy maintenance.
  • an individual radio frequency module 120 or waveguide assembly 122 needs to be repaired, maintained or replaced, only the corresponding radio frequency module 120 (or waveguide assembly 122) needs to be removed without affecting the rest of the radio frequency modules 120 (or waveguide assembly) 122) Cooperative work with Lunberg lens antenna 130.
  • the microwave communication station 200 provided in this application is also equipped with the microwave device 100 of the above-mentioned embodiments, which improves its ability to adjust the radiation angle, realize multi-band coverage, and synchronously send and receive signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请涉及一种微波装置,包括支架、以及固定于支架上的龙伯透镜天线和射频模块。射频模块包括波导组件,支架设有至少两个固定位,波导组件安装于任一固定位,且能够在不同的固定位之间切换。波导组件位于不同的固定位时,均向靠近龙伯透镜天线的几何中心的方向延伸。且波导组件与龙伯透镜天线的距离均在预设的第一范围内。射频模块通过波导组件与龙伯透镜天线构成的路径,实现射频信号的收发功能。本申请微波装置因为设置了多个固定位,使得射频模块可以实现射频方向的调整。且由于波导组件相对于龙伯透镜天线的几何中心距离在第一范围内,可以保证射频模块在任意固定位上的可靠工作。本申请还涉及一种搭载上述微波装置的微波通信站点。

Description

微波装置及微波通信站点 技术领域
本申请涉及天线技术领域,尤其涉及一种微波装置,以及搭载有该微波装置的一种微波通信站点。
背景技术
随着无线通信技术的迅速发展,基站流量和站点数量不断增长。用于与基站对接的微波通信站点也由原来的树形组网逐渐向星型组网发展。微波通信站点通过微波装置与各个基站建立通信,微波通信站点逐渐从单方向小站点逐渐向多方向大容量汇聚站点演进。
现有微波装置多采用抛物面天线点到点回传方案,其频段和方向都相对固定,导致微波通信站点要实现多方向大容量功能时,只能增加微波装置的数量,由此带来微波通信站点的铁塔安装密度大、承重负荷增大、风阻等诸多问题,且微波装置的数量增多也会造成铁塔租金成本的提升。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种体积较小的微波装置,并能够实现多方向的射频信号收发功能。以及,还提供一种搭载该微波装置的微波通信站点。本申请具体包括如下技术方案:
一种微波装置,包括支架、以及固定于支架上的龙伯透镜天线和射频模块;射频模块包括波导组件,支架设有至少两个固定位,波导组件安装于任一固定位,且能够在不同的固定位之间切换;波导组件位于不同的固定位时,均向靠近龙伯透镜天线的几何中心的方向延伸,且与龙伯透镜天线的距离均在预设的第一范围内,射频模块通过波导组件与龙伯透镜天线构成的路径,实现射频信号的收发功能。
本申请微波装置通过射频模块收发射频信号,并利用射频模块的波导组件和龙伯透镜天线形成射频模块的信号收发路径。因为设置了多个固定位,使得波导组件可以安装于不同的固定位上,进而实现其与龙伯透镜天线形成不同角度配合的功能,并使得射频信号的方向可以调整。且由于波导组件在各个固定位上时,其相对于龙伯透镜天线的几何中心距离相等,可以保证波导组件与龙伯透镜天线之间的配合,使得波导组件在任意固定位上都能实现可靠的工作。
在一种可能的实现方式中,各个固定位均位于第一平面上。
在本实现方式中,各个固定位位于第一平面上,可以使得波导组件在平行于第一平面方向上的角度调整。
在一种可能的实现方式中,各个固定位至龙伯透镜天线的几何中心的距离均在预设的第二范围内。
在本实现方式中,当波导组件的外形结构一致时,通过控制预设的第二范围,可以间接控制到射频模块的波导组件与龙伯透镜天线之间的距离位于第一范围之内。
在一种可能的实现方式中,波导组件包括固定段和滑动段,滑动段位于固定段与龙伯透 镜天线之间,滑动段与固定段滑动连接,并相对于龙伯透镜天线具有至少两个配合位,至少两个配合位均位于第二平面上,第二平面与第一平面相交。
在本实现方式中,通过固定段与滑动段的配合,使得波导组件相对于龙伯透镜天线,可以在第二平面的方向上形成至少两个配合位,且第二平面与第一平面相交,配合位的调整能进一步扩大射频模块的方向调整范围。
在一种可能的实现方式中,第二平面与第一平面相互垂直。
在一种可能的实现方式中,第一平面为水平面,第二平面为竖直面。
在一种可能的实现方式中,滑动段相对于固定段的滑动轨迹为弧线形,且滑动轨迹的圆心与龙伯透镜天线的几何中心重合。
在本实现方式中,滑动段的滑动轨迹为弧线形,且其轨迹中心与龙伯透镜天线的几何中心重合,使得滑动段在其滑动轨迹上,能够始终保持与龙伯透镜天线之间的距离,进而可以形成多个配合位,提升射频模块的方向调整能力。
在一种可能的实现方式中,固定段的数量为两个,两个固定段间隔设置,滑动段位于两个固定段之间,并同时相对于两个固定段滑动。
在本实现方式中,滑动段的相对两端分别与一个固定段配合滑动,其滑动轨迹更稳定,能够保证滑动段与龙伯透镜天线之间的相对距离。
在一种可能的实现方式中,两个固定段分别朝向滑动段传输信号,并于滑动段上合路后传输至龙伯透镜天线。
在本实现方式中,通过两个固定段分别朝向滑动段传输信号,并由滑动段形成合路后再向外发射,可以拓宽射频信号的带宽或流量。
在一种可能的实现方式中,两个固定段分别朝向滑动段传输的信号位于同一频段之内。
在一种可能的实现方式中,两个固定段分别朝向滑动段传输的信号极化方向相同,且频点不同。
在本实现方式中,频点不同的两路信号能够拓宽射频信号的带宽。
在一种可能的实现方式中,两个固定段分别朝向滑动段传输的信号频点相同,且极化方向不同。
在本实现方式中,极化方向不同的两路信号能够拓宽射频信号的流量。
在一种可能的实现方式中,射频模块包括第一电机和传动机构,第一电机相对于固定段固定,传动机构传动连接于第一电机和滑动段之间,第一电机通过传动机构驱动滑动段相对于固定段的滑动。
在本实现方式中,通过第一电机驱动滑动段的滑动动作,可以实现射频信号的方向自动调整。
在一种可能的实现方式中,射频模块内包括开关和收发组件,收发组件用于接收或发射射频信号,开关则用于控制收发组件的打开和关闭。
在一种可能的实现方式中,收发组件包括信号处理单元、变频单元、放大单元、和滤波单元。当射频模块发送信号时,由信号处理单元形成射频信号,并经变频单元升频后,由放大单元放大并经滤波单元滤波,形成射频信号传输给波导组件;当射频模块接收信号时,通过滤波单元滤波,再经由放大单元放大、变频单元降频后,传给信号处理单元进行处理。
在一种可能的实现方式中,变频单元包括上变频单元和下变频单元。
在本实施例中,上变频单元用于对发射的射频信号进行升频,下变频单元用于对接收的射频信号进行降频。
在一种可能的实现方式中,放大单元包括功率放大器和低噪放大器。
在本实施例中,功率放大器用于对发射的射频信号进行放大,低噪放大器用于对接收的射频信号进行放大。
在一种可能的实现方式中,收发组件与波导组件均位于固定位处。
在一种可能的实现方式中,收发组件相对于支架固定,波导组件位于固定位处,收发组件与波导组件之间通过传输线通信连接。
在一种可能的实现方式中,射频模块的数量为多个,且射频模块的数量小于或等于固定位的数量,多个射频模块的波导组件分别安装于不同的固定位。
在本实现方式中,设置多个射频模块,可以在多个固定位上分别设置射频模块的波导组件,进而实现多个方向上的射频信号收发功能。
在一种可能的实现方式中,多个射频模块包括第一射频模块和第二射频模块,且第一射频模块覆盖的频段与第二射频模块覆盖的频段不同。
在一种可能的实现方式中,多个射频模块之间的频段均不同。
在一种可能的实现方式中,多个固定位之间的最大夹角小于或等于175°。
在本实现方式中,出于龙伯透镜天线的原理限制,需要保证多个固定位所设置的角度范围控制在175°之内。
在一种可能的实现方式中,多个固定位之间的最大夹角小于或等于90°。
在本实现方式中,设置多个固定位的角度范围于90°之内,可以保证射频信号的收发质量,避免信号之间相互干涉。
在一种可能的实现方式中,支架包括固定板,固定部与龙伯透镜天线固定连接,第一平面构造为固定板靠近龙伯透镜天线的外表面。
在本实现方式中,通过固定板的外表面结构,可以保证各个固定位均位于第一平面之内。
在一种可能的实现方式中,支架包括定位组件,固定板开设有弧形槽,龙伯透镜天线的几何中心在第一平面上的投影,与弧形槽的圆心相重合,定位组件连接于弧形槽与波导组件之间,用于形成固定位。
在本实现方式中,弧形槽的圆心对应龙伯透镜天线的几何中心设置,可以保证弧形槽各个位置相对于龙伯透镜天线的距离均相等。通过定位件相对于弧形槽固定的波导组件,其相对于龙伯透镜天线的几何中心距离也得以保证。
在一种可能的实现方式中,定位组件滑动安装于弧形槽内。
在本实现方式中,定位组件相对于弧形槽的滑动,可以任意调整射频模块的信号发射方向,并便于调整多个射频模块之间的夹角。
在一种可能的实现方式中,波导组件呈板状,且波导组件平行于第二平面设置,以使得微波装置中可以收容更多的波导组件。
在本实现方式中,支架还包括第二电机,第二电机用于驱动定位组件相对于弧形槽的滑动。
在本实现方式中,通过第二电机驱动定位组件的滑动,可以带动波导组件相对于龙伯透镜天线旋转,进而实现自动调整射频信号方向的效果。
本申请还提供一种微波通信站点,微波通信站点包括立柱,以及上述的微波装置,微波装置固定于立柱上并用于收发信号。
在一种可能的实现方式中,微波通信站点还包括铁塔和室内微波装置。立柱设置于铁塔上,室内微波装置则与微波装置通信连接。
可以理解的,因为微波通信站点搭载了上述微波装置,其具有与上述微波装置类似的有益效果。即微波装置中射频信号的发射角度可调、以及可以实现单频段大面积覆盖、多频段同时收发等功能。
附图说明
图1是本申请实施例提供的微波通信站点的工作场景示意图;
图2是本申请实施例提供的微波通信站点的多基站通信工作场景示意图;
图3是本申请实施例提供的微波装置的结构示意图;
图4是本申请实施例提供的微波装置的分解结构示意图;
图5是本申请实施例提供的微波装置中龙伯透镜天线与支架的固定结构示意图;
图5a是本申请实施例提供的微波装置中龙伯透镜天线与上支架的固定结构局部示意图;
图6是本申请实施例提供的微波装置中射频模块与支架的固定结构示意图;
图7是本申请实施例提供的微波装置中射频模块的结构示意图;
图8是本申请实施例提供的微波装置中射频模块与支架的固定结构侧方位示意图;
图9是本申请实施例提供的微波装置中射频模块与龙伯透镜天线的配合结构示意图;
图10是本申请实施例提供的微波装置中射频模块内部组件框架结构示意图;
图11是本申请实施例提供的微波装置中射频模块内部变频单元和放大单元的框架结构示意图;
图12是本申请另一实施例提供的微波装置的结构示意图;
图13是本申请另一实施例提供的微波装置中射频模块的波导组件的结构示意图;
图14是本申请另一实施例提供的微波装置中射频模块与龙伯透镜天线的配合结构示意图;
图15是本申请又一实施例提供的微波装置中射频模块与龙伯透镜天线的配合结构示意图;
图16是本申请另一实施例提供的微波装置中射频模块的结构示意图;
图17是本申请再一实施例提供的微波装置中射频模块的波导组件的结构示意图;
图18是本申请实施例提供的微波装置中固定板的平面结构示意图;
图19是本申请另一实施例提供的微波装置中射频模块与支架的局部剖面结构示意图;
图20是本申请实施例提供的微波装置中射频模块分别设置于两个固定位上的平面结构示意图;
图21是本申请实施例提供的微波装置中射频模块分别设置于两个固定位上的射频信号辐射方向示意图;
图22是本申请另一实施例提供的微波装置中两个射频模块分别设置于固定板上的平面结构示意图;
图23是本申请另一实施例提供的微波装置中两个射频模块分别设置于固定板上的射频信号辐射方向示意图;
图24是本申请另一实施例提供的微波装置中包括多个射频模块的结构示意图;
图25是本申请另一实施例提供的微波装置中多个射频模块同时固定于固定板上的结构示意图;
图26是本申请另一实施例提供的微波装置中多个射频模块同时固定于固定板上的射频 信号辐射方向示意图;
图27是本申请另一实施例提供的微波装置中增设射频模块的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
图1示意了本申请一种实施例所提供的微波通信站点200的工作场景图。
本申请微波通信站点200包括室内微波装置210、铁塔220、以及本申请提供的微波装置100。其中,铁塔220设有立柱201,微波装置100可以架设于立柱201上。或微波装置100也可以直接架设于铁塔220上。在一些实施例中,也可以用单独的立柱201替代铁塔220结构,用于固定微波装置100。
微波装置100与室内微波装置210通信连接,通常二者通过电缆(如中频电缆)实现连接,用于传输信号。室内微波装置210还可以通过路由器8连通至核心网9中,以接收核心网9发来的信号,并传递至微波装置100处向外发射;或将微波装置100接收到的信号传递至核心网9中。在一些实施例中,室内微波装置210与路由器8之间、以及路由器8与核心网9之间,可以通过光纤实现通信。
微波装置100通常与基站通信连接,微波装置100从核心网9获得的信号可以发送至基站,或将基站接收的信号传递至核心网9处。具体的,基站中设有微波天线6,微波天线6与本申请微波装置100通过微波传输信号,即无线传输。基站还设有基站天线3,基站天线3和微波天线6均可以置于基站的天线架7上。天线架7可以为上述铁塔220的结构,也可以为单独的立柱201的结构。
基站内还设有基站室内单元4和微波室内单元5。二者之间可以通过基站业务光纤实现通信。基站室内单元4与基站天线3通信连接,并通过基站天线3向终端发送信号(图1示意为终端2)或接收终端的信号(图1示意为终端1)。微波室内单元5则与微波天线6连通,以将基站室内单元4传来的信号通过微波方式发送给微波装置100,或接收微波装置100所传来的信号并发送至基站室内单元4。
由此,本申请微波通信站点200作为核心网9至终端的传输路径上的一环,可以实现路由器8至基站微波天线6之间的通信功能。其中微波装置100可以用于接收或发送射频信号。该射频信号可以覆盖包括MHB频段、NR频段、LB频段、wifi 6E频段、5G频段、UWB频段、或毫米波频段等。
而在图2所示的一种微波通信站点200的工作场景示意图中,微波通信站点200的周围可以设置多个基站,各个基站均设有用于与微波装置100进行通信的微波天线6。不同基站的微波天线6从不同方向朝向微波通信站点200发送射频信号,这些信号通常为不同频段的信号,以免相互形成干扰。而设置于微波通信站点200上的微波装置100则用于接收各路信号,以将各个基站发来的信号并入核心网9,或从核心网9朝向各个基站分发。
因为各个基站相对于微波通信站点200的方位不同,因此微波通信站点200的微波装置100需要朝向不同的方向接发信号,且不同方向的信号频段也可能存在差异。
图3示意了本申请提供的微波装置100一种实施例的外部结构。图4示意了图3所示微 波装置100的分解结构。
本申请微波装置100包括支架110、射频模块120和龙伯透镜天线130。其中支架110用于与铁塔220或立柱201配合,以将微波装置100固定于铁塔220或立柱201上。射频模块120和龙伯透镜天线130则固定于支架110上,射频模块120和龙伯透镜天线130配合以实现微波装置100的射频信号接收和发送功能。
在图3和图4的示意中,支架110包括上支架111和下支架112,以及位于上支架111和下支架112之间的固定板113。固定板113相对于下支架112固定,并用于承载射频模块120和龙伯透镜天线130。此时,射频模块120和龙伯透镜天线130也位于上支架111和下支架112之间。在另一些实施例中,支架110可以仅包括上支架111和固定板113,也可以仅包括下支架112和固定板113,都不影响本申请微波装置100的方案实现。以及,存在一些实施例,固定板113还可以固定于上支架111一侧,射频模块120和龙伯透镜天线130则悬挂于固定板113下方。
请配合参见图5,上支架111和下支架112沿立柱201的长度方向间隔设置,龙伯透镜天线130则分别与上支架111和下支架112相对固定。其中,龙伯透镜天线130靠近下支架112一侧与固定板113固定,其靠近上支架111一侧则通过压紧件114抵持固定。龙伯透镜天线130呈球状,当龙伯透镜天线130承载于固定板113上时,压紧件114可位于固定板113相对于龙伯透镜天线130的几何中心(即球心)A的另一端,通过沿立柱201长度方向的相对两端对龙伯透镜天线130形成抵持(参见图5a),以固定龙伯透镜天线130。
请参见图6的示意,在本申请微波装置100中,射频模块120也可以固定于固定板113上。具体的,支架110上(本实施例中为固定板113上)设有多个用于承载并固定射频模块120的固定位141。且在图6的示意中,各个固定位141均位于同一平面(本实施例中定义为第一平面151)上。进一步,固定板113的外表面1131构造形成为第一平面151,多个固定位141则均位于外表面1131上。射频模块120固定于支架110上时,需要对应设置于固定位141上,以保证射频模块120与龙伯透镜天线130的相对位置。可以理解的,在另一些实施例中,固定位141也可以位于不同平面上,也能够实现射频模块120与龙伯透镜天线130之间的相对位置满足预设要求。具体请配合参见图7所示的射频模块120结构示意。
在本实施例中,射频模块120包括主体部121和波导组件122,且主体部121与波导组件122为一体结构,也描述为主体部121与波导组件122之间相互固定。上述基于固定位141与射频模块120之间的位置设置,实际用于固定波导组件122与固定位141的相对位置。也即,在本申请微波装置100中,固定位141用于控制波导组件122的位置。主体部121内承载有元器件,用于实现射频信号的接收和发送功能。主体部121和波导组件122均对应固定位141固定(参见图8),并与龙伯透镜天线130相互间隔。波导组件122位于主体部121与龙伯透镜天线130之间。也即,波导组件122从主体部121朝向龙伯透镜天线130的方向延伸,并与龙伯透镜天线130形成抵持配合,或形成小间隙配合(参见图9)。此处的抵持配合或小间隙配合,即为上述的第一范围的限定。在本申请微波装置100中,波导组件122用于将射频模块120的主体部121所形成的射频信号传输至龙伯透镜天线130处实现发射功能,也用于将龙伯透镜天线130处接收到的射频信号传回主体部121内实现接收功能。
龙伯透镜天线130可以理解为一种球形的分层介质透镜天线,能够通过电磁波,将点源或线源的球面波或柱面波转换为平面波从而获得笔形、扇形或其他形状波束的天线,从而把射频模块120输出的射频信号按照波导组件122的输入方向发射到空间,同时能把波导组件122对应方向的空间信号接收汇聚到波导组件122的位置,再输入至射频模块120中进行处 理。
波导组件122则可以理解为一段射频信号传输线,其构造为空心金属管形状,两端可以镶嵌法兰盘。基于空心金属管的截面几何形状不同,波导组件122可为矩形波导、圆形波导、椭圆形波导、单脊波导、以及双脊波导等不同结构。由此,在本申请微波装置100中,龙伯透镜天线130与波导组件122,共同构成为射频模块120的信号收发路径。射频模块120可以通过由龙伯透镜天线130与波导组件122共同组成的收发路径,实现信号收发的功能。
请参见图10所示的射频模块120的主体部121内部结构框架图。
射频模块120的主体部121内设有开关123和收发组件124。开关123与收发组件124串联,开关123用于控制收发组件124的开启和关闭(休眠)。收发组件124用于发生射频信号,或接收射频信号。具体的,收发组件124可以为中频收发合路处理器件,其可以通过缆线同时接收和发送中频信号。在一种实施例中,收发组件124包括信号处理单元1241、变频单元1242、放大单元1243、和滤波单元1244。其中,当射频模块120发送信号时,信号处理单元1241形成射频信号,该射频信号经变频单元1242升频后,再由放大单元1243放大,最后通过滤波单元1244滤波,形成最终发射的射频信号传输给波导组件122,并通过波导组件122与龙伯透镜天线130形成的发射路径向外部发射。
而当射频模块120接收信号时,通过龙伯透镜天线130与波导组件122接收的射频信号先传输至滤波单元1244处滤波,再经由放大单元1243放大,并通过变频单元1242降频之后,传输给信号处理单元1241进行处理接收。在一种实施例中,信号处理单元1241为中频处理单元。射频信号在传输过程中通常需要升频后传输,以避免功耗损失。因此变频单元1242需要在发送或接收射频信号时,对其进行升频或降频处理。
一种实施例请参见图11,变频单元1242包括上变频单元1242a,放大单元1243则包括功率放大器1243a。上变频单元1242a与功率放大器1243a电性连接。当射频模块120发送信号时,上变频单元1242a用于对射频信号进行升频,功率放大器1243a则用于对射频信号进行放大;在一些实施例中,变频单元1242包括下变频单元1242b,放大单元1243则包括低噪放大器1243b。下变频单元1242b与低噪放大器1243b电性连接。当射频模块120接收信号时,低噪放大器1243b用于对接收的射频信号进行放大,下变频单元1242b则用于对接收的射频信号进行降频。
本申请微波装置100还存在一些实施例请参见图12的示意。在本实施例中,射频模块120的主体部121结构,连同其收容的开关123和收发组件124可以一并固定于铁塔220或立柱201上。主体部121与波导组件122采用分离结构的形式,射频模块120仅将波导组件122在支架120的固定位141上进行固定,以保证波导组件122与龙伯透镜天线130之间的相对位置。开关123和收发组件124还可以设置于支架110的外部,并相对于支架110固定。收发组件124可以通过传输线与波导组件122电性连接,并实现射频信号的双向传输功能。此类实施例可用于微波通信站点200上的射频器件利旧,即利用微波通信站点200上固有的射频器件,通过传输线的方式将信号连接至本申请微波装置100的波导组件122上,并通过本申请微波装置100的结构进行发射和接收。波导组件122的体积相较于射频模块120的体积更小(如图13所示),且此种实施例节约了微波装置100的整体成本,并同时相应减小了射频模块120的体积。
需要提出的是,本申请微波装置100上设置的固定位141,是对应波导组件122的位置设置的,也即固定位141用于固定波导组件122与龙伯透镜天线130之间的相对位置。由此,可以兼容到上述图12和图13所示的,射频模块120的主体部121与波导组件122分离设置 的实施例。而在射频模块120的主体部121与波导组件122为一体结构的实施例中,通过控制射频模块120与固定位141之间的位置,可以间接控制到波导组件122与固定位141之间的位置,并保证波导组件122与龙伯透镜天线130之间的相对位置。
可以理解的,存在一些实施例,其射频模块120包括主体部121与波导组件122为一体结构的形式,并同时存在主体部121与波导组件122为分离结构的形式。即在一些场景下,微波装置100中的射频模块120包括新设的射频模块120,也包括利旧改造的射频模块120。在这样的场景下,固定位141依然用于控制射频模块120的波导组件122相对于龙伯透镜天线130的距离处于第一预设范围之内。即部分固定位141用于直接与波导组件122连接,并固定波导组件122的位置;另一部分固定位141通过与主体部121连接,以间接固定波导组件122的位置。
请看回图6和图8,在本申请提供的实施例中,射频模块120呈板状。当射频模块120连接于固定板113的固定位141上时,板状的射频模块120与固定板113的外表面1131互呈夹角。而在图7的示意中,射频模块120的主体部121大致呈矩形,波导组件122则位于主体部121的一侧。具体的,波导组件122包括有固定段1221和滑动段1222。固定段1221相对于射频模块120的主体部121固定连接,滑动段1222则相对于固定段1221滑动连接。进一步的,滑动段1222位于固定段1221与龙伯透镜天线130之间。
具体的,滑动段1222包括滑动端1223和指向端1224。滑动端1223与固定段1221滑动连接,指向端1224则朝向龙伯透镜天线130延伸,并用于与龙伯透镜天线130形成抵持配合或小间隙配合。波导组件122通过指向端1224与龙伯透镜天线130的配合,实现其与龙伯透镜天线130之间的信号传输功能。也即,滑动段1222的指向端1224位于滑动端1223与龙伯透镜天线130之间。需要提出的是,上述滑动段1222位于固定段1221与龙伯透镜天线130之间、以及指向端1224位于滑动端1223与龙伯透镜天线130之间,均是基于波导组件122的信号传输路径来定义的,并不严格定义波导组件122的实际外形结构位置关系也遵从上述关系。
对于本申请微波装置100,当波导组件122中的滑动段1222可以相对于固定段1221滑动,且滑动段1222与龙伯透镜天线130的配合满足预设要求时,即滑动段1222与龙伯透镜天线130形成抵持配合或小间隙配合时,定义滑动段1222的位置相对于龙伯透镜天线130形成一配合位142。如图9所示,当滑动段1222处于配合位142上时,滑动段1222的指向端1224指向龙伯透镜天线130的几何中心A,且指向端1224与龙伯透镜天线130的距离可以处于预设的第一范围之内,以保证波导组件122与龙伯透镜130之间的可靠配合,并通过龙伯透镜天线130形成理想的辐射波形。
而因为滑动段1222可以相对于固定段1221滑动,因此存在一些实施例,在滑动段1222相对于固定段1221滑动的过程中,可以形成两个或两个以上的配合位142,滑动段1222在两个或两个以上的配合位142上时,都能与龙伯透镜天线130形成预设的配合要求,并保证指向端1224指向龙伯透镜天线的几何中心A。可以理解的,当指向端1224从不同的配合位142处朝向龙伯透镜天线130发射信号时,其形成的辐射波方向也随之改变,因此通过上述结构设置,本申请微波装置100可以实现辐射角度的改变。
因为波导组件122在与龙伯透镜天线130形成不同的配合位142过程中,是通过滑动段1222相对于固定段1221的滑动动作来实现的,因此也可以理解为,本申请微波装置100的辐射角度,是沿滑动段1222相对于固定段1221的滑动方向来改变的。而因为龙伯透镜天线130为球体,要使得滑动段1222在配合位142上与龙伯透镜天线130之间形成预设的配合关 系,需要保证各个配合位142与龙伯透镜天线130的几何中心A之间的距离相等,或差预设的值小于第一范围。因此,在本实施例中,滑动段1222相对于固定段1221的滑动方向,宜设置为弧线形,且该弧线形的圆心与龙伯透镜天线130的几何中心A重合。也即,滑动段1222相对于固定段1221的滑动轨迹为弧线,且滑动轨迹的圆心与龙伯透镜天线130的几何中心A重合。由此,滑动段1222在其滑动轨迹上的任意位置,都能够始终保持与龙伯透镜天线130之间的距离相等,或处于预设的第一范围之内,进而可以形成多个配合位142,使得波导组件122能相对于龙伯透镜天线130形成多个角度配合的关系,提升射频模块120的方向调整范围。
滑动段1222相对于固定段1221的滑动轨迹为弧形时,该弧形轨迹可以形成一平面。在本实施例中,可以定义该弧形轨迹形成的平面为第二平面152(参见图6)。滑动段1222与龙伯透镜天线130形成的多个配合位142,则均位于第二平面152上。可以理解的,第二平面152还可以穿过龙伯透镜天线130的几何中心A。前述中提到,本申请实施例提供的射频模块120的主体部121可以设置为板状,因此第二平面152还可以平行于主体部121的板平面方向设置。由此,滑动段1222在平行于主体部121的板平面内滑动,可以减少射频模块120在微波装置100中占用的体积。
基于前述,板状的射频模块120与固定板113的外表面1131互呈夹角,而本申请微波装置100的第一平面151设置于外表面1131上,因此第二平面152也与第一平面151相交,并互呈夹角。在一种实施例中,可以设置第二平面152与第一平面151相互垂直。此时波导组件122相对于龙伯透镜天线130的角度调整方向,可以垂直于固定板113的外表面1131。进一步的,还可以设置第一平面151为水平面,此时第二平面152则为竖直面。而波导组件122相对于龙伯透镜天线130的角度调整,则为俯仰方向上的角度调整。
请继续参见图9,并配合参见图14和图15的结构示意。在图9的示意中,波导组件122相对于龙伯透镜天线130处于一配合位142处,且波导组件122在图9所示配合位142处时,指向端1224沿水平方向将射频信号送入龙伯透镜天线130中。而在图14的示意中,波导组件122的滑动段1222朝向靠近固定段1221的方向滑动,并停驻于一个配合位142处。该配合位142的位置低于龙伯透镜天线130的几何中心A,此时指向端1224与水平方向形成夹角,且指向端1224的信号输入点也低于龙伯透镜天线130几何中心A。由此,波导组件122传输至龙伯透镜天线130的射频信号,在穿过龙伯透镜天线130后呈俯仰向上的方向传播;而在图15的示意中,波导组件122的滑动段1222朝向远离固定段1221的方向滑动,并停驻于另一个配合位142处。该配合位142的位置高于龙伯透镜天线130的几何中心A,此时指向端1224与水平方向也形成夹角,且指向端1224的信号输入点也高于龙伯透镜天线130几何中心A。由此,波导组件122传输至龙伯透镜天线130的射频信号,在穿过龙伯透镜天线130后呈俯仰向下的方向传播。
可以理解的,在一种实施例中,当设置第一平面151为竖直面时,波导组件122相对于龙伯透镜天线130的角度调整,则可以为水平方向上的角度调整。而在另一些实施例中,第一平面151还可以设置为与水平面形成一定夹角,并不影响波导组件122相对于龙伯透镜天线130的角度改变功能。基于波导组件122所需要建立通信的基站的位置不同,波导组件122可以在该预设角度范围内适应调整。
在一种实施例中,射频模块120内还可以置第一电机(图中未示)和传动机构(图中未示),第一电机固定于射频模块120的主体部121内,传动机构则传动连接于第一电机和滑动段1222之间,第一电机可以通过传动机构驱动滑动段1222相对于固定段1221滑动。由此, 本申请微波装置100可以通过第一电机的驱动,可以实现射频信号的方向自动调整。而在主体部121与波导组件122分离设置的实施例中,第一电机则相对于波导组件122的固定段1221固定,也可以与传动机构配合,实现滑动段1222相对于固定段1221的滑动动作。
一种实施例请参见图16,在本实施例中,固定段1221的数量为两个,两个固定段1221间隔设置,并分别固定于射频模块120的主体部121上。滑动段1222则位于两个固定段1221之间,滑动段1222可以同时相对于两个固定段1221滑动。具体的,两个固定段1221分别位于滑动段1222的滑动轨迹两端,滑动段1222构造为“T”字形结构,以使得滑动段1222与两个固定段1221分别滑动连接。滑动段1222于两个固定段1221之间滑动,且因为滑动段1222的相对两端分别与一个固定段1221配合滑动,使得滑动段1222的滑动轨迹更稳定,进而保证滑动段1222与龙伯透镜天线130之间的相对距离满足预设要求。可以理解的,在图16所示固定段1221为两个的实施例中,滑动段1222在两个固定段1221之间的滑动,也可以实现其波导组件122相对于龙伯透镜天线130调整辐射角度的功能。
图17则示意了当射频模块120的主体部121与波导组件122分离设置的实施例中,波导组件122设置两个固定段1221的结构。在图示的示意中,滑动段1222也同时滑动设置于两个固定段1221之间,并可以同时相对于两个固定段1221滑动。
在前述射频模块120设有一个固定段1221的实施例中,射频模块120通过该单个固定段1221朝向滑动段1222传输射频信号。而在图16和图17所示射频模块120包括两个固定段1221的实施例中,射频模块120则可以通过两个固定段1221分别朝向滑动段1222传输信号。两路信号在滑动段1222上合路之后,再传输至龙伯透镜天线130上向外发出。这样的设置可以将两个固定段1221分别朝向滑动段1222传输的信号差异化设置,进而使得滑动段1222合路后形成的射频信号带宽更宽,或流量更大。
在一种实施例中,两个固定段1221分别朝向滑动段1222传输的信号,位于同一频段之内。由此,在滑动段1222上合路形成的射频信号,也为同一频段内的信号,进而使得通过龙伯透镜天线130射出的信号能对应覆盖预设的频段。进一步的,在一种实施例中,两个固定段1221分别朝向滑动段1222传输的信号极化方向相同,且频点不同。例如,射频模块120用于发射18GHz频段的信号,此时一个固定段1221朝向滑动段1222传送的信号频点为18.03GHz,另一个固定段1221朝向滑动段1222传送的信号频点为18.58GHz。因为每个信号对应的频点带宽趋于一致,因此发送两个频点不同的射频信号合路后形成的射频信号,其相较于单一频点的射频信号带宽更宽。
而在另一些实施例中,两个固定段1221分别朝向滑动段1222传输的信号频点相同,且极化方向不同。此时,滑动段1222形成为极化合路器(Orthogonal Mode Transducer,OMT)。两路极化方向不同的射频信号在经过极化合路器合路之后,形成的射频信号的流量增大。可以理解的,当两路射频信号的极化方向相互垂直时,其合路形成的射频信号相较于单路射频信号的流量翻倍。
一种实施例请参见图18,图18示意了固定板113的平面结构。
在本实施例中,固定板113包括有承载座115,以及弧形槽116。其中承载座115位于外表面1131上,并可以相对于外表面1131齐平、凸出或凹陷。承载座115用于承载龙伯透镜天线130。可以理解的,承载座115与前述上支架111的压紧件114共同作用,用于承载并固定龙伯透镜天线130。而因为龙伯透镜天线130的球形特点,承载座115与压紧件114宜相对于龙伯透镜天线130的几何中心A对称设置,进而对龙伯透镜天线130形成可靠的固持。在一些实施例中,当固定板113呈水平设置时,定义应龙伯透镜天线130的几何中心A在外 表面1131上的竖直投影位置为B点,承载座115可以对应B点设置。
弧形槽116开设于承载座115的外围,且弧形槽116的圆心可以与上述B点重合。此时在弧形槽116的任意位置上,其距离B点的距离均相等。或一些实施例中,控制弧形槽116的任意位置上,其相对于B点的距离,均处于第二范围之内。请参见图19,支架110还包括有定位组件117,定位组件117连接于射频模块120与弧形槽116之间,用于实现射频模块120相对于弧形槽116的定位。也即,定位组件117用于形成上述的固定位141,并通过与射频模块120的配合,实现射频模块120相对于固定板113的固定。
具体的,在图19的示意中,弧形槽116贯穿固定板113。定位组件117包括第一螺栓1171、第二螺栓1172以及转接板1173。第一螺栓1171穿过弧形槽116实现转接板1173与固定板113之间的固定,第二螺栓1172再穿过转接板1173与射频模块120的主体部121固定连接。可以理解的,在另一些实施例中,第一螺栓1171也可以直接与射频模块120的主体部121固定连接,进而将射频模块120固定于固定板113上。
因为弧形槽116的圆形对应B点设置,因此当定位组件117固定于弧形槽116上任意位置时,其相对于B点位置的距离均相等。该距离值可以理解为上述的第二范围。由此,通过定位组件117连接于固定板113上的射频模块120相对于B点位置的距离也均相等。可以理解的,因为B点为龙伯透镜天线130的几何中心A在外表面1131上的投影,射频模块120通过定位组件117固定于弧形槽116上时,其相对于龙伯透镜天线130的几何中心A的距离也均相等。定位组件117相对于弧形槽116的任意位置固定时,都可以形成一个固定位141,且射频模块120设于该固定位141上时,其相对于龙伯透镜天线130的距离均相等,并间接保证射频模块120的波导组件121相对于龙伯透镜天线130的几何中心A距离均处于第一范围之内。这样能够保证微波装置100的正常工作。也即,定位组件117可以在弧形槽116上形成多个固定位141。
在本申请微波装置100中,支架110上形成的固定位141至少为两个。请参见图20示意的射频模块120分别设置于两个固定位141上的示意图。在图20中,射频模块120可以位于固定位141a处,也可以位于固定位141b处。其中射频模块120位于固定位141a或固定位141b上时,射频模块120的波导组件122相对于龙伯透镜天线130的距离,均处于第一范围之内。该第一范围可以理解为波导组件122与龙伯透镜天线130抵持,或形成小间隙,由此射频模块120在两个固定位141上时,其波导组件122均能与龙伯透镜天线130形成预设的配合状态。且射频模块120在两个固定位141上时,在外表面1131上形成夹角C。
请参见图21,当位于固定位141a上的射频模块120工作时,其沿指向端1224的延伸方向发出射频信号,该射频信号穿过龙伯透镜天线130朝向指向端1224的延伸方向向外辐射;当位于固定位141b上的射频模块120工作时,其沿指向端1224的延伸方向发出射频信号,该射频信号也穿过龙伯透镜天线130朝向指向端1224的延伸方向向外辐射。因为射频模块120在两个固定位141上形成夹角C,因此两路射频信号的辐射方向之间也形成夹角C。
由此,本申请微波装置100通过至少两个固定位141的设置,得以实现射频模块120在平行于第一平面151的方向上的角度调整功能。而当支架110上设置多个固定位141时,射频模块120可以在各个固定位141上固定,并在其对应的角度方向上形成射频信号的收发功能,提升了射频信号的在第一平面151方向上的角度调整能力。可以理解的,当第一平面151为水平面时,多个固定位141的结构即用于实现微波装置100在水平方向上的角度调整功能。配合上述射频模块120还可以调整俯仰方向上角度的实施例,本申请微波装置100相较于现有技术采用抛物面天线等固定方向的结构,其角度调整范围更大,且结构简单,占用空间较 小,减轻了微波通信站点200的承重负荷。由此,本申请提供的微波通信站点200也因为搭载了上述个实施例的微波装置100,而具备了射频信号角度可调的功能。
需要提出的是,上述固定板113、弧形槽116以及定位组件117等结构,仅作为本申请支架110所提供的一种实施例呈现。在另一些实施例中,支架110上还可以通过单独设置多个用于固定的支撑架体的形式,形成多个同位于第一平面151上的固定位141,来实现射频模块120相对于龙伯透镜天线130的定位配合;或在一些实施例中,固定板113上通过设置多个支撑架的结构,也可以在其外表面1131上形成多个固定位141,并实现射频模块120相对于龙伯透镜天线130的定位配合。此时,固定板113上的多个支撑架可以呈圆弧形状排列。类似上述在支架110的同一平面上形成多个固定位141的方式较多,本申请在此不作一一赘述。
另一方面,固定位141用于控制波导组件122与龙伯透镜天线130之间的距离。上述通过射频模块120与固定位141配合的实施例,适用于射频模块120的主体部121与波导组件122为一体结构的场景。而当主体部121与波导组件122为分离结构时,固定位141则用于调整波导组件122在第一平面151上的角度,且固定部113用于与波导组件122固定连接,同样可以达到类似的有益效果。
而对于图19所示的定位组件117与弧形槽116配合的结构,在一些实施例中,还可以设置定位组件117可以相对于弧形槽116滑动。由此,定位组件117可以在弧形槽116的范围之内,任意调整射频模块120的信号发射角度。进一步的,支架110还可以设置第二电机(图中未示),第二电机与定位组件117固定连接,并用于驱动定位组件117相对于弧形槽116的滑动动作。此时,通过第二电机驱动定位组件117在弧形槽116内的滑动,可以带动射频模块120相对于龙伯透镜天线130绕其几何中心A旋转,进而实现微波装置100在第一平面151的方向范围内自动调整射频信号角度的效果。
在一种实施例中,射频模块120的数量可以为多个。多个射频模块120各自相对于一个固定位141固定,进而在第一平面151上形成多个不同的信号发射方向,达到与不同基站的微波天线6实现通信的效果。具体的,可以参见图22和图23。在本实施例中,射频模块120包括第一射频模块120a和第二射频模块120b,固定板113上则通过两个定位组件117分别形成有第一固定位141a和第二固定位141b,且第一固定位141a和第二固定位141b在第一平面151上形成夹角D。其中第一射频模块120a固定于第一固定位141a上,第二射频模块120b则固定于第二固定位141b上。此时,第一射频模块120a和第二射频模块120b在各自对应的固定位141上朝向龙伯透镜天线130发送射频信号,第一射频模块120a和第二射频模块120b在第一方向151上也呈夹角D布置,其对应发出的射频信号之间同样形成夹角D的相对角度关系。
因为上述的结构设置,本申请微波装置100可以同时通过第一射频模块120a和第二射频模块120b朝向两个不同的方向发射射频信号。此时,第一射频模块120a和第二射频模块120b可以用于发射同一频段的射频信号,并用于同时与两个不同的微波天线6通信;而在另一些实施例中,第一射频模块120a和第二射频模块120b也可以用于发射不同频段的射频信号,避免两个微波天线6之间的信号形成干扰。
进一步的,通过调整第一固定位141a和第二固定位141b之间的夹角D,还可以控制到两路射频信号之间的夹角。在一种实施例中,出于龙伯透镜天线130的特性,设定第一射频模块120a和第二射频模块120b之间的夹角最大值不超过175°,也即两个固定位之间的最大夹角小于或等于175°。此时两路射频信号能够穿过龙伯透镜天线130向外辐射,且不会 被另一射频信号所对应的射频模块120所阻挡。在一种实施例中,还可以定义第一射频模块120a和第二射频模块120b之间的夹角最大值不超过90°,也即两个固定位之间的最大夹角小于或等于90°。由此可以保证第一射频模块120a和第二射频模块120b的射频信号收发质量,避免射频信号之间相互产生干涉。
可以理解的,当定位组件117可相对于弧形槽116滑动时,两个射频模块120之间的夹角可以任意设置。而当定位组件117上设有第二电机时,还可以控制两个射频模块120之间自动调整角度关系,以满足不同工作场景下的需求。
一种实施例请参见图24,本申请微波装置100中还可以设置多个射频模块120,各个射频模块120分别对应一个固定位141固定(参见图25),且多个射频模块120通过同一个龙伯透镜天线130向外发射射频信号。可以理解的,本申请微波装置100中射频模块120的数量,需要小于或等于其可以设置的固定位141的数量,以使得每个射频模块120能够对应一个固定位141固定,并保证各个射频模块120相对于龙伯透镜天线130之间的距离。
请参见图26的示意,多个射频模块120别分不至于不同的固定位141上时,其可以分别通过龙伯透镜天线130朝向多个方向辐射射频信号。射频信号可以位于不同频段之内,进而使得本申请微波装置100能实现对不同频段的覆盖,并与不同方向的微波天线6建立通信。可以理解的,存在一些实施例,多个射频模块120中的部分射频模块120所收发的射频信号处于同一频段之内,并通过设置用于收发同一频段的射频信号的射频模块120之间形成一定的角度差,以实现微波装置100对同一频段、但不同方向的微波天线6分别通信的效果。因为从龙伯透镜天线130发出的射频信号呈扇形展开,因此通过合理控制用于收发同一频段的射频信号的射频模块120之间的角度,可以较好的实现该频段在预设方向的辐射面积覆盖。
在本申请提供的实施例中,射频模块120均呈板状结构,且各个射频模块120相互平行设置,进而使得在同一半径范围之内,能收容更多的射频模块120,以达到多路射频模块120共用龙伯透镜天线130的效果。进一步的,板状的各个射频模块120可以均平行于第二平面152设置。因为多个固定位141的设置,本申请微波装置100还可以根据需求任意调整射频模块120的搭配方式,且利于基于使用需求调整射频模块120的数量和夹角。对应到射频模块120的主体部121与波导组件122分离设置的实施例,则可以单独设置各个波导组件122呈板状结构,并可以进一步设置波导组件122平行于第二平面152设置,以达到类似的有益效果。
如图27所示,当微波装置100需要增加射频模块120(或单独增加与外部主体部121通过传输线连接的波导组件122)时,可以将新增的射频模块120(或波导组件122)直接固定于预留的固定位141上。在图27的示意中,预留的固定位141位于已装配的多个射频模块120的一侧位置。而在另一些场景下,预留的固定位141还可以位于已装配的多个射频模块120中的任一位置。此时,通过滑动已装配的多个射频模块120,可以在预设的位置处为将要增加的射频模块120留出固定位141的空间,进而将新增的射频模块120插设于已装配的多个射频模块120之间,即可完成增设射频模块120的操作。
可以理解的,因为多个射频模块120各自独立工作,且各个射频模块120还独立固定于其对应的固定位141上,因此本申请微波装置100还具备了便于维护保养的特点。当个别射频模块120(或波导组件122)需要进行维修、保养或替换时,仅需将对应的射频模块120(或波导组件122)取下即可,并不影响其余射频模块120(或波导组件122)与龙伯透镜天线130的配合工作。而本申请所提供的微波通信站点200,也因为搭载了上述各实施例的微波装置100,而提升了其辐射角度调节能力、能够实现多频段覆盖、同步收发信号的功能。
以上描述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,例如减少或添加结构件,改变结构件的形状等,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种微波装置,其特征在于,包括支架、以及固定于所述支架上的龙伯透镜天线和射频模块;
    所述射频模块包括波导组件,所述支架设有至少两个固定位,所述波导组件安装于任一所述固定位,且能够在不同的所述固定位之间切换;
    所述波导组件位于不同的所述固定位时,均向靠近所述龙伯透镜天线的几何中心的方向延伸,且与所述龙伯透镜天线的距离均在预设的第一范围内,所述射频模块通过所述波导组件与所述龙伯透镜天线构成的路径,实现射频信号的收发功能。
  2. 如权利要求1所述的微波装置,其特征在于,各个所述固定位均位于第一平面上。
  3. 如权利要求2所述的微波装置,其特征在于,各个所述固定位至所述龙伯透镜天线的几何中心的距离均在预设的第二范围内。
  4. 如权利要求2或3所述的微波装置,其特征在于,所述波导组件包括固定段和滑动段,所述滑动段位于所述固定段与所述龙伯透镜天线之间,所述滑动段与所述固定段滑动连接,并相对于所述龙伯透镜天线具有至少两个配合位,所述至少两个配合位均位于第二平面上,所述第二平面与所述第一平面相交。
  5. 如权利要求4所述的微波装置,其特征在于,所述第二平面与所述第一平面相互垂直。
  6. 如权利要求4或5所述的微波装置,其特征在于,所述滑动段相对于所述固定段的滑动轨迹为弧线形,且所述滑动轨迹的圆心与所述龙伯透镜天线的几何中心重合。
  7. 如权利要求4-6任一项所述的微波装置,其特征在于,所述固定段的数量为两个,两个所述固定段间隔设置,所述滑动段位于两个所述固定段之间,并同时相对于两个所述固定段滑动。
  8. 如权利要求7所述的微波装置,其特征在于,两个所述固定段分别朝向所述滑动段传输信号,并于所述滑动段上合路后传输至所述龙伯透镜天线。
  9. 如权利要求8所述的微波装置,其特征在于,两个所述固定段分别朝向所述滑动段传输的信号位于同一频段之内。
  10. 如权利要求9所述的微波装置,其特征在于,两个所述固定段分别朝向所述滑动段传输的信号极化方向相同,且频点不同;或两个所述固定段分别朝向所述滑动段传输的信号频点相同,且极化方向不同。
  11. 如权利要求4-10任一项所述的微波装置,其特征在于,所述射频模块包括第一电机和传动机构,所述第一电机相对于所述固定段固定,所述传动机构传动连接于所述第一电机 和所述滑动段之间,所述第一电机通过所述传动机构驱动所述滑动段相对于所述固定段滑动。
  12. 如权利要求4-11任一项所述的微波装置,其特征在于,所述射频模块内包括开关和收发组件,所述收发组件用于接收或发射射频信号,所述开关用于控制所述收发组件的打开和关闭。
  13. 如权利要求12所述的微波装置,其特征在于,所述收发组件与所述波导组件均位于所述固定位处,和/或
    所述收发组件相对于所述支架固定,并通过传输线与位于所述固定位处的所述波导组件通信连接。
  14. 如权利要求2-13任一项所述的微波装置,其特征在于,所述射频模块的数量为多个,且所述射频模块的数量小于或等于所述固定位的数量,多个所述射频模块的所述波导组件分别安装于不同的所述固定位。
  15. 如权利要求14所述的微波装置,其特征在于,多个所述射频模块包括第一射频模块和第二射频模块,所述第一射频模块覆盖的频段与所述第二射频模块覆盖的频段不同。
  16. 如权利要求14或15所述的微波装置,其特征在于,所述多个固定位之间的最大夹角小于或等于175°。
  17. 如权利要求2-16任一项所述的微波装置,其特征在于,所述支架包括固定板,所述固定板与所述龙伯透镜天线固定连接,所述第一平面构造为所述固定板靠近所述龙伯透镜天线的外表面。
  18. 如权利要求17所述的微波装置,其特征在于,所述支架包括定位组件,所述固定板开设有弧形槽,所述龙伯透镜天线的几何中心在所述第一平面上的投影,与所述弧形槽的圆心相重合,所述定位组件连接于所述弧形槽与所述波导组件之间,用于形成所述固定位。
  19. 如权利要求18所述的微波装置,其特征在于,所述定位组件滑动安装于所述弧形槽内。
  20. 如权利要求19所述的微波装置,其特征在于,所述支架还包括第二电机,所述第二电机用于驱动所述定位组件相对于所述弧形槽的滑动。
  21. 一种微波通信站点,其特征在于,所述微波通信站点包括立柱、以及如权利要求1-20任一项所述的微波装置,所述微波装置架设于所述立柱上。
PCT/CN2021/131549 2021-11-18 2021-11-18 微波装置及微波通信站点 WO2023087220A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131549 WO2023087220A1 (zh) 2021-11-18 2021-11-18 微波装置及微波通信站点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131549 WO2023087220A1 (zh) 2021-11-18 2021-11-18 微波装置及微波通信站点

Publications (1)

Publication Number Publication Date
WO2023087220A1 true WO2023087220A1 (zh) 2023-05-25

Family

ID=86396131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131549 WO2023087220A1 (zh) 2021-11-18 2021-11-18 微波装置及微波通信站点

Country Status (1)

Country Link
WO (1) WO2023087220A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266029B1 (en) * 1998-12-22 2001-07-24 Datron/Transco Inc. Luneberg lens antenna with multiple gimbaled RF feeds
JP2005061905A (ja) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd 風速レーダ
CN102036257A (zh) * 2010-12-30 2011-04-27 芯通科技(成都)有限公司 一种数字移频压扩系统
WO2016200454A2 (en) * 2015-03-20 2016-12-15 Qualcomm Incorporated Method and apparatus for satellite user terminal antenna pointing
CN106785444A (zh) * 2016-12-29 2017-05-31 中国电子科技集团公司第五十四研究所 一种双旋臂式龙伯透镜天线
CN110380229A (zh) * 2019-06-06 2019-10-25 佛山市粤海信通讯有限公司 馈源可移动的龙伯透镜天线
CN112216983A (zh) * 2020-11-20 2021-01-12 江苏晨创科技有限公司 一种应用于s波段的龙伯透镜天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266029B1 (en) * 1998-12-22 2001-07-24 Datron/Transco Inc. Luneberg lens antenna with multiple gimbaled RF feeds
JP2005061905A (ja) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd 風速レーダ
CN102036257A (zh) * 2010-12-30 2011-04-27 芯通科技(成都)有限公司 一种数字移频压扩系统
WO2016200454A2 (en) * 2015-03-20 2016-12-15 Qualcomm Incorporated Method and apparatus for satellite user terminal antenna pointing
CN106785444A (zh) * 2016-12-29 2017-05-31 中国电子科技集团公司第五十四研究所 一种双旋臂式龙伯透镜天线
CN110380229A (zh) * 2019-06-06 2019-10-25 佛山市粤海信通讯有限公司 馈源可移动的龙伯透镜天线
CN112216983A (zh) * 2020-11-20 2021-01-12 江苏晨创科技有限公司 一种应用于s波段的龙伯透镜天线

Similar Documents

Publication Publication Date Title
CN102447163B (zh) 一种宽频带双极化全向天线及馈电方法
US6731904B1 (en) Side-to-side repeater
US9030363B2 (en) Method and apparatus for tilting beams in a mobile communications network
US20060223439A1 (en) Wireless repeater assembly
WO2020088100A1 (zh) 一种增强移动通信基站空天覆盖能力的系统及方法
JP2002033691A (ja) 能動反射装置及び無線データ通信システム
WO2020001268A1 (zh) 一种毫米波收发信机
WO2023087220A1 (zh) 微波装置及微波通信站点
CN104466396A (zh) 一种新型lte双极化室分天线
CN118160159A (zh) 微波装置及微波通信站点
US11545736B2 (en) Base station antenna
CN213816430U (zh) 有源5G-iLAN介质透镜天线
CN211455936U (zh) 多通道wifi信号收发装置
CN211789471U (zh) 多通道高增益wifi收发装置
CN211789486U (zh) 多通道新型wifi信号收发装置
CN211789469U (zh) 多通道新型wifi收发装置
CN211789467U (zh) 高增益wifi收发装置
CN211789482U (zh) 多通道无线信号收发设备
WO2022141530A1 (zh) 一种天线模块及基站系统
CN211789461U (zh) 多通道高增益wifi信号收发装置
CN211789484U (zh) 新型wifi信号收发装置
CN113555665A (zh) 多通道高增益wifi收发装置
CA3098084C (en) Bi-directional high power user equipment
CN211789481U (zh) 多通道无线信号收发设备
CN211789485U (zh) 高增益wifi信号收发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964377

Country of ref document: EP

Kind code of ref document: A1