WO2023087204A1 - Electronic wearable device having wireless communication function, and antenna strucure - Google Patents

Electronic wearable device having wireless communication function, and antenna strucure Download PDF

Info

Publication number
WO2023087204A1
WO2023087204A1 PCT/CN2021/131432 CN2021131432W WO2023087204A1 WO 2023087204 A1 WO2023087204 A1 WO 2023087204A1 CN 2021131432 W CN2021131432 W CN 2021131432W WO 2023087204 A1 WO2023087204 A1 WO 2023087204A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
antenna
electronic wearable
antenna structure
stripe
Prior art date
Application number
PCT/CN2021/131432
Other languages
French (fr)
Inventor
Kenichiro Kodama
Original Assignee
Goertek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goertek Inc. filed Critical Goertek Inc.
Priority to PCT/CN2021/131432 priority Critical patent/WO2023087204A1/en
Priority to CN202180103473.2A priority patent/CN118216043A/en
Publication of WO2023087204A1 publication Critical patent/WO2023087204A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present disclosure relates to the technical field of electronic devices, and in particular, to an electronic wearable device having a wireless communication function and an antenna structure of an electronic wearable device.
  • the virtual reality (VR) or augmented reality (AR) technology may apply electronic headwear to provide visual and/or acoustic information, while the wearer is able to operate a keyboard or a gamepad by hand.
  • an electronic wristband may collect electro-cardio signals of the wearer, while not interrupting daily activities of the wearer.
  • electronic glasses may prompt the wearer with detailed content of instant messages, even when both bands of the wearer are occupied.
  • an electronic wearable device and an antenna structure are provided according to embodiments of the present disclosure, to reduce an impact of a wireless communication system on other components in electronic wearable devices.
  • an electronic wearable device including: a first portion, a first antenna structure, and a communication chip.
  • the first antenna structure is disposed in the first portion or located at a surface of the first portion, and includes a first antenna element, a first isolating element, and a first ground element.
  • the first antenna element is configured to transmit or receive a first signal carried by first electromagnetic waves in a first wavelength band of a first wireless communication standard.
  • the first antenna element and the first isolating element are electrically connected to a first connector.
  • the first isolating element is electrically connected to the first ground element, and the first ground element is electrically connected to a ground of the electronic wearable device.
  • the first isolating element is configured to confine at least a part of a first oscillating current to the first antenna structure, where the first oscillating current flows from the first connector toward the first ground element.
  • the communication chip is configured to process the first signal, where the communication chip is electrically connected to the first antenna structure.
  • the first connector is located on a circuit board on which the communication chip is mounted, and a ground of the circuit board is the ground of the electronic wearable device.
  • the first connector is connected to the first antenna element via a first coaxial cable
  • the first antenna element is electrically connected to a center conductor of the first coaxial cable
  • the first isolating element is electrically connected to a shield conductor of the first coaxial cable.
  • the first antenna element, the first isolating element, and the first ground element are located on a first flexible printed circuit (FPC) , or, are integrated in a first molded interconnect device (MID) .
  • FPC flexible printed circuit
  • MID first molded interconnect device
  • the first isolating element is located at a side of the first ground element away from the circuit board, and the first antenna element is located at a side of the first isolating element away from the circuit board.
  • the first antenna element includes a quarter-wavelength monopole antenna for the first wavelength band
  • the first antenna element includes a full-wavelength loop antenna for the first wavelength band
  • the first antenna element and the first isolating element form a half-wavelength dipole antenna for the first wavelength band.
  • the first antenna structure is further configured to transmit or receive a second signal carried by second electromagnetic waves in a second wavelength band of a first wireless communication standard.
  • the first antenna element includes a first branch and a second branch, the first branch is configured to transmit or receive the first signal, and the second branch is configured to transmit or receive the second signal; and the first wavelength band is different from the second wavelength band.
  • the first branch is a part of a quarter-wavelength monopole antenna for the first wavelength band
  • the second branch is a part of a quarter-wavelength monopole antenna for the second wavelength band.
  • the first branch includes a first stripe
  • the second branch includes a second stripe.
  • the first stripe and the second stripe are parallel with each other, and a first gap is provided between the first stripe and the second stripe.
  • the first isolating element includes a trunk part and at least one sleeve part. An end of the trunk part is electrically connected to the first connector, and another end of the trunk part is electrically connected to the first ground element. Each sleeve part is electrically connected to the first connector at a connection junction, extends from the connection junction toward the first ground element, and is separated from the first ground element.
  • the first isolating element includes a third stripe, a fourth tripe, and a fifth stripe that are parallel with each other.
  • the fourth stripe is located between the third stripe and the fifth stripe, a second gap is provided between the third stripe and the fourth stripe, and a third gap is located between the fifth stripe and the fourth stripe.
  • the fourth stripe is electrically connected to the ground element at an end of the first isolating element.
  • Each of the third stripe and the fifth stripe is separated from the ground element at the end of the first isolating element.
  • the third stripe, the fourth stripe, and the fifth stripe are electrically connected to the first connector at another end of the first isolating element.
  • the electronic wearable device further includes a second portion and a second antenna structure.
  • the second antenna structure is disposed in the second portion or located on a surface of the second portion, and includes a second antenna element, a second isolating element, and a second ground element.
  • the second antenna element is configured to transmit or receive a third signal carried by third electromagnetic waves in a third wavelength band of a third wireless communication standard.
  • the second antenna element and the second isolating element are electrically connected to a second connector.
  • the second isolating element is electrically connected to the second ground element, and the second ground element is electrically connected to the ground of the electronic wearable device.
  • the second isolating element is configured to confine at least a part of a second oscillating current to the second antenna structure, where the second oscillating current flows from the second connector toward the second ground element.
  • the communication chip is further configured to process the third signal, and the communication chip is electrically connected to the second antenna structure.
  • the first antenna structure and the second antenna structure form a multiple-input-multiple-output system.
  • the first wavelength band is same as the third wavelength band
  • the first wireless communication standard is same as the third wireless communication standard.
  • the first antenna structure and the second antenna structure are identical.
  • the second connector is located the circuit board.
  • the second connector is connected to the second antenna element via a second coaxial cable.
  • the second antenna element is electrically connected to a center conductor of the second coaxial cable, and the second isolating element is electrically connected to a shield conductor of the second coaxial cable.
  • the second isolating element is located at a side of the second ground element away from the circuit board, and the second antenna element is located at a side of the second isolating element away from the circuit board.
  • the first antenna structure is further configured to transmit or receive a fourth signal carried by fourth electromagnetic waves in a fourth wavelength band of a fourth wireless communication standard.
  • the second antenna element includes a third branch and a fourth branch, the third branch is configured to transmit or receive the third signal, and the fourth branch is configured to transmit or receive the fourth signal.
  • the third wavelength band is different from the fourth wavelength band.
  • the first antenna structure and the second antenna structure are located at opposite sides of a body part of the user when the electronic wearable device being worn by the user.
  • the electronic wearable device further includes a fixing portion, where the fixing portion keeps in contact with the body part when the electronic wearable device being worn by the user.
  • the communication chip is located at the fixing portion.
  • the first portion is configured to be disposed in front of an eye of the user when the electronic wearable device being worn by the user.
  • the first antenna structure does not contact a skin of the user when the electronic wearable device being worn by the user.
  • the second portion is configured to be disposed in front of another eye of the user when the electronic wearable device being worn by the user.
  • the body part is a nose of the user.
  • the second antenna structure does not contact the skin of the user when the electronic wearable device being worn by the user.
  • the electronic wearable device further includes a first lens, where the first portion is a first part of the first lens or a first part of a frame of the first lens.
  • the second portion is a second part of the first lens or a second part of the frame of the first lens.
  • the electronic wearable device further includes a second lens, where the second portion is a part of the second lens or a part of a frame of the second lens.
  • the electronic wearable device is eyeglasses, a helmet, or a headwear display.
  • an antenna structure including an antenna element, an isolating element, and a ground element.
  • the antenna element is configured to transmit or receive a signal carried by electromagnetic waves in a wavelength band of a wireless communication standard.
  • the antenna element and the isolating element are electrically connected to a connector.
  • the isolating element is electrically connected to the ground element, and the ground element is electrically connected to a ground of the electronic wearable device.
  • the isolating element is configured to confine at least a part of an oscillating current to the antenna structure, where the oscillating current flows from the connector toward the ground element.
  • the antenna structure is disposed in a portion, or located at a surface of a portion, of the electronic wearable device.
  • the antenna structure is electrically connected to a communication chip of the electronic wearable device, and the communication chip is configured to process the signal.
  • the electronic wearable device and the antenna structure are provided according to embodiments of the present disclosure.
  • the electronic wearable device includes the first portion, the first antenna structure, and the communication chip.
  • the first antenna structure is disposed in the first portion or located at the surface of the first portion, and includes the first antenna element, the first isolating element, and the first ground element.
  • the first antenna element is configured to transmit or receive the first signal carried by the first electromagnetic waves in the first wavelength band of the first wireless communication standard.
  • the first antenna element and the first isolating element are electrically connected to the first connector.
  • the first isolating element is electrically connected to the first ground element, and the first ground element is electrically connected to the ground of the electronic wearable device.
  • the first isolating element is configured to confine at least the part of the first oscillating current to the first antenna structure, where the first oscillating current flows from the first connector toward the first ground element.
  • the communication chip is configured to process the first signal, where the communication chip is electrically connected to the first antenna structure.
  • the first antenna structure that serves as an antenna of the electronic wearable device includes the first isolating element, and thereby can reduce an amount of the oscillating current leaking out of the first antenna structure without significantly increasing a size of the device. Hence, an impact of the wireless communication system on other components in the electronic wearable device is effectively reduced while maintaining portability and feasibility of the electronic wearable device.
  • Figure 1 is a schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure
  • Figure 3 is another schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure.
  • Figure 4a and 4b are schematic diagrams of a first antenna element according to embodiments of the present disclosure.
  • Figure 5 is a schematic diagram of a first isolating element according to an embodiment of the present disclosure.
  • Figure 6 is another schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure.
  • Figure 7 is another schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of an electronic wearable device being worn according to an embodiment of the present disclosure.
  • Figure 9 is another schematic structural diagram of an electronic wearable device being worn according to an embodiment of the present disclosure.
  • Figure 10 is three-dimensional views of an electronic wearable device according to an embodiment of the present disclosure.
  • Figure 11 is a side view of an electronic wearable device being worn according to an embodiment of the present disclosure.
  • Figure 12 is a three-dimensional view of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure
  • Figure 13 is a schematic diagram of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure
  • Figure 14a is a graph of return losses and isolation of antenna structures without a isolating element in an electronic wearable device in free space according to an embodiment of the present disclosure
  • Figure 14b is a graph of return losses and isolation of antenna structures with a isolating element in an electronic wearable device in free space according to an embodiment of the present disclosure
  • Figure 14c is a graph of return losses and isolation of antenna structures with a isolating element in an electronic wearable device when being worn according to an embodiment of the present disclosure
  • Figure 15a is a graph of efficiencies of a first antenna structure in an electronic wearable device in free space and when being worn according to an embodiment of the present disclosure
  • Figure 15b is a graph of efficiencies of a second antenna structure in an electronic wearable device in free space and when being worn according to an embodiment of the present disclosure.
  • Figure 16 is schematic diagrams of current distribution of antenna structures with and without isolating elements in an electronic wearable device according to an embodiment of the present disclosure.
  • a requirement on the wireless and portable electronic wearable devices demands little mutual influence between antennas not affecting operation of and other components in the electronic wearable devices.
  • good isolation between the antenna and the other components can be achieved by providing a separate circuit (such as an independent circuit board) for the antenna, and/or disposing the antenna far from the other components.
  • a design of an electronic wearable device should consider portability and feasibility, and therefore the device is usually very compact.
  • an increased thickness of the device or a protrusion at a surface of the device should be expected. As a consequence, the device would be quite bulky, and the convenience of usage is sacrificed for better performance of the wireless communication system.
  • an electronic wearable device utilizes an isolating element in the antenna to reduce leakage of an oscillating current into components other than the antenna. Therefore, the performance of a wireless communication system could be improved without sacrificing the convenience of using the device.
  • FIG. 1 is a schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure.
  • the electronic wearable device 10 includes a first portion 11, a first antenna structure 13, and a communication chip 15.
  • the first antenna structure 13 is disposed in the first portion 11 or located at a surface of the first portion 11.
  • the first antenna structure 13 includes a first antenna element 131, a first isolating element 132, and a first ground element 133.
  • the first antenna element 131 is configured to transmit or receive a first signal carried by first electromagnetic waves in a first wavelength band of a first wireless communication standard.
  • the first wavelength band and the first wireless communication standard are not specifically limited herein, and may be determined according to a practical requirement.
  • the first wireless communication standard is Wireless Fidelity (Wi-Fi)
  • the first wavelength band ranges from 2.4GHz to 2.48GHz, or from 5.15GHz to 7.15GHz.
  • the first wireless communication standard is and the first wavelength band ranges from 2.4GHz to 2.485GHz.
  • the first wireless communication standard is a wireless communication standard for cellular network, such as the 2G, 3G, 4G or 5G standard.
  • the first signal before transmitted or after received as the first electromagnetic waves, may be in a form that is compatible with a processing capability of the communication chip 15, for example, in a form of an oscillating current or an oscillating voltage at a radio-frequency connector for the first antenna structure 13.
  • the first antenna element 131 and the first isolating element 132 are electrically coupled to a first connector 17 in the electronic wearable device 10.
  • the first connector 17 serves as a "bridge" between the communication chip 15 and the first antenna structure 13. Namely, the first electromagnetic waves transmitted by the first antenna structure 13 is generated due to oscillating currents or voltages applied on the first connector 17, and the first electromagnetic waves received by the first antenna structure 13 induces oscillating currents or voltages that are outputted from the first connector 17.
  • the communication chip 15 is capable to convert the first signals to be carried by the first electromagnetic waves into oscillating currents or voltages applied on the first connector 17, or fetch the first signals once carried by the first electromagnetic waves from oscillating currents or voltages outputted from first connector 17. It is appreciated that the communication chip 15 should be electrically coupled, directly or indirectly, to the first connector 17, as shown in Figure 1.
  • the first isolating element 132 is electrically connected to the first ground element 133, and the first ground element 133 is electrically connected to a ground of the electronic wearable device 10.
  • each of the first antenna element 131, the first isolating element 132, and the first ground element 133 is electrically conductive.
  • the first isolating element 132 is electrically connected to the electronic wearable device 10 via the first ground element 133. Namely, both the first ground element 133 and the first isolating element 132 are grounded. Configuration of the first isolating element 132 may be determined based on a requirement on a current distribution of the first antenna element 13.
  • the first isolating element 132 is configured to confine at least a part of a first oscillating current to the first antenna structure 13, where the first oscillating current flows from the first connector 17 toward the first ground element 133. It is appreciated that when the first electromagnetic waves is transmitted or received via the first antenna element 131, an oscillating current (or equivalently, an oscillating voltage) would be present at the first connector. In case of no first isolating element 132, such oscillating current (i.e. the first oscillating current) would flow, directly via the first ground element 133, toward the ground of the electronic wearable device 10, that is, leaks into the ground of the electronic wearable device 10.
  • the leakage would cause an impact on such elements, especially those sensitive to high-frequency fluctuations. Hence, a performance of the wireless electronic device may deteriorate due to the leakage.
  • the first isolating element 132 between the first connector 17 and the first ground element 133, the first oscillating current would attenuates more rapidly, and even could not reach a connection point between the first ground element and the ground of the electronic wearable device 10 due to the confinement. Therefore, the impact of the first oscillating current on the other elements is reduced.
  • the communication chip 15 is configured to process the first signal, and is electrically connected to the first antenna structure 13.
  • the processing performed by the communication chip 15 may include, but is not limited to, coding electrical signals into the first signals or decoding the first signals into electrical signals.
  • the communication chip 15 may be implemented in various manners.
  • the communication chip 15 may be an application specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) , a special-purpose chip, or the like.
  • the communication chip 15 is an independent chip mounted on a printed circuit board (PCB) , or may be integrated into another chip having multiple functions.
  • PCB printed circuit board
  • any appropriate chip may serve as the communication chip 15 as long as it is capable to process the first signal (s) .
  • the first signal may be transmitted to the communication chip 15 from the first antenna structure 13 after the first electromagnetic waves are received by the first antenna structure 13, and/or the first signals may be transmitted from the communication chip 15 to the first antenna structure 13 before the first electromagnetic waves are transmitted by the first antenna structure 13.
  • Such transmission between the communication chip 15 and the first antenna structure 13 may be implemented via an electrical connection between the two, namely, the first connector 17.
  • the first connector 17 may be implemented by on-board wires, an independent cable, or the like.
  • first antenna structure 13 may be located at a surface of the first portion 11 in another scenario, which is not illustrated herein.
  • the first antenna structure 13 that serves as an antenna of the electronic wearable device 10 includes the first isolating element 132 that is inserted between the first connector 17 and the first ground element 133. Since the first isolating element 132 confines the part of the first oscillating current flowing from the first connector toward the first ground element 133, less first oscillating current leaks into the ground of the electronic wearable device 10. Hence, an impact of the wireless communication on other elements of the electronic wearable device 10 is reduced, and a performance of the electronic wearable device 10 is improved.
  • FIG 2 is a schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure.
  • the first connector 17 is located at a circuit board 16 on which the communication chip 15 is mounted, and a ground of the circuit board 16 is the ground of the electronic wearable device 10. That is, the first antenna element 131 and the first isolating element 132 are electrically coupled to the first connector 17 from the circuit board 16, and the first ground element 133 is electrically connected to the ground of the circuit board 16.
  • the communication chip 15 is electrical connected to the first connector 17 via the circuit board 16, and such electrical connection is not depicted in Figure 2 for conciseness.
  • the first connector 17 is electrically connected to the first antenna structure 13 via a first coaxial cable.
  • a coaxial cable includes a center conductor and a shield conductor, which are concentric and separated by a layer of dielectric material, and the shield conductor surrounds the center conductor, in order to confine a field of an electromagnetic signal between the two and provide protection against external electromagnetic interference.
  • the first antennal element 131 is electrically connected to the center conductor of the first coaxial cable, and the first isolating element is electrically connected to the shield conductor of the first coaxial cable. Therefore, the first coaxial cable is capable to communicate the communication chip 15 (or the circuit board 16) and the first antenna structure 13 with few power losses, which improves quality of the transmitted or received first signals.
  • the first antenna element 131, the first isolating element 132, and the first ground element 133 may be implemented in various forms.
  • the first isolating element 132 and the first ground element 133 may be an integral part of the first antenna structure 13.
  • the above three elements may be located on a flexible printed circuit (FPC) .
  • the antenna element 131, the first isolating element 132, and the first ground element 133 may be metallic patterns printed on a flexible film.
  • the flexible film may be attached to a part of the first portion 11, or may serve as an intermediate substrate for transferring the metallic patterns to a part of the first portion 11.
  • these elements may be integrated in a molded interconnected device (MID) of another technique.
  • MID molded interconnected device
  • the antenna element 131, the first isolating element 132, and the first ground element 133 may be metallic patterns formed on a doped thermoplastic material through a laser direct structuring (LDS) process. Moreover, these elements may be directly printed on a part of the electronic wearable device 10 through, for example, the LDS. In such case, the part of the electronic wearable device 10 may be a thermoplastic material or glass doped with metallic inorganic compound. As an example, the part is a lens or a frame of lens. It is appreciated that the first FPC and the first MID may be implemented through other suitable techniques, which are not enumerated herein. Moreover, the first antenna element 131, the first isolating element 132, and the first ground element 133 may be physically independent from each other, namely, may be configured as separate parts in the electronic wearable device 10.
  • LDS laser direct structuring
  • the first antenna structure 13 may have a configuration for reducing an impact of the first electromagnetic waves, which are transmitted by the first antenna structure and carry the first signal, at a position of the circuit board 16 (or, at a position of the communication chip 15) .
  • the first ground element 133, the first isolating element 132, and the first antenna element 131 are disposed in the above referenced sequence along a direction away from the circuit board 16 (or the communication chip 15) .
  • the first antenna element 131 is disposed at a side of the first isolating element 132 away from the circuit board 16, and the first isolating element 132 is disposed at a side of the first ground element 133 away from the circuit board 16.
  • the first connector 17 may be connected to the circuit chip 15 via an electrical connection on the circuit board 16.
  • the electrical connection may be a micro-stripe line or a stripe line having reactance of 50ohm.
  • the first connector 17 may be connected to a feed (indicated by a dashed circle in Figure 3) via, for example, a radio-frequency coaxial cable having reactance of 50ohm.
  • the first isolating element 132 and the first ground element 133 are disposed between the circuit board 16 and the first antenna element 131, and thereby may serve as a "screen" between the circuit board 16 and the first antenna element 131.
  • the first electromagnetic waves transmitted from the first antenna structure 13 are mainly generated from the first antenna element 131, and would attenuate when passing the first isolating element 132 and the first ground element 133. Only few first electromagnetic waves would reach the circuit board 16 (or the communication chip 15) after passing the first isolating element 132 and the first ground element 133. Thereby, an impact of the first electromagnetic waves on the components that are mounted on the circuit board 16 is reduced.
  • first antenna structure 13 is also advantageous when the first antenna structure 13 is located at a narrow part of the first portion 11.
  • first antenna element 131, the first isolating element 132 and the first ground element 133 may be aligned in the above manner to fully utilize the limited space.
  • the first antenna element 131 includes a quarter-wavelength monopole antenna for the first wavelength band. That is, an electrical length of the first antenna element 131 may be around 1/4 for the first electromagnetic waves in the first wavelength band.
  • the first antenna element 131 has a meander shape, and the first wavelength band ranges from 2.40GHz to 2.48GHz. In such case, a total length of the meander shape may approximately range from 1/4 ⁇ c/2.48GHz ⁇ 30.2mm to 1/4 ⁇ c/2.40GHz ⁇ 31.2mm, where c refers to the speed of light.
  • the first antenna element 131 includes a full-wavelength loop antenna for the first wavelength band. That is, an electrical length of a loop formed by the first antenna element 131 may be around 1 for the first electromagnetic waves in the first wavelength band.
  • the first wavelength band ranges from 5.15GHz to 7.15GHz, and a peripheral of the loop may approximately range from c/7.15GHz ⁇ 41.9mm to c/5.15GHz ⁇ 58.2mm.
  • the first antenna element 131 and the first isolating element 132 form a half-wavelength dipole antenna for the first wavelength band.
  • both of the first antenna element 131 and the first isolating element 132 are a stripe, and the first wavelength band ranges from 2.40GHz to 2.485GHz.
  • a total length of the two elements may approximately range from 1/2 ⁇ c/2.485GHz ⁇ 60.3mm to 1/2 ⁇ c/2.40GHz ⁇ 62.5mm.
  • the first antenna element 131, the first isolating element 132, and the first ground element 133 may together from a half-wavelength dipole antenna for the first wavelength band.
  • the above lengths are calculated based on an assumption that the antenna is exposed in air, and these lengths would be modified by permittivity of a material in which the antenna is disposed in practical applications.
  • the material may be resin, poly-carbonate, and the like.
  • the first antenna structure 13 may be utilized to transmit or receive electromagnetic waves of more than one wavelength band of at least one wireless communication standard.
  • the first antenna structure 13 is further configured to transmit or receive a second signal carried by second electromagnetic waves in a second wavelength band of a second wireless communication standard.
  • the first antenna element 131 includes a first branch 1311 and a second branch 1312.
  • the first branch 1311 is configured to transmit or receive the first signal
  • the second branch 1312 is configured to transmit or receive the second signal.
  • the first wavelength band is different from the second wavelength band, and therefore the first branch 1311 has a configuration different from the second branch 1312.
  • Each of the first branch 1311 and the second branch 1312 may serves as a part of an antenna of the aforementioned type.
  • the first branch 1311 serves as at least a part of a quarter-wavelength monopole antenna for the first wavelength band
  • the second branch 1312 serves as at least a part of a full-wavelength loop antenna for the second wavelength band.
  • the first branch 1311 serves as at least a part of a full-wavelength loop antenna for the first wavelength band
  • the second branch 1312 serves as at least a part of another full-wavelength loop antenna for the second wavelength band.
  • first branch 1311 and the first isolating element 132 form at least a part of the a half-wavelength dipole antenna for the first wavelength band
  • second branch 1312 and the first isolating element 132 form at least a part of a half-wavelength dipole antenna for the second wavelength band. It is appreciated that these examples does not constitute a limitation to the present disclosure.
  • first band 1311 and the second band 1312 are in a shape constituted by one or more stripes.
  • first branch 1311 includes a first stripe
  • second branch 1312 includes a second stripe.
  • the first stripe and the second strip are parallel with each other, and a first gap s 1 is provided between the first stripe and the second stripe.
  • Figures 4a and 4b are schematic diagrams of a first antenna element according to embodiments of the present disclosure.
  • the structures in Figures 4a and 4b are substantially identical, except that the first branch in Figure 4b is folded.
  • the second stripe is connected to the first stripe via a connecting segment at an end of the first antenna element 131, which is close to a connection junction leading to the first connector 17 (for example, a connection junction to the first coaxial cable) .
  • the first branch merely includes the first stripe.
  • the first branch further includes an additional stripe that is parallel with the first stripe and aligned with the second stripe, and the additional stripe is connected to the first stripe via another connecting segment at another end of the first antenna element 131.
  • a total length of the first branch 1311 is determined based on the first wavelength band and a type of an antenna constituted by the first branch 1311
  • a total length of the second branch 1312 is determined based on the second wavelength band and a type of an antenna constituted by the second branch 1312.
  • the first branch and the second branch may be parts of quarter-wavelength monopole antennas for the first wavelength band and the second wavelength band, respectively.
  • the first wavelength band is higher than the second wavelength band correspondingly.
  • electromagnetic waves in the first wavelength band may have a lower frequency than those in the second wavelength band.
  • the first wavelength band ranges from 2.4GHz to 2.48GHz
  • the second wavelength band ranges from 5.15GHz to 7.15GHz.
  • the first wavelength band and the second wavelength band may be two wavelength bands available under a same wireless communication standard, or may be two wavelength bands of different wireless communication standards. It is appreciated that the first antenna element 131 may further include a third branch other than the first branch 1311 and second branch 1312, so as to support transmission or reception of another wavelength band.
  • the first isolating element 132 may have a sleeve structure to improve the confinement effect, namely, to confine more first oscillating current to the first antenna structure 13.
  • the sleeve structure includes a trunk part and at least one sleeve part.
  • the trunk part is electrically connected to the first connector 17 at one end of the trunk part, and is electrically connected to the first ground element 133 at another end of the trunk part.
  • Each sleeve part is electrically connected to the first connector 17 at a connection junction and extends from the connection junction toward the first ground element 133, and but is separated from the first ground element 133 by a distance.
  • the sleeve structure is located in a plane, and there are two pieces of the sleeve parts located at two side of the trunk part.
  • the trunk part and the sleeve part (s) are concentric, and there is a whole piece of the sleeve part surrounding the trunk part, or multiple separated pieces surrounding the trunk part.
  • the present disclosure is not limited to the above examples, as long as the sleeve part (s) serves as a "sleeve" shielding the trunk part.
  • the first oscillating current generate would be greatly confined in the sleeve parts due to the distance between the sleeve part and the first ground element 133, and only few of the first oscillating current would leak into the first ground element 133 via the trunk part. Hence, an impact of the transmission or reception of the first signal on other elements, for example, components mounted on the circuit board 16, would be further reduced.
  • the sleeve structure of the first isolating element 132 includes a third stripe 1321, a fourth stripe 1322, and a fifth stripe 1323, which are parallel with each other.
  • Figure 5 is a schematic diagram of a first isolating element according to an embodiment of the present disclosure.
  • the three stripes form a trident shape, that is, the fourth stripe 1322 is located between the third stripe 1321 and the fifth stripe 1323, a second gap s 2 is located between the third stripe 1321 and the fourth stripe 1322, and a second gap s 3 is located between the fourth stripe 1322 and the fifth stripe 1323.
  • the fourth stripe 1322 serves as the trunk part, is electrically connected to the ground element 133 at a first end (right end in Figure 5) of the first isolating element 132, and is electrically connected to the first connector 17 at a second end (left end in Figure 5) of the first isolating element 132.
  • the third stripe 1321 and the fifth stripe 1323 serve as two sleeve parts, each electrically connected to the ground element 133 at the second end of the first isolating element 132, but not connected to the ground element 133 at the first end of the first isolating element 132.
  • the first oscillating current generated in the first isolating element 132 would be mainly confined in the third stripe 1321, and the fourth stripe 1322, and the fifth stripe 1323, and few of the first oscillating current would leak out of the forth stripe 1322 into the first ground element 133.
  • the electronic wearable device 10 may include more than one antenna.
  • Figure 6, is another schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure.
  • the electronic wearable device 10 further includes a second portion 12 and a second antenna structure 14.
  • the second antenna structure 14 is disposed in the second portion 12 or located on a surface of the second portion 12, and includes a second antenna element 141, a second isolating element 142, and a second ground element 143.
  • the second antenna element 141 is configured to transmit or receive a third signal carried by third electromagnetic waves in a third wavelength band of a third wireless communication standard.
  • the third signal, the third electronic waves, the third wavelength band, and the third wireless communication standard may refer to the foregoing description concerning the first signal, the first electronic waves, the first wavelength band, and the first wireless communication standard, respectively, and are not repeated herein.
  • the first antenna structure 13 and the second antenna structure 14 form a multiple-input-multiple-output system, the first wavelength band is same as the third wavelength band, and the first wireless communication standard is same as the third wireless communication standard.
  • both the first antenna structure 13 and the second antenna structure 14 serve as antennas for 2.4GHz to 2.48GHz Wi-Fi signals, or both the first antenna structure 13 and the second antenna structure 14 serve as antennas for 5G cellular network.
  • the first antenna structure 13 and the second antenna structure 14 may serve as antennas for different wireless communication standards supported by the communication chip 15.
  • the first antenna serves as an antenna for 2.4GHz to 2.48GHz Wi-Fi signals
  • the second antenna serves as an antenna for 5.15GHz to 7.15 GHz.
  • the third wavelength band may be identical to one of these wavelength band.
  • the third wavelength band may be identical to the second wavelength band.
  • the second antenna element 141 and the second isolating element 142 are electrically coupled to a second connector 18 in the electronic wearable device 10.
  • the second connector 18 serves as a "bridge" between the communication chip 15 and the second antenna structure 14. Similar to the case of the first connector 17, the communication chip 15 could convert the third signals to be carried by the third electromagnetic wave into oscillating currents or voltages applied on the second connector 18, or could fetch the third signals carried by the third electromagnetic waves from oscillating currents or voltages outputted from second connector 18.
  • the second connector 18 should be different from the first connector 17, and the communication chip 15 should be electrically coupled, directly or indirectly to the first connector 17, as shown in Figure 6.
  • the coupling may be implemented by, for example, radio-frequency coaxial cables, and the coaxial cables may have reactance of 50ohm.
  • the second isolating element 142 is electrically connected to the second ground element 143, and the second ground element 143 is electrically connected to the ground of the electronic wearable device 10. Similar to the case of the first antenna structure 13, both the second ground element 143 and the second isolating element 142 are grounded. Configuration of the second isolating element 142 may be determined based on a requirement on a current distribution of the second antenna element 14.
  • the second isolating element 142 is configured to confine at least a part of a second oscillating current to the second antenna structure 14, where the second oscillating current flows from the second connector 18 toward the second ground element 143. Details of an effect of the second isolating element 142 may refer to the forgoing description concerning that of the first isolating element 132, and are not repeated herein.
  • the communication chip 15 is further configured to process the second signal, and is electrically connected to the second antenna structure 14.
  • the processing performed by the communication chip 15 may include, but is not limited to, coding electrical signals into the second signals or decoding the second signals into electrical signals.
  • the second signals may be transmitted to the communication chip 15 from the second antenna structure 14 after the second electromagnetic waves are received by the second antenna structure 14, and/or the second signals may be transmitted from the communication chip 15 to the second antenna structure 14 before the second electromagnetic waves are transmitted by the second antenna structure 14.
  • Such transmission between the communication chip 15 and the second antenna structure 14 may be implemented via an electrical connection between the two, namely, the second connector 18.
  • the second connector 18 may be implemented by on-board wires, an independent cable, or the like.
  • the second antenna structure 14 may be located at a surface of the second portion 12 in another scenario, which is not illustrated herein.
  • the second antenna structure 14 serves as another antenna of the electronic wearable device 10, so as to enhance quality of wireless communication under the first wireless communication standard, or expanding a capability of wireless communication by adding compatibility with the third wireless communication standard. Since the second antenna structure 14 also includes an isolating element (i.e. the second isolating element 142) , the above beneficial effects is achieved without and with little impact on performances of other elements in the electronic wearable device 10.
  • an isolating element i.e. the second isolating element 142
  • Figure 7 is a schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure.
  • the second connector 18 is located on the circuit board 16 on which the communication chip 15 is mounted. That is, the second antenna element 141 and the second isolating element 142 are electrically coupled to the second connector 18 on the circuit board 16, and the second ground element 133 is electrically connected to the ground of the circuit board 16.
  • the communication chip 15 is electrically connected to the second connector 18 via the circuit board 16, for example, via radio-frequency lines such as micro-stripe lines or stripe lines. Such electrical connection is depicted as thin black straight lines in Figure 7 for conciseness.
  • the second connector 18 is connected to the second antenna element 14 via a second coaxial cable.
  • the second coaxial cable may be identical or similar to the first coaxial cable as described in the forgoing element.
  • the second antenna element 142 is electrically connected to a center conductor of the second coaxial cable, and the second isolating element is electrically connected to a shield conductor of the second coaxial cable. Therefore, the second coaxial cable is capable to communicate the communication chip 15 (or the circuit board 16) and the second antenna structure 14 with few power losses, which improves quality of the transmitted or received second signals.
  • the second antenna structure 14 may be configured in a similar manner to the first antenna structure 13.
  • the second isolating element 142 and the second ground element 142 may be an integral part of the second antenna structure 14.
  • the second antenna element 141 is disposed at a side of the second isolating element 142 away from the circuit board 16, and the second isolating element 142 is disposed at a side of the second ground element 143 away from the circuit board 16.
  • the second antenna element 141 includes a quarter-wavelength monopole antenna for the second wavelength band or a full-wavelength loop antenna for the second wavelength band, or the second antenna element 141 and the second isolating element 142 form a half-wavelength dipole antenna for the second wavelength band. Details may refer to the forgoing embodiments concerning the first antenna structure 13, and are not repeated herein.
  • the second antenna structure 14 is further configured to transmit or receive a fourth signal carried by second electromagnetic waves in a fourth wavelength band of a fourth wireless communication standard.
  • the second antenna element 141 includes a third branch 1411 and a fourth branch 1412.
  • the third branch 1411 is configured to transmit or receive the third signal
  • the fourth branch 1412 is configured to transmit or receive the fourth signal. Details of the third branch 1411 and the fourth branch 1412 may refer to the foregoing description concerning the first branch 1311 and the second branch 1312, and are not repeated herein.
  • the fourth wavelength band is different from the third wavelength band, and may be identical to the first wavelength band or the second wavelength band.
  • the third wavelength band and the fourth wavelength band may be two wavelength bands available under a same wireless communication standard, or may be two wavelength bands of different wireless communication standards. It is appreciated that the second antenna element 141 may further include an additional branch other than the third branch 1411 and fourth branch 1412, so as to support transmission or reception of another wavelength band.
  • the second isolating element 142 may have a sleeve structure to improve the confinement effect, namely, to confine more second oscillating current to the second antenna structure 14.
  • the sleeve structure includes a trunk part and at least one sleeve part.
  • the trunk part is electrically connected to the second connector 18 at one end of the trunk part, and is electrically connected to the second ground element 143 at another end of the trunk part.
  • Each sleeve part is electrically connected to the second connector 18 at a connection junction and extends from the connection junction toward the second ground element 143, and but is separated from the second ground element 143 by a distance. Details of the sleeve structure may refer to the foregoing embodiments, and are not repeated herein.
  • the first antenna structure 13 and the second antenna structure 14 are identical. Namely, the first antenna structure 13 and the second antenna structure 14 may have the same configurations, except that one is connected to the first connector 17 while the other is connected to the second connector 18.
  • the first antenna structure 13 and the second antenna structure 14 may be arranged in various positions of the electronic wearable device 10.
  • the first antenna structure 13 and the second antenna structure 14 are located at opposite sides of a body part of the user when the electronic wearable device being worn by the user.
  • the body part protrudes from the body of the user, such as the nose, an ear, or a finger of the user.
  • the body part may be the head, the torso, or a limb of the user.
  • Most radio-frequency electromagnetic waves attenuate rapidly when passing the human body.
  • the body part serves isolation between the first antenna structure 13 and the second antenna structure 14, such that interference between two channels of wireless communication would be greatly reduced.
  • the electronic wearable device 10 may further include a fixing portion 19.
  • the fixing portion 19 keeps in contact with the body part when the electronic wearable device 10 being worn by the user, and the communication chip is located at the fixing portion 19. That is, the communication chip 15 is located between the first antenna structure 13 and the second antenna structure 14, and hence distances from the communication chip 15 to the two antenna structures can be balanced, facilitating wiring in the electronic wearing devices.
  • Figure 8 is a schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure.
  • the first portion 11 is configured to be disposed in front of an eye of the user when the electronic wearable device 10 being worn by the user.
  • the wireless signals would attenuate drastically when passing through the human body.
  • a strategy to address such issue may be disposing the antenna away from the human body as far as possible.
  • an electronic wearable device is usually designed to be compact around a body part on which the device is worn.
  • an additional portion at a side away from the human body is usually designed to accommodate the antenna, which would easily results in an increased thickness of the device or a protrusion at a surface of the device.
  • the device would be more bulky, and the convenience of usage is sacrificed for better quality of wireless communications.
  • an electronic wearable device are desired to be compact around a body part on which it is fixed, those having a portion disposed in front of an eye is usually not subject to such limitation.
  • such portion in case of not providing visual information, such portion should avoid blocking a view field of the user or suppressing an eyelid of the user, to prevent causing discomforts or inconvenience.
  • such portion in case of providing visual information, such portion generally includes a lens or a set of lenses, and thereby should be disposed away from the pupil to provide adequate space for optical assembly. Therefore, when the electronic wearable device 10 is being worn, at least a part of the first portion 11 could be considered as "intrinsically" away from the wearer.
  • the first antenna structure 13 is in the first portion 11 or on a surface of the first portion 11, it is located at least in front of the face of the user when the electronic wearable device 10 is being worn. Therefore, in the above case, it is quite easy to dispose the first antenna structure 13 at a position where the transmission or reception of first electromagnetic waves is subject to little influence from the human body.
  • the first antenna structure 13 does not contact a skin of the user when the electronic wearable device 10 being worn by the user.
  • Figure 8 shows a scenario when the electronic wearable device 10 is worn by the user.
  • the distance d 1 may be determined based on the first wavelength band, for example, based on an attenuation factor of the first electromagnetic waves in the human body.
  • the distance d 1 may be further determined based on a requirement on a strength or a quality of the first signal. For example, a larger distance d 1 may be configured when the first signal required to be stronger or with a lower signal-to-noise ratio.
  • the first portion 11 disposed in front of the eye may or may not contact the skin of the user, which is not limited herein.
  • the first antenna structure 13 may not be disposed at such part.
  • the electronic wearable device 10 may further include the second portion 12 and the second antenna structure 14.
  • the second portion 12 is configured to be disposed in front of another eye of the user when the electronic wearable device being worn by the user.
  • Figure 9 is another schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure. Similar to the first antenna structure 13 in the above embodiment, the second antenna structure 14 does not contact the skin of the user when the electronic wearable device being worn by the user. As shown in Figure 9, the second antenna structure 14 is separated from the skin of the user by a distance d 2 greater than zero. In such case, the aforementioned the body part may be the nose of the user. It should be appreciated that the elements included in the first antenna structure 13, the elements included in the second antenna structure 14, and the ground of the electronic wearable device 10 is not depicted in Figure 9.
  • the electronic wearable device 10 may further include a first lens, which is disposed in front of the eye the user when the electronic wearable device 10 is worn by the user.
  • the first portion may be a first part of the first lens or a first part of a frame of the first lens.
  • the first part is located at a rim or an edge of the first lens, when the first lens is configured to present a view field to the user.
  • the second portion 12 may be a second part of the first lens or a second part of the frame of the first lens. Generally, the first part and the second part are separated as far as possible, or at least not overlap with each other, to ensure isolation between the first antenna structure 13 and the second antenna structure 14.
  • the electronic wearable device 10 may further include a second lens, and the second portion 12 is a part of the second lens or a part of a frame of the second lens. Generally, such part is located at a rim or an edge of the second lens, when the second lens is configured to present a view field to the user.
  • the above configurations of the first portion 11 and the second portion 12 may be applied to various types of electronic wearable devices.
  • the electronic wearable device may be, but is not limited to, eyeglasses, a helmet, or a headwear display.
  • embodiments of the present disclosure is not limited to devices having lens, but may be applied to nearly all kinds of electronic wearable devices having a function of wireless communication, such as an earphone, an electronic wristband, an electronic watch, or the like.
  • FIG. 10 shows three-dimensional views of an electronic wearable device according to an embodiment of the present disclosure.
  • the electronic device 10 is eyeglasses.
  • the eyeglasses may be an VR glasses, an AR glasses, or the like, and may be used for playing games or acquiring instant message, which is not limited herein.
  • the eyeglasses include one or two lenses that are disposed in front of eyes of the wearer when being worn. In this embodiment, a frame of the left lens (corresponding to the left eye) serves as the first portion 11, and a frame of the right lens (corresponding to the right eye) serves as the second portion 12.
  • the first antenna structure 13 is disposed at a lower surface of the frame of the left lens
  • the second antenna structure 14 is disposed at a lower surface of the frame of the right lens.
  • the first antenna structure 13 extends laterally along the lower surface of the frame of the left lens
  • the second antenna structure 14 extends laterally along the lower surface of the frame of the right lens.
  • the first antenna element 131 and the second antenna element 141 are disposed at a dismal end of the first antenna structure 13 and the second antenna structure 14, respectively.
  • the first ground element 133 and the second ground element 143 are disposed at a proximal end of the first antenna structure 13 and the second antenna structure 14, respectively.
  • Figure 11 is a side view of an electronic wearable device being worn according to an embodiment of the present disclosure.
  • the first antenna element 131 is separated from the face of the user by a distance, which is approximately 2cm (considering an average size of an adult) .
  • Such distance would ensure good quality of wireless communication in wavelength bands of most conventional wireless communication standards, such as Wi-Fi, and 2G to 5G cellular network standards.
  • Figure 12 is a three-dimensional view of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure.
  • the communication chip 15 for example, a Wi-Fi communication chip
  • the first connector 17 and the second connector 18 are both connected to the antenna elements 13 and 14 via coaxial cables.
  • the left coaxial cable extends from the communication chip 15, along a flexible film on which the first antenna structure 13 is located, to a position between the first antenna element 131 and the first isolating element 132.
  • the right coaxial cable extends from the communication chip 15, along another flexible film on which the second antenna structure 14 is located, to a position between the second antenna element 141 and the second isolating element 142.
  • An enlarged view In Figure 12 shows that there are regions A, B and C on the flexible film.
  • the first antenna element 131, the first isolating 132, and the first ground element 133 are located in the regions A, B, and C, respectively.
  • the regions A and B are attached to the lower part of the frame of the left lens, while a part of the region C is attached to the communication chip 15 to achieve the electrical connection between the communication chip 15 and the first ground element 133.
  • the other flexible film for the second antenna element 14 is symmetrical to the above one as shown in the enlarged view, and hence details are not repeated herein.
  • Figure 13 is a schematic diagram of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure.
  • the first antenna element 131 adopts a structure similar to that as shown in Figure 4b.
  • a length of the first stripe is 17.5mm
  • a length of the second strip is 10mm
  • a length of the additional stripe is 6.5mm
  • all the three have a width of 1mm.
  • the first gap s 1 between the first stripe and the second stripe is 1mm
  • a distance from the left end of the second stripe to the connection segment between the second strip and the first strip is 2mm.
  • the first stripe and the additional stripe forms a first branch 1311 for a first wavelength band ranging from 2.4GHz to 2.48GHz
  • the second stripe forms a second branch 1312 for a second wavelength band ranging from 5.15GHz to 7.15GHz.
  • the first isolating element 132 adopts a sleeve structure similar to that as shown in Figure 5. Lengths of the third stripe and the fifth stripe are 20.5mm, widths of the third stripe and the fifth stripe are 1mm, a length of the fourth stripe is 21.5mm, and a width of the fourth stripe is 1.8mm.
  • the second gap s 2 and the third gap s 3 are both 1mm, a length (lateral dimension in Figure 13) of connection segment between the third stripe and the fourth stripe is 1.5mm, and a length (lateral dimension in Figure 13) of connection segment between the fourth stripe and the fifth stripe is 1.5mm.
  • the first ground element 133 is a stripe having a width of 5.8mm, and extends from the left end of the first isolating element 132 towards the communication chip 15.
  • the second antenna structure 14 is symmetrical to the first antenna structure 13, and hence details of the second antenna element 141, the second isolating element 142, and the second ground element 143 may refer to the above dimensions and are not repeated herein.
  • Figures 14 to 18 Performances of the eyeglasses as illustrated above are shown in Figures 14 to 18.
  • the black thin lines represent s11 parameters (return losses) of the first antenna structure 13 in a frequency band ranging from 1GHz to 8GHz
  • the gray lines represent s11 parameters of the second antenna structure 14 in the frequency band
  • the black thick lines represents a negative of isolation between the first antenna structure 13 and the second antenna structure 14.
  • Figure 14a corresponds to a control device disposed in a free space.
  • the control device has a configuration basically identical to that as shown in Figures 10 to 13, except that the first isolating element 132 and the second isolating 142 are removed.
  • first ground element 133 is elongated to compensate a length of the first isolating element 132, and is directly connected to the first connector 17 (i.e. via the left coaxial cable in Figure 12) .
  • second ground element 143 is elongated to compensate a length of the second isolating element 142, and is directly connected to the second connector 18 (i.e. via the right coaxial cable in Figure 12) .
  • Figure 14b corresponds to the eyeglasses as shown in Figures 10 to 13, which is disposed in free space.
  • Figure 14c corresponds to the eyeglasses as shown in Figures 10 to 13, which is worn by a standard phantom.
  • the Figures 14a to 14c shows that the s11 parameters of the first antenna structure 13 and the second antenna structure 14 follows a substantially identical trend due to the symmetrical configurations, and few differences and a small offset in the graphs are mainly caused by deviations in fabrication and assembling.
  • FIG. 14a A comparison between Figure 14a and Figure 14b shows that the return losses of the two antenna elements are subject to no significant increase in the first wavelength band (corresponding to frequencies from 2.4GHz to 2.48GHz) and the second wavelength band (corresponding to frequencies from 5.15GHz to 7.15GHz) after the isolating elements are incorporated into the two antenna structures. Decreases of the return losses are even observed at some frequencies (e.g. from 5.15GHz to 6.8GHz) in the second wavelength band.
  • the isolation between the two antennas is greatly improved from approximately 9dB to approximately 15dB in the first wavelength band, and averagely improved by around 2dB in the second wavelength band. That is, the oscillating current generated at the first connector 17 has a less impact on the second connector 18, and vice versa.
  • FIG. 14c A comparison between Figure 14b and 14c shows that the isolation is further improved when the eyeglasses is worn by a user (the phantom in experiments) .
  • the isolation between the two antennas is improved to approximately 22-23dB in the first wavelength band, and surpasses 25dB in the second wavelength band. At some frequencies in the second wavelength band, the isolation even surpasses 30dB (not depicted) .
  • the first wavelength band is subject to a slight increase in the return losses of the antenna structures, mainly due to proximity to the human body. In the second wavelength band, the return losses are greatly reduced. Therefore, it is apparent that the isolating elements have the sleeve structure could reduce interference between the two antenna structures while not worsening performance of the two antenna structures, and thereby improve the wireless communication quality of the eyeglasses
  • Figures 15a and 15b are graphs of efficiencies of a first antenna structure and a second antenna structure, respectively, in an electronic wearable device in free space and when being worn according to an embodiment of the present disclosure.
  • both the first antenna structure 13 and the second antenna structure 14 achieves a maximum efficiency of approximately -0.5dB in the first wavelength band.
  • the efficiencies of the first antenna structure 13 and the second antenna structure 14 ranges around -1dB throughout the whole wavelength band, and dips to approximately -4.9dB at around 6.95GHz and 7.05GHz, respectively.
  • the efficiencies of the first antenna structure 13 and the second antenna structure 14 range from -3dB to -2dB throughout the first wavelength band and the second wavelength band. It can be seen from Figures 15a and 15b that a performance of the first antenna structure 13 and the second antenna structure 14 are quite satisfactory for the wireless communication in the two wavelength bands.
  • Figure 16 shows schematic diagrams of current distribution of antenna structures with and without isolating elements in an electronic wearable device according to an embodiment of the present disclosure.
  • a reference bar for intensity of the oscillating current is illustrated on right of Figure 16.
  • the reference bar shows that a lighter shade of location represents a stronger current at such location.
  • FIG. 16 shows current distribution of, from top to bottom: a) the eyeglasses with the isolating elements when activating the first antenna structure 13 at the left, b) the eyeglasses with the isolating elements when activating the second antenna structure 14 at the right, c) the control device (without the isolating elements) when activating the first antenna structure 13 at the left, and d) the control device when activating the second antenna structure 14 at the right.
  • activating refers to transmitting or receiving a wireless signal of 2.44GHz via the corresponding antenna structure.
  • the oscillating current distributes all over the first antenna structure 13 and the second antenna structure 14, and apparently leaks into the circuit board 16 located between the two antenna structures.
  • the oscillating current is mainly confine to the antenna elements and the isolating elements, and there is scarcely any leakage into the circuit board 16. Therefore, it is apparent that the isolating elements prevent an impact of the oscillating currents on the other components in the eyeglasses, thereby improving a performance of the eyeglasses.
  • an antenna structure is further provided according to embodiments of the present disclosure.
  • the antenna structure includes an antenna element, an isolating element, and a ground element.
  • the antenna element is configured to transmit or receive a signal carried by electromagnetic waves in a wavelength band of a wireless communication standard.
  • the antenna element and the isolating element are electrically connected to a connector.
  • the isolating element is electrically connected to the ground element, and the ground element is electrically connected to a ground of the electronic wearable device.
  • the isolating element is configured to confine at least a part of an oscillating current to the antenna structure, where the oscillating current flows from the connector toward the ground element.
  • the antenna structure is disposed in a portion, or located at a surface of a portion, of the electronic wearable device.
  • the antenna structure is electrically connected to a communication chip of the electronic wearable device, and the communication chip is configured to process the signal.
  • the antenna structure may refer to the first antenna structure 13 and/or the second antenna structure 14 as described in the foregoing embodiments of electronic wearable devices, and are not repeated herein. Those skilled in the art can appreciate that the beneficial effects achieved by the first antenna structure 13 and/or the second antenna structure 14 applies mutatis mutandis to the antenna structure.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

An electronic wearable device and an antenna structure. The electronic wearable device includes a portion, an antenna structure, and a communication chip. The antenna structure is disposed in the portion or located at a surface of the portion, and includes an antenna element, an isolating element, and a ground element. The antenna element is configured to transmit or receive a signal carried by electromagnetic waves in a wavelength band of a wireless communication standard. The antenna element and the isolating element are electrically connected to a connector. The isolating element is electrically connected a ground of the electronic wearable device via the ground element. The isolating element is configured to confine at least a part of an oscillating current to the antenna structure, where the oscillating current flows from the connector toward the ground element. The communication chip electrically connected to the antenna structure is configured to process the signal.

Description

ELECTRONIC WEARABLE DEVICE HAVING WIRELESS COMMUNICATION FUNCTION, AND ANTENNA STRUCURE TECHNICAL FIELD
The present disclosure relates to the technical field of electronic devices, and in particular, to an electronic wearable device having a wireless communication function and an antenna structure of an electronic wearable device.
BACKGROUND
Recent decades have witnessed prosperity of electronic wearable devices. Being designed properly, these devices are generally not handheld during usage, but are "worn" as accessories or even apparel on body parts of a user, i.e. a wearer. Hence, it is quite convenient for the wearer to interact with the outside world simultaneously in various manners. For example, the virtual reality (VR) or augmented reality (AR) technology may apply electronic headwear to provide visual and/or acoustic information, while the wearer is able to operate a keyboard or a gamepad by hand. For another example, an electronic wristband may collect electro-cardio signals of the wearer, while not interrupting daily activities of the wearer. For another example, electronic glasses may prompt the wearer with detailed content of instant messages, even when both bands of the wearer are occupied.
Rapid development of the batteries and the integrated circuits renders electronic wearable devices smaller sizes and more compact structures, which aims at merging them into each application scenario in people’s daily life. Therefore, an increasing requirement on convenient “anytime and anywhere” accesses to the Internet and WLANs demands the electronic wearable devices wireless and portable. A prospect is that the electronic wearable devices are capable to provide high-quality wireless accesses while not causing an impact on an electromagnetic environment of other components in the device. Such objective raises great challenges on a robust design of the electronic wearable devices.
SUMMARY
In view of the above, an electronic wearable device and an antenna structure are provided according to embodiments of the present disclosure, to reduce an impact of a wireless communication system on other components in electronic wearable devices.
Following technical solutions are provided to achieve the above technical objective.
According to a first aspect of embodiments of the present disclosure, an electronic wearable device is provided, including: a first portion, a first antenna structure, and a communication chip. The first antenna structure is disposed in the first portion or located at a surface of the first portion, and includes a first antenna element, a first isolating element, and a first ground element. The first antenna element is configured to transmit or receive a first signal carried by first electromagnetic waves in a first wavelength band of a first wireless communication standard. The first antenna element and the first isolating element are electrically connected to a first connector. The first isolating element is electrically connected to the first ground element, and the first ground element is electrically connected to a ground of the electronic wearable device. The first isolating element is configured to confine at least a part of a first oscillating current to the first antenna structure, where the first oscillating current flows from the first connector toward the first ground element. The communication chip is configured to process the first signal, where the communication chip is electrically connected to the first antenna structure.
In one embodiment, the first connector is located on a circuit board on which the communication chip is mounted, and a ground of the circuit board is the ground of the electronic wearable device.
In one embodiment, the first connector is connected to the first antenna element via a first coaxial cable, the first antenna element is electrically connected to a center conductor of the first coaxial cable, and the first isolating element is electrically connected to a shield conductor of the first coaxial cable.
In one embodiment, the first antenna element, the first isolating element, and the first ground element are located on a first flexible printed circuit (FPC) , or, are integrated in a first molded interconnect device (MID) .
In one embodiment, the first isolating element is located at a side of the first ground element away from the circuit board, and the first antenna element is located at a side of the  first isolating element away from the circuit board.
In one embodiment, the first antenna element includes a quarter-wavelength monopole antenna for the first wavelength band, the first antenna element includes a full-wavelength loop antenna for the first wavelength band, or the first antenna element and the first isolating element form a half-wavelength dipole antenna for the first wavelength band.
In one embodiment, the first antenna structure is further configured to transmit or receive a second signal carried by second electromagnetic waves in a second wavelength band of a first wireless communication standard. The first antenna element includes a first branch and a second branch, the first branch is configured to transmit or receive the first signal, and the second branch is configured to transmit or receive the second signal; and the first wavelength band is different from the second wavelength band.
In one embodiment, the first branch is a part of a quarter-wavelength monopole antenna for the first wavelength band, and the second branch is a part of a quarter-wavelength monopole antenna for the second wavelength band.
In one embodiment, the first branch includes a first stripe, and the second branch includes a second stripe. The first stripe and the second stripe are parallel with each other, and a first gap is provided between the first stripe and the second stripe.
In one embodiment, the first isolating element includes a trunk part and at least one sleeve part. An end of the trunk part is electrically connected to the first connector, and another end of the trunk part is electrically connected to the first ground element. Each sleeve part is electrically connected to the first connector at a connection junction, extends from the connection junction toward the first ground element, and is separated from the first ground element.
In one embodiment, the first isolating element includes a third stripe, a fourth tripe, and a fifth stripe that are parallel with each other. The fourth stripe is located between the third stripe and the fifth stripe, a second gap is provided between the third stripe and the fourth stripe, and a third gap is located between the fifth stripe and the fourth stripe. The fourth stripe is electrically connected to the ground element at an end of the first isolating element. Each of the third stripe and the fifth stripe is separated from the ground element at  the end of the first isolating element. The third stripe, the fourth stripe, and the fifth stripe are electrically connected to the first connector at another end of the first isolating element.
In one embodiment, the electronic wearable device further includes a second portion and a second antenna structure. The second antenna structure is disposed in the second portion or located on a surface of the second portion, and includes a second antenna element, a second isolating element, and a second ground element. The second antenna element is configured to transmit or receive a third signal carried by third electromagnetic waves in a third wavelength band of a third wireless communication standard. The second antenna element and the second isolating element are electrically connected to a second connector. The second isolating element is electrically connected to the second ground element, and the second ground element is electrically connected to the ground of the electronic wearable device. The second isolating element is configured to confine at least a part of a second oscillating current to the second antenna structure, where the second oscillating current flows from the second connector toward the second ground element. The communication chip is further configured to process the third signal, and the communication chip is electrically connected to the second antenna structure.
In one embodiment, the first antenna structure and the second antenna structure form a multiple-input-multiple-output system. The first wavelength band is same as the third wavelength band, and the first wireless communication standard is same as the third wireless communication standard.
In one embodiment, the first antenna structure and the second antenna structure are identical.
In one embodiment, the second connector is located the circuit board.
In one embodiment, the second connector is connected to the second antenna element via a second coaxial cable. The second antenna element is electrically connected to a center conductor of the second coaxial cable, and the second isolating element is electrically connected to a shield conductor of the second coaxial cable.
In one embodiment, the second isolating element is located at a side of the second ground element away from the circuit board, and the second antenna element is located at a side of the second isolating element away from the circuit board.
In one embodiment, the first antenna structure is further configured to transmit or receive a fourth signal carried by fourth electromagnetic waves in a fourth wavelength band of a fourth wireless communication standard. The second antenna element includes a third branch and a fourth branch, the third branch is configured to transmit or receive the third signal, and the fourth branch is configured to transmit or receive the fourth signal. The third wavelength band is different from the fourth wavelength band.
In one embodiment, the first antenna structure and the second antenna structure are located at opposite sides of a body part of the user when the electronic wearable device being worn by the user.
In one embodiment, the electronic wearable device further includes a fixing portion, where the fixing portion keeps in contact with the body part when the electronic wearable device being worn by the user. The communication chip is located at the fixing portion.
In one embodiment, the first portion is configured to be disposed in front of an eye of the user when the electronic wearable device being worn by the user. The first antenna structure does not contact a skin of the user when the electronic wearable device being worn by the user.
In one embodiment, the second portion is configured to be disposed in front of another eye of the user when the electronic wearable device being worn by the user. The body part is a nose of the user. The second antenna structure does not contact the skin of the user when the electronic wearable device being worn by the user.
In one embodiment, the electronic wearable device further includes a first lens, where the first portion is a first part of the first lens or a first part of a frame of the first lens.
In one embodiment, the second portion is a second part of the first lens or a second part of the frame of the first lens.
In one embodiment, the electronic wearable device further includes a second lens, where the second portion is a part of the second lens or a part of a frame of the second lens.
In one embodiment, the electronic wearable device is eyeglasses, a helmet, or a headwear display.
According to a second aspect of embodiments of the present disclosure, an antenna structure is provided, including an antenna element, an isolating element, and a ground  element. The antenna element is configured to transmit or receive a signal carried by electromagnetic waves in a wavelength band of a wireless communication standard. The antenna element and the isolating element are electrically connected to a connector. The isolating element is electrically connected to the ground element, and the ground element is electrically connected to a ground of the electronic wearable device. The isolating element is configured to confine at least a part of an oscillating current to the antenna structure, where the oscillating current flows from the connector toward the ground element. The antenna structure is disposed in a portion, or located at a surface of a portion, of the electronic wearable device. The antenna structure is electrically connected to a communication chip of the electronic wearable device, and the communication chip is configured to process the signal.
The electronic wearable device and the antenna structure are provided according to embodiments of the present disclosure. The electronic wearable device includes the first portion, the first antenna structure, and the communication chip. The first antenna structure is disposed in the first portion or located at the surface of the first portion, and includes the first antenna element, the first isolating element, and the first ground element. The first antenna element is configured to transmit or receive the first signal carried by the first electromagnetic waves in the first wavelength band of the first wireless communication standard. The first antenna element and the first isolating element are electrically connected to the first connector. The first isolating element is electrically connected to the first ground element, and the first ground element is electrically connected to the ground of the electronic wearable device. The first isolating element is configured to confine at least the part of the first oscillating current to the first antenna structure, where the first oscillating current flows from the first connector toward the first ground element. The communication chip is configured to process the first signal, where the communication chip is electrically connected to the first antenna structure. In the electronic wearable device, the first antenna structure that serves as an antenna of the electronic wearable device includes the first isolating element, and thereby can reduce an amount of the oscillating current leaking out of the first antenna structure without significantly increasing a size of the device. Hence, an impact of the wireless communication system on other components in the electronic wearable device is effectively reduced while maintaining portability and feasibility of the electronic wearable device.
BRIEF DESCRIPTION OF THE DRAWINGS
For clearer illustration of the technical solutions according to embodiments of the present disclosure or conventional techniques, hereinafter briefly described are the drawings to be applied in embodiments of the present disclosure or conventional techniques. Apparently, the drawings in the following descriptions are only some embodiments of the present disclosure, and other drawings may be obtained by those skilled in the art based on the provided drawings without creative efforts.
Figure 1 is a schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure;
Figure 2 is a schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure;
Figure 3 is another schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure;
Figure 4a and 4b are schematic diagrams of a first antenna element according to embodiments of the present disclosure;
Figure 5 is a schematic diagram of a first isolating element according to an embodiment of the present disclosure;
Figure 6 is another schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure;
Figure 7 is another schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure;
Figure 8 is a schematic structural diagram of an electronic wearable device being worn according to an embodiment of the present disclosure;
Figure 9 is another schematic structural diagram of an electronic wearable device being worn according to an embodiment of the present disclosure;
Figure 10 is three-dimensional views of an electronic wearable device according to an embodiment of the present disclosure;
Figure 11 is a side view of an electronic wearable device being worn according to an embodiment of the present disclosure;
Figure 12 is a three-dimensional view of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure;
Figure 13 is a schematic diagram of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure;
Figure 14a is a graph of return losses and isolation of antenna structures without a isolating element in an electronic wearable device in free space according to an embodiment of the present disclosure;
Figure 14b is a graph of return losses and isolation of antenna structures with a isolating element in an electronic wearable device in free space according to an embodiment of the present disclosure;
Figure 14c is a graph of return losses and isolation of antenna structures with a isolating element in an electronic wearable device when being worn according to an embodiment of the present disclosure;
Figure 15a is a graph of efficiencies of a first antenna structure in an electronic wearable device in free space and when being worn according to an embodiment of the present disclosure;
Figure 15b is a graph of efficiencies of a second antenna structure in an electronic wearable device in free space and when being worn according to an embodiment of the present disclosure; and
Figure 16 is schematic diagrams of current distribution of antenna structures with and without isolating elements in an electronic wearable device according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Hereinafter technical solutions in embodiments of the present disclosure are described in conjunction with the drawings in embodiments of the present disclosure. The described embodiments are only some rather than all of the embodiments of the present  disclosure. Any other embodiments obtained based on the embodiments of the present disclosure by those skilled in the art without any creative effort fall within the scope of protection of the present disclosure.
It should be noted that, the relationship terms such as "first" , "second" and the like are only used herein to distinguish one entity or operation from another, rather than to necessitate or imply that an actual relationship or order exists between the entities or operations. Furthermore, the terms such as "include" , "comprise" or any other variants thereof means to be non-exclusive. Therefore, a process, a method, an article or a device including a series of elements include not only the disclosed elements but also other elements that are not clearly enumerated, or further include inherent elements of the process, the method, the article or the device. Unless expressively limited, the statement "including a…" does not exclude the case that other similar elements may exist in the process, the method, the article or the device other than enumerated elements.
As described above in the background, a requirement on the wireless and portable electronic wearable devices demands little mutual influence between antennas not affecting operation of and other components in the electronic wearable devices.. Generally, good isolation between the antenna and the other components can be achieved by providing a separate circuit (such as an independent circuit board) for the antenna, and/or disposing the antenna far from the other components. Nevertheless, a design of an electronic wearable device should consider portability and feasibility, and therefore the device is usually very compact. In order to add the separate circuit or increase a distance within the electronic wearable device, an increased thickness of the device or a protrusion at a surface of the device should be expected. As a consequence, the device would be quite bulky, and the convenience of usage is sacrificed for better performance of the wireless communication system.
In view of the above, an electronic wearable device is provided according to embodiments of the present disclosure. The electronic wearable device utilizes an isolating element in the antenna to reduce leakage of an oscillating current into components other than the antenna. Therefore, the performance of a wireless communication system could be improved without sacrificing the convenience of using the device.
Reference is made to Figure 1, which is a schematic structural diagram of an  electronic wearable device according to an embodiment of the present disclosure. The electronic wearable device 10 includes a first portion 11, a first antenna structure 13, and a communication chip 15.
The first antenna structure 13 is disposed in the first portion 11 or located at a surface of the first portion 11. The first antenna structure 13 includes a first antenna element 131, a first isolating element 132, and a first ground element 133.
The first antenna element 131 is configured to transmit or receive a first signal carried by first electromagnetic waves in a first wavelength band of a first wireless communication standard. The first wavelength band and the first wireless communication standard are not specifically limited herein, and may be determined according to a practical requirement. For example, the first wireless communication standard is Wireless Fidelity (Wi-Fi) , and the first wavelength band ranges from 2.4GHz to 2.48GHz, or from 5.15GHz to 7.15GHz. For another example, the first wireless communication standard is 
Figure PCTCN2021131432-appb-000001
and the first wavelength band ranges from 2.4GHz to 2.485GHz. For another example, the first wireless communication standard is a wireless communication standard for cellular network, such as the 2G, 3G, 4G or 5G standard. In this embodiment, before transmitted or after received as the first electromagnetic waves, the first signal may be in a form that is compatible with a processing capability of the communication chip 15, for example, in a form of an oscillating current or an oscillating voltage at a radio-frequency connector for the first antenna structure 13.
The first antenna element 131 and the first isolating element 132 are electrically coupled to a first connector 17 in the electronic wearable device 10. The first connector 17 serves as a "bridge" between the communication chip 15 and the first antenna structure 13. Namely, the first electromagnetic waves transmitted by the first antenna structure 13 is generated due to oscillating currents or voltages applied on the first connector 17, and the first electromagnetic waves received by the first antenna structure 13 induces oscillating currents or voltages that are outputted from the first connector 17. Accordingly, the communication chip 15 is capable to convert the first signals to be carried by the first electromagnetic waves into oscillating currents or voltages applied on the first connector 17, or fetch the first signals once carried by the first electromagnetic waves from oscillating currents or voltages outputted from first connector 17. It is appreciated that the communication chip 15 should be  electrically coupled, directly or indirectly, to the first connector 17, as shown in Figure 1.
The first isolating element 132 is electrically connected to the first ground element 133, and the first ground element 133 is electrically connected to a ground of the electronic wearable device 10. Generally, each of the first antenna element 131, the first isolating element 132, and the first ground element 133 is electrically conductive. Hence, the first isolating element 132 is electrically connected to the electronic wearable device 10 via the first ground element 133. Namely, both the first ground element 133 and the first isolating element 132 are grounded. Configuration of the first isolating element 132 may be determined based on a requirement on a current distribution of the first antenna element 13.
In this embodiment, the first isolating element 132 is configured to confine at least a part of a first oscillating current to the first antenna structure 13, where the first oscillating current flows from the first connector 17 toward the first ground element 133. It is appreciated that when the first electromagnetic waves is transmitted or received via the first antenna element 131, an oscillating current (or equivalently, an oscillating voltage) would be present at the first connector. In case of no first isolating element 132, such oscillating current (i.e. the first oscillating current) would flow, directly via the first ground element 133, toward the ground of the electronic wearable device 10, that is, leaks into the ground of the electronic wearable device 10. Since the ground is further connected to other elements of the electronic wearable device 10, the leakage would cause an impact on such elements, especially those sensitive to high-frequency fluctuations. Hence, a performance of the wireless electronic device may deteriorate due to the leakage. By inserting the first isolating element 132 between the first connector 17 and the first ground element 133, the first oscillating current would attenuates more rapidly, and even could not reach a connection point between the first ground element and the ground of the electronic wearable device 10 due to the confinement. Therefore, the impact of the first oscillating current on the other elements is reduced.
The communication chip 15 is configured to process the first signal, and is electrically connected to the first antenna structure 13. In this embodiment, the processing performed by the communication chip 15 may include, but is not limited to, coding electrical signals into the first signals or decoding the first signals into electrical signals. In practice, the communication chip 15 may be implemented in various manners. For example, the  communication chip 15 may be an application specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) , a special-purpose chip, or the like. For another example, the communication chip 15 is an independent chip mounted on a printed circuit board (PCB) , or may be integrated into another chip having multiple functions. The present disclosure is not limited to the above example, and any appropriate chip may serve as the communication chip 15 as long as it is capable to process the first signal (s) . It is appreciated that the first signal may be transmitted to the communication chip 15 from the first antenna structure 13 after the first electromagnetic waves are received by the first antenna structure 13, and/or the first signals may be transmitted from the communication chip 15 to the first antenna structure 13 before the first electromagnetic waves are transmitted by the first antenna structure 13. Such transmission between the communication chip 15 and the first antenna structure 13 may be implemented via an electrical connection between the two, namely, the first connector 17. In practice, the first connector 17 may be implemented by on-board wires, an independent cable, or the like.
Although depicted within the first portion 11 in Figure 1, it is appreciated that the first antenna structure 13 may be located at a surface of the first portion 11 in another scenario, which is not illustrated herein.
In the above embodiment, the first antenna structure 13 that serves as an antenna of the electronic wearable device 10 includes the first isolating element 132 that is inserted between the first connector 17 and the first ground element 133. Since the first isolating element 132 confines the part of the first oscillating current flowing from the first connector toward the first ground element 133, less first oscillating current leaks into the ground of the electronic wearable device 10. Hence, an impact of the wireless communication on other elements of the electronic wearable device 10 is reduced, and a performance of the electronic wearable device 10 is improved.
Hereinafter details of the first antenna structure 13 are illustrated.
Reference is made to Figure 2, which is a schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure. The first connector 17 is located at a circuit board 16 on which the communication chip 15 is mounted, and a ground of the circuit board 16 is the ground of the electronic wearable device 10. That is, the first antenna element 131 and the first isolating element 132 are electrically  coupled to the first connector 17 from the circuit board 16, and the first ground element 133 is electrically connected to the ground of the circuit board 16.
It is appreciated that the communication chip 15 is electrical connected to the first connector 17 via the circuit board 16, and such electrical connection is not depicted in Figure 2 for conciseness.
In one embodiment, the first connector 17 is electrically connected to the first antenna structure 13 via a first coaxial cable. Generally, a coaxial cable includes a center conductor and a shield conductor, which are concentric and separated by a layer of dielectric material, and the shield conductor surrounds the center conductor, in order to confine a field of an electromagnetic signal between the two and provide protection against external electromagnetic interference. In this embodiment, the first antennal element 131 is electrically connected to the center conductor of the first coaxial cable, and the first isolating element is electrically connected to the shield conductor of the first coaxial cable. Therefore, the first coaxial cable is capable to communicate the communication chip 15 (or the circuit board 16) and the first antenna structure 13 with few power losses, which improves quality of the transmitted or received first signals.
The first antenna element 131, the first isolating element 132, and the first ground element 133 may be implemented in various forms. For example, the first isolating element 132 and the first ground element 133 may be an integral part of the first antenna structure 13. In practice, the above three elements may be located on a flexible printed circuit (FPC) . For example, the antenna element 131, the first isolating element 132, and the first ground element 133 may be metallic patterns printed on a flexible film. The flexible film may be attached to a part of the first portion 11, or may serve as an intermediate substrate for transferring the metallic patterns to a part of the first portion 11. Alternatively, these elements may be integrated in a molded interconnected device (MID) of another technique. For example, the antenna element 131, the first isolating element 132, and the first ground element 133 may be metallic patterns formed on a doped thermoplastic material through a laser direct structuring (LDS) process. Moreover, these elements may be directly printed on a part of the electronic wearable device 10 through, for example, the LDS. In such case, the part of the electronic wearable device 10 may be a thermoplastic material or glass doped with metallic inorganic compound. As an example, the part is a lens or a frame of lens. It is  appreciated that the first FPC and the first MID may be implemented through other suitable techniques, which are not enumerated herein. Moreover, the first antenna element 131, the first isolating element 132, and the first ground element 133 may be physically independent from each other, namely, may be configured as separate parts in the electronic wearable device 10.
Reference is made to Figure 3, which is another schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure. In one embodiment, the first antenna structure 13 may have a configuration for reducing an impact of the first electromagnetic waves, which are transmitted by the first antenna structure and carry the first signal, at a position of the circuit board 16 (or, at a position of the communication chip 15) . As shown in Figure 3, the first ground element 133, the first isolating element 132, and the first antenna element 131 are disposed in the above referenced sequence along a direction away from the circuit board 16 (or the communication chip 15) . Namely, the first antenna element 131 is disposed at a side of the first isolating element 132 away from the circuit board 16, and the first isolating element 132 is disposed at a side of the first ground element 133 away from the circuit board 16. In Figure 3, the first connector 17 may be connected to the circuit chip 15 via an electrical connection on the circuit board 16. The electrical connection may be a micro-stripe line or a stripe line having reactance of 50ohm. The first connector 17 may be connected to a feed (indicated by a dashed circle in Figure 3) via, for example, a radio-frequency coaxial cable having reactance of 50ohm.
In this embodiment, the first isolating element 132 and the first ground element 133, both grounded, are disposed between the circuit board 16 and the first antenna element 131, and thereby may serve as a "screen" between the circuit board 16 and the first antenna element 131. As described above, the first electromagnetic waves transmitted from the first antenna structure 13 are mainly generated from the first antenna element 131, and would attenuate when passing the first isolating element 132 and the first ground element 133. Only few first electromagnetic waves would reach the circuit board 16 (or the communication chip 15) after passing the first isolating element 132 and the first ground element 133. Thereby, an impact of the first electromagnetic waves on the components that are mounted on the circuit board 16 is reduced.
Moreover, such configuration of the first antenna structure 13 is also advantageous  when the first antenna structure 13 is located at a narrow part of the first portion 11. In such case, the first antenna element 131, the first isolating element 132 and the first ground element 133 may be aligned in the above manner to fully utilize the limited space.
A type of an antenna is not specifically herein for the first antenna structure 13, as long as transmission or reception of first electromagnetic waves that carry the first signal meet a practical requirement. In one embodiment, the first antenna element 131 includes a quarter-wavelength monopole antenna for the first wavelength band. That is, an electrical length of the first antenna element 131 may be around 1/4 for the first electromagnetic waves in the first wavelength band. For example, the first antenna element 131 has a meander shape, and the first wavelength band ranges from 2.40GHz to 2.48GHz. In such case, a total length of the meander shape may approximately range from 1/4×c/2.48GHz ≈ 30.2mm to 1/4×c/2.40GHz ≈ 31.2mm, where c refers to the speed of light. In another embodiment, the first antenna element 131 includes a full-wavelength loop antenna for the first wavelength band. That is, an electrical length of a loop formed by the first antenna element 131 may be around 1 for the first electromagnetic waves in the first wavelength band. For example, the first wavelength band ranges from 5.15GHz to 7.15GHz, and a peripheral of the loop may approximately range from c/7.15GHz ≈ 41.9mm to c/5.15GHz ≈ 58.2mm. In another embodiment, the first antenna element 131 and the first isolating element 132 form a half-wavelength dipole antenna for the first wavelength band. For example, both of the first antenna element 131 and the first isolating element 132 are a stripe, and the first wavelength band ranges from 2.40GHz to 2.485GHz. In such case, a total length of the two elements may approximately range from 1/2×c/2.485GHz ≈ 60.3mm to 1/2×c/2.40GHz ≈ 62.5mm. It is appreciated that other types of antenna may also be appropriate. For example, the first antenna element 131, the first isolating element 132, and the first ground element 133 may together from a half-wavelength dipole antenna for the first wavelength band. It is appreciated that the above lengths are calculated based on an assumption that the antenna is exposed in air, and these lengths would be modified by permittivity of a material in which the antenna is disposed in practical applications. The material may be resin, poly-carbonate, and the like.
In some embodiments, the first antenna structure 13 may be utilized to transmit or receive electromagnetic waves of more than one wavelength band of at least one wireless communication standard. As an example, the first antenna structure 13 is further configured  to transmit or receive a second signal carried by second electromagnetic waves in a second wavelength band of a second wireless communication standard. In such case, the first antenna element 131 includes a first branch 1311 and a second branch 1312. The first branch 1311 is configured to transmit or receive the first signal, and the second branch 1312 is configured to transmit or receive the second signal. Generally, the first wavelength band is different from the second wavelength band, and therefore the first branch 1311 has a configuration different from the second branch 1312. Each of the first branch 1311 and the second branch 1312 may serves as a part of an antenna of the aforementioned type. For example, the first branch 1311 serves as at least a part of a quarter-wavelength monopole antenna for the first wavelength band, and the second branch 1312 serves as at least a part of a full-wavelength loop antenna for the second wavelength band. For another example, the first branch 1311 serves as at least a part of a full-wavelength loop antenna for the first wavelength band, and the second branch 1312 serves as at least a part of another full-wavelength loop antenna for the second wavelength band. For another example, the first branch 1311 and the first isolating element 132 form at least a part of the a half-wavelength dipole antenna for the first wavelength band, and the second branch 1312 and the first isolating element 132 form at least a part of a half-wavelength dipole antenna for the second wavelength band. It is appreciated that these examples does not constitute a limitation to the present disclosure.
Hereinafter it is taken as an example for illustration that both the first band 1311 and the second band 1312 are in a shape constituted by one or more stripes. In some embodiment, the first branch 1311 includes a first stripe, and the second branch 1312 includes a second stripe. The first stripe and the second strip are parallel with each other, and a first gap s 1 is provided between the first stripe and the second stripe. Reference is made to Figures 4a and 4b, which are schematic diagrams of a first antenna element according to embodiments of the present disclosure. The structures in Figures 4a and 4b are substantially identical, except that the first branch in Figure 4b is folded. In both Figures 4a and 4b, the second stripe is connected to the first stripe via a connecting segment at an end of the first antenna element 131, which is close to a connection junction leading to the first connector 17 (for example, a connection junction to the first coaxial cable) . In Figure 4a, the first branch merely includes the first stripe. In Figure 4b, besides the first stripe the first branch further includes an additional stripe that is parallel with the first stripe and aligned with the second  stripe, and the additional stripe is connected to the first stripe via another connecting segment at another end of the first antenna element 131. A total length of the first branch 1311 is determined based on the first wavelength band and a type of an antenna constituted by the first branch 1311, and a total length of the second branch 1312 is determined based on the second wavelength band and a type of an antenna constituted by the second branch 1312. For example, the first branch and the second branch may be parts of quarter-wavelength monopole antennas for the first wavelength band and the second wavelength band, respectively. In such case, since a total length of the first branch 1311 is larger than that of the second branch 1312 in Figures 4a and 4b, the first wavelength band is higher than the second wavelength band correspondingly. Namely, electromagnetic waves in the first wavelength band may have a lower frequency than those in the second wavelength band. For example, the first wavelength band ranges from 2.4GHz to 2.48GHz, while the second wavelength band ranges from 5.15GHz to 7.15GHz.
In this embodiment, the first wavelength band and the second wavelength band may be two wavelength bands available under a same wireless communication standard, or may be two wavelength bands of different wireless communication standards. It is appreciated that the first antenna element 131 may further include a third branch other than the first branch 1311 and second branch 1312, so as to support transmission or reception of another wavelength band. Those skilled in the art can deduce relevant embodiments from the above description, which are not describe herein for conciseness.
In some embodiments, the first isolating element 132 may have a sleeve structure to improve the confinement effect, namely, to confine more first oscillating current to the first antenna structure 13. The sleeve structure includes a trunk part and at least one sleeve part. The trunk part is electrically connected to the first connector 17 at one end of the trunk part, and is electrically connected to the first ground element 133 at another end of the trunk part. Each sleeve part is electrically connected to the first connector 17 at a connection junction and extends from the connection junction toward the first ground element 133, and but is separated from the first ground element 133 by a distance. As an example, the sleeve structure is located in a plane, and there are two pieces of the sleeve parts located at two side of the trunk part. As another example, the trunk part and the sleeve part (s) are concentric, and there is a whole piece of the sleeve part surrounding the trunk part, or multiple separated pieces surrounding the trunk part. The present disclosure is not limited to the above  examples, as long as the sleeve part (s) serves as a "sleeve" shielding the trunk part. Thereby, the first oscillating current generate would be greatly confined in the sleeve parts due to the distance between the sleeve part and the first ground element 133, and only few of the first oscillating current would leak into the first ground element 133 via the trunk part. Hence, an impact of the transmission or reception of the first signal on other elements, for example, components mounted on the circuit board 16, would be further reduced.
Hereinafter it is taken as an example that the sleeve structure of the first isolating element 132 includes a third stripe 1321, a fourth stripe 1322, and a fifth stripe 1323, which are parallel with each other. Reference is made to Figure 5, which is a schematic diagram of a first isolating element according to an embodiment of the present disclosure. As shown in Figure 5, the three stripes form a trident shape, that is, the fourth stripe 1322 is located between the third stripe 1321 and the fifth stripe 1323, a second gap s 2 is located between the third stripe 1321 and the fourth stripe 1322, and a second gap s 3 is located between the fourth stripe 1322 and the fifth stripe 1323. The fourth stripe 1322 serves as the trunk part, is electrically connected to the ground element 133 at a first end (right end in Figure 5) of the first isolating element 132, and is electrically connected to the first connector 17 at a second end (left end in Figure 5) of the first isolating element 132. The third stripe 1321 and the fifth stripe 1323 serve as two sleeve parts, each electrically connected to the ground element 133 at the second end of the first isolating element 132, but not connected to the ground element 133 at the first end of the first isolating element 132. When the first antenna element 131 is located on left of the first isolating element 132, the first oscillating current generated in the first isolating element 132 would be mainly confined in the third stripe 1321, and the fourth stripe 1322, and the fifth stripe 1323, and few of the first oscillating current would leak out of the forth stripe 1322 into the first ground element 133.
Hereinabove described are some details of the first antenna structure 13 serving as an antenna of the electronic wearable device. The electronic wearable device 10 may include more than one antenna. Reference is made to Figure 6, which is another schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure. In one embodiment, the electronic wearable device 10 further includes a second portion 12 and a second antenna structure 14. The second antenna structure 14 is disposed in the second portion 12 or located on a surface of the second portion 12, and includes a second antenna element 141, a second isolating element 142, and a second ground  element 143.
The second antenna element 141 is configured to transmit or receive a third signal carried by third electromagnetic waves in a third wavelength band of a third wireless communication standard. Details of the third signal, the third electronic waves, the third wavelength band, and the third wireless communication standard may refer to the foregoing description concerning the first signal, the first electronic waves, the first wavelength band, and the first wireless communication standard, respectively, and are not repeated herein. In one embodiment, the first antenna structure 13 and the second antenna structure 14 form a multiple-input-multiple-output system, the first wavelength band is same as the third wavelength band, and the first wireless communication standard is same as the third wireless communication standard. For example, both the first antenna structure 13 and the second antenna structure 14 serve as antennas for 2.4GHz to 2.48GHz Wi-Fi signals, or both the first antenna structure 13 and the second antenna structure 14 serve as antennas for 5G cellular network. In another embodiment, the first antenna structure 13 and the second antenna structure 14 may serve as antennas for different wireless communication standards supported by the communication chip 15. For example, the first antenna serves as an antenna for 2.4GHz to 2.48GHz Wi-Fi signals, while the second antenna serves as an antenna for 5.15GHz to 7.15 GHz. Moreover, in the case that the first antenna structure supports two or more wavelength bands, such as the first wavelength band and the second wavelength band as described in foregoing embodiments, the third wavelength band may be identical to one of these wavelength band. For example, the third wavelength band may be identical to the second wavelength band.
The second antenna element 141 and the second isolating element 142 are electrically coupled to a second connector 18 in the electronic wearable device 10. The second connector 18 serves as a "bridge" between the communication chip 15 and the second antenna structure 14. Similar to the case of the first connector 17, the communication chip 15 could convert the third signals to be carried by the third electromagnetic wave into oscillating currents or voltages applied on the second connector 18, or could fetch the third signals carried by the third electromagnetic waves from oscillating currents or voltages outputted from second connector 18. Generally, the second connector 18 should be different from the first connector 17, and the communication chip 15 should be electrically coupled, directly or indirectly to the first connector 17, as shown in Figure 6. The coupling may be  implemented by, for example, radio-frequency coaxial cables, and the coaxial cables may have reactance of 50ohm.
The second isolating element 142 is electrically connected to the second ground element 143, and the second ground element 143 is electrically connected to the ground of the electronic wearable device 10. Similar to the case of the first antenna structure 13, both the second ground element 143 and the second isolating element 142 are grounded. Configuration of the second isolating element 142 may be determined based on a requirement on a current distribution of the second antenna element 14.
Similar to the first isolating element 142, the second isolating element 142 is configured to confine at least a part of a second oscillating current to the second antenna structure 14, where the second oscillating current flows from the second connector 18 toward the second ground element 143. Details of an effect of the second isolating element 142 may refer to the forgoing description concerning that of the first isolating element 132, and are not repeated herein.
The communication chip 15 is further configured to process the second signal, and is electrically connected to the second antenna structure 14. In this embodiment, the processing performed by the communication chip 15 may include, but is not limited to, coding electrical signals into the second signals or decoding the second signals into electrical signals. It is appreciated that the second signals may be transmitted to the communication chip 15 from the second antenna structure 14 after the second electromagnetic waves are received by the second antenna structure 14, and/or the second signals may be transmitted from the communication chip 15 to the second antenna structure 14 before the second electromagnetic waves are transmitted by the second antenna structure 14. Such transmission between the communication chip 15 and the second antenna structure 14 may be implemented via an electrical connection between the two, namely, the second connector 18. In practice, the second connector 18 may be implemented by on-board wires, an independent cable, or the like.
Although depicted within the second portion 12 in Figure 6, it is appreciated that the second antenna structure 14 may be located at a surface of the second portion 12 in another scenario, which is not illustrated herein.
In this embodiment, the second antenna structure 14 serves as another antenna of the  electronic wearable device 10, so as to enhance quality of wireless communication under the first wireless communication standard, or expanding a capability of wireless communication by adding compatibility with the third wireless communication standard. Since the second antenna structure 14 also includes an isolating element (i.e. the second isolating element 142) , the above beneficial effects is achieved without and with little impact on performances of other elements in the electronic wearable device 10.
Reference is made to Figure 7, which is a schematic structural diagram of a part of an electronic wearable device according to an embodiment of the present disclosure. Similar to the first connector 17, the second connector 18 is located on the circuit board 16 on which the communication chip 15 is mounted. That is, the second antenna element 141 and the second isolating element 142 are electrically coupled to the second connector 18 on the circuit board 16, and the second ground element 133 is electrically connected to the ground of the circuit board 16. It is appreciated that the communication chip 15 is electrically connected to the second connector 18 via the circuit board 16, for example, via radio-frequency lines such as micro-stripe lines or stripe lines. Such electrical connection is depicted as thin black straight lines in Figure 7 for conciseness.
In one embodiment, the second connector 18 is connected to the second antenna element 14 via a second coaxial cable. The second coaxial cable may be identical or similar to the first coaxial cable as described in the forgoing element. The second antenna element 142 is electrically connected to a center conductor of the second coaxial cable, and the second isolating element is electrically connected to a shield conductor of the second coaxial cable. Therefore, the second coaxial cable is capable to communicate the communication chip 15 (or the circuit board 16) and the second antenna structure 14 with few power losses, which improves quality of the transmitted or received second signals.
The second antenna structure 14 may be configured in a similar manner to the first antenna structure 13. For example, the second isolating element 142 and the second ground element 142 may be an integral part of the second antenna structure 14. In one embodiment, the second antenna element 141 is disposed at a side of the second isolating element 142 away from the circuit board 16, and the second isolating element 142 is disposed at a side of the second ground element 143 away from the circuit board 16. In one embodiment, the second antenna element 141 includes a quarter-wavelength monopole antenna for the second  wavelength band or a full-wavelength loop antenna for the second wavelength band, or the second antenna element 141 and the second isolating element 142 form a half-wavelength dipole antenna for the second wavelength band. Details may refer to the forgoing embodiments concerning the first antenna structure 13, and are not repeated herein.
In one embodiment, the second antenna structure 14 is further configured to transmit or receive a fourth signal carried by second electromagnetic waves in a fourth wavelength band of a fourth wireless communication standard. In such case, the second antenna element 141 includes a third branch 1411 and a fourth branch 1412. The third branch 1411 is configured to transmit or receive the third signal, and the fourth branch 1412 is configured to transmit or receive the fourth signal. Details of the third branch 1411 and the fourth branch 1412 may refer to the foregoing description concerning the first branch 1311 and the second branch 1312, and are not repeated herein. The fourth wavelength band is different from the third wavelength band, and may be identical to the first wavelength band or the second wavelength band. In this embodiment, the third wavelength band and the fourth wavelength band may be two wavelength bands available under a same wireless communication standard, or may be two wavelength bands of different wireless communication standards. It is appreciated that the second antenna element 141 may further include an additional branch other than the third branch 1411 and fourth branch 1412, so as to support transmission or reception of another wavelength band. Those skilled in the art can deduce relevant embodiments from the above description, which are not describe herein for conciseness.
In one embodiment, the second isolating element 142 may have a sleeve structure to improve the confinement effect, namely, to confine more second oscillating current to the second antenna structure 14. Similar to the first isolating element 132, the sleeve structure includes a trunk part and at least one sleeve part. The trunk part is electrically connected to the second connector 18 at one end of the trunk part, and is electrically connected to the second ground element 143 at another end of the trunk part. Each sleeve part is electrically connected to the second connector 18 at a connection junction and extends from the connection junction toward the second ground element 143, and but is separated from the second ground element 143 by a distance. Details of the sleeve structure may refer to the foregoing embodiments, and are not repeated herein.
In one embodiment, the first antenna structure 13 and the second antenna structure  14 are identical. Namely, the first antenna structure 13 and the second antenna structure 14 may have the same configurations, except that one is connected to the first connector 17 while the other is connected to the second connector 18.
The first antenna structure 13 and the second antenna structure 14 may be arranged in various positions of the electronic wearable device 10. In one embodiment, the first antenna structure 13 and the second antenna structure 14 are located at opposite sides of a body part of the user when the electronic wearable device being worn by the user. Generally, the body part protrudes from the body of the user, such as the nose, an ear, or a finger of the user. Alternatively, the body part may be the head, the torso, or a limb of the user. Most radio-frequency electromagnetic waves attenuate rapidly when passing the human body. Hence, the body part serves isolation between the first antenna structure 13 and the second antenna structure 14, such that interference between two channels of wireless communication would be greatly reduced.
In this embodiment, the electronic wearable device 10 may further include a fixing portion 19. The fixing portion 19 keeps in contact with the body part when the electronic wearable device 10 being worn by the user, and the communication chip is located at the fixing portion 19. That is, the communication chip 15 is located between the first antenna structure 13 and the second antenna structure 14, and hence distances from the communication chip 15 to the two antenna structures can be balanced, facilitating wiring in the electronic wearing devices.
Hereinafter discussed are configurations of the first portion 11 and the second portion 12.
Reference is made to Figure 8, which is a schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure. In one embodiment, the first portion 11 is configured to be disposed in front of an eye of the user when the electronic wearable device 10 being worn by the user. Generally, the wireless signals would attenuate drastically when passing through the human body. A strategy to address such issue may be disposing the antenna away from the human body as far as possible. Nevertheless, an electronic wearable device is usually designed to be compact around a body part on which the device is worn. In order to increase a distance between the antenna and the user, an additional portion at a side away from the human body is usually designed to  accommodate the antenna, which would easily results in an increased thickness of the device or a protrusion at a surface of the device. As a consequence, the device would be more bulky, and the convenience of usage is sacrificed for better quality of wireless communications.
Nevertheless, although an electronic wearable device are desired to be compact around a body part on which it is fixed, those having a portion disposed in front of an eye is usually not subject to such limitation. In one aspect, in case of not providing visual information, such portion should avoid blocking a view field of the user or suppressing an eyelid of the user, to prevent causing discomforts or inconvenience. In another aspect, in case of providing visual information, such portion generally includes a lens or a set of lenses, and thereby should be disposed away from the pupil to provide adequate space for optical assembly. Therefore, when the electronic wearable device 10 is being worn, at least a part of the first portion 11 could be considered as "intrinsically" away from the wearer. As an example, considering eyeglasses being worn, a distance between a lens and a face of the wearer is much larger than a distance between an earpiece and the face. Since the first antenna structure 13 is in the first portion 11 or on a surface of the first portion 11, it is located at least in front of the face of the user when the electronic wearable device 10 is being worn. Therefore, in the above case, it is quite easy to dispose the first antenna structure 13 at a position where the transmission or reception of first electromagnetic waves is subject to little influence from the human body.
In this embodiment, the first antenna structure 13 does not contact a skin of the user when the electronic wearable device 10 being worn by the user. It could be appreciated that Figure 8 shows a scenario when the electronic wearable device 10 is worn by the user. As shown in Figure 8, the first antenna structure 13 is separated from the skin of the user by a distance d 1 greater than zero. The distance d 1 may be determined based on the first wavelength band, for example, based on an attenuation factor of the first electromagnetic waves in the human body. The distance d 1 may be further determined based on a requirement on a strength or a quality of the first signal. For example, a larger distance d 1 may be configured when the first signal required to be stronger or with a lower signal-to-noise ratio. It is noted that the first portion 11 disposed in front of the eye may or may not contact the skin of the user, which is not limited herein. In a case that a part of the first portion 11 contacts the skin of the user, the first antenna structure 13 may not be disposed at such part.
It should be appreciated that the elements included in the first antenna structure 13 and the ground of the electronic wearable device 10 is not depicted in Figure 8.
As describe above, the electronic wearable device 10 may further include the second portion 12 and the second antenna structure 14. In such case, the second portion 12 is configured to be disposed in front of another eye of the user when the electronic wearable device being worn by the user. Reference is made to Figure 9, which is another schematic structural diagram of an electronic wearable device according to an embodiment of the present disclosure. Similar to the first antenna structure 13 in the above embodiment, the second antenna structure 14 does not contact the skin of the user when the electronic wearable device being worn by the user. As shown in Figure 9, the second antenna structure 14 is separated from the skin of the user by a distance d 2 greater than zero. In such case, the aforementioned the body part may be the nose of the user. It should be appreciated that the elements included in the first antenna structure 13, the elements included in the second antenna structure 14, and the ground of the electronic wearable device 10 is not depicted in Figure 9.
In one embodiment, the electronic wearable device 10 may further include a first lens, which is disposed in front of the eye the user when the electronic wearable device 10 is worn by the user. In such case, the first portion may be a first part of the first lens or a first part of a frame of the first lens. Generally, the first part is located at a rim or an edge of the first lens, when the first lens is configured to present a view field to the user.
In one embodiment, the second portion 12 may be a second part of the first lens or a second part of the frame of the first lens. Generally, the first part and the second part are separated as far as possible, or at least not overlap with each other, to ensure isolation between the first antenna structure 13 and the second antenna structure 14. Alternatively, the electronic wearable device 10 may further include a second lens, and the second portion 12 is a part of the second lens or a part of a frame of the second lens. Generally, such part is located at a rim or an edge of the second lens, when the second lens is configured to present a view field to the user.
The above configurations of the first portion 11 and the second portion 12 may be applied to various types of electronic wearable devices. Considering the lens disposed in front of an eye or eyes of the wearer, the electronic wearable device may be, but is not limited  to, eyeglasses, a helmet, or a headwear display.
It is appreciated that embodiments of the present disclosure is not limited to devices having lens, but may be applied to nearly all kinds of electronic wearable devices having a function of wireless communication, such as an earphone, an electronic wristband, an electronic watch, or the like.
Hereinafter an embodiment of the present disclosure is illustrated in conjunction with Figures 10 to 16, to show beneficial effects of the aforementioned technical solutions. Those skilled in the art can appreciate that this embodiment is merely exemplary for illustration, and should not be construed as a limitation on the present disclosure.
Configurations of the electronic device 10 are shown in Figures 10 to 14. Reference is made to Figure 10, which shows three-dimensional views of an electronic wearable device according to an embodiment of the present disclosure. As shown in Figure 10, the electronic device 10 is eyeglasses. The eyeglasses may be an VR glasses, an AR glasses, or the like, and may be used for playing games or acquiring instant message, which is not limited herein. The eyeglasses include one or two lenses that are disposed in front of eyes of the wearer when being worn. In this embodiment, a frame of the left lens (corresponding to the left eye) serves as the first portion 11, and a frame of the right lens (corresponding to the right eye) serves as the second portion 12. The first antenna structure 13 is disposed at a lower surface of the frame of the left lens, and the second antenna structure 14 is disposed at a lower surface of the frame of the right lens. As indicated in the enlarged views in Figure 10, the first antenna structure 13 extends laterally along the lower surface of the frame of the left lens, and the second antenna structure 14 extends laterally along the lower surface of the frame of the right lens. The first antenna element 131 and the second antenna element 141 are disposed at a dismal end of the first antenna structure 13 and the second antenna structure 14, respectively. The first ground element 133 and the second ground element 143 are disposed at a proximal end of the first antenna structure 13 and the second antenna structure 14, respectively.
Reference is further made to Figure 11, which is a side view of an electronic wearable device being worn according to an embodiment of the present disclosure. As shown in Figure 11, when the eyeglasses is worn by the user, the first antenna element 131 is separated from the face of the user by a distance, which is approximately 2cm (considering an  average size of an adult) . Such distance would ensure good quality of wireless communication in wavelength bands of most conventional wireless communication standards, such as Wi-Fi, 
Figure PCTCN2021131432-appb-000002
and 2G to 5G cellular network standards.
Reference is further made to Figure 12, which is a three-dimensional view of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure. As shown in Figure 13, the communication chip 15, for example, a Wi-Fi communication chip, is located behind a bridge of the eyeglass between the first lens and the second lens. The first connector 17 and the second connector 18 are both connected to the  antenna elements  13 and 14 via coaxial cables. The left coaxial cable extends from the communication chip 15, along a flexible film on which the first antenna structure 13 is located, to a position between the first antenna element 131 and the first isolating element 132. Similarly, the right coaxial cable extends from the communication chip 15, along another flexible film on which the second antenna structure 14 is located, to a position between the second antenna element 141 and the second isolating element 142. An enlarged view In Figure 12 shows that there are regions A, B and C on the flexible film. In this embodiment, the first antenna element 131, the first isolating 132, and the first ground element 133 (not depicted) are located in the regions A, B, and C, respectively. The regions A and B are attached to the lower part of the frame of the left lens, while a part of the region C is attached to the communication chip 15 to achieve the electrical connection between the communication chip 15 and the first ground element 133. The other flexible film for the second antenna element 14 is symmetrical to the above one as shown in the enlarged view, and hence details are not repeated herein.
Reference is further made to Figure 13, which is a schematic diagram of a first antenna structure in an electronic wearable device according to an embodiment of the present disclosure. In this embodiment, the first antenna element 131 adopts a structure similar to that as shown in Figure 4b. A length of the first stripe is 17.5mm, a length of the second strip is 10mm, a length of the additional stripe is 6.5mm, and all the three have a width of 1mm. The first gap s 1 between the first stripe and the second stripe is 1mm, and a distance from the left end of the second stripe to the connection segment between the second strip and the first strip is 2mm. Thereby, the first stripe and the additional stripe forms a first branch 1311 for a first wavelength band ranging from 2.4GHz to 2.48GHz, and the second stripe forms a second branch 1312 for a second wavelength band ranging from 5.15GHz to 7.15GHz.  The first isolating element 132 adopts a sleeve structure similar to that as shown in Figure 5. Lengths of the third stripe and the fifth stripe are 20.5mm, widths of the third stripe and the fifth stripe are 1mm, a length of the fourth stripe is 21.5mm, and a width of the fourth stripe is 1.8mm. The second gap s 2 and the third gap s 3 are both 1mm, a length (lateral dimension in Figure 13) of connection segment between the third stripe and the fourth stripe is 1.5mm, and a length (lateral dimension in Figure 13) of connection segment between the fourth stripe and the fifth stripe is 1.5mm. The first ground element 133 is a stripe having a width of 5.8mm, and extends from the left end of the first isolating element 132 towards the communication chip 15. The second antenna structure 14 is symmetrical to the first antenna structure 13, and hence details of the second antenna element 141, the second isolating element 142, and the second ground element 143 may refer to the above dimensions and are not repeated herein.
Performances of the eyeglasses as illustrated above are shown in Figures 14 to 18. Reference is made to Figures 14a to 14c, which show graphs of return losses and isolation of antenna structures. In Figures 14a to 14c, the black thin lines represent s11 parameters (return losses) of the first antenna structure 13 in a frequency band ranging from 1GHz to 8GHz, the gray lines represent s11 parameters of the second antenna structure 14 in the frequency band, and the black thick lines represents a negative of isolation between the first antenna structure 13 and the second antenna structure 14. Specifically, Figure 14a corresponds to a control device disposed in a free space. The control device has a configuration basically identical to that as shown in Figures 10 to 13, except that the first isolating element 132 and the second isolating 142 are removed. Instead, the first ground element 133 is elongated to compensate a length of the first isolating element 132, and is directly connected to the first connector 17 (i.e. via the left coaxial cable in Figure 12) . Similarly, the second ground element 143 is elongated to compensate a length of the second isolating element 142, and is directly connected to the second connector 18 (i.e. via the right coaxial cable in Figure 12) . Figure 14b corresponds to the eyeglasses as shown in Figures 10 to 13, which is disposed in free space. Figure 14c corresponds to the eyeglasses as shown in Figures 10 to 13, which is worn by a standard phantom. The Figures 14a to 14c shows that the s11 parameters of the first antenna structure 13 and the second antenna structure 14 follows a substantially identical trend due to the symmetrical configurations, and few differences and a small offset in the graphs are mainly caused by deviations in fabrication and  assembling.
A comparison between Figure 14a and Figure 14b shows that the return losses of the two antenna elements are subject to no significant increase in the first wavelength band (corresponding to frequencies from 2.4GHz to 2.48GHz) and the second wavelength band (corresponding to frequencies from 5.15GHz to 7.15GHz) after the isolating elements are incorporated into the two antenna structures. Decreases of the return losses are even observed at some frequencies (e.g. from 5.15GHz to 6.8GHz) in the second wavelength band. The isolation between the two antennas is greatly improved from approximately 9dB to approximately 15dB in the first wavelength band, and averagely improved by around 2dB in the second wavelength band. That is, the oscillating current generated at the first connector 17 has a less impact on the second connector 18, and vice versa.
A comparison between Figure 14b and 14c shows that the isolation is further improved when the eyeglasses is worn by a user (the phantom in experiments) . As shown in Figure 14c, the isolation between the two antennas is improved to approximately 22-23dB in the first wavelength band, and surpasses 25dB in the second wavelength band. At some frequencies in the second wavelength band, the isolation even surpasses 30dB (not depicted) . When the eyeglasses I worn by the user, the first wavelength band is subject to a slight increase in the return losses of the antenna structures, mainly due to proximity to the human body. In the second wavelength band, the return losses are greatly reduced. Therefore, it is apparent that the isolating elements have the sleeve structure could reduce interference between the two antenna structures while not worsening performance of the two antenna structures, and thereby improve the wireless communication quality of the eyeglasses
Reference is further made to Figures 15a and 15b, which are graphs of efficiencies of a first antenna structure and a second antenna structure, respectively, in an electronic wearable device in free space and when being worn according to an embodiment of the present disclosure. When the eyeglasses are in free space, both the first antenna structure 13 and the second antenna structure 14 achieves a maximum efficiency of approximately -0.5dB in the first wavelength band. In the second wavelength band, the efficiencies of the first antenna structure 13 and the second antenna structure 14 ranges around -1dB throughout the whole wavelength band, and dips to approximately -4.9dB at around 6.95GHz and 7.05GHz, respectively. When the eyeglasses being worn by the user, the efficiencies of the first  antenna structure 13 and the second antenna structure 14 range from -3dB to -2dB throughout the first wavelength band and the second wavelength band. It can be seen from Figures 15a and 15b that a performance of the first antenna structure 13 and the second antenna structure 14 are quite satisfactory for the wireless communication in the two wavelength bands.
Reference is made to Figure 16, which shows schematic diagrams of current distribution of antenna structures with and without isolating elements in an electronic wearable device according to an embodiment of the present disclosure. A reference bar for intensity of the oscillating current is illustrated on right of Figure 16. The reference bar shows that a lighter shade of location represents a stronger current at such location. Moreover, four subfigures are illustrated on left of Figure 16, which shows current distribution of, from top to bottom: a) the eyeglasses with the isolating elements when activating the first antenna structure 13 at the left, b) the eyeglasses with the isolating elements when activating the second antenna structure 14 at the right, c) the control device (without the isolating elements) when activating the first antenna structure 13 at the left, and d) the control device when activating the second antenna structure 14 at the right. Herein the "activating" refers to transmitting or receiving a wireless signal of 2.44GHz via the corresponding antenna structure. It can be seen from Figure 16 that in the control device, the oscillating current distributes all over the first antenna structure 13 and the second antenna structure 14, and apparently leaks into the circuit board 16 located between the two antenna structures. In comparison, when the isolating elements having the sleeve structure are incorporated into the two antenna structures, the oscillating current is mainly confine to the antenna elements and the isolating elements, and there is scarcely any leakage into the circuit board 16. Therefore, it is apparent that the isolating elements prevent an impact of the oscillating currents on the other components in the eyeglasses, thereby improving a performance of the eyeglasses.
Moreover, an antenna structure is further provided according to embodiments of the present disclosure. The antenna structure includes an antenna element, an isolating element, and a ground element. The antenna element is configured to transmit or receive a signal carried by electromagnetic waves in a wavelength band of a wireless communication standard. The antenna element and the isolating element are electrically connected to a connector. The isolating element is electrically connected to the ground element, and the ground element is electrically connected to a ground of the electronic wearable device. The isolating element is  configured to confine at least a part of an oscillating current to the antenna structure, where the oscillating current flows from the connector toward the ground element. The antenna structure is disposed in a portion, or located at a surface of a portion, of the electronic wearable device. The antenna structure is electrically connected to a communication chip of the electronic wearable device, and the communication chip is configured to process the signal.
Details of the antenna structure may refer to the first antenna structure 13 and/or the second antenna structure 14 as described in the foregoing embodiments of electronic wearable devices, and are not repeated herein. Those skilled in the art can appreciate that the beneficial effects achieved by the first antenna structure 13 and/or the second antenna structure 14 applies mutatis mutandis to the antenna structure.
The embodiments of the present disclosure are described in a progressive manner, and each embodiment places emphasis on the difference from other embodiments. Therefore, one embodiment can refer to other embodiments for the same or similar parts.
According to the description of the disclosed embodiments, those skilled in the art can implement or use the present disclosure. Various modifications made to these embodiments may be obvious to those skilled in the art, and the general principle defined herein may be implemented in other embodiments without departing from the spirit or scope of the present disclosure. Therefore, the present disclosure is not limited to the embodiments described herein but confirms to a widest scope in accordance with principles and novel features disclosed in the present disclosure.

Claims (27)

  1. An electronic wearable device, comprising:
    a first portion;
    a first antenna structure, disposed in the first portion or located at a surface of the first portion, wherein the first antenna structure comprises a first antenna element, a first isolating element, and a first ground element, and wherein:
    the first antenna element is configured to transmit or receive a first signal carried by first electromagnetic waves in a first wavelength band of a first wireless communication standard;
    the first antenna element and the first isolating element are electrically connected to a first connector;
    the first isolating element is electrically connected to the first ground element, and the first ground element is electrically connected to a ground of the electronic wearable device; and
    the first isolating element is configured to confine at least a part of a first oscillating current to the first antenna structure, wherein the first oscillating current flows from the first connector toward the first ground element; and
    a communication chip, configured to process the first signal, wherein the communication chip is electrically connected to the first antenna structure;
  2. The electronic wearable device according to claim 1, wherein:
    the first connector is located on a circuit board on which the communication chip is mounted, and a ground of the circuit board is the ground of the electronic wearable device.
  3. The electronic wearable device according to claim 1 or 2, wherein:
    the first connector is connected to the first antenna element via a first coaxial cable;
    the first antenna element is electrically connected to a center conductor of the first coaxial cable; and
    the first isolating element is electrically connected to a shield conductor of the first coaxial cable.
  4. The electronic wearable device according to any one of claims 1 to 3, wherein:
    the first antenna element, the first isolating element, and the first ground element are located on a first flexible printed circuit (FPC) , or
    the first antenna element, the first isolating element, and the first ground element are integrated in a first molded interconnect device (MID) .
  5. The electronic wearable device according to any one of claims 2 to 4, wherein the first isolating element is located at a side of the first ground element away from the circuit board, and the first antenna element is located at a side of the first isolating element away from the circuit board.
  6. The electronic wearable device according to any one of claims 1 to 5, wherein:
    the first antenna element comprises a quarter-wavelength monopole antenna for the first wavelength band;
    the first antenna element comprises a full-wavelength loop antenna for the first wavelength band; or
    the first antenna element and the first isolating element form a half-wavelength dipole antenna for the first wavelength band.
  7. The electronic wearable device according to any one of claims 1 to 5, wherein:
    the first antenna structure is further configured to transmit or receive a second signal carried by second electromagnetic waves in a second wavelength band of a first wireless communication standard;
    the first antenna element comprises a first branch and a second branch;
    the first branch is configured to transmit or receive the first signal, and the second branch is configured to transmit or receive the second signal; and
    the first wavelength band is different from the second wavelength band.
  8. The electronic wearable device according to claim 7, wherein the first branch is a part of a quarter-wavelength monopole antenna for the first wavelength band, and the second branch is a part of a quarter-wavelength monopole antenna for the second wavelength band.
  9. The electronic wearable device according to claim 7 or 8, wherein:
    the first branch comprises a first stripe, and the second branch comprises a second stripe; and
    the first stripe and the second stripe are parallel with each other, and a first gap is provided between the first stripe and the second stripe.
  10. The electronic wearable device according to any one of claims 1 to 9, wherein:
    the first isolating element comprises a trunk part and at least one sleeve part;
    an end of the trunk part is electrically connected to the first connector, and another end of the trunk part is electrically connected to the first ground element; and
    each sleeve part is electrically connected to the first connector at a connection junction, extends from the connection junction toward the first ground element, and is separated from the first ground element.
  11. The electronic wearable device according to any one of claims 1 to 9, wherein:
    the first isolating element comprises a third stripe, a fourth tripe, and a fifth stripe that are parallel with each other, and the fourth stripe is located between the third stripe and the fifth stripe;
    a second gap is provided between the third stripe and the fourth stripe, and a third gap is located between the fifth stripe and the fourth stripe;
    the fourth stripe is electrically connected to the ground element at an end of the first isolating element, and each of the third stripe and the fifth stripe is separated from the ground element at the end of the first isolating element; and
    the third stripe, the fourth stripe, and the fifth stripe are electrically connected to the first connector at another end of the first isolating element.
  12. The electronic wearable device according to any one of claims 1 to 11, further comprising:
    a second portion; and
    a second antenna structure, disposed in the second portion or located on a surface of the second portion, wherein the second antenna structure comprises a second antenna element, a second isolating element, and a second ground element, and wherein:
    the second antenna element is configured to transmit or receive a third signal carried by third electromagnetic waves in a third wavelength band of a third wireless communication standard;
    the second antenna element and the second isolating element are electrically connected to a second connector;
    the second isolating element is electrically connected to the second ground element, and the second ground element is electrically connected to the ground of the electronic wearable device;
    the second isolating element is configured to confine at least a part of a second oscillating current to the second antenna structure, wherein the second oscillating current flows from the second connector toward the second ground element; and
    wherein the communication chip is further configured to process the third signal, and the communication chip is electrically connected to the second antenna structure.
  13. The electronic wearable device according to claim 12, wherein:
    the first antenna structure and the second antenna structure form a multiple-input-multiple-output system, the first wavelength band is same as the third wavelength band, and the first wireless communication standard is same as the third wireless communication standard.
  14. The electronic wearable device according to claim 12 or 13, wherein the first antenna structure and the second antenna structure are identical.
  15. The electronic wearable device according to any one of claims 12 to 14, wherein the second connector is located at the circuit board.
  16. The electronic wearable device according to any one of claims 12 to 15, wherein:
    the second connector is connected to the second antenna element via a second coaxial cable;
    the second antenna element is electrically connected to a center conductor of the second coaxial cable; and
    the second isolating element is electrically connected to a shield conductor of the second  coaxial cable.
  17. The electronic wearable device according to any one of claims 12 to 16, wherein the second isolating element is located at a side of the second ground element away from the circuit board, and the second antenna element is located at a side of the second isolating element away from the circuit board.
  18. The electronic wearable device according to any one of claims 12 to 17, wherein the first antenna structure is further configured to transmit or receive a fourth signal carried by fourth electromagnetic waves in a fourth wavelength band of a fourth wireless communication standard;
    the second antenna element comprises a third branch and a fourth branch; and
    the third branch is configured to transmit or receive the third signal, and the fourth branch is configured to transmit or receive the fourth signal; and
    the third wavelength band is different from the fourth wavelength band.
  19. The electronic wearable device according to any one of claims 12 to 18, wherein the first antenna structure and the second antenna structure are located at opposite sides of a body part of the user when the electronic wearable device being worn by the user.
  20. The electronic wearable device according to any one of claims 12 to 19, further comprising a fixing portion, wherein:
    the fixing portion keeps in contact with the body part when the electronic wearable device being worn by the user; and
    the communication chip is located at the fixing portion.
  21. The electronic wearable device according to any one of claims 1 to 20, wherein:
    the first portion is configured to be disposed in front of an eye of the user when the electronic wearable device being worn by the user, and
    the first antenna structure does not contact a skin of the user when the electronic wearable device being worn by the user.
  22. The electronic wearable device according to claim 21, wherein:
    the second portion is configured to be disposed in front of another eye of the user when the electronic wearable device being worn by the user,
    the body part is a nose of the user, and
    the second antenna structure does not contact the skin of the user when the electronic wearable device being worn by the user.
  23. The electronic wearable device according to claim 21 or 22, comprising a first lens, wherein the first portion is a first part of the first lens or a first part of a frame of the first lens.
  24. The electronic wearable device according to claim 23, wherein the second portion is a second part of the first lens or a second part of the frame of the first lens.
  25. The electronic wearable device according to claim 23, further comprising a second lens, wherein the second portion is a part of the second lens or a part of a frame of the second lens.
  26. The electronic wearable device according to any one of claims 1 to 25, wherein the electronic wearable device is eyeglasses, a helmet, or a headwear display.
  27. An antenna structure, comprising an antenna element, an isolating element, and a ground element, wherein:
    the antenna element is configured to transmit or receive a signal carried by electromagnetic waves in a wavelength band of a wireless communication standard;
    the antenna element and the isolating element are electrically connected to a connector;
    the isolating element is electrically connected to the ground element, and the ground element is electrically connected to a ground of the electronic wearable device;
    the isolating element is configured to confine at least a part of an oscillating current to the antenna structure, wherein the oscillating current flows from the connector toward the ground element;
    the antenna structure is disposed in a portion, or located at a surface of a portion, of the electronic wearable device; and
    the antenna structure is electrically connected to a communication chip of the electronic wearable device, wherein the communication chip is configured to process the signal.
PCT/CN2021/131432 2021-11-18 2021-11-18 Electronic wearable device having wireless communication function, and antenna strucure WO2023087204A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/131432 WO2023087204A1 (en) 2021-11-18 2021-11-18 Electronic wearable device having wireless communication function, and antenna strucure
CN202180103473.2A CN118216043A (en) 2021-11-18 2021-11-18 Electronic wearable equipment with wireless communication function and antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131432 WO2023087204A1 (en) 2021-11-18 2021-11-18 Electronic wearable device having wireless communication function, and antenna strucure

Publications (1)

Publication Number Publication Date
WO2023087204A1 true WO2023087204A1 (en) 2023-05-25

Family

ID=86396181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131432 WO2023087204A1 (en) 2021-11-18 2021-11-18 Electronic wearable device having wireless communication function, and antenna strucure

Country Status (2)

Country Link
CN (1) CN118216043A (en)
WO (1) WO2023087204A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710631A (en) * 2015-06-27 2018-02-16 英特尔公司 Wearable antenna system
EP3435479A1 (en) * 2017-07-25 2019-01-30 Armour Surveillance Securtiy Equipment and Technology Ltd Wearable device with antenna
CN111342202A (en) * 2020-04-02 2020-06-26 西安易朴通讯技术有限公司 Wearable equipment
CN112334844A (en) * 2018-06-12 2021-02-05 佳明瑞士有限责任公司 Wrist-worn electronic device with side-wall loop antenna
CN113594695A (en) * 2021-08-04 2021-11-02 Oppo广东移动通信有限公司 Antenna assembly and wearable device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710631A (en) * 2015-06-27 2018-02-16 英特尔公司 Wearable antenna system
EP3435479A1 (en) * 2017-07-25 2019-01-30 Armour Surveillance Securtiy Equipment and Technology Ltd Wearable device with antenna
CN112334844A (en) * 2018-06-12 2021-02-05 佳明瑞士有限责任公司 Wrist-worn electronic device with side-wall loop antenna
CN111342202A (en) * 2020-04-02 2020-06-26 西安易朴通讯技术有限公司 Wearable equipment
CN113594695A (en) * 2021-08-04 2021-11-02 Oppo广东移动通信有限公司 Antenna assembly and wearable device

Also Published As

Publication number Publication date
CN118216043A (en) 2024-06-18

Similar Documents

Publication Publication Date Title
US8749435B2 (en) Antenna structure and electronic device having the same
TWI628856B (en) Wireless communication system and wearable electronic device comprising the same
CN115241623B (en) Earphone module
EP1120854A2 (en) Antenna apparatus and wristwatch radio communication device using same
US10965005B2 (en) Communication device and antenna structure
CN107645053B (en) Antenna structure and wireless communication device with same
WO2023116353A1 (en) Electronic device
CN112350047B (en) Wearable equipment
WO2023273786A1 (en) Wearable device
CN205282650U (en) Bluetooth headset's antenna system and bluetooth headset
WO2023087204A1 (en) Electronic wearable device having wireless communication function, and antenna strucure
WO2006013843A1 (en) Cellular phone
WO2021103974A1 (en) Electronic device
CN214797717U (en) Antenna structure and electronic equipment
WO2023108521A1 (en) Antenna structure and electronic wearable device
CN113422197A (en) Intelligent glasses antenna system and intelligent glasses
WO2024145804A1 (en) Head-mounted electronic device and antenna structure
CN220553596U (en) Antenna structure and intelligent glasses
CN109388182B (en) Communication device
US11196170B2 (en) Antenna device
CN217011144U (en) Wireless earphone
CN210351234U (en) Wireless device applied to intelligent terminal
CN113497344B (en) Mobile terminal
US20230275984A1 (en) Wireless Terminal
CN117031748A (en) Antenna structure and intelligent wearing glasses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180103473.2

Country of ref document: CN