WO2023087166A1 - Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale - Google Patents

Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale Download PDF

Info

Publication number
WO2023087166A1
WO2023087166A1 PCT/CN2021/131109 CN2021131109W WO2023087166A1 WO 2023087166 A1 WO2023087166 A1 WO 2023087166A1 CN 2021131109 W CN2021131109 W CN 2021131109W WO 2023087166 A1 WO2023087166 A1 WO 2023087166A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs ports
transmission layers
subset
transmission
dmrs
Prior art date
Application number
PCT/CN2021/131109
Other languages
English (en)
Inventor
Mostafa KHOSHNEVISAN
Yitao Chen
Fang Yuan
Wooseok Nam
Xiaoxia Zhang
Jing Sun
Tao Luo
Peter Gaal
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/131109 priority Critical patent/WO2023087166A1/fr
Publication of WO2023087166A1 publication Critical patent/WO2023087166A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for associating demodulation reference signal ports to sounding reference signal resource sets for spatial division multiplexing communications.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive a spatial division multiplexing configuration associated with a physical uplink shared channel (PUSCH) having a first set of transmission layers corresponding to a first sounding reference signal (SRS) resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the one or more processors may be configured to transmit a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of demodulation reference signal (DMRS) ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • DMRS demodulation reference signal
  • the base station may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the one or more processors may be configured to receive a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the method may include receiving a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the method may include transmitting a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the method may include transmitting a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the method may include receiving a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to transmit a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a base station.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to transmit a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to receive a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the apparatus may include means for receiving a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the apparatus may include means for transmitting a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the apparatus may include means for transmitting a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the apparatus may include means for receiving a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • components for analog and digital purposes e.g., hardware components including antennas, radio frequency chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of sounding reference signal (SRS) resource sets, in accordance with the present disclosure.
  • SRS sounding reference signal
  • Fig. 4 is a diagram illustrating an example associated with associating demodulation reference signal (DMRS) ports to SRS resource sets for spatial division multiplexing (SDM) communications, in accordance with the present disclosure.
  • DMRS demodulation reference signal
  • Figs. 5 and 6 are diagrams illustrating example processes associated with associating DMRS ports to SRS resource sets for SDM communications, in accordance with the present disclosure.
  • Figs. 7 and 8 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-aor FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may receive a spatial division multiplexing configuration associated with a physical uplink shared channel (PUSCH) having a first set of transmission layers corresponding to a first sounding reference signal (SRS) resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers; and transmit a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of demodulation reference signal (DMRS) ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number
  • DMRS demodulation reference signal
  • the base station 110 may include a communication manager 150.
  • the communication manager 150 may transmit a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers; and receive a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers. Additionally, or alternatively, the communication manager 150
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • Each of the antenna elements may include one or more sub-elements for radiating or receiving radio frequency signals.
  • a single antenna element may include a first sub-element cross-polarized with a second sub-element that can be used to independently transmit cross-polarized signals.
  • the antenna elements may include patch antennas, dipole antennas, or other types of antennas arranged in a linear pattern, a two-dimensional pattern, or another pattern.
  • a spacing between antenna elements may be such that signals with a desired wavelength transmitted separately by the antenna elements may interact or interfere (e.g., to form a desired beam) . For example, given an expected range of wavelengths or frequencies, the spacing may provide a quarter wavelength, half wavelength, or other fraction of a wavelength of spacing between neighboring antenna elements to allow for interaction or interference of signals transmitted by the separate antenna elements within that expected range.
  • Beam may refer to a directional transmission such as a wireless signal that is transmitted in a direction of a receiving device.
  • a beam may include a directional signal, a direction associated with a signal, a set of directional resources associated with a signal (e.g., angle of arrival, horizontal direction, vertical direction) , and/or a set of parameters that indicate one or more aspects of a directional signal, a direction associated with a signal, and/or a set of directional resources associated with a signal.
  • antenna elements and/or sub-elements may be used to generate beams.
  • antenna elements may be individually selected or deselected for transmission of a signal (or signals) by controlling an amplitude of one or more corresponding amplifiers.
  • Beamforming includes generation of a beam using multiple signals on different antenna elements, where one or more, or all, of the multiple signals are shifted in phase relative to each other.
  • the formed beam may carry physical or higher layer reference signals or information. As each signal of the multiple signals is radiated from a respective antenna element, the radiated signals interact, interfere (constructive and destructive interference) , and amplify each other to form a resulting beam.
  • the shape (such as the amplitude, width, and/or presence of side lobes) and the direction (such as an angle of the beam relative to a surface of an antenna array) can be dynamically controlled by modifying the phase shifts or phase offsets of the multiple signals relative to each other.
  • Beamforming may be used for communications between a UE and a base station, such as for millimeter wave communications and/or the like.
  • the base station may provide the UE with a configuration of transmission configuration indicator (TCI) states that respectively indicate beams that may be used by the UE, such as for receiving a physical downlink shared channel (PDSCH) .
  • TCI transmission configuration indicator
  • PDSCH physical downlink shared channel
  • the base station may indicate an activated TCI state to the UE, which the UE may use to select a beam for receiving the PDSCH.
  • a beam indication may be, or include, a TCI state information element, a beam identifier (ID) , spatial relation information, a TCI state ID, a closed loop index, a panel ID, a TRP ID, and/or a sounding reference signal (SRS) set ID, among other examples.
  • a TCI state information element (referred to as a TCI state herein) may indicate information associated with a beam such as a downlink beam.
  • the TCI state information element may indicate a TCI state identification (e.g., a tci-StateID) , a quasi-co-location (QCL) type (e.g., a qcl-Type1, qcl-Type2, qcl-TypeA, qcl-TypeB, qcl-TypeC, qcl-TypeD, and/or the like) , a cell identification (e.g., a ServCellIndex) , a bandwidth part identification (bwp-Id) , a reference signal identification such as a CSI-RS (e.g., an NZP-CSI-RS-ResourceId, an SSB-Index, and/or the like) , and/or the like.
  • Spatial relation information may similarly indicate information associated with an uplink beam.
  • the beam indication may be a joint or separate downlink (DL) /uplink (UL) beam indication in a unified TCI framework.
  • the network may support layer 1 (L1) -based beam indication using at least UE-specific (unicast) downlink control information (DCI) to indicate joint or separate DL/UL beam indications from active TCI states.
  • DCI downlink control information
  • existing DCI formats 1_1 and/or 1_2 may be reused for beam indication.
  • the network may include a support mechanism for a UE to acknowledge successful decoding of a beam indication. For example, the acknowledgment/negative acknowledgment (ACK/NACK) of the PDSCH scheduled by the DCI carrying the beam indication may be also used as an ACK for the DCI.
  • ACK/NACK acknowledgment/negative acknowledgment
  • Beam indications may be provided for carrier aggregation (CA) scenarios.
  • CA carrier aggregation
  • the network may support common TCI state ID update and activation to provide common QCL and/or common UL transmission spatial filter or filters across a set of configured component carriers (CCs) .
  • This type of beam indication may apply to intra-band CA, as well as to joint DL/UL and separate DL/UL beam indications.
  • the common TCI state ID may imply that one reference signal (RS) determined according to the TCI state (s) indicated by a common TCI state ID is used to provide QCL Type-D indication and to determine UL transmission spatial filters across the set of configured CCs.
  • RS reference signal
  • Some UEs and/or base stations may support full duplex operation in which the UEs and/or the base stations support full duplex operations.
  • a UE may support transmission via a first beam (e.g., using a first antenna panel) and may simultaneously support reception via a second beam (e.g., using a second antenna panel) .
  • Support for simultaneous transmission and reception may be conditional on beam separation, such as spatial separation (e.g., using different beams) , frequency separation, and/or the like.
  • support for simultaneous transmission may be conditional on using beamforming (e.g., in frequency range 2 (FR2) , in frequency range 4 (FR4) , for millimeter wave signals, and/or the like) .
  • FR2 frequency range 2
  • FR4 frequency range 4
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-8) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-8) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with associating DMRS ports to SRS resource sets for SDM communications, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • the UE includes means for receiving a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers; and/or means for transmitting a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the base station includes means for transmitting a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers; and/or means for receiving a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the means for the base station to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of SRS resource sets, in accordance with the present disclosure.
  • a base station 110 may configure a UE 120 with one or more SRS resource sets to allocate resources for SRS transmissions by the UE 120.
  • a configuration for SRS resource sets may be indicated in a radio resource control (RRC) message (e.g., an RRC configuration message or an RRC reconfiguration message) .
  • RRC radio resource control
  • an SRS resource set may include one or more resources (e.g., shown as SRS resources) , which may include time resources and/or frequency resources (e.g., a slot, a symbol, a resource block, and/or a periodicity for the time resources) .
  • An SRS resource indicator (SRI) field in a downlink control information (DCI) transmission may be used to indicate SRS resources to be used for an uplink transmission.
  • the SRI may indicate the uplink transmission rank and the set of precoders for the UE to use for the uplink transmission.
  • an SRS resource may include one or more antenna ports on which an SRS is to be transmitted (e.g., in a time-frequency resource) .
  • a configuration for an SRS resource set may indicate one or more time-frequency resources in which an SRS is to be transmitted and may indicate one or more antenna ports on which the SRS is to be transmitted in those time-frequency resources.
  • the configuration for an SRS resource set may indicate a use case (e.g., in an SRS-SetUse information element) for the SRS resource set.
  • an SRS resource set may have a use case of antenna switching, codebook, non-codebook, or beam management.
  • An antenna switching SRS resource set may be used to indicate downlink CSI with reciprocity between an uplink and downlink channel. For example, when there is reciprocity between an uplink channel and a downlink channel, a base station 110 may use an antenna switching SRS (e.g., an SRS transmitted using a resource of an antenna switching SRS resource set) to acquire downlink CSI (e.g., to determine a downlink precoder to be used to communicate with the UE 120) .
  • an antenna switching SRS e.g., an SRS transmitted using a resource of an antenna switching SRS resource set
  • a codebook SRS resource set may be used to indicate uplink CSI when a base station 110 indicates an uplink precoder to the UE 120.
  • the base station 110 may use a codebook SRS (e.g., an SRS transmitted using a resource of a codebook SRS resource set) to acquire uplink CSI (e.g., to determine an uplink precoder to be indicated to the UE 120 and used by the UE 120 to communicate with the base station 110) .
  • virtual ports e.g., a combination of two or more antenna ports
  • a maximum transmit power may be supported at least for a codebook SRS.
  • a codebook SRS resource set also may be used to facilitate codebook-based physical uplink shared channel (PUSCH) transmission.
  • PUSCH physical uplink shared channel
  • a UE can be configured with only one SRS resource set with a “usage” indicator set to “codebook. ”
  • codebook-based PUSCH transmission a maximum of 4 SRS resources within the set can be configured for the UE.
  • Each SRS resource can be RRC-configured with a number of ports (e.g., using a parameter nrofSRS-Ports) .
  • the SRI field in the DCI that schedules the PUSCH can indicate one SRS resource.
  • the number of ports configured for the indicated SRS resource determines the number of antenna ports used for the PUSCH transmission.
  • the PUSCH transmission is transmitted with the same spatial domain filter (e.g., uplink beam) as the indicated SRS resources.
  • the number of transmission layers (rank) and the transmitted precoding matrix indicator (TPMI) for the scheduled PUSCH is determined from a separate DCI field.
  • a non-codebook SRS resource set may be used to indicate uplink CSI when the UE 120 selects an uplink precoder (e.g., instead of the base station 110 indicated an uplink precoder to be used by the UE 120.
  • the base station 110 may use a non-codebook SRS (e.g., an SRS transmitted using a resource of a non-codebook SRS resource set) to acquire uplink CSI.
  • the non-codebook SRS may be precoded using a precoder selected by the UE 120 (e.g., which may be indicated to the base station 110) .
  • a non-codebook SRS resource set also may be used to facilitate non-codebook-based PUSCH transmission.
  • a UE can be configured with only one SRS resource set with the “usage” indicator set to “noncodebook. ”
  • non-codebook PUSCH transmission a maximum of 4 SRS resources within the set can be configured for the UE.
  • Each SRS resource has one port.
  • the SRI field in the DCI that schedules the PUSCH transmission can indicate one or multiple SRS resources.
  • the number of indicated SRS resources determines the rank for the scheduled PUSCH transmission and the PUSCH transmission is transmitted with the same precoder as well as the same spatial domain filter (e.g., beam) as the indicated SRS resources.
  • a beam management SRS resource set may be used for indicating CSI for millimeter wave communications.
  • An SRS resource can be configured as periodic, semi-persistent (sometimes referred to as semi-persistent scheduling (SPS) ) , or aperiodic.
  • a periodic SRS resource may be configured via a configuration message that indicates a periodicity of the SRS resource (e.g., a slot-level periodicity, where the SRS resources occurs every Y slots) and a slot offset.
  • a periodic SRS resource may always be activated, and may not be dynamically activated or deactivated.
  • a semi-persistent SRS resource may also be configured via a configuration message that indicates a periodicity and a slot offset for the semi-persistent SRS resource, and may be dynamically activated and deactivated (e.g., using DCI or a medium access control (MAC) control element (CE) (MAC-CE) ) .
  • An aperiodic SRS resource may be triggered dynamically, such as via DCI (e.g., UE-specific DCI or group common DCI) or a MAC-CE.
  • the UE 120 may be configured with a mapping between SRS ports (e.g., antenna ports) and corresponding SRS resources.
  • the UE 120 may transmit an SRS on a particular SRS resource using an SRS port indicated in the configuration.
  • an SRS resource may span N adjacent symbols within a slot (e.g., where N equals 1, 2, or 4) .
  • the UE 120 may be configured with X SRS ports (e.g., where X ⁇ 4) .
  • each of the X SRS ports may mapped to a corresponding symbol of the SRS resource and used for transmission of an SRS in that symbol.
  • different SRS resource sets indicated to the UE 120 may overlap (e.g., in time and/or in frequency, such as in the same slot) .
  • a first SRS resource set (e.g., shown as SRS Resource Set 1) is shown as having an antenna switching use case.
  • this example antenna switching SRS resource set includes a first SRS resource (shown as SRS Resource A) and a second SRS resource (shown as SRS Resource B) .
  • antenna switching SRS may be transmitted in SRS Resource A (e.g., a first time-frequency resource) using antenna port 0 and antenna port 1 and may be transmitted in SRS Resource B (e.g., a second time-frequency resource) using antenna port 2 and antenna port 3.
  • SRS Resource A e.g., a first time-frequency resource
  • SRS Resource B e.g., a second time-frequency resource
  • a second SRS resource set (e.g., shown as SRS Resource Set 2) may be a codebook use case.
  • this example codebook SRS resource set includes only the first SRS resource (shown as SRS Resource A) .
  • codebook SRSs may be transmitted in SRS Resource A (e.g., the first time-frequency resource) using antenna port 0 and antenna port 1.
  • the UE 120 may not transmit codebook SRSs in SRS Resource B (e.g., the second time-frequency resource) using antenna port 2 and antenna port 3.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • PUSCH transmissions may be configured as PUSCH repetitions.
  • PUSCH repetitions can be used to transmit one or more demodulation reference signals (DMRSs) to a base station.
  • DMRS may include a reference signal that is generated from a base sequence, such as a Zadoff-Chu sequence or a Gold sequence.
  • a DMRS may carry information used to estimate a radio channel for demodulation of an associated physical channel.
  • the physical channel may include, for example, a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , a physical uplink control channel (PUCCH) , and/or a PUSCH, among other examples.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink control channel
  • DMRSs may be specific to a physical channel for which the DMRS is used for estimation.
  • DMRSs are UE-specific, can be beamformed, can be confined in a scheduled resource (e.g., rather than transmitted on a wideband) , and can be transmitted only when necessary.
  • DMRSs are used for both downlink communications and uplink communications.
  • DMRSs can be transmitted using code division multiplexing (CDM) .
  • CDM grouping depends on a DMRS configuration type (DMRS Config Type) and a number of symbols.
  • DMRS Config Type 1 there can be two CDM groups.
  • DMRS Config Type 1 there can be two CDM groups.
  • CDM group 0 includes DMRS ports ⁇ 0, 1 ⁇
  • CDM group 1 includes DMRS ports ⁇ 2, 3 ⁇ .
  • 2-Symbol DMRS there are 8 ports having port numbers ⁇ 0-7 ⁇ .
  • the first CDM group, CDM group 0, includes DMRS ports ⁇ 0,1, 4, 5 ⁇ and the second CDM group, CDM group 1, includes DMRS ports ⁇ 2, 3, 6, 7 ⁇ .
  • DMRS ports that belong to the same CDM group are orthogonal in the code domain (e.g., they are CDMed) .
  • the orthogonality property between DMRS ports in the same CDM group becomes weaker if the transmission parameters are not the same (e.g., when they are from different beams of the same UE or when they are from different UEs) .
  • PUSCH repetitions can be transmitted using time division multiplexing (TDM) , in which the PUSCH repetitions correspond to different transmission parameters (beam/spatial relation, power control, precoding) .
  • TDM time division multiplexing
  • PUSCH repetitions that are scheduled by a single DCI transmission can belong to two sets, where each set has its own transmission parameters.
  • a UE may communicate with two TRPs. Communication with more than one TRP may be referred to as multiple-TRP (mTRP) communication, whereas communication with one TRP may be referred to as single-TRP (sTRP) communication.
  • mTRP multiple-TRP
  • sTRP single-TRP
  • the two sets of PUSCH repetitions can correspond to two SRS resource sets.
  • a DCI transmission can indicate two beams and two sets of power control parameters using two corresponding SRI fields.
  • the DCI transmission also indicates two TPMIs.
  • a UE may be configured to dynamically switch between sTRP communication and mTRP communication.
  • sTRP and mTRP e.g., dynamic switching between one set of transmission parameters for PUSCH repetitions and two sets of transmission parameters for PUSCH repetitions
  • a wireless communication standard introduced a new field in the DCI format.
  • the new field which may be referred to as a dynamic switching field, is 2 bits and indicates that the UE is to use the first set of parameters only (e.g., to transmit to a first TRP, TRP1) ; use the second set of parameters only (e.g., to transmit to a second TRP, TRP2) ; use both sets of parameters for two sets of repetitions with a first order (TRP1, TRP2) ; or use both sets of parameters for two sets of repetitions with a second order (TRP2, TRP1) , which may be referred to as a reversed order.
  • the rank and DMRS ports can be the same across all the repetitions.
  • an antenna ports field in an uplink-scheduling DCI indicates the DMRS ports.
  • a number of transmission layers (e.g., which may be equal to a number of DMRS ports) is determined from other fields for the case of PUSCH. For example, for codebook-based PUSCH transmission, the number of transmission layers can be based on a “precoding information and number of layers” field. For non-codebook PUSCH transmission, the number of transmission layers can be based on the SRI field. For example, for non-codebook PUSCH transmission, the number of transmission layers can be equal to the number of SRS resources in the SRS resource set.
  • the UE determines the rank (e.g., number of transmission layers) , and also determines DMRS configuration (e.g., via the parameters dmrs-Type and maxLength) based on RRC configuration, the corresponding specified antenna port table is determined, and the antenna port field in the DCI points to one row from that table.
  • DMRS ports and other information can be determined based on the antenna table.
  • different sets of layers have different transmission parameters (e.g., different beams, different sets of power control parameters, and/or different TPMIs, among other examples) .
  • the first set of transmission layers and/or DMRS ports can be associated with the first SRS resource set, and the second set of transmission layers and/or DMRS ports can be associated with the second SRS resource set.
  • a number of rank combinations can be supported such as, for example, rank combinations 1+1, 1+2, 2+1, 2+2, 1+3, and/or 3+1, among other examples.
  • wireless communication standards do not specify a technique for determining which DMRS ports belong to the first set of transmission layers (corresponding to the first SRS resource set) and which DMRS ports belong to the second set of transmission layers (corresponding to the second SRS resource set) .
  • the DMRS ports can be mapped to the two sets in any manner, but without a specified rule, a UE’s mapping may be unanticipated by a base station, resulting in missed communications and network inefficiencies.
  • the indicated DMRS ports belong to two CDM groups (e.g., DMRS ports ⁇ 0, 2, 4, 6 ⁇ for DMRS Config Type 1, and for 2+2 SDM PUSCH)
  • the UE may map ⁇ 0, 2 ⁇ to the first set and ⁇ 4, 6 ⁇ to the second set, which may result in interference, leading to missed communications and/or network inefficiencies.
  • a UE may receive an SDM configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set.
  • the first set of transmission layers may include a first number of transmission layers and the second set of transmission layers may include a second number of transmission layers.
  • the UE may transmit a PUSCH communication having the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers.
  • a port mapping indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers.
  • Fig. 4 is a diagram illustrating an example 400 associated with associating DMRS ports to SRS resource sets for SDM PUSCH communications, in accordance with the present disclosure.
  • a UE 405 and a base station 410 may communicate with one another.
  • the UE 405 may be, or be similar to, the UE 120 depicted in Figs. 1 and 2.
  • the base station 410 may be, or be similar to, the base station 110 depicted in Figs. 1 and 2.
  • the base station 410 may transmit, and the UE 405 may receive, an SDM configuration.
  • the SDM configuration may be associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set.
  • the first set of transmission layers may include a first number of transmission layers, r1
  • the second set of transmission layers may include a second number of transmission layers, r2.
  • the base station 410 may transmit, and the UE 405 may receive, a downlink control information (DCI) transmission.
  • the DCI transmission may include a first SRI field that indicates the SRS resources in the first SRS resource set and/or indicates a first number of SRS resources in the first set of SRS resources.
  • the DCI transmission may include a second SRI field that indicates the SRS resources in the second SRS resource set and/or indicates a second number of SRS resources in the second SRS resource set.
  • the DCI transmission may include a first transmitted precoder matrix indicator (TPMI) field that indicates the first number of transmission layers r1 and a second TPMI field that indicates the second number of transmission layers r2.
  • TPMI transmitted precoder matrix indicator
  • the DCI transmission may include a dynamic switching field that indicates no reversed order or reversed order.
  • the DCI may not include a dynamic switching field.
  • the UE 405 may determine a port mapping.
  • the port mapping may indicate a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers.
  • the port mapping may indicate a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers.
  • each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the set of DMRS port numbers may include the set of port numbers ⁇ 0, 1, 2, 3, 4, ... ⁇ or a portion thereof.
  • the first subset of DMRS ports may include a first number of DMRS ports and the second subset of DMRS ports may include a second number of DMRS ports.
  • the first number of DMRS ports may be equal to the second number of DMRS ports.
  • the first number of DMRS ports may be not equal to the second number of DMRS ports.
  • the UE 405 may determine the number of transmission layers in the first set of transmission layers (associated with the first SRS resource set) r1, and the number of transmission layers in the second set of transmission layers (associated with the second SRS resource set) r2.
  • r1 and r2 may be determined based at least in part on an indicated number of SRS resources in the first SRS resource set and the number of SRS resources in the second SRS resource set, respectively.
  • the number of SRS resources in the first SRS resource set may be indicated by a first SRI field in the DCI transmission and the number of resources in the second SRS resource set may be indicated by a second SRI field in the DCI transmission.
  • the UE 405 may determine the first number of DMRS ports based at least in part on a first number of transmission layers associated with a first TPMI and the second number of DMRS ports based at least in part on a second number of transmission layers associated with a second TPMI.
  • r1 and r2 may be equal to the number of layers associated with the first and second TPMIs (indicated by the two TPMI fields in the DCI transmission) , respectively.
  • RRC radio resource control
  • the UE 405 may determine the mapping based at least in part on a sequential mapping operation.
  • the sequential mapping operation may be applied when the DCI transmission does not include a dynamic switching field or when the DCI transmission includes a dynamic switching field that indicates no reversed order.
  • the first subset of DMRS ports may include a first number of DMRS ports, corresponding to a first subset of respective port numbers of the set of port numbers, equal to the first number of transmission layers r1.
  • the second subset of DMRS ports may include a second number of DMRS ports, corresponding to a second subset of respective port numbers of the set of port numbers, equal to the second number of transmission layers r2, where a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers.
  • the first r1 DMRS ports (with smaller port numbers) may be mapped to the first set of transmission layers and the remaining r2 DMRS ports (with larger port numbers) may be mapped to the second set of transmission layers.
  • the second subset of DMRS ports may include a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers r2.
  • the first subset of DMRS ports may include a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers r1, where a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • the first r2 DMRS ports (with smaller port number) may be mapped to the second set of transmission layers, and the remaining r1 DMRS ports (with larger port numbers) may be mapped to the first set of transmission layers.
  • the port mapping may map DMRS ports ⁇ 0, 2 ⁇ to the first set of transmission layers and DMRS ports ⁇ 4, 6 ⁇ to the second set of transmission layers.
  • the port mapping may map DMRS port ⁇ 0 ⁇ to the first set of transmission layers and DMRS ports ⁇ 1, 2 ⁇ to the second set of transmission layers.
  • the port mapping may map DMRS ports ⁇ 0, 1 ⁇ to the second set of transmission layers and DMRS port ⁇ 2 ⁇ to the first set of transmission layers.
  • the port mapping may be based at least in part on a number of CDM groups of the set of DMRS ports. For example, in some aspects, if all of the DMRS ports of the set of r1 + r2 DMRS ports belong to the same CDM group, and if the DCI transmission indicates no reversed order (or does not include a dynamic switching field) , the port mapping may be the sequential port mapping described above. If all of the DMRS ports of the set of r1 + r2 DMRS ports belong to the same CDM group, and if the DCI transmission indicates reversed order, the port mapping may be the reverse mapping described above.
  • the case in which all of the DMRS ports of the set of r1 + r2 DMRS ports belong to the same CDM group may be an error case.
  • the port mapping may map DMRS ports ⁇ 0, 1 ⁇ to the first set of transmission layers and DMRS ports ⁇ 4, 5 ⁇ to the second set of transmission layers.
  • the port mapping may map DMRS ports ⁇ 0, 1 ⁇ to the second set of transmission layers and DMRS ports ⁇ 4, 5 ⁇ to the first set of transmission layers.
  • r1 DMRS ports in the CDM group having a lower CDM group number of the two CDM group numbers corresponding to the first and second CDM group may be mapped to the first set of transmission layers, and r2 DMRS ports in the CDM group with the higher CDM group number may be mapped to the second set of transmission layers.
  • r1 DMRS ports in the CDM group with the higher CDM group number may be mapped to the first set, and r2 DMRS ports in the CDM group with the lower CDM group number may be mapped to the second set.
  • the DCI transmission indicates codepoint 10
  • the configuration type is DMRS Config Type 1
  • DMRS ports ⁇ 0, 4 ⁇ may belong to CDM group 0 and DMRS ports ⁇ 2, 6 ⁇ may belong to CDM group 1
  • the port mapping may map DMRS ports ⁇ 0, 4 ⁇ to the first set of transmission layers and DMRS ports ⁇ 2, 6 ⁇ to the second set of transmission layers.
  • the port mapping may map DMRS ports ⁇ 0, 4 ⁇ to the second set of transmission layers and DMRS ports ⁇ 2, 6 ⁇ to the first set of transmission layers.
  • dynamic switching with reversed order may not result in DMRS ports in the same CDM group to be mapped to the same set of transmission layers.
  • this case may be configured as an error case.
  • the first r2 DMRS ports may be mapped to the second set of transmission layers and the remaining r1 DMRS ports (with larger port numbers) may be mapped to the first set of transmission layers (e.g., a reversed order mapping) .
  • the port mapping may map DMRS port ⁇ 2 ⁇ to the first set and DMRS ports ⁇ 0, 1 ⁇ to the second set.
  • the port mapping may map DMRS port ⁇ 0 ⁇ to the first set of transmission layers and DMRS ports ⁇ 1, 2 ⁇ to the second set of transmission layers.
  • the port mapping may include a sequential mapping or a reversed order mapping. In some aspects, this case may be configured as an error case.
  • the port mapping may map DMRS ports ⁇ 0, 1, 2 ⁇ to the first set of transmission layers and DMRS port ⁇ 3 ⁇ to the second set of transmission layers. In this example, but where the DCI transmission indicates reversed order, the port mapping may map DMRS port ⁇ 0 ⁇ to the second set of transmission layers and DMRS ports ⁇ 1, 2, 3 ⁇ to the first set of transmission layers.
  • the UE 405 may transmit, and the base station 410 may receive, a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers.
  • the UE 405 may transmit the PUSCH communication based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, as described above.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 500 is an example where the UE (e.g., UE 405) performs operations associated with associating DMRS ports to SRS resource sets for SDM communications.
  • the UE e.g., UE 405
  • process 500 may include receiving a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers (block 510) .
  • the UE e.g., using communication manager 140 and/or reception component 702, depicted in Fig.
  • 7) may receive a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers, as described above.
  • process 500 may include transmitting a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers (block 520) .
  • the UE e.g., using communication manager 140 and/or transmission component 704, depicted in Fig.
  • 7) may transmit a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers, as described above.
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first subset of DMRS ports comprises a first number of DMRS ports and the second subset of DMRS ports comprises a second number of DMRS ports.
  • transmitting the PUSCH communication comprises transmitting the first set of transmission layers and the second set of transmission layers using non-codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of SRS resources in the first SRS resource set, and wherein the second number of DMRS ports is based at least in part on a second number of SRS resources in the second SRS resource set.
  • process 500 includes receiving a DCI transmission comprising a first SRI field that indicates the first number of SRS resources and a second SRI field that indicates the second number of SRS resources.
  • transmitting the PUSCH communication comprises transmitting the first set of transmission layers and the second set of transmission layers using codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of transmission layers associated with a first TPMI, and wherein the second number of DMRS ports is based at least in part on a second number of transmission layers associated with a second TPMI.
  • process 500 includes receiving a downlink control information transmission comprising a first TPMI field that indicates the first number of transmission layers and a second TPMI field that indicates the second number of transmission layers.
  • the first subset of DMRS ports includes a first number of DMRS ports, corresponding to a first subset of respective port numbers of the set of port numbers, equal to the first number of transmission layers
  • the second subset of DMRS ports includes a second number of DMRS ports, corresponding to a second subset of respective port numbers of the set of port numbers, equal to the second number of transmission layers, wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers.
  • process 500 includes receiving a DCI transmission, wherein the DCI transmission does not include a dynamic switching field.
  • process 500 includes receiving a DCI transmission, wherein the DCI transmission indicates no reversed order.
  • each DMRS port of the set of DMRS ports corresponds to a single code division multiplexing group.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group.
  • the first number of transmission layers equals the second number of transmission layers.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group, and the first number of transmission layers is different than the second number of transmission layers, and process 500 further includes receiving a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers based at least in part on at least one of a determination that the first number of DMRS ports is not equal to the first number of transmission layers, or a determination that the second number of DMRS ports is not equal to the second number of transmission layers.
  • process 500 includes receiving a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order, wherein, based at least in part on receiving the DCI transmission, the second subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers, wherein the first subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers, and wherein a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group, and the first number of transmission layers is different than the second number of transmission layers, and process 500 further includes receiving a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • process 500 includes determining an error based at least in part on the first subset of DMRS ports corresponding to a first CDM group and the second subset of DMRS ports corresponding to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein determining the error comprises determining that the first number of transmission layers is not equal to the second number of transmission layers.
  • process 500 includes determining an error based at least in part on the first subset of DMRS ports corresponding to a first CDM group and the second subset of DMRS ports corresponding to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein determining the error comprises at least one of determining that the first number of DMRS ports is not equal to the first number of transmission layers, or determining that the second number of DMRS ports is not equal to the second number of transmission layers.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with the present disclosure.
  • Example process 600 is an example where the base station (e.g., base station 410) performs operations associated with associating DMRS ports to SRS resource sets for SDM communications.
  • the base station e.g., base station 410 performs operations associated with associating DMRS ports to SRS resource sets for SDM communications.
  • process 600 may include transmitting a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers (block 610) .
  • the base station e.g., using communication manager 150 and/or transmission component 804, depicted in Fig.
  • 8) may transmit a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers, as described above.
  • process 600 may include receiving a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers (block 620) .
  • the base station e.g., using communication manager 150 and/or reception component 802, depicted in Fig.
  • a PUSCH communication may receive a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers, as described above.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first subset of DMRS ports comprises a first number of DMRS ports and the second subset of DMRS ports comprises a second number of DMRS ports.
  • receiving the PUSCH communication comprises receiving the first set of transmission layers and the second set of transmission layers using non-codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of SRS resources in the first SRS resource set, and wherein the second number of DMRS ports is based at least in part on a second number of SRS resources in the second SRS resource set.
  • process 600 includes transmitting a DCI transmission comprising a first SRI field that indicates the first number of SRS resources and a second SRI field that indicates the second number of SRS resources.
  • receiving the PUSCH communication comprises receiving the first set of transmission layers and the second set of transmission layers using codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of transmission layers associated with a first TPMI, and wherein the second number of DMRS ports is based at least in part on a second number of transmission layers associated with a second TPMI.
  • process 600 includes transmitting a downlink control information transmission comprising a first TPMI field that indicates the first number of transmission layers and a second TPMI field that indicates the second number of transmission layers.
  • the first subset of DMRS ports includes a first number of DMRS ports, corresponding to a first subset of respective port numbers of the set of port numbers, equal to the first number of transmission layers
  • the second subset of DMRS ports includes a second number of DMRS ports, corresponding to a second subset of respective port numbers of the set of port numbers, equal to the second number of transmission layers, wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers.
  • process 600 includes transmitting a DCI transmission, wherein the DCI transmission does not include a dynamic switching field.
  • process 600 includes transmitting a DCI transmission, wherein the DCI transmission indicates no reversed order.
  • each DMRS port of the set of DMRS ports corresponds to a single code division multiplexing group.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group.
  • the first number of transmission layers equals the second number of transmission layers.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group, and the first number of transmission layers is different than the second number of transmission layers, and process 600 further includes transmitting a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers based at least in part on at least one of a determination that the first number of DMRS ports is not equal to the first number of transmission layers, or a determination that the second number of DMRS ports is not equal to the second number of transmission layers.
  • process 600 includes transmitting a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order, wherein, based at least in part on transmitting the DCI transmission, the second subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers, wherein the first subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers, and wherein a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • the first subset of DMRS ports corresponds to a first CDM group and the second subset of DMRS ports corresponds to a second CDM group, and the first number of transmission layers is different than the second number of transmission layers, and process 600 further includes transmitting a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram of an example apparatus 700 for wireless communication.
  • the apparatus 700 may be a UE, or a UE may include the apparatus 700.
  • the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704.
  • the apparatus 700 may include the communication manager 140.
  • the communication manager 140 may include a determination component 708.
  • the apparatus 700 may be configured to perform one or more operations described herein in connection with Fig. 4. Additionally, or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5.
  • the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory.
  • a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706.
  • the reception component 702 may provide received communications to one or more other components of the apparatus 700.
  • the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 700.
  • the reception component 702 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706.
  • one or more other components of the apparatus 700 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706.
  • the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706.
  • the transmission component 704 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 704 may be co-located with the reception component 702 in a transceiver.
  • the reception component 702 may receive a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the transmission component 704 may transmit a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the reception component 702 may receive a DCI transmission comprising a first SRI field that indicates the first number of SRS resources and a second SRI field that indicates the second number of SRS resources.
  • the reception component 702 may receive a DCI transmission comprising a first TPMI field that indicates the first number of transmission layers and a second TPMI field that indicates the second number of transmission layers.
  • the reception component 702 may receive a DCI transmission, wherein the DCI transmission does not include a dynamic switching field.
  • the reception component 702 may receive a DCI transmission, wherein the DCI transmission indicates no reversed order.
  • the reception component 702 may receive a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order, wherein, based at least in part on receiving the DCI transmission, the second subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers, wherein the first subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers, and wherein a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • the communication manager 140 and/or determination component 708 may determine an error based at least in part on the first subset of DMRS ports corresponding to a first CDM group and the second subset of DMRS ports corresponding to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein determining the error comprises determining that the first number of transmission layers is not equal to the second number of transmission layers.
  • the communication manager 140 may include one or more antennas, a modem, a modulator, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the communication manager 140 may include the reception component 702 and/or the transmission component 704. In some aspects, the determination component 708 may include one or more antennas, a modem, a modulator, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the determination component 708 may include the reception component 702 and/or the transmission component 704.
  • the determination component 708 may determine an error based at least in part on the first subset of DMRS ports corresponding to a first CDM group and the second subset of DMRS ports corresponding to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein determining the error comprises at least one of determining that the first number of DMRS ports is not equal to the first number of transmission layers, or determining that the second number of DMRS ports is not equal to the second number of transmission layers.
  • Fig. 7 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
  • Fig. 8 is a diagram of an example apparatus 800 for wireless communication.
  • the apparatus 800 may be a base station, or a base station may include the apparatus 800.
  • the apparatus 800 includes a reception component 802 and a transmission component 804, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 800 may communicate with another apparatus 806 (such as a UE, a base station, or another wireless communication device) using the reception component 802 and the transmission component 804.
  • the apparatus 800 may include the communication manager 150.
  • the apparatus 800 may be configured to perform one or more operations described herein in connection with Fig. 4. Additionally, or alternatively, the apparatus 800 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6.
  • the apparatus 800 and/or one or more components shown in Fig. 8 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 8 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 802 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 806.
  • the reception component 802 may provide received communications to one or more other components of the apparatus 800.
  • the reception component 802 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 800.
  • the reception component 802 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
  • the transmission component 804 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 806.
  • one or more other components of the apparatus 800 may generate communications and may provide the generated communications to the transmission component 804 for transmission to the apparatus 806.
  • the transmission component 804 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 806.
  • the transmission component 804 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 804 may be co-located with the reception component 802 in a transceiver.
  • the transmission component 804 may transmit a spatial division multiplexing configuration associated with a PUSCH having a first set of transmission layers corresponding to a first SRS resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers.
  • the reception component 802 may receive a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of DMRS ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • the transmission component 804 may transmit a DCI transmission comprising a first SRI field that indicates the first number of SRS resources and a second SRI field that indicates the second number of SRS resources.
  • the transmission component 804 may transmit a DCI transmission comprising a first TPMI field that indicates the first number of transmission layers and a second TPMI field that indicates the second number of transmission layers.
  • the transmission component 804 may transmit a DCI transmission, wherein the DCI transmission does not include a dynamic switching field.
  • the transmission component 804 may transmit a DCI transmission, wherein the DCI transmission indicates no reversed order.
  • the transmission component 804 may transmit a DCI transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order, wherein, based at least in part on transmitting the DCI transmission, the second subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers, wherein the first subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers, and wherein a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • the communication manager 150 may control and/or manage one or more aspects of operations performed by the reception component 802 and/or the transmission component 804.
  • the communication manager 150 may include one or more antennas, a modem, a modulator, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
  • the communication manager 150 may include the reception component 802 and/or the transmission component 804.
  • Fig. 8 The number and arrangement of components shown in Fig. 8 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 8. Furthermore, two or more components shown in Fig. 8 may be implemented within a single component, or a single component shown in Fig. 8 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 8 may perform one or more functions described as being performed by another set of components shown in Fig. 8.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving a spatial division multiplexing configuration associated with a physical uplink shared channel (PUSCH) having a first set of transmission layers corresponding to a first sounding reference signal (SRS) resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers; and transmitting a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of demodulation reference signal (DMRS) ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port
  • DMRS
  • Aspect 2 The method of Aspect 1, wherein the first subset of DMRS ports comprises a first number of DMRS ports and wherein the second subset of DMRS ports comprises a second number of DMRS ports.
  • Aspect 3 The method of Aspect 2, wherein transmitting the PUSCH communication comprises transmitting the first set of transmission layers and the second set of transmission layers using non-codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of SRS resources in the first SRS resource set, and wherein the second number of DMRS ports is based at least in part on a second number of SRS resources in the second SRS resource set.
  • Aspect 4 The method of Aspect 3, further comprising receiving a downlink control information (DCI) transmission comprising a first SRS resource indicator (SRI) field that indicates the first number of SRS resources and a second SRI field that indicates the second number of SRS resources.
  • DCI downlink control information
  • SRI SRS resource indicator
  • Aspect 5 The method of any of Aspects 2-4, wherein transmitting the PUSCH communication comprises transmitting the first set of transmission layers and the second set of transmission layers using codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of transmission layers associated with a first transmitted precoding matrix indicator (TPMI) , and wherein the second number of DMRS ports is based at least in part on a second number of transmission layers associated with a second TPMI.
  • TPMI transmitted precoding matrix indicator
  • Aspect 6 The method of Aspect 5, further comprising receiving a downlink control information transmission comprising a first TPMI field that indicates the first number of transmission layers and a second TPMI field that indicates the second number of transmission layers.
  • Aspect 7 The method of any of Aspects 1-6, wherein the first subset of DMRS ports includes a first number of DMRS ports, corresponding to a first subset of respective port numbers of the set of port numbers, equal to the first number of transmission layers, and wherein the second subset of DMRS ports includes a second number of DMRS ports, corresponding to a second subset of respective port numbers of the set of port numbers, equal to the second number of transmission layers, wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers.
  • Aspect 8 The method of Aspect 7, further comprising receiving a downlink control information (DCI) transmission, wherein the DCI transmission does not include a dynamic switching field.
  • DCI downlink control information
  • Aspect 9 The method of Aspect 7, further comprising receiving a downlink control information (DCI) transmission, wherein the DCI transmission indicates no reversed order.
  • DCI downlink control information
  • Aspect 10 The method of any of Aspects 7-9, wherein each DMRS port of the set of DMRS ports corresponds to a single code division multiplexing group.
  • Aspect 11 The method of any of Aspects 7-9, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group.
  • CDM code division multiplexing
  • Aspect 12 The method of any of Aspects 7-11, wherein the first number of transmission layers equals the second number of transmission layers.
  • Aspect 13 The method of Aspect 7, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group, and wherein the first number of transmission layers is different than the second number of transmission layers, the method further comprising receiving a downlink control information (DCI) transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • DCI downlink control information
  • Aspect 14 The method of any of Aspects 1-6, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers based at least in part on at least one of: a determination that the first number of DMRS ports is not equal to the first number of transmission layers, or a determination that the second number of DMRS ports is not equal to the second number of transmission layers.
  • CDM code division multiplexing
  • Aspect 15 The method of any of Aspects 1-6, further comprising receiving a downlink control information (DCI) transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order, wherein, based at least in part on receiving the DCI transmission, the second subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers, wherein the first subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers, and wherein a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • DCI downlink control information
  • Aspect 16 The method of Aspect 15, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group, and wherein the first number of transmission layers is different than the second number of transmission layers, the method further comprising receiving a downlink control information (DCI) transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • DCI downlink control information
  • Aspect 17 The method of any of Aspects 1-16, further comprising determining an error based at least in part on the first subset of DMRS ports corresponding to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponding to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein determining the error comprises: determining that the first number of transmission layers is not equal to the second number of transmission layers.
  • CDM code division multiplexing
  • Aspect 18 The method of any of Aspects 1-17, further comprising determining an error based at least in part on the first subset of DMRS ports corresponding to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponding to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein determining the error comprises at least one of: determining that the first number of DMRS ports is not equal to the first number of transmission layers, or determining that the second number of DMRS ports is not equal to the second number of transmission layers.
  • CDM code division multiplexing
  • a method of wireless communication performed by a base station comprising: transmitting a spatial division multiplexing configuration associated with a physical uplink shared channel (PUSCH) having a first set of transmission layers corresponding to a first sounding reference signal (SRS) resource set and a second set of transmission layers corresponding to a second SRS resource set, wherein the first set of transmission layers comprises a first number of transmission layers and the second set of transmission layers comprises a second number of transmission layers; and receiving a PUSCH communication that includes the first set of transmission layers and the second set of transmission layers based at least in part on a port mapping that indicates a first association between a first subset of demodulation reference signal (DMRS) ports of a set of DMRS ports and the first set of transmission layers, and a second association between a second subset of DMRS ports of the set of DMRS ports and the second set of transmission layers, wherein each DMRS port in the set of DMRS ports has a different respective port number of a set of port numbers.
  • PUSCH physical
  • Aspect 20 The method of Aspect 19, wherein the first subset of DMRS ports comprises a first number of DMRS ports and wherein the second subset of DMRS ports comprises a second number of DMRS ports.
  • Aspect 21 The method of Aspect 20, wherein receiving the PUSCH communication comprises receiving the first set of transmission layers and the second set of transmission layers using non-codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of SRS resources in the first SRS resource set, and wherein the second number of DMRS ports is based at least in part on a second number of SRS resources in the second SRS resource set.
  • Aspect 22 The method of Aspect 21, further comprising transmitting a downlink control information (DCI) transmission comprising a first SRS resource indicator (SRI) field that indicates the first number of SRS resources and a second SRI field that indicates the second number of SRS resources.
  • DCI downlink control information
  • SRI SRS resource indicator
  • Aspect 23 The method of any of Aspects 20-22, wherein receiving the PUSCH communication comprises receiving the first set of transmission layers and the second set of transmission layers using codebook-based transmission, wherein the first number of DMRS ports is based at least in part on a first number of transmission layers associated with a first transmitted precoding matrix indicator (TPMI) , and wherein the second number of DMRS ports is based at least in part on a second number of transmission layers associated with a second TPMI.
  • TPMI transmitted precoding matrix indicator
  • Aspect 24 The method of Aspect 23, further comprising transmitting a downlink control information transmission comprising a first TPMI field that indicates the first number of transmission layers and a second TPMI field that indicates the second number of transmission layers.
  • Aspect 25 The method of any of Aspects 19-24, wherein the first subset of DMRS ports includes a first number of DMRS ports, corresponding to a first subset of respective port numbers of the set of port numbers, equal to the first number of transmission layers, and wherein the second subset of DMRS ports includes a second number of DMRS ports, corresponding to a second subset of respective port numbers of the set of port numbers, equal to the second number of transmission layers, wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers.
  • Aspect 26 The method of Aspect 25, further comprising transmitting a downlink control information (DCI) transmission, wherein the DCI transmission does not include a dynamic switching field.
  • DCI downlink control information
  • Aspect 27 The method of Aspect 25, further comprising transmitting a downlink control information (DCI) transmission, wherein the DCI transmission indicates no reversed order.
  • DCI downlink control information
  • Aspect 28 The method of any of Aspects 25-27, wherein each DMRS port of the set of DMRS ports corresponds to a single code division multiplexing group.
  • Aspect 29 The method of any of Aspects 25-27, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group.
  • CDM code division multiplexing
  • Aspect 30 The method of any of Aspects 25-29, wherein the first number of transmission layers equals the second number of transmission layers.
  • Aspect 31 The method of Aspect 25, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group, and wherein the first number of transmission layers is different than the second number of transmission layers, the method further comprising transmitting a downlink control information (DCI) transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • DCI downlink control information
  • Aspect 32 The method of any of Aspects 19-24, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group, wherein the first subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers, wherein the second subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers, and wherein a largest respective port number of the first subset of respective port numbers is smaller than a smallest respective port number of the second subset of respective port numbers based at least in part on at least one of: a determination that the first number of DMRS ports is not equal to the first number of transmission layers, or a determination that the second number of DMRS ports is not equal to the second number of transmission layers.
  • CDM code division multiplexing
  • Aspect 33 The method of any of Aspects 19-24, further comprising transmitting a downlink control information (DCI) transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order, wherein, based at least in part on transmitting the DCI transmission, the second subset of DMRS ports includes a first number of DMRS ports corresponding to a first subset of respective port numbers of the set of port numbers equal to the second number of transmission layers, wherein the first subset of DMRS ports includes a second number of DMRS ports corresponding to a second subset of respective port numbers of the set of port numbers equal to the first number of transmission layers, and wherein a largest respective port number of the second subset of respective port numbers is smaller than a smallest respective port number of the first subset of respective port numbers.
  • DCI downlink control information
  • Aspect 34 The method of Aspect 33, wherein the first subset of DMRS ports corresponds to a first code division multiplexing (CDM) group and the second subset of DMRS ports corresponds to a second CDM group, and wherein the first number of transmission layers is different than the second number of transmission layers, the method further comprising transmitting a downlink control information (DCI) transmission, wherein the DCI transmission includes a dynamic switching field that indicates a reversed order.
  • DCI downlink control information
  • Aspect 35 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-18.
  • Aspect 36 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-18.
  • Aspect 37 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-18.
  • Aspect 38 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-18.
  • Aspect 39 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-18.
  • Aspect 40 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 19-34.
  • Aspect 41 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 19-34.
  • Aspect 42 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 19-34.
  • Aspect 43 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 19-34.
  • Aspect 44 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 19-34.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Divers aspects de la présente divulgation on trait d'une manière générale à la communication sans fil. Selon certains aspects, un équipement utilisateur (UE) peut recevoir une configuration de multiplexage par répartition spatiale associée à un canal physique partagé de liaison montante (PUSCH) comportant un premier ensemble de couches de transmission correspondant à un premier ensemble de ressources de signal de référence de sondage (SRS) et un second ensemble de couches de transmission correspondant à un second ensemble de ressources de SRS. L'UE peut transmettre une communication PUSCH qui comprend les premier et second ensembles de couches de transmission, au moins en partie sur la base d'une mise en correspondance de ports qui indique une première association entre un premier sous-ensemble de ports de signal de référence de démodulation (DMRS) d'un ensemble de ports DMRS et le premier ensemble de couches de transmission, et une seconde association entre un second sous-ensemble de ports DMRS et le second ensemble de couches de transmission. De nombreux autres aspects sont décrits.
PCT/CN2021/131109 2021-11-17 2021-11-17 Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale WO2023087166A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131109 WO2023087166A1 (fr) 2021-11-17 2021-11-17 Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131109 WO2023087166A1 (fr) 2021-11-17 2021-11-17 Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale

Publications (1)

Publication Number Publication Date
WO2023087166A1 true WO2023087166A1 (fr) 2023-05-25

Family

ID=86396163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131109 WO2023087166A1 (fr) 2021-11-17 2021-11-17 Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale

Country Status (1)

Country Link
WO (1) WO2023087166A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
WO2020073257A1 (fr) * 2018-10-10 2020-04-16 Oppo广东移动通信有限公司 Procédé de communication sans fil, et dispositif terminal
US20210235455A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Non-transparent single frequency network scheme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
WO2020073257A1 (fr) * 2018-10-10 2020-04-16 Oppo广东移动通信有限公司 Procédé de communication sans fil, et dispositif terminal
US20210235455A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Non-transparent single frequency network scheme

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEC: "Discussion on multi-TRP transmission", 3GPP TSG RAN WG1 #98 R1-1908859, 16 August 2019 (2019-08-16), XP051765467 *
VIVO: "Discussion on the remaining details on PT-RS", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800191, 13 January 2018 (2018-01-13), XP051384681 *

Similar Documents

Publication Publication Date Title
US20230106730A1 (en) Quasi co-location prioritization rules for multi-downlink control information reception and physical downlink control channel repetition
US20230069544A1 (en) Joint transmission configuration indicator (tci) indication for single-channel tci
US11876755B2 (en) Activation and periodicity indications for full duplex and half duplex transmissions of periodic communications
US20220225314A1 (en) Association of channel reference signals with a common beam transmission configuration indicator
WO2022104343A1 (fr) Informations de commande de liaison descendante pour indiquer un état d'indication de configuration de transmission associé à un faisceau commun
WO2023087166A1 (fr) Association de ports de signal de référence de démodulation à des ensembles de ressources de signal de référence de sondage pour des communications à multiplexage par répartition spatiale
WO2023087167A1 (fr) Signalisation d'indicateur de ressource de signal de référence de sondage pour des communications à multiplexage par répartition spatiale
WO2023097542A1 (fr) Indicateur de ressource de signal de référence de sondage et signalisation d'indicateur de matrice de précodeur de transmission pour multiplexage par répartition spatiale de liaison montante
US20230101753A1 (en) Communications associated with different sounding reference signal resource sets
US20230058509A1 (en) Sounding reference signal resource set determination for downlink control information
US20230136011A1 (en) Connected mode synchronization in a scalable cell system
US20240089950A1 (en) Sidelink unified transmission configuration indicator state
WO2023133676A1 (fr) Ressources de signaux de référence de sondage avec des périodicités inégales
WO2023147686A1 (fr) Configuration de canal physique d'accès aléatoire dans des opérations à multiples points de transmission et réception sur la base de multiples informations de commande de liaison descendante
US11910219B2 (en) LTE cell-specific reference signal interference handling
US11664948B2 (en) Techniques for managing sounding reference signal resource switching
US20220248444A1 (en) Transmission configuration indicator state types for sounding reference signal as source reference signal
US20230119446A1 (en) Configuring sidelink transmission configuration indication state using access link signaling
US20230123886A1 (en) Configuring sidelink transmission configuration indicator states
US20240154651A1 (en) Beam indications for single transmit receive point and multiple transmit receive point communications
US20230354267A1 (en) Sounding reference signal resource configuration
WO2023147684A1 (fr) Paramètres de temporisation pour configurations de multiples points d'émission-réception basées sur de multiples informations de commande de liaison descendante
WO2023133719A1 (fr) Sélection de faisceau par défaut de canal partagé de liaison descendante physique
US20230254097A1 (en) Transmission configuration indicator states in downlink control information format 1_2
US20230129790A1 (en) Techniques for resource allocation for avoiding beam conflict in sidelink communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964332

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024008663

Country of ref document: BR