WO2023087149A1 - 随机接入信道重复传输、接收方法和装置 - Google Patents

随机接入信道重复传输、接收方法和装置 Download PDF

Info

Publication number
WO2023087149A1
WO2023087149A1 PCT/CN2021/130983 CN2021130983W WO2023087149A1 WO 2023087149 A1 WO2023087149 A1 WO 2023087149A1 CN 2021130983 W CN2021130983 W CN 2021130983W WO 2023087149 A1 WO2023087149 A1 WO 2023087149A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach
repeated transmission
uplink
uplink beam
mapping relationship
Prior art date
Application number
PCT/CN2021/130983
Other languages
English (en)
French (fr)
Inventor
延凯悦
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003817.2A priority Critical patent/CN116636275A/zh
Priority to PCT/CN2021/130983 priority patent/WO2023087149A1/zh
Publication of WO2023087149A1 publication Critical patent/WO2023087149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, in particular, to a random access channel repeated transmission method, a random access channel repeated transmission receiving method, a random access channel repeated transmission device, a random access channel repeated transmission receiving device, a communication device and a computer readable storage media.
  • enhanced coverage can be implemented, for example, it can be realized by repeatedly transmitting repetition.
  • a random access channel Physical Random Access Channel, PRACH
  • the uplink coverage of the PRACH can be enhanced through repeated transmission.
  • PRACH Physical Random Access Channel
  • the embodiments of the present disclosure propose a random access channel repeated transmission method, a random access channel repeated transmission receiving method, a random access channel repeated transmission device, a random access channel repeated transmission receiving device, a communication device, and a computer can
  • the storage medium is read to solve technical problems in related technologies.
  • a random access channel repeated transmission method executed by the terminal, the method includes: determining the mapping relationship between the repeated transmission of the random access channel PRACH and the uplink beam; according to the The above mapping relationship determines the uplink beam corresponding to each repeated transmission of the PRACH; the corresponding repeated transmission of the PRACH is performed on the determined uplink beam.
  • a random access channel repeated transmission receiving method which is executed by a network side device, the method includes: determining the mapping between the terminal random access channel PRACH repeated transmission and the uplink beam relationship; determine the uplink beam corresponding to each repeated transmission of the PRACH according to the mapping relationship; receive the repeated transmission of the PRACH corresponding to the determined uplink beam performed by the terminal on the receiving beam corresponding to the determined uplink beam.
  • a random access channel repeated transmission device includes one or more processors, and the processor is configured to: determine the repeated transmission of the random access channel PRACH and A mapping relationship between uplink beams; according to the mapping relationship, an uplink beam corresponding to each repeated transmission of the PRACH is determined; and a corresponding repeated transmission of the PRACH is performed on the determined uplink beam.
  • a random access channel repetition transmission receiving device includes one or more processors, and the processor is configured to: determine the repetition of the random access channel PRACH of the terminal A mapping relationship between transmission and uplink beams; according to the mapping relationship, determine the uplink beam corresponding to each repeated transmission of PRACH; receive the determined uplink beam corresponding to the terminal on the receiving beam corresponding to the determined uplink beam Repeated transmission of the PRACH.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the above random access channel repeated transmission is realized method.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the above random access channel repeated transmission is realized Receive method.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the above random access channel repeated transmission method are implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the above random access channel repeated transmission and reception method are implemented.
  • the terminal can determine the mapping relationship between the repeated transmission of PRACH and the uplink beam, and then when the repeated transmission of PRACH is required, the uplink beam corresponding to each repeated transmission of PRACH can be determined according to the mapping relationship, and then the determined The repeated transmission of the PRACH corresponding to the determined uplink beam is performed on the uplink beam, so as to ensure that for each repeated transmission of the PRACH, an appropriate uplink beam can be selected for transmission.
  • Fig. 1 is a schematic flowchart of a random access channel repeated transmission method according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart of another random access channel repeated transmission method according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic flowchart of another random access channel repeated transmission method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart of a random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram of an apparatus for repeated transmission and reception of a random access channel according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic block diagram of an apparatus for repeated transmission of a random access channel according to an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the terms used herein are “greater than” or “less than”, “higher than” or “lower than” when representing a size relationship. But for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of "below” also covers the meaning of "less than or equal to”.
  • Fig. 1 is a schematic flowchart of a random access channel repeated transmission method according to an embodiment of the present disclosure.
  • the random access channel repeated transmission method shown in this embodiment can be performed by a terminal, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the terminal can communicate with network-side equipment, and the network-side equipment includes but is not limited to network-side equipment in communication systems such as 4G, 5G, and 6G, including but not limited to base stations, core networks, and the like.
  • the random access channel repeated transmission method may include the following steps:
  • step S101 determine the mapping relationship between the repeated transmission of the random access channel PRACH and the uplink beam
  • step S102 the uplink beam corresponding to each repeated transmission of PRACH is determined according to the mapping relationship
  • step S103 repeated transmission of the corresponding PRACH is performed on the determined uplink beam.
  • the terminal may perform repeated transmission on the PRACH.
  • the repeated transmission repetition is different from the retransmission retransmission, the repeated transmission refers to multiple repeated transmissions, and the retransmission refers to retransmission due to some reasons (such as transmission failure).
  • the terminal communicates with the network side device through the beam beam, since there may be multiple uplink beams, when the PRACH is repeatedly transmitted, how to select the uplink beam corresponding to each repeated transmission of the PRACH is an urgent problem to be solved.
  • the terminal can determine the mapping relationship between the repeated transmission of the PRACH and the uplink beam, and then when the repeated transmission of the PRACH is required, the uplink beam corresponding to each repeated transmission of the PRACH can be determined according to the mapping relationship, and then The repeated transmission of the PRACH corresponding to the determined uplink beam is performed on the determined uplink beam, so as to ensure that for each repeated transmission of the PRACH, an appropriate uplink beam can be selected for transmission.
  • How the terminal determines the mapping relationship can be adjusted according to actual needs.
  • the following uses several embodiments to illustrate how the terminal determines the mapping relationship.
  • the determining the mapping relationship between the repeated transmission of the random access channel PRACH and the uplink beam includes: determining the mapping relationship according to the agreement.
  • the terminal may determine the mapping relationship according to the agreement, and in this case, the network side device may also determine the mapping relationship according to the agreement.
  • the network side device can also determine the uplink beam used by the terminal for the repeated transmission of the PRACH according to the mapping relationship, and then can receive the beam corresponding to the determined uplink beam.
  • the uplink receiving terminal performs repeated transmission of the PRACH on the determined uplink beam, so as to ensure good signal reception quality.
  • the determining the mapping relationship between the repeated transmission of the random access channel PRACH and the uplink beam includes: determining the mapping relationship according to the configuration of the network side equipment.
  • the network side device may determine the mapping relationship, and then configure the mapping relationship to the terminal.
  • the network-side device may determine the mapping relationship according to the agreement, may also determine the mapping relationship according to the needs of the network-side device itself, and may also determine the mapping relationship according to the state of the terminal.
  • the network-side device since the mapping relationship is configured by the network-side device to the terminal, the network-side device itself has obviously known the mapping relationship, and can subsequently determine the uplink used by the terminal for repeated PRACH transmissions based on the mapping relationship. Beams, and then the receiving beam corresponding to the determined uplink beam may be selected to receive the PRACH repeatedly transmitted by the terminal, so as to ensure good signal reception quality.
  • mapping relationship is set separately for each terminal.
  • the agreement may agree to assign and set the mapping relationship for each terminal.
  • the mapping relationship determined by different terminals based on the agreement may be different or the same;
  • the network-side device can set the mapping relationship for each terminal, and then configure it to the terminal. For example, it can set the mapping relationship according to the status of each terminal, and then configure the mapping relationship to the corresponding terminal.
  • the mapping relationship a is determined according to the state of terminal A
  • the mapping relationship b is determined according to the state of terminal B
  • the mapping relationship a can be configured for terminal A
  • the mapping relationship b can be configured for terminal B, which is beneficial to ensure that the determined mapping relationship conforms to each The actual needs of a terminal.
  • the number of repeated transmissions of the PRACH can be multiple times, and there can be multiple uplink beams. In the following embodiments, the number of repeated transmissions of the PRACH is 4 times, and the number of uplink beams is 32.
  • the technical solution is illustrated as an example.
  • Fig. 2 is a schematic flowchart of another random access channel repeated transmission method according to an embodiment of the present disclosure. As shown in Figure 2, the first number of uplink beams available to the terminal is greater than the number of repetitions of PRACH repeated transmission, and the method further includes:
  • step S201 selecting a second number of uplink beams from the first number of available uplink beams as candidate uplink beams, wherein the second number is less than or equal to the number of repetitions;
  • the determining the uplink beam corresponding to the repeated transmission of each PRACH according to the mapping relationship includes:
  • step S202 among the candidate uplink beams, an uplink beam corresponding to each repeated transmission of the PRACH is determined according to the mapping relationship.
  • the terminal may select the second number of uplink beams from the first number of available uplink beams as candidate uplink beams, and then follow up
  • the uplink beam corresponding to each repeated transmission of the PRACH may be determined from the candidate uplink beams according to the mapping relationship.
  • the second number is less than or equal to the number of repetitions, that is, the number of selected candidate uplink beams will not be greater than the number of repetitions. Accordingly, even if one repeated transmission of PRACH is mapped to one uplink beam, it can also meet the requirement of repeated transmission ( Multiple repeated transmissions of the PRACH are mapped to one uplink beam to better meet the requirements), avoiding selecting too many uplink beams as candidate uplink beams and causing subsequent part of the candidate uplink beams not to be used for repeated transmission of the PRACH to cause resource waste.
  • the first number is 32 and the number of repetitions is 4, then the second number is less than or equal to 4, that is, at most 4 uplink beams are selected as candidate uplink beams for repeated transmission of PRACH, even if one repeated transmission of PRACH is mapped to one uplink Beam, then 4 repeated transmissions of PRACH can be realized with only 4 uplink beams, so as to avoid selecting too many uplink beams as candidate uplink beams and causing subsequent part of candidate uplink beams not to be used for repeated transmission of PRACH, resulting in waste of resources .
  • the mapping relationship may be a relative mapping relationship rather than an absolute mapping relationship.
  • the mapping relationship can be that the first repeated transmission of PRACH corresponds to the uplink beam with the smallest sequence number among the candidate uplink beams, and the second repeated transmission of PRACH corresponds to the second smallest sequence number among the candidate uplink beams.
  • the third repeated transmission of the PRACH corresponds to the third smallest uplink beam among the candidate uplink beams.
  • the fourth repeated transmission of the PRACH corresponds to the fourth smallest uplink beam among the candidate uplink beams.
  • the mapping relationship does not limit the absolute mapping relationship between each repeated transmission of PRACH and the sequence number of the uplink beam, but defines the relative mapping relationship between the repeated transmission of PRACH and the sequence number of the uplink beam, so that each time the candidate After the uplink beam is selected, the uplink beam corresponding to the repeated transmission of the PRACH can be determined among the candidate uplink beams according to the mapping relationship.
  • the mapping relationship may also define an absolute mapping relationship between each repeated transmission of the PRACH and the sequence number of the uplink beam, which may be specifically set as required.
  • the mapping relationship can be that the first repeated transmission of PRACH corresponds to the uplink beam with the sequence number 1 among the candidate uplink beams, and the second PRACH transmission.
  • the first repeated transmission corresponds to the uplink beam with serial number 2 among the candidate uplink beams
  • the third repeated transmission of PRACH corresponds to the uplink beam with serial number 3 among the candidate uplink beams.
  • the fourth repeated transmission of PRACH corresponds to the uplink beam with serial number 4 among the candidate uplink beams. beam.
  • the number of selected candidate uplink beams may be equal to the first number or less than the first number.
  • the selected candidate When the number of uplink beams is less than the number of repetitions, the mapping relationship between the repeated transmission of PRACH and the uplink beam may be difficult to satisfy the mapping of one repeated transmission of PRACH to one uplink beam, so other mapping methods can be selected, such as multiple repeated transmissions of PRACH Mapped to one uplink beam, or multiple repeated transmissions of the PRACH are mapped to multiple uplink beams.
  • Fig. 3 is a schematic flowchart of another random access channel repeated transmission method according to an embodiment of the present disclosure.
  • the selecting a second number of uplink beams from the first number of available uplink beams as candidate uplink beams includes:
  • step S301 according to the relevant parameters of the available uplink beams, a second number of uplink beams are selected from the first number of available uplink beams as the candidate uplink beams.
  • the terminal may first acquire the relevant parameters of the uplink beams, and then select the second number of uplink beams from the first number of available uplink beams according to the relevant parameters as the candidate uplink beams for repeated transmission of the PRACH. It is beneficial to meet the relevant communication requirements.
  • the relevant parameters of the available uplink beams include at least one of the following:
  • the terminal can select candidate uplink beams according to the identifiers of the uplink beams (for example, index index). For example, it can select beams with continuous identifiers from all uplink beams.
  • the uplink beams corresponding to the second number of indexes are used as candidate uplink beams.
  • the indexes of the 32 uplink beams are 1 to 32, and if it is necessary to select 4 uplink beams as candidate uplink beams, the uplink beams with indexes 1 to 4 may be selected as candidate uplink beams.
  • the selection of candidate uplink beams based on continuous identifiers is just an example, and the candidate uplink beams can also be selected based on identifiers in other manners as required.
  • the terminal can select a candidate uplink beam according to the beam direction of the uplink beam. For example, it can determine the first beam used for the first repeated transmission of the PRACH during the repeated transmission of the PRACH, and then calculate the relationship between the beam direction of the uplink beam and the first beam. The angle between the beam directions of a beam, and select the uplink beam according to the angle from small to large.
  • beam1 is used as the first beam, and the angle between the beam direction of the other 31 uplink beams and the beam direction of beam1 can be calculated.
  • the included angles are beam10, beam20, beam30, etc. from small to large. It is necessary to select 4 uplink beams as candidate uplink beams, so the 4 beams beam1, beam10, beam20, and beam30 may be selected as candidate uplink beams.
  • selecting the candidate uplink beam based on the angle between the uplink beam and the first beam is only an example, and the candidate uplink beam may also be selected based on the beam direction in other manners as required.
  • the terminal can select candidate uplink beams according to the transmit power of the uplink beams, for example, it can determine the transmit power of all uplink beams, and then select the uplink beams corresponding to the second number of indexes according to the transmit power from large to small as candidate uplink beams. beam.
  • the transmission powers of the 32 uplink beams are P1 to P32, and the transmission powers are P5, P11, P19, P7, etc. from large to small. If you need to select 4 uplink beams as candidate uplink beams, you can choose P5, Uplink beams corresponding to the four transmission powers of P11, P19, and P7 are used as candidate uplink beams.
  • the selection of candidate uplink beams based on transmit power in descending order is just an example, and the candidate uplink beams can also be selected based on transmit power in other manners as required.
  • the terminal can select candidate uplink beams according to the beam consistency of the uplink beams, for example, it can determine the beam consistency of all uplink beams, and then select the uplink beams corresponding to the second number of indexes according to the beam consistency from high to low as a candidate uplink beam.
  • the beam consistency of the 32 uplink beams is C1 to C32, and the beam consistency from high to low is C2, C13, C29, C9, etc. If you need to select 4 uplink beams as candidate uplink beams, you can choose The uplink beams corresponding to the four beams C2, C13, C29, and C9 are used as candidate uplink beams.
  • the selection of candidate uplink beams from high to low based on beam consistency is just an example, and the candidate uplink beams can also be selected based on beam consistency in other manners as required.
  • priorities can also be set according to needs, for example, the priority of transmission power can be set to be the highest, and the priority of beam direction can be set to be the second highest, that is, the priority among all related parameters Select the candidate uplink beam according to the transmit power, and for multiple uplink beams with the same transmit power, you can further select the candidate uplink beam according to the beam direction, and so on, when the relevant parameters of the higher priority of multiple uplink beams are the same , a candidate uplink beam may be selected from multiple uplink beams according to related parameters of a lower level of priority.
  • weights can also be set for each relevant parameter as required, and then when selecting candidate uplink beams among multiple uplink beams according to relevant parameters, the relevant parameters of the uplink beams can be weighted and summed, and the Selecting candidate uplink beams, for example, selecting candidate uplink beams in descending order of summation results.
  • mapping relationship how to determine the mapping relationship and how to select a candidate uplink beam has been exemplarily described above through several embodiments, and the situation specifically included in the mapping relationship will be exemplarily described below through several embodiments.
  • mapping relationship includes at least one of the following:
  • One repeated transmission of PRACH is mapped to one uplink beam
  • Multiple repeated transmissions of the PRACH are mapped to multiple uplink beams.
  • a repeated transmission of PRACH can be mapped to an uplink beam, that is, there is a one-to-one mapping relationship between repeated transmission of PRACH and an uplink beam, for example, for n times of repeated transmission of PRACH, the determined
  • the number of candidate uplink beams is also n, one candidate uplink beam is only used for one repeated transmission of the PRACH, and n is an integer greater than 1.
  • multiple repeated transmissions of PRACH can be mapped to one uplink beam, that is, there is a many-to-one mapping relationship between repeated transmissions of PRACH and uplink beams, for example, for 4 repeated transmissions of PRACH, the determined candidate
  • the number of uplink beams is 1, which is beam1, and all 4 repeated transmissions of PRACH can be mapped to beam1, that is, beam1 is used for 4 repeated transmissions of PRACH.
  • multiple repeated transmissions of PRACH can be mapped to multiple uplink beams, that is, there is a many-to-many mapping relationship between repeated transmissions of PRACH and uplink beams, for example, for 4 repeated transmissions of PRACH, determined
  • the number of candidate uplink beams is 2, which are beam1 and beam2.
  • Three repeated transmissions of PRACH can be mapped to beam1, and the other repeated transmission of PRACH can be mapped to beam2, that is, beam1 is used for three repeated transmissions of PRACH.
  • beam2 is used for repeated transmission of PRACH once.
  • the mapping of one repeated transmission of PRACH to one uplink beam includes at least one of the following:
  • the repeated transmission of a specific order of the PRACH is mapped to a specific identified uplink beam
  • the repeated transmission of a specific order of PRACH is randomly mapped to an uplink beam
  • PARCH-specific order of repeated transmission interleaving is mapped to an uplink beam.
  • a repeated transmission of PRACH is mapped to an uplink beam, specifically, repeated transmissions of a specific order of PRACH are mapped to specific identified uplink beams, which can also be called sequential mapping, for example, for n times of repeated transmissions of PRACH
  • the number of determined candidate uplink beams is also n
  • the i-th repeated transmission of the PRACH can be mapped to the i-th uplink beam, that is, the i-th repeated transmission of the PRACH is transmitted on the i-th uplink beam.
  • n is an integer greater than 1. Since the repeated transmission is counted from the 0th time, the repeated transmission is n times, that is, until the n-1th retransmission, the 0th repeated transmission can be understood as the initial transmission, so i is greater than or equal to 0, and less than or equal to n-1.
  • one repeated transmission of PRACH is mapped to one uplink beam.
  • repeated transmissions of a specific order of PRACH may be randomly mapped to one uplink beam.
  • the determined candidate uplink beam The number is also n.
  • one uplink beam may be randomly selected for transmission, and the uplink beam used for repeated transmission may not be used for subsequent repeated transmission.
  • one repeated transmission of PRACH is mapped to one uplink beam.
  • repeated transmissions of a specific order of PARCH may be interleaved and mapped to one uplink beam.
  • the interleaved mapping means that there is a specified number of repetitions of PRACH and the uplink beam. Relationship, such as a specified relationship expressed by a function, the input of the function includes at least a specific order of PRACH, and the output includes the identification of the corresponding uplink beam.
  • the PRACH of a specific order needs to be transmitted, the PRACH of a specific order can be input into the function , according to the output of the function, it can be determined on which uplink beam the PRACH retransmission needs to be performed.
  • the multiple repeated transmissions of the PRACH include repeated transmissions of multiple groups of PRACHs
  • the mapping of multiple repeated transmissions of the PRACH to one uplink beam includes:
  • the repeated transmission of a group of PRACHs is mapped to one uplink beam.
  • multiple repeated transmissions of PRACH can be divided into multiple groups of repeated transmissions of PRACHs, and then a group of repeated transmissions of PRACHs is mapped to an uplink beam, that is, a group of PRACHs mapped by this uplink beam transmission.
  • the 32 repeated transmissions of PRACH can be divided into 4 groups, for example, including group1 to group4, where the PRACH of group1
  • the repeated transmission of the PRACH of group2 is mapped to beam1
  • the repeated transmission of the PRACH of group2 is mapped to beam2
  • the repeated transmission of the PRACH of group3 is mapped to beam3
  • the repeated transmission of the PRACH of group4 is mapped to beam4.
  • the method also includes:
  • the repeated transmission grouping method includes at least one of the following:
  • average grouping for multiple repeated transmissions of the PRACH, average grouping can be performed, and the average grouping can be divided into multiple repeated transmissions of the PRACH according to the repeated transmission order, and according to the repeated transmission order and sequence offset The amount transmits packets to the multiple repetitions of the PRACH.
  • the determined number of candidate uplink beams is 4, which can be divided into 4 groups on average according to the repeated transmission order of PRACH, and the 0th to 7th repeated transmissions are divided into one group, for example Called group1, the 8th to 15th repeated transmission is divided into a group, for example called group2, the 16th to 23rd repeated transmission is divided into a group, for example called group3, the 24th to 31st repeated Transports are divided into groups, for example called group4.
  • the number of determined candidate uplink beams is 4, which can be divided into 4 groups on average according to the repeated transmission sequence and sequence offset of PRACH, for example, the sequence offset is 4, then the
  • the 0th, 4th, 8th, 12th, 16th, 20th, 24th, and 28th repeated transmissions are divided into a group, for example called group1, and the 1st, 5th, 9th, 13th, 17th, 21st, 25th, and 29th repeated transmissions are divided
  • the 2nd, 6th, 10th, 14th, 18th, 22nd, 26th, 30th repeated transmissions are divided into a group, for example called group3, and the 3rd, 7th, 11th, 15th, 19th , 23, 27, and 31 repeated transmissions are divided into a group, for example called group4.
  • the average lease may not be performed, for example, the multiple repeated transmissions of the PRACH are randomly divided into groups, and the number of repeated transmissions of each group of PRACHs is randomly determined. Equal, or not equal.
  • Fig. 4 is a schematic flowchart of a random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • the random access channel repeated transmission receiving method shown in this embodiment can be performed by a network-side device, and the network-side device can communicate with a terminal, and the terminal includes but is not limited to a mobile phone, a tablet computer, a wearable device, a sensor, an object Communication devices such as networking equipment, the network side equipment includes but not limited to network side equipment in 4G, 5G, 6G and other communication systems, including but not limited to base stations, core networks, etc.
  • the random access channel repeated transmission receiving method may include the following steps:
  • step S401 determine the mapping relationship between the repeated transmission of the terminal random access channel PRACH and the uplink beam
  • step S402 the uplink beam corresponding to each repeated transmission of PRACH is determined according to the mapping relationship
  • step S403 the repeated transmission of the PRACH corresponding to the determined uplink beam performed by the terminal is received on the receiving beam corresponding to the determined uplink beam.
  • the terminal may perform repeated transmission on the PRACH.
  • the repeated transmission repetition is different from the retransmission retransmission, the repeated transmission refers to multiple repeated transmissions, and the retransmission refers to retransmission due to some reasons (such as transmission failure).
  • the terminal communicates with the network-side device through a beam beam
  • the network-side device since there may be multiple uplink beams, how to select the uplink beam corresponding to each repeated transmission of the PRACH when the PRACH is repeatedly transmitted is an urgent problem to be solved.
  • the terminal can determine the mapping relationship between the repeated transmission of the PRACH and the uplink beam, and then when the repeated transmission of the PRACH is required, the uplink beam corresponding to each repeated transmission of the PRACH can be determined according to the mapping relationship, and then The repeated transmission of the PRACH corresponding to the determined uplink beam is performed on the determined uplink beam, so as to ensure that for each repeated transmission of the PRACH, an appropriate uplink beam can be selected for transmission.
  • the network side device can also determine the mapping relationship, and according to the mapping relationship, the uplink beam corresponding to the repeated transmission of the PRACH to be performed by the terminal can be determined, and then the terminal can be received on the receiving beam corresponding to the determined uplink beam. Repeated transmission of the PRACH performed on the determined uplink beam.
  • the network-side device determines the mapping relationship can be adjusted according to actual needs. The following uses several embodiments to illustrate how the terminal determines the mapping relationship.
  • Fig. 5 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure. As shown in FIG. 5, the determination of the mapping relationship between the repeated transmission of the terminal random access channel PRACH and the uplink beam includes:
  • step S501 the mapping relationship is determined according to the agreement.
  • the network side device may determine the mapping relationship according to the protocol agreement. In this case, the terminal may also determine the mapping relationship according to the protocol agreement.
  • the network side device can also determine the uplink beam used by the terminal for the repeated transmission of the PRACH according to the mapping relationship, and then can receive the beam corresponding to the determined uplink beam.
  • the uplink receiving terminal performs repeated transmission of the PRACH on the determined uplink beam, so as to ensure good signal reception quality.
  • Fig. 6 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure. As shown in FIG. 6, the determination of the mapping relationship between the repeated transmission of the terminal random access channel PRACH and the uplink beam includes:
  • step S601 determine the mapping relationship
  • step S602 configure the mapping relationship to the terminal.
  • the network side device may determine the mapping relationship, and then configure the mapping relationship to the terminal.
  • the network-side device may determine the mapping relationship according to the agreement, may also determine the mapping relationship according to the needs of the network-side device itself, and may also determine the mapping relationship according to the state of the terminal.
  • the network-side device since the mapping relationship is configured by the network-side device to the terminal, the network-side device itself has obviously known the mapping relationship, and can subsequently determine the uplink used by the terminal for repeated PRACH transmissions based on the mapping relationship. Beams, and then the receiving beam corresponding to the determined uplink beam may be selected to receive the PRACH repeatedly transmitted by the terminal, so as to ensure good signal reception quality.
  • Fig. 7 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure. As shown in Figure 7, the determination of the mapping relationship includes:
  • step S701 the mapping relationship is determined for each terminal
  • the configuring the mapping relationship to the terminal includes:
  • step S702 the mapping relationship determined for a specific terminal is sent to the specific terminal.
  • the network-side device can determine the mapping relationship for each terminal, and then configure the mapping relationship to the terminal. For example, it can determine the mapping relationship according to the status of each terminal, and then configure the mapping relationship to the corresponding terminal. For example, the mapping relationship a is determined according to the state of a specific terminal A, and the mapping relationship b is determined according to the state of a specific terminal B, then the mapping relationship a can be configured for a specific terminal A, and the mapping relationship b can be configured for a specific terminal B, which is beneficial to ensure certain The mapping relationship meets the actual needs of each terminal.
  • mapping relationship can be determined by both the network-side device and the terminal according to the agreement, or can be configured to the terminal after being determined by the network-side device.
  • the number of repeated transmissions of the PRACH can be multiple times, and there can be multiple uplink beams. In the following embodiments, the number of repeated transmissions of the PRACH is 4 times, and the number of uplink beams is 32.
  • the technical solution is illustrated as an example.
  • the following situations are related to the network-side device selecting candidate uplink beams among multiple uplink beams.
  • the operation of selecting candidate uplink beams is performed by the network-side device, and the terminal needs to report the selection basis of candidate uplink beams first. For example, relevant parameters of multiple uplink beams are reported.
  • the network side device may instruct the terminal, so that the terminal determines which beams need to be selected among the uplink beams as the candidate uplink beams.
  • the operation of selecting candidate uplink beams can also be performed by the terminal.
  • the terminal After the terminal selects the candidate uplink beams, it can report the relevant information of the selected candidate uplink beams to the network side equipment, so that the network side equipment can determine which beams the terminal selects as candidates.
  • the uplink beam so that the uplink beam used by the terminal to perform the repeated transmission of the PRACH is determined among the candidate uplink beams according to the mapping relationship, and the PRACH performed by the terminal on the determined uplink beam is received through the receiving beam corresponding to the determined uplink beam repeated transmissions.
  • Fig. 8 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure. As shown in FIG. 8, the first number of uplink beams available to the terminal is greater than the number of repetitions of PRACH repeated transmission, and the method further includes:
  • step S801 selecting a second number of uplink beams from the first number of available uplink beams as candidate uplink beams, wherein the second number is less than or equal to the number of repetitions;
  • the determining the uplink beam corresponding to the repeated transmission of each PRACH according to the mapping relationship includes:
  • step S802 among the candidate uplink beams, an uplink beam corresponding to each repeated transmission of the PRACH is determined according to the mapping relationship.
  • the terminal may select a second number of uplink beams from the first number of available uplink beams as candidate uplink beams, and then subsequently
  • the uplink beam corresponding to each repeated transmission of the PRACH may be determined from the candidate uplink beams according to the mapping relationship.
  • the second number is less than or equal to the number of repetitions, that is, the number of selected candidate uplink beams will not be greater than the number of repetitions. Accordingly, even if one repeated transmission of PRACH is mapped to one uplink beam, it can also meet the requirement of repeated transmission ( Multiple repeated transmissions of the PRACH are mapped to one uplink beam to better meet the requirements), avoiding selecting too many uplink beams as candidate uplink beams and causing subsequent part of the candidate uplink beams not to be used for repeated transmission of the PRACH to cause resource waste.
  • the first number is 32 and the number of repetitions is 4, then the second number is less than or equal to 4, that is, at most 4 uplink beams are selected as candidate uplink beams for repeated transmission of PRACH, even if one repeated transmission of PRACH is mapped to one uplink Beam, then 4 repeated transmissions of PRACH can be realized with only 4 uplink beams, so as to avoid selecting too many uplink beams as candidate uplink beams and causing subsequent part of candidate uplink beams not to be used for repeated transmission of PRACH, resulting in waste of resources .
  • the mapping relationship may be a relative mapping relationship rather than an absolute mapping relationship.
  • the mapping relationship can be that the first repeated transmission of PRACH corresponds to the uplink beam with the smallest sequence number among the candidate uplink beams, and the second repeated transmission of PRACH corresponds to the second smallest sequence number among the candidate uplink beams.
  • the third repeated transmission of the PRACH corresponds to the third smallest uplink beam among the candidate uplink beams.
  • the fourth repeated transmission of the PRACH corresponds to the fourth smallest uplink beam among the candidate uplink beams.
  • the mapping relationship does not limit the absolute mapping relationship between each repeated transmission of PRACH and the sequence number of the uplink beam, but defines the relative mapping relationship between the repeated transmission of PRACH and the sequence number of the uplink beam, so that each time the candidate After the uplink beam is selected, the uplink beam corresponding to the repeated transmission of the PRACH can be determined among the candidate uplink beams according to the mapping relationship.
  • the mapping relationship may also define an absolute mapping relationship between each repeated transmission of the PRACH and the sequence number of the uplink beam, which may be specifically set as required.
  • the mapping relationship can be that the first repeated transmission of PRACH corresponds to the uplink beam with the sequence number 1 among the candidate uplink beams, and the second PRACH transmission.
  • the first repeated transmission corresponds to the uplink beam with serial number 2 among the candidate uplink beams
  • the third repeated transmission of PRACH corresponds to the uplink beam with serial number 3 among the candidate uplink beams.
  • the fourth repeated transmission of PRACH corresponds to the uplink beam with serial number 4 among the candidate uplink beams. beam.
  • the number of selected candidate uplink beams may be equal to the first number or less than the first number.
  • the selected candidate When the number of uplink beams is less than the number of repetitions, the mapping relationship between the repeated transmission of PRACH and the uplink beam may be difficult to satisfy the mapping of one repeated transmission of PRACH to one uplink beam, so other mapping methods can be selected, such as multiple repeated transmissions of PRACH Mapped to one uplink beam, or multiple repeated transmissions of the PRACH are mapped to multiple uplink beams.
  • Fig. 9 is a schematic flowchart of another random access channel repeated transmission receiving method according to an embodiment of the present disclosure.
  • the selecting a second number of uplink beams from the first number of available uplink beams as candidate uplink beams includes:
  • step S901 according to relevant parameters of the available uplink beams, a second number of uplink beams are selected from the first number of available uplink beams as the candidate uplink beams.
  • the network-side device may first obtain the relevant parameters of the uplink beams, and then select the second number of uplink beams from the first number of available uplink beams as candidate uplink beams for repeated transmission of the PRACH according to the relevant parameters , which is conducive to meeting the relevant communication requirements.
  • the relevant parameters of the available uplink beams include at least one of the following:
  • the network side device can select candidate uplink beams according to the identifiers of uplink beams (such as index index), for example, it can select beams with continuous identifiers from all uplink beams, for example, taking the index as an example, it can be from small to large Select the uplink beams corresponding to the second consecutive indexes as the candidate uplink beams.
  • the identifiers of uplink beams such as index index
  • the indexes of the 32 uplink beams are 1 to 32, and if it is necessary to select 4 uplink beams as candidate uplink beams, the uplink beams with indexes 1 to 4 may be selected as candidate uplink beams.
  • the selection of candidate uplink beams based on continuous identifiers is just an example, and the candidate uplink beams can also be selected based on identifiers in other manners as required.
  • the network-side device can select a candidate uplink beam according to the beam direction of the uplink beam, for example, it can determine the first beam used for the first repeated transmission of the PRACH during the repeated transmission of the PRACH, and then calculate the beam direction of the uplink beam The included angle with the beam direction of the first beam, and select the uplink beam according to the angle from small to large.
  • beam1 is used as the first beam, and the angle between the beam direction of the other 31 uplink beams and the beam direction of beam1 can be calculated.
  • the included angles are beam10, beam20, beam30, etc. from small to large. It is necessary to select 4 uplink beams as candidate uplink beams, so the 4 beams beam1, beam10, beam20, and beam30 may be selected as candidate uplink beams.
  • selecting the candidate uplink beam based on the angle between the uplink beam and the first beam is only an example, and the candidate uplink beam may also be selected based on the beam direction in other manners as required.
  • the network side device may select candidate uplink beams according to the transmit power of the uplink beams, for example, may determine the transmit power of all uplink beams, and then select the uplink beams corresponding to the second number of indexes according to the transmit power from large to small as Candidate uplink beams.
  • the transmission powers of the 32 uplink beams are P1 to P32, and the transmission powers are P5, P11, P19, P7, etc. from large to small. If you need to select 4 uplink beams as candidate uplink beams, you can choose P5, Uplink beams corresponding to the four transmission powers of P11, P19, and P7 are used as candidate uplink beams.
  • the selection of candidate uplink beams based on transmit power in descending order is just an example, and the candidate uplink beams can also be selected based on transmit power in other manners as required.
  • the network side device may select candidate uplink beams according to the beam consistency of the uplink beams, for example, it may determine the beam consistency of all uplink beams, and then select the second number of indexes corresponding to The uplink beam is used as a candidate uplink beam.
  • the beam consistency of the 32 uplink beams is C1 to C32, and the beam consistency from high to low is C2, C13, C29, C9, etc. If you need to select 4 uplink beams as candidate uplink beams, you can choose The uplink beams corresponding to the four beams C2, C13, C29, and C9 are used as candidate uplink beams.
  • the selection of candidate uplink beams from high to low based on beam consistency is just an example, and the candidate uplink beams can also be selected based on beam consistency in other manners as required.
  • priorities can also be set according to needs, for example, the priority of transmission power can be set to be the highest, and the priority of beam direction can be set to be the second highest, that is, the priority among all related parameters Select the candidate uplink beam according to the transmit power, and for multiple uplink beams with the same transmit power, you can further select the candidate uplink beam according to the beam direction, and so on, when the relevant parameters of the higher priority of multiple uplink beams are the same , a candidate uplink beam may be selected from multiple uplink beams according to related parameters of a lower level of priority.
  • weights can also be set for each relevant parameter as required, and then when selecting candidate uplink beams among multiple uplink beams according to relevant parameters, the relevant parameters of the uplink beams can be weighted and summed, and the Selecting candidate uplink beams, for example, selecting candidate uplink beams in descending order of summation results.
  • mapping relationship how to determine the mapping relationship and how to select a candidate uplink beam has been exemplarily described above through several embodiments, and the situation specifically included in the mapping relationship will be exemplarily described below through several embodiments.
  • mapping relationship includes at least one of the following:
  • One repeated transmission of PRACH is mapped to one uplink beam
  • Multiple repeated transmissions of the PRACH are mapped to multiple uplink beams.
  • a repeated transmission of PRACH can be mapped to an uplink beam, that is, there is a one-to-one mapping relationship between repeated transmission of PRACH and an uplink beam, for example, for n times of repeated transmission of PRACH, the determined
  • the number of candidate uplink beams is also n, one candidate uplink beam is only used for one repeated transmission of the PRACH, and n is an integer greater than 1.
  • multiple repeated transmissions of PRACH can be mapped to one uplink beam, that is, there is a many-to-one mapping relationship between repeated transmissions of PRACH and uplink beams, for example, for 4 repeated transmissions of PRACH, the determined candidate
  • the number of uplink beams is 1, which is beam1, and all 4 repeated transmissions of PRACH can be mapped to beam1, that is, beam1 is used for 4 repeated transmissions of PRACH.
  • multiple repeated transmissions of PRACH can be mapped to multiple uplink beams, that is, there is a many-to-many mapping relationship between repeated transmissions of PRACH and uplink beams, for example, for 4 repeated transmissions of PRACH, determined
  • the number of candidate uplink beams is 2, which are beam1 and beam2.
  • Three repeated transmissions of PRACH can be mapped to beam1, and the other repeated transmission of PRACH can be mapped to beam2, that is, beam1 is used for three repeated transmissions of PRACH.
  • beam2 is used for repeated transmission of PRACH once.
  • the mapping of one repeated transmission of PRACH to one uplink beam includes at least one of the following:
  • the repeated transmission of a specific order of the PRACH is mapped to a specific identified uplink beam
  • the repeated transmission of a specific order of PRACH is randomly mapped to an uplink beam
  • PARCH-specific order of repeated transmission interleaving is mapped to an uplink beam.
  • a repeated transmission of PRACH is mapped to an uplink beam, specifically, repeated transmissions of a specific order of PRACH are mapped to specific identified uplink beams, which can also be called sequential mapping, for example, for n times of repeated transmissions of PRACH
  • the number of determined candidate uplink beams is also n
  • the i-th repeated transmission of the PRACH can be mapped to the i-th uplink beam, that is, the i-th repeated transmission of the PRACH is transmitted on the i-th uplink beam.
  • n is an integer greater than 1. Since the repeated transmission is counted from the 0th time, the repeated transmission is n times, that is, until the n-1th retransmission, the 0th repeated transmission can be understood as the initial transmission, so i is greater than or equal to 0, and less than or equal to n-1.
  • one repeated transmission of PRACH is mapped to one uplink beam.
  • repeated transmissions of a specific order of PRACH may be randomly mapped to one uplink beam.
  • the determined candidate uplink beam The number is also n.
  • one uplink beam may be randomly selected for transmission, and the uplink beam used for repeated transmission may not be used for subsequent repeated transmission.
  • one repeated transmission of PRACH is mapped to one uplink beam.
  • repeated transmissions of a specific order of PARCH may be interleaved and mapped to one uplink beam.
  • the interleaved mapping means that there is a specified number of repetitions of PRACH and the uplink beam. Relationship, such as a specified relationship expressed by a function, the input of the function includes at least a specific order of PRACH, and the output includes the identification of the corresponding uplink beam.
  • the PRACH of a specific order needs to be transmitted, the PRACH of a specific order can be input into the function , according to the output of the function, it can be determined on which uplink beam the terminal needs to perform this PRACH repeated transmission.
  • the multiple repeated transmissions of the PRACH include multiple repeated transmissions of multiple groups of PRACHs
  • the mapping of multiple repeated transmissions of the PRACH to an uplink beam includes:
  • Multiple repeated transmissions of a group of PRACHs are mapped to one uplink beam.
  • multiple repeated transmissions of PRACH can be divided into multiple groups of repeated transmissions of PRACHs, and then a group of repeated transmissions of PRACHs is mapped to an uplink beam, that is, a group of PRACHs mapped by this uplink beam transmission.
  • the 32 repeated transmissions of PRACH can be divided into 4 groups, for example, including group1 to group4, where the PRACH of group1
  • the repeated transmission of the PRACH of group2 is mapped to beam1
  • the repeated transmission of the PRACH of group2 is mapped to beam2
  • the repeated transmission of the PRACH of group3 is mapped to beam3
  • the repeated transmission of the PRACH of group4 is mapped to beam4.
  • the present disclosure also provides embodiments of the random access channel repeated transmission device and the random access channel repeated transmission receiving device.
  • the embodiment of the present disclosure shows a random access channel repeated transmission device
  • the random access channel repeated transmission device can be applied to terminals
  • the terminal includes but not limited to mobile phones, tablet computers, wearable devices, sensors, objects Communication devices such as networking equipment.
  • the terminal can communicate with network-side equipment, and the network-side equipment includes but is not limited to network-side equipment in communication systems such as 4G, 5G, and 6G, including but not limited to base stations, core networks, and the like.
  • the device for repeated transmission of the random access channel includes one or more processors, the processors are configured to: determine the mapping relationship between the repeated transmission of the random access channel PRACH and the uplink beam; according to The mapping relationship determines the uplink beam corresponding to each repeated transmission of the PRACH; the corresponding repeated transmission of the PRACH is performed on the determined uplink beam.
  • mapping relationship includes at least one of the following:
  • One repeated transmission of PRACH is mapped to one uplink beam
  • Multiple repeated transmissions of the PRACH are mapped to multiple uplink beams.
  • mapping of one repeated transmission of PRACH to one uplink beam includes at least one of the following:
  • the repeated transmission of a specific order of the PRACH is mapped to a specific identified uplink beam
  • the repeated transmission of a specific order of PRACH is randomly mapped to an uplink beam
  • PARCH-specific order of repeated transmission interleaving is mapped to an uplink beam.
  • the multiple repeated transmissions of the PRACH include repeated transmissions of multiple groups of PRACHs
  • the mapping of the multiple repeated transmissions of the PRACHs to one uplink beam includes: mapping a group of repeated transmissions of the PRACHs to one uplink beam.
  • the processor is further configured to: divide the multiple repeated transmissions of the PRACH into multiple groups of repeated transmissions of the PRACH according to the repeated transmission grouping method, wherein the repeated transmission grouping method includes the following at least one of:
  • the processor is configured to: determine the mapping relationship according to a protocol agreement.
  • the processor is configured to: determine the mapping relationship according to the configuration of the network side device.
  • the first number of uplink beams available to the terminal is greater than the number of repetitions of PRACH repeated transmission
  • the processor is further configured to: select a second number of uplink beams from the first number of available uplink beams The beam is used as a candidate uplink beam, wherein the second number is less than or equal to the number of repetitions; in the candidate uplink beams, an uplink beam corresponding to each repeated transmission of the PRACH is determined according to the mapping relationship.
  • the processor is configured to: select a second number of uplink beams from the first number of available uplink beams as the candidate uplink beams according to relevant parameters of the available uplink beams.
  • the relevant parameters of the available uplink beams include at least one of the following:
  • mapping relationship is set separately for each terminal.
  • the embodiment of the present disclosure shows a device for receiving repeated transmission of random access channel.
  • the device for receiving repeated transmission of random access channel may be applicable to a network side device, and the network side device may communicate with a terminal, and the terminal includes but Not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and IoT devices, the network-side devices include but are not limited to network-side devices in 4G, 5G, 6G and other communication systems, including but not limited to base stations, core net etc.
  • the device for receiving repeated transmissions of the random access channel includes one or more processors, the processors are configured to: determine the mapping relationship between the repeated transmission of the random access channel PRACH of the terminal and the uplink beam ; Determine the uplink beam corresponding to each repeated transmission of the PRACH according to the mapping relationship; receive the repeated transmission of the PRACH corresponding to the determined uplink beam performed by the terminal on the receiving beam corresponding to the determined uplink beam.
  • mapping relationship includes at least one of the following:
  • One repeated transmission of PRACH is mapped to one uplink beam
  • Multiple repeated transmissions of the PRACH are mapped to multiple uplink beams.
  • mapping of one repeated transmission of PRACH to one uplink beam includes at least one of the following:
  • the repeated transmission of a specific order of the PRACH is mapped to a specific identified uplink beam
  • the repeated transmission of a specific order of PRACH is randomly mapped to an uplink beam
  • PARCH-specific order of repeated transmission interleaving is mapped to an uplink beam.
  • the multiple repeated transmissions of the PRACH include multiple repeated transmissions of multiple groups of PRACHs
  • the mapping of multiple repeated transmissions of the PRACH to an uplink beam includes: mapping multiple repeated transmissions of a group of PRACHs to an uplink beam .
  • the processor is configured to: determine the mapping relationship according to a protocol agreement.
  • the processor is configured to: determine the mapping relationship; configure the mapping relationship to the terminal.
  • the determining the mapping relationship includes: separately determining the mapping relationship for each terminal; the configuring the mapping relationship to the terminal includes: sending the mapping relationship determined for a specific terminal to the specific terminal.
  • the first number of uplink beams available to the terminal is greater than the number of repetitions of PRACH repeated transmission
  • the processor is further configured to: select a second number of uplink beams from the first number of available uplink beams The beam is used as a candidate uplink beam, wherein the second number is less than or equal to the number of repetitions; in the candidate uplink beams, an uplink beam corresponding to each repeated transmission of the PRACH is determined according to the mapping relationship.
  • the processor is configured to: select a second number of uplink beams from the first number of available uplink beams as the candidate uplink beams according to relevant parameters of the available uplink beams.
  • the relevant parameters of the available uplink beams include at least one of the following:
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the random access described in any of the above embodiments is realized Channel repeat transmission method.
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the random access described in any of the above embodiments is realized Channel repeat transmission receive method.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the random access channel repeated transmission method described in any of the above-mentioned embodiments is implemented. step.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the random access channel repeated transmission and reception method described in any of the above-mentioned embodiments is implemented. A step of.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 for repeated transmission and reception of a random access channel according to an embodiment of the present disclosure.
  • Apparatus 1000 may be provided as a base station.
  • the device 1000 includes a processing component 1022 , a wireless transmitting/receiving component 1024 , an antenna component 1026 , and a signal processing part specific to the wireless interface.
  • the processing component 1022 may further include one or more processors.
  • One of the processors in the processing component 1022 may be configured to implement the random access channel repeated transmission receiving method described in any of the foregoing embodiments.
  • Fig. 11 is a schematic block diagram of an apparatus 1100 for repeated transmission of a random access channel according to an embodiment of the present disclosure.
  • the apparatus 1100 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 1100 may include one or more of the following components: processing component 1102, memory 1104, power supply component 1106, multimedia component 1108, audio component 1110, input/output (I/O) interface 1112, sensor component 1114, and communication component 1116.
  • the processing component 1102 generally controls the overall operations of the device 1100, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include one or more processors 1120 to execute instructions to complete all or part of the steps of the above random access channel repeated transmission method.
  • processing component 1102 may include one or more modules that facilitate interaction between processing component 1102 and other components.
  • processing component 1102 may include a multimedia module to facilitate interaction between multimedia component 1108 and processing component 1102 .
  • the memory 1104 is configured to store various types of data to support operations at the device 1100 . Examples of such data include instructions for any application or method operating on device 1100, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1104 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1106 provides power to various components of the device 1100 .
  • Power components 1106 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 1100 .
  • the multimedia component 1108 includes a screen that provides an output interface between the device 1100 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 1108 includes a front camera and/or a rear camera. When the device 1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1110 is configured to output and/or input audio signals.
  • the audio component 1110 includes a microphone (MIC), which is configured to receive external audio signals when the device 1100 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 1104 or sent via communication component 1116 .
  • the audio component 1110 also includes a speaker for outputting audio signals.
  • the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1114 includes one or more sensors for providing various aspects of status assessment for device 1100 .
  • the sensor component 1114 can detect the open/closed state of the device 1100, the relative positioning of components, such as the display and keypad of the device 1100, and the sensor component 1114 can also detect a change in the position of the device 1100 or a component of the device 1100 , the presence or absence of user contact with the device 1100 , the device 1100 orientation or acceleration/deceleration and the temperature change of the device 1100 .
  • Sensor assembly 1114 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1114 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1114 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1116 is configured to facilitate wired or wireless communication between the apparatus 1100 and other devices.
  • the device 1100 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1116 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • apparatus 1100 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Realized by a gate array (FPGA), controller, microcontroller, microprocessor or other electronic components, it is used to implement the above random access channel repeat transmission method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Realized by a gate array
  • controller microcontroller, microprocessor or other electronic components
  • a non-transitory computer-readable storage medium including instructions such as a memory 1104 including instructions, the instructions can be executed by the processor 1120 of the device 1100 to complete the above random access channel repeat transmission method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及随机接入信道重复传输、接收方法和装置,其中,所述随机接入信道重复传输方法包括:确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对应的上行波束;在确定的上行波束上进行相对应的PRACH的重复传输。根据本公开,终端可以确定PRACH的重复传输与上行波束之间的映射关系,进而在需要进行PRACH的重复传输时,可以根据映射关系确定每次PRACH的重复传输对应的上行波束,然后在确定的上行波束上进行所述确定的上行波束相对应的PRACH的重复传输,确保针对每次进行PRACH的重复传输,可以选择适当的上行波束进行传输。

Description

随机接入信道重复传输、接收方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及随机接入信道重复传输方法、随机接入信道重复传输接收方法、随机接入信道重复传输装置、随机接入信道重复传输接收装置、通信装置和计算机可读存储介质。
背景技术
在通信过程中,为了保证相对良好的通信质量,可以进行增强覆盖,例如可以通过重复传输repetition的方式实现。例如对于随机接入信道(Physical Random Access Channel,PRACH),可以通过重复传输实现对PRACH的上行覆盖增强。但是在重复传输过程中,也存在一些问题亟待解决。
发明内容
有鉴于此,本公开的实施例提出了随机接入信道重复传输方法、随机接入信道重复传输接收方法、随机接入信道重复传输装置、随机接入信道重复传输接收装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种随机接入信道重复传输方法,由终端执行,所述方法包括:确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对应的上行波束;在确定的上行波束上进行相对应的PRACH的重复传输。
根据本公开实施例的第二方面,提出一种随机接入信道重复传输接收方法,由网络侧设备执行,所述方法包括:确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对应的上行波束;在确定的上行波束对应的接收波束上接收所述终端进行的所述确定的上行波束对应的PRACH的重复传输。
根据本公开实施例的第三方面,提出一种随机接入信道重复传输装置,所述装置包括一个或多个处理器,所述处理器被配置为:确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对 应的上行波束;在确定的上行波束上进行相对应的PRACH的重复传输。
根据本公开实施例的第四方面,提出一种随机接入信道重复传输接收装置,所述装置包括一个或多个处理器,所述处理器被配置为:确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对应的上行波束;在确定的上行波束对应的接收波束上接收所述终端进行的所述确定的上行波束对应的PRACH的重复传输。
根据本公开实施例的第五方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述随机接入信道重复传输方法。
根据本公开实施例的第六方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述随机接入信道重复传输接收方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述随机接入信道重复传输方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述随机接入信道重复传输接收方法中的步骤。
根据本公开,终端可以确定PRACH的重复传输与上行波束之间的映射关系,进而在需要进行PRACH的重复传输时,可以根据映射关系确定每次PRACH的重复传输对应的上行波束,然后在确定的上行波束上进行所述确定的上行波束相对应的PRACH的重复传输,确保针对每次进行PRACH的重复传输,可以选择适当的上行波束进行传输。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种随机接入信道重复传输方法的示意流程图。
图2是根据本公开的实施例示出的另一种随机接入信道重复传输方法的示意流程图。
图3是根据本公开的实施例示出的又一种随机接入信道重复传输方法的示意流程图。
图4是根据本公开的实施例示出的一种随机接入信道重复传输接收方法的示意流程图。
图5是根据本公开的实施例示出的另一种随机接入信道重复传输接收方法的示意流程图。
图6是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。
图7是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。
图8是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。
图9是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。
图10是根据本公开的实施例示出的一种用于随机接入信道重复传输接收的装置的示意框图。
图11是根据本公开的实施例示出的一种用于随机接入信道重复传输的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
图1是根据本公开的实施例示出的一种随机接入信道重复传输方法的示意流程图。本实施例所示的随机接入信道重复传输方法可以由终端执行,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络侧设备通信,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,包括但不限于基站、核心网等。
如图1所示,所述随机接入信道重复传输方法可以包括以下步骤:
在步骤S101中,确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;
在步骤S102中,根据所述映射关系确定每次PRACH的重复传输对应的上行波束;
在步骤S103中,在确定的上行波束上进行相对应的PRACH的重复传输。
在一个实施例中,为了对PRACH进行上行覆盖增强,终端可以对PRACH进行重复传输。需要说明的是,重复传输repetition与重新传输retransmission不同,重复传输是指多次重复的传输,重新传输是指出于某些原因(例如传输失败)而再次传输。
而在终端与网络侧设备通过波束beam通信的情况下,由于可以存在多个上行 波束,在重复传输PRACH时,如何选择每次PRACH的重复传输对应的上行波束,是一个亟待解决的问题。
根据本公开的实施例,终端可以确定PRACH的重复传输与上行波束之间的映射关系,进而在需要进行PRACH的重复传输时,可以根据映射关系确定每次PRACH的重复传输对应的上行波束,然后在确定的上行波束上进行所述确定的上行波束相对应的PRACH的重复传输,确保针对每次进行PRACH的重复传输,可以选择适当的上行波束进行传输。
关于终端如何确定所述映射关系,可以根据实际需要进行调整,以下通过几个实施例对终端如何确定映射关系进行示例性说明。
在一个实施例中,所述确定随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:根据协议约定确定所述映射关系。
终端可以根据协议约定确定映射关系,在这种情况下,网络侧设备也可以根据协议约定确定所述映射关系。在终端根据所述映射关系确定PRACH的重复传输对应的上行波束时,网络侧设备也可以根据所述映射关系确定终端进行PRACH的重复传输使用的上行波束,进而可以在确定的上行波束对应的接收波束上来接收终端在所述确定的上行波束上进行的PRACH的重复传输,以便确保良好的信号接收质量。
在一个实施例中,所述确定随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:根据网络侧设备配置确定所述映射关系。
网络侧设备可以确定所述映射关系,进而将所述映射关系配置给终端。例如网络侧设备可以根据协议约定确定所述映射关系,也可以根据网络侧设备的自身需要确定所述映射关系,还可以根据终端的状态确定所述映射关系。
在这种情况下,由于映射关系是网络侧设备配置给终端的,网络侧设备自身显然已经得知所述映射关系,后续可以根据所述映射关系确定终端使用进行PRACH的重复传输所使用的上行波束,进而可以选择与确定的上行波束对应的接收波束来接收终端重复传输的PRACH,以便确保良好的信号接收质量。
在一个实施例中,所述映射关系为针对每个终端分别设置的。
例如在根据协议约定确定映射关系的情况下,协议可以约定为每个终端分配设置映射关系,例如不同终端基于协议约定确定的映射关系可以不同,也可以相同;
例如在由网络侧设备配置映射关系的情况下,网络侧设备针对每个终端可以分别设置映射关系,然后配置给终端,例如可以根据每个终端的状态设置映射关系,进而将映射关系配置给对应终端。例如根据终端A的状态确定映射关系a,根据终端B的状态确定映射关系b,那么可以将映射关系a配置给终端A,将映射关系b配置给终端B,有利于保证确定的映射关系符合每个终端的实际需要。
在一个实施例中,PRACH重复传输的次数可以为多次,上行波束可以为多个,以下部分实施例在PRACH重复传输的次数为4次,上行波束的数量为32的情况下,对本公开的技术方案进行示例性说明。
图2是根据本公开的实施例示出的另一种随机接入信道重复传输方法的示意流程图。如图2所示,所述终端可用上行波束的第一数量大于PRACH重复传输的重复次数,所述方法还包括:
在步骤S201中,在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,其中,所述第二数量小于或等于所述重复次数;
所述根据所述映射关系确定每次PRACH的重复传输对应的上行波束包括:
在步骤S202中,在所述候选上行波束中根据所述映射关系确定每次PRACH的重复传输对应的上行波束。
在一个实施例中,终端在可用上行波束的第一数量大于PRACH重复传输的重复次数的情况下,可以在第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,进而后续在根据映射关系确定每次PRACH的重复传输对应的上行波束时,可以在候选上行波束中根据映射关系确定每次PRACH的重复传输对应的上行波束。
其中,第二数量小于或等于重复次数,也即选择的候选上行波束的数量,不会大于重复次数,据此,即使PRACH的一次重复传输映射到一个上行波束,也可以满足重复传输的要求(PRACH的多次重复传输映射到一个上行波束更能满足要求),避免选择过多的上行波束作为候选上行波束而导致后续部分候选上行波束没有用于PRACH的重复传输造成资源浪费。
例如第一数量为32,重复次数为4,那么第二数量小于或等于4,也即至多选择4个上行波束作为候选上行波束用于PRACH的重复传输,即使PRACH的一次重复传输映射到一个上行波束,那么4次PRACH的重复传输,也只需要4个上行波束就 能够实现,从而避免选择过多的上行波束作为候选上行波束而导致后续部分候选上行波束没有用于PRACH的重复传输造成资源浪费。
在一个实施例中,映射关系可以是相对映射关系,而不是绝对映射关系。
例如以4次PRACH的重复传输为例,映射关系可以是PRACH的第1次重复传输对应候选上行波束中序号最小的上行波束,PRACH的第2次重复传输对应候选上行波束中序号第二小的上行波束,PRACH的第3次重复传输对应候选上行波束中序号第三小的上行波束PRACH的第4次重复传输对应候选上行波束中序号第四小的上行波束。
据此,映射关系并不限定每次PRACH的重复传输与上行波束的序号之间的绝对映射关系,而是限定PRACH的重复传输与上行波束的序号之间的相对映射关系,以便每次选择候选上行波束后,都能够根据映射关系在候选上行波束中确定PRACH的重复传输对应的上行波束。
当然,映射关系也可以限定每次PRACH的重复传输与上行波束的序号之间的绝对映射关系,具体可以根据需要进行设置。例如在第一数量与重复次数相等的情况下,以4次PRACH的重复传输为例,映射关系可以是PRACH的第1次重复传输对应候选上行波束中序号为1的上行波束,PRACH的第2次重复传输对应候选上行波束中序号为2的上行波束,PRACH的第3次重复传输对应候选上行波束中序号为3的上行波束PRACH的第4次重复传输对应候选上行波束中序号为4的上行波束。
需要说明的是,在上行波束的第一数量小于或等于PRACH重复传输的重复次数时,选择的候选上行波束的数量可以等同于第一数量,也可以小于第一数量,当然,在选择的候选上行波束的数量小于重复次数时,PRACH的重复传输与上行波束之间的映射关系,可能难以满足PRACH的一次重复传输映射到一个上行波束,那么可以选择其他映射方式,例如PRACH的多次重复传输映射到一个上行波束,或者PRACH的多次重复传输映射到多个上行波束。
而关于如何从第一数量的可用上行波束中选择候选上行波束,以下通过几个实施例进行示例性描述。
图3是根据本公开的实施例示出的又一种随机接入信道重复传输方法的示意流程图。如图3所示,所述在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束包括:
在步骤S301中,根据所述可用上行波束的相关参数,在所述第一数量的可用上行波束中选择第二数量的上行波束作为所述候选上行波束。
在一个实施例中,终端可以先获取上行波束的相关参数,进而根据所述相关参数从第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束用于PRACH的重复传输,有利于满足相关通信要求。
在一个实施例中,所述可用上行波束的相关参数包括以下至少之一:
所述上行波束的标识;
所述上行波束的波束方向;
所述上行波束的发射功率;
所述上行波束的波束一致性。
在一个实施例中,终端可以根据上行波束的标识(例如索引index)选择候选上行波束,例如可以从全部上行波束中选择标识连续的波束,例如以索引作为标识为例,可以从小到大选择连续的第二数量的索引对应的上行波束作为候选上行波束。
例如32个上波束的索引为1至32,若需要从中选择4个上行波束作为候选上行波束,可以选择索引为1至4的上行波束作为候选上行波束。当然,基于连续标识来选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于标识选择候选上行波束。
在一个实施例中,终端可以根据上行波束的波束方向选择候选上行波束,例如可以确定重复传输PRACH的过程中,第一次重复传输PRACH所用的第一波束,进而计算上行波束的波束方向与第一波束的波束方向之间的夹角,并按照夹角从小到大选择上行波束。
例如32个上行波束中beam1作为第一波束,可以计算其余31个上行波束的波束方向与beam1的波束方向之间的夹角,例如夹角从小到大分别为beam10、beam20、beam30等等,若需要从中选择4个上行波束作为候选上行波束,那么可以选择beam1、beam10、beam20和beam30这4个波束作为候选上行波束。当然,基于上行波束与第一波束之间夹角来选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于波束方向选择候选上行波束。
在一个实施例中,终端可以根据上行波束的发射功率选择候选上行波束,例如 可以确定全部上行波束的发射功率,然后按照发射功率从大到小选择第二数量的索引对应的上行波束作为候选上行波束。
例如32个上行波束的发射功率分别为P1至P32,发射功率从大到小依次为P5、P11、P19、P7等等,若需要从中选择4个上行波束作为候选上行波束,那么可以选择P5、P11、P19、P7这4个发射功率对应的上行波束作为候选上行波束。当然,基于发射功率从大到小选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于发射功率选择候选上行波束。
在一个实施例中,终端可以根据上行波束的波束一致性选择候选上行波束,例如可以确定全部上行波束的波束一致性,然后按照波束一致性从高到低选择第二数量的索引对应的上行波束作为候选上行波束。
例如32个上行波束的波束一致性分别为C1至C32,波束一致性从高到低依次为C2、C13、C29、C9等等,若需要从中选择4个上行波束作为候选上行波束,那么可以选择C2、C13、C29、C9这4个波束一致性对应的上行波束作为候选上行波束。当然,基于波束一致性从高到低选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于波束一致性选择候选上行波束。
需要说明的是,关于上述实施例中的几种相关参数,还可以根据需要设置优先级,例如可以设置发射功率的优先级最高,波束方向的优先级次高,也即在所有相关参数中优先根据发射功率选择候选上行波束,而针对具有相同发射功率的多个上行波束,则可以进一步根据波束方向选择候选上行波束,以此类推,在多个上行波束的较高优先级的相关参数相同时,可以根据低一级的优先级的相关参数在多个上行波束中选择候选上行波束。
当然,也可以根据需要对每个相关参数分别设置权值,进而在根据相关参数在多个上行波束中选择候选上行波束时,可以对上行波束的相关参数进行加权求和,根据求和结果来选择候选上行波束,例如按照求和结果由大到小的顺序来选择候选上行波束。
以上通过几个实施例对如何确定映射关系,以及如何选择候选上行波束进行了示例性说明,下面再通过几个实施例对映射关系具体包含的情况进行示例性说明。
在一个实施例中,所述映射关系包括以下至少之一:
PRACH的一次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到多个上行波束。
在一个实施例中,PRACH的一次重复传输可以映射到一个上行波束,也即PRACH的重复传输与上行波束之间是一对一的映射关系,例如对于n次PRACH的重复传输而言,确定的候选上行波束的数量也为n,一个候选上行波束仅用于一次PRACH的重复传输,n为大于1的整数。
在一个实施例中,PRACH的多次重复传输可以映射到一个上行波束,也即PRACH的重复传输与上行波束之间是多对一的映射关系,例如对于4次PRACH的重复传输,确定的候选上行波束的数量为1,为beam1,可以将4次PRACH的重复传输全部映射到beam1,也即beam1用于4次PRACH的重复传输。
在一个实施例中,PRACH的多次重复传输可以映射到多个上行波束,也即PRACH的重复传输与上行波束之间是多对多的映射关系,例如对于4次PRACH的重复传输,确定的候选上行波束的数量为2,为beam1和beam2,可以将其中3次PRACH的重复传输映射到beam1,将另外1次PRACH的重复传输映射到beam2,也即beam1用于3次PRACH的重复传输,beam2用于1次PRACH的重复传输。
关于上述实施例中一对一映射的情况和多对一映射的情况,也可以进一步细分,以下通过几个实施例进一步对中一对一映射的情况和多对一映射的情况进行示例性说明。
关于一对一的情况,在一个实施例中,PRACH的一次重复传输映射到一个上行波束包括以下至少之一:
PRACH特定次序的重复传输映射到特定标识的上行波束;
PRACH特定次序的重复传输随机映射到一个上行波束;
PARCH特定次序的重复传输交织映射到一个上行波束。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束,具体可以是PRACH特定次序的重复传输映射到特定标识的上行波束,也可以称作顺序映射,例如对于n次PRACH的重复传输而言,确定的候选上行波束的数量也为n,那么第i次PRACH的重复传输可以映射到第i个上行波束,也即第i次PRACH的重复传输在第i个上行波束上传输。
其中,n为大于1的整数。由于重复传输是从第0次开始计的,重复传输n次也即到第n-1次重传为止,第0次重复传输可以理解为初始传输,因此i大于或等于0,且小于或等于n-1。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束,具体可以是PRACH特定次序的重复传输随机映射到一个上行波束,例如对于n次PRACH的重复传输而言,确定的候选上行波束的数量也为n,对于每次PRACH的重复传输,可以随机选择一个上行波束用于传输,用于重复传输后的上行波束可以不被用作后续重复传输。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束,具体可以是PARCH特定次序的重复传输交织映射到一个上行波束,其中,交织映射是指PRACH的重复次数与上行波束之间存在指定关系,例如通过函数表示的指定关系,函数的输入量至少包括PRACH的特定次序,输出量包括对应的上行波束的标识,在需要传输特定次序的PRACH时,可以将特定次序的PRACH输入所述函数,根据函数输出可以确定需要在哪个上行波束上进行这次PRACH重复传输。
关于多对一的情况,在一个实施例中,所述PRACH的多次重复传输包括多组PRACH的重复传输,PRACH的多次重复传输映射到一个上行波束包括:
一组PRACH的重复传输映射到一个上行波束。
在一个实施例中,针对PRACH的多次重复传输,可以先划分为多组PRACH的重复传输,然后将一组PRACH的重复传输映射到一个上行波束,也即通过这个上行波束传输所映射的一组RAPCH的重复传输中全部RAPCH的重复传输。
例如以32次PRACH的重复传输为例,确定的候选上行波束的数量为4,包括beam1至beam4,那么可以将32次PRACH的重复传输划分为4组,例如包括group1至group4,其中group1的PRACH的重复传输映射到beam1上,group2的PRACH的重复传输映射到beam2上,group3的PRACH的重复传输映射到beam3上,group4的PRACH的重复传输映射到beam4上。
以下通过几个实施例示例性说明如何对PRACH的多次重复传输进行分组。
在一个实施例中,所述方法还包括:
按照重复传输分组方式将所述PRACH的多次重复传输划分为所述多组PRACH的重复传输,其中,所述重复传输分组方式包括以下至少之一:
根据重复传输次序对所述PRACH的多次重复传输分组;
根据重复传输次序和次序偏移量对所述PRACH的多次重复传分组;
随机对所述PRACH的多次重复传分组。
在一个实施例中,对于PRACH的多次重复传输,可以进行平均分组,而平均分组又可以划分为根据重复传输次序对所述PRACH的多次重复传输分组,以及根据重复传输次序和次序偏移量对所述PRACH的多次重复传分组。
以下部分实施例在PRACH重复传输的次数为32次,候选上行波束的数量为4的情况下,对本公开的技术方案进行示例性说明。
例如对于32次PRACH的重复传输而言,确定的候选上行波束的数量为4,可以按照PRACH的重复传输次序平均划分为4组,其中第0次至第7次重复传输划分为一组,例如称作group1,第8次至第15次重复传输划分为一组,例如称作group2,第16次至第23次重复传输划分为一组,例如称作group3,第24次至第31次重复传输划分为一组,例如称作group4。
例如对于32次PRACH的重复传输而言,确定的候选上行波束的数量为4,可以按照PRACH的重复传输次序和次序偏移量平均划分为4组,例如次序偏移量为4,那么可以将第0、4、8、12、16、20、24、28次重复传输划分为一组,例如称作group1,将第1、5、9、13、17、21、25、29次重复传输划分为一组,例如称作group2,将第2、6、10、14、18、22、26、30次重复传输划分为一组,例如称作group3,将第3、7、11、15、19、23、27、31次重复传输划分为一组,例如称作group4。
在一个实施例中,对于PRACH的多次重复传输,也可以不进行平均分租,例如随机对所述PRACH的多次重复传分组,每组PRACH的重复传输的数量是随机而定的,可以相等,也可以不相等。
图4是根据本公开的实施例示出的一种随机接入信道重复传输接收方法的示意流程图。本实施例所示的随机接入信道重复传输接收方法可以由网络侧设备执行,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,包括但不限于基站、核心网等。
如图4所示,所述随机接入信道重复传输接收方法可以包括以下步骤:
在步骤S401中,确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系;
在步骤S402中,根据所述映射关系确定每次PRACH的重复传输对应的上行波束;
在步骤S403中,在确定的上行波束对应的接收波束上接收所述终端进行的所述确定的上行波束对应的PRACH的重复传输。
在一个实施例中,为了对PRACH进行上行覆盖增强,终端可以对PRACH进行重复传输。需要说明的是,重复传输repetition与重新传输retransmission不同,重复传输是指多次重复的传输,重新传输是指出于某些原因(例如传输失败)而再次传输。
而在终端与网络侧设备通过波束beam通信的情况下,由于可以存在多个上行波束,在重复传输PRACH时,如何选择每次PRACH的重复传输对应的上行波束,是一个亟待解决的问题。
根据本公开的实施例,终端可以确定PRACH的重复传输与上行波束之间的映射关系,进而在需要进行PRACH的重复传输时,可以根据映射关系确定每次PRACH的重复传输对应的上行波束,然后在确定的上行波束上进行所述确定的上行波束相对应的PRACH的重复传输,确保针对每次进行PRACH的重复传输,可以选择适当的上行波束进行传输。
相应地,网络侧设备也可以确定所述映射关系,根据所述映射关系可以确定终端将要进行的PRACH的重复传输对应的上行波束,进而可以在确定的上行波束对应的接收波束上来接收终端在所述确定的上行波束上进行的PRACH的重复传输。
关于网络侧设备如何确定所述映射关系,可以根据实际需要进行调整,以下通过几个实施例对终端如何确定映射关系进行示例性说明。
图5是根据本公开的实施例示出的另一种随机接入信道重复传输接收方法的示意流程图。如图5所示,所述确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:
在步骤S501中,根据协议约定确定所述映射关系。
在一个实施例中,网络侧设备可以根据协议约定确定映射关系,在这种情况下, 终端也可以根据协议约定确定所述映射关系。在终端根据所述映射关系确定PRACH的重复传输对应的上行波束时,网络侧设备也可以根据所述映射关系确定终端进行PRACH的重复传输使用的上行波束,进而可以在确定的上行波束对应的接收波束上来接收终端在所述确定的上行波束上进行的PRACH的重复传输,以便确保良好的信号接收质量。
图6是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。如图6所示,所述确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:
在步骤S601中,确定所述映射关系;
在步骤S602中,将所述映射关系配置给所述终端。
在一个实施例中,网络侧设备可以确定所述映射关系,进而将所述映射关系配置给终端。例如网络侧设备可以根据协议约定确定所述映射关系,也可以根据网络侧设备的自身需要确定所述映射关系,还可以根据终端的状态确定所述映射关系。
在这种情况下,由于映射关系是网络侧设备配置给终端的,网络侧设备自身显然已经得知所述映射关系,后续可以根据所述映射关系确定终端使用进行PRACH的重复传输所使用的上行波束,进而可以选择与确定的上行波束对应的接收波束来接收终端重复传输的PRACH,以便确保良好的信号接收质量。
图7是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。如图7所示,所述确定所述映射关系包括:
在步骤S701中,针对每个终端分别确定所述映射关系;
所述将所述映射关系配置给所述终端包括:
在步骤S702中,将为特定终端确定的映射关系发送至所述特定终端。
在一个实施例中,网络侧设备可以针对每个终端分别确定映射关系,然后配置给终端,例如可以根据每个终端的状态分别确定映射关系,进而将映射关系配置给对应终端。例如根据特定终端A的状态确定映射关系a,根据特定终端B的状态确定映射关系b,那么可以将映射关系a配置给特定终端A,将映射关系b配置给特定终端B,有利于保证确定的映射关系符合每个终端的实际需要。
可见,所述映射关系可以是网络侧设备和终端均根据协议约定确定的,也可以 是网络侧设备确定后配置给终端的。
在一个实施例中,PRACH重复传输的次数可以为多次,上行波束可以为多个,以下部分实施例在PRACH重复传输的次数为4次,上行波束的数量为32的情况下,对本公开的技术方案进行示例性说明。
需要说明的是,以下几个有关网络侧设备在多个上行波束中选择候选上行波束的情况,选择候选上行波束的操作是由网络侧设备执行的,终端需要先上报候选上行波束的选择依据,例如上报多个上行波束的相关参数。网络侧设备在选择候选上行波束后,可以对终端进行指示,以使终端确定需要在上行波束中选择哪些波束作为候选上行波束。
当然,选择候选上行波束的操作也可以由终端执行,终端在选择候选上行波束后,可以将选中的候选上行波束的相关信息上报给网络侧设备,以使网络侧设备确定终端选择哪些波束作为候选上行波束,以便后根据映射关系在候选上行波束中确定终端进行PRACH的重复传输所使用的上行波束,并通过确定的上行波束对应的接收波束来接收终端在所述确定的上行波束上进行的PRACH的重复传输。
图8是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。如图8所示,所述终端可用上行波束的第一数量大于PRACH重复传输的重复次数,所述方法还包括:
在步骤S801中,在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,其中,所述第二数量小于或等于所述重复次数;
所述根据所述映射关系确定每次PRACH的重复传输对应的上行波束包括:
在步骤S802中,在所述候选上行波束中根据所述映射关系确定每次PRACH的重复传输对应的上行波束。
在一个实施例中,终端在可用上行波束的第一数量大于PRACH重复传输的重复次数的情况下,可以在第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束进而后续在根据映射关系确定每次PRACH的重复传输对应的上行波束时,可以在候选上行波束中根据映射关系确定每次PRACH的重复传输对应的上行波束。
其中,第二数量小于或等于重复次数,也即选择的候选上行波束的数量,不会大于重复次数,据此,即使PRACH的一次重复传输映射到一个上行波束,也可以满足重复传输的要求(PRACH的多次重复传输映射到一个上行波束更能满足要求),避 免选择过多的上行波束作为候选上行波束而导致后续部分候选上行波束没有用于PRACH的重复传输造成资源浪费。
例如第一数量为32,重复次数为4,那么第二数量小于或等于4,也即至多选择4个上行波束作为候选上行波束用于PRACH的重复传输,即使PRACH的一次重复传输映射到一个上行波束,那么4次PRACH的重复传输,也只需要4个上行波束就能够实现,从而避免选择过多的上行波束作为候选上行波束而导致后续部分候选上行波束没有用于PRACH的重复传输造成资源浪费。
在一个实施例中,映射关系可以是相对映射关系,而不是绝对映射关系。
例如以4次PRACH的重复传输为例,映射关系可以是PRACH的第1次重复传输对应候选上行波束中序号最小的上行波束,PRACH的第2次重复传输对应候选上行波束中序号第二小的上行波束,PRACH的第3次重复传输对应候选上行波束中序号第三小的上行波束PRACH的第4次重复传输对应候选上行波束中序号第四小的上行波束。
据此,映射关系并不限定每次PRACH的重复传输与上行波束的序号之间的绝对映射关系,而是限定PRACH的重复传输与上行波束的序号之间的相对映射关系,以便每次选择候选上行波束后,都能够根据映射关系在候选上行波束中确定PRACH的重复传输对应的上行波束。
当然,映射关系也可以限定每次PRACH的重复传输与上行波束的序号之间的绝对映射关系,具体可以根据需要进行设置。例如在第一数量与重复次数相等的情况下,以4次PRACH的重复传输为例,映射关系可以是PRACH的第1次重复传输对应候选上行波束中序号为1的上行波束,PRACH的第2次重复传输对应候选上行波束中序号为2的上行波束,PRACH的第3次重复传输对应候选上行波束中序号为3的上行波束PRACH的第4次重复传输对应候选上行波束中序号为4的上行波束。
需要说明的是,在上行波束的第一数量小于或等于PRACH重复传输的重复次数时,选择的候选上行波束的数量可以等同于第一数量,也可以小于第一数量,当然,在选择的候选上行波束的数量小于重复次数时,PRACH的重复传输与上行波束之间的映射关系,可能难以满足PRACH的一次重复传输映射到一个上行波束,那么可以选择其他映射方式,例如PRACH的多次重复传输映射到一个上行波束,或者PRACH的多次重复传输映射到多个上行波束。
而关于如何从第一数量的可用上行波束中选择候选上行波束,以下通过几个实施例进行示例性描述。
图9是根据本公开的实施例示出的又一种随机接入信道重复传输接收方法的示意流程图。如图9所示,所述在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束包括:
在步骤S901中,根据所述可用上行波束的相关参数,在所述第一数量的可用上行波束中选择第二数量的上行波束作为所述候选上行波束。
在一个实施例中,网络侧设备可以先获取上行波束的相关参数,进而根据所述相关参数从第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束用于PRACH的重复传输,有利于满足相关通信要求。
在一个实施例中,所述可用上行波束的相关参数包括以下至少之一:
所述上行波束的标识;
所述上行波束的波束方向;
所述上行波束的发射功率;
所述上行波束的波束一致性。
在一个实施例中,网络侧设备可以根据上行波束的标识(例如索引index)选择候选上行波束,例如可以从全部上行波束中选择标识连续的波束,例如以索引作为标识为例,可以从小到大选择连续的第二数量的索引对应的上行波束作为候选上行波束。
例如32个上波束的索引为1至32,若需要从中选择4个上行波束作为候选上行波束,可以选择索引为1至4的上行波束作为候选上行波束。当然,基于连续标识来选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于标识选择候选上行波束。
在一个实施例中,网络侧设备可以根据上行波束的波束方向选择候选上行波束,例如可以确定重复传输PRACH的过程中,第一次重复传输PRACH所用的第一波束,进而计算上行波束的波束方向与第一波束的波束方向之间的夹角,并按照夹角从小到大选择上行波束。
例如32个上行波束中beam1作为第一波束,可以计算其余31个上行波束的波 束方向与beam1的波束方向之间的夹角,例如夹角从小到大分别为beam10、beam20、beam30等等,若需要从中选择4个上行波束作为候选上行波束,那么可以选择beam1、beam10、beam20和beam30这4个波束作为候选上行波束。当然,基于上行波束与第一波束之间夹角来选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于波束方向选择候选上行波束。
在一个实施例中,网络侧设备可以根据上行波束的发射功率选择候选上行波束,例如可以确定全部上行波束的发射功率,然后按照发射功率从大到小选择第二数量的索引对应的上行波束作为候选上行波束。
例如32个上行波束的发射功率分别为P1至P32,发射功率从大到小依次为P5、P11、P19、P7等等,若需要从中选择4个上行波束作为候选上行波束,那么可以选择P5、P11、P19、P7这4个发射功率对应的上行波束作为候选上行波束。当然,基于发射功率从大到小选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于发射功率选择候选上行波束。
在一个实施例中,网络侧设备可以根据上行波束的波束一致性选择候选上行波束,例如可以确定全部上行波束的波束一致性,然后按照波束一致性从高到低选择第二数量的索引对应的上行波束作为候选上行波束。
例如32个上行波束的波束一致性分别为C1至C32,波束一致性从高到低依次为C2、C13、C29、C9等等,若需要从中选择4个上行波束作为候选上行波束,那么可以选择C2、C13、C29、C9这4个波束一致性对应的上行波束作为候选上行波束。当然,基于波束一致性从高到低选择候选上行波束只是一种示例,也可以根据需要按照其他方式来基于波束一致性选择候选上行波束。
需要说明的是,关于上述实施例中的几种相关参数,还可以根据需要设置优先级,例如可以设置发射功率的优先级最高,波束方向的优先级次高,也即在所有相关参数中优先根据发射功率选择候选上行波束,而针对具有相同发射功率的多个上行波束,则可以进一步根据波束方向选择候选上行波束,以此类推,在多个上行波束的较高优先级的相关参数相同时,可以根据低一级的优先级的相关参数在多个上行波束中选择候选上行波束。
当然,也可以根据需要对每个相关参数分别设置权值,进而在根据相关参数在多个上行波束中选择候选上行波束时,可以对上行波束的相关参数进行加权求和,根 据求和结果来选择候选上行波束,例如按照求和结果由大到小的顺序来选择候选上行波束。
以上通过几个实施例对如何确定映射关系,以及如何选择候选上行波束进行了示例性说明,下面再通过几个实施例对映射关系具体包含的情况进行示例性说明。
在一个实施例中,所述映射关系包括以下至少之一:
PRACH的一次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到多个上行波束。
在一个实施例中,PRACH的一次重复传输可以映射到一个上行波束,也即PRACH的重复传输与上行波束之间是一对一的映射关系,例如对于n次PRACH的重复传输而言,确定的候选上行波束的数量也为n,一个候选上行波束仅用于一次PRACH的重复传输,n为大于1的整数。
在一个实施例中,PRACH的多次重复传输可以映射到一个上行波束,也即PRACH的重复传输与上行波束之间是多对一的映射关系,例如对于4次PRACH的重复传输,确定的候选上行波束的数量为1,为beam1,可以将4次PRACH的重复传输全部映射到beam1,也即beam1用于4次PRACH的重复传输。
在一个实施例中,PRACH的多次重复传输可以映射到多个上行波束,也即PRACH的重复传输与上行波束之间是多对多的映射关系,例如对于4次PRACH的重复传输,确定的候选上行波束的数量为2,为beam1和beam2,可以将其中3次PRACH的重复传输映射到beam1,将另外1次PRACH的重复传输映射到beam2,也即beam1用于3次PRACH的重复传输,beam2用于1次PRACH的重复传输。
关于上述实施例中一对一映射的情况和多对一映射的情况,也可以进一步细分,以下通过几个实施例进一步对中一对一映射的情况和多对一映射的情况进行示例性说明。
关于一对一的情况,在一个实施例中,PRACH的一次重复传输映射到一个上行波束包括以下至少之一:
PRACH特定次序的重复传输映射到特定标识的上行波束;
PRACH特定次序的重复传输随机映射到一个上行波束;
PARCH特定次序的重复传输交织映射到一个上行波束。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束,具体可以是PRACH特定次序的重复传输映射到特定标识的上行波束,也可以称作顺序映射,例如对于n次PRACH的重复传输而言,确定的候选上行波束的数量也为n,那么第i次PRACH的重复传输可以映射到第i个上行波束,也即第i次PRACH的重复传输在第i个上行波束上传输。
其中,n为大于1的整数。由于重复传输是从第0次开始计的,重复传输n次也即到第n-1次重传为止,第0次重复传输可以理解为初始传输,因此i大于或等于0,且小于或等于n-1。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束,具体可以是PRACH特定次序的重复传输随机映射到一个上行波束,例如对于n次PRACH的重复传输而言,确定的候选上行波束的数量也为n,对于每次PRACH的重复传输,可以随机选择一个上行波束用于传输,用于重复传输后的上行波束可以不被用作后续重复传输。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束,具体可以是PARCH特定次序的重复传输交织映射到一个上行波束,其中,交织映射是指PRACH的重复次数与上行波束之间存在指定关系,例如通过函数表示的指定关系,函数的输入量至少包括PRACH的特定次序,输出量包括对应的上行波束的标识,在需要传输特定次序的PRACH时,可以将特定次序的PRACH输入所述函数,根据函数输出可以确定需要终端在哪个上行波束上进行这次PRACH重复传输。
关于多对一的情况,在一个实施例中,所述PRACH的多次重复传输包括多组PRACH的多次重复传输,PRACH的多次重复传输映射到一个上行波束包括:
一组PRACH的多次重复传输映射到一个上行波束。
在一个实施例中,针对PRACH的多次重复传输,可以先划分为多组PRACH的重复传输,然后将一组PRACH的重复传输映射到一个上行波束,也即通过这个上行波束传输所映射的一组RAPCH的重复传输中全部RAPCH的重复传输。
例如以32次PRACH的重复传输为例,确定的候选上行波束的数量为4,包括beam1至beam4,那么可以将32次PRACH的重复传输划分为4组,例如包括group1至group4,其中group1的PRACH的重复传输映射到beam1上,group2的PRACH的 重复传输映射到beam2上,group3的PRACH的重复传输映射到beam3上,group4的PRACH的重复传输映射到beam4上。
与前述的随机接入信道重复传输方法和随机接入信道重复传输接收方法的实施例相对应,本公开还提供了随机接入信道重复传输装置和随机接入信道重复传输接收装置的实施例。
本公开的实施例示出的一种随机接入信道重复传输装置,所述随机接入信道重复传输装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络侧设备通信,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,包括但不限于基站、核心网等。
在一个实施例中,所述随机接入信道重复传输装置包括一个或多个处理器,所述处理器被配置为:确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对应的上行波束;在确定的上行波束上进行相对应的PRACH的重复传输。
在一个实施例中,所述映射关系包括以下至少之一:
PRACH的一次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到多个上行波束。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束包括以下至少之一:
PRACH特定次序的重复传输映射到特定标识的上行波束;
PRACH特定次序的重复传输随机映射到一个上行波束;
PARCH特定次序的重复传输交织映射到一个上行波束。
在一个实施例中,所述PRACH的多次重复传输包括多组PRACH的重复传输,PRACH的多次重复传输映射到一个上行波束包括:一组PRACH的重复传输映射到一个上行波束。
在一个实施例中,所述处理器还被配置为:按照重复传输分组方式将所述PRACH的多次重复传输划分为所述多组PRACH的重复传输,其中,所述重复传输分 组方式包括以下至少之一:
根据重复传输次序对所述PRACH的多次重复传输分组;
根据重复传输次序和次序偏移量对所述PRACH的多次重复传分组;
随机对所述PRACH的多次重复传分组。
在一个实施例中,所述处理器被配置为:根据协议约定确定所述映射关系。
在一个实施例中,所述处理器被配置为:根据网络侧设备配置确定所述映射关系。
在一个实施例中,所述终端可用上行波束的第一数量大于PRACH重复传输的重复次数,所述处理器还被配置为:在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,其中,所述第二数量小于或等于所述重复次数;在所述候选上行波束中根据所述映射关系确定每次PRACH的重复传输对应的上行波束。
在一个实施例中,所述处理器被配置为:根据所述可用上行波束的相关参数,在所述第一数量的可用上行波束中选择第二数量的上行波束作为所述候选上行波束。
在一个实施例中,所述可用上行波束的相关参数包括以下至少之一:
所述上行波束的标识;
所述上行波束的波束方向;
所述上行波束的发射功率;
所述上行波束的波束一致性。
在一个实施例中,所述映射关系为针对每个终端分别设置的。
本公开的实施例示出的一种随机接入信道重复传输接收装置,所述随机接入信道重复传输接收装置可以适用于网络侧设备,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,包括但不限于基站、核心网等。
在一个实施例中,所述随机接入信道重复传输接收装置包括一个或多个处理器,所述处理器被配置为:确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系;根据所述映射关系确定每次PRACH的重复传输对应的上行波束;在 确定的上行波束对应的接收波束上接收所述终端进行的所述确定的上行波束对应的PRACH的重复传输。
在一个实施例中,所述映射关系包括以下至少之一:
PRACH的一次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到一个上行波束;
PRACH的多次重复传输映射到多个上行波束。
在一个实施例中,PRACH的一次重复传输映射到一个上行波束包括以下至少之一:
PRACH特定次序的重复传输映射到特定标识的上行波束;
PRACH特定次序的重复传输随机映射到一个上行波束;
PARCH特定次序的重复传输交织映射到一个上行波束。
在一个实施例中,所述PRACH的多次重复传输包括多组PRACH的多次重复传输,PRACH的多次重复传输映射到一个上行波束包括:一组PRACH的多次重复传输映射到一个上行波束。
在一个实施例中,所述处理器被配置为:根据协议约定确定所述映射关系。
在一个实施例中,所述处理器被配置为:确定所述映射关系;将所述映射关系配置给所述终端。
在一个实施例中,所述确定所述映射关系包括:针对每个终端分别确定所述映射关系;所述将所述映射关系配置给所述终端包括:将为特定终端确定的映射关系发送至所述特定终端。
在一个实施例中,所述终端可用上行波束的第一数量大于PRACH重复传输的重复次数,所述处理器还被配置为:在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,其中,所述第二数量小于或等于所述重复次数;在所述候选上行波束中根据所述映射关系确定每次PRACH的重复传输对应的上行波束。
在一个实施例中,所述处理器被配置为:根据所述可用上行波束的相关参数,在所述第一数量的可用上行波束中选择第二数量的上行波束作为所述候选上行波束。
在一个实施例中,所述可用上行波束的相关参数包括以下至少之一:
所述上行波束的标识;
所述上行波束的波束方向;
所述上行波束的发射功率;
所述上行波束的波束一致性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的随机接入信道重复传输方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的随机接入信道重复传输接收方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的随机接入信道重复传输方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的随机接入信道重复传输接收方法中的步骤。
如图10所示,图10是根据本公开的实施例示出的一种用于随机接入信道重复传输接收的装置1000的示意框图。装置1000可以被提供为一基站。参照图10,装置1000包括处理组件1022、无线发射/接收组件1024、天线组件1026、以及无线接口特有的信号处理部分,处理组件1022可进一步包括一个或多个处理器。处理组件1022 中的其中一个处理器可以被配置为实现上述任一实施例所述的随机接入信道重复传输接收方法。
图11是根据本公开的实施例示出的一种用于随机接入信道重复传输的装置1100的示意框图。例如,装置1100可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,装置1100可以包括以下一个或多个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制装置1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括一个或多个处理器1120来执行指令,以完成上述的随机接入信道重复传输方法的全部或部分步骤。此外,处理组件1102可以包括一个或多个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在装置1100的操作。这些数据的示例包括用于在装置1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为装置1100的各种组件提供电力。电源组件1106可以包括电源管理系统,一个或多个电源,及其他与为装置1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述装置1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像 头。当装置1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当装置1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括一个或多个传感器,用于为装置1100提供各个方面的状态评估。例如,传感器组件1114可以检测到装置1100的打开/关闭状态,组件的相对定位,例如所述组件为装置1100的显示器和小键盘,传感器组件1114还可以检测装置1100或装置1100一个组件的位置改变,用户与装置1100接触的存在或不存在,装置1100方位或加速/减速和装置1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于装置1100和其他设备之间有线或无线方式的通信。装置1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用 于执行上述随机接入信道重复传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由装置1100的处理器1120执行以完成上述随机接入信道重复传输方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (27)

  1. 一种随机接入信道重复传输方法,其特征在于,由终端执行,所述方法包括:
    确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;
    根据所述映射关系确定每次PRACH的重复传输对应的上行波束;
    在确定的上行波束上进行相对应的PRACH的重复传输。
  2. 根据权利要求1所述的方法,其特征在于,所述映射关系包括以下至少之一:
    PRACH的一次重复传输映射到一个上行波束;
    PRACH的多次重复传输映射到一个上行波束;
    PRACH的多次重复传输映射到多个上行波束。
  3. 根据权利要求2所述的方法,其特征在于,PRACH的一次重复传输映射到一个上行波束包括以下至少之一:
    PRACH特定次序的重复传输映射到特定标识的上行波束;
    PRACH特定次序的重复传输随机映射到一个上行波束;
    PARCH特定次序的重复传输交织映射到一个上行波束。
  4. 根据权利要求2所述的方法,其特征在于,所述PRACH的多次重复传输包括多组PRACH的重复传输,PRACH的多次重复传输映射到一个上行波束包括:
    一组PRACH的重复传输映射到一个上行波束。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    按照重复传输分组方式将所述PRACH的多次重复传输划分为所述多组PRACH的重复传输,其中,所述重复传输分组方式包括以下至少之一:
    根据重复传输次序对所述PRACH的多次重复传输分组;
    根据重复传输次序和次序偏移量对所述PRACH的多次重复传分组;
    随机对所述PRACH的多次重复传分组。
  6. 根据权利要求1所述的方法,其特征在于,所述确定随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:
    根据协议约定确定所述映射关系。
  7. 根据权利要求1所述的方法,其特征在于,所述确定随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:
    根据网络侧设备配置确定所述映射关系。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端可用上行波束的第一数量大于PRACH重复传输的重复次数,所述方法还包括:
    在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,其中,所述第二数量小于或等于所述重复次数;
    所述根据所述映射关系确定每次PRACH的重复传输对应的上行波束包括:
    在所述候选上行波束中根据所述映射关系确定每次PRACH的重复传输对应的上行波束。
  9. 根据权利要求8所述的方法,其特征在于,所述在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束包括:
    根据所述可用上行波束的相关参数,在所述第一数量的可用上行波束中选择第二数量的上行波束作为所述候选上行波束。
  10. 根据权利要求9所述的方法,其特征在于,所述可用上行波束的相关参数包括以下至少之一:
    所述上行波束的标识;
    所述上行波束的波束方向;
    所述上行波束的发射功率;
    所述上行波束的波束一致性。
  11. 根据权利要求1至7中任一项所述的方法,其特征在于,所述映射关系为针对每个终端分别设置的。
  12. 一种随机接入信道重复传输接收方法,其特征在于,由网络侧设备执行,所述方法包括:
    确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系;
    根据所述映射关系确定每次PRACH的重复传输对应的上行波束;
    在确定的上行波束对应的接收波束上接收所述终端进行的所述确定的上行波束对应的PRACH的重复传输。
  13. 根据权利要求12所述的方法,其特征在于,所述映射关系包括以下至少之一:
    PRACH的一次重复传输映射到一个上行波束;
    PRACH的多次重复传输映射到一个上行波束;
    PRACH的多次重复传输映射到多个上行波束。
  14. 根据权利要求13所述的方法,其特征在于,PRACH的一次重复传输映射到一个上行波束包括以下至少之一:
    PRACH特定次序的重复传输映射到特定标识的上行波束;
    PRACH特定次序的重复传输随机映射到一个上行波束;
    PARCH特定次序的重复传输交织映射到一个上行波束。
  15. 根据权利要求13所述的方法,其特征在于,所述PRACH的多次重复传输包括多组PRACH的多次重复传输,PRACH的多次重复传输映射到一个上行波束包括:
    一组PRACH的多次重复传输映射到一个上行波束。
  16. 根据权利要求12所述的方法,其特征在于,所述确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:
    根据协议约定确定所述映射关系。
  17. 根据权利要求12所述的方法,其特征在于,所述确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系包括:
    确定所述映射关系;
    将所述映射关系配置给所述终端。
  18. 根据权利要求17所述的方法,其特征在于,所述确定所述映射关系包括:
    针对每个终端分别确定所述映射关系;
    所述将所述映射关系配置给所述终端包括:
    将为特定终端确定的映射关系发送至所述特定终端。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述终端可用上行波束的第一数量大于PRACH重复传输的重复次数,所述方法还包括:
    在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束,其中,所述第二数量小于或等于所述重复次数;
    所述根据所述映射关系确定每次PRACH的重复传输对应的上行波束包括:
    在所述候选上行波束中根据所述映射关系确定每次PRACH的重复传输对应的上行波束。
  20. 根据权利要求19所述的方法,其特征在于,所述在所述第一数量的可用上行波束中选择第二数量的上行波束作为候选上行波束包括:
    根据所述可用上行波束的相关参数,在所述第一数量的可用上行波束中选择第二数量的上行波束作为所述候选上行波束。
  21. 根据权利要求20所述的方法,其特征在于,所述可用上行波束的相关参数包括以下至少之一:
    所述上行波束的标识;
    所述上行波束的波束方向;
    所述上行波束的发射功率;
    所述上行波束的波束一致性。
  22. 一种随机接入信道重复传输装置,其特征在于,所述装置包括一个或多个处理器,所述处理器被配置为:
    确定随机接入信道PRACH的重复传输与上行波束之间的映射关系;
    根据所述映射关系确定每次PRACH的重复传输对应的上行波束;
    在确定的上行波束上进行相对应的PRACH的重复传输。
  23. 一种随机接入信道重复传输接收装置,其特征在于,所述装置包括一个或多个处理器,所述处理器被配置为:
    确定终端随机接入信道PRACH的重复传输与上行波束之间的映射关系;
    根据所述映射关系确定每次PRACH的重复传输对应的上行波束;
    在确定的上行波束对应的接收波束上接收所述终端进行的所述确定的上行波束对应的PRACH的重复传输。
  24. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至11中任一项所述的随机接入信道重复传输方法。
  25. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求12至21中任一项所述的随机接入信道重复传输接收方法。
  26. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至11中任一项所述的随机接入信道重复传输方法中的步骤。
  27. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求12至21中任一项所述的随机接入信道重复传输接收方法中的步骤。
PCT/CN2021/130983 2021-11-16 2021-11-16 随机接入信道重复传输、接收方法和装置 WO2023087149A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003817.2A CN116636275A (zh) 2021-11-16 2021-11-16 随机接入信道重复传输、接收方法和装置
PCT/CN2021/130983 WO2023087149A1 (zh) 2021-11-16 2021-11-16 随机接入信道重复传输、接收方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130983 WO2023087149A1 (zh) 2021-11-16 2021-11-16 随机接入信道重复传输、接收方法和装置

Publications (1)

Publication Number Publication Date
WO2023087149A1 true WO2023087149A1 (zh) 2023-05-25

Family

ID=86396113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130983 WO2023087149A1 (zh) 2021-11-16 2021-11-16 随机接入信道重复传输、接收方法和装置

Country Status (2)

Country Link
CN (1) CN116636275A (zh)
WO (1) WO2023087149A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190364445A1 (en) * 2018-05-10 2019-11-28 Lg Electronics Inc. Method and apparatus for performing beam failure recovery in a wireless communication
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统
CN110611956A (zh) * 2018-06-15 2019-12-24 成都华为技术有限公司 重复传输方法和通信装置
CN110769502A (zh) * 2018-07-25 2020-02-07 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
CN112805957A (zh) * 2020-12-31 2021-05-14 北京小米移动软件有限公司 资源集合配置方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190364445A1 (en) * 2018-05-10 2019-11-28 Lg Electronics Inc. Method and apparatus for performing beam failure recovery in a wireless communication
CN110611956A (zh) * 2018-06-15 2019-12-24 成都华为技术有限公司 重复传输方法和通信装置
CN110769502A (zh) * 2018-07-25 2020-02-07 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统
CN112805957A (zh) * 2020-12-31 2021-05-14 北京小米移动软件有限公司 资源集合配置方法、装置及存储介质

Also Published As

Publication number Publication date
CN116636275A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN109121467B (zh) 缓存状态的上报方法及装置
US11516832B2 (en) Method and device for transmitting data in unlicensed cell, base station and user equipment
EP3706349A1 (en) Hybrid automatic repeat request feedback indication and feedback method, device, and base station
US20200404673A1 (en) Method and apparatus for transmitting data
CN108886789B (zh) 确定上下行切换点的方法及装置
WO2021042336A1 (zh) 信息发送方法及装置、网络选择方法及装置和基站
US20200344778A1 (en) Method of indicating uplink feedback information and method of transmitting uplink feedback information
WO2023206561A1 (zh) 调度信息确定、下行控制信息发送方法和装置
WO2023206563A1 (zh) 调度信息确定、下行控制信息发送方法和装置
EP3787320B1 (en) Information indicating and interpreting methods, base station and user equipment
WO2024066767A1 (zh) 信息域确定方法、小区确定及指示装置
WO2023087149A1 (zh) 随机接入信道重复传输、接收方法和装置
WO2023123097A1 (zh) 资源元素群组捆确定、映射方法和装置
WO2022226739A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2020164515A1 (zh) 信号传输方法、设备及系统
WO2021081731A1 (zh) 连接建立方法及装置、基站、用户设备和核心网设备
CN110268779A (zh) 直连链路数据发送和直连链路资源配置方法以及装置
WO2023168579A1 (zh) 保护时间间隔确定方法、装置、通信装置和存储介质
US20230292362A1 (en) Sub-channel request method, sub-channel indication method and device
WO2023151082A1 (zh) 触发条件判断、资源分区配置方法和装置
WO2021226885A1 (zh) 上行控制信息发送方法和装置
WO2023050208A1 (zh) 波束切换、评估上报方法和装置、通信装置及存储介质
WO2024021124A1 (zh) 上行传输链路数目确定方法、装置、通信装置及存储介质
WO2024000544A1 (zh) 调度信息接收、发送方法和装置、通信装置及存储介质
WO2022236604A1 (zh) 配置信息发送、冗余版本rv值确定方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003817.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964315

Country of ref document: EP

Kind code of ref document: A1