WO2023087125A1 - 可搭载式扫描铣削集成系统及其使用方法 - Google Patents

可搭载式扫描铣削集成系统及其使用方法 Download PDF

Info

Publication number
WO2023087125A1
WO2023087125A1 PCT/CN2021/130808 CN2021130808W WO2023087125A1 WO 2023087125 A1 WO2023087125 A1 WO 2023087125A1 CN 2021130808 W CN2021130808 W CN 2021130808W WO 2023087125 A1 WO2023087125 A1 WO 2023087125A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
scanning head
milling machine
integrated
integrated scanning
Prior art date
Application number
PCT/CN2021/130808
Other languages
English (en)
French (fr)
Inventor
刘宁
兰波
李龙华
Original Assignee
爱佩仪测量设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱佩仪测量设备有限公司 filed Critical 爱佩仪测量设备有限公司
Priority to PCT/CN2021/130808 priority Critical patent/WO2023087125A1/zh
Publication of WO2023087125A1 publication Critical patent/WO2023087125A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the invention relates to the design of an oil sludge model, in particular to a mountable scanning and milling integrated system and a method for using the same.
  • API's five-axis milling machine is based on the three-dimensional milling machine, adding an AB-axis device, and installing the milling unit on the AB-axis device, and using the AB-axis device to control the feed radian of the milling unit, so that it can be used in multiple Dies are cut at an angle.
  • the five-axis milling machine drives the milling unit through the AB axis device to perform arc cutting, so that the cutting code constructed by the modeling software can be applied to arc or Slash the knife.
  • the API iScan series is a mature portable laser scanning probe.
  • the handheld operation mode is widely used, which makes iScan perfectly suitable for scanning detection and reverse engineering of component size in a small working space.
  • the staff needs to use the laser scanning head to detect the cut workpiece.
  • the scanning head of the API iScan series can choose the I-scan2 scanning head, and the I-scan2 scanning head is the existing laser scanning head.
  • the I-scan2 scanning head is used in conjunction with the laser tracker, which can be used for small aperture measurement and narrow space measurement.
  • the I-scan2 scanning head can also be used as a laser scanning head.
  • the purpose of the present invention is to provide a carry-on scanning and milling integrated system and its use method, in order to improve the existing I-scan scanning head requires staff to hold, and walk back and forth around the measured object for measurement, for adjacent As far as the equipment is concerned, the measurement process is not convenient for work.
  • the present invention adopts the following technical solutions:
  • a carry-on scan milling integrated system the system includes a five-axis milling machine and an integrated scanning head, the above-mentioned integrated scanning head is used to replace the milling cutter and fixed on the five-axis milling machine, and the integrated scanning head is driven by the five-axis milling machine on the sludge mold side scanning; the above-mentioned integrated scanning head is fixed on the electric spindle of the five-axis milling machine, and the above-mentioned electric spindle is fixed on the AB axis device of the five-axis milling machine; the rotation angle of the electric spindle in the horizontal and vertical directions is adjusted by the AB axis device .
  • the integrated scanning head includes a skeleton, a tracker is installed on the upper end of the skeleton, a scanner is installed on the lower end of the skeleton, a fixture is installed on the skeleton, the front end of the fixture is connected to the integrated scanning head shell, and the rear end of the fixture is inserted into the electric spindle.
  • the clamp includes a holding part and a fixing handle
  • the fixing handle is used to be inserted into the electric spindle
  • the holding parts are located at both ends of the fixing handle
  • the fixing handles are respectively fixed on the shell of the integrated scanning head.
  • a further technical solution is that a card slot is provided at the lower end of the frame, a support plate corresponding to the card slot is provided at the lower end of the card slot, the scanner is installed in the card slot, and the upper end of the support plate is used to resist the lower end of the scanner.
  • the above-mentioned AB shaft device includes a carrier, the side wall of the carrier is provided with an A rotating shaft, the lower end of the carrier is provided with a B rotating shaft, the upper end of the above-mentioned electric spindle is fixed on the B rotating shaft, and the rotation angle of the electric spindle is adjusted by the B rotating shaft; the above-mentioned A rotating shaft Connect the horizontal arm of the five-axis milling machine, and the rotation angle of the carrier is driven by the A shaft.
  • the invention also discloses a scanning method.
  • the integrated scanning head is fixed on a five-axis milling machine, and the corresponding position of the integrated scanning head and the scanning object is adjusted through the five-axis milling machine. It moves in the Y-axis and Z-axis directions, and integrates the data collected by the integrated scanning head into the computer, and the computer analyzes the state of the scanned object.
  • the above-mentioned X-axis is formed by the five-axis milling machine moving on the guide rail
  • the above-mentioned Y-axis is formed by the horizontal arm of the five-axis milling machine moving back and forth
  • the above-mentioned Y-axis is formed by the horizontal arm of the five-axis milling machine on the vertical column of the five-axis milling machine Up move pose.
  • step A when the five-axis milling machine completes the milling process, stop the electric spindle, remove the milling cutter on the five-axis milling machine, install the integrated scanning head on the electric spindle, and the above-mentioned integrated scanning
  • the fixing handle of the head is consistent with the way that the milling tool is fixed on the electric spindle, and the fixing handle of the integrated scanning head is locked in the electric spindle through the inner hexagon screw to complete the installation of the integrated scanning head.
  • Step B after the installation of the integrated scanning head is completed, manually turn the A-axis and B-axis of the AB-axis device to the required direction without starting the electric spindle; and ensure the work between the integrated scanning head and the object to be measured spacing.
  • Step C data link, connect the integrated scanning head with the data transmission line to the computer, set the reference distance to 200-300mm, set the depth of field parameter to 200-300mm; set the scanning rate to greater than 400,000 times/second, and set the precision parameter to less than 0.1mm; and ensure that The data is transferred to the computer in real time.
  • Step D start the five-axis milling machine, and the five-axis milling machine controls the motorized spindle to move in the X-axis, Y-axis, and Z-axis directions, so that the motorized spindle and the integrated scanning head move synchronously in a fixed state, so that the integrated scanning head can be measured
  • the beneficial effects of the present invention are at least one of the following:
  • the integrated scanning head is used to replace the milling cutter and fixed on the five-axis milling machine, and the electric spindle of the five-axis milling machine is used to fix the integrated scanning head, so that the sampling direction of the integrated scanning head can be close to the cutting direction of the milling cutter, so that Sampling by the integrated scan head does not require alignment.
  • the system of the present invention is equipped with a scanning function after the milling work is completed.
  • it can use the AB axis device to rotate, so that the integrated scanning head can directly act on the front and side of the model to be detected, thereby utilizing the integrated Scanning head for fast and precise scanning.
  • the system of the present invention can move the integrated scanning head to a designated position more conveniently by mounting the integrated scanning head on a five-axis milling machine, and does not require staff to walk to the designated position. For the production line of mass production, it greatly improves the safety factor of equipment operation.
  • Fig. 1 is a schematic diagram of the structure of the present invention.
  • Figure 2 is a schematic diagram of the installation of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the integrated scanning head of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the AB axis device of the present invention.
  • 1-integrated scanning head 2-electric spindle, 3-AB axis device, 4-skeleton, 5-fixture, 301-carrier, 302-A shaft, 303-B shaft, 401-tracker, 402-scanner, 501 -Holding part, 502-Fixed handle.
  • Figure 1 shows:
  • One embodiment of the present invention is a loadable scanning and milling integrated system, the system includes a five-axis milling machine and an integrated scanning head 1, wherein the five-axis milling machine adopts an API series five-axis milling machine, specifically, the five-axis The body of the milling machine is fixed on the linear guide rail, and the travel distance of the X-axis is limited by the linear guide rail. At the same time, the five-axis milling machine adopts a fully enclosed dust-proof structure to prevent the five-axis milling machine from being polluted during the milling process.
  • the column of the five-axis milling machine is used to construct the Z-axis track, and the column is used to limit the travel distance of the Z-axis.
  • the model needs to be measured to obtain the surface size of the model Parameters, the above-mentioned integrated scanning head 1 is used to replace the milling cutter and fixed on the five-axis milling machine, and the five-axis milling machine drives the integrated scanning head 1 to scan on the side of the sludge mold.
  • the integrated scanning head 1 is based on the existing API iScan scanning head, canceling the tactile probe, thereby reducing the product cost. Its integrated scanning head 1 uses a cross-type blue laser to ensure positioning, so that high-quality scanning operations can be performed in various postures, and at the same time it will not be limited by the size of the part to be tested and the position of the feature of the part. Has good scanning capabilities.
  • the sparseness of the scanned point cloud may be unevenly distributed due to the large size of the object to be measured, and the scanning point cloud at a position far from the integrated scanning head 1 is relatively sparse. , so that the scanning accuracy deviation may become larger; at the same time, the object to be measured may have a stacked form.
  • the detection point of the integrated scanning head 1 is fixed, it may be because the obstacle area of the object to be measured will block part of the scanning coverage area. Therefore, when the integrated scanning head 1 scans, it needs to scan at multiple positions, so as to reduce the accuracy deviation.
  • the above-mentioned integrated scanning head 1 is fixed on the electric spindle 2 of the five-axis milling machine, and the integrated scanning head 1 is installed through the electric spindle 2, thereby simplifying the installation complexity of the equipment, so that the integrated scanning head 1 can directly cooperate with the existing five-axis milling machine machine, when the five-axis milling machine finishes the work, directly install the integrated scanning head 1 on the five-axis milling machine by manual installation, and use the integrated scanning head 1 to move the integrated scanning head 1, so that the integrated scanning head 1 can be Multiple locations to scan.
  • the electric spindle 2 is fixed on the AB axis device 3 of the five-axis milling machine; the rotation angle of the electric spindle 2 in the horizontal and vertical directions is adjusted by the AB axis device 3 . Since the processing of the five-axis milling machine may have multiple inclination radians, even the embossing situation has occurred, the general movement of the five-axis milling machine is on the three-dimensional coordinate system of XYZ, and the electric spindle 2 is adjusted in the horizontal and horizontal directions through the AB axis device 3. The rotation angle in the longitudinal direction, so that the integrated scanning head 1 can be tilted at different angles on the electric spindle 2, so that the scanning angle can be adjusted.
  • the integration is improved through the AB axis device 3
  • the scanning angle of the scanning head 1 can greatly guarantee the scanning accuracy of the integrated scanning head 1 . Avoid the uneven distribution of cloud points obtained by the integrated scanning head 1, resulting in a poor imaging effect.
  • the above-mentioned integrated scanning head 1 includes a skeleton 4, wherein the skeleton 4 is mainly a support body of the integrated scanning head 1, and a plurality of functional units are integrated on the skeleton 4 to ensure integrated scanning.
  • a tracker 401 is installed on the upper end of the above-mentioned skeleton 4, and a scanner 402 is installed on the lower end of the above-mentioned skeleton 4,
  • the integrated scanning head 1 can directly measure the point position in the cloud point map for three-dimensional coordinate value, distance and angle value, so as to scan and measure the surface area and volume of the target object.
  • the quaternion method is used to calculate the attitude angle, and by analyzing the adjustment technology of the integrated system accuracy based on the control points of the integrated scanning head 1, and applying the Kalman filter theory, Establish a suitable system state equation and observation equation, so as to realize rapid modeling and imaging by computer.
  • a jig 5 is installed on the framework 4 , the front end of the jig 5 is connected to the shell of the integrated scanning head 1 , and the rear end of the jig 5 is inserted into the electric spindle 2 .
  • the fixture 5 is installed on the integrated scanning head 1 so that the fixture 5 can support the integrated scanning head 1 , and the electric spindle 2 is inserted through the fixture 5 so that the integrated scanning head 1 is fixed on the electric spindle 2 .
  • the clamp 5 includes a clamping part 501 and a fixed handle 502, wherein the clamping part 501 and the fixed handle 502 are integrally provided, the fixed handle 502 is used to be inserted into the electric spindle 2, and the fixed handle 502 is in the same shape as the handle of the milling cutter. It is locked on the electric spindle 2 by means of inner hexagonal fixing; thus ensuring the stability of the integrated scanning head 1 on the electric spindle 2, and at the same time, it is easy to directly modify the existing I-scan scanning head to achieve quick installation and plugging, effectively reducing the Process time.
  • the clamping parts 501 are located at both ends of the fixing handle 502 , wherein the integrated scanning head 1 is clamped by the clamping parts 501 , and the fixing handles 502 are respectively fixed on the casing of the integrated scanning head 1 . It is worth noting that the fixture 5 and the housing of the integrated scanning head 1 can adopt an integral design, thereby simplifying the docking process.
  • the lower end of the frame 4 is provided with a card slot 403
  • the lower end of the card slot 403 is provided with a supporting plate 404 corresponding to the card slot 403
  • the above-mentioned scanner 402 is installed in the card slot 403
  • the upper end of the above-mentioned supporting plate 404 is used for collision scanning.
  • the slot 403 and the supporting plate 404 are provided with grooves, the grooves are adapted to the outer contour of the scanner 402, and the supporting plate 404 and the frame 4 are provided with screw holes, and the supporting plate 404 is fixed on the frame 4 by bolts and make the supporting plate 404 correspond to the slot 403.
  • the above-mentioned AB shaft device 3 includes a carrier 301, wherein the carrier 301 is arranged in a triangle, so as to ensure that the load transmission of the carrier 301 is relatively stable, and the side wall of the above-mentioned carrier 301 is provided with an A rotating shaft 302,
  • the fixed end of the A rotating shaft 302 is connected to the horizontal arm of the five-axis milling machine, and the movable end of the A rotating shaft 302 is connected to the carrier 301 .
  • the lower end of the carrier 301 is provided with a B rotating shaft 303, and the upper end of the electric spindle 2 is fixed on the B rotating shaft 303, wherein the fixed end of the B rotating shaft 303 is connected to the carrier 301, and the movable end of the B rotating shaft 303 is connected to the electric spindle 2, and the electric spindle is adjusted by the B rotating shaft 303 2 rotation angle;
  • the A shaft 302 is connected to the horizontal arm of the five-axis milling machine, and the A shaft 302 drives the carrier 301 to rotate by an angle.
  • the A rotating shaft 302 and the B rotating shaft 303 are provided with scales, and the scales display the rotation angles of the A rotating shaft 302 and the B rotating shaft 303 .
  • the central axes of the above-mentioned A rotating shaft 302 and B rotating shaft 303 are perpendicular to each other, so as to ensure that the integrated scanning head 1 can scan in multiple angle circles.
  • Another embodiment of the present invention is that this embodiment discloses a scanning method.
  • the integrated scanning head 1 is fixed on a five-axis milling machine, and the corresponding position of the integrated scanning head 1 and the scanning object is adjusted by the five-axis milling machine.
  • the axis milling machine is equipped with an integrated scanning head 1 to move in the directions of X-axis, Y-axis, and Z-axis, and integrates the data collected by the integrated scanning head 1 into the computer, and the computer analyzes the state of the scanned object.
  • the main improvement of this method is to optimize the use of the integrated scanning head 1.
  • the existing five-axis milling machine of Ai Peiyi is used to match the scanning head of the API iScan series; through the computer
  • Customized software collects the data collected by the integrated scanning head 1 and constructs a three-dimensional image.
  • the software can be obtained based on the existing 3D imaging program adjustment algorithm of Aipei Dongguan Optoelectronics Technology Co., Ltd., or it can be customized separately.
  • the above-mentioned X-axis is formed by the five-axis milling machine moving on the guide rail
  • the above-mentioned Y-axis is formed by the horizontal arm of the five-axis milling machine moving back and forth
  • the above-mentioned Y-axis is formed by the horizontal arm of the five-axis milling machine on the column of the five-axis milling machine Up move pose.
  • the regular movement requirements of the three-coordinate system of the integrated scanning head 1 can be realized by using the settings of the X-axis, Y-axis and Z-axis.
  • Both the X-axis and the Z-axis adopt the form of linear guide rails to ensure the formation.
  • the horizontal arm can adopt the form of linear guide rails.
  • the form can also be used to control the stroke in the form of a ball screw.
  • step A when the five-axis milling machine completes the milling process, stop the electric spindle 2, and remove the milling cutter on the five-axis milling machine
  • step A when the five-axis milling machine completes the milling process, stop the electric spindle 2, and remove the milling cutter on the five-axis milling machine
  • step A install the integrated scanning head 1 on the electric spindle 2.
  • the fixed handle of the integrated scanning head 1 is the same as the way the milling tool is fixed on the electric spindle 2, and the fixed handle of the integrated scanning head 1 passes through the electric spindle 2.
  • the hexagonal screw is locked to complete the installation of the integrated scanning head 1.
  • the fixed handle of the integrated scanning head 1 is consistent with the way the milling tool is fixed on the electric spindle 2;
  • the integrated scanning head 1 Since the scanning sampling of the integrated scanning head 1 generally adopts optical scanning, the integrated scanning head 1 does not need to repeat the path of self-cutting and cutting. Therefore, the integrated scanning head 1 is mechanically controlled by the X-axis, Y Full scan can be realized by moving in the direction of Z-axis and Z-axis.
  • Step B after completing the installation of the integrated scanning head 1, manually turn the A-axis and B-axis of the AB-axis device 3 to the required direction without starting the electric spindle; and ensure that the integrated scanning head 1 and the object to be measured working distance.
  • the rotation angle is set on the A axis and the B axis through the AB axis device 3, so as to facilitate the adjustment of the angle of the integrated scanning head 1, so that the integrated scanning head 1 can move in a three-dimensional direction in an electric manner, and the A axis and the B axis turn Adjustments are made manually with ease of control.
  • the integrated scanning head 1 may involve calibration during its initial use.
  • a standard block or standard ball is set on one side of the five-axis milling machine, and the standard block or standard ball is accurately measured by high-precision measuring equipment.
  • the shaft milling machine drives the integrated scanning head 1 to scan, and compares the scanning of the integrated scanning head 1 with the resulting high-precision measurement results, so as to ensure that the deviation range is within the accuracy requirement range. If there is a large deviation in the measurement of the integrated scanning head 1, This needs to modify the scanning parameters of the integrated scanning head 1, so as to ensure that the calibrated parameters of the integrated scanning head 1 have evaluation value.
  • Step C data link, connect the integrated scanning head 1 to the data transmission line to the computer, set the reference distance to 200-300mm, set the depth of field parameter to 200-300mm; set the scanning rate to be greater than 400,000 times/second, and set the precision parameter to be less than 0.1mm; and Ensure that data is transferred to the computer in real time.
  • the integrated scanning head adopts fixed focal length and fixed aperture size when sampling.
  • the adjustable depth of field is mainly used to assist in obtaining clear images when the distance of the subject changes, so as to ensure good resolution and sampling accuracy.
  • the integrated scanning head 1 can clearly obtain the laser line, if the light difference of the surrounding environment is greater, the more accurate the use is. However, when the distance between the subject and the integrated scanning head 1 changes little, generally there is no light difference.
  • Step D start the five-axis milling machine, and the five-axis milling machine controls the motorized spindle to move in the X-axis, Y-axis, and Z-axis directions, so that the motorized spindle and the integrated scanning head 1 move synchronously in a fixed state to realize the integrated scanning head 1 Overlay scan of the object to be tested, the scanned parameters are used for imaging in the computer.
  • the computer imaging is based on the cloud point data scanned by the integrated scanning head 1.
  • the cloud point refers to the data point set in the cloud point coordinate system.
  • the point is usually represented by X, Y and Z coordinates are defined, and the outer surface size and contour of an object are represented by coordinate data.
  • the integrated scanning head 1 scans the object to be measured to obtain cloud point data.
  • the cloud point data distribution expresses the surface of the object to be measured, and the integrated scanning head 1 transmits the cloud point as an output data file to the computer, and the cloud point data is processed by the computer to form image.
  • the computer can use the method of human-computer interaction to process the data's miscellaneous points when processing the three-dimensional cloud point data. Graphics, and distinguish the obvious bad points on the image, delete or re-detect the bad points.
  • the computer constructs the array data according to the arrangement of the cloud point data, that is, the rows and columns are arranged in an orderly and uniform distribution; thus, bad points can be systematically screened out, and when scanning, generally By line scanning, the data points are basically located on the same isometric line; thus a complete data image can be obtained by stacking plane data.

Abstract

本发明公开了一种可搭载式扫描铣削集成系统及其使用方法,系统包括五轴铣削机和集成扫描头,上述集成扫描头用于替换铣削刀固定在五轴铣削机上,由五轴铣削机带动集成扫描头在油泥模具一侧进行扫描;上述集成扫描头固定在五轴铣削机的电主轴上,上述电主轴固定在五轴铣削机的AB轴装置上;由AB轴装置调节电主轴的在横向和纵向上的旋转角度,将集成扫描头固定在五轴铣削机上,通过五轴铣削机调整集成扫描头与描物品的相应位置,由五轴铣削机搭载集成扫描头在X轴、Y轴、Z轴方向上移动,并将集成扫描头采集的数据集成到计算机,由计算机分析描物品的状态。

Description

可搭载式扫描铣削集成系统及其使用方法 技术领域
本发明涉及油泥模型设计,具体涉及可搭载式扫描铣削集成系统及其使用方法。
背景技术
API的五轴铣削机,是在三维铣削机的基础上,增加了AB轴装置,并将铣削单元安装在AB轴装置上,利用AB轴装置控制铣削单元的进刀弧度,从而可以在多个角度上对模具进行切割。五轴铣削机除X轴、Y轴、Z轴方向上移动铣削单元进行切割以外,通过AB轴装置带动铣削单元进行弧度切割,从而利用建模软件构建的走刀代码,可以适用于弧线或斜线走刀。
目前API iScan系列的是一款成熟的便携式激光扫描测头,目前广泛采用手持式的操作方式,使得iScan可以非常完美地适用于在狭小工作空间内对于部件尺寸的扫描检测与逆向工程作。通常情况下,完成切割后,需要工作人员使用激光扫描头对切割后的工件进行检测,API iScan系列的扫描头可以选用I-scan2扫描头,其I-scan2扫描头是现有的激光扫描头,I-scan2扫描头与激光跟踪仪配合使用,可用于小孔径测量,以及狭小空间的测量。同时I-scan2扫描头还可以作为一个激光扫描头进行使用。但是在实际运用过程中,API iScan系列的扫描需要工作人员携带至被测物品周围,其检测过程中,对于工作人员而言,存在一定的安全风险。且在测量过程中,为保证安全相邻设备原则上均需要停止工作。
发明内容
本发明的目的在于提供一种可搭载式扫描铣削集成系统及其使用方法,以期望改善现有的I-scan扫描头需要工作人员手持,并且来回走动于被测物品周围进行测量,对于相邻设备而言,其测量过程不便于工作的问题。
为解决上述的技术问题,本发明采用以下技术方案:
一种可搭载式扫描铣削集成系统,系统包括五轴铣削机和集成扫描头,上述集成扫描头用于替换铣削刀固定在五轴铣削机上,由五轴铣削机带动集成扫描头在油泥模具一侧进行扫描;上述集成扫描头固定在五轴铣削机的电主轴上,上述电主轴固定在五轴铣削机的AB轴装置上;由AB轴装置调节电主轴的在横向和纵向上的旋转角度。
作为优选,上述集成扫描头包括骨架,上述骨架上端设有跟踪仪,上述骨架下端安装扫描仪,上述骨架上安装夹具,上述夹具前端连接集成扫描头外壳,上述夹具后端插入电主轴。
进一步的技术方案是,上述夹具包括加持部和固定柄,上述固定柄用于插入电主轴中,上述加持部位于固定柄两端,上述固定柄分别固定在集成扫描头的外壳上。
进一步的技术方案是,上述骨架下端设有卡槽,上述卡槽下端设有与卡槽对应的托板,上述扫描仪安装在卡槽中,上述托板上端用于抵触扫描仪下端。
作为优选,上述AB轴装置包括载体,上述载体侧壁设有A转轴,上述载体下端设有B转轴,上述电主轴上端固定在B转轴上,由B转轴调节电主轴的旋转角度;上述A转轴连接五轴铣削机的水平臂,由A转轴带动载体旋转角度。
本发明还公开了一种扫描方法,将集成扫描头固定在五轴铣削机上,通过五轴铣削机调整集成扫描头与描物品的相应位置,由五轴铣削机搭载集成扫描 头在X轴、Y轴、Z轴方向上移动,并将集成扫描头采集的数据集成到计算机,由计算机分析描物品的状态。
作为优选,上述X轴为五轴铣削机在导轨上移动构成,上述Y轴为五轴铣削机的水平臂前后移动构成,上述Y轴为五轴铣削机的水平臂在五轴铣削机的立柱上移动构成。
作为优选,包括如下操作步骤,步骤A,当五轴铣削机完成铣削工序后,停止电主轴工作,将五轴铣削机上的铣削刀取下,将集成扫描头安装到电主轴上,上述集成扫描头的固定柄与铣削刀具固定在电主轴上的方式一致,且集成扫描头的固定柄在电主轴中通过内六角顶丝锁紧,完成集成扫描头的安装。
步骤B,完成集成扫描头的安装后,在电主轴不启动的前提下,将AB轴装置的A轴和B轴手动转至需要的方向;并保证集成扫描头与待测物体之间的工作间距。
步骤C,数据链接,将集成扫描头接上数据传输线至计算机,设置基准距200~300mm,设置景深参数为200~300mm;设置扫描速率大于400000次/秒,设置精度参数小于0.1mm;并确保数据实时传输到计算机中。
步骤D,启动五轴铣削机,由五轴铣削机控制电主轴在X轴、Y轴、Z轴方向上移动,从而电主轴与集成扫描头在固定状态下同步移动,实现集成扫描头对待测物体的覆盖扫描,其扫描的参数用于在计算机中成像。
与现有技术相比,本发明的有益效果至少是如下之一:
本发明采用集成扫描头替换铣削刀固定在五轴铣削机上,利用五轴铣削机的电主轴进行固定集成扫描头,从而使得集成扫描头的采样方向能够贴近于铣削刀的走刀方向,从而使得集成扫描头的采样不需要进行对位操作。
本发明的系统相比于同类的铣削系统,配置了铣削工作完成后的扫描功能,一方面能够利用AB轴装置转动,使得集成扫描头可以直接作用于待检测模型的正面、侧面,从而利用集成扫描头进行快速精确的扫描。
本发明的系统相对于采用同类手持扫描仪进行检测而言,系统通过将集成扫描头搭载于五轴铣削机上,能够更为方便的移动集成扫描头到指定位置,且不需要工作人员走动到被测物品,对于量产的生产线而言,极大的提高了设备运作安全系数。
附图说明
图1为本发明结构示意图。
图2为本发明安装示意图。
图3为本发明集成扫描头结构示意图。
图4为本发明AB轴装置结构示意图。
附图标记说明:
1-集成扫描头、2-电主轴、3-AB轴装置、4-骨架、5-夹具、301-载体、302-A转轴、303-B转轴、401-跟踪仪、402-扫描仪、501-加持部、502-固定柄。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了:
本发明的一个实施例是,一种可搭载式扫描铣削集成系统,系统包括五轴铣削机和集成扫描头1,其中五轴铣削机采用API系列的五轴铣削机,具体的说,五轴铣削机的本体固定到直线导轨上,由直线导轨限制X轴的行程距离,同时, 五轴铣削机采用全封闭防尘结构,从而避免五轴铣削机在进行铣削的过程中被污染,以适应相对恶劣的模型加工现场,其中,五轴铣削机立柱用于构建Z轴轨道,利用立柱限制Z轴行程距离,当模型的形态经审定后,其模型还需要进行测量,从而获取模型的表面尺寸参数,上述集成扫描头1用于替换铣削刀固定在五轴铣削机上,由五轴铣削机带动集成扫描头1在油泥模具一侧进行扫描.
其中,集成扫描头1为在现有的API iScan扫描头的基础上,取消了触觉式探针,从而降低了产品成本。其集成扫描头1采用交叉式蓝色激光保障定位,从而在多种姿态下进行高质量扫描作业,同时不会受到待测部件尺寸大小以及部件特征位置的限制。具有良好的扫描功能。
若直接采用集成扫描头1进行定点扫描,可能因为待测物体的尺寸较大,可能会导致扫描的点云的稀疏程度分布不均匀,离集成扫描头1较远的位置的扫描点云相对稀疏,从而可能造成扫描精度偏差变大;同时,待测物体的可能存在叠装的形态,如果集成扫描头1的检测点固定,则可能因为待测物体的障碍区域会遮挡部分扫描覆盖区域。因此,集成扫描头1在扫描时,需要在多个位置进行,从而降低精度偏差。
上述集成扫描头1固定在五轴铣削机的电主轴2上,通过电主轴2安装集成扫描头1,从而简化设备的安装繁琐度,从而使得集成扫描头1能够直接配合现有的五轴铣削机进行运用,当五轴铣削机完成工作后,直接通过人工安装的方式,将集成扫描头1安装到五轴铣削机上,利用集成扫描头1移动集成扫描头1,使得集成扫描头1能够在多个位置进行扫描。
上述电主轴2固定在五轴铣削机的AB轴装置3上;由AB轴装置3调节电主轴2的在横向和纵向上的旋转角度。由于五轴铣削机的加工可能存在多个倾斜弧度,已经甚至于出现浮雕情况,其五轴铣削机一般移动行程在XYZ的三维 立体坐标系上,通过AB轴装置3调整电主轴2在横向和纵向上的旋转角度,从而可以使集成扫描头1在电主轴2出现不同角度的倾斜,从而使得扫描角度能够进行调整,对于镂空工艺或者其他弧形区域扫描而言,通过AB轴装置3改善集成扫描头1的扫描角度,能够极大的保证集成扫描头1扫描的精准度。避免集成扫描头1获得云点出现分布不均匀,导致的成像效果较差的情况。
基于上述实施例,本发明的另一个实施例是,上述集成扫描头1包括骨架4,其中骨架4主要是集成扫描头1支撑架体,通过骨架4上集成多个功能单元,从而保证集成扫描头1的稳定工作,上述骨架4上端设有跟踪仪401,上述骨架4下端安装扫描仪402,
其中扫描仪402为两个以上,从而利用多传感器时间同步控制技术,利用多传感器数据融合的方式;为集成扫描头1在移动过程中的动态高精度定位和定姿提供有效数据支持。即集成扫描头1可在云点图中直接量取点位进行三维坐标值、距离和角度值,从而对目标物的表面积和体积进行扫描量取。
具体的说,利用计算机针对集成扫描头1扫描的姿态数据,采用四元数方法解算姿态角,通过分析集成扫描头1基于控制点的集成系统精度的平差技术,应用卡尔曼滤波理论,建立适合的系统状态方程和观测方程,从而通过计算机实现快速建模成像。
上述骨架4上安装夹具5,上述夹具5前端连接集成扫描头1外壳,上述夹具5后端插入电主轴2。其中夹具5安装在集成扫描头1上,从而使得夹具5能够支撑集成扫描头1,通过夹具5插入电主轴2,使得集成扫描头1固定在电主轴2上。
进一步的,上述夹具5包括加持部501和固定柄502,其中加持部501和固定柄502一体设置,上述固定柄502用于插入电主轴2中,固定柄502与铣削 刀的刀柄形态相同,采用内六角固定的方式锁紧在电主轴2;从而保证集成扫描头1在电主轴2上的稳定性,同时易于直接改装现有的I-scan扫描头,实现快速安装和插拔,有效降低工序时间。
上述加持部501位于固定柄502两端,其中通过加持部501对集成扫描头1进行夹持,上述固定柄502分别固定在集成扫描头1的外壳上。值得注意的是,夹具5与集成扫描头1的外壳可以采用一体设计,从而简化对接过程。
进一步的,上述骨架4下端设有卡槽403,上述卡槽403下端设有与卡槽403对应的托板404,上述扫描仪402安装在卡槽403中,上述托板404上端用于抵触扫描仪402下端。
其中卡槽403和托板404均设有凹槽,其凹槽与扫描仪402外部轮廓适配,且托板404和骨架4上均设有螺孔,通过螺栓将托板404固定在骨架4上,并使得托板404与卡槽403位置对应。
基于上述实施例,本发明的一个实施例是,上述AB轴装置3包括载体301,其中载体301采用三角形设置,从而保证载体301的载荷传递相对稳定,上述载体301侧壁设有A转轴302,其中A转轴302固定端连接五轴铣削机的水平臂,其A转轴302的活动端连接载体301。
上述载体301下端设有B转轴303,上述电主轴2上端固定在B转轴303上,其中,B转轴303固定端连接载体301,B转轴303活动端连接电主轴2,由B转轴303调节电主轴2的旋转角度;
上述A转轴302连接五轴铣削机的水平臂,由A转轴302带动载体301旋转角度。其中A转轴302和B转轴303上均设有刻度尺,由刻度尺显示A转轴302和B转轴303的旋转角度。上述A转轴302和B转轴303的中轴线相互垂直,从而保证集成扫描头1能够在多个角度环形下进行扫描。
本发明的另一个实施例是,本实施例公开了一种扫描方法,将集成扫描头1固定在五轴铣削机上,通过五轴铣削机调整集成扫描头1与描物品的相应位置,由五轴铣削机搭载集成扫描头1在X轴、Y轴、Z轴方向上移动,并将集成扫描头1采集的数据集成到计算机,由计算机分析描物品的状态。
该方式主要的改进是优化了集成扫描头1的运用方式,通过拓展了现有五轴铣削机的功效,利用现有的爱佩仪的五轴铣削机搭配API iScan系列的扫描头;通过计算机定制软件,将集成扫描头1采集的数据进行汇总并构件三维图像。该软件可以基于爱佩仪东莞光电科技有限公司现有的三维成像程序调整算法获得,也可以另行定制。
进一步的,上述X轴为五轴铣削机在导轨上移动构成,上述Y轴为五轴铣削机的水平臂前后移动构成,上述Y轴为五轴铣削机的水平臂在五轴铣削机的立柱上移动构成。利用X轴、Y轴和Z轴的设置能够实现集成扫描头1的三坐标体系的常规移动需求,其X轴和Z轴均采用直线导轨的形式,确保形成,其水平臂可以采用直线导轨的形式,也可以采用滚珠丝杠的形式控制行程。
进一步的,使用上述实施例中的可搭载式扫描铣削集成系统;其操作步骤如下:步骤A,当五轴铣削机完成铣削工序后,停止电主轴2工作,将五轴铣削机上的铣削刀取下,将集成扫描头1安装到电主轴2上,上述集成扫描头1的固定柄与铣削刀具固定在电主轴2上的方式一致,且集成扫描头1的固定柄在电主轴2中通过内六角顶丝锁紧,完成集成扫描头1的安装。其中集成扫描头1的固定柄与铣削刀具固定在电主轴2上的方式一致;
由于集成扫描头1的扫描采样一般采用光学扫描,故集成扫描头1不需要重复自行切削走刀的路径,因此,集成扫描头1在五轴铣削机的控制下,机械的按照X轴、Y轴、Z轴方向移动即可实现全面扫描。
步骤B,完成集成扫描头1的安装后,在电主轴不启动的前提下,将AB轴装置3的A轴和B轴手动转至需要的方向;并保证集成扫描头1与待测物体之间的工作间距。其中通过AB轴装置3在A轴和B轴上设置转动角度,从而便于调整集成扫描头1的角度,使得集成扫描头1能够在三维方向上采用电动的方式移动,并且A轴和B轴转向上采用便于控制的手动方式进行调整。
其中,集成扫描头1在初次使用过程中,可能涉及校准,其校准一般在五轴铣削机一侧设置标准块或标准球,其标准块或标准球采用高精度测量设备进行精准测量,通过五轴铣削机带动集成扫描头1进行扫描,并将集成扫描头1的扫描与结果高精度测量结果进行对比,从而确保偏差范围在精度要求范围内,若集成扫描头1的测量出现较大偏差,这需要修正集成扫描头1的扫描参数,从而确保集成扫描头1的校准后的参数具有评定价值。
步骤C,数据链接,将集成扫描头1接上数据传输线至计算机,设置基准距200~300mm,设置景深参数为200~300mm;设置扫描速率大于400000次/秒,设置精度参数小于0.1mm;并确保数据实时传输到计算机中。
其中集成扫描头在采样时采用固定焦距,并固定光圈大小。可调节景深主要是用于被摄对象距离发生变化时,辅助来获取清晰的影像的设置方式,以保证良好的采用清晰度和采样精度。
通常集成扫描头1在能够清晰的获取激光线的同时,若周边环境物光线差越大,则采用越精确。但是被摄对象与集成扫描头1之间距离变化较小时,一般不存在光线差。
步骤D,启动五轴铣削机,由五轴铣削机控制电主轴在X轴、Y轴、Z轴方向上移动,从而电主轴与集成扫描头1在固定状态下同步移动,实现集成扫描头1对待测物体的覆盖扫描,其扫描的参数用于在计算机中成像。
其中计算机成像是基于集成扫描头1扫描的云点数据得出的,具体的说,云点是指云点坐标系统中的数据点集,在构件的三维坐标体系中,点通常是由X,Y和Z坐标进行定义,通过坐标数据表征一个物体的外表面尺寸和轮廓。
集成扫描头1扫描待测物体从而获得云点数据,其云点数据分布表达了待测物体表面,而集成扫描头1将云点作为输出的数据文件传递给计算机,由计算机处理云点数据形成图像。
值得注意的是,当模型较小,云点数据量较低时,其计算机在三维云点数据处理时,可以采用人机交互的方法用来处理数据的杂点,利用操作人员通过软件显示出图形,并区别图像上的明显的坏点,对坏点进行删除或者二次检测。
当模型巨大,云点数据量较大时,计算机将云点数据根据排列形式构件阵列数据,即行列方向都是排列有序的均匀分布;从而可以系统的筛除坏点,且扫描时,一般按线扫描,使得数据点基本上位于同一等截面线上;从而通过平面数据叠装的方式获得完整数据图像。
在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”、“优选实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
尽管这里参照本发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开、附图和权利要求的范围内,可以对主题组合布局的组成部件和/或布局进行 多种变型和改进。除了对组成部件和/或布局进行的变形和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (8)

  1. 一种可搭载式扫描铣削集成系统,其特征在于:系统包括五轴铣削机和集成扫描头(1),所述集成扫描头(1)用于替换铣削刀固定在五轴铣削机上,由五轴铣削机带动集成扫描头(1)在油泥模具一侧进行扫描;所述集成扫描头(1)固定在五轴铣削机的电主轴(2)上,所述电主轴(2)固定在五轴铣削机的AB轴装置(3)上;由AB轴装置(3)调节电主轴(2)的在横向和纵向上的旋转角度。
  2. 根据权利要求1所述的可搭载式扫描铣削集成系统,其特征在于:所述集成扫描头(1)包括骨架(4),所述骨架(4)上端设有跟踪仪(401),所述骨架(4)下端安装扫描仪(402),所述骨架(4)上安装夹具(5),所述夹具(5)前端连接集成扫描头(1)外壳,所述夹具(5)后端插入电主轴(2)。
  3. 根据权利要求2所述的可搭载式扫描铣削集成系统,其特征在于:所述夹具(5)包括加持部(501)和固定柄(502),所述固定柄(502)用于插入电主轴(2)中,所述加持部(501)位于固定柄(502)两端,所述固定柄(502)分别固定在集成扫描头(1)的外壳上。
  4. 根据权利要求2所述的可搭载式扫描铣削集成系统,其特征在于:所述骨架(4)下端设有卡槽(403),所述卡槽(403)下端设有与卡槽(403)对应的托板(404),所述扫描仪(402)安装在卡槽(403)中,所述托板(404)上端用于抵触扫描仪(402)下端。
  5. 根据权利要求1所述的可搭载式扫描铣削集成系统,其特征在于:所述AB轴装置(3)包括载体(301),所述载体(301)侧壁设有A转轴(302),所述载体(301)下端设有B转轴(303),所述电主轴(2)上端固定在B转轴(303)上,由B转轴(303)调节电主轴(2)的旋转角度;所述A转 轴(302)连接五轴铣削机的水平臂,由A转轴(302)带动载体(301)旋转角度。
  6. 一种扫描方法,其特征在于:将集成扫描头(1)固定在五轴铣削机上,通过五轴铣削机调整集成扫描头(1)与描物品的相应位置,由五轴铣削机搭载集成扫描头(1)在X轴、Y轴、Z轴方向上移动,并将集成扫描头(1)采集的数据集成到计算机,由计算机分析描物品的状态。
  7. 根据权利要求5所述的扫描方法,其特征在于:所述X轴为五轴铣削机在导轨上移动构成,所述Y轴为五轴铣削机的水平臂前后移动构成,所述Y轴为五轴铣削机的水平臂在五轴铣削机的立柱上移动构成。
  8. 一种扫描方法,使用权利要求1至5任意一项所述的可搭载式扫描铣削集成系统,其特征在于,包括如下操作步骤:
    步骤A,当五轴铣削机完成铣削工序后,停止电主轴(2)工作,将五轴铣削机上的铣削刀取下,将集成扫描头(1)安装到电主轴(2)上,所述集成扫描头(1)的固定柄与铣削刀具固定在电主轴(2)上的方式一致,且集成扫描头(1)的固定柄在电主轴(2)中通过内六角顶丝锁紧,完成集成扫描头(1)的安装;
    步骤B,完成集成扫描头(1)的安装后,在电主轴不启动的前提下,将AB轴装置(3)的A轴和B轴手动转至需要的方向;并保证集成扫描头(1)与待测物体之间的工作间距;
    步骤C,数据链接,将集成扫描头(1)接上数据传输线至计算机,设置基准距200~300mm,设置景深参数为200~300mm;设置扫描速率大于400000次/秒,设置精度参数小于0.1mm;并确保数据实时传输到计算机中;
    步骤D,启动五轴铣削机,由五轴铣削机控制电主轴在X轴、Y轴、Z 轴方向上移动,从而电主轴与集成扫描头(1)在固定状态下同步移动,实现集成扫描头(1)对待测物体的覆盖扫描,其扫描的参数用于在计算机中成像。
PCT/CN2021/130808 2021-11-16 2021-11-16 可搭载式扫描铣削集成系统及其使用方法 WO2023087125A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130808 WO2023087125A1 (zh) 2021-11-16 2021-11-16 可搭载式扫描铣削集成系统及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130808 WO2023087125A1 (zh) 2021-11-16 2021-11-16 可搭载式扫描铣削集成系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2023087125A1 true WO2023087125A1 (zh) 2023-05-25

Family

ID=86396097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130808 WO2023087125A1 (zh) 2021-11-16 2021-11-16 可搭载式扫描铣削集成系统及其使用方法

Country Status (1)

Country Link
WO (1) WO2023087125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618730A (zh) * 2023-07-21 2023-08-22 成都工业职业技术学院 一种智能化板材铣销装置及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110000465A (ko) * 2009-06-26 2011-01-03 한국기계연구원 예열선삭공정이 적용된 밀링가공장치
CN103894865A (zh) * 2014-03-25 2014-07-02 浙江大学 一种用于对叠层材料进行制孔的数控五坐标机床
CN104802037A (zh) * 2014-01-29 2015-07-29 广东威德力机械实业股份有限公司 双工位数控加工中心
CN204575030U (zh) * 2015-04-16 2015-08-19 北京恒正精机科技有限责任公司 三维激光全自动扫描测量系统
CN105945649A (zh) * 2016-06-12 2016-09-21 华中科技大学 基于“s”形检验试件的五轴联动数控机床动态误差检验方法
CN111496289A (zh) * 2020-04-08 2020-08-07 清华大学 多功能集成化航空装配制孔系统及其使用方法
CN111805247A (zh) * 2020-06-22 2020-10-23 无锡中车时代智能装备有限公司 一种大型工件自动化铣削磨抛复合加工系统及方法
CN112276339A (zh) * 2020-10-19 2021-01-29 温州大学 一种曲面工件的智能随形激光扫描加工方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110000465A (ko) * 2009-06-26 2011-01-03 한국기계연구원 예열선삭공정이 적용된 밀링가공장치
CN104802037A (zh) * 2014-01-29 2015-07-29 广东威德力机械实业股份有限公司 双工位数控加工中心
CN103894865A (zh) * 2014-03-25 2014-07-02 浙江大学 一种用于对叠层材料进行制孔的数控五坐标机床
CN204575030U (zh) * 2015-04-16 2015-08-19 北京恒正精机科技有限责任公司 三维激光全自动扫描测量系统
CN105945649A (zh) * 2016-06-12 2016-09-21 华中科技大学 基于“s”形检验试件的五轴联动数控机床动态误差检验方法
CN111496289A (zh) * 2020-04-08 2020-08-07 清华大学 多功能集成化航空装配制孔系统及其使用方法
CN111805247A (zh) * 2020-06-22 2020-10-23 无锡中车时代智能装备有限公司 一种大型工件自动化铣削磨抛复合加工系统及方法
CN112276339A (zh) * 2020-10-19 2021-01-29 温州大学 一种曲面工件的智能随形激光扫描加工方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618730A (zh) * 2023-07-21 2023-08-22 成都工业职业技术学院 一种智能化板材铣销装置及其控制方法
CN116618730B (zh) * 2023-07-21 2023-09-29 成都工业职业技术学院 一种智能化板材铣销装置及其控制方法

Similar Documents

Publication Publication Date Title
CN205383997U (zh) 一种锥光全息三维扫描装置
US10545102B2 (en) Coordinate alignment tool for coordinate measuring device and measuring X-ray CT apparatus
CN207936929U (zh) 一种航空叶片前后缘十字线激光扫描装置
CN110044293B (zh) 一种三维重构系统及三维重构方法
CN211740141U (zh) 一种具有光学导航功能的激光轮廓检测系统
JP2006243983A (ja) パラレルメカニズム機構のキャリブレーション方法、キャリブレーションの検証方法、キャリブレーションの検証プログラム、データ採取方法及び空間位置補正における補正データ採取方法
CN103433810A (zh) 一种复杂曲面法矢在机检测装置及方法
CN102589492B (zh) 一种大型曲面柔性检测装置
CN110125455A (zh) 一种用于机器人钻孔中优化钻头位姿的方法
CN111421226B (zh) 一种基于激光切管设备的管材识别方法及装置
CN104515487B (zh) 二合一全自动三z轴测量仪
CN101629816A (zh) 可消除零件定位误差的复杂回转体轮廓测量方法及装置
CN105716547A (zh) 一种机械工件平面度快速测量装置及方法
WO2023087125A1 (zh) 可搭载式扫描铣削集成系统及其使用方法
CN106705880B (zh) 一种大口径反射镜面形轮廓在位检测方法及装置
CN109737884A (zh) 一种轴类零件静动态形变量在线监测装置及方法
JPH04178506A (ja) ワークの3次元位置計測方法
CN106735963A (zh) 一种加工光束空间传输指向精度检测装置
WO2007001327A2 (en) Apparatus and methods for scanning conoscopic holography measurements
CN110108238A (zh) 一种用于测量零件平面度的测量系统和测量方法
JP2000074644A (ja) 棒状切削工具の測定装置並びに該測定装置を使用したドリルの測定方法
CN207798000U (zh) 一种便携式模块组合多功能激光三维扫描仪
CN108663542B (zh) 一种高精度piv基准速度场装置
CN105403163A (zh) 一种油墨厚度检测方法
JPH0352888B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964292

Country of ref document: EP

Kind code of ref document: A1