WO2023086681A1 - Wobble adjustment capability for polygon mirrors - Google Patents

Wobble adjustment capability for polygon mirrors Download PDF

Info

Publication number
WO2023086681A1
WO2023086681A1 PCT/US2022/050002 US2022050002W WO2023086681A1 WO 2023086681 A1 WO2023086681 A1 WO 2023086681A1 US 2022050002 W US2022050002 W US 2022050002W WO 2023086681 A1 WO2023086681 A1 WO 2023086681A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical reflector
glass
adjustment
fastening mechanisms
adjustment ring
Prior art date
Application number
PCT/US2022/050002
Other languages
French (fr)
Inventor
Ning-Yi Wang
Alex CHIAO
Original Assignee
Innovusion, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/986,820 external-priority patent/US20230152428A1/en
Application filed by Innovusion, Inc. filed Critical Innovusion, Inc.
Priority to CN202280075880.1A priority Critical patent/CN118265920A/en
Publication of WO2023086681A1 publication Critical patent/WO2023086681A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • This disclosure relates generally to optical scanning and, more particularly, to a motorized optical scanner of a Light Detection and Ranging (LiDAR) system used in a motor vehicle.
  • LiDAR Light Detection and Ranging
  • LiDAR Light detection and ranging
  • Some typical LiDAR systems include a light source, a light transmitter, a light steering system, and a light detector.
  • the light source generates a light beam that is directed by the light steering system in particular directions when being transmitted from the LiDAR system.
  • a transmitted light beam is scattered by an object, a portion of the scattered light returns to the LiDAR system as a return light pulse.
  • the light detector detects the return light pulse. Using the difference between the time that the return light pulse is detected and the time that a corresponding light pulse in the light beam is transmitted, the LiDAR system can determine the distance to the object using the speed of light.
  • the light steering system can direct light beams along different paths to allow the LiDAR system to scan the surrounding environment and produce images or point clouds. LiDAR systems can also use techniques other than time-of-flight and scanning to measure the surrounding environment.
  • a LiDAR system is often an essential component of a motor vehicle.
  • a LiDAR system may include a motorized optical scanner.
  • a motorized optical scanner may include an optical reflector and a motor rotor body for rotating the optical reflector.
  • An optical reflector may be a polygon mirror having a plurality of reflective surfaces (also referred to as facets).
  • the polygon mirror is usually made from glass with multiple reflective facets to reflect light pulses. Due to various factors of manufacturing process, center of a polygon mirror may have a small angular deviation from its center of rotation. When center of a polygon mirror is not perfectly in-line with its center of rotation, tilt angles of the polygon facets may change in the process of angular rotation, and the polygon mirror may wobble. This may affect the overall performance of the LiDAR system. Thus, there is a need to eliminate or reduce the impact caused by these conditions.
  • Embodiments of the present disclosure use an adjustment ring configured to adjust the tilt angles of one or more reflective surfaces of the polygon mirror with respect to the rotor and rotational axis, thereby reducing wobble and improving long-term stability of the motorized optical scanner.
  • Embodiments of the present disclosure further use fastening mechanisms configured to apply proper adjustment forces to the adjustment ring.
  • the fastening mechanisms may be fine-tuned to apply desired adjustment forces to different portions of the adjustment ring to tilt the polygon mirror. As a result, wobbling of the polygon mirror can be substantially reduced by such fine tuning of the adjustment forces.
  • a motorized optical scanner device of a Light Detection and Ranging (LiDAR) scanning system used in a motor vehicle comprises a glass-based optical reflector including a plurality of reflective surfaces and a flange.
  • the rotatable optical reflector device further comprises an adjustment ring and a metalbased motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector.
  • the flange extends from an inner sidewall of the glass-based optical reflector towards the metal-based motor rotor body.
  • the flange includes a first mounting surface that is in contact with the adjustment ring.
  • the motorized optical scanner device further comprises a plurality of fastening mechanisms. The plurality of fastening mechanisms facilitates applying adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
  • a Light Detection and Ranging (LiDAR) system used in a motor vehicle comprises a motorized optical scanner device.
  • the motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces and a flange.
  • the rotatable optical reflector device further comprises an adjustment ring and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector.
  • the flange extends from an inner sidewall of the glass-based optical reflector towards the metal-based motor rotor body.
  • the flange includes a first mounting surface that is in contact with the adjustment ring.
  • the motorized optical scanner device further comprises a plurality of fastening mechanisms. The plurality of fastening mechanisms facilitates applying adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
  • a motor vehicle comprises a Light Detection and Ranging (LiDAR) system that comprises a motorized optical scanner device.
  • the motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces and a flange.
  • the rotatable optical reflector device further comprises an adjustment ring and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector.
  • the flange extends from an inner sidewall of the glass-based optical reflector towards the metal-based motor rotor body.
  • the flange includes a first mounting surface that is in contact with the adjustment ring.
  • the motorized optical scanner device further comprises a plurality of fastening mechanisms. The plurality of fastening mechanisms facilitates applying adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
  • a method for adjusting a motorized optical scanner device of a Light Detection and Ranging (LiDAR) system for reducing wobble comprises assembling a motorized optical scanner device.
  • the motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces, an adjustment ring, and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector.
  • the method also comprises measuring wobble of the motorized optical scanner device.
  • the method further comprises selecting at least two positions with respect to the adjustment ring based on the measured wobble.
  • the method further comprises installing a plurality of fastening mechanisms to apply adjustment forces to the adjustment ring at the at least two selected positions.
  • FIG. 1 illustrates one or more exemplary LiDAR systems disposed or included in a motor vehicle.
  • FIG. 2 is a block diagram illustrating interactions between an exemplary LiDAR system and multiple other systems including a vehicle perception and planning system.
  • FIG. 3 is a block diagram illustrating an exemplary LiDAR system.
  • FIG. 4 is a block diagram illustrating an exemplary fiber-based laser source.
  • FIGS. 5A-5C illustrate an exemplary LiDAR system using pulse signals to measure distances to objects disposed in a field-of-view (FOV).
  • FOV field-of-view
  • FIG. 6 is a block diagram illustrating an exemplary apparatus used to implement systems, apparatus, and methods in various embodiments.
  • FIG. 7 is a top view of an exemplary motorized optical scanner device according to some embodiments.
  • FIG. 8 is a bottom view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 9 is a cross-sectional view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 10 is a perspective view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 11 is a perspective view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 12 is a cut-off view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 13 is an exploded view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 14 is a flow chart of exemplary method for adjusting a motorized optical scanner device disposed or included in a motor vehicle.
  • FIG. 15 is a bottom view of the exemplary motorized optical scanner device according to some embodiments.
  • Coupled to is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously. Within the context of a networked environment where two or more components or devices are able to exchange data, the terms “coupled to” and “coupled with” are also used to mean “communicatively coupled with”, possibly via one or more intermediary devices.
  • first means “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another.
  • a first surface could be termed a second surface and, similarly, a second surface could be termed a first surface, without departing from the scope of the various described examples.
  • the first surface and the second surface can both be surfaces and, in some cases, can be separate and different surfaces.
  • inventive subject matter is considered to include all possible combinations of the disclosed elements. As such, if one embodiment comprises elements A, B, and C, and another embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly discussed herein.
  • transitional term “comprising” means to have as parts or members, or to be those parts or members. As used herein, the transitional term “comprising” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
  • servers services, interfaces, engines, modules, clients, peers, portals, platforms, or other systems formed from computing devices. It should be appreciated that the use of such terms is deemed to represent one or more computing devices having at least one processor (e.g., ASIC, FPGA, PLD, DSP, x86, ARM, RISC-V, ColdFire, GPU, multi-core processors, etc.) configured to execute software instructions stored on a computer readable tangible, non-transitory medium (e.g., hard drive, solid state drive, RAM, flash, ROM, etc.).
  • processor e.g., ASIC, FPGA, PLD, DSP, x86, ARM, RISC-V, ColdFire, GPU, multi-core processors, etc.
  • a computer readable tangible, non-transitory medium e.g., hard drive, solid state drive, RAM, flash, ROM, etc.
  • a server can include one or more computers operating as a web server, database server, or other type of computer server in a manner to fulfill described roles, responsibilities, or functions.
  • the various servers, systems, databases, or interfaces can exchange data using standardized protocols or algorithms, possibly based on HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial transaction protocols, or other electronic information exchanging methods. Data exchanges can be conducted over a packet-switched network, a circuit-switched network, the Internet, LAN, WAN, VPN, or other type of network.
  • any language directed to a computer should be read to include any suitable combination of computing devices or network platforms, including servers, interfaces, systems, databases, agents, peers, engines, controllers, modules, or other types of computing devices operating individually or collectively.
  • the computing devices comprise a processor configured to execute software instructions stored on a tangible, non- transitory computer readable storage medium (e.g., hard drive, FPGA, PLA, solid state drive, RAM, flash, ROM, etc.).
  • the software instructions configure or program the computing device to provide the roles, responsibilities, or other functionality as discussed below with respect to the disclosed apparatus.
  • the disclosed technologies can be embodied as a computer program product that includes a non-transitory computer readable medium storing the software instructions that causes a processor to execute the disclosed steps associated with implementations of computer-based algorithms, processes, methods, or other instructions.
  • the various servers, systems, databases, or interfaces exchange data using standardized protocols or algorithms, possibly based on HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial transaction protocols, or other electronic information exchanging methods.
  • Data exchanges among devices can be conducted over a packet-switched network, the Internet, LAN, WAN, VPN, or other type of packet switched network; a circuit switched network; cell switched network; or other type of network.
  • a LiDAR system often includes a polygon mirror for steering light pulses to a field-of- view (FOV).
  • the polygon mirror is usually made from glass with multiple reflective surfaces (also referred to as facets) to reflect light pulses.
  • the polygon mirror is mounted to a rotational shaft of a motor rotor body.
  • a LiDAR system may be mounted to a vehicle and therefore may need to operate in a wide temperature range (e.g., -40°C to 85°C).
  • the shaft of the motor rotor body rotates at a very high speed (e.g., a few thousand rounds-per-minute or rpm), thereby causing the polygon mirror to rotate at high speed as well.
  • center of a polygon mirror may have a small angular deviation from its center of rotation.
  • tilt angles of polygon facets may change in the process of angular rotation, and the polygon mirror may wobble. This may affect the overall performance of the LiDAR system.
  • total wobble of a rotating polygon mirror refers to the range of tilt angles between the polygon facets and the polygon’s rotational axis.
  • the polygon mirror it is often required for the polygon mirror to have a tight specification for total wobble. Without adjustment capability, errors or deviations from nominal values (e.g., tilt angles deviations) resulted from stacked up tolerances in the manufacturing process of a polygon mirror assembly may prevent the polygon mirror from meeting its wobble specifications.
  • Total wobble can be the sum of two types of wobbles: repeatable wobble and random wobble. Repeatable wobble results from axial runout of mating surfaces.
  • Random wobble is residual wobble after repeatable wobble is accounted for.
  • Typical axial runout for a computer numerical control (CNC)-machined part is around ⁇ 0.05°, which almost consumes all of the allowable wobble that can be tolerated in typical LiDAR applications.
  • an adjustment ring is used to adjust the tilt angle of the polygon mirror with respect to the rotor and rotational axis.
  • a tilt angle refers to the angle between the normal direction of a reflective surface of the polygon mirror and the rotational axis of the polygon mirror.
  • the adjustment ring can reduce the wobbling of the polygon mirror when it is rotating, thereby improving the performance and stability of the polygon mirror.
  • a plurality of fastening mechanisms are also used to apply proper adjustment forces (e.g., pushing forces) to the adjustment ring. The fastening mechanisms may be fine-tuned to apply desired adjustment forces to different portions of the adjustment ring to tilt the polygon mirror.
  • various embodiments of the present disclosure improve the stability and reliability of the polygon mirror, enhance the wobble adjustment capability of the polygon mirror, and improve the overall performance of the LiDAR system.
  • FIG. 1 illustrates one or more exemplary LiDAR systems 110 disposed or included in a motor vehicle 100.
  • Motor vehicle 100 can be a vehicle having any automated level.
  • motor vehicle 100 can be a partially automated vehicle, a highly automated vehicle, a fully automated vehicle, or a driverless vehicle.
  • a partially automated vehicle can perform some driving functions without a human driver’s intervention.
  • a partially automated vehicle can perform blind-spot monitoring, lane keeping and/or lane changing operations, automated emergency braking, smart cruising and/or traffic following, or the like.
  • Certain operations of a partially automated vehicle may be limited to specific applications or driving scenarios (e.g., limited to only freeway driving).
  • a highly automated vehicle can generally perform all operations of a partially automated vehicle but with less limitations.
  • a highly automated vehicle can also detect its own limits in operating the vehicle and ask the driver to take over the control of the vehicle when necessary.
  • a fully automated vehicle can perform all vehicle operations without a driver’s intervention but can also detect its own limits and ask the driver to take over when necessary.
  • a driverless vehicle can operate on its own without any driver intervention.
  • motor vehicle 100 comprises one or more LiDAR systems 110 and 120A-F.
  • LiDAR systems 110 and 120A-F can be a scanning-based LiDAR system and/or a non-scanning LiDAR system (e.g., a flash LiDAR).
  • a scanning-based LiDAR system scans one or more light beams in one or more directions (e.g., horizontal and vertical directions) to detect objects in a field-of-view (FOV).
  • a non-scanning based LiDAR system transmits laser light to illuminate an FOV without scanning.
  • a flash LiDAR is a type of nonscanning based LiDAR system.
  • a flash LiDAR can transmit laser light to simultaneously illuminate an FOV using a single light pulse or light shot.
  • a LiDAR system is often an essential sensor of a vehicle that is at least partially automated.
  • motor vehicle 100 may include a single LiDAR system 110 (e.g., without LiDAR systems 120A-F) disposed at the highest position of the vehicle (e.g., at the vehicle roof). Disposing LiDAR system 110 at the vehicle roof facilitates a 360-degree scanning around vehicle 100.
  • motor vehicle 100 can include multiple LiDAR systems, including two or more of systems 110 and/or 120A-F. As shown in FIG.
  • multiple LiDAR systems 110 and/or 120A-F are attached to vehicle 100 at different locations of the vehicle.
  • LiDAR system 120A is attached to vehicle 100 at the front right corner
  • LiDAR system 120B is attached to vehicle 100 at the front center
  • LiDAR system 120C is attached to vehicle 100 at the front left corner;
  • LiDAR system 120D is attached to vehicle 100 at the right-side rear view mirror; LiDAR system 120E is attached to vehicle 100 at the left-side rear view mirror; and/or LiDAR system 120F is attached to vehicle 100 at the back center.
  • LiDAR systems 110 and 120A-F are independent LiDAR systems having their own respective laser sources, control electronics, transmitters, receivers, and/or steering mechanisms.
  • some of LiDAR systems 110 and 120A-F can share one or more components, thereby forming a distributed sensor system.
  • optical fibers are used to deliver laser light from a centralized laser source to all LiDAR systems. It is understood that one or more LiDAR systems can be distributed and attached to a vehicle in any desired manner and FIG.
  • LiDAR systems 120D and 120E may be attached to the B- pillars of vehicle 100 instead of the rear-view mirrors.
  • LiDAR system 120B may be attached to the windshield of vehicle 100 instead of the front bumper.
  • FIG. 2 is a block diagram 200 illustrating interactions between vehicle onboard LiDAR system(s) 210 and multiple other systems including a vehicle perception and planning system 220.
  • LiDAR system(s) 210 can be mounted on or integrated to a vehicle.
  • LiDAR system(s) 210 include sensor(s) that scan laser light to the surrounding environment to measure the distance, angle, and/or velocity of objects. Based on the scattered light that returned to LiDAR system(s) 210, it can generate sensor data (e.g., image data or 3D point cloud data) representing the perceived external environment.
  • sensor data e.g., image data or 3D point cloud data
  • LiDAR system(s) 210 can include one or more of short-range LiDAR sensors, mediumrange LiDAR sensors, and long-range LiDAR sensors.
  • a short-range LiDAR sensor measures objects located up to about 20-40 meters from the LiDAR sensor.
  • Short-range LiDAR sensors can be used for, e.g., monitoring nearby moving objects (e.g., pedestrians crossing street in a school zone), parking assistance applications, or the like.
  • a medium-range LiDAR sensor measures objects located up to about 100-150 meters from the LiDAR sensor.
  • Medium-range LiDAR sensors can be used for, e.g., monitoring road intersections, assistance for merging onto or leaving a freeway, or the like.
  • a long-range LiDAR sensor measures objects located up to about 150-300 meters.
  • Long-range LiDAR sensors are typically used when a vehicle is travelling at high speed (e.g., on a freeway), such that the vehicle’s control systems may only have a few seconds (e.g., 6-8 seconds) to respond to any situations detected by the LiDAR sensor.
  • the LiDAR sensor data can be provided to vehicle perception and planning system 220 via a communication path 213 for further processing and controlling the vehicle operations.
  • Communication path 213 can be any wired or wireless communication links that can transfer data.
  • vehicle onboard sensor(s) 230 are used to provide additional sensor data separately or together with LiDAR system(s) 210.
  • Other vehicle onboard sensors 230 may include, for example, one or more camera(s) 232, one or more radar(s) 234, one or more ultrasonic sensor(s) 236, and/or other sensor(s) 238.
  • Camera(s) 232 can take images and/or videos of the external environment of a vehicle.
  • Camera(s) 232 can take, for example, high-definition (HD) videos having millions of pixels in each frame.
  • a camera produces monochrome or color images and videos. Color information may be important in interpreting data for some situations (e.g., interpreting images of traffic lights).
  • Camera(s) 232 can include one or more of narrow-focus cameras, wider-focus cameras, side-facing cameras, infrared cameras, fisheye cameras, or the like.
  • the image and/or video data generated by camera(s) 232 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
  • Communication path 233 can be any wired or wireless communication links that can transfer data.
  • Other vehicle onboard sensos(s) 230 can also include radar sensor(s) 234.
  • Radar sensor(s) 234 use radio waves to determine the range, angle, and velocity of objects. Radar sensor(s) 234 produce electromagnetic waves in the radio or microwave spectrum. The electromagnetic waves reflect off an object and some of the reflected waves return to the radar sensor, thereby providing information about the object’s position and velocity.
  • Radar sensor(s) 234 can include one or more of short-range radar(s), medium-range radar(s), and long-range radar(s).
  • a short-range radar measures objects located at about 0.1-30 meters from the radar.
  • a short-range radar is useful in detecting objects located nearby the vehicle, such as other vehicles, buildings, walls, pedestrians, bicyclists, etc.
  • a short-range radar can be used to detect a blind spot, assist in lane changing, provide rear-end collision warning, assist in parking, provide emergency braking, or the like.
  • a medium-range radar measures objects located at about 30-80 meters from the radar.
  • a long-range radar measures objects located at about 80-200 meters.
  • Medium- and/or long-range radars can be useful in, for example, traffic following, adaptive cruise control, and/or highway automatic braking.
  • Sensor data generated by radar sensor(s) 234 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
  • Other vehicle onboard sensor(s) 230 can also include ultrasonic sensor(s) 236.
  • Ultrasonic sensor(s) 236 use acoustic waves or pulses to measure object located external to a vehicle. The acoustic waves generated by ultrasonic sensor(s) 236 are transmitted to the surrounding environment. At least some of the transmitted waves are reflected off an object and return to the ultrasonic sensor(s) 236. Based on the return signals, a distance of the object can be calculated.
  • Ultrasonic sensor(s) 236 can be useful in, for example, check blind spot, identify parking spots, provide lane changing assistance into traffic, or the like. Sensor data generated by ultrasonic sensor(s) 236 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
  • one or more other sensor(s) 238 may be attached in a vehicle and may also generate sensor data.
  • Other sensor(s) 238 may include, for example, global positioning systems (GPS), inertial measurement units (IMU), or the like.
  • Sensor data generated by other sensor(s) 238 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
  • communication path 233 may include one or more communication links to transfer data between the various sensor(s) 230 and vehicle perception and planning system 220.
  • sensor data from other vehicle onboard sensor(s) 230 can be provided to vehicle onboard LiDAR system(s) 210 via communication path 231.
  • LiDAR system(s) 210 may process the sensor data from other vehicle onboard sensor(s) 230.
  • sensor data from camera(s) 232, radar sensor(s) 234, ultrasonic sensor(s) 236, and/or other sensor(s) 238 may be correlated or fused with sensor data LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220.
  • other configurations may also be implemented for transmitting and processing sensor data from the various sensors (e.g., data can be transmitted to a cloud service for processing and then the processing results can be transmitted back to the vehicle perception and planning system 220).
  • sensors onboard other vehicle(s) 250 are used to provide additional sensor data separately or together with LiDAR system(s) 210.
  • two or more nearby vehicles may have their own respective LiDAR sensor(s), camera(s), radar sensor(s), ultrasonic sensor(s), etc.
  • Nearby vehicles can communicate and share sensor data with one another. Communications between vehicles are also referred to as V2V (vehicle to vehicle) communications.
  • sensor data generated by other vehicle(s) 250 can be communicated to vehicle perception and planning system 220 and/or vehicle onboard LiDAR system(s) 210, via communication path 253 and/or communication path 251, respectively.
  • Communication paths 253 and 251 can be any wired or wireless communication links that can transfer data.
  • Sharing sensor data facilitates a better perception of the environment external to the vehicles. For instance, a first vehicle may not sense a pedestrian that is a behind a second vehicle but is approaching the first vehicle. The second vehicle may share the sensor data related to this pedestrian with the first vehicle such that the first vehicle can have additional reaction time to avoid collision with the pedestrian.
  • data generated by sensors onboard other vehicle(s) 250 may be correlated or fused with sensor data generated by LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220.
  • intelligent infrastructure system(s) 240 are used to provide sensor data separately or together with LiDAR system(s) 210. Certain infrastructures may be configured to communicate with a vehicle to convey information and vice versa. Communications between a vehicle and infrastructures are generally referred to as V2I (vehicle to infrastructure) communications.
  • intelligent infrastructure system(s) 240 may include an intelligent traffic light that can convey its status to an approaching vehicle in a message such as “changing to yellow in 5 seconds.”
  • Intelligent infrastructure system(s) 240 may also include its own LiDAR system mounted near an intersection such that it can convey traffic monitoring information to a vehicle.
  • sensors of intelligent infrastructure system(s) 240 can provide useful, and sometimes vital, data to the left-turning vehicle.
  • data may include, for example, traffic conditions, information of objects in the direction the vehicle is turning to, traffic light status and predictions, or the like.
  • sensor data generated by intelligent infrastructure system(s) 240 can be provided to vehicle perception and planning system 220 and/or vehicle onboard LiDAR system(s) 210, via communication paths 243 and/or 241, respectively.
  • Communication paths 243 and/or 241 can include any wired or wireless communication links that can transfer data.
  • sensor data from intelligent infrastructure system(s) 240 may be transmitted to LiDAR system(s) 210 and correlated or fused with sensor data generated by LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220.
  • V2V and V2I communications described above are examples of vehicle-to-X (V2X) communications, where the “X” represents any other devices, systems, sensors, infrastructure, or the like that can share data with a vehicle.
  • vehicle perception and planning system 220 receives sensor data from one or more of LiDAR system(s) 210, other vehicle onboard sensor(s) 230, other vehicle(s) 250, and/or intelligent infrastructure system(s) 240.
  • sensor fusion sub-system 222 can generate a 360- degree model using multiple images or videos captured by multiple cameras disposed at different positions of the vehicle.
  • Sensor fusion sub-system 222 obtains sensor data from different types of sensors and uses the combined data to perceive the environment more accurately.
  • a vehicle onboard camera 232 may not capture a clear image because it is facing the sun or a light source (e.g., another vehicle’s headlight during nighttime) directly.
  • a LiDAR system 210 may not be affected as much and therefore sensor fusion sub-system 222 can combine sensor data provided by both camera 232 and LiDAR system 210, and use the sensor data provided by LiDAR system 210 to compensate the unclear image captured by camera 232.
  • a radar sensor 234 may work better than a camera 232 or a LiDAR system 210. Accordingly, sensor fusion sub-system 222 may use sensor data provided by the radar sensor 234 to compensate the sensor data provided by camera 232 or LiDAR system 210.
  • sensor data generated by other vehicle onboard sensor(s) 230 may have a lower resolution (e.g., radar sensor data) and thus may need to be correlated and confirmed by LiDAR system(s) 210, which usually has a higher resolution.
  • LiDAR system(s) 210 which usually has a higher resolution.
  • a sewage cover also referred to as a manhole cover
  • vehicle perception and planning system 220 may not be able to determine whether the object is an obstacle that the vehicle needs to avoid.
  • High-resolution sensor data generated by LiDAR system(s) 210 thus can be used to correlated and confirm that the object is a sewage cover and causes no harm to the vehicle.
  • Vehicle perception and planning system 220 further comprises an object classifier 223.
  • object classifier 223 can detect and classify the objects and estimate the positions of the objects.
  • object classifier 223 can use machine-learning based techniques to detect and classify objects. Examples of the machine-learning based techniques include utilizing algorithms such as region-based convolutional neural networks (R-CNN), Fast R-CNN, Faster R-CNN, histogram of oriented gradients (HOG), region-based fully convolutional network (R- FCN), single shot detector (SSD), spatial pyramid pooling (SPP-net), and/or You Only Look Once (Yolo).
  • R-CNN region-based convolutional neural networks
  • FCN region-based fully convolutional network
  • SSD single shot detector
  • SPP-net spatial pyramid pooling
  • Vehicle perception and planning system 220 further comprises a road detection subsystem 224.
  • Road detection sub-system 224 localizes the road and identifies objects and/or markings on the road. For example, based on raw or fused sensor data provided by radar sensor(s) 234, camera(s) 232, and/or LiDAR system(s) 210, road detection sub-system 224 can build a 3D model of the road based on machine-learning techniques (e.g., pattern recognition algorithms for identifying lanes). Using the 3D model of the road, road detection sub-system 224 can identify objects (e.g., obstacles or debris on the road) and/or markings on the road (e.g., lane lines, turning marks, crosswalk marks, or the like).
  • objects e.g., obstacles or debris on the road
  • markings on the road e.g., lane lines, turning marks, crosswalk marks, or the like.
  • Vehicle perception and planning system 220 further comprises a localization and vehicle posture sub-system 225.
  • localization and vehicle posture sub-system 225 can determine position of the vehicle and the vehicle’s posture. For example, using sensor data from LiDAR system(s) 210, camera(s) 232, and/or GPS data, localization and vehicle posture sub-system 225 can determine an accurate position of the vehicle on the road and the vehicle’s six degrees of freedom (e.g., whether the vehicle is moving forward or backward, up or down, and left or right).
  • high-definition (HD) maps are used for vehicle localization. HD maps can provide highly detailed, three-dimensional, computerized maps that pinpoint a vehicle’s location.
  • localization and vehicle posture sub-system 225 can determine precisely the vehicle’s current position (e.g., which lane of the road the vehicle is currently in, how close it is to a curb or a sidewalk) and predict vehicle’s future positions.
  • Vehicle perception and planning system 220 further comprises obstacle predictor 226.
  • Objects identified by object classifier 223 can be stationary (e.g., a light pole, a road sign) or dynamic (e.g., a moving pedestrian, bicycle, another car). For moving objects, predicting their moving path or future positions can be important to avoid collision.
  • Obstacle predictor 226 can predict an obstacle trajectory and/or warn the driver or the vehicle planning sub-system 228 about a potential collision. For example, if there is a high likelihood that the obstacle’s trajectory intersects with the vehicle’s current moving path, obstacle predictor 226 can generate such a warning.
  • Obstacle predictor 226 can use a variety of techniques for making such a prediction.
  • Such techniques include, for example, constant velocity or acceleration models, constant turn rate and velocity/accel eration models, Kalman Filter and Extended Kalman Filter based models, recurrent neural network (RNN) based models, long short-term memory (LSTM) neural network based models, encoder-decoder RNN models, or the like.
  • RNN recurrent neural network
  • LSTM long short-term memory
  • vehicle perception and planning system 220 further comprises vehicle planning sub-system 228.
  • Vehicle planning sub-system 228 can include a route planner, a driving behaviors planner, and a motion planner.
  • the route planner can plan the route of a vehicle based on the vehicle’s current location data, target location data, traffic information, etc.
  • the driving behavior planner adjusts the timing and planned movement based on how other objects might move, using the obstacle prediction results provided by obstacle predictor 226.
  • the motion planner determines the specific operations the vehicle needs to follow.
  • the planning results are then communicated to vehicle control system 280 via vehicle interface 270.
  • the communication can be performed through communication paths 223 and 271, which include any wired or wireless communication links that can transfer data.
  • Vehicle control system 280 controls the vehicle’s steering mechanism, throttle, brake, etc., to operate the vehicle according to the planned route and movement.
  • Vehicle perception and planning system 220 may further comprise a user interface 260, which provides a user (e.g., a driver) access to vehicle control system 280 to, for example, override or take over control of the vehicle when necessary.
  • User interface 260 can communicate with vehicle perception and planning system 220, for example, to obtain and display raw or fused sensor data, identified objects, vehicle’s location/posture, etc. These displayed data can help a user to better operate the vehicle.
  • User interface 260 can communicate with vehicle perception and planning system 220 and/or vehicle control system 280 via communication paths 221 and 261 respectively, which include any wired or wireless communication links that can transfer data. It is understood that the various systems, sensors, communication links, and interfaces in FIG. 2 can be configured in any desired manner and not limited to the configuration shown in FIG. 2.
  • FIG. 3 is a block diagram illustrating an exemplary LiDAR system 300.
  • LiDAR system 300 can be used to implement LiDAR system 110, 120A-F, and/or 210 shown in FIGs. 1 and 2.
  • LiDAR system 300 comprises a laser source 310, a transmitter 320, an optical receiver and light detector 330, a steering system 340, and a control circuitry 350. These components are coupled together using communications paths 312, 314, 322, 332, 343, 352, and 362. These communications paths include communication links (wired or wireless, bidirectional or unidirectional) among the various LiDAR system components, but need not be physical components themselves.
  • the communications paths can be implemented by one or more electrical wires, buses, or optical fibers
  • the communication paths can also be wireless channels or free-space optical paths so that no physical communication medium is present.
  • communication path 314 between laser source 310 and transmitter 320 may be implemented using one or more optical fibers.
  • Communication paths 332 and 352 may represent optical paths implemented using free space optical components and/or optical fibers.
  • communication paths 312, 322, 342, and 362 may be implemented using one or more electrical wires that carry electrical signals.
  • the communications paths can also include one or more of the above types of communication mediums (e.g., they can include an optical fiber and a free-space optical component, or include one or more optical fibers and one or more electrical wires).
  • LiDAR system 300 can also include other components not depicted in FIG. 3, such as power buses, power supplies, LED indicators, switches, etc. Additionally, other communication connections among components may be present, such as a direct connection between light source 310 and optical receiver and light detector 330 to provide a reference signal so that the time from when a light pulse is transmitted until a return light pulse is detected can be accurately measured.
  • Laser source 310 outputs laser light for illuminating objects in a field of view (FOV).
  • Laser source 310 can be, for example, a semiconductor-based laser (e.g., a diode laser) and/or a fiber-based laser.
  • a semiconductor-based laser can be, for example, an edge emitting laser (EEL), a vertical cavity surface emitting laser (VCSEL), or the like.
  • a fiber-based laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and/or holmium.
  • a fiber laser is based on double-clad fibers, in which the gain medium forms the core of the fiber surrounded by two layers of cladding.
  • the double-clad fiber allows the core to be pumped with a high-power beam, thereby enabling the laser source to be a high power fiber laser source.
  • laser source 310 comprises a master oscillator (also referred to as a seed laser) and power amplifier (MOP A).
  • the power amplifier amplifies the output power of the seed laser.
  • the power amplifier can be a fiber amplifier, a bulk amplifier, or a semiconductor optical amplifier.
  • the seed laser can be a diode laser (e.g., a Fabry -Perot cavity laser, a distributed feedback laser), a solid-state bulk laser, or a tunable external-cavity diode laser.
  • laser source 310 can be an optically pumped microchip laser. Microchip lasers are alignment-free monolithic solid-state lasers where the laser crystal is directly contacted with the end mirrors of the laser resonator.
  • a microchip laser is typically pumped with a laser diode (directly or using a fiber) to obtain the desired output power.
  • a microchip laser can be based on neodymium-doped yttrium aluminum garnet (Y3AI5O12) laser crystals (i.e., Nd:YAG), or neodymium-doped vanadate (i.e., ND:YVO4) laser crystals.
  • FIG. 4 is a block diagram illustrating an exemplary fiber-based laser source 400 having a seed laser and one or more pumps (e.g., laser diodes) for pumping desired output power.
  • Fiberbased laser source 400 is an example of laser source 310 depicted in FIG. 3.
  • fiber-based laser source 400 comprises a seed laser 402 to generate initial light pulses of one or more wavelengths (e.g., 1550 nm), which are provided to a wavelength-division multiplexor (WDM) 404 via an optical fiber 403.
  • WDM wavelength-division multiplexor
  • Fiber-based laser source 400 further comprises a pump 406 for providing laser power (e.g., of a different wavelength, such as 980 nm) to WDM 404 via an optical fiber 405.
  • WDM wavelength-division multiplexor
  • WDM 404 multiplexes the light pulses provided by seed laser 402 and the laser power provided by pump 406 onto a single optical fiber 407.
  • the output of WDM 404 can then be provided to one or more pre-amplifier(s) 408 via optical fiber 407.
  • Preamplifiers) 408 can be optical amplifier(s) that amplify optical signals (e.g., with about 20-30 dB gain).
  • pre-amplifier(s) 408 are low noise amplifiers.
  • Pre-amplifier(s) 408 output to a combiner 410 via an optical fiber 409.
  • Combiner 410 combines the output laser light of pre-amplifier(s) 408 with the laser power provided by pump 412 via an optical fiber 411.
  • Combiner 410 can combine optical signals having the same wavelength or different wavelengths.
  • a combiner is a WDM.
  • Combiner 410 provides pulses to a booster amplifier 414, which produces output light pulses via optical fiber 410.
  • the booster amplifier 414 provides further amplification of the optical signals.
  • the outputted light pulses can then be transmitted to transmitter 320 and/or steering mechanism 340 (shown in FIG. 3).
  • FIG. 4 illustrates one exemplary configuration of fiber-based laser source 400.
  • Laser source 400 can have many other configurations using different combinations of one or more components shown in FIG. 4 and/or other components not shown in FIG. 4 (e.g., other components such as power supplies, lens, filters, splitters, combiners, etc.).
  • fiber-based laser source 400 can be controlled (e.g., by control circuitry 350) to produce pulses of different amplitudes based on the fiber gain profile of the fiber used in fiber-based laser source 400.
  • Communication path 312 couples fiber-based laser source 400 to control circuitry 350 (shown in FIG. 3) so that components of fiber-based laser source 400 can be controlled by or otherwise communicate with control circuitry 350.
  • fiber-based laser source 400 may include its own dedicated controller. Instead of control circuitry 350 communicating directly with components of fiber-based laser source 400, a dedicated controller of fiber-based laser source 400 communicates with control circuitry 350 and controls and/or communicates with the components of fiber-based laser source 400.
  • Fiber-based laser source 400 can also include other components not shown, such as one or more power connectors, power supplies, and/or power lines.
  • typical operating wavelengths of laser source 310 comprise, for example, about 850 nm, about 905 nm, about 940 nm, about 1064 nm, and about 1550 nm.
  • the upper limit of maximum usable laser power is set by the U.S. FDA (U.S. Food and Drug Administration) regulations.
  • the optical power limit at 1550 nm wavelength is much higher than those of the other aforementioned wavelengths. Further, at 1550 nm, the optical power loss in a fiber is low. There characteristics of the 1550 nm wavelength make it more beneficial for long-range LiDAR applications.
  • the amount of optical power output from laser source 310 can be characterized by its peak power, average power, and the pulse energy.
  • the peak power is the ratio of pulse energy to the width of the pulse (e.g., full width at half maximum or FWHM). Thus, a smaller pulse width can provide a larger peak power for a fixed amount of pulse energy.
  • a pulse width can be in the range of nanosecond or picosecond.
  • the average power is the product of the energy of the pulse and the pulse repetition rate (PRR). As described in more detail below, the PRR represents the frequency of the pulsed laser light.
  • the PRR typically corresponds to the maximum range that a LiDAR system can measure.
  • Laser source 310 can be configured to produce pulses at high PRR to meet the desired number of data points in a point cloud generated by the LiDAR system.
  • Laser source 310 can also be configured to produce pulses at medium or low PRR to meet the desired maximum detection distance.
  • Wall plug efficiency (WPE) is another factor to evaluate the total power consumption, which may be a key indicator in evaluating the laser efficiency.
  • WPE Wall plug efficiency
  • FIG. 1 multiple LiDAR systems may be attached to a vehicle, which may be an electrical-powered vehicle or a vehicle otherwise having limited fuel or battery power supply. Therefore, high WPE and intelligent ways to use laser power are often among the important considerations when selecting and configuring laser source 310 and/or designing laser delivery systems for vehicle-mounted LiDAR applications.
  • Laser source 310 can be configured to include many other types of light sources (e.g., laser diodes, short-cavity fiber lasers, solid-state lasers, and/or tunable external cavity diode lasers) that are configured to generate one or more light signals at various wavelengths.
  • light source 310 comprises amplifiers (e.g., pre-amplifiers and/or booster amplifiers), which can be a doped optical fiber amplifier, a solid-state bulk amplifier, and/or a semiconductor optical amplifier. The amplifiers are configured to receive and amplify light signals with desired gains.
  • LiDAR system 300 further comprises a transmitter 320.
  • Laser source 310 provides laser light (e.g., in the form of a laser beam) to transmitter 320.
  • the laser light provided by laser source 310 can be amplified laser light with a predetermined or controlled wavelength, pulse repetition rate, and/or power level.
  • Transmitter 320 receives the laser light from laser source 310 and transmits the laser light to steering mechanism 340 with low divergence.
  • transmitter 320 can include, for example, optical components (e.g., lens, fibers, mirrors, etc.) for transmitting laser beams to a field-of-view (FOV) directly or via steering mechanism 340. While FIG. 3 illustrates transmitter 320 and steering mechanism 340 as separate components, they may be combined or integrated as one system in some embodiments. Steering mechanism 340 is described in more detail below.
  • transmitter 320 often comprises a collimating lens configured to collect the diverging laser beams and produce more parallel optical beams with reduced or minimum divergence.
  • the collimated optical beams can then be further directed through various optics such as mirrors and lens.
  • a collimating lens may be, for example, a single plano-convex lens or a lens group.
  • the collimating lens can be configured to achieve any desired properties such as the beam diameter, divergence, numerical aperture, focal length, or the like.
  • a beam propagation ratio or beam quality factor (also referred to as the M 2 factor) is used for measurement of laser beam quality.
  • the M 2 factor represents a degree of variation of a beam from an ideal Gaussian beam.
  • the M 2 factor reflects how well a collimated laser beam can be focused on a small spot, or how well a divergent laser beam can be collimated. Therefore, laser source 310 and/or transmitter 320 can be configured to meet, for example, a scan resolution requirement while maintaining the desired M 2 factor.
  • One or more of the light beams provided by transmitter 320 are scanned by steering mechanism 340 to a FOV.
  • Steering mechanism 340 scans light beams in multiple dimensions (e.g., in both the horizontal and vertical dimension) to facilitate LiDAR system 300 to map the environment by generating a 3D point cloud.
  • the laser light scanned to an FOV may be scattered or reflected by an object in the FOV. At least a portion of the scattered or reflected light returns to LiDAR system 300.
  • FIG. 3 further illustrates an optical receiver and light detector 330 configured to receive the return light.
  • Optical receiver and light detector 330 comprises an optical receiver that is configured to collect the return light from the FOV.
  • the optical receiver can include optics (e.g., lens, fibers, mirrors, etc.) for receiving, redirecting, focus, amplifying, and/or filtering return light from the FOV.
  • optics e.g., lens, fibers, mirrors, etc.
  • the optical receiver often includes a collection lens (e.g., a single plano-convex lens or a lens group) to collect and/or focus the collected return light onto a light detector.
  • a light detector detects the return light focused by the optical receiver and generates current and/or voltage signals proportional to the incident intensity of the return light. Based on such current and/or voltage signals, the depth information of the object in the FOV can be derived.
  • One exemplary method for deriving such depth information is based on the direct TOF (time of flight), which is described in more detail below.
  • a light detector may be characterized by its detection sensitivity, quantum efficiency, detector bandwidth, linearity, signal to noise ratio (SNR), overload resistance, interference immunity, etc.
  • SNR signal to noise ratio
  • the light detector can be configured or customized to have any desired characteristics.
  • optical receiver and light detector 330 can be configured such that the light detector has a large dynamic range while having a good linearity.
  • the light detector linearity indicates the detector’s capability of maintaining linear relationship between input optical signal power and the detector’s output.
  • a detector having good linearity can maintain a linear relationship over a large dynamic input optical signal range.
  • a light detector structure can be a PIN based structure, which has a undoped intrinsic semiconductor region (i.e., an “i” region) between a p- type semiconductor and an n-type semiconductor region.
  • Other light detector structures comprise, for example, a APD (avalanche photodiode) based structure, a PMT (photomultiplier tube) based structure, a SiPM (Silicon photomultiplier) based structure, a SPAD (single-photon avalanche diode) base structure, and/or quantum wires.
  • APD active photodiode
  • PMT photomultiplier tube
  • SiPM Silicon photomultiplier
  • SPAD single-photon avalanche diode
  • quantum wires for material systems used in a light detector, Si, InGaAs, and/or Si/Ge based materials can be used. It is understood that many other detector structures and/or material systems can be used in optical receiver and light detector 330.
  • a light detector e.g., an APD based detector
  • APD may have an internal gain such that the input signal is amplified when generating an output signal.
  • noise may also be amplified due to the light detector’s internal gain.
  • Common types of noise include signal shot noise, dark current shot noise, thermal noise, and amplifier noise (TIA).
  • optical receiver and light detector 330 may include a pre-amplifier that is a low noise amplifier (LNA).
  • the pre-amplifier may also include a TIA-transimpedance amplifier, which converts a current signal to a voltage signal.
  • LNA low noise amplifier
  • NEP input equivalent noise or noise equivalent power
  • the NEP of a light detector specifies the power of the weakest signal that can be detected and therefore it in turn specifies the maximum range of a LiDAR system.
  • various light detector optimization techniques can be used to meet the requirement of LiDAR system 300. Such optimization techniques may include selecting different detector structures, materials, and/or implement signal processing techniques (e.g., filtering, noise reduction, amplification, or the like).
  • signal processing techniques e.g., filtering, noise reduction, amplification, or the like.
  • coherent detection can also be used for a light detector.
  • Coherent detection allows for detecting amplitude and phase information of the received light by interfering the received light with a local oscillator. Coherent detection can improve detection sensitivity and noise immunity.
  • FIG. 3 further illustrates that LiDAR system 300 comprises steering mechanism 340.
  • steering mechanism 340 directs light beams from transmitter 320 to scan an FOV in multiple dimensions.
  • a steering mechanism is referred to as a raster mechanism or a scanning mechanism. Scanning light beams in multiple directions (e.g., in both the horizontal and vertical directions) facilitates a LiDAR system to map the environment by generating an image or a 3D point cloud.
  • a steering mechanism can be based on mechanical scanning and/or solid-state scanning. Mechanical scanning uses rotating mirrors to steer the laser beam or physically rotate the LiDAR transmitter and receiver (collectively referred to as transceiver) to scan the laser beam.
  • Solid-state scanning directs the laser beam to various positions through the FOV without mechanically moving any macroscopic components such as the transceiver.
  • Solidstate scanning mechanisms include, for example, optical phased arrays based steering and flash LiDAR based steering. In some embodiments, because solid-state scanning mechanisms do not physically move macroscopic components, the steering performed by a solid-state scanning mechanism may be referred to as effective steering.
  • a LiDAR system using solid-state scanning may also be referred to as a non-mechanical scanning or simply non-scanning LiDAR system (a flash LiDAR system is an exemplary non-scanning LiDAR system).
  • Steering mechanism 340 can be used with the transceiver (e.g., transmitter 320 and optical receiver and light detector 330) to scan the FOV for generating an image or a 3D point cloud.
  • a two-dimensional mechanical scanner can be used with a single-point or several single-point transceivers.
  • a single-point transceiver transmits a single light beam or a small number of light beams (e.g., 2-8 beams) to the steering mechanism.
  • a two-dimensional mechanical steering mechanism comprises, for example, polygon mirror(s), oscillating mirror(s), rotating prism(s), rotating tilt mirror surface(s), or a combination thereof.
  • steering mechanism 340 may include nonmechanical steering mechanism(s) such as solid-state steering mechanism(s).
  • steering mechanism 340 can be based on tuning wavelength of the laser light combined with refraction effect, and/or based on reconfigurable grating/phase array.
  • steering mechanism 340 can use a single scanning device to achieve two-dimensional scanning or two devices combined to realize two-dimensional scanning.
  • a one-dimensional mechanical scanner can be used with an array or a large number of single-point transceivers.
  • the transceiver array can be mounted on a rotating platform to achieve 360-degree horizontal field of view.
  • a static transceiver array can be combined with the onedimensional mechanical scanner.
  • a one-dimensional mechanical scanner comprises polygon mirror(s), oscillating mirror(s), rotating prism(s), rotating tilt mirror surface(s) for obtaining a forward-looking horizontal field of view. Steering mechanisms using mechanical scanners can provide robustness and reliability in high volume production for automotive applications.
  • a two-dimensional transceiver can be used to generate a scan image or a 3D point cloud directly.
  • a stitching or micro shift method can be used to improve the resolution of the scan image or the field of view being scanned.
  • signals generated at one direction e.g., the horizontal direction
  • signals generated at the other direction e.g., the vertical direction
  • steering mechanism 340 comprise one or more optical redirection elements (e.g., mirrors or lens) that steer return light signals (e.g., by rotating, vibrating, or directing) along a receive path to direct the return light signals to optical receiver and light detector 330.
  • the optical redirection elements that direct light signals along the transmitting and receiving paths may be the same components (e.g., shared), separate components (e.g., dedicated), and/or a combination of shared and separate components. This means that in some cases the transmitting and receiving paths are different although they may partially overlap (or in some cases, substantially overlap).
  • LiDAR system 300 further comprises control circuitry 350.
  • Control circuitry 350 can be configured and/or programmed to control various parts of the LiDAR system 300 and/or to perform signal processing.
  • control circuitry 350 can be configured and/or programmed to perform one or more control operations including, for example, controlling laser source 310 to obtain desired laser pulse timing, repetition rate, and power; controlling steering mechanism 340 (e.g., controlling the speed, direction, and/or other parameters) to scan the FOV and maintain pixel registration/alignment; controlling optical receiver and light detector 330 (e.g., controlling the sensitivity, noise reduction, filtering, and/or other parameters) such that it is an optimal state; and monitoring overall system health/status for functional safety.
  • controlling laser source 310 to obtain desired laser pulse timing, repetition rate, and power
  • controlling steering mechanism 340 e.g., controlling the speed, direction, and/or other parameters
  • controlling optical receiver and light detector 330 e.g., controlling the sensitivity, noise reduction, filtering, and/or other parameters
  • Control circuitry 350 can also be configured and/or programmed to perform signal processing to the raw data generated by optical receiver and light detector 330 to derive distance and reflectance information, and perform data packaging and communication to vehicle perception and planning system 220 (shown in FIG. 2). For example, control circuitry 350 determines the time it takes from transmitting a light pulse until a corresponding return light pulse is received; determines when a return light pulse is not received for a transmitted light pulse; determines the direction (e.g., horizontal and/or vertical information) for a transmitted/retum light pulse; determines the estimated range in a particular direction; and/or determines any other type of data relevant to LiDAR system 300.
  • direction e.g., horizontal and/or vertical information
  • LiDAR system 300 can be disposed in a vehicle, which may operate in many different environments including hot or cold weather, rough road conditions that may cause intense vibration, high or low humidifies, dusty areas, etc. Therefore, in some embodiments, optical and/or electronic components of LiDAR system 300 (e.g., optics in transmitter 320, optical receiver and light detector 330, and steering mechanism 340) are disposed or configured in such a manner to maintain long term mechanical and optical stability. For example, components in LiDAR system 300 may be secured and sealed such that they can operate under all conditions a vehicle may encounter.
  • optical and/or electronic components of LiDAR system 300 e.g., optics in transmitter 320, optical receiver and light detector 330, and steering mechanism 340
  • components in LiDAR system 300 may be secured and sealed such that they can operate under all conditions a vehicle may encounter.
  • an anti-moisture coating and/or hermetic sealing may be applied to optical components of transmitter 320, optical receiver and light detector 330, and steering mechanism 340 (and other components that are susceptible to moisture).
  • housing(s), enclosure(s), and/or window can be used in LiDAR system 300 for providing desired characteristics such as hardness, ingress protection (IP) rating, self-cleaning capability, resistance to chemical and resistance to impact, or the like.
  • IP ingress protection
  • efficient and economical methodologies for assembling LiDAR system 300 may be used to meet the LiDAR operating requirements while keeping the cost low.
  • LiDAR system 300 can include other functional units, blocks, or segments, and can include variations or combinations of these above functional units, blocks, or segments.
  • LiDAR system 300 can also include other components not depicted in FIG. 3, such as power buses, power supplies, LED indicators, switches, etc. Additionally, other connections among components may be present, such as a direct connection between light source 310 and optical receiver and light detector 330 so that light detector 330 can accurately measure the time from when light source 310 transmits a light pulse until light detector 330 detects a return light pulse. [0085] These components shown in FIG.
  • These communications paths represent communication (bidirectional or unidirectional) among the various LiDAR system components but need not be physical components themselves.
  • the communications paths can be implemented by one or more electrical wires, busses, or optical fibers
  • the communication paths can also be wireless channels or open-air optical paths so that no physical communication medium is present.
  • communication path 314 includes one or more optical fibers
  • communication path 352 represents an optical path
  • communication paths 312, 322, 342, and 362 are all electrical wires that carry electrical signals.
  • the communication paths can also include more than one of the above types of communication mediums (e.g., they can include an optical fiber and an optical path, or one or more optical fibers and one or more electrical wires).
  • an exemplary LiDAR system 500 includes a laser light source (e.g., a fiber laser), a steering system (e.g., a system of one or more moving mirrors), and a light detector (e.g., a photon detector with one or more optics).
  • a laser light source e.g., a fiber laser
  • a steering system e.g., a system of one or more moving mirrors
  • a light detector e.g., a photon detector with one or more optics.
  • LiDAR system 500 can be implemented using, for example, LiDAR system 300 described above.
  • LiDAR system 500 transmits a light pulse 502 along light path 504 as determined by the steering system of LiDAR system 500.
  • light pulse 502 which is generated by the laser light source, is a short pulse of laser light.
  • the signal steering system of the LiDAR system 500 is a pulsed-signal steering system.
  • LiDAR systems can operate by generating, transmitting, and detecting light signals that are not pulsed and derive ranges to an object in the surrounding environment using techniques other than time-of-flight.
  • some LiDAR systems use frequency modulated continuous waves (i.e., “FMCW”).
  • FMCW frequency modulated continuous waves
  • any of the techniques described herein with respect to time-of-flight based systems that use pulsed signals also may be applicable to LiDAR systems that do not use one or both of these techniques.
  • FIG. 5A e.g., illustrating a time-of-flight LiDAR system that uses light pulses
  • light pulse 502 scatters or reflects to generate a return light pulse 508.
  • Return light pulse 508 may return to system 500 along light path 510.
  • the time from when transmitted light pulse 502 leaves LiDAR system 500 to when return light pulse 508 arrives back at LiDAR system 500 can be measured (e.g., by a processor or other electronics, such as control circuitry 350, within the LiDAR system).
  • This time-of-flight combined with the knowledge of the speed of light can be used to determine the range/di stance from LiDAR system 500 to the portion of object 506 where light pulse 502 scattered or reflected.
  • LiDAR system 500 scans the external environment (e.g., by directing light pulses 502, 522, 526, 530 along light paths 504, 524, 528, 532, respectively).
  • LiDAR system 500 receives return light pulses 508, 542, 548 (which correspond to transmitted light pulses 502, 522, 530, respectively).
  • Return light pulses 508, 542, and 548 are generated by scattering or reflecting the transmitted light pulses by one of objects 506 and 514.
  • Return light pulses 508, 542, and 548 may return to LiDAR system 500 along light paths 510, 544, and 546, respectively.
  • the external environment within the detectable range e.g., the field of view between path 504 and 532, inclusively
  • the external environment within the detectable range can be precisely mapped or plotted (e.g., by generating a 3D point cloud or images).
  • a corresponding light pulse is not received for a particular transmitted light pulse, then it may be determined that there are no objects within a detectable range of LiDAR system 500 (e.g., an object is beyond the maximum scanning distance of LiDAR system 500). For example, in FIG. 5B, light pulse 526 may not have a corresponding return light pulse (as illustrated in FIG. 5C) because light pulse 526 may not produce a scattering event along its transmission path 528 within the predetermined detection range.
  • LiDAR system 500 or an external system in communication with LiDAR system 500 (e.g., a cloud system or service), can interpret the lack of return light pulse as no object being disposed along light path 528 within the detectable range of LiDAR system 500.
  • light pulses 502, 522, 526, and 530 can be transmitted in any order, serially, in parallel, or based on other timings with respect to each other.
  • FIG. 5B depicts transmitted light pulses as being directed in one dimension or one plane (e.g., the plane of the paper)
  • LiDAR system 500 can also direct transmitted light pulses along other dimension(s) or plane(s).
  • LiDAR system 500 can also direct transmitted light pulses in a dimension or plane that is perpendicular to the dimension or plane shown in FIG. 5B, thereby forming a 2-dimensional transmission of the light pulses.
  • This 2-dimensional transmission of the light pulses can be point-by-point, line-by-line, all at once, or in some other manner.
  • a point cloud or image from a 1 -dimensional transmission of light pulses (e.g., a single horizontal line) can generate 2-dimensional data (e.g., (1) data from the horizontal transmission direction and (2) the range or distance to objects).
  • a point cloud or image from a 2- dimensional transmission of light pulses can generate 3-dimensional data (e.g., (1) data from the horizontal transmission direction, (2) data from the vertical transmission direction, and (3) the range or distance to objects).
  • a LiDAR system performing an ⁇ -dimensional transmission of light pulses generates (w+1) dimensional data.
  • the LiDAR system can measure the depth of an object or the range/di stance to the object, which provides the extra dimension of data. Therefore, a 2D scanning by a LiDAR system can generate a 3D point cloud for mapping the external environment of the LiDAR system.
  • the density of a point cloud refers to the number of measurements (data points) per area performed by the LiDAR system.
  • a point cloud density relates to the LiDAR scanning resolution.
  • a larger point cloud density, and therefore a higher resolution, is desired at least for the region of interest (ROI).
  • the density of points in a point cloud or image generated by a LiDAR system is equal to the number of pulses divided by the field of view.
  • the field of view can be fixed. Therefore, to increase the density of points generated by one set of transmission-receiving optics (or transceiver optics), the LiDAR system may need to generate a pulse more frequently. In other words, a light source with a higher pulse repetition rate (PRR) is needed.
  • PRR pulse repetition rate
  • the farthest distance that the LiDAR system can detect may be limited. For example, if a return signal from a distant object is received after the system transmits the next pulse, the return signals may be detected in a different order than the order in which the corresponding signals are transmitted, thereby causing ambiguity if the system cannot correctly correlate the return signals with the transmitted signals.
  • the farthest distance the LiDAR system can detect may be 300 meters and 150 meters for 500 kHz and 1 MHz, respectively.
  • the density of points of a LiDAR system with 500 kHz repetition rate is half of that with 1 MHz.
  • this example demonstrates that, if the system cannot correctly correlate return signals that arrive out of order, increasing the repetition rate from 500 kHz to 1 MHz (and thus improving the density of points of the system) may reduce the detection range of the system.
  • Various techniques are used to mitigate the tradeoff between higher PRR and limited detection range. For example, multiple wavelengths can be used for detecting objects in different ranges. Optical and/or signal processing techniques are also used to correlate between transmitted and return light signals.
  • Various systems, apparatus, and methods described herein may be implemented using digital circuitry, or using one or more computers using well-known computer processors, memory units, storage devices, computer software, and other components.
  • a computer includes a processor for executing instructions and one or more memories for storing instructions and data.
  • a computer may also include, or be coupled to, one or more mass storage devices, such as one or more magnetic disks, internal hard disks and removable disks, magnetooptical disks, optical disks, etc.
  • Various systems, apparatus, and methods described herein may be implemented using computers operating in a client-server relationship.
  • the client computers are located remotely from the server computers and interact via a network.
  • the client-server relationship may be defined and controlled by computer programs running on the respective client and server computers.
  • client computers can include desktop computers, workstations, portable computers, cellular smartphones, tablets, or other types of computing devices.
  • Various systems, apparatus, and methods described herein may be implemented using a computer program product tangibly embodied in an information carrier, e.g., in a non-transitory machine-readable storage device, for execution by a programmable processor; and the method processes and steps described herein, including one or more of the steps of FIG. 14, may be implemented using one or more computer programs that are executable by such a processor.
  • a computer program is a set of computer program instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result.
  • a computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • Apparatus 600 comprises a processor 610 operatively coupled to a persistent storage device 620 and a main memory device 630.
  • Processor 610 controls the overall operation of apparatus 600 by executing computer program instructions that define such operations.
  • the computer program instructions may be stored in persistent storage device 620, or other computer-readable medium, and loaded into main memory device 630 when execution of the computer program instructions is desired.
  • processor 610 may be used to implement one or more components and systems described herein, such as control circuitry 350 (shown in FIG. 3), vehicle perception and planning system 220 (shown in FIG. 2), and vehicle control system 280 (shown in FIG. 2).
  • At least some of the method steps of FIG. 14 can be defined by the computer program instructions stored in main memory device 630 and/or persistent storage device 620 and controlled by processor 610 executing the computer program instructions.
  • the computer program instructions can be implemented as computer executable code programmed by one skilled in the art to perform an algorithm defined by at least some of the method steps of FIG. 14.
  • the processor 610 executes an algorithm defined by the method steps of FIG. 14.
  • Apparatus 600 also includes one or more network interfaces 680 for communicating with other devices via a network.
  • Apparatus 600 may also include one or more input/output devices 690 that enable user interaction with apparatus 600 (e.g., display, keyboard, mouse, speakers, buttons, etc.).
  • Processor 610 may include both general and special purpose microprocessors and may be the sole processor or one of multiple processors of apparatus 600.
  • Processor 610 may comprise one or more central processing units (CPUs), and one or more graphics processing units (GPUs), which, for example, may work separately from and/or multi-task with one or more CPUs to accelerate processing, e.g., for various image processing applications described herein.
  • processors 610, persistent storage device 620, and/or main memory device 630 may include, be supplemented by, or incorporated in, one or more application-specific integrated circuits (ASICs) and/or one or more field programmable gate arrays (FPGAs).
  • ASICs application-specific integrated circuits
  • FPGAs field programmable gate arrays
  • Persistent storage device 620 and main memory device 630 each comprise a tangible non-transitory computer readable storage medium.
  • Persistent storage device 620, and main memory device 630 may each include high-speed random access memory, such as dynamic random access memory (DRAM), static random access memory (SRAM), double data rate synchronous dynamic random access memory (DDR RAM), or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices such as internal hard disks and removable disks, magneto-optical disk storage devices, optical disk storage devices, flash memory devices, semiconductor memory devices, such as erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), digital versatile disc read-only memory (DVD-ROM) disks, or other non-volatile solid state storage devices.
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • DDR RAM double data rate synchronous dynamic random access memory
  • Input/output devices 690 may include peripherals, such as a printer, scanner, display screen, etc.
  • input/output devices 690 may include a display device such as a cathode ray tube (CRT), plasma or liquid crystal display (LCD) monitor for displaying information to a user, a keyboard, and a pointing device such as a mouse or a trackball by which the user can provide input to apparatus 600.
  • a display device such as a cathode ray tube (CRT), plasma or liquid crystal display (LCD) monitor for displaying information to a user, a keyboard, and a pointing device such as a mouse or a trackball by which the user can provide input to apparatus 600.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • LiDAR system 300 may utilize one or more neural networks or other deep-learning techniques performed by processor 610 or other systems or apparatuses discussed herein.
  • FIG. 6 is a high-level representation of some of the components of such a computer for illustrative purposes.
  • FIG. 7 illustrates a top view of an exemplary motorized optical scanner device 700.
  • FIG. 8 illustrates a bottom view of the exemplary motorized optical scanner device 700.
  • FIG. 9 illustrates a cross-sectional view of motorized optical scanner device 700 along the crosssection position A- A’ shown in FIGS. 7 and 8.
  • FIGs. 10-11 illustrate perspective views of motorized optical scanner device 700.
  • FIG. 12 illustrates a cut-off view of the exemplary motorized optical scanner device according to some embodiments.
  • FIG. 13 illustrates an exploded view of motorized optical scanner device 700.
  • FIGs. 7-13 are described together and the same elements are referred to by using the same numbers in FIGs. 7-13.
  • Motorized optical scanner device 700 can be, for example, a part of steering mechanism 340 shown in FIG. 3.
  • motorized optical scanner device 700 comprises a glassbased optical reflector 702.
  • Optical reflector 702 can be, for example, a polygon mirror.
  • glass-based optical reflector 702 comprises a polygon-shaped top surface 705, a polygon-shaped bottom surface 802, and a plurality of reflective surfaces 704A-E (collectively as 704).
  • Reflective surfaces 704 form outer side surfaces of optical reflector 702.
  • Reflective surfaces 704 reflect light and are also referred to as facets of optical reflector 702.
  • Top surface 705 and bottom surface 802 may or may not be reflective.
  • the top view of optical reflector 702 in FIG. 7 shows a pentagon-shaped top surface 705.
  • top surface 705 may be a flat or substantially flat surface comprising five edges. Top surface 705 may also be a curved surface having chamfered or beveled corners such as corner 708. The five edges of top surface 705 form a pentagon shape. The edges of top surface 705 may be straight edges or curved edges. It is understood that glass-based optical reflector 702 can have a polygon-shaped top surface comprising any number of edges (e.g., 3, 4, 5, 6, 7, 8, etc.). Correspondingly, optical reflector 702 can have a triangle-, square-, pentagon-, hexagon-, heptagon-, or octagon-shaped top surface 705; and 3, 4, 5, 6, 7, 8 side surfaces, respectively.
  • the bottom view of optical reflector 702 in FIG. 8 illustrates a pentagon-shaped bottom surface 802.
  • bottom surface 802 is a flat or substantially flat surface comprising five edges.
  • Bottom surface 802 may also be a curved surface.
  • the five edges of bottom surface 802 form a pentagon shape.
  • the edges of the bottom surface 802 may be straight edges or curved edges.
  • glass-based optical reflector 702 can have a polygon-shaped bottom surface comprising any number of edges (e.g., 3, 4, 5, 6, 7, 8, etc.).
  • glass-based optical reflector 702 can have a triangle-, square-, pentagon-, hexagon-, heptagon-, or octagon-shaped bottom surface.
  • polygonshaped bottom surface 802 includes threaded holes 930 into which a plurality of fastening mechanisms 804 may be inserted during a wobble adjustment process.
  • a plurality of fastening mechanisms 804 may be adjustment screws.
  • Polygon-shaped bottom surface 802 also includes through holes 806 for gluing an adjustment ring 908. Through holes 806 can be round-shaped holes or any other shaped holes (e.g., rectangle, square, polygon, oval, or the like).
  • motor assembly 910 has threaded holes 930 on its perimeter, each of which can be lined up with the center of a corresponding facet. Through holes 806 can be distributed evenly on its perimeter. In other embodiments, the threaded holes 930 can be disposed to line up with other locations of the facets in any desired manner. In some embodiments, motor assembly 910 has threaded holes 930 and through holes 806 alternatively distributed on its perimeter. For example, a threaded hole 930 is distributed between two through holes 806, and a through hole 806 is distributed between two threaded holes 930.
  • a quantity of the plurality of fastening mechanisms 804 may be the same as a quantity of the plurality of reflective surfaces of the glass-based optical reflector.
  • at least two of the plurality of fastening mechanisms 804 are inserted into threaded holes 930 and are tightened such that the adjustment ring 908 is supported by two of the plurality of fastening mechanisms 804 and a portion of the glass-based optical reflector 702 that is opposite to a mid-portion between the two fastening mechanisms 804.
  • adjustment ring 908 can be in contact with flange 902 of the optical reflector 702 through a first mounting surface 922.
  • the portion of the optical reflector 702 that is opposite to a mid-portion between the two inserted fastening mechanisms 804 can be a portion of flange 902 that is contact with adjustment ring 908 and is opposite in position to the two inserted fastening mechanisms 804.
  • the portion of the optical reflector 702 that is opposite to a mid-portion between the two inserted fastening mechanisms 804 can thus be located somewhere between the reflective surfaces 704B and 704C, or 704 A and 704B.
  • a low point of a glass-based optical reflector 702 may be identified when measuring wobble using a fixture.
  • the low point may be identified by, for example, measuring the tilt angles of the plurality of reflective surfaces 704 of the optical reflector 702.
  • At least two of the plurality of fastening mechanisms 804 can be selected based on the identified low point. For example, if the low point is identified to be positioned between two adjacent threaded holes 930, these two adjacent threaded holes 930 may be selected. If the low point is identified to be positioned very close (e.g., right next to) a particular threaded hole 930, then this particular threaded hole 930 may be selected.
  • An adjacent threaded hole 930 located on either side of this particular threaded hole 930 can be also selected. In some cases, three or more threaded holes 930 may be selected.
  • at least two fastening mechanisms 804 e.g., adjustment screws
  • adjustment screws may be installed into at least two selected threaded holes 930 in motor assembly 910 to apply adjustment forces (e.g., pushing forces) to an adjustment ring to reduce wobble associated with rotation of glass-based optical reflector 702.
  • the at least two selected threaded holes may be adjacent threaded holes in most cases or spaced one threaded hole apart in case that the low point is aligned with the edge between two reflective surfaces.
  • any number of adjustment mechanisms 804 may be selected to perform the wobble adjustment by applying forces to the adjustment ring.
  • the forces applied by different adjustment mechanisms 804 may be the same or different.
  • the forces may be pushing forces or in some case, pulling forces.
  • the inserting of different fastening mechanisms 804 to the threaded holes 930 may be performed alternately between the different fastening mechanisms 804. For instance, using FIG.
  • the two fastening mechanisms can be inserted in an alternating manner (e.g., a first fastening mechanism is inserted only half way, the second fastening mechanism is then inserted half way, the first fastening mechanism is then inserted further, and so on).
  • the installing of the fastening mechanisms are guided by the measured wobble of the optical reflector 702. The measurement may be repeated one or more times until the installing of the fastening mechanisms reduces the wobble to be within a threshold or within a specification.
  • optical reflector 702 comprises a plurality of reflective surfaces (e.g., surfaces 704A-E) forming its outer side surfaces. The side surfaces share their top edges with top surface 705 and share their bottom edges with bottom surface 802.
  • a side surface has a trapezoidal-type shape.
  • the top edge of reflective surface 704B is longer than its bottom edge, thereby forming a trapezoidal-type shape.
  • other reflective surfaces may also have longer top edges and shorter bottom edges.
  • at least one of reflective surfaces 704A-E forms a tilt angle with respect to the rotational axis of optical reflector 702.
  • a tilt angle can be between 0-90 degrees (e.g., 27 degrees).
  • a tilt angle is also referred to as a facet angle.
  • one or more of reflective surfaces 704 are not parallel with the rotational axis of optical reflector 702.
  • Rotational axis 907 of optical reflector 702 is parallel or substantially parallel to motor shaft 906.
  • reflective surface 704B and rotational axis form a tilt angle.
  • other reflective surfaces 704 may also form their respective tilt angles with rotational axis 907.
  • the tilt angles of different reflective surfaces 704A-E may or may not be the same.
  • reflective surfaces 704 comprise mirrors for reflecting or redirecting light.
  • reflective surfaces 704 comprises semiconductor wafer based reflectors (e.g., a polished piece of semiconductor wafer). The mirrors or semiconductor wafer based reflectors are disposed at the outer side surfaces of glass-based optical reflector 702.
  • optical reflector 702 is made from a glass material and the side surfaces of optical reflector 702 are coated with reflective materials to make them reflective.
  • reflective surfaces 704 can also be made reflective by mechanically or adhesively attaching mirrors or semiconductor wafer based reflectors to the side surfaces of optical reflector 702.
  • the outer side surfaces of the optical reflector 702 are integral parts of optical reflector 702.
  • the entire optical reflector 702 can be made with reflective material so that each of the outer side surfaces (e.g., reflective surfaces 704) of optical reflector 702 is reflective. In some embodiments, only the outer side surfaces of optical reflector 702 are made reflective but other parts of optical reflector 702 are not made reflective.
  • optical reflector 702 has an inner opening 920, within which at least a part of motor assembly 910 is disposed.
  • Motor assembly 910 comprises a motor rotor body 904.
  • Motor rotor body 904 can be a metal -based piece formed by using aluminum, titanium, iron, copper, steel, an alloy, and/or any other desired metal-based materials.
  • motor rotor body 904 is made from aluminum, which has a CTE of about 22X10' 6 /°K.
  • motor rotor body 904 is at least partially disposed within inner opening 920 of optical reflector 702 and mounted to optical reflector 702.
  • FIG. 9 illustrates one embodiment where motor rotor body 904 is mechanically mounted to optical reflector 702 using a flange 902 of optical reflector 702.
  • Flange 902 can be an integral part of optical reflector 702.
  • Flange 902 may also be a detachable part that is mechanically mounted or attached to optical reflector 702.
  • flange 902 extends from an inner sidewall 912 of optical reflector 702 towards motor rotor body 904.
  • flange 902 includes a first mounting surface 922 that is in contact with a first surface 924 of an adjustment ring 908.
  • Adjustment ring 908 can have a ring shape as shown in FIG. 13.
  • Flange 902 further includes a second mounting surface that is in contact with an elastomer piece 928.
  • Elastomer piece 928 can have a ring shape as shown in FIGs. 12 and 13.
  • Elastomer piece 928 or a substantial portion thereof can be disposed on, and in contact with, flange 902.
  • a clamp mechanism 942 is in contact with elastomer piece 928 and is configured to compress elastomer piece 928.
  • Elastomer piece 928 is thus disposed between clamping mechanism 942 and flange 902.
  • Clamping mechanism 942 may be, for example, a clamping ring.
  • clamping mechanism 942 compresses elastomer piece 928 to flange 902, which in turn applies compression force to motor rotor body 904. This way, optical reflector 702, via flange 902, is secured to motor rotor body 904 by the friction generated by the compression force.
  • the amount of the compression can be configured to be sufficient under many foreseeable operating conditions (e.g., high speed rotation, temperature variation, humidity variations, road conditions, or the like).
  • clamping mechanism 942 is a clamping ring.
  • clamping mechanism 942 comprises one or more fastening mechanisms 944 (e.g., screws with or without lock washers).
  • Fastening mechanisms 944 are used to apply compression forces to elastomer piece 928.
  • the movement of the metal-based motor rotor body 904 causes the glass-based optical reflector 702 to rotate at a very high speed in a range of about 2000-9000 revolutions per minute (rpm).
  • clamping mechanism 942 may need to be configured to apply a proper compression force to secure optical reflector 702 to motor rotor body 904 under all or most of the foreseeable operating conditions.
  • FIG. 9 illustrates that adjustment ring 908 has a first surface 924 and a second surface 926.
  • First surface 924 can be the top surface of the ring-shaped adjustment ring 908.
  • Second surface 926 can be the bottom surface of the ring-shaped adjustment ring 908.
  • first surface 924 of adjustment ring 908 is in contact with first mounting surface 922 of flange 902.
  • Second surface 926 of adjustment ring 908 is at least partially in contact with a motor rotor body 904.
  • tip of a fastening mechanism 804 may be at least partially in contact with second surface 926 of adjustment ring 908 and is configured to apply adjustment forces to adjustment ring 908.
  • a plurality of fastening mechanisms 804 may be adjustment screws with hard ball, oval, or round shaped tip. As illustrated in FIG. 9, adjustment ring 908 is thus disposed between fastening mechanism 804 and flange 902.
  • motor assembly 910 further comprises a motor shaft 906 disposed in one or more bearings 954 and 956. Bearings 954 and 956 are disposed inside motor rotor body 904. Motor assembly 910 further comprises a motor stator 958 and a magnetic ring 960. Motor stator 958 has electrical windings. When motor assembly 910 is provided with electricity, magnetic forces are generated via the electrical windings mounted on motor stator 958. The rotation of motor rotor body 904 causes optical reflector 702 to rotate.
  • the glass-based optical reflector 702 and the metal-based motor rotor body 904 are substantially concentric with respect to a rotational axis (e.g., axis 907) along a longitudinal direction of motor shaft 906.
  • the error of concentricity can be controlled to be less than a preconfigured threshold (e.g., about 20-25 pm). If the error of concentricity is larger than the threshold, the rotation of the optical reflector 702 may be imbalanced (e.g., off-centered) because the weight center of optical reflector 702 is shifted with respect to that of motor rotor body 904. Such a shift may or may not impact the LiDAR scanning performance but may affect the overall robustness and reliability of optical reflector device 700.
  • optical reflector 702 and motor rotor body 904 are assembled in a manner to minimize wobbling during the rotation of optical reflector 702.
  • motor rotor body 904 includes threaded holes 930 extending from polygonshaped bottom surface 802 toward the adjustment ring 908.
  • a plurality of fastening mechanisms 804 may be inserted into the threaded holes 930 during wobble adjustment.
  • a plurality of fastening mechanisms 804 may be adjustment screws.
  • Motor rotor body 904 also includes through holes 806 for gluing an adjustment ring 908. Through holes 806 may also extend from Polygon-shaped bottom surface 802 toward adjustment ring 908.
  • motor assembly 910 has threaded holes 930 on its perimeter lined up with the center of each facet and through holes 806 distributed evenly on its perimeter. In some embodiments, motor assembly 910 has threaded holes 930 and through holes 806 alternatively distributed on its perimeter. For example, as described above, a threaded hole 930 is distributed between two through holes 806, and a through hole 806 is distributed between two threaded holes 930.
  • At least two of the plurality of fastening mechanisms 804 are inserted into threaded holes 930 and are tightened such that adjustment ring 908 is supported by two of the plurality of fastening mechanisms 804 and a portion of the glass-based optical reflector that is opposite to a mid-portion between the two fastening mechanisms.
  • a low point of a glass-based optical reflector 702 may be identified when measuring wobble using a fixture.
  • two adjustment screws may be installed into two selected threaded holes 930 in motor assembly 910 to apply adjustment forces to an adjustment ring to reduce wobble associated with rotation of glass-based optical reflector 702.
  • Adjustment ring 908 facilitates distributing the adjustment forces of a plurality of fastening mechanisms 804 to a large area on optical reflector 702.
  • adjustment ring 908 are made from hard steel materials (e.g., full hard H302 steel material).
  • adhesive materials may be injected into a plurality of through holes 806 to secure the plurality of fastening mechanisms 804.
  • adhesive materials may also be injected behind the plurality of fastening mechanisms to secure them.
  • fastening mechanisms 804 include two adjustment screws.
  • a low point of a glassbased optical reflector 702 may be identified when measuring wobble using a fixture.
  • two adjustment screws may be installed into two selected threaded holes in motor assembly 910 to apply adjustment forces to an adjustment ring to reduce wobble associated with rotation of glass-based optical reflector 702.
  • the two adjustment screws may be in adjacent threaded holes in most cases or spaced one threaded hole apart in case that the low point is aligned with the edge between two facets.
  • the two screws are tightened such that the same or substantially the same amount of adjustment forces are applied to adjustment ring 908.
  • the two screws are adjustable individually or as a group such that optical reflector 702 is secured and capable of rotating without wobbling (or within a tolerable wobbling range). For example, some screws may be tightened more than the others to fine tune the amount of adjustment forces applied at any given point of adjustment ring 908. Wobbling can be eliminated or substantially reduced by such fine tuning of the adjustment forces using the fastening mechanisms 804. It is understood that motor assembly 910 may include any number of fastening mechanisms 804 distributed in any manner to satisfy the performance requirements of optical reflector 702.
  • optical reflector device 700 further comprises a Hall-effect sensor and processing circuitry 1312.
  • the Hall-effect sensor and processing circuitry 1312 detects the presence and the magnitude of a magnetic field using the Hall effect.
  • the output voltage of the Hall-effect sensor is directly proportional to the strength of the field.
  • the Hall-effect sensor and processing circuitry 1312 can be used to detect the angular position, rotational speed, and phases, rotational directions, etc. of optical reflector 702.
  • one or more magnets can be installed in optical reflector device 700 to rotate together with optical reflector 702.
  • electrical signals are generated and processed to compute various parameters of optical reflector 702.
  • a Hall-effect sensor is more sensitive and accurate than an index encoder. And therefore, optical reflector device 700 may use only the Hall-effect sensor during operation.
  • the index encoder can be used, for example, during calibration of the LiDAR system. In some embodiments, optical reflector device 700 can use both the index encoder and the Hall-effect sensor for position encoding.
  • optical reflector device 700 further comprises a fairing 1302.
  • Fairing 1302 is disposed around the optical reflector 702 to at least partially enclose optical reflector 702 and other components of motor assembly 910.
  • fairing 1302 comprises a housing, walls, covers, and/or other structures to at least partially enclose optical reflector 702 and motor assembly 910.
  • fairing 1302 comprises at least a portion of a cylinder or a cone.
  • An axial direction of fairing 1302 is substantially parallel to an axial direction of optical reflector 702.
  • Fairing 1302 can be concentric or eccentric to optical reflector 702.
  • Fairing 1302 alone or in combination with motor base 1314, encloses the optical reflector 702 to form a housing.
  • the enclosing of optical reflector 702 by using one or both of fairing 1302 and motor base 1314 reduces the air friction caused by the high-speed rotation of optical reflector 702, thereby effectively generating a local vacuum surrounding optical reflector 702.
  • the housing formed by fairing 1302 and/or motor base 1314 thus facilitates a smoother rotation of optical reflector 702 (e.g., reduces the variations of speed between rotations caused by air friction or turbulence). In turn, the smoother rotation improves the overall light scanning performance and energy efficiency of optical reflector 702.
  • FIG. 14 illustrates an exemplary method 1400 for adjusting a motorized optical scanner device to reduce wobble according to some embodiments of the present disclosure.
  • at least some of these operations are performed by a system including a processor executing a set of codes to control functional elements of an apparatus. Additionally or alternatively, certain processes are performed by a human operator. Generally, these operations are performed according to the methods and processes described in accordance with aspects of the present disclosure. In some cases, the operations described herein are composed of various substeps, or are performed in conjunction with other operations.
  • method 1400 is an exemplary method for adjusting a motorized optical scanner device to reduce wobble.
  • a system or human operator assembles a motorized optical scanner device.
  • the device may be motorized optical scanner 700 as described with reference to FIG. 7.
  • the motorized optical scanner device may comprise a glassbased optical reflector including a plurality of reflective surfaces, an adjustment ring, and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector.
  • a system or human operator measures wobble of a motorized optical scanner device.
  • measuring the wobble of the motorized optical scanner device includes identifying a low point of the glass-based optical reflector.
  • a low point may be identified using a fixed laser source.
  • a fixed laser source may emit light to a plurality of reflective surfaces (e.g., surfaces 704A-D) of a glass-based optical reflector (e.g., reflector 702).
  • the glass-based optical reflector may be rotated such that each of the plurality of reflective surfaces may reflect the light emitted from the fixed laser source.
  • the reflected light may be received by an optical detector such as a quadrant detector which generates electric signals based on received reflected light.
  • the electrical signals generated by the detector elements of the optical detector based on the reflected light can indicate tilt angles, or tile angle differences, of the plurality of reflective surfaces.
  • a low point can therefore be identified based on comparisons of the tilt angles or their differences using the electrical signals.
  • center of a polygon mirror may have a small angular deviation from its center of rotation. When center of a polygon mirror is not perfectly in-line with its center of rotation, tilt angles of the polygon facets may change in the process of angular rotation, and the polygon mirror may wobble.
  • step 1415 a system or human operator selects at least two adjustment positions with respect to the adjustment ring based on the measured wobble.
  • step 1415 determines whether a position of the low point is between two reflective surfaces of the plurality of reflective surfaces of the optical reflector. If the position of the low point is determined to be between two adjacent reflective surfaces of the plurality of reflective surfaces, then two threaded holes of a plurality of threaded holes corresponding to the two adjacent reflective surfaces may be selected as the at least two adjustment positions. For example, for a motorized optical scanner device 700 illustrated in FIG. 8, a position of a low point may be between reflective surface 704D and reflective surface 704E.
  • each of threaded holes 930 may be lined up with the center of a corresponding reflective surface.
  • threaded holes 930 which are lined up with the centers of reflective surface 704D and reflective surface 704E respectively may be selected to be the adjustment positions. Fastening mechanisms can thus be inserted to these selected threaded holes 930.
  • step 1415 determines whether a position of the low point may be within a threshold angle to a particular threaded hole of a plurality of threaded holes 930.
  • a threshold angle may be represented by angle a.
  • Angle a can be a predetermined angle measured from the line connecting the center of rotation of the optical reflector and a particular threaded hole for inserting fastening mechanism 804.
  • a threshold angle may be, for example, 10 degrees. It is understood that the threshold angle can be configured to be any desired number. For example, for a motorized optical scanner device 700 illustrated in FIG.
  • step 1415 determines whether a position of the low point may be aligned with an edge between two reflective surfaces of the plurality of reflective surfaces. If the position of the low point is determined to be aligned with an edge between two reflective surfaces of the plurality of reflective surfaces, then two threaded holes of the plurality of threaded holes corresponding to the two reflective surfaces at an end of the edge may be selected as the at least two adjustment positions. For example, for a motorized optical scanner device 700 illustrated in FIG. 8, a position of the low point may be determined to be aligned with the edge of reflective surface 704A between two reflective surfaces 704B and 704E. Then threaded holes 930 which are lined up with the centers of reflective surface 704B and reflective surface 704E respectively may be selected to be two adjustment positions.
  • a system or human operator installs a plurality of fastening mechanisms to apply adjustment forces to the adjustment ring at the at least two selected adjustment positions.
  • a plurality of fastening mechanisms may be inserted into adjustment positions individually.
  • a plurality of fastening mechanisms may be fine tuned to apply predetermined adjustment forces.
  • wobble of the motorized optical scanner device may be re-measured. More fastening mechanisms of the plurality of fastening mechanisms may be inserted after remeasurement of wobble.
  • a motorized optical scanner device comprises a plurality of through holes.
  • Adhesive materials may be injected into the plurality of through holes to secure at least one of the adjustment ring. Adhesive materials may also be injected at the selected adjustment positions to secure the plurality of fastening mechanisms.
  • Adhesive materials may be injected into the plurality of through holes to secure at least one of the adjustment ring. Adhesive materials may also be injected at the selected adjustment positions to secure the plurality of fastening mechanisms.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A motorized optical scanner device (700) of a Light Detection and Ranging (LiDAR) scanning system used in a motor vehicle is disclosed. The motorized optical scanner device (700) comprises a glass-based optical reflector (702) including a plurality of reflective surfaces (704A-E) and a flange (902). The rotatable optical reflector device further comprises an adjustment ring (908) and a metal-based motor rotor body (904) at least partially disposed in an inner opening (920) of the glass-based optical reflector (702). The flange (902) extends from an inner sidewall (912) of the glass-based optical reflector (702) towards the metal-based motor rotor body (904). The flange (902) includes a first mounting surface (922) that is in contact with the adjustment ring (908). The motorized optical scanner device (700) further comprises a plurality of fastening mechanisms (804). The plurality of fastening mechanisms (804) facilitates applying adjustment forces to the adjustment ring (908) to reduce wobble associated with rotation of the glass-based optical reflector (702). When center of a polygon mirror is not perfectly in-line with its center of rotation, tilt angles of polygon facets may change in the process of angular rotation, and the polygon mirror may wobble. During the wobble adjustment process, at least two fastening mechanisms (804), e.g., adjustment screws, may be installed into at least two selected threaded holes (930) in motor assembly (910) to apply adjustment forces, e.g., pushing forces, to the adjustment ring (908) to reduce wobble.

Description

WOBBLE ADJUSTMENT CAPABILITY FOR POLYGON MIRRORS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Non-provisional Patent Application Serial No. 17/986,820, filed November 14, 2022, entitled “Wobble Adjustment Capability for Polygon Mirrors” and U.S. Provisional Patent Application Serial No. 63/279,676, filed November 15, 2021, entitled “WOBBLE ADJUSTMENT CAPABILITY FOR POLYGON MIRRORS.” The contents of both applications are hereby incorporated by reference in their entirety for all purposes.
FIELD
[0002] This disclosure relates generally to optical scanning and, more particularly, to a motorized optical scanner of a Light Detection and Ranging (LiDAR) system used in a motor vehicle.
BACKGROUND
[0003] Light detection and ranging (LiDAR) systems use light pulses to create an image or point cloud of the external environment. Some typical LiDAR systems include a light source, a light transmitter, a light steering system, and a light detector. The light source generates a light beam that is directed by the light steering system in particular directions when being transmitted from the LiDAR system. When a transmitted light beam is scattered by an object, a portion of the scattered light returns to the LiDAR system as a return light pulse. The light detector detects the return light pulse. Using the difference between the time that the return light pulse is detected and the time that a corresponding light pulse in the light beam is transmitted, the LiDAR system can determine the distance to the object using the speed of light. The light steering system can direct light beams along different paths to allow the LiDAR system to scan the surrounding environment and produce images or point clouds. LiDAR systems can also use techniques other than time-of-flight and scanning to measure the surrounding environment. SUMMARY
[0004] A LiDAR system is often an essential component of a motor vehicle. A LiDAR system may include a motorized optical scanner. A motorized optical scanner may include an optical reflector and a motor rotor body for rotating the optical reflector. An optical reflector may be a polygon mirror having a plurality of reflective surfaces (also referred to as facets). The polygon mirror is usually made from glass with multiple reflective facets to reflect light pulses. Due to various factors of manufacturing process, center of a polygon mirror may have a small angular deviation from its center of rotation. When center of a polygon mirror is not perfectly in-line with its center of rotation, tilt angles of the polygon facets may change in the process of angular rotation, and the polygon mirror may wobble. This may affect the overall performance of the LiDAR system. Thus, there is a need to eliminate or reduce the impact caused by these conditions.
[0005] Embodiments of the present disclosure use an adjustment ring configured to adjust the tilt angles of one or more reflective surfaces of the polygon mirror with respect to the rotor and rotational axis, thereby reducing wobble and improving long-term stability of the motorized optical scanner. Embodiments of the present disclosure further use fastening mechanisms configured to apply proper adjustment forces to the adjustment ring. The fastening mechanisms may be fine-tuned to apply desired adjustment forces to different portions of the adjustment ring to tilt the polygon mirror. As a result, wobbling of the polygon mirror can be substantially reduced by such fine tuning of the adjustment forces. Various embodiments of the present disclosure are described in more detail below.
[0006] In one embodiment, a motorized optical scanner device of a Light Detection and Ranging (LiDAR) scanning system used in a motor vehicle is provided. The motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces and a flange. The rotatable optical reflector device further comprises an adjustment ring and a metalbased motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector. The flange extends from an inner sidewall of the glass-based optical reflector towards the metal-based motor rotor body. The flange includes a first mounting surface that is in contact with the adjustment ring. The motorized optical scanner device further comprises a plurality of fastening mechanisms. The plurality of fastening mechanisms facilitates applying adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
[0007] In one embodiment, a Light Detection and Ranging (LiDAR) system used in a motor vechile is provided. The LiDAR system comprises a motorized optical scanner device. The motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces and a flange. The rotatable optical reflector device further comprises an adjustment ring and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector. The flange extends from an inner sidewall of the glass-based optical reflector towards the metal-based motor rotor body. The flange includes a first mounting surface that is in contact with the adjustment ring. The motorized optical scanner device further comprises a plurality of fastening mechanisms. The plurality of fastening mechanisms facilitates applying adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
[0008] In one embodiment, a motor vehicle is provided. The motor vehicle comprises a Light Detection and Ranging (LiDAR) system that comprises a motorized optical scanner device. The motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces and a flange. The rotatable optical reflector device further comprises an adjustment ring and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector. The flange extends from an inner sidewall of the glass-based optical reflector towards the metal-based motor rotor body. The flange includes a first mounting surface that is in contact with the adjustment ring. The motorized optical scanner device further comprises a plurality of fastening mechanisms. The plurality of fastening mechanisms facilitates applying adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
[0009] In one embodiment, a method for adjusting a motorized optical scanner device of a Light Detection and Ranging (LiDAR) system for reducing wobble is provided. The method comprises assembling a motorized optical scanner device. The motorized optical scanner device comprises a glass-based optical reflector including a plurality of reflective surfaces, an adjustment ring, and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector. The method also comprises measuring wobble of the motorized optical scanner device. The method further comprises selecting at least two positions with respect to the adjustment ring based on the measured wobble. The method further comprises installing a plurality of fastening mechanisms to apply adjustment forces to the adjustment ring at the at least two selected positions.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] The present application can be best understood by reference to the figures described below taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals.
[0011] FIG. 1 illustrates one or more exemplary LiDAR systems disposed or included in a motor vehicle.
[0012] FIG. 2 is a block diagram illustrating interactions between an exemplary LiDAR system and multiple other systems including a vehicle perception and planning system.
[0013] FIG. 3 is a block diagram illustrating an exemplary LiDAR system.
[0014] FIG. 4 is a block diagram illustrating an exemplary fiber-based laser source.
[0015] FIGS. 5A-5C illustrate an exemplary LiDAR system using pulse signals to measure distances to objects disposed in a field-of-view (FOV).
[0016] FIG. 6 is a block diagram illustrating an exemplary apparatus used to implement systems, apparatus, and methods in various embodiments.
[0017] FIG. 7 is a top view of an exemplary motorized optical scanner device according to some embodiments.
[0018] FIG. 8 is a bottom view of the exemplary motorized optical scanner device according to some embodiments.
[0019] FIG. 9 is a cross-sectional view of the exemplary motorized optical scanner device according to some embodiments.
[0020] FIG. 10 is a perspective view of the exemplary motorized optical scanner device according to some embodiments. [0021] FIG. 11 is a perspective view of the exemplary motorized optical scanner device according to some embodiments.
[0022] FIG. 12 is a cut-off view of the exemplary motorized optical scanner device according to some embodiments.
[0023] FIG. 13 is an exploded view of the exemplary motorized optical scanner device according to some embodiments.
[0024] FIG. 14 is a flow chart of exemplary method for adjusting a motorized optical scanner device disposed or included in a motor vehicle.
[0025] FIG. 15 is a bottom view of the exemplary motorized optical scanner device according to some embodiments.
DETAILED DESCRIPTION
[0026] To provide a more thorough understanding of the present disclosure, the following description sets forth numerous specific details, such as specific configurations, parameters, examples, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is intended to provide a better description of the exemplary embodiments.
[0027] Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise:
[0028] The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, though it may. Thus, as described below, various embodiments of the disclosure may be readily combined, without departing from the scope or spirit of the invention.
[0029] As used herein, the term “or” is an inclusive “or” operator and is equivalent to the term “and/or,” unless the context clearly dictates otherwise.
[0030] The term “based on” is not exclusive and allows for being based on additional factors not described unless the context clearly dictates otherwise.
[0031] As used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously. Within the context of a networked environment where two or more components or devices are able to exchange data, the terms “coupled to” and “coupled with” are also used to mean “communicatively coupled with”, possibly via one or more intermediary devices.
[0032] Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first surface could be termed a second surface and, similarly, a second surface could be termed a first surface, without departing from the scope of the various described examples. The first surface and the second surface can both be surfaces and, in some cases, can be separate and different surfaces.
[0033] In addition, throughout the specification, the meaning of “a”, “an”, and “the” includes plural references, and the meaning of “in” includes “in” and “on”.
[0034] Although some of the various embodiments presented herein constitute a single combination of inventive elements, it should be appreciated that the inventive subject matter is considered to include all possible combinations of the disclosed elements. As such, if one embodiment comprises elements A, B, and C, and another embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly discussed herein. Further, the transitional term “comprising” means to have as parts or members, or to be those parts or members. As used herein, the transitional term “comprising” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
[0035] Throughout the following disclosure, numerous references may be made regarding servers, services, interfaces, engines, modules, clients, peers, portals, platforms, or other systems formed from computing devices. It should be appreciated that the use of such terms is deemed to represent one or more computing devices having at least one processor (e.g., ASIC, FPGA, PLD, DSP, x86, ARM, RISC-V, ColdFire, GPU, multi-core processors, etc.) configured to execute software instructions stored on a computer readable tangible, non-transitory medium (e.g., hard drive, solid state drive, RAM, flash, ROM, etc.). For example, a server can include one or more computers operating as a web server, database server, or other type of computer server in a manner to fulfill described roles, responsibilities, or functions. One should further appreciate the disclosed computer-based algorithms, processes, methods, or other types of instruction sets can be embodied as a computer program product comprising a non-transitory, tangible computer readable medium storing the instructions that cause a processor to execute the disclosed steps. The various servers, systems, databases, or interfaces can exchange data using standardized protocols or algorithms, possibly based on HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial transaction protocols, or other electronic information exchanging methods. Data exchanges can be conducted over a packet-switched network, a circuit-switched network, the Internet, LAN, WAN, VPN, or other type of network.
[0036] As used in the description herein and throughout the claims that follow, when a system, engine, server, device, module, or other computing element is described as being configured to perform or execute functions on data in a memory, the meaning of “configured to” or “programmed to” is defined as one or more processors or cores of the computing element being programmed by a set of software instructions stored in the memory of the computing element to execute the set of functions on target data or data objects stored in the memory.
[0037] It should be noted that any language directed to a computer should be read to include any suitable combination of computing devices or network platforms, including servers, interfaces, systems, databases, agents, peers, engines, controllers, modules, or other types of computing devices operating individually or collectively. One should appreciate the computing devices comprise a processor configured to execute software instructions stored on a tangible, non- transitory computer readable storage medium (e.g., hard drive, FPGA, PLA, solid state drive, RAM, flash, ROM, etc.). The software instructions configure or program the computing device to provide the roles, responsibilities, or other functionality as discussed below with respect to the disclosed apparatus. Further, the disclosed technologies can be embodied as a computer program product that includes a non-transitory computer readable medium storing the software instructions that causes a processor to execute the disclosed steps associated with implementations of computer-based algorithms, processes, methods, or other instructions. In some embodiments, the various servers, systems, databases, or interfaces exchange data using standardized protocols or algorithms, possibly based on HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial transaction protocols, or other electronic information exchanging methods. Data exchanges among devices can be conducted over a packet-switched network, the Internet, LAN, WAN, VPN, or other type of packet switched network; a circuit switched network; cell switched network; or other type of network.
[0038] A LiDAR system often includes a polygon mirror for steering light pulses to a field-of- view (FOV). The polygon mirror is usually made from glass with multiple reflective surfaces (also referred to as facets) to reflect light pulses. The polygon mirror is mounted to a rotational shaft of a motor rotor body. A LiDAR system may be mounted to a vehicle and therefore may need to operate in a wide temperature range (e.g., -40°C to 85°C). The shaft of the motor rotor body rotates at a very high speed (e.g., a few thousand rounds-per-minute or rpm), thereby causing the polygon mirror to rotate at high speed as well. Due to various factors of manufacturing process, center of a polygon mirror may have a small angular deviation from its center of rotation. When center of a polygon mirror is not perfectly in-line with its center of rotation, tilt angles of polygon facets may change in the process of angular rotation, and the polygon mirror may wobble. This may affect the overall performance of the LiDAR system. Thus, there is a need to eliminate or reduce the impact caused by these conditions.
[0039] As used in this disclosure, total wobble of a rotating polygon mirror refers to the range of tilt angles between the polygon facets and the polygon’s rotational axis. For better performance of a LiDAR system comprising a polygon mirror, it is often required for the polygon mirror to have a tight specification for total wobble. Without adjustment capability, errors or deviations from nominal values (e.g., tilt angles deviations) resulted from stacked up tolerances in the manufacturing process of a polygon mirror assembly may prevent the polygon mirror from meeting its wobble specifications. Total wobble can be the sum of two types of wobbles: repeatable wobble and random wobble. Repeatable wobble results from axial runout of mating surfaces. Random wobble is residual wobble after repeatable wobble is accounted for. Typical axial runout for a computer numerical control (CNC)-machined part is around ±0.05°, which almost consumes all of the allowable wobble that can be tolerated in typical LiDAR applications.
[0040] Embodiments of present disclosure are described below. In various embodiments of the present disclosure, an adjustment ring is used to adjust the tilt angle of the polygon mirror with respect to the rotor and rotational axis. A tilt angle refers to the angle between the normal direction of a reflective surface of the polygon mirror and the rotational axis of the polygon mirror. The adjustment ring can reduce the wobbling of the polygon mirror when it is rotating, thereby improving the performance and stability of the polygon mirror. A plurality of fastening mechanisms are also used to apply proper adjustment forces (e.g., pushing forces) to the adjustment ring. The fastening mechanisms may be fine-tuned to apply desired adjustment forces to different portions of the adjustment ring to tilt the polygon mirror. As a result, various embodiments of the present disclosure improve the stability and reliability of the polygon mirror, enhance the wobble adjustment capability of the polygon mirror, and improve the overall performance of the LiDAR system.
[0041] FIG. 1 illustrates one or more exemplary LiDAR systems 110 disposed or included in a motor vehicle 100. Motor vehicle 100 can be a vehicle having any automated level. For example, motor vehicle 100 can be a partially automated vehicle, a highly automated vehicle, a fully automated vehicle, or a driverless vehicle. A partially automated vehicle can perform some driving functions without a human driver’s intervention. For example, a partially automated vehicle can perform blind-spot monitoring, lane keeping and/or lane changing operations, automated emergency braking, smart cruising and/or traffic following, or the like. Certain operations of a partially automated vehicle may be limited to specific applications or driving scenarios (e.g., limited to only freeway driving). A highly automated vehicle can generally perform all operations of a partially automated vehicle but with less limitations. A highly automated vehicle can also detect its own limits in operating the vehicle and ask the driver to take over the control of the vehicle when necessary. A fully automated vehicle can perform all vehicle operations without a driver’s intervention but can also detect its own limits and ask the driver to take over when necessary. A driverless vehicle can operate on its own without any driver intervention.
[0042] In typical configurations, motor vehicle 100 comprises one or more LiDAR systems 110 and 120A-F. Each of LiDAR systems 110 and 120A-F can be a scanning-based LiDAR system and/or a non-scanning LiDAR system (e.g., a flash LiDAR). A scanning-based LiDAR system scans one or more light beams in one or more directions (e.g., horizontal and vertical directions) to detect objects in a field-of-view (FOV). A non-scanning based LiDAR system transmits laser light to illuminate an FOV without scanning. For example, a flash LiDAR is a type of nonscanning based LiDAR system. A flash LiDAR can transmit laser light to simultaneously illuminate an FOV using a single light pulse or light shot. [0043] A LiDAR system is often an essential sensor of a vehicle that is at least partially automated. In one embodiment, as shown in FIG. 1, motor vehicle 100 may include a single LiDAR system 110 (e.g., without LiDAR systems 120A-F) disposed at the highest position of the vehicle (e.g., at the vehicle roof). Disposing LiDAR system 110 at the vehicle roof facilitates a 360-degree scanning around vehicle 100. In some other embodiments, motor vehicle 100 can include multiple LiDAR systems, including two or more of systems 110 and/or 120A-F. As shown in FIG. 1, in one embodiment, multiple LiDAR systems 110 and/or 120A-F are attached to vehicle 100 at different locations of the vehicle. For example, LiDAR system 120A is attached to vehicle 100 at the front right corner; LiDAR system 120B is attached to vehicle 100 at the front center; LiDAR system 120C is attached to vehicle 100 at the front left corner;
LiDAR system 120D is attached to vehicle 100 at the right-side rear view mirror; LiDAR system 120E is attached to vehicle 100 at the left-side rear view mirror; and/or LiDAR system 120F is attached to vehicle 100 at the back center. In some embodiments, LiDAR systems 110 and 120A-F are independent LiDAR systems having their own respective laser sources, control electronics, transmitters, receivers, and/or steering mechanisms. In other embodiments, some of LiDAR systems 110 and 120A-F can share one or more components, thereby forming a distributed sensor system. In one example, optical fibers are used to deliver laser light from a centralized laser source to all LiDAR systems. It is understood that one or more LiDAR systems can be distributed and attached to a vehicle in any desired manner and FIG. 1 only illustrates one embodiment. As another example, LiDAR systems 120D and 120E may be attached to the B- pillars of vehicle 100 instead of the rear-view mirrors. As another example, LiDAR system 120B may be attached to the windshield of vehicle 100 instead of the front bumper.
[0044] FIG. 2 is a block diagram 200 illustrating interactions between vehicle onboard LiDAR system(s) 210 and multiple other systems including a vehicle perception and planning system 220. LiDAR system(s) 210 can be mounted on or integrated to a vehicle. LiDAR system(s) 210 include sensor(s) that scan laser light to the surrounding environment to measure the distance, angle, and/or velocity of objects. Based on the scattered light that returned to LiDAR system(s) 210, it can generate sensor data (e.g., image data or 3D point cloud data) representing the perceived external environment.
[0045] LiDAR system(s) 210 can include one or more of short-range LiDAR sensors, mediumrange LiDAR sensors, and long-range LiDAR sensors. A short-range LiDAR sensor measures objects located up to about 20-40 meters from the LiDAR sensor. Short-range LiDAR sensors can be used for, e.g., monitoring nearby moving objects (e.g., pedestrians crossing street in a school zone), parking assistance applications, or the like. A medium-range LiDAR sensor measures objects located up to about 100-150 meters from the LiDAR sensor. Medium-range LiDAR sensors can be used for, e.g., monitoring road intersections, assistance for merging onto or leaving a freeway, or the like. A long-range LiDAR sensor measures objects located up to about 150-300 meters. Long-range LiDAR sensors are typically used when a vehicle is travelling at high speed (e.g., on a freeway), such that the vehicle’s control systems may only have a few seconds (e.g., 6-8 seconds) to respond to any situations detected by the LiDAR sensor. As shown in FIG. 2, in one embodiment, the LiDAR sensor data can be provided to vehicle perception and planning system 220 via a communication path 213 for further processing and controlling the vehicle operations. Communication path 213 can be any wired or wireless communication links that can transfer data.
[0046] With reference still to FIG. 2, in some embodiments, other vehicle onboard sensor(s) 230 are used to provide additional sensor data separately or together with LiDAR system(s) 210. Other vehicle onboard sensors 230 may include, for example, one or more camera(s) 232, one or more radar(s) 234, one or more ultrasonic sensor(s) 236, and/or other sensor(s) 238. Camera(s) 232 can take images and/or videos of the external environment of a vehicle. Camera(s) 232 can take, for example, high-definition (HD) videos having millions of pixels in each frame. A camera produces monochrome or color images and videos. Color information may be important in interpreting data for some situations (e.g., interpreting images of traffic lights). Color information may not be available from other sensors such as LiDAR or radar sensors. Camera(s) 232 can include one or more of narrow-focus cameras, wider-focus cameras, side-facing cameras, infrared cameras, fisheye cameras, or the like. The image and/or video data generated by camera(s) 232 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
Communication path 233 can be any wired or wireless communication links that can transfer data.
[0047] Other vehicle onboard sensos(s) 230 can also include radar sensor(s) 234. Radar sensor(s) 234 use radio waves to determine the range, angle, and velocity of objects. Radar sensor(s) 234 produce electromagnetic waves in the radio or microwave spectrum. The electromagnetic waves reflect off an object and some of the reflected waves return to the radar sensor, thereby providing information about the object’s position and velocity. Radar sensor(s) 234 can include one or more of short-range radar(s), medium-range radar(s), and long-range radar(s). A short-range radar measures objects located at about 0.1-30 meters from the radar. A short-range radar is useful in detecting objects located nearby the vehicle, such as other vehicles, buildings, walls, pedestrians, bicyclists, etc. A short-range radar can be used to detect a blind spot, assist in lane changing, provide rear-end collision warning, assist in parking, provide emergency braking, or the like. A medium-range radar measures objects located at about 30-80 meters from the radar. A long-range radar measures objects located at about 80-200 meters. Medium- and/or long-range radars can be useful in, for example, traffic following, adaptive cruise control, and/or highway automatic braking. Sensor data generated by radar sensor(s) 234 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
[0048] Other vehicle onboard sensor(s) 230 can also include ultrasonic sensor(s) 236. Ultrasonic sensor(s) 236 use acoustic waves or pulses to measure object located external to a vehicle. The acoustic waves generated by ultrasonic sensor(s) 236 are transmitted to the surrounding environment. At least some of the transmitted waves are reflected off an object and return to the ultrasonic sensor(s) 236. Based on the return signals, a distance of the object can be calculated. Ultrasonic sensor(s) 236 can be useful in, for example, check blind spot, identify parking spots, provide lane changing assistance into traffic, or the like. Sensor data generated by ultrasonic sensor(s) 236 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations.
[0049] In some embodiments, one or more other sensor(s) 238 may be attached in a vehicle and may also generate sensor data. Other sensor(s) 238 may include, for example, global positioning systems (GPS), inertial measurement units (IMU), or the like. Sensor data generated by other sensor(s) 238 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations. It is understood that communication path 233 may include one or more communication links to transfer data between the various sensor(s) 230 and vehicle perception and planning system 220. [0050] In some embodiments, as shown in FIG. 2, sensor data from other vehicle onboard sensor(s) 230 can be provided to vehicle onboard LiDAR system(s) 210 via communication path 231. LiDAR system(s) 210 may process the sensor data from other vehicle onboard sensor(s) 230. For example, sensor data from camera(s) 232, radar sensor(s) 234, ultrasonic sensor(s) 236, and/or other sensor(s) 238 may be correlated or fused with sensor data LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220. It is understood that other configurations may also be implemented for transmitting and processing sensor data from the various sensors (e.g., data can be transmitted to a cloud service for processing and then the processing results can be transmitted back to the vehicle perception and planning system 220).
[0051] With reference still to FIG. 2, in some embodiments, sensors onboard other vehicle(s) 250 are used to provide additional sensor data separately or together with LiDAR system(s) 210. For example, two or more nearby vehicles may have their own respective LiDAR sensor(s), camera(s), radar sensor(s), ultrasonic sensor(s), etc. Nearby vehicles can communicate and share sensor data with one another. Communications between vehicles are also referred to as V2V (vehicle to vehicle) communications. For example, as shown in FIG. 2, sensor data generated by other vehicle(s) 250 can be communicated to vehicle perception and planning system 220 and/or vehicle onboard LiDAR system(s) 210, via communication path 253 and/or communication path 251, respectively. Communication paths 253 and 251 can be any wired or wireless communication links that can transfer data.
[0052] Sharing sensor data facilitates a better perception of the environment external to the vehicles. For instance, a first vehicle may not sense a pedestrian that is a behind a second vehicle but is approaching the first vehicle. The second vehicle may share the sensor data related to this pedestrian with the first vehicle such that the first vehicle can have additional reaction time to avoid collision with the pedestrian. In some embodiments, similar to data generated by sensor(s) 230, data generated by sensors onboard other vehicle(s) 250 may be correlated or fused with sensor data generated by LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220.
[0053] In some embodiments, intelligent infrastructure system(s) 240 are used to provide sensor data separately or together with LiDAR system(s) 210. Certain infrastructures may be configured to communicate with a vehicle to convey information and vice versa. Communications between a vehicle and infrastructures are generally referred to as V2I (vehicle to infrastructure) communications. For example, intelligent infrastructure system(s) 240 may include an intelligent traffic light that can convey its status to an approaching vehicle in a message such as “changing to yellow in 5 seconds.” Intelligent infrastructure system(s) 240 may also include its own LiDAR system mounted near an intersection such that it can convey traffic monitoring information to a vehicle. For example, a left-turning vehicle at an intersection may not have sufficient sensing capabilities because some of its own sensors may be blocked by traffics in the opposite direction. In such a situation, sensors of intelligent infrastructure system(s) 240 can provide useful, and sometimes vital, data to the left-turning vehicle. Such data may include, for example, traffic conditions, information of objects in the direction the vehicle is turning to, traffic light status and predictions, or the like. These sensor data generated by intelligent infrastructure system(s) 240 can be provided to vehicle perception and planning system 220 and/or vehicle onboard LiDAR system(s) 210, via communication paths 243 and/or 241, respectively. Communication paths 243 and/or 241 can include any wired or wireless communication links that can transfer data. For example, sensor data from intelligent infrastructure system(s) 240 may be transmitted to LiDAR system(s) 210 and correlated or fused with sensor data generated by LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220. V2V and V2I communications described above are examples of vehicle-to-X (V2X) communications, where the “X” represents any other devices, systems, sensors, infrastructure, or the like that can share data with a vehicle.
[0054] With reference still to FIG. 2, via various communication paths, vehicle perception and planning system 220 receives sensor data from one or more of LiDAR system(s) 210, other vehicle onboard sensor(s) 230, other vehicle(s) 250, and/or intelligent infrastructure system(s) 240. In some embodiments, different types of sensor data are correlated and/or integrated by a sensor fusion sub-system 222. For example, sensor fusion sub-system 222 can generate a 360- degree model using multiple images or videos captured by multiple cameras disposed at different positions of the vehicle. Sensor fusion sub-system 222 obtains sensor data from different types of sensors and uses the combined data to perceive the environment more accurately. For example, a vehicle onboard camera 232 may not capture a clear image because it is facing the sun or a light source (e.g., another vehicle’s headlight during nighttime) directly. A LiDAR system 210 may not be affected as much and therefore sensor fusion sub-system 222 can combine sensor data provided by both camera 232 and LiDAR system 210, and use the sensor data provided by LiDAR system 210 to compensate the unclear image captured by camera 232. As another example, in a rainy or foggy weather, a radar sensor 234 may work better than a camera 232 or a LiDAR system 210. Accordingly, sensor fusion sub-system 222 may use sensor data provided by the radar sensor 234 to compensate the sensor data provided by camera 232 or LiDAR system 210.
[0055] In other examples, sensor data generated by other vehicle onboard sensor(s) 230 may have a lower resolution (e.g., radar sensor data) and thus may need to be correlated and confirmed by LiDAR system(s) 210, which usually has a higher resolution. For example, a sewage cover (also referred to as a manhole cover) may be detected by radar sensor 234 as an object towards which a vehicle is approaching. Due to the low-resolution nature of radar sensor 234, vehicle perception and planning system 220 may not be able to determine whether the object is an obstacle that the vehicle needs to avoid. High-resolution sensor data generated by LiDAR system(s) 210 thus can be used to correlated and confirm that the object is a sewage cover and causes no harm to the vehicle.
[0056] Vehicle perception and planning system 220 further comprises an object classifier 223. Using raw sensor data and/or correlated/fused data provided by sensor fusion sub-system 222, object classifier 223 can detect and classify the objects and estimate the positions of the objects. In some embodiments, object classifier 223 can use machine-learning based techniques to detect and classify objects. Examples of the machine-learning based techniques include utilizing algorithms such as region-based convolutional neural networks (R-CNN), Fast R-CNN, Faster R-CNN, histogram of oriented gradients (HOG), region-based fully convolutional network (R- FCN), single shot detector (SSD), spatial pyramid pooling (SPP-net), and/or You Only Look Once (Yolo).
[0057] Vehicle perception and planning system 220 further comprises a road detection subsystem 224. Road detection sub-system 224 localizes the road and identifies objects and/or markings on the road. For example, based on raw or fused sensor data provided by radar sensor(s) 234, camera(s) 232, and/or LiDAR system(s) 210, road detection sub-system 224 can build a 3D model of the road based on machine-learning techniques (e.g., pattern recognition algorithms for identifying lanes). Using the 3D model of the road, road detection sub-system 224 can identify objects (e.g., obstacles or debris on the road) and/or markings on the road (e.g., lane lines, turning marks, crosswalk marks, or the like).
[0058] Vehicle perception and planning system 220 further comprises a localization and vehicle posture sub-system 225. Based on raw or fused sensor data, localization and vehicle posture sub-system 225 can determine position of the vehicle and the vehicle’s posture. For example, using sensor data from LiDAR system(s) 210, camera(s) 232, and/or GPS data, localization and vehicle posture sub-system 225 can determine an accurate position of the vehicle on the road and the vehicle’s six degrees of freedom (e.g., whether the vehicle is moving forward or backward, up or down, and left or right). In some embodiments, high-definition (HD) maps are used for vehicle localization. HD maps can provide highly detailed, three-dimensional, computerized maps that pinpoint a vehicle’s location. For instance, using the HD maps, localization and vehicle posture sub-system 225 can determine precisely the vehicle’s current position (e.g., which lane of the road the vehicle is currently in, how close it is to a curb or a sidewalk) and predict vehicle’s future positions.
[0059] Vehicle perception and planning system 220 further comprises obstacle predictor 226. Objects identified by object classifier 223 can be stationary (e.g., a light pole, a road sign) or dynamic (e.g., a moving pedestrian, bicycle, another car). For moving objects, predicting their moving path or future positions can be important to avoid collision. Obstacle predictor 226 can predict an obstacle trajectory and/or warn the driver or the vehicle planning sub-system 228 about a potential collision. For example, if there is a high likelihood that the obstacle’s trajectory intersects with the vehicle’s current moving path, obstacle predictor 226 can generate such a warning. Obstacle predictor 226 can use a variety of techniques for making such a prediction. Such techniques include, for example, constant velocity or acceleration models, constant turn rate and velocity/accel eration models, Kalman Filter and Extended Kalman Filter based models, recurrent neural network (RNN) based models, long short-term memory (LSTM) neural network based models, encoder-decoder RNN models, or the like.
[0060] With reference still to FIG. 2, in some embodiments, vehicle perception and planning system 220 further comprises vehicle planning sub-system 228. Vehicle planning sub-system 228 can include a route planner, a driving behaviors planner, and a motion planner. The route planner can plan the route of a vehicle based on the vehicle’s current location data, target location data, traffic information, etc. The driving behavior planner adjusts the timing and planned movement based on how other objects might move, using the obstacle prediction results provided by obstacle predictor 226. The motion planner determines the specific operations the vehicle needs to follow. The planning results are then communicated to vehicle control system 280 via vehicle interface 270. The communication can be performed through communication paths 223 and 271, which include any wired or wireless communication links that can transfer data.
[0061] Vehicle control system 280 controls the vehicle’s steering mechanism, throttle, brake, etc., to operate the vehicle according to the planned route and movement. Vehicle perception and planning system 220 may further comprise a user interface 260, which provides a user (e.g., a driver) access to vehicle control system 280 to, for example, override or take over control of the vehicle when necessary. User interface 260 can communicate with vehicle perception and planning system 220, for example, to obtain and display raw or fused sensor data, identified objects, vehicle’s location/posture, etc. These displayed data can help a user to better operate the vehicle. User interface 260 can communicate with vehicle perception and planning system 220 and/or vehicle control system 280 via communication paths 221 and 261 respectively, which include any wired or wireless communication links that can transfer data. It is understood that the various systems, sensors, communication links, and interfaces in FIG. 2 can be configured in any desired manner and not limited to the configuration shown in FIG. 2.
[0062] FIG. 3 is a block diagram illustrating an exemplary LiDAR system 300. LiDAR system 300 can be used to implement LiDAR system 110, 120A-F, and/or 210 shown in FIGs. 1 and 2. In one embodiment, LiDAR system 300 comprises a laser source 310, a transmitter 320, an optical receiver and light detector 330, a steering system 340, and a control circuitry 350. These components are coupled together using communications paths 312, 314, 322, 332, 343, 352, and 362. These communications paths include communication links (wired or wireless, bidirectional or unidirectional) among the various LiDAR system components, but need not be physical components themselves. While the communications paths can be implemented by one or more electrical wires, buses, or optical fibers, the communication paths can also be wireless channels or free-space optical paths so that no physical communication medium is present. For example, in one embodiment of LiDAR system 300, communication path 314 between laser source 310 and transmitter 320 may be implemented using one or more optical fibers. Communication paths 332 and 352 may represent optical paths implemented using free space optical components and/or optical fibers. And communication paths 312, 322, 342, and 362 may be implemented using one or more electrical wires that carry electrical signals. The communications paths can also include one or more of the above types of communication mediums (e.g., they can include an optical fiber and a free-space optical component, or include one or more optical fibers and one or more electrical wires).
[0063] LiDAR system 300 can also include other components not depicted in FIG. 3, such as power buses, power supplies, LED indicators, switches, etc. Additionally, other communication connections among components may be present, such as a direct connection between light source 310 and optical receiver and light detector 330 to provide a reference signal so that the time from when a light pulse is transmitted until a return light pulse is detected can be accurately measured.
[0064] Laser source 310 outputs laser light for illuminating objects in a field of view (FOV). Laser source 310 can be, for example, a semiconductor-based laser (e.g., a diode laser) and/or a fiber-based laser. A semiconductor-based laser can be, for example, an edge emitting laser (EEL), a vertical cavity surface emitting laser (VCSEL), or the like. A fiber-based laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and/or holmium. In some embodiments, a fiber laser is based on double-clad fibers, in which the gain medium forms the core of the fiber surrounded by two layers of cladding. The double-clad fiber allows the core to be pumped with a high-power beam, thereby enabling the laser source to be a high power fiber laser source.
[0065] In some embodiments, laser source 310 comprises a master oscillator (also referred to as a seed laser) and power amplifier (MOP A). The power amplifier amplifies the output power of the seed laser. The power amplifier can be a fiber amplifier, a bulk amplifier, or a semiconductor optical amplifier. The seed laser can be a diode laser (e.g., a Fabry -Perot cavity laser, a distributed feedback laser), a solid-state bulk laser, or a tunable external-cavity diode laser. In some embodiments, laser source 310 can be an optically pumped microchip laser. Microchip lasers are alignment-free monolithic solid-state lasers where the laser crystal is directly contacted with the end mirrors of the laser resonator. A microchip laser is typically pumped with a laser diode (directly or using a fiber) to obtain the desired output power. A microchip laser can be based on neodymium-doped yttrium aluminum garnet (Y3AI5O12) laser crystals (i.e., Nd:YAG), or neodymium-doped vanadate (i.e., ND:YVO4) laser crystals.
[0066] FIG. 4 is a block diagram illustrating an exemplary fiber-based laser source 400 having a seed laser and one or more pumps (e.g., laser diodes) for pumping desired output power. Fiberbased laser source 400 is an example of laser source 310 depicted in FIG. 3. In some embodiments, fiber-based laser source 400 comprises a seed laser 402 to generate initial light pulses of one or more wavelengths (e.g., 1550 nm), which are provided to a wavelength-division multiplexor (WDM) 404 via an optical fiber 403. Fiber-based laser source 400 further comprises a pump 406 for providing laser power (e.g., of a different wavelength, such as 980 nm) to WDM 404 via an optical fiber 405. WDM 404 multiplexes the light pulses provided by seed laser 402 and the laser power provided by pump 406 onto a single optical fiber 407. The output of WDM 404 can then be provided to one or more pre-amplifier(s) 408 via optical fiber 407. Preamplifiers) 408 can be optical amplifier(s) that amplify optical signals (e.g., with about 20-30 dB gain). In some embodiments, pre-amplifier(s) 408 are low noise amplifiers. Pre-amplifier(s) 408 output to a combiner 410 via an optical fiber 409. Combiner 410 combines the output laser light of pre-amplifier(s) 408 with the laser power provided by pump 412 via an optical fiber 411. Combiner 410 can combine optical signals having the same wavelength or different wavelengths. One example of a combiner is a WDM. Combiner 410 provides pulses to a booster amplifier 414, which produces output light pulses via optical fiber 410. The booster amplifier 414 provides further amplification of the optical signals. The outputted light pulses can then be transmitted to transmitter 320 and/or steering mechanism 340 (shown in FIG. 3). It is understood that FIG. 4 illustrates one exemplary configuration of fiber-based laser source 400. Laser source 400 can have many other configurations using different combinations of one or more components shown in FIG. 4 and/or other components not shown in FIG. 4 (e.g., other components such as power supplies, lens, filters, splitters, combiners, etc.).
[0067] In some variations, fiber-based laser source 400 can be controlled (e.g., by control circuitry 350) to produce pulses of different amplitudes based on the fiber gain profile of the fiber used in fiber-based laser source 400. Communication path 312 couples fiber-based laser source 400 to control circuitry 350 (shown in FIG. 3) so that components of fiber-based laser source 400 can be controlled by or otherwise communicate with control circuitry 350. Alternatively, fiber-based laser source 400 may include its own dedicated controller. Instead of control circuitry 350 communicating directly with components of fiber-based laser source 400, a dedicated controller of fiber-based laser source 400 communicates with control circuitry 350 and controls and/or communicates with the components of fiber-based laser source 400. Fiber-based laser source 400 can also include other components not shown, such as one or more power connectors, power supplies, and/or power lines.
[0068] Referencing FIG. 3, typical operating wavelengths of laser source 310 comprise, for example, about 850 nm, about 905 nm, about 940 nm, about 1064 nm, and about 1550 nm. The upper limit of maximum usable laser power is set by the U.S. FDA (U.S. Food and Drug Administration) regulations. The optical power limit at 1550 nm wavelength is much higher than those of the other aforementioned wavelengths. Further, at 1550 nm, the optical power loss in a fiber is low. There characteristics of the 1550 nm wavelength make it more beneficial for long-range LiDAR applications. The amount of optical power output from laser source 310 can be characterized by its peak power, average power, and the pulse energy. The peak power is the ratio of pulse energy to the width of the pulse (e.g., full width at half maximum or FWHM). Thus, a smaller pulse width can provide a larger peak power for a fixed amount of pulse energy. A pulse width can be in the range of nanosecond or picosecond. The average power is the product of the energy of the pulse and the pulse repetition rate (PRR). As described in more detail below, the PRR represents the frequency of the pulsed laser light. The PRR typically corresponds to the maximum range that a LiDAR system can measure. Laser source 310 can be configured to produce pulses at high PRR to meet the desired number of data points in a point cloud generated by the LiDAR system. Laser source 310 can also be configured to produce pulses at medium or low PRR to meet the desired maximum detection distance. Wall plug efficiency (WPE) is another factor to evaluate the total power consumption, which may be a key indicator in evaluating the laser efficiency. For example, as shown in FIG. 1, multiple LiDAR systems may be attached to a vehicle, which may be an electrical-powered vehicle or a vehicle otherwise having limited fuel or battery power supply. Therefore, high WPE and intelligent ways to use laser power are often among the important considerations when selecting and configuring laser source 310 and/or designing laser delivery systems for vehicle-mounted LiDAR applications. [0069] It is understood that the above descriptions provide non-limiting examples of a laser source 310. Laser source 310 can be configured to include many other types of light sources (e.g., laser diodes, short-cavity fiber lasers, solid-state lasers, and/or tunable external cavity diode lasers) that are configured to generate one or more light signals at various wavelengths. In some examples, light source 310 comprises amplifiers (e.g., pre-amplifiers and/or booster amplifiers), which can be a doped optical fiber amplifier, a solid-state bulk amplifier, and/or a semiconductor optical amplifier. The amplifiers are configured to receive and amplify light signals with desired gains.
[0070] With reference back to FIG. 3, LiDAR system 300 further comprises a transmitter 320. Laser source 310 provides laser light (e.g., in the form of a laser beam) to transmitter 320. The laser light provided by laser source 310 can be amplified laser light with a predetermined or controlled wavelength, pulse repetition rate, and/or power level. Transmitter 320 receives the laser light from laser source 310 and transmits the laser light to steering mechanism 340 with low divergence. In some embodiments, transmitter 320 can include, for example, optical components (e.g., lens, fibers, mirrors, etc.) for transmitting laser beams to a field-of-view (FOV) directly or via steering mechanism 340. While FIG. 3 illustrates transmitter 320 and steering mechanism 340 as separate components, they may be combined or integrated as one system in some embodiments. Steering mechanism 340 is described in more detail below.
[0071] Laser beams provided by laser source 310 may diverge as they travel to transmitter 320. Therefore, transmitter 320 often comprises a collimating lens configured to collect the diverging laser beams and produce more parallel optical beams with reduced or minimum divergence. The collimated optical beams can then be further directed through various optics such as mirrors and lens. A collimating lens may be, for example, a single plano-convex lens or a lens group. The collimating lens can be configured to achieve any desired properties such as the beam diameter, divergence, numerical aperture, focal length, or the like. A beam propagation ratio or beam quality factor (also referred to as the M2 factor) is used for measurement of laser beam quality. In many LiDAR applications, it is important to have good laser beam quality in the generated transmitting laser beam. The M2 factor represents a degree of variation of a beam from an ideal Gaussian beam. Thus, the M2 factor reflects how well a collimated laser beam can be focused on a small spot, or how well a divergent laser beam can be collimated. Therefore, laser source 310 and/or transmitter 320 can be configured to meet, for example, a scan resolution requirement while maintaining the desired M2 factor.
[0072] One or more of the light beams provided by transmitter 320 are scanned by steering mechanism 340 to a FOV. Steering mechanism 340 scans light beams in multiple dimensions (e.g., in both the horizontal and vertical dimension) to facilitate LiDAR system 300 to map the environment by generating a 3D point cloud. Steering mechanism 340 will be described in more detail below. The laser light scanned to an FOV may be scattered or reflected by an object in the FOV. At least a portion of the scattered or reflected light returns to LiDAR system 300. FIG. 3 further illustrates an optical receiver and light detector 330 configured to receive the return light. Optical receiver and light detector 330 comprises an optical receiver that is configured to collect the return light from the FOV. The optical receiver can include optics (e.g., lens, fibers, mirrors, etc.) for receiving, redirecting, focus, amplifying, and/or filtering return light from the FOV. For example, the optical receiver often includes a collection lens (e.g., a single plano-convex lens or a lens group) to collect and/or focus the collected return light onto a light detector.
[0073] A light detector detects the return light focused by the optical receiver and generates current and/or voltage signals proportional to the incident intensity of the return light. Based on such current and/or voltage signals, the depth information of the object in the FOV can be derived. One exemplary method for deriving such depth information is based on the direct TOF (time of flight), which is described in more detail below. A light detector may be characterized by its detection sensitivity, quantum efficiency, detector bandwidth, linearity, signal to noise ratio (SNR), overload resistance, interference immunity, etc. Based on the applications, the light detector can be configured or customized to have any desired characteristics. For example, optical receiver and light detector 330 can be configured such that the light detector has a large dynamic range while having a good linearity. The light detector linearity indicates the detector’s capability of maintaining linear relationship between input optical signal power and the detector’s output. A detector having good linearity can maintain a linear relationship over a large dynamic input optical signal range.
[0074] To achieve desired detector characteristics, configurations or customizations can be made to the light detector’s structure and/or the detector’s material system. Various detector structure can be used for a light detector. For example, a light detector structure can be a PIN based structure, which has a undoped intrinsic semiconductor region (i.e., an “i” region) between a p- type semiconductor and an n-type semiconductor region. Other light detector structures comprise, for example, a APD (avalanche photodiode) based structure, a PMT (photomultiplier tube) based structure, a SiPM (Silicon photomultiplier) based structure, a SPAD (single-photon avalanche diode) base structure, and/or quantum wires. For material systems used in a light detector, Si, InGaAs, and/or Si/Ge based materials can be used. It is understood that many other detector structures and/or material systems can be used in optical receiver and light detector 330.
[0075] A light detector (e.g., an APD based detector) may have an internal gain such that the input signal is amplified when generating an output signal. However, noise may also be amplified due to the light detector’s internal gain. Common types of noise include signal shot noise, dark current shot noise, thermal noise, and amplifier noise (TIA). In some embodiments, optical receiver and light detector 330 may include a pre-amplifier that is a low noise amplifier (LNA). In some embodiments, the pre-amplifier may also include a TIA-transimpedance amplifier, which converts a current signal to a voltage signal. For a linear detector system, input equivalent noise or noise equivalent power (NEP) measures how sensitive the light detector is to weak signals. Therefore, they can be used as indicators of the overall system performance. For example, the NEP of a light detector specifies the power of the weakest signal that can be detected and therefore it in turn specifies the maximum range of a LiDAR system. It is understood that various light detector optimization techniques can be used to meet the requirement of LiDAR system 300. Such optimization techniques may include selecting different detector structures, materials, and/or implement signal processing techniques (e.g., filtering, noise reduction, amplification, or the like). For example, in addition to or instead of using direct detection of return signals (e.g., by using TOF), coherent detection can also be used for a light detector. Coherent detection allows for detecting amplitude and phase information of the received light by interfering the received light with a local oscillator. Coherent detection can improve detection sensitivity and noise immunity.
[0076] FIG. 3 further illustrates that LiDAR system 300 comprises steering mechanism 340. As described above, steering mechanism 340 directs light beams from transmitter 320 to scan an FOV in multiple dimensions. A steering mechanism is referred to as a raster mechanism or a scanning mechanism. Scanning light beams in multiple directions (e.g., in both the horizontal and vertical directions) facilitates a LiDAR system to map the environment by generating an image or a 3D point cloud. A steering mechanism can be based on mechanical scanning and/or solid-state scanning. Mechanical scanning uses rotating mirrors to steer the laser beam or physically rotate the LiDAR transmitter and receiver (collectively referred to as transceiver) to scan the laser beam. Solid-state scanning directs the laser beam to various positions through the FOV without mechanically moving any macroscopic components such as the transceiver. Solidstate scanning mechanisms include, for example, optical phased arrays based steering and flash LiDAR based steering. In some embodiments, because solid-state scanning mechanisms do not physically move macroscopic components, the steering performed by a solid-state scanning mechanism may be referred to as effective steering. A LiDAR system using solid-state scanning may also be referred to as a non-mechanical scanning or simply non-scanning LiDAR system (a flash LiDAR system is an exemplary non-scanning LiDAR system).
[0077] Steering mechanism 340 can be used with the transceiver (e.g., transmitter 320 and optical receiver and light detector 330) to scan the FOV for generating an image or a 3D point cloud. As an example, to implement steering mechanism 340, a two-dimensional mechanical scanner can be used with a single-point or several single-point transceivers. A single-point transceiver transmits a single light beam or a small number of light beams (e.g., 2-8 beams) to the steering mechanism. A two-dimensional mechanical steering mechanism comprises, for example, polygon mirror(s), oscillating mirror(s), rotating prism(s), rotating tilt mirror surface(s), or a combination thereof. In some embodiments, steering mechanism 340 may include nonmechanical steering mechanism(s) such as solid-state steering mechanism(s). For example, steering mechanism 340 can be based on tuning wavelength of the laser light combined with refraction effect, and/or based on reconfigurable grating/phase array. In some embodiments, steering mechanism 340 can use a single scanning device to achieve two-dimensional scanning or two devices combined to realize two-dimensional scanning.
[0078] As another example, to implement steering mechanism 340, a one-dimensional mechanical scanner can be used with an array or a large number of single-point transceivers. Specifically, the transceiver array can be mounted on a rotating platform to achieve 360-degree horizontal field of view. Alternatively, a static transceiver array can be combined with the onedimensional mechanical scanner. A one-dimensional mechanical scanner comprises polygon mirror(s), oscillating mirror(s), rotating prism(s), rotating tilt mirror surface(s) for obtaining a forward-looking horizontal field of view. Steering mechanisms using mechanical scanners can provide robustness and reliability in high volume production for automotive applications.
[0079] As another example, to implement steering mechanism 340, a two-dimensional transceiver can be used to generate a scan image or a 3D point cloud directly. In some embodiments, a stitching or micro shift method can be used to improve the resolution of the scan image or the field of view being scanned. For example, using a two-dimensional transceiver, signals generated at one direction (e.g., the horizontal direction) and signals generated at the other direction (e.g., the vertical direction) may be integrated, interleaved, and/or matched to generate a higher or full resolution image or 3D point cloud representing the scanned FOV.
[0080] Some implementations of steering mechanism 340 comprise one or more optical redirection elements (e.g., mirrors or lens) that steer return light signals (e.g., by rotating, vibrating, or directing) along a receive path to direct the return light signals to optical receiver and light detector 330. The optical redirection elements that direct light signals along the transmitting and receiving paths may be the same components (e.g., shared), separate components (e.g., dedicated), and/or a combination of shared and separate components. This means that in some cases the transmitting and receiving paths are different although they may partially overlap (or in some cases, substantially overlap).
[0081] With reference still to FIG. 3, LiDAR system 300 further comprises control circuitry 350. Control circuitry 350 can be configured and/or programmed to control various parts of the LiDAR system 300 and/or to perform signal processing. In a typical system, control circuitry 350 can be configured and/or programmed to perform one or more control operations including, for example, controlling laser source 310 to obtain desired laser pulse timing, repetition rate, and power; controlling steering mechanism 340 (e.g., controlling the speed, direction, and/or other parameters) to scan the FOV and maintain pixel registration/alignment; controlling optical receiver and light detector 330 (e.g., controlling the sensitivity, noise reduction, filtering, and/or other parameters) such that it is an optimal state; and monitoring overall system health/status for functional safety.
[0082] Control circuitry 350 can also be configured and/or programmed to perform signal processing to the raw data generated by optical receiver and light detector 330 to derive distance and reflectance information, and perform data packaging and communication to vehicle perception and planning system 220 (shown in FIG. 2). For example, control circuitry 350 determines the time it takes from transmitting a light pulse until a corresponding return light pulse is received; determines when a return light pulse is not received for a transmitted light pulse; determines the direction (e.g., horizontal and/or vertical information) for a transmitted/retum light pulse; determines the estimated range in a particular direction; and/or determines any other type of data relevant to LiDAR system 300.
[0083] LiDAR system 300 can be disposed in a vehicle, which may operate in many different environments including hot or cold weather, rough road conditions that may cause intense vibration, high or low humidifies, dusty areas, etc. Therefore, in some embodiments, optical and/or electronic components of LiDAR system 300 (e.g., optics in transmitter 320, optical receiver and light detector 330, and steering mechanism 340) are disposed or configured in such a manner to maintain long term mechanical and optical stability. For example, components in LiDAR system 300 may be secured and sealed such that they can operate under all conditions a vehicle may encounter. As an example, an anti-moisture coating and/or hermetic sealing may be applied to optical components of transmitter 320, optical receiver and light detector 330, and steering mechanism 340 (and other components that are susceptible to moisture). As another example, housing(s), enclosure(s), and/or window can be used in LiDAR system 300 for providing desired characteristics such as hardness, ingress protection (IP) rating, self-cleaning capability, resistance to chemical and resistance to impact, or the like. In addition, efficient and economical methodologies for assembling LiDAR system 300 may be used to meet the LiDAR operating requirements while keeping the cost low.
[0084] It is understood by a person of ordinary skill in the art that FIG. 3 and the above descriptions are for illustrative purposes only, and a LiDAR system can include other functional units, blocks, or segments, and can include variations or combinations of these above functional units, blocks, or segments. For example, LiDAR system 300 can also include other components not depicted in FIG. 3, such as power buses, power supplies, LED indicators, switches, etc. Additionally, other connections among components may be present, such as a direct connection between light source 310 and optical receiver and light detector 330 so that light detector 330 can accurately measure the time from when light source 310 transmits a light pulse until light detector 330 detects a return light pulse. [0085] These components shown in FIG. 3 are coupled together using communications paths 312, 314, 322, 332, 342, 352, and 362. These communications paths represent communication (bidirectional or unidirectional) among the various LiDAR system components but need not be physical components themselves. While the communications paths can be implemented by one or more electrical wires, busses, or optical fibers, the communication paths can also be wireless channels or open-air optical paths so that no physical communication medium is present. For example, in one exemplary LiDAR system, communication path 314 includes one or more optical fibers; communication path 352 represents an optical path; and communication paths 312, 322, 342, and 362 are all electrical wires that carry electrical signals. The communication paths can also include more than one of the above types of communication mediums (e.g., they can include an optical fiber and an optical path, or one or more optical fibers and one or more electrical wires).
[0086] As described above, some LiDAR systems use the time-of-flight (TOF) of light signals (e.g., light pulses) to determine the distance to objects in a light path. For example, with reference to FIG. 5A, an exemplary LiDAR system 500 includes a laser light source (e.g., a fiber laser), a steering system (e.g., a system of one or more moving mirrors), and a light detector (e.g., a photon detector with one or more optics). LiDAR system 500 can be implemented using, for example, LiDAR system 300 described above. LiDAR system 500 transmits a light pulse 502 along light path 504 as determined by the steering system of LiDAR system 500. In the depicted example, light pulse 502, which is generated by the laser light source, is a short pulse of laser light. Further, the signal steering system of the LiDAR system 500 is a pulsed-signal steering system. However, it should be appreciated that LiDAR systems can operate by generating, transmitting, and detecting light signals that are not pulsed and derive ranges to an object in the surrounding environment using techniques other than time-of-flight. For example, some LiDAR systems use frequency modulated continuous waves (i.e., “FMCW”). It should be further appreciated that any of the techniques described herein with respect to time-of-flight based systems that use pulsed signals also may be applicable to LiDAR systems that do not use one or both of these techniques.
[0087] Referring back to FIG. 5A (e.g., illustrating a time-of-flight LiDAR system that uses light pulses), when light pulse 502 reaches object 506, light pulse 502 scatters or reflects to generate a return light pulse 508. Return light pulse 508 may return to system 500 along light path 510. The time from when transmitted light pulse 502 leaves LiDAR system 500 to when return light pulse 508 arrives back at LiDAR system 500 can be measured (e.g., by a processor or other electronics, such as control circuitry 350, within the LiDAR system). This time-of-flight combined with the knowledge of the speed of light can be used to determine the range/di stance from LiDAR system 500 to the portion of object 506 where light pulse 502 scattered or reflected.
[0088] By directing many light pulses, as depicted in FIG. 5B, LiDAR system 500 scans the external environment (e.g., by directing light pulses 502, 522, 526, 530 along light paths 504, 524, 528, 532, respectively). As depicted in FIG. 5C, LiDAR system 500 receives return light pulses 508, 542, 548 (which correspond to transmitted light pulses 502, 522, 530, respectively). Return light pulses 508, 542, and 548 are generated by scattering or reflecting the transmitted light pulses by one of objects 506 and 514. Return light pulses 508, 542, and 548 may return to LiDAR system 500 along light paths 510, 544, and 546, respectively. Based on the direction of the transmitted light pulses (as determined by LiDAR system 500) as well as the calculated range from LiDAR system 500 to the portion of objects that scatter or reflect the light pulses (e.g., the portions of objects 506 and 514), the external environment within the detectable range (e.g., the field of view between path 504 and 532, inclusively) can be precisely mapped or plotted (e.g., by generating a 3D point cloud or images).
[0089] If a corresponding light pulse is not received for a particular transmitted light pulse, then it may be determined that there are no objects within a detectable range of LiDAR system 500 (e.g., an object is beyond the maximum scanning distance of LiDAR system 500). For example, in FIG. 5B, light pulse 526 may not have a corresponding return light pulse (as illustrated in FIG. 5C) because light pulse 526 may not produce a scattering event along its transmission path 528 within the predetermined detection range. LiDAR system 500, or an external system in communication with LiDAR system 500 (e.g., a cloud system or service), can interpret the lack of return light pulse as no object being disposed along light path 528 within the detectable range of LiDAR system 500.
[0090] In FIG. 5B, light pulses 502, 522, 526, and 530 can be transmitted in any order, serially, in parallel, or based on other timings with respect to each other. Additionally, while FIG. 5B depicts transmitted light pulses as being directed in one dimension or one plane (e.g., the plane of the paper), LiDAR system 500 can also direct transmitted light pulses along other dimension(s) or plane(s). For example, LiDAR system 500 can also direct transmitted light pulses in a dimension or plane that is perpendicular to the dimension or plane shown in FIG. 5B, thereby forming a 2-dimensional transmission of the light pulses. This 2-dimensional transmission of the light pulses can be point-by-point, line-by-line, all at once, or in some other manner. A point cloud or image from a 1 -dimensional transmission of light pulses (e.g., a single horizontal line) can generate 2-dimensional data (e.g., (1) data from the horizontal transmission direction and (2) the range or distance to objects). Similarly, a point cloud or image from a 2- dimensional transmission of light pulses can generate 3-dimensional data (e.g., (1) data from the horizontal transmission direction, (2) data from the vertical transmission direction, and (3) the range or distance to objects). In general, a LiDAR system performing an ^-dimensional transmission of light pulses generates (w+1) dimensional data. This is because the LiDAR system can measure the depth of an object or the range/di stance to the object, which provides the extra dimension of data. Therefore, a 2D scanning by a LiDAR system can generate a 3D point cloud for mapping the external environment of the LiDAR system.
[0091] The density of a point cloud refers to the number of measurements (data points) per area performed by the LiDAR system. A point cloud density relates to the LiDAR scanning resolution. Typically, a larger point cloud density, and therefore a higher resolution, is desired at least for the region of interest (ROI). The density of points in a point cloud or image generated by a LiDAR system is equal to the number of pulses divided by the field of view. In some embodiments, the field of view can be fixed. Therefore, to increase the density of points generated by one set of transmission-receiving optics (or transceiver optics), the LiDAR system may need to generate a pulse more frequently. In other words, a light source with a higher pulse repetition rate (PRR) is needed. On the other hand, by generating and transmitting pulses more frequently, the farthest distance that the LiDAR system can detect may be limited. For example, if a return signal from a distant object is received after the system transmits the next pulse, the return signals may be detected in a different order than the order in which the corresponding signals are transmitted, thereby causing ambiguity if the system cannot correctly correlate the return signals with the transmitted signals.
[0092] To illustrate, consider an exemplary LiDAR system that can transmit laser pulses with a repetition rate between 500 kHz and 1 MHz. Based on the time it takes for a pulse to return to the LiDAR system and to avoid mix-up of return pulses from consecutive pulses in a conventional LiDAR design, the farthest distance the LiDAR system can detect may be 300 meters and 150 meters for 500 kHz and 1 MHz, respectively. The density of points of a LiDAR system with 500 kHz repetition rate is half of that with 1 MHz. Thus, this example demonstrates that, if the system cannot correctly correlate return signals that arrive out of order, increasing the repetition rate from 500 kHz to 1 MHz (and thus improving the density of points of the system) may reduce the detection range of the system. Various techniques are used to mitigate the tradeoff between higher PRR and limited detection range. For example, multiple wavelengths can be used for detecting objects in different ranges. Optical and/or signal processing techniques are also used to correlate between transmitted and return light signals.
[0093] Various systems, apparatus, and methods described herein may be implemented using digital circuitry, or using one or more computers using well-known computer processors, memory units, storage devices, computer software, and other components. Typically, a computer includes a processor for executing instructions and one or more memories for storing instructions and data. A computer may also include, or be coupled to, one or more mass storage devices, such as one or more magnetic disks, internal hard disks and removable disks, magnetooptical disks, optical disks, etc.
[0094] Various systems, apparatus, and methods described herein may be implemented using computers operating in a client-server relationship. Typically, in such a system, the client computers are located remotely from the server computers and interact via a network. The client-server relationship may be defined and controlled by computer programs running on the respective client and server computers. Examples of client computers can include desktop computers, workstations, portable computers, cellular smartphones, tablets, or other types of computing devices.
[0095] Various systems, apparatus, and methods described herein may be implemented using a computer program product tangibly embodied in an information carrier, e.g., in a non-transitory machine-readable storage device, for execution by a programmable processor; and the method processes and steps described herein, including one or more of the steps of FIG. 14, may be implemented using one or more computer programs that are executable by such a processor. A computer program is a set of computer program instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
[0096] A high-level block diagram of an exemplary apparatus that may be used to implement systems, apparatus and methods described herein is illustrated in FIG. 6. Apparatus 600 comprises a processor 610 operatively coupled to a persistent storage device 620 and a main memory device 630. Processor 610 controls the overall operation of apparatus 600 by executing computer program instructions that define such operations. The computer program instructions may be stored in persistent storage device 620, or other computer-readable medium, and loaded into main memory device 630 when execution of the computer program instructions is desired. For example, processor 610 may be used to implement one or more components and systems described herein, such as control circuitry 350 (shown in FIG. 3), vehicle perception and planning system 220 (shown in FIG. 2), and vehicle control system 280 (shown in FIG. 2). Thus, at least some of the method steps of FIG. 14 can be defined by the computer program instructions stored in main memory device 630 and/or persistent storage device 620 and controlled by processor 610 executing the computer program instructions. For example, the computer program instructions can be implemented as computer executable code programmed by one skilled in the art to perform an algorithm defined by at least some of the method steps of FIG. 14. Accordingly, by executing the computer program instructions, the processor 610 executes an algorithm defined by the method steps of FIG. 14. Apparatus 600 also includes one or more network interfaces 680 for communicating with other devices via a network. Apparatus 600 may also include one or more input/output devices 690 that enable user interaction with apparatus 600 (e.g., display, keyboard, mouse, speakers, buttons, etc.).
[0097] Processor 610 may include both general and special purpose microprocessors and may be the sole processor or one of multiple processors of apparatus 600. Processor 610 may comprise one or more central processing units (CPUs), and one or more graphics processing units (GPUs), which, for example, may work separately from and/or multi-task with one or more CPUs to accelerate processing, e.g., for various image processing applications described herein. Processor 610, persistent storage device 620, and/or main memory device 630 may include, be supplemented by, or incorporated in, one or more application-specific integrated circuits (ASICs) and/or one or more field programmable gate arrays (FPGAs). [0098] Persistent storage device 620 and main memory device 630 each comprise a tangible non-transitory computer readable storage medium. Persistent storage device 620, and main memory device 630, may each include high-speed random access memory, such as dynamic random access memory (DRAM), static random access memory (SRAM), double data rate synchronous dynamic random access memory (DDR RAM), or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices such as internal hard disks and removable disks, magneto-optical disk storage devices, optical disk storage devices, flash memory devices, semiconductor memory devices, such as erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), digital versatile disc read-only memory (DVD-ROM) disks, or other non-volatile solid state storage devices.
[0099] Input/output devices 690 may include peripherals, such as a printer, scanner, display screen, etc. For example, input/output devices 690 may include a display device such as a cathode ray tube (CRT), plasma or liquid crystal display (LCD) monitor for displaying information to a user, a keyboard, and a pointing device such as a mouse or a trackball by which the user can provide input to apparatus 600.
[00100] Any or all of the functions of the systems and apparatuses discussed herein may be performed by processor 610, and/or incorporated in, an apparatus or a system such as LiDAR system 300. Further, LiDAR system 300 and/or apparatus 600 may utilize one or more neural networks or other deep-learning techniques performed by processor 610 or other systems or apparatuses discussed herein.
[00101] One skilled in the art will recognize that an implementation of an actual computer or computer system may have other structures and may contain other components as well, and that FIG. 6 is a high-level representation of some of the components of such a computer for illustrative purposes.
[00102] FIG. 7 illustrates a top view of an exemplary motorized optical scanner device 700. FIG. 8 illustrates a bottom view of the exemplary motorized optical scanner device 700. FIG. 9 illustrates a cross-sectional view of motorized optical scanner device 700 along the crosssection position A- A’ shown in FIGS. 7 and 8. FIGs. 10-11 illustrate perspective views of motorized optical scanner device 700. FIG. 12 illustrates a cut-off view of the exemplary motorized optical scanner device according to some embodiments. FIG. 13 illustrates an exploded view of motorized optical scanner device 700. FIGs. 7-13 are described together and the same elements are referred to by using the same numbers in FIGs. 7-13. Motorized optical scanner device 700 can be, for example, a part of steering mechanism 340 shown in FIG. 3.
[00103] Referencing FIGs. 7-13, motorized optical scanner device 700 comprises a glassbased optical reflector 702. Optical reflector 702 can be, for example, a polygon mirror. In one embodiment, glass-based optical reflector 702 comprises a polygon-shaped top surface 705, a polygon-shaped bottom surface 802, and a plurality of reflective surfaces 704A-E (collectively as 704). Reflective surfaces 704 form outer side surfaces of optical reflector 702. Reflective surfaces 704 reflect light and are also referred to as facets of optical reflector 702. Top surface 705 and bottom surface 802 may or may not be reflective. The top view of optical reflector 702 in FIG. 7 shows a pentagon-shaped top surface 705. In one embodiment, top surface 705 may be a flat or substantially flat surface comprising five edges. Top surface 705 may also be a curved surface having chamfered or beveled corners such as corner 708. The five edges of top surface 705 form a pentagon shape. The edges of top surface 705 may be straight edges or curved edges. It is understood that glass-based optical reflector 702 can have a polygon-shaped top surface comprising any number of edges (e.g., 3, 4, 5, 6, 7, 8, etc.). Correspondingly, optical reflector 702 can have a triangle-, square-, pentagon-, hexagon-, heptagon-, or octagon-shaped top surface 705; and 3, 4, 5, 6, 7, 8 side surfaces, respectively.
[00104] The bottom view of optical reflector 702 in FIG. 8 illustrates a pentagon-shaped bottom surface 802. In FIG. 8, bottom surface 802 is a flat or substantially flat surface comprising five edges. Bottom surface 802 may also be a curved surface. The five edges of bottom surface 802 form a pentagon shape. The edges of the bottom surface 802 may be straight edges or curved edges. It is understood that glass-based optical reflector 702 can have a polygon-shaped bottom surface comprising any number of edges (e.g., 3, 4, 5, 6, 7, 8, etc.). Correspondingly, glass-based optical reflector 702 can have a triangle-, square-, pentagon-, hexagon-, heptagon-, or octagon-shaped bottom surface. As shown in FIGs. 8 and 9, polygonshaped bottom surface 802 includes threaded holes 930 into which a plurality of fastening mechanisms 804 may be inserted during a wobble adjustment process. In some embodiments, a plurality of fastening mechanisms 804 may be adjustment screws. Polygon-shaped bottom surface 802 also includes through holes 806 for gluing an adjustment ring 908. Through holes 806 can be round-shaped holes or any other shaped holes (e.g., rectangle, square, polygon, oval, or the like).
[00105] In some embodiments, motor assembly 910 has threaded holes 930 on its perimeter, each of which can be lined up with the center of a corresponding facet. Through holes 806 can be distributed evenly on its perimeter. In other embodiments, the threaded holes 930 can be disposed to line up with other locations of the facets in any desired manner. In some embodiments, motor assembly 910 has threaded holes 930 and through holes 806 alternatively distributed on its perimeter. For example, a threaded hole 930 is distributed between two through holes 806, and a through hole 806 is distributed between two threaded holes 930. In some embodiments, a quantity of the plurality of fastening mechanisms 804 may be the same as a quantity of the plurality of reflective surfaces of the glass-based optical reflector. During the wobble adjustment process, at least two of the plurality of fastening mechanisms 804 are inserted into threaded holes 930 and are tightened such that the adjustment ring 908 is supported by two of the plurality of fastening mechanisms 804 and a portion of the glass-based optical reflector 702 that is opposite to a mid-portion between the two fastening mechanisms 804. As shown in FIG. 9, in particular, adjustment ring 908 can be in contact with flange 902 of the optical reflector 702 through a first mounting surface 922. Thus, the portion of the optical reflector 702 that is opposite to a mid-portion between the two inserted fastening mechanisms 804 can be a portion of flange 902 that is contact with adjustment ring 908 and is opposite in position to the two inserted fastening mechanisms 804. As one example shown in FIG. 8, if the low point is identified to be between the two reflective surfaces 704D and 704E, two fastening mechanisms 804 may be inserted into the threaded holes 930 corresponding to these two surfaces. The portion of the optical reflector 702 that is opposite to a mid-portion between the two inserted fastening mechanisms 804 can thus be located somewhere between the reflective surfaces 704B and 704C, or 704 A and 704B.
[00106] In one example of a wobble adjustment process, a low point of a glass-based optical reflector 702 may be identified when measuring wobble using a fixture. In some embodiments, the low point may be identified by, for example, measuring the tilt angles of the plurality of reflective surfaces 704 of the optical reflector 702. At least two of the plurality of fastening mechanisms 804 can be selected based on the identified low point. For example, if the low point is identified to be positioned between two adjacent threaded holes 930, these two adjacent threaded holes 930 may be selected. If the low point is identified to be positioned very close (e.g., right next to) a particular threaded hole 930, then this particular threaded hole 930 may be selected. An adjacent threaded hole 930 located on either side of this particular threaded hole 930 can be also selected. In some cases, three or more threaded holes 930 may be selected. During the wobble adjustment process, at least two fastening mechanisms 804 (e.g., adjustment screws) may be installed into at least two selected threaded holes 930 in motor assembly 910 to apply adjustment forces (e.g., pushing forces) to an adjustment ring to reduce wobble associated with rotation of glass-based optical reflector 702. The at least two selected threaded holes may be adjacent threaded holes in most cases or spaced one threaded hole apart in case that the low point is aligned with the edge between two reflective surfaces. It is understood that any number of adjustment mechanisms 804 may be selected to perform the wobble adjustment by applying forces to the adjustment ring. The forces applied by different adjustment mechanisms 804 may be the same or different. The forces may be pushing forces or in some case, pulling forces. In some embodiments, the inserting of different fastening mechanisms 804 to the threaded holes 930 may be performed alternately between the different fastening mechanisms 804. For instance, using FIG. 8 as an illustrating, if fastening mechanisms located corresponding to reflective surfaces 704A and 704B are used to apply force to adjustment ring 908, the two fastening mechanisms can be inserted in an alternating manner (e.g., a first fastening mechanism is inserted only half way, the second fastening mechanism is then inserted half way, the first fastening mechanism is then inserted further, and so on). In some embodiments, the installing of the fastening mechanisms are guided by the measured wobble of the optical reflector 702. The measurement may be repeated one or more times until the installing of the fastening mechanisms reduces the wobble to be within a threshold or within a specification.
[00107] In some embodiments, after at least two of the plurality of fastening mechanisms 804 are inserted into respective threaded holes 930, adhesive materials may be injected into one or more of a plurality of through holes 806 to secure the adjustment ring and/or the inserted fastening mechanisms in position. In some embodiments, adhesive materials may also be injected into respective threaded holes 930 to secure the plurality of fastening mechanisms in position. [00108] Referencing FIGs. 8-13, optical reflector 702 comprises a plurality of reflective surfaces (e.g., surfaces 704A-E) forming its outer side surfaces. The side surfaces share their top edges with top surface 705 and share their bottom edges with bottom surface 802. In some embodiments, a side surface has a trapezoidal-type shape. Using reflective surface 704B as an example, the top edge of reflective surface 704B is longer than its bottom edge, thereby forming a trapezoidal-type shape. Similarly, in some embodiments, other reflective surfaces may also have longer top edges and shorter bottom edges. As a result, at least one of reflective surfaces 704A-E (collectively 704) forms a tilt angle with respect to the rotational axis of optical reflector 702. A tilt angle can be between 0-90 degrees (e.g., 27 degrees). A tilt angle is also referred to as a facet angle. In other words, one or more of reflective surfaces 704 are not parallel with the rotational axis of optical reflector 702. Such a rotational axis is shown as axis 907 in FIG. 9. Rotational axis 907 of optical reflector 702 is parallel or substantially parallel to motor shaft 906. As illustrated in FIG. 9, reflective surface 704B and rotational axis form a tilt angle. Similarly, other reflective surfaces 704 may also form their respective tilt angles with rotational axis 907. The tilt angles of different reflective surfaces 704A-E may or may not be the same.
[00109] In some embodiments, reflective surfaces 704 comprise mirrors for reflecting or redirecting light. In other embodiments, reflective surfaces 704 comprises semiconductor wafer based reflectors (e.g., a polished piece of semiconductor wafer). The mirrors or semiconductor wafer based reflectors are disposed at the outer side surfaces of glass-based optical reflector 702. In some embodiments, optical reflector 702 is made from a glass material and the side surfaces of optical reflector 702 are coated with reflective materials to make them reflective. In some embodiments, reflective surfaces 704 can also be made reflective by mechanically or adhesively attaching mirrors or semiconductor wafer based reflectors to the side surfaces of optical reflector 702. In some embodiments, the outer side surfaces of the optical reflector 702 are integral parts of optical reflector 702. For example, the entire optical reflector 702 can be made with reflective material so that each of the outer side surfaces (e.g., reflective surfaces 704) of optical reflector 702 is reflective. In some embodiments, only the outer side surfaces of optical reflector 702 are made reflective but other parts of optical reflector 702 are not made reflective.
[00110] As shown in the cross-sectional view of FIG. 9, optical reflector 702 has an inner opening 920, within which at least a part of motor assembly 910 is disposed. Motor assembly 910 comprises a motor rotor body 904. Motor rotor body 904 can be a metal -based piece formed by using aluminum, titanium, iron, copper, steel, an alloy, and/or any other desired metal-based materials. In one embodiment, motor rotor body 904 is made from aluminum, which has a CTE of about 22X10'6/°K.
[00111] As shown in FIG. 9, motor rotor body 904 is at least partially disposed within inner opening 920 of optical reflector 702 and mounted to optical reflector 702. FIG. 9 illustrates one embodiment where motor rotor body 904 is mechanically mounted to optical reflector 702 using a flange 902 of optical reflector 702. Flange 902 can be an integral part of optical reflector 702. Flange 902 may also be a detachable part that is mechanically mounted or attached to optical reflector 702. In one embodiment, flange 902 extends from an inner sidewall 912 of optical reflector 702 towards motor rotor body 904. In some embodiments, flange 902 includes a first mounting surface 922 that is in contact with a first surface 924 of an adjustment ring 908. Adjustment ring 908 can have a ring shape as shown in FIG. 13. Flange 902 further includes a second mounting surface that is in contact with an elastomer piece 928. Elastomer piece 928 can have a ring shape as shown in FIGs. 12 and 13. Elastomer piece 928 or a substantial portion thereof can be disposed on, and in contact with, flange 902. In some embodiments, a clamp mechanism 942 is in contact with elastomer piece 928 and is configured to compress elastomer piece 928. Elastomer piece 928 is thus disposed between clamping mechanism 942 and flange 902. Clamping mechanism 942 may be, for example, a clamping ring.
[00112] As shown in FIGs. 9 and 13, clamping mechanism 942 compresses elastomer piece 928 to flange 902, which in turn applies compression force to motor rotor body 904. This way, optical reflector 702, via flange 902, is secured to motor rotor body 904 by the friction generated by the compression force. The amount of the compression can be configured to be sufficient under many foreseeable operating conditions (e.g., high speed rotation, temperature variation, humidity variations, road conditions, or the like). In one embodiment, clamping mechanism 942 is a clamping ring. In some embodiments, clamping mechanism 942 comprises one or more fastening mechanisms 944 (e.g., screws with or without lock washers). Fastening mechanisms 944 are used to apply compression forces to elastomer piece 928. In operation of the LiDAR system, the movement of the metal-based motor rotor body 904 causes the glass-based optical reflector 702 to rotate at a very high speed in a range of about 2000-9000 revolutions per minute (rpm). Thus, clamping mechanism 942 may need to be configured to apply a proper compression force to secure optical reflector 702 to motor rotor body 904 under all or most of the foreseeable operating conditions.
[00113] FIG. 9 illustrates that adjustment ring 908 has a first surface 924 and a second surface 926. First surface 924 can be the top surface of the ring-shaped adjustment ring 908. Second surface 926 can be the bottom surface of the ring-shaped adjustment ring 908. As shown in FIG. 9, first surface 924 of adjustment ring 908 is in contact with first mounting surface 922 of flange 902. Second surface 926 of adjustment ring 908 is at least partially in contact with a motor rotor body 904. When a fastening mechanism 804 is inserted into a threaded hole 930, tip of a fastening mechanism 804 may be at least partially in contact with second surface 926 of adjustment ring 908 and is configured to apply adjustment forces to adjustment ring 908. A plurality of fastening mechanisms 804 may be adjustment screws with hard ball, oval, or round shaped tip. As illustrated in FIG. 9, adjustment ring 908 is thus disposed between fastening mechanism 804 and flange 902.
[00114] Referencing FIGs. 9 and 13, motor assembly 910 further comprises a motor shaft 906 disposed in one or more bearings 954 and 956. Bearings 954 and 956 are disposed inside motor rotor body 904. Motor assembly 910 further comprises a motor stator 958 and a magnetic ring 960. Motor stator 958 has electrical windings. When motor assembly 910 is provided with electricity, magnetic forces are generated via the electrical windings mounted on motor stator 958. The rotation of motor rotor body 904 causes optical reflector 702 to rotate.
[00115] Referencing FIGS. 9 and 13, in one embodiment, the glass-based optical reflector 702 and the metal-based motor rotor body 904 are substantially concentric with respect to a rotational axis (e.g., axis 907) along a longitudinal direction of motor shaft 906. For example, the error of concentricity can be controlled to be less than a preconfigured threshold (e.g., about 20-25 pm). If the error of concentricity is larger than the threshold, the rotation of the optical reflector 702 may be imbalanced (e.g., off-centered) because the weight center of optical reflector 702 is shifted with respect to that of motor rotor body 904. Such a shift may or may not impact the LiDAR scanning performance but may affect the overall robustness and reliability of optical reflector device 700.
[00116] In some embodiments, optical reflector 702 and motor rotor body 904 are assembled in a manner to minimize wobbling during the rotation of optical reflector 702. As shown in FIG. 9, to prevent wobbling, motor rotor body 904 includes threaded holes 930 extending from polygonshaped bottom surface 802 toward the adjustment ring 908. A plurality of fastening mechanisms 804 may be inserted into the threaded holes 930 during wobble adjustment. In some embodiments, a plurality of fastening mechanisms 804 may be adjustment screws. Motor rotor body 904 also includes through holes 806 for gluing an adjustment ring 908. Through holes 806 may also extend from Polygon-shaped bottom surface 802 toward adjustment ring 908. In some embodiments, motor assembly 910 has threaded holes 930 on its perimeter lined up with the center of each facet and through holes 806 distributed evenly on its perimeter. In some embodiments, motor assembly 910 has threaded holes 930 and through holes 806 alternatively distributed on its perimeter. For example, as described above, a threaded hole 930 is distributed between two through holes 806, and a through hole 806 is distributed between two threaded holes 930. During wobble adjustment, at least two of the plurality of fastening mechanisms 804 are inserted into threaded holes 930 and are tightened such that adjustment ring 908 is supported by two of the plurality of fastening mechanisms 804 and a portion of the glass-based optical reflector that is opposite to a mid-portion between the two fastening mechanisms. For example, a low point of a glass-based optical reflector 702 may be identified when measuring wobble using a fixture. During wobble adjustment, two adjustment screws may be installed into two selected threaded holes 930 in motor assembly 910 to apply adjustment forces to an adjustment ring to reduce wobble associated with rotation of glass-based optical reflector 702. Adjustment ring 908 facilitates distributing the adjustment forces of a plurality of fastening mechanisms 804 to a large area on optical reflector 702. In some embodiments, adjustment ring 908 are made from hard steel materials (e.g., full hard H302 steel material). In some embodiments, after the plurality of fastening mechanisms are inserted into threaded holes 930, adhesive materials may be injected into a plurality of through holes 806 to secure the plurality of fastening mechanisms 804. In some embodiments, adhesive materials may also be injected behind the plurality of fastening mechanisms to secure them.
[00117] As shown in FIGs. 11-12, the compression force can be applied by using a plurality of fastening mechanisms 804 disposed under adjustment ring 908. In FIG. 10, for example, fastening mechanisms 804 include two adjustment screws. For example, a low point of a glassbased optical reflector 702 may be identified when measuring wobble using a fixture. As described above, during wobble adjustment, in one embodiment, two adjustment screws may be installed into two selected threaded holes in motor assembly 910 to apply adjustment forces to an adjustment ring to reduce wobble associated with rotation of glass-based optical reflector 702. The two adjustment screws may be in adjacent threaded holes in most cases or spaced one threaded hole apart in case that the low point is aligned with the edge between two facets. In some embodiments, the two screws are tightened such that the same or substantially the same amount of adjustment forces are applied to adjustment ring 908. In some embodiments, the two screws are adjustable individually or as a group such that optical reflector 702 is secured and capable of rotating without wobbling (or within a tolerable wobbling range). For example, some screws may be tightened more than the others to fine tune the amount of adjustment forces applied at any given point of adjustment ring 908. Wobbling can be eliminated or substantially reduced by such fine tuning of the adjustment forces using the fastening mechanisms 804. It is understood that motor assembly 910 may include any number of fastening mechanisms 804 distributed in any manner to satisfy the performance requirements of optical reflector 702.
[00118] Referencing FIG. 13, optical reflector device 700 further comprises a Hall-effect sensor and processing circuitry 1312. The Hall-effect sensor and processing circuitry 1312 detects the presence and the magnitude of a magnetic field using the Hall effect. The output voltage of the Hall-effect sensor is directly proportional to the strength of the field. Thus, the Hall-effect sensor and processing circuitry 1312 can be used to detect the angular position, rotational speed, and phases, rotational directions, etc. of optical reflector 702. For example, one or more magnets (not shown) can be installed in optical reflector device 700 to rotate together with optical reflector 702. When the magnets passing through Hall-effect sensor and processing circuitry 1312, electrical signals are generated and processed to compute various parameters of optical reflector 702. In some embodiments, a Hall-effect sensor is more sensitive and accurate than an index encoder. And therefore, optical reflector device 700 may use only the Hall-effect sensor during operation. The index encoder can be used, for example, during calibration of the LiDAR system. In some embodiments, optical reflector device 700 can use both the index encoder and the Hall-effect sensor for position encoding.
[00119] Referencing FIG. 13, in some embodiments, optical reflector device 700 further comprises a fairing 1302. Fairing 1302 is disposed around the optical reflector 702 to at least partially enclose optical reflector 702 and other components of motor assembly 910. In one embodiment, fairing 1302 comprises a housing, walls, covers, and/or other structures to at least partially enclose optical reflector 702 and motor assembly 910. In one embodiment, fairing 1302 comprises at least a portion of a cylinder or a cone. An axial direction of fairing 1302 is substantially parallel to an axial direction of optical reflector 702. Fairing 1302 can be concentric or eccentric to optical reflector 702. Fairing 1302, alone or in combination with motor base 1314, encloses the optical reflector 702 to form a housing. The enclosing of optical reflector 702 by using one or both of fairing 1302 and motor base 1314 reduces the air friction caused by the high-speed rotation of optical reflector 702, thereby effectively generating a local vacuum surrounding optical reflector 702. The housing formed by fairing 1302 and/or motor base 1314 thus facilitates a smoother rotation of optical reflector 702 (e.g., reduces the variations of speed between rotations caused by air friction or turbulence). In turn, the smoother rotation improves the overall light scanning performance and energy efficiency of optical reflector 702.
[00120] FIG. 14 illustrates an exemplary method 1400 for adjusting a motorized optical scanner device to reduce wobble according to some embodiments of the present disclosure. In some examples, at least some of these operations are performed by a system including a processor executing a set of codes to control functional elements of an apparatus. Additionally or alternatively, certain processes are performed by a human operator. Generally, these operations are performed according to the methods and processes described in accordance with aspects of the present disclosure. In some cases, the operations described herein are composed of various substeps, or are performed in conjunction with other operations.
[00121] As shown in FIG. 14, method 1400 is an exemplary method for adjusting a motorized optical scanner device to reduce wobble. At step 1405, a system or human operator assembles a motorized optical scanner device. The device may be motorized optical scanner 700 as described with reference to FIG. 7. The motorized optical scanner device may comprise a glassbased optical reflector including a plurality of reflective surfaces, an adjustment ring, and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector.
[00122] At step 1410, a system or human operator measures wobble of a motorized optical scanner device. In some embodiments, measuring the wobble of the motorized optical scanner device includes identifying a low point of the glass-based optical reflector. For instance, a low point may be identified using a fixed laser source. A fixed laser source may emit light to a plurality of reflective surfaces (e.g., surfaces 704A-D) of a glass-based optical reflector (e.g., reflector 702). The glass-based optical reflector may be rotated such that each of the plurality of reflective surfaces may reflect the light emitted from the fixed laser source. The reflected light may be received by an optical detector such as a quadrant detector which generates electric signals based on received reflected light. In some embodiments, when the tilt angles of the reflective surfaces are different from one another, light reflected from the reflective surfaces are received at different positions of detector elements of the optical detector. As such, the electrical signals generated by the detector elements of the optical detector based on the reflected light can indicate tilt angles, or tile angle differences, of the plurality of reflective surfaces. A low point can therefore be identified based on comparisons of the tilt angles or their differences using the electrical signals. As described above, due to various factors of manufacturing process, center of a polygon mirror may have a small angular deviation from its center of rotation. When center of a polygon mirror is not perfectly in-line with its center of rotation, tilt angles of the polygon facets may change in the process of angular rotation, and the polygon mirror may wobble.
[00123] At step 1415, a system or human operator selects at least two adjustment positions with respect to the adjustment ring based on the measured wobble. In some embodiments, to select the adjustment positions, step 1415 determines whether a position of the low point is between two reflective surfaces of the plurality of reflective surfaces of the optical reflector. If the position of the low point is determined to be between two adjacent reflective surfaces of the plurality of reflective surfaces, then two threaded holes of a plurality of threaded holes corresponding to the two adjacent reflective surfaces may be selected as the at least two adjustment positions. For example, for a motorized optical scanner device 700 illustrated in FIG. 8, a position of a low point may be between reflective surface 704D and reflective surface 704E. As described above, each of threaded holes 930 may be lined up with the center of a corresponding reflective surface. When the position of a low point is determined to be between reflective surface 704D and reflective surface 704E, threaded holes 930 which are lined up with the centers of reflective surface 704D and reflective surface 704E respectively may be selected to be the adjustment positions. Fastening mechanisms can thus be inserted to these selected threaded holes 930.
[00124] In some embodiments, to select the adjustment positions, step 1415 determines whether a position of the low point may be within a threshold angle to a particular threaded hole of a plurality of threaded holes 930. As shown in FIG. 15, a threshold angle may be represented by angle a. Angle a can be a predetermined angle measured from the line connecting the center of rotation of the optical reflector and a particular threaded hole for inserting fastening mechanism 804. A threshold angle may be, for example, 10 degrees. It is understood that the threshold angle can be configured to be any desired number. For example, for a motorized optical scanner device 700 illustrated in FIG. 15, if the position of the low point is determined to be within a threshold angle to a threaded hole for inserting fastening mechanism 804 corresponding to reflective surface 704C, then two adjacent threaded holes, (in this case, threaded holes for inserting fastening mechanisms 804 corresponding to reflective surface 704B and reflective surface 704D respectively, are selected as adjustment positions.
[00125] In some embodiments, to select the adjustment positions, step 1415 determines whether a position of the low point may be aligned with an edge between two reflective surfaces of the plurality of reflective surfaces. If the position of the low point is determined to be aligned with an edge between two reflective surfaces of the plurality of reflective surfaces, then two threaded holes of the plurality of threaded holes corresponding to the two reflective surfaces at an end of the edge may be selected as the at least two adjustment positions. For example, for a motorized optical scanner device 700 illustrated in FIG. 8, a position of the low point may be determined to be aligned with the edge of reflective surface 704A between two reflective surfaces 704B and 704E. Then threaded holes 930 which are lined up with the centers of reflective surface 704B and reflective surface 704E respectively may be selected to be two adjustment positions.
[00126] With reference still to FIG. 14, at step 1420, a system or human operator installs a plurality of fastening mechanisms to apply adjustment forces to the adjustment ring at the at least two selected adjustment positions. In some embodiments, a plurality of fastening mechanisms may be inserted into adjustment positions individually. In some embodiments, a plurality of fastening mechanisms may be fine tuned to apply predetermined adjustment forces. In some embodiments, wobble of the motorized optical scanner device may be re-measured. More fastening mechanisms of the plurality of fastening mechanisms may be inserted after remeasurement of wobble. In some embodiments, a motorized optical scanner device comprises a plurality of through holes. Adhesive materials (e.g., glue) may be injected into the plurality of through holes to secure at least one of the adjustment ring. Adhesive materials may also be injected at the selected adjustment positions to secure the plurality of fastening mechanisms. [00127] Various exemplary embodiments are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the disclosed technology. Various changes may be made, and equivalents may be substituted without departing from the true spirit and scope of the various embodiments. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the various embodiments. Further, as will be appreciated by those with skill in the art, each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the various embodiments.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A motorized optical scanner device of a Light Detection and Ranging (LiDAR) scanning system used in a motor vehicle, comprising: a glass-based optical reflector including a plurality of reflective surfaces and a flange; an adjustment ring; a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector, wherein: the flange extends from an inner sidewall of the glass-based optical reflector toward the metal-based motor rotor body, the flange includes a first mounting surface that is in contact with the adjustment ring; and a plurality of fastening mechanisms configured to apply adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
2. The device of claim 1, wherein the glass-based optical reflector comprises a polygonshaped bottom surface, the polygon-shaped bottom surface comprises four or more edges.
3. The device of claim 1 or claim 2, wherein the plurality of reflective surfaces comprises a plurality of mirrors disposed at, or formed as an integral part of, outer sider surfaces of the glassbased optical reflector.
4. The device of any one of claims 1 to 3, wherein movement of the metal-based motor rotor body causes the glass-based optical reflector to rotate at a speed in a range of about 2000- 9000 revolutions per minute (rpm).
5. The device of any one of claims 1 to 4, wherein the flange is an integral part of the glassbased optical reflector.
45
6. The device of any one of claims 1 to 5, where in the adjustment ring is configured to distribute the adjustment forces around the glass-based optical reflector.
7. The device of any one of claims 1 to 6, wherein a quantity of the plurality of fastening mechanisms is the same as a quantity of the plurality of reflective surfaces of the glass-based optical reflector.
8. The device of any one of claims 1 to 7, wherein at least two of the plurality of fastening mechanisms are tightened such that the adjustment ring is supported by two of the plurality of fastening mechanisms and a portion of the glass-based optical reflector that is opposite to a midportion between the two fastening mechanisms.
9. The device of any one of claims 1 to 8, further comprising: a motor shaft disposed in one or more bearings, wherein the one or more bearings are disposed in the metal-based motor rotor body.
10. The device of claim 9, wherein the glass-based optical reflector and the metal -based motor rotor body are substantially concentric with respect to an axis along a longitudinal direction of the motor shaft.
11. The device of any one of claims 1 to 10, wherein the plurality of fastening mechanisms comprises a plurality of adjustment screws.
12. The device of any one of claims 1 to 11, wherein the metal-based motor rotor body further comprises a plurality of threaded holes into which the plurality of fastening mechanisms is inserted.
13. The device of any one of claims 1 to 12, wherein the metal -based motor rotor body further comprises a plurality of through holes into which adhesive materials are injected to secure the plurality of fastening mechanisms.
14. The device of any one of claims 1 to 13, further comprising:
46 an elastomer piece; and a clamping mechanism compressing the elastomer piece.
15. The device of any one of claims 1 to 14, wherein the metal -based motor rotor body comprises at least one of aluminum, iron, copper, steel, or a metal alloy.
16. A Light Detection and Ranging (LiDAR) system comprising a motorized optical scanner device, the device comprising: a glass-based optical reflector including a plurality of reflective surfaces and a flange; an adjustment ring; a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector, wherein: the flange extends from an inner sidewall of the glass-based optical reflector toward the metal-based motor rotor body, the flange includes a first mounting surface that is in contact with the adjustment ring; and a plurality of fastening mechanisms configured to apply adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
17. A motor vehicle comprising a Light Detection and Ranging (LiDAR) system, the LiDAR system comprising a motorized optical scanner device, the device comprising: a glass-based optical reflector including a plurality of reflective surfaces and a flange; an adjustment ring; a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector, wherein: the flange extends from an inner sidewall of the glass-based optical reflector toward the metal-based motor rotor body, the flange includes a first mounting surface that is in contact with the adjustment ring; and
47 a plurality of fastening mechanisms configured to apply adjustment forces to the adjustment ring to reduce wobble associated with rotation of the glass-based optical reflector.
18. A method for adjusting a motorized optical scanner device of a Light Detection and Ranging (LiDAR) system for reducing wobble, comprising: assembling a motorized optical scanner device, the device comprising: a glass-based optical reflector including a plurality of reflective surfaces, an adjustment ring, and a metal-based motor rotor body at least partially disposed in an inner opening of the glass-based optical reflector; measuring wobble of the motorized optical scanner device; selecting at least two adjustment positions with respect to the adjustment ring based on the measured wobble; and installing a plurality of fastening mechanisms to apply adjustment forces to the adjustment ring at the at least two selected adjustment positions.
19. The method of claim 18, wherein measuring the wobble of the motorized optical scanner device comprises identifying a low point of the glass-based optical reflector.
20. The method of claim 18 or claim 19, wherein selecting the at least two adjustment positions with respect to the adjustment ring based on the measured wobble comprises: determining, based on the measured wobble, whether a position of the low point is between two adjacent reflective surfaces of the plurality of reflective surfaces; and selecting two threaded holes of the plurality of threaded holes corresponding to the two adjacent reflective surfaces, in accordance with a determination that the low point is between the two adjacent reflective surfaces of plurality of reflective surfaces.
21. The method of any one of claims 18 to 20, wherein selecting the at least two adjustment positions with respect to the adjustment ring based on the measured wobble comprises: determining whether a position of the low point is within a threshold angle to a first threaded hole of a plurality of threaded holes; and selecting two threaded holes of the plurality of threaded holes adjacent to the first threaded hole, in accordance with a determination that the low point is within a threshold angle to the first threaded hole.
22. The method of any one of claims 18 to 21, wherein installing a plurality of fastening mechanisms to apply adjustment forces to the adjustment ring at the at least two adjustment positions comprises at least one of: inserting the plurality of fastening mechanisms individually; tuning the plurality of fastening mechanisms to apply predetermined adjustment forces; and re-measuring wobble of the motorized optical scanner device before inserting additional fastening mechanisms.
23. The method of any one of claims 18 to 22, wherein the motorized optical scanner device further comprises a plurality of through holes, the method further comprising: injecting adhesive materials into a plurality of through holes to secure the adjustment ring.
24. The method of claim any one of claims 18 to 23, further comprising: injecting adhesive materials at the selected adjustment positions to secure the plurality of fastening mechanisms.
PCT/US2022/050002 2021-11-15 2022-11-15 Wobble adjustment capability for polygon mirrors WO2023086681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280075880.1A CN118265920A (en) 2021-11-15 2022-11-15 Swing adjusting capability of polygon mirror

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163279676P 2021-11-15 2021-11-15
US63/279,676 2021-11-15
US17/986,820 2022-11-14
US17/986,820 US20230152428A1 (en) 2021-11-15 2022-11-14 Wobble adjustment capability for polygon mirrors

Publications (1)

Publication Number Publication Date
WO2023086681A1 true WO2023086681A1 (en) 2023-05-19

Family

ID=84519864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/050002 WO2023086681A1 (en) 2021-11-15 2022-11-15 Wobble adjustment capability for polygon mirrors

Country Status (1)

Country Link
WO (1) WO2023086681A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080084611A1 (en) * 2006-10-05 2008-04-10 Bright View Technologies, Inc. Methods and Apparatus for Creating Apertures Through Microlens Arrays Using Curved Cradles, and Products Produced Thereby
US20220260686A1 (en) * 2021-02-16 2022-08-18 Innovusion Ireland Limited Attaching a glass mirror to a rotating metal motor frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080084611A1 (en) * 2006-10-05 2008-04-10 Bright View Technologies, Inc. Methods and Apparatus for Creating Apertures Through Microlens Arrays Using Curved Cradles, and Products Produced Thereby
US20220260686A1 (en) * 2021-02-16 2022-08-18 Innovusion Ireland Limited Attaching a glass mirror to a rotating metal motor frame
WO2022177794A1 (en) * 2021-02-16 2022-08-25 Innovusion, Inc. Attaching a glass mirror to a rotating metal motor frame

Similar Documents

Publication Publication Date Title
US12061289B2 (en) Attaching a glass mirror to a rotating metal motor frame
US11567213B2 (en) Dual shaft axial flux motor for optical scanners
US12072447B2 (en) Compact LiDAR design with high resolution and ultra-wide field of view
US20230109158A1 (en) Dynamic compensation to polygon and motor tolerance using galvo control profile
US20230152428A1 (en) Wobble adjustment capability for polygon mirrors
WO2023086681A1 (en) Wobble adjustment capability for polygon mirrors
US20240168206A1 (en) Systems and methods for polygon mirror angles adjustment
US11614521B2 (en) LiDAR scanner with pivot prism and mirror
US11662439B2 (en) Compact LiDAR design with high resolution and ultra-wide field of view
US11624806B2 (en) Systems and apparatuses for mitigating LiDAR noise, vibration, and harshness
US20230341532A1 (en) Dynamic calibration method of avalanche photodiodes on lidar
US20230007853A1 (en) Compact lidar systems for vehicle contour fitting
CN118265920A (en) Swing adjusting capability of polygon mirror
WO2024108150A1 (en) Systems and methods for polygon mirror angles adjustment
WO2022250799A2 (en) Dynamic compensation to polygon and motor tolerance using galvo control profile
WO2023183094A1 (en) Compact perception device
WO2023205477A1 (en) Dynamic calibration method of avalanche photodiodes on lidar
WO2024049692A1 (en) Film electromagnetic mirror
WO2022241060A1 (en) Systems and apparatuses for mitigating lidar noise, vibration, and harshness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280075880.1

Country of ref document: CN