WO2023085875A1 - Microorganism comprising class i type bira and biotin production method using same - Google Patents

Microorganism comprising class i type bira and biotin production method using same Download PDF

Info

Publication number
WO2023085875A1
WO2023085875A1 PCT/KR2022/017833 KR2022017833W WO2023085875A1 WO 2023085875 A1 WO2023085875 A1 WO 2023085875A1 KR 2022017833 W KR2022017833 W KR 2022017833W WO 2023085875 A1 WO2023085875 A1 WO 2023085875A1
Authority
WO
WIPO (PCT)
Prior art keywords
bira
microorganism
biotin
class
type
Prior art date
Application number
PCT/KR2022/017833
Other languages
French (fr)
Korean (ko)
Inventor
임보람
김문정
임수빈
김현아
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Publication of WO2023085875A1 publication Critical patent/WO2023085875A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/185Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system
    • C12P17/186Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system containing a 2-oxo-thieno[3,4-d]imidazol nucleus, e.g. Biotin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04015Biotin-[acetyl-CoA-carboxylase] ligase (6.3.4.15)

Definitions

  • the present application relates to a microorganism containing BirA of class I type or a biotin production method using the same.
  • Biotin belongs to vitamin B7, which plays an important role in cell growth, protein production, and activity, and is an essential nutrient for animals, plants, and microorganisms.
  • Biotin which has a structure in which one sulfur-containing ring structure is connected to another ring structure, functions as a coenzyme for multi-carboxylase and plays an important role in glucose metabolism as well as amino acid and fatty acid metabolism.
  • Biotin can be biosynthesized by many microbial species, but most animals cannot synthesize it themselves, so it is classified as an essential vitamin and is a very useful substance, such as being used as a food or feed additive, or as a raw material for the synthesis and production of other medicines. am.
  • the demand for vitamins is increasing due to the expansion of antibiotic regulations, and the selling price is gradually rising.
  • Most of the biotin sold on the market is being produced only through multi-step chemical methods, so the demand for biological production technology is increasing in the era of environmental protection.
  • the biological production technology seems to have little advanced literature or patents since the 2000s, and the production efficiency is not high. Therefore, it is important to secure a number of biotin biological production technologies.
  • One object of the present application is to provide a microorganism of the genus Escherichia or Serratia sp., in which the activity of BirA of class II type is attenuated and the activity of BirA of class I type is attenuated, ,
  • the microorganism may have a biotin-producing ability.
  • Another object of the present application is to provide a composition for producing biotin containing the microorganism.
  • Another object of the present application is to provide a method for producing biotin, including culturing the microorganism in a medium.
  • strain or microorganism
  • strain includes both wild-type microorganisms and naturally or artificially genetically modified microorganisms, and causes such as insertion of foreign genes or enhancement or inactivation of endogenous gene activity.
  • a microorganism whose specific mechanism is attenuated or enhanced due to, it may be a microorganism containing genetic modification for the production of a desired polypeptide, protein or product.
  • vector is an expression encoding a target polypeptide operably linked to a suitable expression control region (or expression control sequence) so as to express the target polypeptide (eg, class I type BirA) in a suitable host.
  • the expression control region may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences that control the termination of transcription and translation After transformation into a suitable host cell, the vector can replicate or function independently of the host genome, and can integrate into the genome itself.
  • Vectors used in the present application are not particularly limited, and any vectors known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors , pBluescriptII-based, pGEM-based, pTZ-based, pCL-based, pET-based, etc. can be used.
  • pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for chromosomal insertion into a cell. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for determining whether the chromosome is inserted may be further included.
  • the selectable marker is used to select cells transformed with a vector, that is, to determine whether a target nucleic acid molecule has been inserted, and can exhibit selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. markers may be used. In an environment treated with a selective agent, only cells expressing the selectable marker survive or exhibit other expression traits, so transformed cells can be selected.
  • the term "transformation” means introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide can be expressed in the host cell, it may be inserted into and located in the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide includes DNA and/or RNA encoding a polypeptide of interest.
  • the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a genetic construct containing all elements required for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence necessary for expression in the host cell, but is not limited thereto.
  • operably linked in the above means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates the transcription of the object polynucleotide (eg, class I type BirA) of the present application. means there is
  • One aspect of the present application for achieving the above object provides a microorganism of the genus Escherichia or Serratia sp., including BirA of class I type.
  • the microorganism may be one in which the activity of class II type BirA is weakened.
  • class II type BirA refers to biotin protein ligase (BPL) that contains a DNA binding domain at the N-terminal position and thus includes transcriptional control functions of biotin biosynthesis genes and transport genes. can do.
  • BPL biotin protein ligase
  • the class II type of BirA can obtain its sequence from NCBI's GenBank, a known database, for example, GenBank Accession No. AP009048.1, or NP418404.1 or the like.
  • the class II type of BirA may be encoded by a birA gene derived from a microorganism of the genus Escherichia or the genus Serratia.
  • class I type BirA may refer to a protein having only the function of biotin ligase without including a regulatory domain.
  • the class I type of BirA can obtain its sequence from NCBI's GenBank, a known database, for example, GenBank Accession No. It may be NZ_CP025534.1 or NP599941.1, etc.
  • the class I type of BirA may be encoded by a birA gene derived from a microorganism of the genus Mycobacterium or the genus Corynebacterium.
  • the term "attenuation" of a polypeptide is a concept that includes both decreased activity or no activity compared to intrinsic activity.
  • the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.
  • the attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide originally possessed by the microorganism due to mutation of the polynucleotide encoding the polypeptide, inhibition of gene expression of the polynucleotide encoding it, or translation into a polypeptide.
  • the overall level and/or concentration (expression level) of the polypeptide in the cell is lower than that of the native strain due to inhibition of translation, etc., when the polynucleotide is not expressed at all, and/or when the polynucleotide is expressed Even if there is no activity of the polypeptide, it may also be included.
  • the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”. "Inactivation, depletion, reduction, downregulation, reduction, attenuation” of the activity of a polypeptide compared to its intrinsic activity means that it is lower than the activity of a specific polypeptide originally possessed by the parent strain or non-transformed microorganism before transformation.
  • Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by applying various methods well known in the art (e.g., Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
  • an antisense oligonucleotide eg, antisense RNA
  • an antisense oligonucleotide that binds complementarily to the transcript of the gene encoding the polypeptide
  • It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
  • Deletion of part or all of the gene encoding the polypeptide may include removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
  • modification of the expression control region is a deletion, insertion, non-conservative or conservative substitution, or a combination thereof, resulting in mutations in the expression control region (or expression control sequence), or weaker It may be a replacement with an active sequence.
  • the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling termination of transcription and translation.
  • the 3) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another initiation codon with a lower polypeptide expression rate than the endogenous initiation codon. It may be substituted with a sequence, but is not limited thereto.
  • the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above can be a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide.
  • a combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
  • expression of a gene may be inhibited or attenuated by introducing a mutation in a polynucleotide sequence to form a stop codon, but is not limited thereto.
  • antisense oligonucleotide e.g., antisense RNA
  • antisense RNA complementary to the transcript of the gene encoding the polypeptide
  • Weintraub, H. et al. Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
  • the microorganism may be one in which the endogenous birA gene is deleted and the birA gene derived from a microorganism of the genus Mycobacterium or the genus Corynebacterium is introduced.
  • the microorganism is 7,8-diamino-pelargonic acid aminotransferase (7,8-diamino-pelargonic acid aminotransferase), biotin synthase (Biotin synthase), 8-amino-7-oxononanoate At least one activity selected from the group consisting of synthase (8-amino-7-oxononanoate synthase), malonyl-ACP O-methyltransferase, and dethiobiotin synthetase This may be further enhanced.
  • the bioABFCD operon eg, the bioABFCD operon derived from Escherichia coli
  • the bioABFCD operon may be introduced.
  • the taje may be derived from a microorganism of the genus Serratia sp.; eg Serratia marcescens ( Serratia marcescens ) or Escherichia sp.; eg Escherichia coli .
  • biotin synthase (EC 2.8.1.6) is an enzyme that catalyzes the conversion of dethiobiotin (DTB;) into biotin, using a radical mechanism to convert dethiobiotin to thiol. It may refer to a SAM-dependent enzyme that thiolates and converts to biotin.
  • the biotin synthase may be included regardless of microbial origin as long as the enzyme has the activity.
  • the biotin synthase may be used in combination with BioB protein or BioB.
  • 7,8-diamino-pelargonic acid aminotransferase refers to 8-amino-7-oxononanoate synthase (8-amino-7- oxononanoate synthase) to 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA) produced by binding an alpha-amino group obtained from an enzyme-specific substance with an amine group such as SAM or lysine to form 7 It may mean a protein that generates ,8-diamino-pelargonic acid (DAPA).
  • DAPA ,8-diamino-pelargonic acid
  • 8-amino-7-oxononanoate synthase catalyzes the decarboxylation condensation reaction of 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP) and alanine. It can mean a protein that
  • malonyl-ACP O-methyltransferase (Malonyl-ACP O-methyltransferase or Malonyl-[acyl-carrier protein] O-methyltransferase)” converts carbon polymers in the fatty acid biosynthetic pathway to pimeloyl-coA/ACP It can mean a protein that methyl esterifies the carboxy group of malonyl thioester.
  • Dethiobiotin synthetase may refer to an enzyme that converts dethiobiotin, a biotin production precursor, from 7,8-diamino-pelargonic acid (DAPA).
  • DAPA 7,8-diamino-pelargonic acid
  • the term "enhancement" of polypeptide (protein) activity means that the activity of the polypeptide is increased compared to the intrinsic activity.
  • the enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
  • activation, enhancement, upregulation, overexpression, and increase may include those that exhibit an activity that was not originally possessed, or those that exhibit enhanced activity compared to intrinsic activity or activity before modification.
  • the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation when the character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”.
  • “Enhancement”, “upregulation”, “overexpression” or “increase” of the activity of a polypeptide compared to its intrinsic activity means the activity and/or concentration (expression amount) is improved.
  • the enhancement can be achieved by introducing a foreign polypeptide or by enhancing the activity and/or concentration (expression level) of an endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from an increase in the activity level, expression level, or amount of a product released from the corresponding polypeptide.
  • Enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as the activity of the target polypeptide can be enhanced compared to the microorganism before transformation. Specifically, it may be using genetic engineering and / or protein engineering, which is well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
  • modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide eg, modification of the polynucleotide sequence of the polypeptide gene to encode the modified polypeptide to enhance the activity of the polypeptide
  • It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
  • the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introducing into the host cell a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the corresponding polypeptide is operably linked. it may be Alternatively, it may be achieved by introducing one copy or two or more copies of a polynucleotide encoding the corresponding polypeptide into the chromosome of the host cell.
  • the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome of the host cell into the host cell, but is not limited thereto.
  • the vector is as described above.
  • the expression control region may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating termination of transcription and translation.
  • the original promoter may be replaced with a strong promoter, but is not limited thereto.
  • Examples of known strong promoters include the CJ1 to CJ7 promoter (US Patent US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but are not limited thereto.
  • Modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another initiation codon with a higher polypeptide expression rate than the endogenous initiation codon. It may be substituted, but is not limited thereto.
  • Modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide.
  • the combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
  • the replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
  • the vector used at this time may further include a selection marker for checking whether the chromosome is inserted.
  • the selectable marker is as described above.
  • Introduction of a foreign polynucleotide exhibiting the activity of the polypeptide may be introduction of a foreign polynucleotide encoding a polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
  • the foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
  • the method used for the introduction can be performed by appropriately selecting a known transformation method by a person skilled in the art, and expression of the introduced polynucleotide in a host cell can generate a polypeptide and increase its activity.
  • the codon optimization of the polynucleotide encoding the polypeptide is codon optimization of the endogenous polynucleotide to increase transcription or translation in the host cell, or optimization of the transcription or translation of the foreign polynucleotide in the host cell. It may be that the codons of this have been optimized.
  • Analyzing the tertiary structure of the polypeptide to select and modify or chemically modify the exposed site for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored, depending on the degree of sequence similarity. It may be to determine a template protein candidate according to the method, confirm the structure based on this, and modify or modify an exposed portion to be chemically modified to be modified or modified.
  • Such enhancement of polypeptide activity is an increase in the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or an increase in the amount of the product produced from the corresponding polypeptide. It may be, but is not limited thereto.
  • Modification of some or all of the polynucleotides in the microorganism of the present application is (a) genome editing using homologous recombination or genetic scissors (engineered nuclease, e.g., CRISPR-Cas9) using a vector for chromosomal insertion into the microorganism and / or (b) It may be induced by light and/or chemical treatment, such as ultraviolet light and radiation, but is not limited thereto.
  • a method of modifying part or all of the gene may include a method using DNA recombination technology.
  • a part or all of a gene may be deleted by injecting a nucleotide sequence or vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination.
  • the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
  • the strain of the present application may be a strain having biotin production ability.
  • class I type BirA or a polynucleotide encoding the same is introduced into a microorganism (parent strain) naturally having class II type BirA activity and/or a class
  • the activity of type II BirA is attenuated, and the biotin-producing ability may be increased and/or the microorganism may be endowed with the biotin-producing ability, but is not limited thereto.
  • the microorganism (strain) of the present application is a class I type of BirA, a polynucleotide encoding the same, and/or a vector containing the polynucleotide is introduced (transformed) and/or the activity of class II type BirA is It can include all microorganisms that are weakened and capable of producing biotin.
  • the microorganism of the present application is a natural wild-type microorganism or a biotin-producing microorganism in which class I type BirA, a polynucleotide encoding the same, and/or a vector containing the polynucleotide are introduced (transformed, or expressed).
  • the recombinant strain with increased biotin-producing ability may be a microorganism with increased biotin-producing ability compared to natural wild-type microorganisms or unmodified microorganisms (eg, class II type BirA-containing microorganisms), but is not limited thereto.
  • non-transformed microorganisms which are strains to be compared for an increase in the biotin-producing ability, are wild-type E. coli (e.g., W3110 strain), E. coli overexpressing the biotin operon derived from E.
  • coli wild-type Serratia marcescens, and Serratia marse It may be TA5027 (US 5374554 A; the entire document is incorporated herein by reference), a biotin-producing strain derived from sense, but is not limited thereto.
  • the recombinant strain with increased production capacity is about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, about 7% or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or
  • the recombinant strain having increased production (or production capacity) has biotin production (or production capacity) about 1.1 times, about 1.12 times or more, or about 1.13 times or more, compared to the parent strain before mutation or unmodified microorganisms. , 1.15 times or more, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, about 1.3 times or more, about 1.4 times or more, or about 1.5 times or more There is no, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased, but is not limited thereto.
  • the term “about” includes all ranges of ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc., and includes all ranges equivalent to or similar to the ranges following the term “about”. Not limited.
  • non-modified microorganism does not exclude strains containing mutations that may occur naturally in microorganisms, and is either a wild-type strain or a wild-type strain itself, or a change in character due to genetic mutation caused by natural or artificial factors. It may mean a strain before becoming.
  • the unmodified microorganism is attenuated class II type BirA and/or class I type BirA is not introduced or class II type BirA is attenuated and/or class I type BirA is introduced. It may mean the previous strain.
  • the "unmodified microorganism” may be used interchangeably with “strain before transformation”, “microorganism before transformation”, “non-transformation strain”, “non-transformation strain”, “non-transformation microorganism” or “reference microorganism”.
  • the microorganism may be a microorganism of the genus Escherichia sp., and the microorganism of the genus Escherichia may include Escherichia coli, Escherichia albertii , Escherichia faecalis , Escherichia Fergusonii ( Escherichia fergusonii ), Escherichia marmotae ( Escherichia marmotae ), Escherichia Louisiae ( Escherichia ruysiae ), Escherichia Senegalensis ( Escherichia senegalensis ), and the like. there is.
  • the microorganism may be a microorganism of the genus Serratia, and the microorganism of the genus Serratia includes Serratia marcescens , Serratia aquatilis , Serratia bockelmannii , and Serratia bozoensis.
  • Serratia bozhouensis Serratia entomophila ( Serratia entomophila ), Serratia picaria ( Serratia ficaria ), Serratia fonticola ( Serratia fonticola ), Serratia grimesii ( Serratia grimesii ), Serratia liquefaciens ( Serratia liquefaciens ), Serratia microhaemolytica , Serratia myotis ( Serratia myotis ), Serratia nematodiphilia ( Serratia nematodiphila ), Serratia duckjae ( Serratia oryzae ), Serratia plymuthica ( Serratia plymuthica ) It may be one or more selected from the group consisting of and the like.
  • the Corynebacterium genus strains include Corynebacterium glutamicum, Corynebacterium crudilactis , Corynebacterium deserti , Corynebacterium episi Ens ( Corynebacterium efficiens ), Corynebacterium callunae ( Corynebacterium callunae ), Corynebacterium stationis ( Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halotolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammonia Genes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans ( Corynebacterium imitans ), coryn
  • Microorganisms of the Mycobacterium genus include Mycobacterium smegmatis, Mycobacterium albicans , Mycobacterium album , Mycobacterium alsense , Mycobacterium Angelicum ( Mycobacterium angelicum ), Mycobacterium anthracenicu ( Mycobacterium anthracenicu ), Mycobacterium aquaticum ( Mycobacterium aquaticum ), Mycobacterium aquiterrae ( Mycobacterium aquiterrae ), Mycobacterium attenuatum ( Mycobacterium attenuatum ), Myco Bacterium arosiense, Mycobacterium leprae, Mycobacterium hekesonense, Mycobacterium helveticum , Mycobacterium hyorhinis ), Mycobacterium innocens ( Mycobacterium innocens ), Mycobacterium isoniacini ( Mycobacterium isoniacini ), Mycobacterium jacuzzi ( Mycobacterium jacuzzii ), Myco
  • Another aspect provides a composition for producing biotin, including the microorganism.
  • the composition for production may further include any suitable excipient commonly used in compositions for biotin production, and such excipients may include, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or It may be an isotonic agent or the like, but is not limited thereto.
  • excipients may include, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or It may be an isotonic agent or the like, but is not limited thereto.
  • Another aspect is introducing (eg, transforming) a recombinant vector comprising attenuated class II type BirA and/or class I type BirA, a polynucleotide encoding the same, and/or the polynucleotide into a microorganism It provides a method for increasing the biotin-producing ability of the microorganism or a method for imparting the biotin-producing ability to the microorganism.
  • Another aspect of the present application provides a biotin production method comprising culturing the microorganism of the present application in a medium.
  • culture means growing the microorganism of the present application under appropriately controlled environmental conditions.
  • the culture process of the present application may be performed according to suitable media and culture conditions known in the art. This culturing process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be batch, continuous and/or fed-batch, but is not limited thereto.
  • medium means a material in which nutrients necessary for culturing the microorganisms of the present application are mixed as main components, and supplies nutrients and growth factors, including water essential for survival and growth.
  • the medium and other culture conditions used for culturing the microorganisms of the present application can be any medium without particular limitation as long as it is a medium used for culturing ordinary microorganisms, but the microorganisms of the present application are suitable as carbon sources, nitrogen sources, personnel, and inorganic materials. It can be cultured while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing compounds, amino acids, and/or vitamins.
  • culture media for microorganisms can be found in the literature ["Manual of Methods for General Bacteriology” by the American Society for Bacteriology (Washington D.C., USA, 1981)] and the like.
  • Examples of the carbon source in the present application include carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, and maltose; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included.
  • natural organic nutrients such as starch hydrolysate, molasses, blackstrap molasses, rice winter, cassava, sorghum pomace and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (i.e. converted to reducing sugar).
  • Carbohydrates such as molasses
  • other carbon sources in an appropriate amount may be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but are not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, etc., organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolysate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine, etc.
  • organic nitrogen sources such as peptone, NZ-amine,
  • the number of persons may include monopotassium phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto.
  • the inorganic compound sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and amino acids, vitamins, and/or appropriate precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, it is not limited thereto.
  • the pH of the medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid and the like to the medium in an appropriate manner during the cultivation of the microorganism of the present application.
  • an antifoaming agent such as a fatty acid polyglycol ester.
  • oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without gas injection or nitrogen, hydrogen or carbon dioxide gas may be injected to maintain the anaerobic and non-aerobic state. It is not.
  • the culture temperature may be maintained at 20 to 45 ° C, specifically 25 to 40 ° C, and may be cultured for about 10 to 160 hours, but is not limited thereto.
  • Biotin produced by the culture of the present application may be secreted into the medium or remain in the cells.
  • the biotin production method of the present application includes preparing the microorganism of the present application, preparing a medium for culturing the microorganism, or a combination thereof (in any order), for example, the culture Prior to the step of doing, it may be further included.
  • the biotin production method of the present application may further include a step of recovering biotin from the culture medium (culture medium) or the microorganism.
  • the recovering step may be further included after the culturing step.
  • the recovery may be to collect desired biotin using a suitable method known in the art according to the microorganism culture method of the present application, for example, a batch, continuous, or fed-batch culture method.
  • a suitable method known in the art according to the microorganism culture method of the present application, for example, a batch, continuous, or fed-batch culture method.
  • centrifugation, filtration, treatment with a precipitating agent for crystallized proteins salting out method
  • extraction sonic disruption
  • ultrafiltration dialysis
  • molecular sieve chromatography gel filtration
  • adsorption chromatography ion exchange chromatography
  • affinity Various types of chromatography such as doe chromatography, HPLC, or a combination thereof may be used, and desired biotin may be recovered from a medium or microorganism using a suitable method known in the art.
  • the biotin production method of the present application may additionally include a purification step.
  • the purification may be performed using suitable methods known in the art.
  • the recovery step and the purification step are performed simultaneously (or sequentially) regardless of order, or simultaneously or integrated into one step. It can be performed, but is not limited thereto.
  • the microorganisms and the like of the present application are as described above.
  • Another aspect of the present application provides a use of the microorganism of the present application for biotin production.
  • the microorganisms and the like are as described above.
  • the activity of the endogenous class II type BirA is weakened, and the biotin production ability is increased by including the class I type BirA, so that a high yield of biotin can be produced.
  • Figure 1 shows the domain and origin of class I type and class II type BirA.
  • Figure 2 shows the results of measuring the growth rates of the control and strains of the present invention according to time in M9 minimal medium without biotin or M9 medium supplemented with biotin.
  • the birA gene (SEQ ID NO: 5) encoding the catalytic domain excluding the N-terminal DNA binding site (amino acid sequence 8 to 68) of Escherichia coli BirA (SEQ ID NO: 1) and the foreign birA gene were prepared separately. It was expressed with the known E. coli-derived cj1 promoter (Korean Patent Publication No. 10-2006-0068505; hereinafter, Pcj1, SEQ ID NO: 9).
  • cj1 promoter derived from E. coli
  • a vector for securing the birA gene was constructed.
  • a cj1 promoter fragment was obtained using E. coli W3110 as a template, birA upstream and downstream regions, and synthetic cj1 promoter DNA as a template.
  • VB7-1 SEQ ID NO: 10
  • VB7-2 SEQ ID NO: 11
  • SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 60 seconds, polymerization at 72 ° C for 30 seconds, and polymerization for 30 seconds. After repeating this twice, polymerization was performed at 72° C. for 5 minutes to obtain each fragment as a PCR product. The obtained PCR product was purified using QIAGEN's PCR Purification kit, and then a vector was constructed using the amplified upstream and downstream and cj1 promoter fragments.
  • the R6K origin-based gene replacement vector pSKH containing the sacB gene was digested with EcoRV restriction enzyme, and the prepared PCR product was subjected to Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) to construct a vector pSKH ⁇ birADB(E.co)::Pci1_ATG capable of expressing the birA gene encoding BirA with a missing N-terminal DNA binding site. did Cloning was performed by mixing Gibson Assembly Reagent and each gene fragment and preserving at 50° C. for 1 hour.
  • a vector with birA gene deletion and target gene insertion was constructed.
  • PCR was performed to obtain birA upstream and downstream regions using E. coli W3110 as a template. Specifically, using primers of VB7_7 (SEQ ID NO: 18) and VB7_8 (SEQ ID NO: 19) using E.
  • coli W3110 chromosomal DNA as a template, upstream regions of about 0.5 kb (SEQ ID NO: 20), VB7_9 (SEQ ID NO: 21) and VB7_10
  • a gene fragment of about 0.5 kb (SEQ ID NO: 23) in the downstream region was obtained through PCR using the primer of (SEQ ID NO: 22).
  • SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 60 seconds, polymerization at 72 ° C for 30 seconds, and polymerization for 30 seconds.
  • birA gene-defective vector pSKH ⁇ birA E.co
  • vectors into which birA genes derived from Mycobacterium smegmatis and Corynebacterium glutamicum were inserted including the previously known cj1 promoter were constructed.
  • a cj1 promoter fragment of about 0.3 kb was obtained through PCR using synthetic cj1 promoter DNA as a template and primers VB7_11 (SEQ ID NO: 24) and VB7_12 (SEQ ID NO: 25), A birA gene fragment of about 0.8 kb was obtained through PCR using primers VB7_13 (SEQ ID NO: 26) and VB7_14 (SEQ ID NO: 27) using Mycobacterium smegmatis MC2155 chromosomal DNA as a template (SEQ ID NO: 7 ) Likewise, in order to secure the birA gene derived from Corynebacterium glutamicum, including the cj1 promoter, about 0.3 kb of cj1 was obtained using primers VB7_11 (SEQ ID NO: 24) and VB7_15 (SEQ ID NO: 28) using synthetic cj1 promoter DNA as a template.
  • the promoter fragment was obtained through PCR, and a birA gene fragment of about 0.8 kb was obtained using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template and primers of VB7_16 (SEQ ID NO: 29) and VB7_17 (SEQ ID NO: 30). It was obtained through a PCR run (SEQ ID NO: 8).
  • the obtained DNA product was purified using QIAGEN's PCR Purification kit, and then the cj1 promoter, each birA gene fragment, and the pSKH ⁇ birA (E.co) vector cut with ScaI restriction enzyme were cloned using the Gibson assembly method to recombine Plasmids were obtained and named as pSKH ⁇ birA(E.co)::Pcj1_birA(M.sm) and SKH ⁇ birA(E.co)::Pcj1_birA(C.gl), respectively.
  • pSKH ⁇ birADB(E.co)::Pcj1_ATG, pSKH ⁇ birA(E.co)::Pcj1_birA(M.sm), and pSKH ⁇ birA(E.co)::Pcj1_birA(C.gl) obtained in Example 1 were each converted to E. coli wild type W3110.
  • CV04-0003 (W3110 ⁇ birADB(E.co)::Pcj1_ATG) and CV04-0004 (W3110 ⁇ birA(E.co): :Pcj1_birA(M.sm)) and CV04-0002 (W3110 ⁇ birA(E.co)::Pcj1_birA(C.gl)), respectively.
  • the birA gene was modified to encode BirA in which the N-terminal DNA binding site was disrupted on the E. coli chromosome, and in the CV04-0004 and CV04-0002 strains, the birA gene on the E.
  • coli chromosome was Mycobacterium smegmatis and It is a strain substituted with the birA gene derived from Corynebacterium glutamicum.
  • a PCR method using primers of VB7_18 (SEQ ID NO: 31) and VB7_19 (SEQ ID NO: 32) capable of amplifying the external regions of the upstream and downstream regions of the homologous recombination into which the gene was inserted, respectively, and genome sequencing were performed. Corresponding genetic manipulations were confirmed.
  • the growth rates of the wild-type E. coli strain and the recombinant strain were compared.
  • the cultured cells were inoculated in a 25 ml volume of M9 minimal medium without biotin or with 0.2 mg/L of biotin added so that the initial absorbance (Optical density 562 nm, O.D562) was 0.1 and kept at 37°C for 15 hours or more (overnight). , while culturing at 200 rpm, absorbance was measured in O.D562, and the results are shown in FIG. 2 .
  • the strain (CV04-0003) in which the wild-type birA gene of E. coli is replaced with the birA gene encoding BirA having a missing N-terminal DNA binding site has a higher E. coli birA gene than Mycobacterium smegmatis or
  • the CV04-0004 and CV04-0002 strains substituted with the birA gene derived from Corynebacterium glutamicum exhibited rapid growth rates even when biotin was not added, and all strains exhibited the same growth rate when biotin was added.
  • the CV04-0002 strain showed a high level of growth rate even when biotin was not added.
  • the birA gene was replaced with the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum.
  • the result of the increased growth rate of the strain shows that the activity of the BirA protein derived from Mycobacterium or Corynebacterium is more advantageous for biotin production than the activity of the BirA protein lacking the N-terminal DNA binding site in E. coli.
  • an overexpression vector was constructed using the bioABFCD gene containing both the E. coli biotin operon and the bioABFCD self-promoter based on the pCL1920 vector (GenBank No AB236930).
  • the bioABFCD operon gene was obtained by PCR using the E. coli W3110 chromosome as a template and a primer pair of VB7_20 (SEQ ID NO: 33) and VB7_21 (SEQ ID NO: 34).
  • SolgTM Pfu-X DNA polymerase was used as a polymerase for the PCR reaction, and as PCR amplification conditions, denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, polymerization at 72 ° C for 180 seconds After repeating 30 times, polymerization was performed at 72° C. for 10 minutes.
  • bioABFCD Esco
  • SEQ ID NO: 46 a 5020 bp wild-type E. coli bioABFCD operon gene fragment was obtained.
  • the obtained DNA product was purified using QIAGEN's PCR Purification kit, and then cloned with the pCL1920 vector treated with SmaI restriction enzyme and Gibson assembly method to obtain a recombinant plasmid, which was named pCL1920-bioABFCD (Eco).
  • Example 3 Three recombinant strains prepared in Example 3 using the biotin operon overexpression vector (pCL1920-bioABFCD (Eco)) prepared above were CV04-0003 (W3110 ⁇ birADB (E.co) :: Pcj1_ATG), CV04-0004 (W3110 ⁇ birA (E .co)::Pcj1_birA(M.sm)) and CV04-0002 (W3110 ⁇ birA(E.co)::Pcj1_birA(C.gl)) were respectively introduced using the thermal shock introduction method. As a control, an operon overexpression vector (pCL1920-bioABFCD (Eco)) was introduced into W3110.
  • Each strain was plated on LB solid medium and then cultured overnight in a 30° C. incubator.
  • the strain cultured overnight in LB solid medium was inoculated into 25 mL of a titer medium having the composition shown in Table 1 below, then cultured in an incubator at 30 ° C and 200 rpm for 40 hours, and the biotin concentration in the culture medium was measured by MS-MS method.
  • Table 1 a titer medium having the composition shown in Table 1 below
  • the biotin concentration in the culture medium was measured by MS-MS method.
  • the -0002/pCL1920-bioABFCD (Eco) strain showed significantly higher biotin production than E. coli W3110/pCL1920-bioABFCD (Eco) and E. coli CV04-0003/pCL1920-bioABFCD (Eco).
  • the birA gene-defective and foreign birA gene transduction vector were constructed using the chromosome of strain TA5027 as a template in the same manner as in Example 2 above.
  • upstream regions of about 0.5 kb (SEQ ID NO: 37), VB7_24 (SEQ ID NO: 38) and A gene fragment (SEQ ID NO: 40) of about 0.5 kb in the downstream region was obtained through PCR using primers of VB7_25 (SEQ ID NO: 39).
  • SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 60 seconds, polymerization at 72 ° C for 30 seconds, and polymerization for 30 seconds. After repeating this twice, a polymerization reaction was performed at 72° C. for 5 minutes to obtain.
  • the amplified birA upstream and downstream fragments and the pSKH vector were used for Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method was used to construct a vector pSKH ⁇ birA (S.ma) for birA gene deletion and target gene insertion.
  • a vector into which the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum was inserted including the previously known cj1 promoter was constructed.
  • a cj1 promoter fragment of about 0.3 kb was obtained through PCR using synthetic cj1 promoter DNA as a template and primers of VB7_26 (SEQ ID NO: 41) and VB7_12 (SEQ ID NO: 25).
  • a cj1 promoter of about 0.3 kb was obtained using primers VB7_26 (SEQ ID NO: 41) and VB7_15 (SEQ ID NO: 28) using the synthetic cj1 promoter DNA as a template.
  • the fragment was obtained through PCR, and a birA gene fragment of about 0.8 kb was subjected to PCR using primers VB7_16 (SEQ ID NO: 29) and VB7_28 (SEQ ID NO: 43) using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template. Obtained through practice.
  • the obtained DNA product was purified using QIAGEN's PCR Purification kit, and the cj1 promoter, each birA gene fragment, and the pSKH ⁇ birA (S.ma) vector cut with Sca I restriction enzyme were cloned by Gibson assembly method to obtain a recombinant plasmid. were obtained, and named pSKH ⁇ birA(S.ma)::Pcj1_birA(M.sm) and pSKH ⁇ birA(S.ma)::Pcj1_birA(C.gl), respectively.
  • the genetic manipulation was performed through PCR and genome sequencing using primers of VB7_29 (SEQ ID NO: 44) and VB7_30 (SEQ ID NO: 45) capable of amplifying the external regions of the upstream and downstream regions of the homologous recombination into which the gene was inserted, respectively. Confirmed.
  • the two strains prepared above, CV04-9991 and CV04-9992, and the TA5027 strain to be used as a control were plated on LB solid medium, and then cultured overnight in an incubator at 30 ° C.
  • the strain cultured overnight in LB solid medium was inoculated into 25 ml of titer medium having the composition shown in Table 3 below, and then cultured for 40 hours in an incubator at 30 ° C and 200 rpm, and the biotin concentration in the culture medium was analyzed by MS-MS method.
  • the results are shown in Table 4 below.
  • Cell growth was expressed as OD by measuring absorbance at 562 nm, and the consumption sugar was measured using a sugar analyzer (YSI 2900) to measure residual sugar and expressed as the difference from the initial input amount.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present application relates to a microorganism or a biotin production method using same, the microorganism having reduced activity of class II type, intrinsic BirA and comprising class I type BirA.

Description

클래스 I 타입의 BirA를 포함하는 미생물 및 이를 이용한 바이오틴 생산방법Microorganisms containing BirA of class I type and biotin production method using the same
본 출원은 클래스 I 타입의 BirA를 포함하는 미생물 또는 이를 이용한 바이오틴 생산방법에 관한 것이다.The present application relates to a microorganism containing BirA of class I type or a biotin production method using the same.
바이오틴(Biotin)은 세포 성장 및 단백질 생성, 활성에 중요한 역할을 하는 비타민 B군 (Vitamin B7)에 속하며, 동식물 그리고 미생물에 있어 필수적인 영양소이다. 황을 포함하는 1개의 링 구조가 또 다른 링 구조에 연결되어 있는 구조를 갖는 바이오틴은 멀티 카복실라제 (carboxylase)의 조효소로써 기능하며 포도당 대사를 비롯하여 아미노산과 지방산 대사 과정에서도 중요한 역할을 수행한다. Biotin belongs to vitamin B7, which plays an important role in cell growth, protein production, and activity, and is an essential nutrient for animals, plants, and microorganisms. Biotin, which has a structure in which one sulfur-containing ring structure is connected to another ring structure, functions as a coenzyme for multi-carboxylase and plays an important role in glucose metabolism as well as amino acid and fatty acid metabolism.
바이오틴은 많은 미생물 종이 생합성을 할 수 있는데 반해 대부분의 동물들은 스스로 합성할 수 없기 때문에 필수 비타민으로 분류되어 식품이나 사료 첨가제, 혹은 다른 의약품의 합성 및 생산의 원료로 이용되는 등 그 유용성이 매우 큰 물질이다. 특히 최근에는 항생제 규제확대로 인한 비타민 수요가 증가되는 추세를 보이며 판가가 점차 상승되고 있다. 시장에 판매되고 있는 대부분의 바이오틴은 다단계 화학 공법을 통한 생산으로만 진행되고 있어 필환경 시대가 도래한 현재 생물학적 생산 기술공법에 대한 요구도가 높아지고 있다. 그러나, 생물학적 생산 기술공법은 2000년대 이후 진보된 문헌이나 특허가 거의 없는 것으로 보이며, 생산 효율도 높지 않다. 따라서, 바이오틴의 생물학적 생산 기술공법을 다수 확보하는 것은 중요하다.Biotin can be biosynthesized by many microbial species, but most animals cannot synthesize it themselves, so it is classified as an essential vitamin and is a very useful substance, such as being used as a food or feed additive, or as a raw material for the synthesis and production of other medicines. am. In particular, the demand for vitamins is increasing due to the expansion of antibiotic regulations, and the selling price is gradually rising. Most of the biotin sold on the market is being produced only through multi-step chemical methods, so the demand for biological production technology is increasing in the era of environmental protection. However, the biological production technology seems to have little advanced literature or patents since the 2000s, and the production efficiency is not high. Therefore, it is important to secure a number of biotin biological production technologies.
이러한 배경 하에 바이오틴 생산능 증가를 위한 연구가 여전히 필요한 실정이다.Under this background, research for increasing biotin production capacity is still required.
본 출원의 하나의 목적은 클래스 II 타입의 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물을 제공하는 것이고, 상기 미생물은 바이오틴 생산능을 갖는 것일 수 있다. One object of the present application is to provide a microorganism of the genus Escherichia or Serratia sp., in which the activity of BirA of class II type is attenuated and the activity of BirA of class I type is attenuated, , The microorganism may have a biotin-producing ability.
본 출원의 다른 하나의 목적은 상기 미생물을 포함하는 바이오틴 생산용 조성물을 제공하는 것이다. Another object of the present application is to provide a composition for producing biotin containing the microorganism.
본 출원의 또 다른 하나의 목적은 상기 미생물을 배지에서 배양하는 단계를 포함하는, 바이오틴 생산방법을 제공하는 것이다.Another object of the present application is to provide a method for producing biotin, including culturing the microorganism in a medium.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.A detailed description of this is as follows. Meanwhile, each description and embodiment disclosed in this application may also be applied to each other description and embodiment. That is, all combinations of various elements disclosed in this application fall within the scope of this application. In addition, the scope of the present application is not to be construed as being limited by the specific descriptions described below. In addition, a number of papers and patent documents are referenced throughout this specification and their citations are indicated. The contents of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly describe the level of the technical field to which the present invention belongs and the contents of the present invention.
본 출원에서 용어, "균주(또는, 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.In this application, the term "strain (or microorganism)" includes both wild-type microorganisms and naturally or artificially genetically modified microorganisms, and causes such as insertion of foreign genes or enhancement or inactivation of endogenous gene activity. As a microorganism whose specific mechanism is attenuated or enhanced due to, it may be a microorganism containing genetic modification for the production of a desired polypeptide, protein or product.
본 출원에서 “벡터"는 적합한 숙주 내에서 목적 폴리펩티드(예를 들면, 클래스 I 타입의 BirA)를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.In the present application, "vector" is an expression encoding a target polypeptide operably linked to a suitable expression control region (or expression control sequence) so as to express the target polypeptide (eg, class I type BirA) in a suitable host. The expression control region may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences that control the termination of transcription and translation After transformation into a suitable host cell, the vector can replicate or function independently of the host genome, and can integrate into the genome itself.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.Vectors used in the present application are not particularly limited, and any vectors known in the art may be used. Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors , pBluescriptII-based, pGEM-based, pTZ-based, pCL-based, pET-based, etc. can be used. Specifically, pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.For example, a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for chromosomal insertion into a cell. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker for determining whether the chromosome is inserted may be further included. The selectable marker is used to select cells transformed with a vector, that is, to determine whether a target nucleic acid molecule has been inserted, and can exhibit selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. markers may be used. In an environment treated with a selective agent, only cells expressing the selectable marker survive or exhibit other expression traits, so transformed cells can be selected.
본 출원에서, 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.In this application, the term "transformation" means introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell. As long as the transformed polynucleotide can be expressed in the host cell, it may be inserted into and located in the chromosome of the host cell or located outside the chromosome. In addition, the polynucleotide includes DNA and/or RNA encoding a polypeptide of interest. The polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a genetic construct containing all elements required for self-expression. The expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replication. In addition, the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence necessary for expression in the host cell, but is not limited thereto.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 폴리뉴클레오티드(예를 들면, 클래스 I 타입의 BirA)의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.In addition, the term "operably linked" in the above means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates the transcription of the object polynucleotide (eg, class I type BirA) of the present application. means there is
이하, 본 출원을 상세히 설명한다. Hereinafter, this application will be described in detail.
상기 목적을 달성하기 위한 본 출원의 일 양상은 클래스 I 타입의 BirA을 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물을 제공한다. 상기 미생물은 클래스 II 타입의 BirA의 활성이 약화된 것일 수 있다. One aspect of the present application for achieving the above object provides a microorganism of the genus Escherichia or Serratia sp., including BirA of class I type. The microorganism may be one in which the activity of class II type BirA is weakened.
본 출원에서, “클래스 II 타입의 BirA”는 N terminal 위치에 DNA binding domain을 포함하고 있어 바이오틴 생합성 유전자 및 수송 유전자의 전사 조절 기능을 포함하고 있는 바이오틴 단백질 리가아제(Biotin protein ligase; BPL)를 의미할 수 있다. 본 출원에서 상기 클래스 II 타입의 BirA는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. AP009048.1, 또는 NP418404.1 등 일 수 있다. 일 예에서, 상기 클래스 II 타입의 BirA은 에스케리키아 속 또는 세라티아 속 미생물 유래의 birA 유전자에 의해 코딩되는 것일 수 있다.In this application, “class II type BirA” refers to biotin protein ligase (BPL) that contains a DNA binding domain at the N-terminal position and thus includes transcriptional control functions of biotin biosynthesis genes and transport genes. can do. In this application, the class II type of BirA can obtain its sequence from NCBI's GenBank, a known database, for example, GenBank Accession No. AP009048.1, or NP418404.1 or the like. In one example, the class II type of BirA may be encoded by a birA gene derived from a microorganism of the genus Escherichia or the genus Serratia.
본 출원에서, “클래스 I 타입의 BirA”는 조절 도메인을 포함하지 않은 오로지 바이오틴 리가아제(biotin ligase)의 기능만 갖는 단백질을 의미할 수 있다. 본 출원에서 상기 클래스 I 타입의 BirA는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. NZ_CP025534.1 또는 NP599941.1 등 일 수 있다. 일 예에서, 상기 클래스 I 타입의 BirA은 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자에 의해 코딩되는 것일 수 있다.In the present application, "class I type BirA" may refer to a protein having only the function of biotin ligase without including a regulatory domain. In this application, the class I type of BirA can obtain its sequence from NCBI's GenBank, a known database, for example, GenBank Accession No. It may be NZ_CP025534.1 or NP599941.1, etc. In one example, the class I type of BirA may be encoded by a birA gene derived from a microorganism of the genus Mycobacterium or the genus Corynebacterium.
본 출원에서 용어, 폴리펩티드의 “약화”는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다. In the present application, the term "attenuation" of a polypeptide is a concept that includes both decreased activity or no activity compared to intrinsic activity. The attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.
상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “불활성화, 결핍, 감소, 하향조절, 저하, 감쇠”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다. The attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide originally possessed by the microorganism due to mutation of the polynucleotide encoding the polypeptide, inhibition of gene expression of the polynucleotide encoding it, or translation into a polypeptide. When the overall level and/or concentration (expression level) of the polypeptide in the cell is lower than that of the native strain due to inhibition of translation, etc., when the polynucleotide is not expressed at all, and/or when the polynucleotide is expressed Even if there is no activity of the polypeptide, it may also be included. The "intrinsic activity" refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”. "Inactivation, depletion, reduction, downregulation, reduction, attenuation" of the activity of a polypeptide compared to its intrinsic activity means that it is lower than the activity of a specific polypeptide originally possessed by the parent strain or non-transformed microorganism before transformation.
이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by applying various methods well known in the art (e.g., Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
구체적으로, 본 출원의 폴리펩티드의 약화는Specifically, attenuation of the polypeptide of the present application
1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;1) deletion of all or part of the gene encoding the polypeptide;
2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;2) modification of the expression control region (or expression control sequence) to reduce the expression of the gene encoding the polypeptide;
3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);3) modification of the amino acid sequence constituting the polypeptide (eg, deletion/substitution/addition of one or more amino acids on the amino acid sequence) such that the activity of the polypeptide is eliminated or attenuated;
4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형(예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);4) modification of the sequence of a gene encoding a polypeptide such that the activity of the polypeptide is eliminated or attenuated (e.g., one or more nucleotides on the nucleotide sequence of the polypeptide gene to encode a modified polypeptide such that the activity of the polypeptide is eliminated or attenuated) deletion / substitution / addition of);
5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;5) modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide;
6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;6) introduction of an antisense oligonucleotide (eg, antisense RNA) that binds complementarily to the transcript of the gene encoding the polypeptide;
7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;7) addition of a sequence complementary to the Shine-Dalgarno sequence at the front end of the Shine-Dalgarno sequence of the gene encoding the polypeptide to form a secondary structure that cannot be attached to ribosomes;
8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는8) addition of a promoter transcribed in the opposite direction to the 3' end of the ORF (open reading frame) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE); or
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
예컨대, for example,
상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.1) Deletion of part or all of the gene encoding the polypeptide may include removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.In addition, the above 2) modification of the expression control region (or expression control sequence) is a deletion, insertion, non-conservative or conservative substitution, or a combination thereof, resulting in mutations in the expression control region (or expression control sequence), or weaker It may be a replacement with an active sequence. The expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling termination of transcription and translation.
또한, 상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.In addition, the 3) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another initiation codon with a lower polypeptide expression rate than the endogenous initiation codon. It may be substituted with a sequence, but is not limited thereto.
또한, 상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.In addition, the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above can be a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide. Or a combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto. For example, expression of a gene may be inhibited or attenuated by introducing a mutation in a polynucleotide sequence to form a stop codon, but is not limited thereto.
상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.6) Introduction of an antisense oligonucleotide (e.g., antisense RNA) complementary to the transcript of the gene encoding the polypeptide is described, for example, in Weintraub, H. et al., Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.7) Addition of a sequence complementary to the Shine-Dalgarno sequence to the front end of the Shine-Dalgarno sequence of a gene encoding a polypeptide to form a secondary structure to which ribosomes cannot attach is mRNA translation may be disabled or slowed down.
상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.8) Addition of a promoter transcribed in the opposite direction to the 3' end of the ORF (open reading frame) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE) is antisense complementary to the transcript of the gene encoding the polypeptide. It could be making nucleotides and attenuating their activity.
일 예에서, 상기 미생물은 내재적 birA 유전자가 결실되고, 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자가 도입된 것일 수 있다. In one example, the microorganism may be one in which the endogenous birA gene is deleted and the birA gene derived from a microorganism of the genus Mycobacterium or the genus Corynebacterium is introduced.
일 예에서, 상기 미생물은 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 바이오틴 신타제(Biotin synthase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된 것일 수 있다. 일 예에서, bioABFCD 오페론(예를 들면, 대장균 유래의 bioABFCD 오페론)이 도입된 것일 수 있다. 일 예에서 상기 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제, 바이오틴 신타제, 8-아미노-7-옥소노나노에이트 신타아제, 말로닐-ACP O-메틸트랜스퍼라제, 및 데티오바이오틴 신테타제는 세라티아 속(Serratia sp.; 예를 들면 세라티아 마르세센스(Serratia marcescens)) 또는 에스케리키아 속(Escherichia sp.; 예를 들면 대장균(Escherichia coli)) 미생물 유래일 수 있다.In one example, the microorganism is 7,8-diamino-pelargonic acid aminotransferase (7,8-diamino-pelargonic acid aminotransferase), biotin synthase (Biotin synthase), 8-amino-7-oxononanoate At least one activity selected from the group consisting of synthase (8-amino-7-oxononanoate synthase), malonyl-ACP O-methyltransferase, and dethiobiotin synthetase This may be further enhanced. In one example, the bioABFCD operon (eg, the bioABFCD operon derived from Escherichia coli) may be introduced. In one embodiment, the 7,8-diamino-pelargonic acid aminotransferase, biotin synthase, 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and dethiobiotin synthase The taje may be derived from a microorganism of the genus Serratia sp.; eg Serratia marcescens ( Serratia marcescens ) or Escherichia sp.; eg Escherichia coli .
본 출원에서, “바이오틴 신타제(biotin synthase; EC 2.8.1.6)”는 데티오바이오틴(dethiobiotin, DTB;)로부터 바이오틴으로의 전환을 촉매하는 효소로서, 라디칼 메커니즘을 이용하여, 데티오바이오틴을 티올화(thiolate)하여 바이오틴으로 전환하는 SAM 의존 효소를 의미할 수 있다. 상기 바이오틴 신타제는 상기 활성을 갖는 효소면 미생물 유래에 상관없이 포함될 수 있다. 상기 바이오틴 신타제는 BioB 단백질 또는 BioB와 혼용하여 사용될 수 있다.In this application, "biotin synthase (EC 2.8.1.6)" is an enzyme that catalyzes the conversion of dethiobiotin (DTB;) into biotin, using a radical mechanism to convert dethiobiotin to thiol. It may refer to a SAM-dependent enzyme that thiolates and converts to biotin. The biotin synthase may be included regardless of microbial origin as long as the enzyme has the activity. The biotin synthase may be used in combination with BioB protein or BioB.
본 출원에서, “7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase)”는 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase)의 활성으로 생산된 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA)에 SAM 또는 라이신 같은 아민기를 가진 효소 특이적 특정 물질로부터 얻은 alpha-amino group을 결합시켜 7,8-diamino-pelargonic acid (DAPA)를 생성하는 단백질을 의미할 수 있다. In this application, “7,8-diamino-pelargonic acid aminotransferase” refers to 8-amino-7-oxononanoate synthase (8-amino-7- oxononanoate synthase) to 8-amino-7-oxononanoate (7-Keto-8-aminopelargonic acid; KAPA) produced by binding an alpha-amino group obtained from an enzyme-specific substance with an amine group such as SAM or lysine to form 7 It may mean a protein that generates ,8-diamino-pelargonic acid (DAPA).
본 출원에서, “8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase)”는 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP)와 알라닌의 탈탄산 축합반응을 촉매하는 단백질을 의미할 수 있다. In this application, “8-amino-7-oxononanoate synthase” catalyzes the decarboxylation condensation reaction of 6-carboxyhexanoyl-CoA (Pimeloyl-coA/ACP) and alanine. It can mean a protein that
본 출원에서, “말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase 또는 Malonyl-[acyl-carrier protein] O-methyltransferase)”는 지방산 생합성 경로 중의 탄소 중합체를 pimeloyl-coA/ACP 로 전환하는 효소로 malonyl thioester의 카복시 그룹을 메틸 에스터화 시키는 단백질을 의미할 수 있다. In this application, “malonyl-ACP O-methyltransferase (Malonyl-ACP O-methyltransferase or Malonyl-[acyl-carrier protein] O-methyltransferase)” converts carbon polymers in the fatty acid biosynthetic pathway to pimeloyl-coA/ACP It can mean a protein that methyl esterifies the carboxy group of malonyl thioester.
본 출원에서, “데티오바이오틴 신테타제(Dethiobiotin synthetase)”는 바이오틴 생산 전구물질인 데티오바이오틴을 7,8-diamino-pelargonic acid (DAPA)로부터 전환시키는 효소를 의미할 수 있다. In the present application, “Dethiobiotin synthetase” may refer to an enzyme that converts dethiobiotin, a biotin production precursor, from 7,8-diamino-pelargonic acid (DAPA).
본 출원에서 용어, 폴리펩티드(단백질) 활성의 “강화”는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “강화”, “상향 조절”, “과발현” 또는 “증가”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다. As used herein, the term "enhancement" of polypeptide (protein) activity means that the activity of the polypeptide is increased compared to the intrinsic activity. The enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase. Herein, activation, enhancement, upregulation, overexpression, and increase may include those that exhibit an activity that was not originally possessed, or those that exhibit enhanced activity compared to intrinsic activity or activity before modification. The "intrinsic activity" refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation when the character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”. "Enhancement", "upregulation", "overexpression" or "increase" of the activity of a polypeptide compared to its intrinsic activity means the activity and/or concentration (expression amount) is improved.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.The enhancement can be achieved by introducing a foreign polypeptide or by enhancing the activity and/or concentration (expression level) of an endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from an increase in the activity level, expression level, or amount of a product released from the corresponding polypeptide.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).Enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as the activity of the target polypeptide can be enhanced compared to the microorganism before transformation. Specifically, it may be using genetic engineering and / or protein engineering, which is well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
구체적으로, 본 출원의 폴리펩티드의 강화는Specifically, enrichment of the polypeptides of the present application
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피 수 증가; 1) increase in intracellular copy number of a polynucleotide encoding a polypeptide;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체; 2) replacing the gene expression control region on the chromosome encoding the polypeptide with a highly active sequence;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형; 3) modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;4) modification of the amino acid sequence of the polypeptide to enhance the activity of the polypeptide;
5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);5) modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide (eg, modification of the polynucleotide sequence of the polypeptide gene to encode the modified polypeptide to enhance the activity of the polypeptide);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입; 6) introduction of a foreign polypeptide that exhibits the activity of the polypeptide or a foreign polynucleotide encoding the same;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화; 7) codon optimization of polynucleotides encoding the polypeptide;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는8) Analysis of the tertiary structure of the polypeptide to select exposed sites and modify or chemically modify them; or
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
보다 구체적으로,More specifically,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피 수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.1) The increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introducing into the host cell a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the corresponding polypeptide is operably linked. it may be Alternatively, it may be achieved by introducing one copy or two or more copies of a polynucleotide encoding the corresponding polypeptide into the chromosome of the host cell. The introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome of the host cell into the host cell, but is not limited thereto. The vector is as described above.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.2) Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a highly active sequence, for example, deletion, insertion, non-conservative or Conservative substitutions or combinations thereof may result in mutations in the sequence, or replacement with sequences having stronger activity. The expression control region, but is not particularly limited thereto, may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating termination of transcription and translation. For example, the original promoter may be replaced with a strong promoter, but is not limited thereto.
공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.Examples of known strong promoters include the CJ1 to CJ7 promoter (US Patent US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but are not limited thereto.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.3) Modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another initiation codon with a higher polypeptide expression rate than the endogenous initiation codon. It may be substituted, but is not limited thereto.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동 재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.Modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide. The combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto. The replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto. The vector used at this time may further include a selection marker for checking whether the chromosome is inserted. The selectable marker is as described above.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.6) Introduction of a foreign polynucleotide exhibiting the activity of the polypeptide may be introduction of a foreign polynucleotide encoding a polypeptide exhibiting the same/similar activity as the polypeptide into a host cell. The foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide. The method used for the introduction can be performed by appropriately selecting a known transformation method by a person skilled in the art, and expression of the introduced polynucleotide in a host cell can generate a polypeptide and increase its activity.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.7) The codon optimization of the polynucleotide encoding the polypeptide is codon optimization of the endogenous polynucleotide to increase transcription or translation in the host cell, or optimization of the transcription or translation of the foreign polynucleotide in the host cell. It may be that the codons of this have been optimized.
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.8) Analyzing the tertiary structure of the polypeptide to select and modify or chemically modify the exposed site, for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored, depending on the degree of sequence similarity. It may be to determine a template protein candidate according to the method, confirm the structure based on this, and modify or modify an exposed portion to be chemically modified to be modified or modified.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.Such enhancement of polypeptide activity is an increase in the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or an increase in the amount of the product produced from the corresponding polypeptide. It may be, but is not limited thereto.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학 물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다. Modification of some or all of the polynucleotides in the microorganism of the present application is (a) genome editing using homologous recombination or genetic scissors (engineered nuclease, e.g., CRISPR-Cas9) using a vector for chromosomal insertion into the microorganism and / or (b) It may be induced by light and/or chemical treatment, such as ultraviolet light and radiation, but is not limited thereto. A method of modifying part or all of the gene may include a method using DNA recombination technology. For example, a part or all of a gene may be deleted by injecting a nucleotide sequence or vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination. The injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
일 예에 따른 본 출원의 균주는 바이오틴 생산능을 가진 균주일 수 있다.According to one embodiment, the strain of the present application may be a strain having biotin production ability.
본 출원의 균주는 자연적으로 클래스 II 타입의 BirA의 활성을 가지고 있는 미생물(모균주)에 클래스 I 타입의 BirA 또는 이를 코딩하는 폴리뉴클레오티드(또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입 및/또는 클래스 II 타입의 BirA의 활성이 약화되어, 바이오틴 생산능이 증가 및/또는 바이오틴 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다.In the strain of the present application, class I type BirA or a polynucleotide encoding the same (or a vector containing the polynucleotide) is introduced into a microorganism (parent strain) naturally having class II type BirA activity and/or a class The activity of type II BirA is attenuated, and the biotin-producing ability may be increased and/or the microorganism may be endowed with the biotin-producing ability, but is not limited thereto.
일 예로, 본 출원의 미생물(균주)은 클래스 I 타입의 BirA, 이를 코딩하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 벡터가 도입(형질전환) 및/또는 클래스 II 타입의 BirA의 활성이 약화되고, 바이오틴을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 미생물은 천연의 야생형 미생물 또는 바이오틴을 생산하는 미생물에 클래스 I 타입의 BirA, 이를 코딩하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 벡터가 도입(형질전환, 또는 발현); 및/또는 클래스 II 타입의 BirA의 활성이 약화되어, 바이오틴 생산능이 증가된 재조합 균주일 수 있다. 상기 바이오틴 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 비변형 미생물(예를 들면, 클래스 II 타입의 BirA를 포함하는 미생물)에 비하여 바이오틴 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 바이오틴 생산능의 증가 여부를 비교하는 대상 균주인, 비변형 미생물은 야생형 대장균 (예를 들면, W3110 균주), 대장균 유래 바이오틴 오페론이 과발현된 대장균, 야생형 세라티아 마르세센스, 세라티아 마르세센스 유래 바이오틴 생산 균주인 TA5027(US 5374554 A; 문헌 전체가 본 명세서에 참조로서 포함됨)일 수 있으나, 이에 제한되지 않는다.For example, the microorganism (strain) of the present application is a class I type of BirA, a polynucleotide encoding the same, and/or a vector containing the polynucleotide is introduced (transformed) and/or the activity of class II type BirA is It can include all microorganisms that are weakened and capable of producing biotin. For example, the microorganism of the present application is a natural wild-type microorganism or a biotin-producing microorganism in which class I type BirA, a polynucleotide encoding the same, and/or a vector containing the polynucleotide are introduced (transformed, or expressed). ); and/or a recombinant strain in which the activity of class II type BirA is attenuated and the biotin-producing ability is increased. The recombinant strain with increased biotin-producing ability may be a microorganism with increased biotin-producing ability compared to natural wild-type microorganisms or unmodified microorganisms (eg, class II type BirA-containing microorganisms), but is not limited thereto. . For example, non-transformed microorganisms, which are strains to be compared for an increase in the biotin-producing ability, are wild-type E. coli (e.g., W3110 strain), E. coli overexpressing the biotin operon derived from E. coli, wild-type Serratia marcescens, and Serratia marse It may be TA5027 (US 5374554 A; the entire document is incorporated herein by reference), a biotin-producing strain derived from sense, but is not limited thereto.
일 예로, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물의 바이오틴 생산량(또는 생산능)에 비해 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 30% 이상, 약 31% 이상, 약 32% 이상, 약 33% 이상, 약 34% 이상, 또는 약 35% 이상+ (상한값은 특별한 제한은 없으며, 예컨대, 약 500% 이하, 약 400% 이하, 약 300% 이하, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 또는 약 35% 이하일 수 있음) 증가된 것일 수 있다. 다른 예에서, 상기 생산량(또는 생산능)이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, 바이오틴 생산량(또는 생산능)이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.25배 이상, 약 1.3배 이상, 약 1.4배 이상, 또는 약 1.5배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다. 상기 용어 “약(about)”은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.For example, the recombinant strain with increased production capacity is about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, about 7% or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 30% or more, about 31% or more, about 32% or more, about 33% or more, about 34% or more, or about 35% or more+ No, for example, about 500% or less, about 400% or less, about 300% or less, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, or about 35% or less) may be increased. In another example, the recombinant strain having increased production (or production capacity) has biotin production (or production capacity) about 1.1 times, about 1.12 times or more, or about 1.13 times or more, compared to the parent strain before mutation or unmodified microorganisms. , 1.15 times or more, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, about 1.3 times or more, about 1.4 times or more, or about 1.5 times or more There is no, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased, but is not limited thereto. The term “about” includes all ranges of ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc., and includes all ranges equivalent to or similar to the ranges following the term “about”. Not limited.
본 출원에서, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 클래스 II 타입의 BirA를 약화 및/또는 클래스 I 타입의 BirA가 도입되지 않거나 클래스 II 타입의 BirA를 약화 및/또는 클래스 I 타입의 BirA가 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 “변형 전 균주”, “변형 전 미생물”, “비변이 균주”, “비변형 균주”, “비변이 미생물” 또는 “기준 미생물”과 혼용될 수 있다.In this application, "non-modified microorganism" does not exclude strains containing mutations that may occur naturally in microorganisms, and is either a wild-type strain or a wild-type strain itself, or a change in character due to genetic mutation caused by natural or artificial factors. It may mean a strain before becoming. For example, the unmodified microorganism is attenuated class II type BirA and/or class I type BirA is not introduced or class II type BirA is attenuated and/or class I type BirA is introduced. It may mean the previous strain. The "unmodified microorganism" may be used interchangeably with "strain before transformation", "microorganism before transformation", "non-transformation strain", "non-transformation strain", "non-transformation microorganism" or "reference microorganism".
상기 미생물은 에스케리키아 속(Escherichia sp.) 미생물일 수 있으며, 상기 에스케리키아 속 미생물은 대장균(Escherichia coli), 에세리키아 알버티 (Escherichia albertii), 에세리키아 패컬리스 (Escherichia faecalis), 에세리키아 페르구소니 (Escherichia fergusonii), 에세리키아 마모태 (Escherichia marmotae), 에세리키아 루이지애 (Escherichia ruysiae), 에세리키아 세네갈렌시스 (Escherichia senegalensis) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.The microorganism may be a microorganism of the genus Escherichia sp., and the microorganism of the genus Escherichia may include Escherichia coli, Escherichia albertii , Escherichia faecalis , Escherichia Fergusonii ( Escherichia fergusonii ), Escherichia marmotae ( Escherichia marmotae ), Escherichia Louisiae ( Escherichia ruysiae ), Escherichia Senegalensis ( Escherichia senegalensis ), and the like. there is.
상기 상기 미생물은 세라티아 속 미생물일 수 있으며, 상기 세라티아 속 미생물은 세라티아 마르세센스(Serratia marcescens), 세라티아 아쿠아틸리스 (Serratia aquatilis), 세라티아 보클마니 (Serratia bockelmannii), 세라티아 보조엔시스 (Serratia bozhouensis), 세라티아 엔토모필라 (Serratia entomophila), 세라티아 피카리아 (Serratia ficaria), 세라티아 폰티콜라 (Serratia fonticola), 세라티아 그리메시 (Serratia grimesii), 세라티아 리쿼파시엔스 (Serratia liquefaciens), 세라티아 마이크로해모리티카 (Serratia microhaemolytica), 세라티아 미오티스 (Serratia myotis), 세라티아 네마토디필리아 (Serratia nematodiphila), 세라티아 오리재 (Serratia oryzae), 세라티아 플리무티카 (Serratia plymuthica) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.The microorganism may be a microorganism of the genus Serratia, and the microorganism of the genus Serratia includes Serratia marcescens , Serratia aquatilis , Serratia bockelmannii , and Serratia bozoensis. ( Serratia bozhouensis ), Serratia entomophila ( Serratia entomophila ), Serratia picaria ( Serratia ficaria ), Serratia fonticola ( Serratia fonticola ), Serratia grimesii ( Serratia grimesii ), Serratia liquefaciens ( Serratia liquefaciens ), Serratia microhaemolytica , Serratia myotis ( Serratia myotis ), Serratia nematodiphilia ( Serratia nematodiphila ), Serratia duckjae ( Serratia oryzae ), Serratia plymuthica ( Serratia plymuthica ) It may be one or more selected from the group consisting of and the like.
상기 코리네박테리움 속 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris), 코리네박테리움 플라베스센스(Corynebacterium flavescens) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. The Corynebacterium genus strains include Corynebacterium glutamicum, Corynebacterium crudilactis , Corynebacterium deserti , Corynebacterium episi Ens ( Corynebacterium efficiens ), Corynebacterium callunae ( Corynebacterium callunae ), Corynebacterium stationis ( Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halotolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammonia Genes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans ( Corynebacterium imitans ), coryne It may be one or more species selected from the group consisting of Corynebacterium testudinoris , Corynebacterium flavescens , and the like.
상기 미코박테리움 속 미생물은 미코박테리움 스메그마티스(Mycobacterium smegmatis), 미코박테리움 알비칸스 (Mycobacterium albicans), 미코박테리움 알붐 (Mycobacterium album), 미코박테리움 알센스 (Mycobacterium alsense), 미코박테리움 안젤리쿰 (Mycobacterium angelicum), 미코박테리움 안타라세니쿠 (Mycobacterium anthracenicu), 미코박테리움 아쿠아티쿰 (Mycobacterium aquaticum), 미코박테리움 아퀴테래 (Mycobacterium aquiterrae), 미코박테리움 어테뉴아툼 (Mycobacterium attenuatum), 미코박테리움 아로시엔스 (Mycobacterium arosiense), 미코박테리움 레프래 (Mycobacterium leprae), 미코박테리움 헤케소넨스 (Mycobacterium heckeshornense), 미코박테리움 헬베티쿰 (Mycobacterium helveticum), 미코박테리움 효리니스 (Mycobacterium hyorhinis), 미코박테리움 이노센스 (Mycobacterium innocens), 미코박테리움 이소니아시니 (Mycobacterium isoniacini), 미코박테리움 자쿠지 (Mycobacterium jacuzzii), 미코박테리움 칸사시 (Mycobacterium kansasii), 미코박테리움 마리눔 (Mycobacterium marinum), 미코박테리움 튜버쿨로시스 (Mycobacterium tuberculosis) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. Microorganisms of the Mycobacterium genus include Mycobacterium smegmatis, Mycobacterium albicans , Mycobacterium album , Mycobacterium alsense , Mycobacterium Angelicum ( Mycobacterium angelicum ), Mycobacterium anthracenicu ( Mycobacterium anthracenicu ), Mycobacterium aquaticum ( Mycobacterium aquaticum ), Mycobacterium aquiterrae ( Mycobacterium aquiterrae ), Mycobacterium attenuatum ( Mycobacterium attenuatum ), Myco Bacterium arosiense, Mycobacterium leprae, Mycobacterium hekesonense, Mycobacterium helveticum , Mycobacterium hyorhinis ), Mycobacterium innocens ( Mycobacterium innocens ), Mycobacterium isoniacini ( Mycobacterium isoniacini ), Mycobacterium jacuzzi ( Mycobacterium jacuzzii ), Mycobacterium kansasii ( Mycobacterium kansasii ), Mycobacterium marinum ( Mycobacterium marinum ) , Mycobacterium tuberculosis ( Mycobacterium tuberculosis ) It may be one or more selected from the group consisting of the like.
N-말단에 DNA 결합 부위를 포함하지 않는 외래의 클래스 I 타입의 BirA를 포함 및/또는 내재적 클래스II 타입의 BirA의 활성이 약화된 일 예에 따른 미생물은 내재적으로 클래스 II 타입의 BirA를 포함하거나 N-말단 DNA 결합 부위(N-terminal DNA bindig domain) 결손시킨 클래스 II 타입의 BirA를 포함하는 경우 보다 바이오틴 미첨가 배지에서 배양시 생장속도가 빠르고/빠르거나, 바이오틴 생성능(또는 생산량)이 증가된 것일 수 있다. The microorganism according to an embodiment in which the activity of the endogenous class II type BirA is attenuated and/or contains exogenous class I type BirA that does not contain a DNA binding site at the N-terminus inherently contains class II type BirA, or When cultured in a non-biotin-added medium, the growth rate is faster and/or the biotin-producing ability (or production) is increased than in the case of containing Class II type BirA in which the N-terminal DNA bindig domain is deleted. it could be
다른 양상은 상기 미생물을 포함하는, 바이오틴 생산용 조성물을 제공한다.Another aspect provides a composition for producing biotin, including the microorganism.
일 예에서, 상기 생산용 조성물은 바이오틴 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.In one example, the composition for production may further include any suitable excipient commonly used in compositions for biotin production, and such excipients may include, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or It may be an isotonic agent or the like, but is not limited thereto.
다른 양상은 클래스 II 타입의 BirA를 약화 및/또는 클래스 I 타입의 BirA, 이를 암호화하는 폴리뉴클레오티드, 및/또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 미생물에 도입(예를 들면, 형질전환)시키는 단계를 포함하는, 상기 미생물의 바이오틴 생산능 증가 방법 또는 상기 미생물에 바이오틴 생산능을 부여하는 방법을 제공한다.Another aspect is introducing (eg, transforming) a recombinant vector comprising attenuated class II type BirA and/or class I type BirA, a polynucleotide encoding the same, and/or the polynucleotide into a microorganism It provides a method for increasing the biotin-producing ability of the microorganism or a method for imparting the biotin-producing ability to the microorganism.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물을 배지에서 배양하는 단계를 포함하는, 바이오틴 생산방법을 제공한다. Another aspect of the present application provides a biotin production method comprising culturing the microorganism of the present application in a medium.
본 출원에서, "배양"은 본 출원의 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.In the present application, "cultivation" means growing the microorganism of the present application under appropriately controlled environmental conditions. The culture process of the present application may be performed according to suitable media and culture conditions known in the art. This culturing process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be batch, continuous and/or fed-batch, but is not limited thereto.
본 출원에서, "배지"는 본 출원의 미생물을 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다. 구체적으로, 미생물에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)] 등에서 찾아볼 수 있다.In this application, "medium" means a material in which nutrients necessary for culturing the microorganisms of the present application are mixed as main components, and supplies nutrients and growth factors, including water essential for survival and growth. Specifically, the medium and other culture conditions used for culturing the microorganisms of the present application can be any medium without particular limitation as long as it is a medium used for culturing ordinary microorganisms, but the microorganisms of the present application are suitable as carbon sources, nitrogen sources, personnel, and inorganic materials. It can be cultured while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing compounds, amino acids, and/or vitamins. Specifically, culture media for microorganisms can be found in the literature ["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)] and the like.
본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.Examples of the carbon source in the present application include carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, and maltose; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included. In addition, natural organic nutrients such as starch hydrolysate, molasses, blackstrap molasses, rice winter, cassava, sorghum pomace and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (i.e. converted to reducing sugar). Carbohydrates such as molasses) may be used, and other carbon sources in an appropriate amount may be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but are not limited thereto.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.Examples of the nitrogen source include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, etc., organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolysate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The number of persons may include monopotassium phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto. As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and amino acids, vitamins, and/or appropriate precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, it is not limited thereto.
또한, 본 출원의 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.In addition, the pH of the medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid and the like to the medium in an appropriate manner during the cultivation of the microorganism of the present application. In addition, during cultivation, the formation of bubbles can be suppressed by using an antifoaming agent such as a fatty acid polyglycol ester. In addition, in order to maintain the aerobic state of the medium, oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without gas injection or nitrogen, hydrogen or carbon dioxide gas may be injected to maintain the anaerobic and non-aerobic state. It is not.
본 출원의 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃ 를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다. In the culture of the present application, the culture temperature may be maintained at 20 to 45 ° C, specifically 25 to 40 ° C, and may be cultured for about 10 to 160 hours, but is not limited thereto.
본 출원의 배양에 의하여 생산된 바이오틴은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.Biotin produced by the culture of the present application may be secreted into the medium or remain in the cells.
본 출원의 바이오틴 생산방법은, 본 출원의 미생물을 준비하는 단계, 상기 미생물을 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다. The biotin production method of the present application includes preparing the microorganism of the present application, preparing a medium for culturing the microorganism, or a combination thereof (in any order), for example, the culture Prior to the step of doing, it may be further included.
본 출원의 바이오틴 생산방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 상기 미생물로부터 바이오틴을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.The biotin production method of the present application may further include a step of recovering biotin from the culture medium (culture medium) or the microorganism. The recovering step may be further included after the culturing step.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 바이오틴을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 바이오틴을 회수할 수 있다.The recovery may be to collect desired biotin using a suitable method known in the art according to the microorganism culture method of the present application, for example, a batch, continuous, or fed-batch culture method. For example, centrifugation, filtration, treatment with a precipitating agent for crystallized proteins (salting out method), extraction, sonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity Various types of chromatography such as doe chromatography, HPLC, or a combination thereof may be used, and desired biotin may be recovered from a medium or microorganism using a suitable method known in the art.
또한, 본 출원의 바이오틴 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 바이오틴 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 이시적(또는 연속적)으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.In addition, the biotin production method of the present application may additionally include a purification step. The purification may be performed using suitable methods known in the art. In one example, when the biotin production method of the present application includes both a recovery step and a purification step, the recovery step and the purification step are performed simultaneously (or sequentially) regardless of order, or simultaneously or integrated into one step. It can be performed, but is not limited thereto.
본 출원의 방법에서, 본 출원의 미생물 등에 대해서는 전술한 바와 같다.In the method of the present application, the microorganisms and the like of the present application are as described above.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물의 바이오틴 생산 용도를 제공한다. 상기 미생물 등에 대해서는 전술한 바와 같다. Another aspect of the present application provides a use of the microorganism of the present application for biotin production. The microorganisms and the like are as described above.
일 예에 따른 미생물은 내재적 클래스 II 타입의 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하여 바이오틴 생산능이 증가되어 고수율의 바이오틴 생산이 가능하다. In the microorganism according to one embodiment, the activity of the endogenous class II type BirA is weakened, and the biotin production ability is increased by including the class I type BirA, so that a high yield of biotin can be produced.
도 1은 클래스 I 타입 및 클래스 II 타입의 BirA의 도메인 및 유래를 나타낸 것이다. Figure 1 shows the domain and origin of class I type and class II type BirA.
도 2는 바이오틴 무첨가 M9 최소배지 또는 바이오틴이 첨가된 M9 배지에서 시간에 따라 대조군 및 본원발명 균주의 생장속도를 측정한 결과를 나타낸다.Figure 2 shows the results of measuring the growth rates of the control and strains of the present invention according to time in M9 minimal medium without biotin or M9 medium supplemented with biotin.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail through examples. However, these examples are intended to illustrate the present application by way of example, and the scope of the present application is not limited to these examples.
실시예 1. 대장균 birA 결손 및 외래 birA 유전자 치환 벡터 제작Example 1. Construction of E. coli birA deletion and exogenous birA gene replacement vectors
본 실시예에서 미코박테리움 스메그마티스(Mycobacterium smegmatis 또는 M.sm)와 코리네박테리움 글루타미쿰(Corynebacterium glutamicum 또는 C.gl) 유래의 birA가 코딩하는 단백질(각각 서열번호 3, 4)이 대장균 균주의 생장과 바이오틴 생산에 미치는 영향을 확인하고자 하였다. In this Example, the proteins (SEQ ID NOs: 3 and 4, respectively) encoded by birA derived from Mycobacterium smegmatis (M.sm) and Corynebacterium glutamicum (C.gl) The purpose of this study was to examine the effects on the growth and biotin production of E. coli strains.
대장균 BirA (서열번호 1)의 N-말단 DNA 결합 부위(아미노산 서열순서 8부터 68까지)를 제외한 활성 도메인 (Catalytic domain)을 암호화하는 birA 유전자 (서열번호 5)와 외래 유래의 birA 유전자들을 각각 기공지된 대장균 유래 cj1 프로모터(대한민국 공개특허공보 제10-2006-0068505호; 이하, Pcj1, 서열번호 9)로 발현했다.The birA gene (SEQ ID NO: 5) encoding the catalytic domain excluding the N-terminal DNA binding site (amino acid sequence 8 to 68) of Escherichia coli BirA (SEQ ID NO: 1) and the foreign birA gene were prepared separately. It was expressed with the known E. coli-derived cj1 promoter (Korean Patent Publication No. 10-2006-0068505; hereinafter, Pcj1, SEQ ID NO: 9).
우선, 대장균 유래 cj1 프로모터를 이용하여, 대장균 BirA에서 N-말단 DNA 결합 부위(N-terminal DNA bindig domain)가 결손된 나머지 활성 도메인(Catalytic domain)의 발현을 위해, 개시코돈 (ATG)이 삽입된 birA 유전자 확보를 위한 벡터를 제작하였다. 벡터를 제작하기 위해 대장균 W3110를 주형으로 birA 업스트림 (Upstream) 및 다운스트림 (Downstream) 지역과 합성 cj1 프로모터 DNA를 주형으로 cj1 프로모터 단편을 수득하였다. 구체적으로, PCR 수행을 통해 대장균 W3110 염색체 DNA를 주형으로 하여 VB7-1 (서열번호 10)과 VB7-2 (서열번호 11)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 12), VB7-3 (서열번호 13)과 VB7-4 (서열번호 14)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 (서열번호 15) 유전자 단편을 수득하고, 합성 cj1 프로모터 DNA를 주형으로 VB7-5 (서열번호 16)과 VB7-6 (서열번호 17)의 프라이머를 이용하여 약 0.3 kb의 cj1 프로모터 단편 (서열번호 9)을 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 각각의 단편을 PCR 산물로서 수득하였다. 수득한 PCR 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 업스트림과 다운스트림 및 cj1 프로모터 단편을 이용하여 벡터를 제작하였다. PCT 공개특허 WO2020032590A1에 기재된 방법대로, sacB 유전자를 포함하는 R6K origin 기반의 유전자 치환 벡터 pSKH를 EcoRⅤ 제한효소로 절단한 뒤 상기 준비된 PCR 산물을 깁슨 어셈블리(DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법으로 클로닝하여 N-말단 DNA 결합 부위가 결손된 BirA를 코딩하는 birA 유전자를 발현할 수 있는 벡터 pSKHΔbirADB(E.co)::Pci1_ATG를 제작하였다. 클로닝은 깁슨 어셈블리 시약과 각 유전자 단편들을 혼합 후 50℃에 1시간 보존함으로써 수행하였다. First, by using the cj1 promoter derived from E. coli, for the expression of the catalytic domain in which the N-terminal DNA binding domain is missing in E. coli BirA, an initiation codon (ATG) is inserted. A vector for securing the birA gene was constructed. To construct the vector, a cj1 promoter fragment was obtained using E. coli W3110 as a template, birA upstream and downstream regions, and synthetic cj1 promoter DNA as a template. Specifically, through PCR, using the primers of VB7-1 (SEQ ID NO: 10) and VB7-2 (SEQ ID NO: 11) using E. coli W3110 chromosomal DNA as a template, the upstream region of about 0.5 kb (SEQ ID NO: 12) , Using the primers of VB7-3 (SEQ ID NO: 13) and VB7-4 (SEQ ID NO: 14), a gene fragment of about 0.5 kb (SEQ ID NO: 15) was obtained in the downstream region, and the synthetic cj1 promoter DNA was used as a template. A cj1 promoter fragment (SEQ ID NO: 9) of about 0.3 kb was obtained using primers VB7-5 (SEQ ID NO: 16) and VB7-6 (SEQ ID NO: 17). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 60 seconds, polymerization at 72 ° C for 30 seconds, and polymerization for 30 seconds. After repeating this twice, polymerization was performed at 72° C. for 5 minutes to obtain each fragment as a PCR product. The obtained PCR product was purified using QIAGEN's PCR Purification kit, and then a vector was constructed using the amplified upstream and downstream and cj1 promoter fragments. According to the method described in PCT Publication Patent WO2020032590A1, the R6K origin-based gene replacement vector pSKH containing the sacB gene was digested with EcoRV restriction enzyme, and the prepared PCR product was subjected to Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) to construct a vector pSKHΔbirADB(E.co)::Pci1_ATG capable of expressing the birA gene encoding BirA with a missing N-terminal DNA binding site. did Cloning was performed by mixing Gibson Assembly Reagent and each gene fragment and preserving at 50° C. for 1 hour.
또한 대장균 birA 유전자를 상기 기재한 외래 유래의 Class Ⅰ birA 유전자들로 치환하기 위하여 우선 birA 유전자 결손 및 타켓 유전자 삽입 벡터를 제작하였다. 벡터를 제작하기 위해, PCR을 수행하여 대장균 W3110를 주형으로 birA 업스트림과 다운스트림 지역을 수득하였다. 구체적으로 대장균 W3110 염색체 DNA를 주형으로 하여 VB7_7 (서열번호 18)과 VB7_8 (서열번호 19)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 20), VB7_9 (서열번호 21)와 VB7_10 (서열번호 22)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 (서열번호 23) 유전자 단편을 PCR 수행을 통해 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 birA 업스트림 및 다운스트림 단편, 그리고 EcoRⅤ 제한효소로 절단된 염색체 형질전환용 벡터 pSKH vector를 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝함으로써 birA 유전자 결손 및 타겟 유전자 삽입용 벡터 pSKHΔbirA(E.co)를 제작하였다. 다음으로 birA 유전자 결손 벡터 pSKHΔbirA(E.co)를 기반으로 기공지된 cj1 프로모터를 포함한 미코박테리움 스메그마티스와 코리네박테리움 글루타미쿰 유래 birA 유전자를 삽입하는 벡터를 제작하였다. 우선 기공지된 cj1 프로모터를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_11 (서열번호 24)과 VB7_12 (서열번호 25)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하였고, 미코박테리움 스메그마티스 MC2155 염색체 DNA를 주형으로 하여 VB7_13 (서열번호 26)과 서 VB7_14 (서열번호 27)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였고(서열번호 7)마찬가지로 cj1 프로모터를 포함한 코리네박테리움 글루타미쿰 유래 birA 유전자를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_11 (서열번호 24)과 VB7_15 (서열번호 28)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을PCR 수행을 통해 수득하였고, 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 VB7_16 (서열번호 29)과 VB7_17 (서열번호 30)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다(서열번호 8). 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 cj1 프로모터와 각 각의 birA 유전자 단편, 그리고 ScaⅠ제한효소로 절단된 pSKHΔbirA(E.co) 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝함으로써 재조합 플라스미드를 획득하였으며, 각각 pSKHΔbirA(E.co)::Pcj1_birA(M.sm), SKHΔbirA(E.co)::Pcj1_birA(C.gl) 로 명명하였다. In addition, in order to replace the E. coli birA gene with the foreign-derived Class I birA genes described above, first, a vector with birA gene deletion and target gene insertion was constructed. To construct the vector, PCR was performed to obtain birA upstream and downstream regions using E. coli W3110 as a template. Specifically, using primers of VB7_7 (SEQ ID NO: 18) and VB7_8 (SEQ ID NO: 19) using E. coli W3110 chromosomal DNA as a template, upstream regions of about 0.5 kb (SEQ ID NO: 20), VB7_9 (SEQ ID NO: 21) and VB7_10 A gene fragment of about 0.5 kb (SEQ ID NO: 23) in the downstream region was obtained through PCR using the primer of (SEQ ID NO: 22). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 60 seconds, polymerization at 72 ° C for 30 seconds, and polymerization for 30 seconds. After repeating this twice, a polymerization reaction was performed at 72° C. for 5 minutes to obtain. After purifying the obtained DNA product using QIAGEN's PCR Purification kit, the amplified birA upstream and downstream fragments and the pSKH vector, a vector for chromosomal transformation cut with EcoRV restriction enzyme, were used for Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method was used to construct a vector pSKHΔbirA (E.co) for birA gene deletion and target gene insertion. Next, based on the birA gene-defective vector pSKHΔbirA (E.co), vectors into which birA genes derived from Mycobacterium smegmatis and Corynebacterium glutamicum were inserted including the previously known cj1 promoter were constructed. First, in order to secure the known cj1 promoter, a cj1 promoter fragment of about 0.3 kb was obtained through PCR using synthetic cj1 promoter DNA as a template and primers VB7_11 (SEQ ID NO: 24) and VB7_12 (SEQ ID NO: 25), A birA gene fragment of about 0.8 kb was obtained through PCR using primers VB7_13 (SEQ ID NO: 26) and VB7_14 (SEQ ID NO: 27) using Mycobacterium smegmatis MC2155 chromosomal DNA as a template (SEQ ID NO: 7 ) Likewise, in order to secure the birA gene derived from Corynebacterium glutamicum, including the cj1 promoter, about 0.3 kb of cj1 was obtained using primers VB7_11 (SEQ ID NO: 24) and VB7_15 (SEQ ID NO: 28) using synthetic cj1 promoter DNA as a template. The promoter fragment was obtained through PCR, and a birA gene fragment of about 0.8 kb was obtained using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template and primers of VB7_16 (SEQ ID NO: 29) and VB7_17 (SEQ ID NO: 30). It was obtained through a PCR run (SEQ ID NO: 8). The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then the cj1 promoter, each birA gene fragment, and the pSKHΔbirA (E.co) vector cut with ScaI restriction enzyme were cloned using the Gibson assembly method to recombine Plasmids were obtained and named as pSKHΔbirA(E.co)::Pcj1_birA(M.sm) and SKHΔbirA(E.co)::Pcj1_birA(C.gl), respectively.
실시예 2. 대장균 Example 2. Escherichia coli birAbirA 결손 및 외래 missing and outpatient birAbirA 유전자 도입 균주 개발 Development of transgenic strains
실시예 1에서 수득된 pSKHΔbirADB(E.co)::Pcj1_ATG, pSKHΔbirA(E.co)::Pcj1_birA(M.sm), pSKHΔbirA(E.co)::Pcj1_birA(C.gl)를 각각 대장균 야생형 W3110 electro-competent cell에 전기천공법으로 형질전환(transformation) 후, 2차 교차 과정을 거쳐 CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004 (W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)), CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))를 각각 수득하였다. CV04-0003 균주는 대장균 염색체 상에서 N-말단 DNA 결합 부위가 파쇄된 BirA를 코딩하도록 birA 유전자가 변형되었고, CV04-0004 및 CV04-0002 균주는 각각 대장균 염색체 상의 birA 유전자가 미코박테리움 스메그마티스 및 코리네박테리움 글루타미쿰 유래의 birA 유전자로 치환된 균주이다. 각각의 재조합 균주에서 해당 유전자가 삽입된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 VB7_18 (서열번호 31)과 VB7_19 (서열번호 32)의 프라이머를 이용한 PCR 법과 게놈 시퀀싱을 통해 해당 유전적 조작을 확인하였다. pSKHΔbirADB(E.co)::Pcj1_ATG, pSKHΔbirA(E.co)::Pcj1_birA(M.sm), and pSKHΔbirA(E.co)::Pcj1_birA(C.gl) obtained in Example 1 were each converted to E. coli wild type W3110. After transformation of electro-competent cells by electroporation, CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG) and CV04-0004 (W3110 ΔbirA(E.co): :Pcj1_birA(M.sm)) and CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)), respectively. In the CV04-0003 strain, the birA gene was modified to encode BirA in which the N-terminal DNA binding site was disrupted on the E. coli chromosome, and in the CV04-0004 and CV04-0002 strains, the birA gene on the E. coli chromosome was Mycobacterium smegmatis and It is a strain substituted with the birA gene derived from Corynebacterium glutamicum. In each recombinant strain, a PCR method using primers of VB7_18 (SEQ ID NO: 31) and VB7_19 (SEQ ID NO: 32) capable of amplifying the external regions of the upstream and downstream regions of the homologous recombination into which the gene was inserted, respectively, and genome sequencing were performed. Corresponding genetic manipulations were confirmed.
실시예 3. 대장균 재조합 균주의 생장속도 확인Example 3. Confirmation of growth rate of E. coli recombinant strain
야생형 대장균에서의 birA 유전자 결손 및 치환에 따른 생장속도 변화를 확인하기 위하여 야생형 대장균 균주와 재조합 균주들의 생장속도를 비교하였다. 지수생장기(exponential phase)에서 생장하고 있는 대장균 세포들의 생장곡선을 측정하기 위하여 0.3%의 포도당이 탄소원으로 첨가된 M9 최소배지(M9 minimal medium supplemented with 0.3 % glucose)에 접종하여, 15시간 이상(overnight) 37℃, 200rpm 조건에서 1차 배양하였다. 배양된 세포들은 25㎖ 부피의 M9 최소배지에 바이오틴 무첨가, 또는 0.2mg/L의 바이오틴 첨가 조건에서 초기 흡광도(Optical density 562nm, O.D562)가 0.1이 되도록 접종하여 15시간 이상(overnight) 37℃, 200rpm 배양시키면서, O.D562에서 흡광도를 측정하고, 그 결과를 도 2에 나타내었다. In order to confirm the change in growth rate due to the deletion and substitution of the birA gene in wild-type E. coli, the growth rates of the wild-type E. coli strain and the recombinant strain were compared. In order to measure the growth curve of E. coli cells growing in the exponential phase, they were inoculated into M9 minimal medium supplemented with 0.3% glucose as a carbon source and cultured for 15 hours or more (overnight). ) 37 ℃, 200rpm conditions were the primary culture. The cultured cells were inoculated in a 25 ml volume of M9 minimal medium without biotin or with 0.2 mg/L of biotin added so that the initial absorbance (Optical density 562 nm, O.D562) was 0.1 and kept at 37°C for 15 hours or more (overnight). , while culturing at 200 rpm, absorbance was measured in O.D562, and the results are shown in FIG. 2 .
도 2에 나타난 바와 같이, 대장균의 야생형 birA 유전자가 N-말단 DNA 결합 부위가 결손된 BirA를 코딩하는 birA 유전자로 치환된 균주(CV04-0003)보다, 대장균 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래 birA 유전자로 치환된 CV04-0004과 CV04-0002 균주가 바이오틴 미첨가시에도 빠른 생육 속도를 나타내었고, 바이오틴 첨가시 모든 균주가 동등 수준의 생장속도를 나타내었다. 특히, CV04-0002 균주는 바이오틴 미첨가 시에도 높은 수준의 생장속도를 보였다. As shown in FIG. 2, the strain (CV04-0003) in which the wild-type birA gene of E. coli is replaced with the birA gene encoding BirA having a missing N-terminal DNA binding site has a higher E. coli birA gene than Mycobacterium smegmatis or The CV04-0004 and CV04-0002 strains substituted with the birA gene derived from Corynebacterium glutamicum exhibited rapid growth rates even when biotin was not added, and all strains exhibited the same growth rate when biotin was added. In particular, the CV04-0002 strain showed a high level of growth rate even when biotin was not added.
바이오틴이 첨가되지 않은 M9 최소배지에서 대장균 균주의 생장 속도는 바이오틴의 생산량과 연관이 있으므로, 상기 결과에서 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래 birA 유전자로 치환된 대장균 균주의 생장 속도가 빨라졌다는 결과는 대장균에서 N 말단 DNA 결합부위가 결손된 BirA 단백질의 활성보다는 미코박테리움이나 코리네박테리움 유래의 BirA 단백질의 활성이 바이오틴 생산에 더 유리하다는 것을 보여준다.Since the growth rate of the E. coli strain in the M9 minimal medium without biotin is related to the production of biotin, in the above results, the birA gene was replaced with the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum. The result of the increased growth rate of the strain shows that the activity of the BirA protein derived from Mycobacterium or Corynebacterium is more advantageous for biotin production than the activity of the BirA protein lacking the N-terminal DNA binding site in E. coli.
실시예 4. birA 치환 균주 기반 바이오틴 생합성 강화 균주 제작 및 바이오틴 생산능 평가Example 4. Construction of biotin biosynthesis-enhanced strain based on birA substituted strain and evaluation of biotin production ability
대장균 birA 유전자 결손 및 외래 birA 유전자 도입이 바이오틴 생산능에 미치는 영향을 알아 보고자 상기 실시예 3에서 제작한 3종의 재조합 균주 CV04-0003(W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004(W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)), CV04-00025(W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))에 각각 대장균 바이오틴 오페론을 포함한 과발현 벡터를 도입하였다. In order to investigate the effect of E. coli birA gene deletion and foreign birA gene introduction on biotin production ability, the three recombinant strains prepared in Example 3, CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG) and CV04-0004( Overexpression vectors containing the E. coli biotin operon were introduced into W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)) and CV04-00025 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)), respectively.
바이오틴을 고생산하기 위한 목적으로 pCL1920 벡터(GenBank No AB236930) 기반으로 대장균 바이오틴 오페론이 모두 포함된 유전자 bioABFCDbioABFCD의 자가 프로모터를 이용하여 과발현 벡터를 제작하였다. 벡터를 제작하기 위해 대장균 W3110 염색체를 주형으로 하여 VB7_20 (서열번호 33)와 VB7_21 (서열번호 34)의 프라이머 쌍을 이용하여 PCR하여 bioABFCD 오페론 유전자를 획득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건으로서, 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 30초 어닐링, 72℃ 180초 중합을 30회 반복한 후, 72℃에서 10분간 중합반응을 수행하였다. 그 결과 5020bp의 야생형 대장균의 bioABFCD 오페론 유전자 단편조각 bioABFCD(Eco) (서열번호 46)을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 SmaI의 제한효소로 처리된 pCL1920 벡터와 깁슨 어셈블리 방법으로 클로닝하여 재조합 플라스미드를 획득하였으며, pCL1920-bioABFCD(Eco)로 명명하였다. For the purpose of high production of biotin, an overexpression vector was constructed using the bioABFCD gene containing both the E. coli biotin operon and the bioABFCD self-promoter based on the pCL1920 vector (GenBank No AB236930). To construct the vector, the bioABFCD operon gene was obtained by PCR using the E. coli W3110 chromosome as a template and a primer pair of VB7_20 (SEQ ID NO: 33) and VB7_21 (SEQ ID NO: 34). SolgTM Pfu-X DNA polymerase was used as a polymerase for the PCR reaction, and as PCR amplification conditions, denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, polymerization at 72 ° C for 180 seconds After repeating 30 times, polymerization was performed at 72° C. for 10 minutes. As a result, bioABFCD (Eco) (SEQ ID NO: 46), a 5020 bp wild-type E. coli bioABFCD operon gene fragment was obtained. The obtained DNA product was purified using QIAGEN's PCR Purification kit, and then cloned with the pCL1920 vector treated with SmaI restriction enzyme and Gibson assembly method to obtain a recombinant plasmid, which was named pCL1920-bioABFCD (Eco).
상기 제작된 바이오틴 오페론 과발현 벡터(pCL1920-bioABFCD(Eco))를 실시예 3에서 제조한 재조합 균주 3종 CV04-0003 (W3110 ΔbirADB(E.co)::Pcj1_ATG), CV04-0004 (W3110 ΔbirA(E.co)::Pcj1_birA(M.sm)), CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl))에 각각 열충격 도입법을 이용하여 도입하였다. 대조군으로 오페론 과발현 벡터(pCL1920-bioABFCD (Eco))를 W3110에 도입하였다. Three recombinant strains prepared in Example 3 using the biotin operon overexpression vector (pCL1920-bioABFCD (Eco)) prepared above were CV04-0003 (W3110 ΔbirADB (E.co) :: Pcj1_ATG), CV04-0004 (W3110 ΔbirA (E .co)::Pcj1_birA(M.sm)) and CV04-0002 (W3110 ΔbirA(E.co)::Pcj1_birA(C.gl)) were respectively introduced using the thermal shock introduction method. As a control, an operon overexpression vector (pCL1920-bioABFCD (Eco)) was introduced into W3110.
각각의 균주를 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 하기 표 1의 조성을 갖는 역가 배지 25 mL에 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 40 시간 배양하고, MS-MS 방법으로 배양액 중의 바이오틴 농도를 측정하여 이 결과를 하기 표 2에 기재하였다. 세포의 생장도는 562nm에서 흡광도를 측정하여 OD로 나타내었고, 소모당 측정은 당분석기 (YSI 2900)를 활용하여 잔당을 측정하고 초기 투입량과의 차이로 나타내었다. Each strain was plated on LB solid medium and then cultured overnight in a 30° C. incubator. The strain cultured overnight in LB solid medium was inoculated into 25 mL of a titer medium having the composition shown in Table 1 below, then cultured in an incubator at 30 ° C and 200 rpm for 40 hours, and the biotin concentration in the culture medium was measured by MS-MS method. These results are shown in Table 2 below. Cell growth was expressed as OD by measuring absorbance at 562 nm, and the consumption sugar was measured using a sugar analyzer (YSI 2900) to measure residual sugar and expressed as the difference from the initial input amount.
조성Furtherance 농도(g/L)Concentration (g/L)
포도당 glucose 3030
KH2PO4 KH 2 PO 4 0.30.3
K2HPO4 K 2 HPO 4 0.60.6
효모액기스yeast extract 2.52.5
(NH4)2SO4 (NH 4 ) 2 SO 4 1515
MgSO4,7H2OMgSO 4 ,7H 2 O 1One
FeSO4,7H2OFeSO 4 ,7H 2 O 0.030 0.030
NaClNaCl 2.52.5
탄산칼슘 calcium carbonate 4040
균주명strain name OD562nmOD562nm 소모당(g/L)Consumed sugar (g/L) 바이오틴(mg/L)Biotin (mg/L)
E. coli W3110/ pCL1920-bioABFCD (Eco)E. coli W3110/pCL1920-bioABFCD (Eco) 36.536.5 3030 0.00.0
E. coli CV04-0003 /pCL1920-bioABFCD (Eco)E. coli CV04-0003 /pCL1920-bioABFCD (Eco) 25.125.1 22.922.9 0.520.52
E. coli CV04-0004 /pCL1920-bioABFCD (Eco)E. coli CV04-0004 /pCL1920-bioABFCD (Eco) 35.135.1 3030 1.081.08
E. coli CV04-0002 /pCL1920-bioABFCD (Eco)E. coli CV04-0002 /pCL1920-bioABFCD (Eco) 33.133.1 3030 1.301.30
상기 표 2에 나타난 바와 같이, 대장균 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래의 birA로 치환된 E. coli CV04-0004 /pCL1920-bioABFCD (Eco) 및 E. coli CV04-0002/pCL1920-bioABFCD (Eco) 균주는, E. coli W3110/pCL1920-bioABFCD (Eco) 및 E. coli CV04-0003/pCL1920-bioABFCD (Eco) 보다 바이오틴 생산량이 현저히 증가하였다. As shown in Table 2, E. coli CV04-0004 /pCL1920-bioABFCD (Eco) and E. coli CV04 in which the E. coli birA gene was replaced with birA derived from Mycobacterium smegmatis or Corynebacterium glutamicum. The -0002/pCL1920-bioABFCD (Eco) strain showed significantly higher biotin production than E. coli W3110/pCL1920-bioABFCD (Eco) and E. coli CV04-0003/pCL1920-bioABFCD (Eco).
실시예 5. 세라티아 마르세센스(Example 5. Serratia marcescens ( Serratia marcescensSerratia marcescens ) 바이오틴 생합성 강화 균주 기반 birA 치환 균주 제작 및 바이오틴 생산능 평가) Production of biotin biosynthesis-enhanced strain-based birA-substituted strain and evaluation of biotin production capacity
대장균 이외의 Class II birA 결손 및 Class I birA 유전자의 도입치환이 바이오틴 생산능에 미치는 영향을 알아보고자, 세라티아 마르세센스 유래 바이오틴 생산 균주 TA5027(미국 특허 US 5374554 A)를 기반으로, birA 유전자 결손 및 Class I birA 유전자 도입된 재조합 균주를 제작하였다. In order to investigate the effect of Class II birA deficiency and introduction substitution of Class I birA genes other than Escherichia coli on biotin production capacity, based on the biotin-producing strain TA5027 (US patent US 5374554 A) derived from Serratia marcescens, birA gene deletion and class A recombinant strain into which I birA gene was introduced was prepared.
birA 유전자 결손 및 외래 birA 유전자 도입 벡터를 제작하기 위해, 상기 실시예 2와 동일한 방법으로, TA5027 균주의 염색체를 주형으로 하여 birA 유전자 결손 및 타켓 유전자 삽입 벡터를 제작하였다. 구체적으로 세라티아 TA5027 염색체 DNA를 주형으로 하여 VB7_22 (서열번호 35)과 VB7_23 (서열번호 36)의 프라이머를 이용하여 업스트림 (Upstream) 지역 약 0.5 kb (서열번호 37), VB7_24 (서열번호 38)와 VB7_25 (서열번호 39)의 프라이머를 이용하여 다운스트림 (Downstream) 지역 약 0.5 kb의 유전자 단편(서열번호 40)을 PCR 수행을 통해 수득하였다. PCR 반응을 위한 중합효소로는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 55℃ 60초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하여 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 증폭된 birA 업스트림 및 다운스트림 단편, 그리고 EcoRⅤ 제한효소로 절단된 염색체 형질전환용 벡터 pSKH vector를 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝함으로써 birA 유전자 결손 및 타겟 유전자 삽입용 벡터 pSKHΔbirA(S.ma)를 제작하였다. In order to construct the birA gene-defective and foreign birA gene transduction vector, the birA gene-defective and target gene-inserted vectors were constructed using the chromosome of strain TA5027 as a template in the same manner as in Example 2 above. Specifically, using primers of VB7_22 (SEQ ID NO: 35) and VB7_23 (SEQ ID NO: 36) using Serratia TA5027 chromosomal DNA as a template, upstream regions of about 0.5 kb (SEQ ID NO: 37), VB7_24 (SEQ ID NO: 38) and A gene fragment (SEQ ID NO: 40) of about 0.5 kb in the downstream region was obtained through PCR using primers of VB7_25 (SEQ ID NO: 39). SolgTM Pfu-X DNA polymerase was used as the polymerase for the PCR reaction, and the PCR amplification conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 60 seconds, polymerization at 72 ° C for 30 seconds, and polymerization for 30 seconds. After repeating this twice, a polymerization reaction was performed at 72° C. for 5 minutes to obtain. After purifying the obtained DNA product using QIAGEN's PCR Purification kit, the amplified birA upstream and downstream fragments and the pSKH vector, a vector for chromosomal transformation cut with EcoRV restriction enzyme, were used for Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method was used to construct a vector pSKHΔbirA (S.ma) for birA gene deletion and target gene insertion.
다음으로 birA 유전자 결손 벡터 pSKHΔbirA(S.ma)를 기반으로 기공지된 cj1 프로모터를 포함한 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래 birA 유전자를 삽입하는 벡터를 제작하였다. 기공지된 cj1 프로모터를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_26 (서열번호 41)과 VB7_12 (서열번호 25)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하였고, 미코박테리움 스메그마티스 MC2155 (http://www.lgcpromochem.com/atcc/) 염색체 DNA를 주형으로 하여 VB7_13 (서열번호 26)과 VB7_27 (서열번호 42)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다. 마찬가지로 cj1 프로모터를 포함한 코리네박테리움 글루타미쿰 유래 birA 유전자를 확보하기 위해서 합성 cj1 프로모터 DNA를 주형으로 VB7_26 (서열번호 41)과 VB7_15 (서열번호 28)의 프라이머를 사용하여 약 0.3 kb의 cj1 프로모터 단편을 PCR 수행을 통해 수득하였고, 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 VB7_16 (서열번호 29)과 VB7_28 (서열번호 43)의 프라이머를 사용하여 약 0.8 kb의 birA 유전자 단편을 PCR 수행을 통해 수득하였다. 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 cj1 프로모터와 각 각의 birA 유전자 단편, 그리고 ScaⅠ제한효소로 절단된 pSKHΔbirA(S.ma) 벡터를 깁슨 어셈블리 방법으로 클로닝하여 재조합 플라스미드를 획득하였으며, 각각 pSKHΔbirA(S.ma)::Pcj1_birA(M.sm), pSKHΔbirA(S.ma)::Pcj1_birA(C.gl)로 명명하였다. Next, based on the birA gene-defective vector pSKHΔbirA (S.ma), a vector into which the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum was inserted including the previously known cj1 promoter was constructed. In order to secure the known cj1 promoter, a cj1 promoter fragment of about 0.3 kb was obtained through PCR using synthetic cj1 promoter DNA as a template and primers of VB7_26 (SEQ ID NO: 41) and VB7_12 (SEQ ID NO: 25). Using the chromosomal DNA of the bacterium smegmatis MC 2 155 (http://www.lgcpromochem.com/atcc/) as a template and primers of VB7_13 (SEQ ID NO: 26) and VB7_27 (SEQ ID NO: 42), a length of about 0.8 kb was obtained. The birA gene fragment was obtained through PCR performance. Likewise, in order to secure the birA gene derived from Corynebacterium glutamicum, including the cj1 promoter, a cj1 promoter of about 0.3 kb was obtained using primers VB7_26 (SEQ ID NO: 41) and VB7_15 (SEQ ID NO: 28) using the synthetic cj1 promoter DNA as a template. The fragment was obtained through PCR, and a birA gene fragment of about 0.8 kb was subjected to PCR using primers VB7_16 (SEQ ID NO: 29) and VB7_28 (SEQ ID NO: 43) using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template. Obtained through practice. The obtained DNA product was purified using QIAGEN's PCR Purification kit, and the cj1 promoter, each birA gene fragment, and the pSKHΔbirA (S.ma) vector cut with Sca I restriction enzyme were cloned by Gibson assembly method to obtain a recombinant plasmid. were obtained, and named pSKHΔbirA(S.ma)::Pcj1_birA(M.sm) and pSKHΔbirA(S.ma)::Pcj1_birA(C.gl), respectively.
상기 제작한 벡터를 실시예 3과 같은 방법을 통해 세라티아 마르세센스 TA5027 균주의 competent cell에 전기천공법을 이용하여 형질전환(transformation) 후, 2차 교차 과정을 거쳐 TA5027 균주의 염색체 상에서 birA 유전자가 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래의 birA 유전자로 치환된 균주를 얻었고, 이를 각각 CV04-9991 (TA5027 ΔbirA(S.ma)::Pcj1_birA(M.sm)), CV04-9992 (TA5027 ΔbirA(S.ma)::Pcj1_birA(C.gl))로 명명하였다. 해당 유전자가 삽입된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 VB7_29 (서열번호 44)과 VB7_30 (서열번호 45)의 프라이머를 이용한 PCR 법과 게놈 시퀀싱을 통해 해당 유전적 조작을 확인하였다.After transforming the prepared vector into competent cells of the Serratia marcescens TA5027 strain by electroporation in the same manner as in Example 3, the birA gene on the chromosome of the TA5027 strain through a secondary crossover process. Strains substituted with the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum were obtained, respectively, CV04-9991 (TA5027 ΔbirA(S.ma)::Pcj1_birA(M.sm)), CV04- 9992 (TA5027 ΔbirA(S.ma)::Pcj1_birA(C.gl)). The genetic manipulation was performed through PCR and genome sequencing using primers of VB7_29 (SEQ ID NO: 44) and VB7_30 (SEQ ID NO: 45) capable of amplifying the external regions of the upstream and downstream regions of the homologous recombination into which the gene was inserted, respectively. Confirmed.
상기 제작한 균주 2종 CV04-9991, CV04-9992 와 대조군으로 사용할 TA5027 균주를 각각 LB 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. LB 고체 배지에서 밤새 배양한 균주를 하기 표 3의 조성을 갖는 역가 배지 25㎖에 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 40 시간 배양하였고, 배양액 중의 바이오틴 농도는 MS-MS 방법으로 분석하여 그 결과를 하기 표 4에 나타내었다. 세포의 생장도는 562nm에서 흡광도를 측정하여 OD로 나타내었고, 소모당 측정은 당분석기 (YSI 2900)를 활용하여 잔당을 측정하고 초기 투입량과의 차이로 나타내었다.The two strains prepared above, CV04-9991 and CV04-9992, and the TA5027 strain to be used as a control were plated on LB solid medium, and then cultured overnight in an incubator at 30 ° C. The strain cultured overnight in LB solid medium was inoculated into 25 ml of titer medium having the composition shown in Table 3 below, and then cultured for 40 hours in an incubator at 30 ° C and 200 rpm, and the biotin concentration in the culture medium was analyzed by MS-MS method. The results are shown in Table 4 below. Cell growth was expressed as OD by measuring absorbance at 562 nm, and the consumption sugar was measured using a sugar analyzer (YSI 2900) to measure residual sugar and expressed as the difference from the initial input amount.
조성Furtherance 농도(g/L)Concentration (g/L)
포도당 glucose 3030
KH2PO4 KH 2 PO 4 0.30.3
K2HPO4 K 2 HPO 4 0.60.6
효모액기스yeast extract 2.52.5
(NH4)2SO4 (NH 4 ) 2 SO 4 1515
MgSO4,7H2OMgSO 4 ,7H 2 O 1One
FeSO4,7H2OFeSO 4 ,7H 2 O 0.030 0.030
NaClNaCl 2.52.5
탄산칼슘 calcium carbonate 4040
균주명strain name OD562nmOD562nm 소모당(g/L)Consumed sugar (g/L) 바이오틴(mg/L)Biotin (mg/L)
TA5027TA5027 37.337.3 30.030.0 32.532.5
CV04-9991 CV04-9991 25.125.1 22.922.9 35.835.8
CV04-9992CV04-9992 25.125.1 22.922.9 39.739.7
상기 표 4에 나타난 같이, 세라티아 마르세센스의 birA 유전자를 미코박테리움 스메그마티스 또는 코리네박테리움 글루타미쿰 유래의 birA 유전자로 각각 치환한 CV04-9991, CV04-9992 균주의 바이오틴 생산량은 모균주인 TA5027 대비 현저히 높은 것을 확인할 수 있었다.As shown in Table 4, the biotin production of strains CV04-9991 and CV04-9992 in which the birA gene of Serratia marcescens was substituted with the birA gene derived from Mycobacterium smegmatis or Corynebacterium glutamicum, respectively, was It was confirmed that it was significantly higher than that of the strain TA5027.

Claims (11)

  1. 클래스 II 타입의 내재적 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물. A microorganism of the genus Escherichia or Serratia sp., wherein the activity of endogenous BirA of class II type is attenuated, and the class I type of BirA is contained.
  2. 제1항에 있어서, 상기 클래스 I 타입의 BirA은 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자에 의해 코딩되는 것인, 미생물. The microorganism according to claim 1, wherein the class I type of BirA is encoded by a birA gene derived from a microorganism of the genus Mycobacterium or the genus Corynebacterium.
  3. 제1항에 있어서, 내재적 birA 유전자가 결실되고, 미코박테리움 속 또는 코리네박테리움 속 미생물 유래의 birA 유전자가 도입된, 미생물.The microorganism according to claim 1, wherein the endogenous birA gene is deleted and the birA gene derived from a microorganism of the genus Mycobacterium or the genus Corynebacterium is introduced.
  4. 제1항에 있어서, 7,8-디아미노-펠라르곤산 아미노트랜스퍼라제(7,8-diamino-pelargonic acid aminotransferase), 바이오틴 신타제(Biotin synthase), 8-아미노-7-옥소노나노에이트 신타아제(8-amino-7-oxononanoate synthase), 말로닐-ACP O-메틸트랜스퍼라제(Malonyl-ACP O-methyltransferase), 및 데티오바이오틴 신테타제(Dethiobiotin synthetase)으로 이루어진 군에서 선택된 1종 이상의 활성이 추가로 강화된, 미생물.According to claim 1, 7,8-diamino-pelargonic acid aminotransferase (7,8-diamino-pelargonic acid aminotransferase), biotin synthase (Biotin synthase), 8-amino-7-oxononanoate synthase At least one activity selected from the group consisting of 8-amino-7-oxononanoate synthase, malonyl-ACP O-methyltransferase, and dethiobiotin synthetase Further enhanced, microbes.
  5. 제1항에 있어서, 바이오틴 생산능을 갖는, 미생물.The microorganism according to claim 1, having a biotin-producing ability.
  6. 제1항에 있어서, 상기 에스케리키아 속 미생물은 대장균인, 미생물.The microorganism according to claim 1, wherein the microorganism of the genus Escherichia is Escherichia coli.
  7. 제1항에 있어서, 상기 세라티아 속 미생물은 세라티아 마르세센스인, 미생물.The microorganism according to claim 1, wherein the microorganism of the genus Serratia is Serratia marcescens.
  8. 클래스 II 타입의 내재적 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물을 포함하는, 바이오틴 생산용 조성물. A composition for producing biotin, comprising a microorganism of the genus Escherichia or Serratia sp., in which the activity of class II-type endogenous BirA is attenuated, and the class I-type BirA is contained.
  9. 클래스 II 타입의 내재적 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물을 배양하는 단계를 포함하는, 바이오틴 생산 방법.Biotin production, comprising culturing a microorganism of the genus Escherichia or Serratia sp., in which the activity of endogenous BirA of class II type is attenuated, and containing BirA of class I type method.
  10. 제9항에 있어서, 상기 방법은 배양된 배지 또는 미생물에서 바이오틴을 회수하는 단계를 추가로 포함하는, 바이오틴의 생산 방법.The method for producing biotin according to claim 9, further comprising the step of recovering biotin from the cultured medium or microorganism.
  11. 클래스 II 타입의 내재적 BirA의 활성이 약화되고, 클래스 I 타입의 BirA를 포함하는, 에스케리키아 속(Escherichia sp.) 또는 세라티아 속(Serratia sp.) 미생물의 바이오틴 생산 용도. Use of a microorganism of the genus Escherichia or Serratia sp., in which the activity of endogenous BirA of class II type is attenuated and containing BirA of class I type, for biotin production.
PCT/KR2022/017833 2021-11-15 2022-11-14 Microorganism comprising class i type bira and biotin production method using same WO2023085875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210157043A KR20230070944A (en) 2021-11-15 2021-11-15 Microorganism comprising class I type BirA and biotin production method using the same
KR10-2021-0157043 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023085875A1 true WO2023085875A1 (en) 2023-05-19

Family

ID=86336320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017833 WO2023085875A1 (en) 2021-11-15 2022-11-14 Microorganism comprising class i type bira and biotin production method using same

Country Status (2)

Country Link
KR (1) KR20230070944A (en)
WO (1) WO2023085875A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110731A (en) * 1985-08-26 1992-05-05 Amgen, Inc. System for biotin synthesis
KR20000065186A (en) * 1997-03-03 2000-11-06 고사이 아끼오 DNA fragments containing biotin biosynthetic genes and uses thereof
US6436681B1 (en) * 1997-07-22 2002-08-20 Basf Aktiengesellschaft Method for producing biotin
WO2021050371A1 (en) * 2019-09-09 2021-03-18 Albert Einstein College Of Medicine Biotin synthases for efficient production of biotin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110731A (en) * 1985-08-26 1992-05-05 Amgen, Inc. System for biotin synthesis
KR20000065186A (en) * 1997-03-03 2000-11-06 고사이 아끼오 DNA fragments containing biotin biosynthetic genes and uses thereof
US6436681B1 (en) * 1997-07-22 2002-08-20 Basf Aktiengesellschaft Method for producing biotin
WO2021050371A1 (en) * 2019-09-09 2021-03-18 Albert Einstein College Of Medicine Biotin synthases for efficient production of biotin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SARAH K. HENKE, CRONAN JOHN E.: "Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase", PLOS ONE, vol. 9, no. 5, pages 1 - 13, XP055628048, DOI: 10.1371/journal.pone.0096757 *

Also Published As

Publication number Publication date
KR20230070944A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2022231368A1 (en) Novel glutamate synthase subunit alpha variant and l-glutamic acid production method using same
WO2022225322A1 (en) Novel f0f1 atp synthase subunit alpha variant and method for producing xmp or gmp using same
WO2022231058A1 (en) Novel water-soluble pyridine nucleotide transhydrogenase variant, and method for producing l-tryptophan using same
WO2022225320A1 (en) Novel phosphoglycerate dehydrogenase variant, and method for producing xap or gmp using same
WO2022225319A1 (en) Novel l-serine ammonia-lyase variant and method for producing xmp or gmp, using same
WO2022225321A1 (en) Novel f0f1 atp synthase subunit gamma variant, and method for producing xmp or gmp using same
WO2023085875A1 (en) Microorganism comprising class i type bira and biotin production method using same
WO2022231370A1 (en) Novel bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/imp cyclohydrolase variant and method for producing imp using same
WO2022231369A1 (en) Novel formate-dependent phosphoribosylglycinamide formyltransferase variant and method for producing imp using same
WO2022163922A1 (en) Novel asparagine synthase variant, and method for producing l-valine using same
WO2022154177A1 (en) Novel 3d-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase variant and method for producing imp using same
WO2022154191A1 (en) Novel 2,5-diketo-d-gluconic acid reductase variant and method for producing xmp or gmp using same
WO2022231371A1 (en) Novel 5-(carboxyamino)imidazole ribonucleotide synthetase mutant and imp production method using same
WO2022231067A1 (en) Novel bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase variant, and method for producing imp using same
WO2022225100A1 (en) Novel bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase variant and method for producing xmp or gmp using same
WO2022231057A1 (en) Novel isocitrate dehydrogenase kinase/phosphatase variant, and method for producing l-tryptophan using same
WO2022215800A1 (en) Novel branched-chain amino acid permease variant and method for producing l-valine using same
WO2022158650A1 (en) Novel ferrochelatase variant, and method for producing l-tryptophan using same
WO2022158652A1 (en) Novel cytosine permease variant, and method for producing l-tryptophan using same
WO2022163921A1 (en) Novel spermidine synthase variant, and method for producing l-valine using same
WO2022163932A1 (en) Novel aldehyde dehydrogenase variant and method for producing xmp or gmp using same
WO2022154188A1 (en) Novel polyketide synthase variant and method for producing xmp or gmp using same
WO2022163931A1 (en) Novel nad(p)-dependent oxidoreductase variant and method for producing xmp or gmp using same
WO2022154189A1 (en) Novel phytoene synthase variant and method for producing xmp or gmp using same
WO2022154179A1 (en) Novel d-alanine—d-alanine ligase variant, and method for producing imp using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893294

Country of ref document: EP

Kind code of ref document: A1