WO2023085657A1 - Antigen composition for inducing kras-specific activated t cells - Google Patents

Antigen composition for inducing kras-specific activated t cells Download PDF

Info

Publication number
WO2023085657A1
WO2023085657A1 PCT/KR2022/016547 KR2022016547W WO2023085657A1 WO 2023085657 A1 WO2023085657 A1 WO 2023085657A1 KR 2022016547 W KR2022016547 W KR 2022016547W WO 2023085657 A1 WO2023085657 A1 WO 2023085657A1
Authority
WO
WIPO (PCT)
Prior art keywords
kras
cells
epitope
rop
antigen
Prior art date
Application number
PCT/KR2022/016547
Other languages
French (fr)
Korean (ko)
Inventor
이왕준
문현종
임선기
조형래
Original Assignee
의료법인 명지의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 의료법인 명지의료재단 filed Critical 의료법인 명지의료재단
Publication of WO2023085657A1 publication Critical patent/WO2023085657A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE

Definitions

  • the present invention relates to an antigen composition for inducing KRAS-specific activated T cells.
  • Treatment of cancer patients is basically performed alone or in parallel with surgical operation, chemotherapy, radiotherapy, etc., and concurrent treatment such as cytokine, peptide vaccine, antibody treatment is also increasing.
  • a general peptide vaccine used as an anti-cancer treatment uses an amino wire sequence with high immunogenicity selected as an epitope and optimized for use.
  • Peptide vaccines used as anticancer drugs have the advantages of good selectivity, effectiveness, and excellent tolerability.
  • the peptide vaccine is carried on the major histocompatibility complex (MHC) molecule of the antigen presenting cell (APC) that binds to the T cell receptor (TCR) recognizing cancer antigens, and most of the CD8 T Induces cancer cell death by educating or inducing activation of cells.
  • MHC major histocompatibility complex
  • APC antigen presenting cell
  • TCR T cell receptor
  • peptide vaccines depend on an epitope composed of 9 to 11 amino acids, when the epitope is mutated in cancer cells, immune evasion is possible and CD4 T cells do not help, limiting the activity and memory function of CD8 cells will have
  • the peptide vaccine is designed as a peptide loaded on an MHC class I molecule, there is a problem in that it is limited according to the type of human leukocyte antigen (HLA) of the patient.
  • HLA human leukocyte antigen
  • OLP vaccines are characterized by including all antigens.
  • OLP vaccines are designed to include all antigens but have overlapping epitope amioline sequences, so there is no restriction on HLA types, and they can receive help from CD4 T cells, so they have the advantage of showing better immune responses than conventional peptide vaccines. .
  • the OLP vaccine requires a process of selecting as an epitope a peptide containing about 20 amino acid sequences with excellent immune response among the OLP library for a specific antigen, and 10 or more selected epitopes are contiguous and overlapping. Because of the design, there were manufacturing issues that cost a lot of money and time. Recombinant overlapping peptide (ROP) was developed to improve the problems of the OLP vaccine treatment, and has the advantage of saving cost and time through recombinant protein production technology.
  • ROP Recombinant overlapping peptide
  • KRAS mutation is a relatively common oncogenic mutation found in about 20% of solid cancers, and is most commonly found in adenocarcinoma of the pancreas and colon, lung cancer, and the like.
  • new therapies targeting K-ras in KRAS mutation-dependent tumors are not satisfactory in terms of their effectiveness. The reason is that it was difficult to make antibodies that individually bind to K-ras mutants expressed by KRAS mutations, so it was limited to indirect treatments that inhibit or inactivate the function of K-ras.
  • an object of the present invention is to provide an antigen for inducing KRAS-specific activated T cells with excellent economic efficiency.
  • the present invention provides an antigen composition for inducing KRAS-specific activated T cells comprising a KRAS mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
  • n means the sequence of the epitope
  • Figure 1 shows the amino acid sequence structure of KRAS (M) -ROP of the present invention.
  • Figure 2 shows the results of analyzing the reactivity of PBMC to KRAS (M) -ROP of the present invention.
  • Figure 3 shows the results of analyzing the specific CD3+ T cell ratio of LP-1 PBMC according to the concentration of KRAS (M) -ROP of the present invention.
  • Figure 4 shows the results of analyzing the ratio of antigen-specific CD3+ T cells in LP-1 PBMCs for KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 m mutants of the present invention.
  • Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
  • Figure 6 shows the results of KRAS mutant epitope screening for ROP-T cells of the present invention.
  • Figure 8 shows the ratio of CD3+ T cells secreting IFN- ⁇ (IFN- ⁇ +) for each condition of the present invention.
  • the present invention provides an antigen composition for inducing KRAS-specific activated T cells comprising a KRAS mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
  • SEQ ID NO: 1 is an amino acid sequence of the KRAS protein and consists of 189 amino acids.
  • the 12th amino acid is substituted from glycine (G) to aspartic acid (D)
  • the 12th amino acid is substituted from glycine (G) to valine (V)
  • the 13th amino acid is substituted from glycine (G) to valine (V). It means that an amino acid is substituted from glycine (G) to aspartic acid (D).
  • the recombinant means inserting into a recombinant plasmid DNA containing the genetic information of the designed antigen, and the recombinant plasmid DNA is transformed into a microorganism to express a protein and purify the KRAS-specific activated T of the present invention Antigens for cell derivation are obtained.
  • the antigen composition for inducing KRAS-specific activated T cells of the present invention is designed as follows.
  • T cells specific for KRAS mutations (G12D, G12V, G13D) can be induced, and specific for the KRAS mutations (G12D, G12V, G13D) T cells can be used to treat cancer cells with KRAS mutations (G12D, G12V, G13D).
  • IVS in vitro stimulation
  • F-IVS Fast-IVS
  • the IVS is a monocyte-derived dendritic cell (moDC) obtained from monocytes isolated from blood through a process of differentiation and maturation, and then the antigen for inducing KRAS-specific activated T cells of the present invention It refers to a method of co-culture with T cells in an environment treated with the composition
  • the Fast-IVS is a maturation process and antigen (antigen composition for inducing KRAS-specific activated T cells) treatment for DC cells in PBMC. means to do it at the same time.
  • the antigen composition for inducing KRAS-specific activated T cells used as an antigen in the T cell induction process may further include cytokines, hormones, and buffers necessary for DC cell maturation and growth.
  • the cytokine is interleukin-4, interleukin-1 ⁇ , granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor- ⁇ (Tumor Necrosis Factor). - ⁇ , TNF- ⁇ ), and the hormone may be prostaglandin E2 (PGE2).
  • KRAS a type of RAS protein
  • RAS protein is a small GTPases protein that plays an important role in the signal transduction system related to cell differentiation, proliferation, and survival.
  • the RAS protein is well known as an oncogene found as a mutation in various carcinomas, and 85% of RAS-derived carcinomas are known to be caused by KRAS mutations. Therefore, when T cells specifically recognizing KRAS mutations are amplified, cancers with KRAS mutations can be eliminated and treated, or can serve as a vaccine against cancer.
  • the cancer is not limited as long as the cancer has a KRAS mutation, and examples include adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and cervical adenocarcinoma (CESC), colon Adenocarcinoma (COAD), chronic lymphocytic leukemia (CLL), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), glioblastoma multiforme (GBM), squamous cell carcinoma of the head and neck (HNSC), chromophobe kidney (KICH) , renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), acute myelogenous leukemia (LAML), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), multiple myeloma (MM) , ovarian serous cystadenocar
  • KRAS amino acid sequence (SEQ ID NO: 2) was inserted into the expression vector.
  • KRAS (WT) consists of 189 amino acids, and the amino acid sequence is shown in Table 1 below.
  • an expression vector was prepared by inserting it into a pET30a vector, and the expression vector was transformed into E. coli to express the protein.
  • KRAS(M)-ROP An antigen of KRAS Mutant Recombinant Overlapping Peptide (KRAS(M)-ROP) was designed and an expression vector was prepared in the same manner as for KRAS(WT).
  • the KRAS (M)-ROP is G12D in which G (Glycine) at the 12th position of the KRAS amino acid is mutated to D (Asapartic acid), G12V in which G (Glycine) at the 12th position of the KRAS amino acid is mutated to V (Valine), or It includes G13D in which G (Glycine) at the 13th position of KRAS amino acid is mutated to D (Asapartic acid).
  • the KRAS (M) -ROP is characterized by having a sequence of 500 amino acids, and the amino acids are sequentially divided into 30 units, but one epitope is designed such that 15 amino acid sequences overlap with each other.
  • Table 2 shows the amino acid sequence of KRAS(M)-ROP (SEQ ID NO: 1) and the amino acid sequence of KRAS(M)-ROP epitope.
  • KRAS-ROP(M) was synthesized (Genescript Co. Ltd.), cloned into a pET30a vector, and then transformed into E.coli and expressed.
  • KRAS(M)-ROP was prepared by cleaving the expressed protein using activated protein C (APC).
  • PBMC peripheral blood mononuclear cells
  • Figure 2 shows the results of analyzing the reactivity of PBMC to KRAS (M) -ROP of the present invention.
  • Panel A shows the SFC image of the ELISpot (IFN- ⁇ ) assay and
  • panel B shows the SFC graph of the ELISpot (IFN- ⁇ ) assay.
  • PBMC peripheral blood mononuclear cell
  • LP-1 PBMC, LP-4 PBMC, and LP-6 PBMC peripheral blood mononuclear cells
  • antigen 5 ⁇ g/ml, 1.0 ⁇ g/ml, and 0.1 ⁇ g/ml of KRAS(M)-ROP were used, and anti-CD3 was used as a positive control.
  • Cell culture was performed under conditions of 37°C, 5% CO 2 , overnight (O/N), and the cultured cells were stained with IFN- ⁇ and analyzed by reading SFC (Spot Forming Cell). As a result of the experiment, it was confirmed that the reactivity to KRAS(M)-ROP was the best in LP-1 among normal PBMCs.
  • the ratio of KRAS(M)-ROP-specific CD3+ T cells according to the KRAS(M)-ROP concentration was analyzed for the LP-1 PBMCs. To this end, IFN- ⁇ capture staining was performed after antigen treatment on LP-1 PBMCs, and this was analyzed.
  • Figure 3 shows the results of analyzing the ratio of KRAS (M) -ROP-specific CD3+ T cells in LP-1 PBMC according to the concentration of KRAS (M) -ROP of the present invention.
  • Panel A shows the SFC image for each condition of the ELISpot (IFN- ⁇ ) assay
  • Panel B shows the SFC graph for each condition of the ELISpot (IFN- ⁇ ) assay.
  • Panel C shows the principle light method of IFN- ⁇ capture staining
  • Panel D shows the results of IFN- ⁇ capture FACS analysis.
  • Panel E shows a graph of the percentage (%) of IFN- ⁇ secreting CD3+ T cells.
  • LP-1 PBMC 1x10 6 cells were seeded and cultured, and then antigens (KRAS(M)-ROP 5 ⁇ g/ml, KRAS(M)-ROP 1.0 ⁇ g/ml, KRAS(M) -ROP 0.1 ⁇ g/ml) was treated.
  • LP-1 PBMC treated with tetanus toxoid vaccine (TTX) at 5 ⁇ g/ml and 1.0 ⁇ g/ml and anti-CD3 were used as positive controls.
  • TTX tetanus toxoid vaccine
  • IFN- ⁇ capture staining antigen-treated LP-1 PBMC was treated with 1st capture antibody, then incubated at 37°C for 45 minutes, and secondary detection antibody ( 2nd detection andtibody) and CD3, CD4 , CD8, and CD137.
  • secondary detection antibody 2nd detection andtibody
  • CD3, CD4 , CD8, and CD137 Cell characteristics of the LP-1 PBMCs subjected to the IFN- ⁇ capture staining were analyzed using a Fluorescence activated cell sorter (FACS).
  • FACS Fluorescence activated cell sorter
  • LP-1 PBMC were treated with KRAS(M)-ROP (500aa), KRAS 1-24 Wild-type (Peptide Wt, 24aa), or KRAS 1-24 mutant (24aa), and then the ratio of antigen-specific CD3+ T cells was evaluated. Comparative analysis was performed.
  • Figure 4 shows the results of analyzing the ratio of antigen-specific CD3+ T-cells of LP-1 PBMCs against KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 mutants of the present invention.
  • Panel A shows the results of IFN- ⁇ capture FACS analysis of KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 mutant-treated LP-1 PBMCs.
  • Panel B shows a graph of IFN- ⁇ -secreting CD3+ T cell ratio (%)
  • panel C shows the graph of antigen-specific CD3+ T cell ratio (%) tabulated.
  • No Ag means that only the effector was used, and @CD3 means that anti-CD3 was used as a positive control.
  • the KRAS 1-24 mutation is a KRAS 1-24 Wild-type in which G, the 12th amino acid, is substituted with D or V, or G, the 12th amino acid, is replaced with D (Pep.G12D, Pep.G12V, Pep.G13D).
  • G the 12th amino acid
  • D the 12th amino acid
  • KRAS(M)-ROP 500aa
  • Peptide Wt Pep.G12D, Pep.G12V, and Pep.G13D were used as antigens.
  • CD+ T cells that responded to Peptide Wt were not confirmed, and CD3+ T cells that responded to Pep.G12D, Pep.G12V, and Pep.G13D were also 0.31% (Pep.G12D), 0.11% (Pep.G12V) and It was confirmed that it was remarkably low at 0.25% (Pep.G13D).
  • the above results indicate that the induction of antigen-specific CD3+ T cells is insignificant with only the epitope, which is a peptide composed of 24 amino acids, considering that the ratio of CD3+ T cells induced in response to KRAS(M)-ROP is 2.41%.
  • CD3+ T cells responding to KRAS(M)-ROP were prepared.
  • ROP-T cells were prepared by applying Fast-IVS (Fast-In vitro Stimulation).
  • Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
  • Panel A shows the manufacturing process and evaluation process of ROP-T cells using Fast-IVS, and the characterization process of ROP-T cells.
  • Panel B shows the result of comparing the IFNg+ CD3+ T cell ratio of T cells expanded under the Fast-IVS process condition and the No-Cytokine process condition.
  • the Fast-IVS process is characterized in that a process of inducing antigen-specific CD3+ T cells using an antigen and a process of performing cell expansion by treating cytokines are performed at the same time.
  • the No-Cytokine process is characterized in that cell amplification is performed without treating antigen-specific CD3+ T cells with cytokines.
  • the cytokines used for cell amplification in the Fast-IVS process include Interleukin-4 (IL-4), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), and tumor necrosis. They are Tumor Necrosis Factor- ⁇ (TNF- ⁇ ), Interleukin-1 ⁇ (IL-1 ⁇ ), and Prostaglandin E2 (PGE2).
  • IL-4 Interleukin-4
  • GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
  • TNF- ⁇ Tumor Necrosis Factor- ⁇
  • IL-1 ⁇ Interleukin-1 ⁇
  • PGE2 Prostaglandin E2
  • Table 3 below shows the Fast-IVS process and the No-Cytokine process of the present invention.
  • the Fast-IVS process for preparing ROP-T cells was optimized by changing the treatment concentration of KRAS(M)-ROP and Fast-IVS process conditions. Table 4 below shows examples for optimization of the Fast-IVS process.
  • Example 1 Example 2 Example 3 Experiment conditions Scale PBMCs 10M@24well 10M@24well 10M@24well Cytokine manufacturing company JW Creagene JW Creagene JW Creagene KRAS(M)-ROP ⁇ g/mL 5.0 1.0 1.0 Fast-IVS (Badge AIM-V) Period Days 5 5 7 Expansion period Days 10 10 10 Experiment result Expansion Fold No Ag-T 45 34 55 ROP-T 55 49 65 Helper T cells No Ag-T 54.7 35.8 21.1 ROP-T 64.4 75.3 60.4 KRAS(M)-ROP specific T cell (IFN-g+, CD3+) (%) No Ag-T 4.6 1.1 1.2 ROP-T 19.7 18.6 52.9
  • KRAS mutant epitope screening was performed to characterize the amplified ROP-T cells.
  • autologous dendritic cells are induced from PBMC, and antigen pulsed dendritic cells (Ag pulsed DC) capable of stimulating antigen-specific T cells are prepared by sensitizing the autologous dendritic cells with an antigen.
  • Ag pulsed DC antigen pulsed dendritic cells capable of stimulating antigen-specific T cells
  • Figure 6 shows the results of KRAS mutant epitope screening for ROP-T cells of the present invention.
  • Panel A shows the results of FACS analysis for IFG- ⁇ +, CD3+, and CD4+.
  • Panel B shows the result of analyzing the cell ratio (%) of the restimulation IFN- ⁇ secreting T cell ratio for each condition.
  • autologous DCs were cultured for 4 days and Ag pulsed DCs were prepared by sensitizing them to an antigen.
  • the Ag pulsed DC was dispensed at 5x10 3 cells/100 ⁇ l in 96 well.
  • KRAS(M)-ROP-specific CD3+ T cells were dispensed into the 96 well to be 1x10 5 cells/100 ⁇ l, but the Ag pulsed DC and KRAS(M)-ROP-specific CD3+ T cells were dispensed at a ratio of 1:20. .
  • Medium mixed with Ag pulsed DC and KRAS(M)-ROP-specific CD3+ T cells was cultured for 4 hours.
  • CD3+, CD4+, CD137+, IFN- ⁇ cap, and IFN- ⁇ secreting T cell ratios (%) of the cultured cells were analyzed using the FACS.
  • Antigens used in the preparation of Ag pulsed DC were KRAS (M)-ROP (500aa) (ROP_DC), KRAS 1-24 wild type peptide (WT_DC), KRAS 1-24 G12D mutant peptide (G12D_DC), KRAS 1-24 G12V mutant peptide (G12V_DC), and KRAS 1-24 G13D mutant peptide (G13D_DC).
  • DC (NoAg_DC) using only an effector without an antigen (Ag) was used.
  • the percentages (%) of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells in CD3+ ROP-T cells were 1.5%, respectively. and 0.5%.
  • HLA-DQ human leukocyte antigen DQ
  • antigen-primed DC (Ag pulsed DC) was prepared.
  • Antigens used in the preparation of Ag pulsed DC were KRAS (M)-ROP (500aa) (ROP_DC), KRAS 1-24 wild type peptide (WT_DC), KRAS 1-24 G12D mutant peptide (G12D_DC), KRAS 1-24 G12V mutant peptide (G12V_DC), and KRAS 1-24 G13D mutant peptide (G13D_DC).
  • HLA-DQ blocking was performed by treating the prepared Ag pulsed DC with an HLA-DQ antibody for 1 hour. After re-stimulation of ROP-T using HLA-DQ blocked Ag pulsed DC, IFN-g+, CD3+, and CD4+ were analyzed by FACS analysis.
  • antigen-specific T cells showed that the ratio of CD3+CD4+ T cells secreting IFN- ⁇ was insignificant, regardless of the type of DC used for restimulation and whether or not HLA-DQ blocking was performed on the DC. Confirmed. On the other hand, when ROP-T cells were re-stimulated using ROP_DC, it was confirmed that the ratio of CD3+CD4+ T cells secreting IFN- ⁇ increased to 15% or more regardless of HLA-DQ blocking for DC.
  • the ROP-T cells of the present invention induce the expansion of CD4+ T cells that are specific for the ROP antigen, restrictive for HLA-DQ, and show specificity for the G13D mutation.
  • FIG. 8 shows the ratio of CD3+ T cells secreting IFN- ⁇ (IFN- ⁇ +) for each condition of the present invention.
  • T cells were induced using the Fast-IVS process using KRAS(M)-ROP or native KRAS(189aa) as an antigen.
  • T cells were induced using the Fast-IVS process using a mixture of KRAS 1-24 wild type peptide, KRAS 1-24 G12D peptide, KRAS 1-24 G12V peptide, and KRAS 1-24 G13D peptide as antigens.
  • As a control T cells were induced using the Fast-IVS process using only the effector without antigen.
  • the induced T cells were re-stimulated using ROP_DC and the percentage of IFN- ⁇ + CD3+ T cells was analyzed using FACS.
  • KRAS epitope wild type means Native KRAS 1-24 (24aa); KRAS epitope G12D refers to KRAS 1-24 G12D (24aa); KRAS epitope G12V refers to KRAS 1-24 G12V (24aa); KRAS epitope G13D refers to KRAS 1-24 G13D (24aa).
  • T cells (Pep_T) induced through the Fast-IVS process using a mixture of KRAS 1-24 wild type peptide, KRAS 1-24 G12D peptide, KRAS 1-24 G12V peptide, and KRAS 1-24 G13D peptide as antigens It was confirmed that the ratio of IFN- ⁇ + CD3+ T cells was at the level of 19.0%.
  • the KRAS(M)-ROP antigen has an IFN- ⁇ + CD3+ T cell induction effect that is about twice as good as that using native KRAS or an epitope containing a KRAS mutation.
  • a KRAS mutation-dependent tumor treatment agent When an antigen capable of inducing individual recognition of K-ras mutants is developed using the recombinant overlapping peptide (ROP) of the present invention, a KRAS mutation-dependent tumor treatment agent can be developed.
  • ROP recombinant overlapping peptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

In an antigen composition for inducing KRAS-specific activated T cells, of the present invention, a recombinant KRAS-mutant (G12D, G12V, and G13D) overlapping peptide, which is an active ingredient, is designed so that 30 consecutive amino acids in a KRAS amino acid sequence are divided into a total of 12 epitopes as units (n=1 to 12, and the last epitope (n=12) consists of 23 amino acids) and 15 amino acid sequences overlap between the epitopes, and thus the present invention induces KRAS-specific activated T cells that are superior to those when common KRAS-mutant epitope peptides are used as antigens.

Description

KRAS 특이적 활성화 T 세포 유도용 항원 조성물Antigen composition for inducing KRAS-specific activated T cells
본 발명은 KRAS 특이적 활성화 T 세포 유도용 항원 조성물에 관한 것이다.The present invention relates to an antigen composition for inducing KRAS-specific activated T cells.
암 환자의 치료는 기본적으로 외과적 수술, 화학요법, 방사선 치료등을 단독 혹은 병행하여 시행하게 되며 싸이토카인(cytokine), 펩타이드 백신, 항체 치료제등의 병행치료도 증가하고 있는 추세이다. Treatment of cancer patients is basically performed alone or in parallel with surgical operation, chemotherapy, radiotherapy, etc., and concurrent treatment such as cytokine, peptide vaccine, antibody treatment is also increasing.
비특이적 수동 면역 반응에 의한 항암치료효과를 갖는 면역세포치료제가 간암환자대상 수술 후 재발 억제 효능이 있다는 것을 입증한 바 있으며 그 예로서 CAR-T 세포치료제가 임상허가를 받아 항암 면역세포치료와 면역관문 억제제들의 병행 치료에 대한 연구가 활발히 진행되고 있다.It has been proven that immune cell therapy with anticancer treatment effect by non-specific passive immune response has the effect of suppressing recurrence after surgery for liver cancer patients. Studies on the combination treatment of inhibitors are being actively conducted.
항암 치료제로 사용되는 일반적인 펩타이드 백신은 면역원성이 높은 아미노선 서열을 에피토프로 선별하고 이를 최적화하여 사용한다. 항암치료제로 사용되는 펩타이드 백신은 선택성이 좋고 효과적이며 우수한 내약성을 갖는 장점이 있다. A general peptide vaccine used as an anti-cancer treatment uses an amino wire sequence with high immunogenicity selected as an epitope and optimized for use. Peptide vaccines used as anticancer drugs have the advantages of good selectivity, effectiveness, and excellent tolerability.
상기 펩타이드 백신은 암 항원을 인지하는 T 세포 수용체(T cell receptor; TCR)와 결합하는 항원제시세포(Antigen presenting cell; APC)의 주조직적합성복합체(Major histocompatibility complex; MHC) 분자에 실려 대부분 CD8 T 세포들을 교육시키거나 활성을 유도하므로 암세포 사멸을 유도한다.The peptide vaccine is carried on the major histocompatibility complex (MHC) molecule of the antigen presenting cell (APC) that binds to the T cell receptor (TCR) recognizing cancer antigens, and most of the CD8 T Induces cancer cell death by educating or inducing activation of cells.
그러나 펩타이드 백신은 9 내지 11개 아미노산으로 구성된 에피토프에 의존하므로 암세포에서 상기 에피토프가 돌연변이를 일으키게 되면 면역회피를 할 수 있게 될 뿐 아니라 CD4 T 세포의 도움을 받지 못해 CD8 세포의 활성 및 메모리 기능에 제한을 가지게 된다. 또한 상기 펩타이드 백신은 MHC class I 분자에 올려지는 펩타이드로 디자인 되므로 환자의 인간백혈구 항원(Human leukocyte antigen, HLA) 타입에 따라 제한이 있는 문제점이 있었다.However, since peptide vaccines depend on an epitope composed of 9 to 11 amino acids, when the epitope is mutated in cancer cells, immune evasion is possible and CD4 T cells do not help, limiting the activity and memory function of CD8 cells will have In addition, since the peptide vaccine is designed as a peptide loaded on an MHC class I molecule, there is a problem in that it is limited according to the type of human leukocyte antigen (HLA) of the patient.
상기 문제점을 개선하기 위하여 중첩 펩타이드(overlapping peptide, OLP) 백신치료제가 개발되었다. OLP 백신은 펩타이드 백신과 달리 항원 전체를 포함하는 특징이 있다. OLP 백신은 항원 전체를 포함하되 에피토프의 아미오선 서열이 중첩이 되도록 설계 되었기 때문에 HLA 타입에 제한성이 없을 뿐 아니라 CD4 T 세포의 도움을 받을 수 있어 종래의 펩타이드 백신보다 우수한 면역반응을 보이는 장점이 있다. In order to improve the above problems, overlapping peptide (OLP) vaccine therapeutics have been developed. Unlike peptide vaccines, OLP vaccines are characterized by including all antigens. OLP vaccines are designed to include all antigens but have overlapping epitope amioline sequences, so there is no restriction on HLA types, and they can receive help from CD4 T cells, so they have the advantage of showing better immune responses than conventional peptide vaccines. .
그러나 상기 OLP 백신은 특정 항원에 대한 OLP 라이브러리(library)중 면역반응이 우수한 20개 내외의 아미노산 서열을 포함하는 펩타이드를 에피토프로서 선별하는 과정이 필요할 뿐 아니라 선별된 에피토프를 10개 이상 연속적이며 중복되도록 디자인하기 때문에 많은 비용과 시간이 소요되는 제조상 문제점이 있었다. 재조합 중첩 펩타이드(Recombinant overlapping peptide, ROP)는 상기 OLP 백신치료제의 문제점을 개선하기 위해 개발된 것으로 재조합 단백질 생산기술을 통해 비용과 시간을 절약할 수 있는 장점이 있다. However, the OLP vaccine requires a process of selecting as an epitope a peptide containing about 20 amino acid sequences with excellent immune response among the OLP library for a specific antigen, and 10 or more selected epitopes are contiguous and overlapping. Because of the design, there were manufacturing issues that cost a lot of money and time. Recombinant overlapping peptide (ROP) was developed to improve the problems of the OLP vaccine treatment, and has the advantage of saving cost and time through recombinant protein production technology.
암 항원 중 KRAS 돌연변이는 고형암의 약 20%에서 발견되고 있는 비교적 흔한 발암유발변이로, 주로 췌장 및 대장의 선암, 폐암 등에서 가장 흔하게 발견된다. 그러나 오랜 연구와 노력에도 불구하고 KRAS 돌연변이 의존적 종양에서 K-ras 표적의 새로운 치료법들은 그 효과에 있어서 만족스럽지 못한 실정이다. 그 이유는 KRAS 돌연변이에 의해 발현되는 K-ras 돌연변이체들에 개별적으로 결합하는 항체를 만들기 어려워 K-ras의 기능을 억제하거나 비활성화 하는 간접적인 치료법에 국한되어 있었기 때문이다. 따라서 재조합 중첩 펩타이드(Recombinant overlapping peptide, ROP)을 이용하여 K-ras 돌연변이체의 개별적 인식이 가능하도록 유도할 수 있는 항원이 개발된다면 KRAS 돌연변이 의존적 종양 치료제 개발에 큰 기여를 할 수 있을 것으로 기대된다.Among cancer antigens, KRAS mutation is a relatively common oncogenic mutation found in about 20% of solid cancers, and is most commonly found in adenocarcinoma of the pancreas and colon, lung cancer, and the like. However, despite long-term research and efforts, new therapies targeting K-ras in KRAS mutation-dependent tumors are not satisfactory in terms of their effectiveness. The reason is that it was difficult to make antibodies that individually bind to K-ras mutants expressed by KRAS mutations, so it was limited to indirect treatments that inhibit or inactivate the function of K-ras. Therefore, if an antigen capable of inducing individual recognition of K-ras mutants is developed using a recombinant overlapping peptide (ROP), it is expected to make a great contribution to the development of KRAS mutation-dependent tumor therapeutics.
본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. The patents and references mentioned herein are incorporated herein by reference to the same extent as if each document were individually and expressly specified by reference.
본 발명은 KRAS 전체 아미노산 서열 및 KRAS 돌연변이를 포함하므로 KRAS 돌연변이 의존적 종양의 다양한 KRAS 돌연변이에 직접 결합하여 면역반응을 일으킬 수 있는 KRAS 특이적 활성화 T 세포를 유도 할 수 있을 뿐 아니라 재조합 기술을 이용하여 제조되었으므로 경제적 효율성이 뛰어난 KRAS 특이적 활성화 T 세포 유도용 항원을 제공하는 것을 목적으로 한다.Since the present invention includes the entire KRAS amino acid sequence and KRAS mutations, it is possible to induce KRAS-specific activated T cells capable of inducing an immune response by directly binding to various KRAS mutations in KRAS mutation-dependent tumors, as well as to manufacture using recombinant technology Therefore, an object of the present invention is to provide an antigen for inducing KRAS-specific activated T cells with excellent economic efficiency.
본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are presented more specifically by the following detailed description, claims and drawings.
본 발명은 서열번호 1의 아미노산 서열로 이루어진 KRAS 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 제공한다. The present invention provides an antigen composition for inducing KRAS-specific activated T cells comprising a KRAS mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
상기 KRAS 돌연변이 재조합 중첩 펩타이드는 KRAS 돌연변이로서 G12D, G12V, 및 G13D을 포함하며 서열번호 2로 이루어진 KRAS의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된 것을 특징으로 한다.The KRAS mutant recombinant overlapping peptide includes G12D, G12V, and G13D as KRAS mutations, and includes a total of 12 types of epitopes (epitope (n = 1, 2, 3....10, 11, 12); Here, n means the sequence of the epitope, and the epitope (n = 1 to 11) contains a sequence of 30 amino acids, and the last epitope (n = 12) includes a 23 amino acid sequence), but the epitope (n = 2, 3, ... 12) except for the epitope (n = 1) is the epitope of the immediately preceding sequence of 15 amino acids in the N-terminal direction It is characterized in that it is designed to overlap with the 15 amino acid sequence in the C-terminal direction of (n-1).
상기 KRAS 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결되며; 상기 에피토프(n=1)는 KRAS 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 KRAS 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 KRAS 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결되는 것을 특징으로 한다.In the KRAS mutant recombinant overlapping peptide, the epitopes (n = 1, 2, 3...10, 11, 12) are located in sequence, and the epitopes are connected by an LRMK-linker; The epitope (n=1) includes the KRAS mutation G12V; An epitope (n = 1) containing KRAS mutation G12D is further linked to the N-terminal of the epitope (n = 1) by an LRMK-linker; An epitope (n = 1) containing KRAS mutation G13D is further linked to the C-terminal of the epitope (n = 12) by an LRMK-linker; The C-terminal of the epitope (n = 1) containing the KRAS mutation G13D is characterized in that the epitope (n = 1) not containing the KRAS mutation is further linked with an LRMK-linker.
본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 유효성분인 KRAS 돌연변이(G12D, G12V, 및 G13D) 재조합 중첩 펩타이드를 KRAS의 아미노산 서열에서 순차적으로 30개의 아미노산을 단위로 총 12개의 에피토프(epitope, n=1 내지 12이며 단, 마지막 에프토프(n=12)는 23개의 아미노산이다.)로 구분하되 에피토프 사이에 15개의 아미노산 서열이 중첩되도록 디자인하여 종래의 KRAS 돌연변이 에피토프 펩타이드를 항원으로 사용하는 것보다 향상된 KRAS 특이적 활성화 T 세포 유도 효과를 가지는 장점이 있다.The antigen composition for inducing KRAS-specific activated T cells of the present invention comprises a total of 12 epitopes (epitope , n = 1 to 12, but the last epitope (n = 12) is 23 amino acids), but designed so that 15 amino acid sequences overlap between epitopes, and conventional KRAS mutant epitope peptides are used as antigens It has the advantage of having an improved KRAS-specific activated T cell inducing effect.
도 1은 본 발명의 KRAS(M)-ROP의 아미노산 서열 구조를 보여준다.Figure 1 shows the amino acid sequence structure of KRAS (M) -ROP of the present invention.
도 2는 본 발명의 KRAS(M)-ROP에 대한 PBMC의 반응성을 분석한 결과를 보여준다.Figure 2 shows the results of analyzing the reactivity of PBMC to KRAS (M) -ROP of the present invention.
도 3은 본 발명의 KRAS(M)-ROP 농도에 따른 LP-1 PBMC의 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다.Figure 3 shows the results of analyzing the specific CD3+ T cell ratio of LP-1 PBMC according to the concentration of KRAS (M) -ROP of the present invention.
도 4는 본 발명의 KRAS(M)-ROP, KRAS1-24Wild-type, 및 KRAS1-24m돌연변이에 대한 LP-1 PBMC의 항원 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다. Figure 4 shows the results of analyzing the ratio of antigen-specific CD3+ T cells in LP-1 PBMCs for KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 m mutants of the present invention.
도 5는 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 비교한 결과를 보여준다. Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
도 6은 본 발명의 ROP-T 세포에 대한 KRAS 돌연변이 에피토프 스크리닝 결과를 보여준다.Figure 6 shows the results of KRAS mutant epitope screening for ROP-T cells of the present invention.
도 7은 본 발명의 HLA-DQ blocking 에세이 결과를 보여준다.7 shows the results of the HLA-DQ blocking assay of the present invention.
도 8은 본 발명의 조건별 IFN-γ를 분비(IFN-γ+)하는 CD3+ T 세포의 비율을 보여준다.Figure 8 shows the ratio of CD3+ T cells secreting IFN-γ (IFN-γ+) for each condition of the present invention.
본 발명은 서열번호 1의 아미노산 서열로 이루어진 KRAS 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 제공한다. The present invention provides an antigen composition for inducing KRAS-specific activated T cells comprising a KRAS mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
상기 서열번호 1은 KRAS 단백질의 아미노산서열로서 189개의 아미노산으로 구성된다. 상기 KRAS 돌연변이는 12번째 아미노산이 글리신(Glycine, G)에서 아스파르트산(Aspartic acid, D)으로 치환되었거나, 12번째 아미노산이 글리신(Glycine, G)에서 발린(Valine, V)으로 치환되었거나, 13번째 아미노산이 글리신(Glycine, G)에서 아스파르트산(Aspartic acid, D)으로 치환된 것을 의미한다.SEQ ID NO: 1 is an amino acid sequence of the KRAS protein and consists of 189 amino acids. In the KRAS mutation, the 12th amino acid is substituted from glycine (G) to aspartic acid (D), the 12th amino acid is substituted from glycine (G) to valine (V), or the 13th amino acid is substituted from glycine (G) to valine (V). It means that an amino acid is substituted from glycine (G) to aspartic acid (D).
상기 재조합(recombinant)은 디자인된 항원의 유전정보를 포함하는 재조합 플라스미드 DNA에 끼워 넣는 것을 의미하며 상기 재조합 플라스미드 DNA를 미생물에 형질전환시켜 단백질을 발현시키고 이를 정제하게 되면 본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원이 수득된다. The recombinant means inserting into a recombinant plasmid DNA containing the genetic information of the designed antigen, and the recombinant plasmid DNA is transformed into a microorganism to express a protein and purify the KRAS-specific activated T of the present invention Antigens for cell derivation are obtained.
본 발명의 KRAS 돌연변이 재조합 중첩 펩타이드는 서열번호 2로 이루어진 KRAS의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된다. The KRAS mutant recombinant overlapping peptide of the present invention has a total of 12 types of epitopes (epitopes (n = 1, 2, 3.. ..10, 11, 12); where n means the sequence of epitopes, the epitope (n = 1 to 11) contains a sequence of 30 amino acids and the last epitope (n = 12) contains a sequence of 23 amino acids .), but the epitope (n = 2, 3, ... 12) except for the epitope (n = 1) is the C-terminal direction of the 15 amino acid sequence in the N-terminal direction of the immediately preceding epitope (n-1) It is designed to overlap each other with 15 amino acid sequences.
상기 KRAS 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결된 것을 특징으로 하며 상기 LRMK-링커는 루신(Leucine, L), 아르기닌(Arginine, R), 메티오닌(Methione, M), 라이신(Lysine, K)으로 구성된 링커로서 수지상세포에 의한 항원제시과정(MHCI class I pathway)에 유리한 장점이 있다. The KRAS mutant recombinant overlapping peptide is characterized in that the epitopes (n = 1, 2, 3 ... 10, 11, 12) are located in sequence and connected by an LRMK-linker between the epitopes, and the LRMK-linker As a linker composed of Leucine (L), Arginine (R), Methionine (M), and Lysine (K), it has an advantage in the MHCI class I pathway by dendritic cells.
상세하게는 본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 하기와 같이 디자인된다. 상기 에피토프(n=1)는 KRAS 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 KRAS 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 KRAS 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결된다.In detail, the antigen composition for inducing KRAS-specific activated T cells of the present invention is designed as follows. The epitope (n=1) includes the KRAS mutation G12V; An epitope (n = 1) containing KRAS mutation G12D is further linked to the N-terminal of the epitope (n = 1) by an LRMK-linker; An epitope (n = 1) containing KRAS mutation G13D is further linked to the C-terminal of the epitope (n = 12) by an LRMK-linker; An epitope (n = 1) without a KRAS mutation is further linked to the C-terminal of the epitope (n = 1) containing the KRAS mutation G13D by an LRMK-linker.
본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 이용하면 KRAS 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포를 유도할 수 있으며 상기 KRAS 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포는 KRAS 돌연변이(G12D, G12V, G13D)를 가지는 암세포를 치료하는데 사용 가능하다. Using the antigen composition for inducing KRAS-specific activated T cells of the present invention, T cells specific for KRAS mutations (G12D, G12V, G13D) can be induced, and specific for the KRAS mutations (G12D, G12V, G13D) T cells can be used to treat cancer cells with KRAS mutations (G12D, G12V, G13D).
상기 KRAS 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포의 유도는 in vitro stimulation(IVS) 또는 Fast-IVS를 통해 수행할 수 있다. 상기 IVS는 혈액에서 분리한 단핵구(monocyte)로부터 분화와 성숙(maturation) 과정을 통해 단핵구 유도 수지상 세포(monocyte-derived dendritic cell, moDC)를 수득한 후 본 발명의 KRAS 특이적 활성화 T 세포 유도용 항원 조성물을 처리한 환경에서 T 세포와 공배양(co-culture)하는 방법을 의미하며 상기 Fast-IVS는 PBMC 내의 DC세포에 대하여 성숙과정과 항원(KRAS 특이적 활성화 T 세포 유도용 항원 조성물)처리를 동시에 수행하는 것을 의미한다.Induction of T cells specific for the KRAS mutations (G12D, G12V, G13D) can be performed through in vitro stimulation (IVS) or Fast-IVS. The IVS is a monocyte-derived dendritic cell (moDC) obtained from monocytes isolated from blood through a process of differentiation and maturation, and then the antigen for inducing KRAS-specific activated T cells of the present invention It refers to a method of co-culture with T cells in an environment treated with the composition, and the Fast-IVS is a maturation process and antigen (antigen composition for inducing KRAS-specific activated T cells) treatment for DC cells in PBMC. means to do it at the same time.
상기 T 세포 유도과정에서 항원으로 사용되는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물은 DC 세포의 성숙 및 생장에 필요한 싸이토카인(cytokine), 호르몬 및 완충용액을 더 포함할 수 있다. 바람직하게는 싸이토카인(cytokine)은 인터루킨-4(interleukin-4), 인터루킨-1β, 과립구 대식세포 콜로니 자극 인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF), 종양괴사인자-α(Tumor Necrosis Factor-α, TNF-α)일 수 있으며 상기 호르몬은 프로스타글란딘 E2(Prostaglandin E2, PGE2)일 수 있다.The antigen composition for inducing KRAS-specific activated T cells used as an antigen in the T cell induction process may further include cytokines, hormones, and buffers necessary for DC cell maturation and growth. Preferably, the cytokine is interleukin-4, interleukin-1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (Tumor Necrosis Factor). -α, TNF-α), and the hormone may be prostaglandin E2 (PGE2).
KRAS는 RAS 단백질의 일종으로 세포의 분화, 증식 및 생존과 관련된 신호전달체계에서 중요한 역할을 하는 small GTPases 단백질이다. 상기 RAS 단백질은 여러가지 암종에서 돌연변이로 발견되는 oncogene으로 잘 알려져 있으며 RAS-유래 암종의 85%가 KRAS 돌연변이에 의한 것으로 알려져 있다. 따라서 KRAS 돌연변이를 특이적으로 인식하는 T 세포를 증폭시키게 되면 KRAS 돌연변이를 가진 암을 제거하여 이를 치료하거나 암에 대한 백신 역할을 수행할 수 있게 된다. 상기 암은 KRAS 돌연변이를 가진 암이라면 제한되지 않으며 그 예로서 부신피질 암종(ACC), 방광요로상피 암종(BLCA), 유방 침습 암종(BRCA), 경부 편평 세포 암종 및 자궁경부내 선암종(CESC), 결장 선암종(COAD), 만성 림프성 백혈병(CLL), 대장암(CRC), 미만성 거대 B-세포 림프종(DLBCL), 다형성아교모세포종(GBM), 두경부 편평 세포 암종(HNSC), 혐색소 신장(KICH), 신장 투명 세포 암종(KIRC), 신장 유두상 세포 암종(KIRP), 급성 골수성 백혈병(LAML), 간세포 암종(LIHC), 폐 선암종(LUAD), 폐 편평 세포 암종(LUSC), 다발성 골수종(MM), 난소 장액낭선암종(OV), 췌장 선암종(PAAD), 전립선 선암종(PRAD), 직장 선암종(READ), 피부 흑색종(SKCM), 위 선암종(STAD), 고환 생식 세포 종양(TGCT), 갑상선 선암종(THCA), 자궁체부 자궁내막양 암종(UCEC) 또는 자궁 암육종(UCS)일 수 있다.KRAS, a type of RAS protein, is a small GTPases protein that plays an important role in the signal transduction system related to cell differentiation, proliferation, and survival. The RAS protein is well known as an oncogene found as a mutation in various carcinomas, and 85% of RAS-derived carcinomas are known to be caused by KRAS mutations. Therefore, when T cells specifically recognizing KRAS mutations are amplified, cancers with KRAS mutations can be eliminated and treated, or can serve as a vaccine against cancer. The cancer is not limited as long as the cancer has a KRAS mutation, and examples include adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and cervical adenocarcinoma (CESC), colon Adenocarcinoma (COAD), chronic lymphocytic leukemia (CLL), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), glioblastoma multiforme (GBM), squamous cell carcinoma of the head and neck (HNSC), chromophobe kidney (KICH) , renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), acute myelogenous leukemia (LAML), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), multiple myeloma (MM) , ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectal adenocarcinoma (READ), skin melanoma (SKCM), gastric adenocarcinoma (STAD), testicular germ cell tumor (TGCT), thyroid adenocarcinoma (THCA), endometrioid carcinoma of the uterus (UCEC) or uterine carcinosarcoma (UCS).
하기에서 실시예를 통해 본 발명을 상세히 설명한다.In the following, the present invention will be described in detail through examples.
실시예 Example
1. KRAS(WT)의 제조1. Preparation of KRAS (WT)
먼저 KRAS 아미노산 서열(서열번호 2)을 발현벡터에 삽입하였다. KRAS(WT)는 189개의 아미노산으로 이루어져 있으며 아미노산 서열은 하기 표 1과 같다.First, the KRAS amino acid sequence (SEQ ID NO: 2) was inserted into the expression vector. KRAS (WT) consists of 189 amino acids, and the amino acid sequence is shown in Table 1 below.
이름name 아미노산 서열(189aa)Amino acid sequence (189aa)
KRAS(WT)KRAS(WT) MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY

RKQVVIDGET CLLDILDTAG QEEYSAMRDQ YMRTGEGFLC

VFAINNTKSF EDIHHYREQI KRVKDSEDVP MVLVGNKCDL

PSRTVDTKQA QDLARSYGIP FIETSAKTRQ RVEDAFYTLV

REIRQYRLKK ISKEEKTPGC VKIKKCIIM
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY

RKQVVIDGET CLLDILDTAG QEEYSAMRDQ YMRTGEGFLC

VFAINNTKSF EDIHHYREQI KRVKDSEDVP MVLVGNKCDL

PSRTVDTKQA QDLARSYGIP FIETSAKTRQ RVEDAFYTLV

REIRQYRLKK ISKEEKTPGC VKIKKCIIM
상기 KRAS-WT를 제한효소로 처리한 후 pET30a 벡터에 넣어 발현벡터를 제조 하였으며 상기 발현벡터는 E.coli에 형질전환하여 단백질을 발현시켰다. After treating the KRAS-WT with a restriction enzyme, an expression vector was prepared by inserting it into a pET30a vector, and the expression vector was transformed into E. coli to express the protein.
2. KRAS(M)-ROP의 제조2. Preparation of KRAS(M)-ROP
KRAS Mutant Recombinant Overlapping Peptide(KRAS(M)-ROP)의 항원을 디자인하고 KRAS(WT)와 동이한 방법으로 발현벡터를 제조하였다. 상기 KRAS(M)-ROP은 KRAS 아미노산 12번째 위치의 G(Glycine)가 D(Asapartic acid)로 변이한 G12D, KRAS 아미노산 12번째 위치의 G(Glycine)가 V(Valine)로 변이한 G12V, 또는 KRAS 아미노산 13번째 위치의 G(Glycine)가 D(Asapartic acid)로 변이한 G13D를 포함한다. An antigen of KRAS Mutant Recombinant Overlapping Peptide (KRAS(M)-ROP) was designed and an expression vector was prepared in the same manner as for KRAS(WT). The KRAS (M)-ROP is G12D in which G (Glycine) at the 12th position of the KRAS amino acid is mutated to D (Asapartic acid), G12V in which G (Glycine) at the 12th position of the KRAS amino acid is mutated to V (Valine), or It includes G13D in which G (Glycine) at the 13th position of KRAS amino acid is mutated to D (Asapartic acid).
상기 KRAS(M)-ROP은 500개의 아미노산 서열을 가지는 것을 특징으로 하며 아미노산이 순차적으로 30개씩 구분되되 하나의 에피토프(epitope)는 15개의 아미노산 서열이 서로 중복되도록 디자인되었다. 표 2는 KRAS(M)-ROP의 아미노산 서열(서열번호 1) 및 KRAS(M)-ROP 에피토프의 아미노산 서열을 보여준다. The KRAS (M) -ROP is characterized by having a sequence of 500 amino acids, and the amino acids are sequentially divided into 30 units, but one epitope is designed such that 15 amino acid sequences overlap with each other. Table 2 shows the amino acid sequence of KRAS(M)-ROP (SEQ ID NO: 1) and the amino acid sequence of KRAS(M)-ROP epitope.
도 1은 본 발명의 KRAS(M)-ROP의 에피토프 구조를 보여준다.1 shows the epitope structure of KRAS(M)-ROP of the present invention.
이름name 아미노산 서열(500aa)Amino acid sequence (500aa)
KRAS(M)-ROPKRAS(M)-ROP MTEYKLVVVG ADGVGKSALT IQLIQNHFVD LRMK
MTEYKLVVVG AVGVGKSALT IQLIQNHFVD LRMK
KSALTIQLIQ NHFVDEYDPT IEDSYRKQVV LRMK
EYDPTIEDSY RKQVVIDGET CLLDILDTAG LRMK
IDGETCLLDI LDTAGQEEYS AMRDQYMRTG LRMK
QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF LRMK
EGFLCVFAIN NTKSFEDIHH YREQIKRVKD LRMK
EDIHHYREQI KRVKDSEDVP MVLVGNKCDL LRMK
SEDVPMVLVG NKCDLPSRTV DTKQAQDLAR LRMK
PSRTVDTKQA QDLARSYGIP FIETSAKTRQ LRMK
SYGIPFIETS AKTRQRVEDA FYTLVREIRQ LRMK
RVEDAFYTLV REIRQYRLKK ISKEEKTPGC LRMK
YRLKKISKEE KTPGCVKIKK CIIM LRMK
MTEYKLVVVG AGDVGKSALT IQLIQNHFVD LRMK
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD
MTEYKLVVVG ADGVGKSALT IQLIQNHFVD LRMK
MTEYKLVVVG AVGVGKSALT IQLIQNHFVD LRMK
KSALTIQLIQ NHFVDEYDPT IEDSYRKQVV LRMK
EYDPTIEDSY RKQVVIDGET CLLDILDTAG LRMK
IDGETCLLDI LDTAGQEEYS AMRDQYMRTG LRMK
QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF LRMK
EGFLCVFAIN NTKSFEDIHH YREQIKRVKD LRMK
EDIHHYREQI KRVKDSEDVP MVLVGNKCDL LRMK
SEDVPMVLVG NKCDLPSRTV DTKQAQDLAR LRMK
PSRTVDTKQA QDLARSYGIP FIETSAKTRQ LRMK
SYGIPFIETS AKTRQRVEDA FYTLVREIRQ LRMK
RVEDAFYTLV REIRQYRLKK ISKEEKTPGC LRMK
YRLKKISKEE KTPGCVKIKK CIIM LRMK
MTEYKLVVVG AGDVGKSALT IQLIQNHFVD LRMK
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD
에피토프 이름epitope name 아미노산 서열
(서열번호는 KRAS WT을 기준으로 부여하였음)
amino acid sequence
(Sequence numbers were assigned based on KRAS WT)
에피토프1(E1, n=1)Epitope 1 (E1, n=1) MTEYKLVVVG AGGVGKSALT IQLIQNHFVDMTEYKLVVVG AGGVGKSALT IQLIQNHFVD
에피토프2(E2, n=2)Epitope 2 (E2, n=2) KSALT IQLIQNHFVD EYDPTIEDSY RKQVVKSALT IQLIQNHFVD EYDPTIEDSY RKQVV
에피토프3(E3, n=3)Epitope 3 (E3, n=3) EYDPTIEDSY RKQVVIDGET CLLDILDTAGEYDPTIEDSY RKQVVIDGET CLLDILDTAG
에피토프4(E4, n=4)Epitope 4 (E4, n=4) IDGET CLLDILDTAG QEEYSAMRDQ YMRTGIDGET CLLDILDTAG QEEYSAMRDQ YMRTG
에피토프5(E5, n=5)Epitope 5 (E5, n=5) QEEYSAMRDQ YMRTGEGFLC VFAINNTKSFQEEYSAMRDQ YMRTGEGFLC VFAINNTKSF
에피토프6(E6, n=6)Epitope 6 (E6, n=6) EGFLC VFAINNTKSF EDIHHYREQI KRVKDEGFLC VFAINNTKSF EDIHHYREQI KRVKD
에피토프7(E7, n=7)Epitope 7 (E7, n=7) EDIHHYREQI KRVKDSEDVP MVLVGNKCDLEDIHHYREQI KRVKDSEDVP MVLVGNKCDL
에피토프8(E8, n=8)Epitope 8 (E8, n=8) SEDVP MVLVGNKCDL PSRTVDTKQA QDLARSEDVP MVLVGNKCDL PSRTVDTKQA QDLAR
에피토프9(E9, n=8)Epitope 9 (E9, n=8) PSRTVDTKQA QDLARSYGIP FIETSAKTRQPSRTVDTKQA QDLARSYGIP FIETSAKTRQ
에피토프10(E10, n=10)Epitope 10 (E10, n=10) SYGIP FIETSAKTRQ RVEDAFYTLV REIRQSYGIP FIETSAKTRQ RVEDAFYTLV REIRQ
에피토프11(E11, n=11)Epitope 11 (E11, n=11) RVEDAFYTLV REIRQYRLKK ISKEEKTPGCRVEDAFYTLV REIRQYRLKK ISKEEKTPGC
에피토프12(E12, n=12)Epitope 12 (E12, n=12) YRLKK ISKEEKTPGC VKIKKCIIMYRLKK ISKEEKTPGC VKIKKCIIM
에피토프1-G12D(E1-G12D)Epitope 1-G12D (E1-G12D) MTEYKLVVVG ADGVGKSALT IQLIQNHFVDMTEYKLVVVG ADGVGKSALT IQLIQNHFVD
에피토프1-G12V(E1-G12V)Epitope 1-G12V (E1-G12V) MTEYKLVVVG AVGVGKSALT IQLIQNHFVDMTEYKLVVVG AVGVGKSALT IQLIQNHFVD
에피토프1-G13D(E1-G13D)Epitope 1-G13D (E1-G13D) MTEYKLVVVG AGDVGKSALT IQLIQNHFVDMTEYKLVVVG AGDVGKSALT IQLIQNHFVD
상기 KRAS-ROP(M)은 합성한 후(Genescript Co. Ltd.) pET30a 벡터에 클로닝(cloning)하였으며 E.coli에 형질전환하여 발현시켰다. 발현된 단백질은 APC(Activated protein C)를 이용하여 절단하는 방법으로 KRAS(M)-ROP을 제조하였다. The KRAS-ROP(M) was synthesized (Genescript Co. Ltd.), cloned into a pET30a vector, and then transformed into E.coli and expressed. KRAS(M)-ROP was prepared by cleaving the expressed protein using activated protein C (APC).
3. KRAS(M)-ROP 반응성 스크리닝 분석3. KRAS(M)-ROP Reactivity Screening Assay
정상인의 말초 혈액 단핵세포 (peripheral blood mononuclear cell, PBMC)에서 KRAS(M)-ROP의 반응성을 스크리닝 하였다. 상기 스크리닝은 고착화효소항체법(enzyme-linked immune absorbent spot assay, ELISpot assay)을 이용하였다. The reactivity of KRAS(M)-ROP was screened in peripheral blood mononuclear cells (PBMC) of normal subjects. The screening was performed using enzyme-linked immune absorbent spot assay (ELISpot assay).
도 2는 본 발명의 KRAS(M)-ROP에 대한 PBMC의 반응성을 분석한 결과를 보여준다. 패널 A는 ELISpot(IFN-γ) assay의 SFC 이미지를 보여주며 패널 B는 ELISpot(IFN-γ) assay의 SFC 그래프를 보여준다. Figure 2 shows the results of analyzing the reactivity of PBMC to KRAS (M) -ROP of the present invention. Panel A shows the SFC image of the ELISpot (IFN-γ) assay and panel B shows the SFC graph of the ELISpot (IFN-γ) assay.
먼저 정상인 자원자의 백혈구분반술에서 얻어진 PBMC(LP-1 PBMC, LP-4 PBMC, 및 LP-6 PBMC) 1x105cell을 파종(seeding)하여 세포배양한 후 항원을 처리하였다. 상기 항원으로 KRAS(M)-ROP 5㎍/㎖, 1.0㎍/㎖, 0.1㎍/㎖을 사용하였으며 양성대조군(positive control)로서 anti-CD3를 사용하였다. 세포배양은 37℃, CO2 5%, overnight(O/N)의 조건으로 수행하였으며 배양한 세포는 IFN-γ로 염색하여 SFC(Spot Forming Cell)를 읽어 분석하였다. 실험결과 정상인 PBMC중 LP-1에서 KRAS(M)-ROP에 대한 반응성이 가장 우수한 것으로 확인되었다. First, 1x10 5 cells of PBMC (LP-1 PBMC, LP-4 PBMC, and LP-6 PBMC) obtained from leukocyte division of normal volunteers were seeded, cultured, and treated with antigen. As the antigen, 5 μg/ml, 1.0 μg/ml, and 0.1 μg/ml of KRAS(M)-ROP were used, and anti-CD3 was used as a positive control. Cell culture was performed under conditions of 37°C, 5% CO 2 , overnight (O/N), and the cultured cells were stained with IFN-γ and analyzed by reading SFC (Spot Forming Cell). As a result of the experiment, it was confirmed that the reactivity to KRAS(M)-ROP was the best in LP-1 among normal PBMCs.
4. KRAS(M)-ROP 농도별 특이적 CD3+ T 세포 비율 분석4. Analysis of specific CD3+ T cell ratio by KRAS(M)-ROP concentration
상기 LP-1 PBMC에 대하여 KRAS(M)-ROP 농도에 따른 KRAS(M)-ROP 특이적 CD3+ T세포 비율을 분석하였다. 이를 위하여 LP-1 PBMC에 항원을 처리한 후 IFN-γ capture staining을 수행하고 이를 분석하였다. The ratio of KRAS(M)-ROP-specific CD3+ T cells according to the KRAS(M)-ROP concentration was analyzed for the LP-1 PBMCs. To this end, IFN-γ capture staining was performed after antigen treatment on LP-1 PBMCs, and this was analyzed.
도 3은 본 발명의 KRAS(M)-ROP 농도에 따른 LP-1 PBMC의 KRAS(M)-ROP 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다. 패널 A는 ELISpot(IFN-γ) assay의 조건별 SFC 이미지를 보여주며 패널 B는 ELISpot(IFN-γ) assay의 조건별 SFC 그래프를 보여준다. 패널 C는 IFN-γ capture staining의 원리 빛 방법을 보여주며 패널 D는 IFN-γ capture FACS 분석결과를 보여준다. 패널 E는 IFN-γ 분비 CD3+ T 세포 비율(%) 그래프를 보여준다.Figure 3 shows the results of analyzing the ratio of KRAS (M) -ROP-specific CD3+ T cells in LP-1 PBMC according to the concentration of KRAS (M) -ROP of the present invention. Panel A shows the SFC image for each condition of the ELISpot (IFN-γ) assay, and Panel B shows the SFC graph for each condition of the ELISpot (IFN-γ) assay. Panel C shows the principle light method of IFN-γ capture staining, and Panel D shows the results of IFN-γ capture FACS analysis. Panel E shows a graph of the percentage (%) of IFN-γ secreting CD3+ T cells.
먼저 LP-1 PBMC 1x106cell을 파종(seeding)하여 세포배양한 후 농도를 달리하여 항원(KRAS(M)-ROP 5㎍/㎖, KRAS(M)-ROP 1.0㎍/㎖, KRAS(M)-ROP 0.1㎍/㎖)을 처리하였다. 또한 파상풍 백신(Tetanus toxoid vaccine, TTX)을 5㎍/㎖, 1.0㎍/㎖으로 처리한 LP-1 PBMC과 anti-CD3를 양성대조군(positive control)으로 사용하였다. 세포배양은 37℃, CO2 5%, overnight(O/N)의 조건으로 수행하였다. First, LP-1 PBMC 1x10 6 cells were seeded and cultured, and then antigens (KRAS(M)-ROP 5μg/ml, KRAS(M)-ROP 1.0μg/ml, KRAS(M) -ROP 0.1 μg/ml) was treated. In addition, LP-1 PBMC treated with tetanus toxoid vaccine (TTX) at 5 μg/ml and 1.0 μg/ml and anti-CD3 were used as positive controls. Cell culture was performed under conditions of 37°C, 5% CO 2 , and overnight (O/N).
IFN-γ capture staining은 항원이 처리된 LP-1 PBMC에 1차 포획 항체(1st capture antibody)를 처리한 후 37℃에서 45분간 배양하고 2차 검출 항체(2nd detection andtibody)와 CD3, CD4, CD8, 및 CD137을 처리하는 방법으로 수행하였다. 상기 IFN-γ capture staining이 수행된 LP-1 PBMC는 세포자동해석분리장치(Fluorescence activated cell sorter, FACS)를 이용하여 세포특성을 분석하였다.For IFN-γ capture staining, antigen-treated LP-1 PBMC was treated with 1st capture antibody, then incubated at 37°C for 45 minutes, and secondary detection antibody ( 2nd detection andtibody) and CD3, CD4 , CD8, and CD137. Cell characteristics of the LP-1 PBMCs subjected to the IFN-γ capture staining were analyzed using a Fluorescence activated cell sorter (FACS).
실험결과 LP-1 PBMC에 농도에 따라 항원을 처리하게 되면 KRAS(M)-ROP 특이적 CD2+ T 세포 비율이 증가하는 것이 확인되었으며 이는 상기 ELISpot(IFN-g) 결과와 잘 일치하였다. 따라서 LP-1 PBMC의 반응성은 KRAS(M)-ROP에 농도 의존적으로 증가하는 것으로 판단된다. 또한 LP-1 PBMC에 KRAS(M)-ROP에 대한 반응성을 정량적으로 평가한 결과 KRAS(M)-ROP 5㎍/㎖을 처리하는 경우 KRAS(M)-ROP 특이 CD3+ T 세포의 비율이 2.4% 수준인 것으로 확인되었다.As a result of the experiment, it was confirmed that the ratio of KRAS(M)-ROP-specific CD2+ T cells increased when LP-1 PBMCs were treated with the antigen according to the concentration, which was in good agreement with the ELISpot (IFN-g) result. Therefore, it is believed that the reactivity of LP-1 PBMC increases in a concentration-dependent manner to KRAS(M)-ROP. In addition, as a result of quantitatively evaluating the reactivity to KRAS(M)-ROP in LP-1 PBMC, the ratio of KRAS(M)-ROP-specific CD3+ T cells was 2.4% when 5 μg/ml of KRAS(M)-ROP was treated. level was confirmed.
5. 항원의 종류에 따른 항원 특이적 CD3+ T 세포 비율 비교 분석5. Comparative analysis of the ratio of antigen-specific CD3+ T cells according to the type of antigen
LP-1 PBMC에 KRAS(M)-ROP(500aa), KRAS1-24Wild-type(Peptide Wt, 24aa), 또는 KRAS1-24돌연변이(24aa)를 처리 한 후 항원 특이적 CD3+ T 세포 비율을 비교 분석하였다. LP-1 PBMC were treated with KRAS(M)-ROP (500aa), KRAS 1-24 Wild-type (Peptide Wt, 24aa), or KRAS 1-24 mutant (24aa), and then the ratio of antigen-specific CD3+ T cells was evaluated. Comparative analysis was performed.
도 4는 본 발명의 KRAS(M)-ROP, KRAS1-24Wild-type, 및 KRAS1-24돌연변이에 대한 LP-1 PBMC의 항원 특이적 CD3+ T-세포 비율을 분석한 결과를 보여준다. 패널 A는 KRAS(M)-ROP, KRAS1-24Wild-type, 및 KRAS1-24돌연변이가 처리된 LP-1 PBMC의 IFN-γ capture FACS 분석결과를 보여준다. 패널 B는 IFN-γ 분비 CD3+ T 세포 비율(%) 그래프를 보여주며, 패널 C는 항원 특이 CD3+ T 세포 비율(%) 그래프를 표로 정리한 결과를 보여준다. No Ag는 실행기(effector)만을 사용한 것을 의미하며, @CD3는 양성대조군(positive control)로서 anti-CD3를 사용한 것을 의미한다.Figure 4 shows the results of analyzing the ratio of antigen-specific CD3+ T-cells of LP-1 PBMCs against KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 mutants of the present invention. Panel A shows the results of IFN-γ capture FACS analysis of KRAS(M)-ROP, KRAS 1-24 Wild-type, and KRAS 1-24 mutant-treated LP-1 PBMCs. Panel B shows a graph of IFN-γ-secreting CD3+ T cell ratio (%), and panel C shows the graph of antigen-specific CD3+ T cell ratio (%) tabulated. No Ag means that only the effector was used, and @CD3 means that anti-CD3 was used as a positive control.
상기 KRAS1-24돌연변이는 KRAS1-24Wild-type에서 12번째 아미노산인 G가 D, 또는 V로 치환되거나 12번째 아미노산인 G가 D된 것(Pep.G12D, Pep.G12V, Pep.G13D)을 의미한다. 항원 특이적 CD3+ T-세포 비율은 상기와 동일한 방법으로 분석하였으며 항원으로 KRAS(M)-ROP(500aa), Peptide Wt, Pep.G12D, Pep.G12V, 및 Pep.G13D를 사용하였다. The KRAS 1-24 mutation is a KRAS 1-24 Wild-type in which G, the 12th amino acid, is substituted with D or V, or G, the 12th amino acid, is replaced with D (Pep.G12D, Pep.G12V, Pep.G13D). means The antigen-specific CD3+ T-cell ratio was analyzed in the same manner as above, and KRAS(M)-ROP (500aa), Peptide Wt, Pep.G12D, Pep.G12V, and Pep.G13D were used as antigens.
실험결과 Peptide Wt에 반응한 CD+ T세포는 확인되지 않았으며 Pep.G12D, Pep.G12V, 및 Pep.G13D에 반응한 CD3+ T 세포 역시 0.31%(Pep.G12D), 0.11%(Pep.G12V) 및 0.25%(Pep.G13D)로 현저히 낮은 것을 확인되었다. 상기 결과는 KRAS(M)-ROP에 반응하여 유도된 CD3+ T 세포의 비율이 2.41%임을 감안할 때 24개의 아미노산으로 구성된 펩타이드인 에피토프만으로는 항원 특이 CD3+ T 세포의 유도가 미미하다는 것을 의미한다. As a result of the experiment, CD+ T cells that responded to Peptide Wt were not confirmed, and CD3+ T cells that responded to Pep.G12D, Pep.G12V, and Pep.G13D were also 0.31% (Pep.G12D), 0.11% (Pep.G12V) and It was confirmed that it was remarkably low at 0.25% (Pep.G13D). The above results indicate that the induction of antigen-specific CD3+ T cells is insignificant with only the epitope, which is a peptide composed of 24 amino acids, considering that the ratio of CD3+ T cells induced in response to KRAS(M)-ROP is 2.41%.
6. KRAS(M)-ROP 및 Fast-IVS를 이용한 ROP-T 세포의 제조6. Preparation of ROP-T cells using KRAS(M)-ROP and Fast-IVS
상기 실험결과를 바탕으로 KRAS(M)-ROP에 반응하는 CD3+ T 세포(ROP-T 세포)를 제조하였다. 본 발명에서는 Fast-IVS(Fast-In vitro Stimulation)을 적용하여 ROP-T 세포를 제조하였다. Based on the above experimental results, CD3+ T cells (ROP-T cells) responding to KRAS(M)-ROP were prepared. In the present invention, ROP-T cells were prepared by applying Fast-IVS (Fast-In vitro Stimulation).
도 5는 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 비교한 결과를 보여준다. 패널 A는 Fast-IVS를 이용한 ROP-T 세포의 제조공정 및 평가 과정 및 ROP-T 세포의 특성 분석 과정을 보여준다. 패널 B는 Fast-IVS 공정 조건과 No-Cytokine 공정 조건에서 증폭된 T 세포의 IFNg+ CD3+ T 세포 비율을 비교한 결과를 보여준다.Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention. Panel A shows the manufacturing process and evaluation process of ROP-T cells using Fast-IVS, and the characterization process of ROP-T cells. Panel B shows the result of comparing the IFNg+ CD3+ T cell ratio of T cells expanded under the Fast-IVS process condition and the No-Cytokine process condition.
상기 Fast-IVS 공정은 항원을 이용하여 항원 특이적 CD3+ T 세포를 유도하는 것과 싸이토카인을 처리하여 세포 증폭(Cell Expansion)을 수행하는 공정을 동시에 수행하는 것을 특징으로 한다. 이에 반하여 상기 No-Cytokine 공정은 항원에 의해 유도된 항원 특이적 CD3+ T 세포에 대하여 싸이토카인을 처리하지 않고 세포 증폭을 수행하는 것을 특징으로 한다. The Fast-IVS process is characterized in that a process of inducing antigen-specific CD3+ T cells using an antigen and a process of performing cell expansion by treating cytokines are performed at the same time. In contrast, the No-Cytokine process is characterized in that cell amplification is performed without treating antigen-specific CD3+ T cells with cytokines.
상기 Fast-IVS 공정의 세포 증폭에 사용한 싸이토카인(cytokine)은 인터루킨-4(Interleukin-4, IL-4), 과립구 대식세포 콜로니 자극 인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF), 종양괴사인자-α(Tumor Necrosis Factor-α, TNF-α), 인터루킨-1b(Interleukin-1β, IL-1β) 및 프로스타글란딘 E2(Prostaglandin E2, PGE2)이다. The cytokines used for cell amplification in the Fast-IVS process include Interleukin-4 (IL-4), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), and tumor necrosis. They are Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), and Prostaglandin E2 (PGE2).
하기 표 3은 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 보여준다.Table 3 below shows the Fast-IVS process and the No-Cytokine process of the present invention.
Fast-IVS 공정Fast-IVS process No-Cytokine 공정 No-Cytokine Process
Day-0Day-0 LP-1 PBMC Seeding with Ag, IL-4, and GM-CSFLP-1 PBMC Seeding with Ag, IL-4, and GM-CSF LP-1 PBMC Seeding Without CytokineLP-1 PBMC Seeding Without Cytokine
Day-1Day-1 Adding TNF-α, IL-1β and PGE2Adding TNF-α, IL-1β and PGE2 No Cytokine AddingNo Cytokine Adding
Day 3Day 3 Expansion Expansion ExpansionExpansion
Day 5, 7, 9, 11, 12Days 5, 7, 9, 11, 12 Media AddingMedia Adding Media AddingMedia Adding
Day 13Day 13 HarvestHarvest HarvestHarvest
분석결과 Fast-IVS 공정에서 No-Cytokine 공정보다 IFN-γ을 분비하는 항원 특이적 CD3+ T 세포 비율이 4배가량 더 많이 증폭된 것이 확인되었다.As a result of the analysis, it was confirmed that the ratio of antigen-specific CD3+ T cells secreting IFN-γ was amplified about 4 times more in the Fast-IVS process than in the No-Cytokine process.
7. ROP-T 세포 제조용 Fast-IVS 공정의 최적화7. Optimization of the Fast-IVS process for manufacturing ROP-T cells
KRAS(M)-ROP의 처리 농도 및 Fast-IVS 공정조건을 변경하여 ROP-T 세포 제조용 Fast-IVS 공정을 최적화하였다. 하기 표 4는 Fast-IVS 공정의 최적화를 위한 실시예를 보여준다.The Fast-IVS process for preparing ROP-T cells was optimized by changing the treatment concentration of KRAS(M)-ROP and Fast-IVS process conditions. Table 4 below shows examples for optimization of the Fast-IVS process.
실시예1Example 1 실시예2Example 2 실시예3Example 3
실험조건 Experiment conditions ScaleScale PBMCsPBMCs 10M@24well10M@24well 10M@24well10M@24well 10M@24well10M@24well
CytokineCytokine 제조사manufacturing company JW CreageneJW Creagene JW CreageneJW Creagene JW CreageneJW Creagene
KRAS(M)-ROPKRAS(M)-ROP ㎍/㎖ μg/mL 5.05.0 1.01.0 1.01.0
Fast-IVS(배지 AIM-V) 기간Fast-IVS (Badge AIM-V) Period DaysDays 55 55 77
Expansion 기간 Expansion period DaysDays 1010 1010 1010
실험결과Experiment result Expansion FoldExpansion Fold No Ag-TNo Ag-T 4545 3434 5555
ROP-TROP-T 5555 4949 6565
Helper T cellHelper T cells No Ag-TNo Ag-T 54.754.7 35.835.8 21.121.1
ROP-TROP-T 64.464.4 75.375.3 60.460.4
KRAS(M)-ROP specific T cell(IFN-g+, CD3+)(%)KRAS(M)-ROP specific T cell (IFN-g+, CD3+) (%) No Ag-TNo Ag-T 4.64.6 1.11.1 1.21.2
ROP-TROP-T 19.719.7 18.618.6 52.952.9
실험결과 모든 실시예에서 ROP-T 세포가 증폭된 것이 확인되었으며 최적의 Fast-IVS 공정은 KRAS(M)-ROP의 처리 농도 1.0㎍/㎖ 및 Fast-IVS 기간 7일 인 것으로 확인되었다.As a result of the experiment, it was confirmed that ROP-T cells were amplified in all examples, and it was confirmed that the optimal Fast-IVS process was KRAS(M)-ROP treatment concentration of 1.0 μg/ml and Fast-IVS period of 7 days.
8. ROP-T 세포 특성 분석8. ROP-T cell characterization
KRAS 돌연변이 에피토프(epitope) 스크리닝을 수행하여 증폭된 ROP-T 세포의 특성을 분석하였다. 이를 위하여 PBMC로부터 자가 수지상세포(Autologous Dendritic Cell)를 유도하고 상기 자가 수지상세포에 항원을 감작시켜 항원 특이적인 T 세포를 자극할 수 있는 항원 감작수지상 세포(Antigen pulsed Dendritic Cell, Ag pulsed DC)를 제조하여 ROP-T 세포의 반응성을 확인하였다. 상기 반응성은 재자극 IFN-γ 분비 T 세포 비율(Re-stimulation IFN-g secretion T frequency)(%)을 산출하여 분석하였다. KRAS mutant epitope screening was performed to characterize the amplified ROP-T cells. To this end, autologous dendritic cells are induced from PBMC, and antigen pulsed dendritic cells (Ag pulsed DC) capable of stimulating antigen-specific T cells are prepared by sensitizing the autologous dendritic cells with an antigen. Thus, the reactivity of ROP-T cells was confirmed. The reactivity was analyzed by calculating the re-stimulation IFN-g secretion T frequency (%).
도 6은 본 발명의 ROP-T 세포에 대한 KRAS 돌연변이 에피토프 스크리닝 결과를 보여준다. 패널 A는 IFG-γ+, CD3+, CD4+에 대한 FACS 분석결과를 보여준다. 패널 B는 조건 별 재자극 IFN-γ 분비 T 세포 비율의 세포 비율(%)을 분석한 결과를 보여준다. Figure 6 shows the results of KRAS mutant epitope screening for ROP-T cells of the present invention. Panel A shows the results of FACS analysis for IFG-γ+, CD3+, and CD4+. Panel B shows the result of analyzing the cell ratio (%) of the restimulation IFN-γ secreting T cell ratio for each condition.
먼저 자가 수지상세포(Autologous DC)를 4일간 배양하고 항원에 감작시켜 Ag pulsed DC를 준비하였다. 상기 Ag pulsed DC는 96well에 5x103cells/100㎕으로 분주하였다. KRAS(M)-ROP 특이 CD3+ T 세포를 상기 96well에 1x105cells/100㎕가 되도록 분주하되 상기 Ag pulsed DC와 KRAS(M)-ROP 특이 CD3+ T 세포의 세포수가 1:20의 비율이 되도록 하였다. Ag pulsed DC와 KRAS(M)-ROP 특이 CD3+ T 세포가 혼합된 배지는 4시간동안 배양하였다. 상기 FACS를 이용하여 배양된 세포들의 CD3+, CD4+, CD137+, IFN-γ cap, 및 IFN-γ 분비 T 세포 비율(%)을 분석하였다. 상기 Ag pulsed DC의 제조에 사용한 항원은 KRAS(M)-ROP(500aa)(ROP_DC), KRAS1-24wild type peptide(WT_DC), KRAS1-24G12D mutant peptide(G12D_DC), KRAS1-24G12V mutant peptide(G12V_DC), 및 KRAS1-24G13D mutant peptide(G13D_DC)이었다. 또한 비교를 위하여 항원(Ag) 없이 실행기(effector)만을 사용한 DC(NoAg_DC)를 사용하였다. First, autologous DCs were cultured for 4 days and Ag pulsed DCs were prepared by sensitizing them to an antigen. The Ag pulsed DC was dispensed at 5x10 3 cells/100 μl in 96 well. KRAS(M)-ROP-specific CD3+ T cells were dispensed into the 96 well to be 1x10 5 cells/100 μl, but the Ag pulsed DC and KRAS(M)-ROP-specific CD3+ T cells were dispensed at a ratio of 1:20. . Medium mixed with Ag pulsed DC and KRAS(M)-ROP-specific CD3+ T cells was cultured for 4 hours. CD3+, CD4+, CD137+, IFN-γ cap, and IFN-γ secreting T cell ratios (%) of the cultured cells were analyzed using the FACS. Antigens used in the preparation of Ag pulsed DC were KRAS (M)-ROP (500aa) (ROP_DC), KRAS 1-24 wild type peptide (WT_DC), KRAS 1-24 G12D mutant peptide (G12D_DC), KRAS 1-24 G12V mutant peptide (G12V_DC), and KRAS 1-24 G13D mutant peptide (G13D_DC). Also, for comparison, DC (NoAg_DC) using only an effector without an antigen (Ag) was used.
실험결과 ROP_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 10% 및 5%인 것이 확인되었다. G12D_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 1.5% 및 0.5%인 것이 확인되었다. G13D_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 3.0% 및 1.5%인 것이 확인되었다. 이에 반하여 Wt_DC 및 G12V_DC를 사용하여 재자극한 경우 KRAS(M)-ROP 특이 CD3+/CD4+ T 세포와 KRAS(M)-ROP 특이 CD3+/CD8+ T 세포가 거의 검출되지 않았다.As a result of the experiment, the ratio (%) of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells in CD3+ ROP-T cells when restimulated with ROP_DC was 10% and 5% were confirmed. When restimulated with G12D_DC, the percentages (%) of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells in CD3+ ROP-T cells were 1.5%, respectively. and 0.5%. When restimulated with G13D_DC, the percentages of KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells in CD3+ ROP-T cells were 3.0%, respectively. and 1.5%. In contrast, when restimulation using Wt_DC and G12V_DC, KRAS(M)-ROP-specific CD3+/CD4+ T cells and KRAS(M)-ROP-specific CD3+/CD8+ T cells were hardly detected.
9. ROP-T 세포의 HLA 제한 분석9. HLA restriction assay of ROP-T cells
유도된 ROP-T 중 KRAS G13D mutant 특이 T 세포의 HLA 제한(restriction)을 확인하기 위해 인간 백혈구 항원(Human leukocyte antigen DQ, HLA-DQ) 에세이를 수행하였다. In order to confirm the HLA restriction of KRAS G13D mutant-specific T cells among the induced ROP-T, a human leukocyte antigen DQ (HLA-DQ) assay was performed.
도 7은 본 발명의 HLA-DQ blocking 에세이 결과를 보여준다.7 shows the results of the HLA-DQ blocking assay of the present invention.
먼저 항원을 감작시킨 DC(Ag pulsed DC)를 제조하였다. 상기 Ag pulsed DC의 제조에 사용한 항원은 KRAS(M)-ROP(500aa)(ROP_DC), KRAS1-24wild type peptide(WT_DC), KRAS1-24G12D mutant peptide(G12D_DC), KRAS1-24G12V mutant peptide(G12V_DC), 및 KRAS1-24G13D mutant peptide(G13D_DC)이었다. 상기 제조한 Ag pulsed DC에 대하여 1시간동안 HLA-DQ 항체로 처리하는 방법으로 HLA-DQ blocking을 실시하였다. HLA-DQ blocking된 Ag pulsed DC를 이용하여 ROP-T를 재자극(re-stimulation)한 후 FACS 분석을 통해 IFN-g+, CD3+, CD4+를 분석하였다. First, antigen-primed DC (Ag pulsed DC) was prepared. Antigens used in the preparation of Ag pulsed DC were KRAS (M)-ROP (500aa) (ROP_DC), KRAS 1-24 wild type peptide (WT_DC), KRAS 1-24 G12D mutant peptide (G12D_DC), KRAS 1-24 G12V mutant peptide (G12V_DC), and KRAS 1-24 G13D mutant peptide (G13D_DC). HLA-DQ blocking was performed by treating the prepared Ag pulsed DC with an HLA-DQ antibody for 1 hour. After re-stimulation of ROP-T using HLA-DQ blocked Ag pulsed DC, IFN-g+, CD3+, and CD4+ were analyzed by FACS analysis.
분석결과 항원 비특이 T 세포(NoAg-T)은 재자극에 사용한 DC의 종류 및 상기 DC에 대한 HLA-DQ blocking의 여부에 상관없이 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 미미한 것으로 확인되었다. 이에 반하여 ROP-T 세포는 ROP_DC를 사용하여 재자극하게 되면 DC에 대한 HLA-DQ blocking 여부에 상관없이 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 15% 이상으로 증가하는 것으로 확인되었다. 또한 ROP-T 세포는 HLA-DQ blocked G13D_DC를 이용하여 재자극을 수행한 경우 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 HLA-DQ unblocked G13D_DC를 사용하여 재자극한 경우에 대비하여 6% 가량 감소(7% →1%)하는 것이 확인 되었다.As a result of the analysis, antigen-specific T cells (NoAg-T) showed that the ratio of CD3+CD4+ T cells secreting IFN-γ was insignificant, regardless of the type of DC used for restimulation and whether or not HLA-DQ blocking was performed on the DC. Confirmed. On the other hand, when ROP-T cells were re-stimulated using ROP_DC, it was confirmed that the ratio of CD3+CD4+ T cells secreting IFN-γ increased to 15% or more regardless of HLA-DQ blocking for DC. In addition, ROP-T cells, when restimulation was performed using HLA-DQ blocked G13D_DC, the ratio of CD3+CD4+ T cells secreting IFN-γ was 6 in preparation for restimulation using HLA-DQ unblocked G13D_DC. % reduction (7% → 1%) was confirmed.
결과적으로 본 발명의 ROP-T 세포는 ROP 항원에 특이적이며 HLA-DQ에 제한적이며 G13D 돌연변이에 특이성을 보이는 CD4+ T 세포의 증폭을 유도하는 것으로 판단된다.As a result, it is determined that the ROP-T cells of the present invention induce the expansion of CD4+ T cells that are specific for the ROP antigen, restrictive for HLA-DQ, and show specificity for the G13D mutation.
10. 대조군 native KRAS-T 세포와 peptide mix-T 세포의 비교10. Comparison of control native KRAS-T cells and peptide mix-T cells
KRAS(M)-ROP의 KRAS 돌연변이에 대한 특이적인 반응 유도를 검증하였다. The specific response induction of KRAS(M)-ROP to KRAS mutation was verified.
도 8은 본 발명의 조건별 IFN-γ를 분비(IFN-γ+)하는 CD3+ T 세포의 비율을 보여준다. 먼저 KRAS(M)-ROP 또는 native KRAS(189aa)을 항원으로 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 또한 KRAS1-24wild type 펩타이드, KRAS1-24G12D 펩타이드, KRAS1-24G12V 펩타이드, 및 KRAS1-24G13D 펩타이드 혼합물을 항원으로 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 대조군으로는 항원없이 실행기만을 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 상기 유도한 T 세포는 ROP_DC를 이용하여 재자극하고 FACS를 이용하여 IFN-γ+ CD3+ T 세포의 비율을 분석하였다.Figure 8 shows the ratio of CD3+ T cells secreting IFN-γ (IFN-γ+) for each condition of the present invention. First, T cells were induced using the Fast-IVS process using KRAS(M)-ROP or native KRAS(189aa) as an antigen. In addition, T cells were induced using the Fast-IVS process using a mixture of KRAS 1-24 wild type peptide, KRAS 1-24 G12D peptide, KRAS 1-24 G12V peptide, and KRAS 1-24 G13D peptide as antigens. As a control, T cells were induced using the Fast-IVS process using only the effector without antigen. The induced T cells were re-stimulated using ROP_DC and the percentage of IFN-γ+ CD3+ T cells was analyzed using FACS.
하기 표 5는 KRAS(M)-ROP의 KRAS 돌연변이에 대한 특이적인 반응 유도 검증 실험방법을 보여준다. 하기 표 5에 있어서 KRAS epitope wild type은 Native KRAS1-24(24aa)를 의미하며; KRAS epitope G12D는 KRAS1-24G12D(24aa)를 의미하며; KRAS epitope G12V는 KRAS1-24G12V(24aa)를 의미하며; KRAS epitope G13D는 KRAS1-24G13D(24aa)를 의미한다.Table 5 below shows an experimental method for verifying the induction of a specific reaction of KRAS (M) -ROP to a KRAS mutation. In Table 5 below, KRAS epitope wild type means Native KRAS 1-24 (24aa); KRAS epitope G12D refers to KRAS 1-24 G12D (24aa); KRAS epitope G12V refers to KRAS 1-24 G12V (24aa); KRAS epitope G13D refers to KRAS 1-24 G13D (24aa).
conditionsconditions Fast-IVSFast-IVS ExpansionExpansion
AntigenAntigen CytokineCytokine DaysDays MediaMedia DaysDays
No Ag-TNo Ag-T -- D0:IL-4, GM-CSF
D+1:TNF-a, IL-1b, PGE2
D0:IL-4, GM-CSF
D+1: TNF-a, IL-1b, PGE2
7 Days7 Days Alys+IL-2+SR3%Alys+IL-2+SR3% 10 Days10 days
ROP-TROP-T KRAS(M)-ROP(8.5μM=5㎍/㎖)KRAS(M)-ROP (8.5μM=5μg/ml)
Pep.-TPep. -T KRAS epitope(24mer) 4종 혼합물(wild type, G12D, G12V, G13D)(8.5μM)KRAS epitope (24mer) 4 kinds mixture (wild type, G12D, G12V, G13D) (8.5 μM)
WT-TWT-T Native KRAS(8.5μM=2㎍/㎖)Native KRAS (8.5μM=2μg/ml)
실험결과 항원을 사용하지 않고 Fast-IVS를 통해 유도한 T 세포(No Ag-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 8% 수준인 것으로 확인되었다. KRAS(M)-ROP을 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(ROP-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 37.4%에 달하는 것으로 확인되었다. Native KRAS를 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(WT-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 18.4% 수준인 것으로 확인되었다. KRAS1-24wild type 펩타이드, KRAS1-24G12D 펩타이드, KRAS1-24G12V 펩타이드, 및 KRAS1-24G13D 펩타이드 혼합물을 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(Pep_T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 19.0% 수준인 것으로 확인되었다. As a result of the experiment, in the case of T cells (No Ag-T) induced through Fast-IVS without using an antigen, it was confirmed that the ratio of IFN-γ+ CD3+ T cells was 8%. In the case of T cells (ROP-T) induced through the Fast-IVS process using KRAS(M)-ROP as an antigen, it was confirmed that the ratio of IFN-γ+ CD3+ T cells reached 37.4%. In the case of T cells (WT-T) induced through the Fast-IVS process using native KRAS as an antigen, the ratio of IFN-γ+ CD3+ T cells was confirmed to be 18.4%. In the case of T cells (Pep_T) induced through the Fast-IVS process using a mixture of KRAS 1-24 wild type peptide, KRAS 1-24 G12D peptide, KRAS 1-24 G12V peptide, and KRAS 1-24 G13D peptide as antigens It was confirmed that the ratio of IFN-γ+ CD3+ T cells was at the level of 19.0%.
정리하면 KRAS(M)-ROP 항원이 Native KRAS 또는 KRAS 돌연변이를 포함하는 에피토프를 사용하는 것보다 2배 가량 우수한 IFN-γ+ CD3+ T 세포 유도 효과가 있는 것으로 판단된다.In summary, it is judged that the KRAS(M)-ROP antigen has an IFN-γ+ CD3+ T cell induction effect that is about twice as good as that using native KRAS or an epitope containing a KRAS mutation.
본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. Specific examples described in this specification are meant to represent preferred embodiments or examples of the present invention, and the scope of the present invention is not limited thereby. It will be apparent to those skilled in the art that variations and other uses of the present invention do not depart from the scope of the invention described in the claims.
본 발명의 재조합 중첩 펩타이드(Recombinant overlapping peptide, ROP)을 이용하여 K-ras 돌연변이체의 개별적 인식이 가능하도록 유도할 수 있는 항원이 개발되면 KRAS 돌연변이 의존적 종양 치료제를 개발 할 수 있다.When an antigen capable of inducing individual recognition of K-ras mutants is developed using the recombinant overlapping peptide (ROP) of the present invention, a KRAS mutation-dependent tumor treatment agent can be developed.
1. 서열번호 1의 아미노산 서열1. Amino acid sequence of SEQ ID NO: 1
MTEYKLVVVG ADGVGKSALT IQLIQNHFVD LRMKMTEYKL VVVGAVGVGK SALTIQLIQN 60MTEYKLVVVG ADGVGKSALT IQLIQNHFVD LRMKMTEYKL VVVGAVGVGK SALTIQLIQN 60
HFVDLRMKKS ALTIQLIQNH FVDEYDPTIE DSYRKQVVLR MKEYDPTIED SYRKQVVIDG 120HFVDLRMKKS ALTIQLIQNH FVDEYDPTIE DSYRKQVVLR MKEYDPTIED SYRKQVVIDG 120
ETCLLDILDT AGLRMKIDGE TCLLDILDTA GQEEYSAMRD QYMRTGLRMK QEEYSAMRDQ 180ETCLLDILDT AGLRMKIDGE TCLLDILDTA GQEEYSAMRD QYMRTGLRMK QEEYSAMRDQ 180
YMRTGEGFLC VFAINNTKSF LRMKEGFLCV FAINNTKSFE DIHHYREQIK RVKDLRMKED 240YMRTGEGFLC VFAINNTKSF LRMKEGFLCV FAINNTKSFE DIHHYREQIK RVKDLRMKED 240
IHHYREQIKR VKDSEDVPMV LVGNKCDLLR MKSEDVPMVL VGNKCDLPSR TVDTKQAQDL 300IHHYREQIKR VKDSEDVPMV LVGNKCDLLR MKSEDVPMVL VGNKCDLPSR TVDTKQAQDL 300
ARLRMKPSRT VDTKQAQDLA RSYGIPFIET SAKTRQLRMK SYGIPFIETS AKTRQRVEDA 360ARLRMKPSRT VDTKQAQDLA RSYGIPFIET SAKTRQLRMK SYGIPFIETS AKTRQRVEDA 360
FYTLVREIRQ LRMKRVEDAF YTLVREIRQY RLKKISKEEK TPGCLRMKYR LKKISKEEKT 420FYTLVREIRQ LRMKRVEDAF YTLVREIRQY RLKKISKEEK TPGCLRMKYR LKKISKEEKT 420
PGCVKIKKCI IMLRMKMTEY KLVVVGAGDV GKSALTIQLI QNHFVDLRMK MTEYKLVVVG 480PGCVKIKKCI IMLRMKMTEY KLVVVGAGDV GKSALTIQLI QNHFVDLRMK MTEYKLVVVG 480
AGGVGKSALT IQLIQNHFVDAGGVGKSALT IQLIQNHFVD
2. 서열번호 2의 아미노산 서열2. Amino acid sequence of SEQ ID NO: 2
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY RKQVVIDGET CLLDILDTAG 60MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY RKQVVIDGET CLLDILDTAG 60
QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF EDIHHYREQI KRVKDSEDVP MVLVGNKCDL 120QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF EDIHHYREQI KRVKDSEDVP MVLVGNKCDL 120
PSRTVDTKQA QDLARSYGIP FIETSAKTRQ RVEDAFYTLV REIRQYRLKK ISKEEKTPGC 180PSRTVDTKQA QDLARSYGIP FIETSAKTRQ RVEDAFYTLV REIRQYRLKK ISKEEKTPGC 180
VKIKKCIIMVKIKKCIIM

Claims (5)

  1. 서열번호 1의 아미노산 서열로 이루어진 KRAS 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물.An antigen composition for inducing KRAS-specific activated T cells comprising a KRAS mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
  2. 제 1 항에 있어서, 상기 KRAS 돌연변이는 G12D, G12V, 및 G13D인 것을 특징으로 하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물.The antigen composition for inducing KRAS-specific activated T cells according to claim 1, wherein the KRAS mutations are G12D, G12V, and G13D.
  3. 제 1 항에 있어서, 상기 KRAS 돌연변이 재조합 중첩 펩타이드는 서열번호 2로 이루어진 KRAS의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된 것을 특징으로 하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물. According to claim 1, wherein the KRAS mutant recombinant overlapping peptide is a total of 12 types of epitopes (epitope (n = 1, 2 , 3....10, 11, 12); where n means the sequence of the epitope, the epitope (n = 1 to 11) contains a sequence of 30 amino acids and the last epitope (n = 12) is 23 amino acids sequence), but the epitope (n = 2, 3, ... 12) is the 15 amino acid sequence in the N-terminal direction of the 15 amino acid sequence in the C-terminal direction of the immediately preceding epitope (n-1) Antigen composition for inducing KRAS-specific activated T cells, characterized in that designed to overlap with each other.
  4. 제 3 항에 있어서, 상기 KRAS 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결된 것을 특징으로 하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물. The method of claim 3, wherein the KRAS mutant recombinant overlapping peptide is characterized in that the epitopes (n = 1, 2, 3 ... 10, 11, 12) are located in sequence, and the epitopes are linked by an LRMK-linker An antigen composition for inducing KRAS-specific activated T cells.
  5. 제 3 항에 있어서, 상기 에피토프(n=1)는 KRAS 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 KRAS 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 KRAS 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 KRAS 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결되는 것을 특징으로 하는 KRAS 특이적 활성화 T 세포 유도용 항원 조성물. 4. The method of claim 3, wherein the epitope (n=1) comprises the KRAS mutation G12V; An epitope (n = 1) containing KRAS mutation G12D is further linked to the N-terminal of the epitope (n = 1) by an LRMK-linker; An epitope (n = 1) containing KRAS mutation G13D is further linked to the C-terminal of the epitope (n = 12) by an LRMK-linker; For induction of KRAS-specific activated T cells, characterized in that an epitope (n = 1) without a KRAS mutation is further linked with an LRMK-linker to the C-terminal of the epitope (n = 1) containing the KRAS mutation G13D antigen composition.
PCT/KR2022/016547 2021-11-11 2022-10-27 Antigen composition for inducing kras-specific activated t cells WO2023085657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0154617 2021-11-11
KR1020210154617A KR20230068628A (en) 2021-11-11 2021-11-11 Antigen Composition For Inducing KRAS Specific Activated T Cell

Publications (1)

Publication Number Publication Date
WO2023085657A1 true WO2023085657A1 (en) 2023-05-19

Family

ID=86336391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016547 WO2023085657A1 (en) 2021-11-11 2022-10-27 Antigen composition for inducing kras-specific activated t cells

Country Status (2)

Country Link
KR (1) KR20230068628A (en)
WO (1) WO2023085657A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170099905A (en) * 2014-11-26 2017-09-01 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Anti-mutated kras t cell receptors
KR20210013327A (en) * 2005-12-08 2021-02-03 노쓰웨스트 바이오써라퓨틱스, 인크. Compositions and methods for inducing the activation of immature monocytic dendritic cells
WO2021072075A1 (en) * 2019-10-09 2021-04-15 Edward Fritsch Multi-domain protein vaccine
US20210213120A1 (en) * 2017-02-03 2021-07-15 The Medical College Of Wisconsin , Inc. Kras peptide vaccine compositions and method of use
WO2021170684A1 (en) * 2020-02-24 2021-09-02 Oblique Therapeutics Ab Kras epitopes and antibodies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835585B2 (en) 2015-05-20 2020-11-17 The Broad Institute, Inc. Shared neoantigens
SG11202008433QA (en) 2018-03-02 2020-09-29 Elicio Therapeutics Inc Compounds including a mutant kras sequence and a lipid and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210013327A (en) * 2005-12-08 2021-02-03 노쓰웨스트 바이오써라퓨틱스, 인크. Compositions and methods for inducing the activation of immature monocytic dendritic cells
KR20170099905A (en) * 2014-11-26 2017-09-01 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Anti-mutated kras t cell receptors
US20210213120A1 (en) * 2017-02-03 2021-07-15 The Medical College Of Wisconsin , Inc. Kras peptide vaccine compositions and method of use
WO2021072075A1 (en) * 2019-10-09 2021-04-15 Edward Fritsch Multi-domain protein vaccine
WO2021170684A1 (en) * 2020-02-24 2021-09-02 Oblique Therapeutics Ab Kras epitopes and antibodies

Also Published As

Publication number Publication date
KR20230068628A (en) 2023-05-18

Similar Documents

Publication Publication Date Title
Marin et al. Cellular senescence is immunogenic and promotes antitumor immunity
Murray et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer
Healy et al. Impaired expression and function of signal‐transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer
JP5042302B2 (en) Tumor associated peptides that bind to MHC molecules
Gil-Guerrero et al. In vitro and in vivo down-regulation of regulatory T cell activity with a peptide inhibitor of TGF-β1
Yang et al. In vitro priming of tumor-reactive cytolytic T lymphocytes by combining IL-10 with B7-CD28 costimulation.
Zimmerman et al. IFN-γ upregulates survivin and Ifi202 expression to induce survival and proliferation of tumor-specific T cells
Shiiba et al. Interleukin 2-activated killer cells: generation in collaboration with interferonγ and its suppression in cancer patients
Alhamarneh et al. Regulatory T cells: what role do they play in antitumor immunity in patients with head and neck cancer?
Li et al. Analysis of the immunological microenvironment at the tumor site in patients with non-small cell lung cancer
Provinciali et al. Low effectiveness of DNA vaccination against HER-2/neu in ageing
Hueman et al. Analysis of naive and memory CD4 and CD8 T cell populations in breast cancer patients receiving a HER2/neu peptide (E75) and GM-CSF vaccine
WO2023085657A1 (en) Antigen composition for inducing kras-specific activated t cells
Okamoto et al. cis-Diamminedichloroplatinum and 5-fluorouracil are potent inducers of the cytokines and natural killer cell activity in vivo and in vitro
Bertagnolli et al. Evidence that rapamycin inhibits interleukin-12-induced proliferation of activated T lymphocytes
Bahwal et al. Attenuated Toxoplasma gondii enhances the antitumor efficacy of anti-PD1 antibody by altering the tumor microenvironment in a pancreatic cancer mouse model
WO2023085656A1 (en) Method for inducing antigen-specific t cells by using antigen composition for inducing kras-specific activated t cells
Xu et al. Depletion of CD4+ CD25high regulatory T cells from tumor infiltrating lymphocytes predominantly induces Th1 type immune response in vivo which inhibits tumor growth in adoptive immunotherapy
Marín et al. Induction of senescence renders cancer cells highly immunogenic
JPWO2007018047A1 (en) HLA-A24 molecule-binding squamous cell carcinoma antigen-derived peptide
Driessens et al. Therapeutic efficacy of antitumor dendritic cell vaccinations correlates with persistent Th1 responses, high intratumor CD8+ T cell recruitment and low relative regulatory T cell infiltration
WO2023128380A1 (en) Pharmaceutical composition comprising activation t cells specific to k-ras for preventing and treating lung adenocarcinoma and preparation method therefor
WO2007143917A1 (en) T cell epitope peptides of 6b11 ovarian cancer anti-idiotypic antibody
WO2023128378A1 (en) Pharmaceutical composition for preventing and treating colorectal cancer comprising k-ras-specific activated t cells, and method for preparing same
WO2023128381A1 (en) Pharmaceutical composition for preventing and treating melanoma comprising k-ras-specific activated t cells, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893079

Country of ref document: EP

Kind code of ref document: A1