WO2023085336A1 - Welding method, welding device, and metal laminate - Google Patents

Welding method, welding device, and metal laminate Download PDF

Info

Publication number
WO2023085336A1
WO2023085336A1 PCT/JP2022/041791 JP2022041791W WO2023085336A1 WO 2023085336 A1 WO2023085336 A1 WO 2023085336A1 JP 2022041791 W JP2022041791 W JP 2022041791W WO 2023085336 A1 WO2023085336 A1 WO 2023085336A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
metal
laser beam
laser light
laser
Prior art date
Application number
PCT/JP2022/041791
Other languages
French (fr)
Japanese (ja)
Inventor
暢康 松本
俊明 酒井
昌充 金子
孝 繁松
和行 梅野
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2023085336A1 publication Critical patent/WO2023085336A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a welding method, a welding device, and a metal laminate.
  • Patent Document 1 a battery is known in which a plurality of tabs and terminals are joined by laser welding.
  • one of the objects of the present invention is to provide a novel improvement that can suppress, for example, the formation of gaps between a plurality of metal foils and a metal member and the cutting of a part of the metal foils. a welding method, a welding apparatus, and obtaining a metal laminate.
  • a metal member having a first surface facing a first direction and a plurality of metal foils are stacked on the first surface in the first direction. and irradiating a second surface of the plurality of metal foils opposite to the metal member in the first direction with a laser beam, wherein the metal member and the plurality of wherein, in the step of irradiating the metal foil with the laser beam, the laser beam is irradiated in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foil do not occur.
  • the predetermined height may be 0.2 [mm].
  • the laser light irradiation in the step of irradiating the laser light, the laser light irradiation may be performed multiple times.
  • the irradiation of the laser beam a plurality of times includes a first scan for scanning the spot of the laser beam in a predetermined section on the second surface, and a scan following the first scan. and a second scan of scanning a spot of laser light in a predetermined section on the second surface, and the end point of the first scan and the start point of the second scan may be separated from each other.
  • the start point of the first scan and the end point of the second scan may overlap.
  • the start point of the first scan and the start point of the second scan may overlap.
  • each irradiation of the laser beam is carried out between the end portion held by the holding mechanism of the metal member and the plurality of metal foils and the irradiation center of the current irradiation.
  • the distance in the second direction intersecting the first direction between, or the irradiation center and the current irradiation at the location where the metal member and the plurality of metal foils are welded and fixed by previous irradiation in multiple irradiations may be performed so that the distance in the second direction between the irradiation center of is 3 [mm] or less.
  • a position closer to the end held by the holding mechanism between the metal member and the plurality of metal foils is first irradiated with the laser light, and the end is held by the holding mechanism. Irradiation of the laser light to a position farther from the position may be performed later.
  • the plurality of irradiations of the laser beam include the first irradiation of the laser beam and the irradiation of the laser beam which is performed after the first irradiation and is farther from the end than the first irradiation.
  • a second irradiation with a longer scanning length than the first irradiation may be included, which is irradiation of the position with a laser beam.
  • the step of irradiating the laser beam in the step of irradiating the laser beam, two mutually separated ends of the laminate including the metal member and the plurality of metal foils are respectively held by the holding mechanism, and the plurality of laser beams are emitted from the holding mechanism.
  • the first irradiation of the laser beam to a plurality of locations away from each of the two ends, and a position between the two ends and between the first irradiation of at least two locations and a second irradiation of the laser light to the.
  • the scanning length of the second irradiation may be longer than the scanning length of the first irradiation at the at least two locations between which the second irradiation is located.
  • the laser beam irradiation in the step of irradiating the laser beam, may be performed a plurality of times so as to partially overlap each other to form a massive welded portion.
  • the plurality of metal foils and the plurality of metal foils are respectively held in the first direction.
  • the plurality of holding mechanisms separated in the second direction In between, the second surface may be irradiated with the laser light.
  • the distance between the plurality of holding mechanisms in the second direction may be 2 [mm] or more.
  • At least one of the plurality of holding mechanisms is separated from the laminate including the metal member and the plurality of metal foils in the second direction by the two holding members. Even if the absolute value of the difference between the thickness of the laminate in the first direction and the thickness of the intervening member in the first direction is 0.5 [mm] or less good.
  • the laser beam in the step of irradiating the laser beam, comprises a first laser beam that forms a first spot on the second surface and a second laser beam that forms a second spot on the second surface. and laser light.
  • the wavelength of the first laser beam may be 800 [nm] or more and 1200 [nm] or less, and the wavelength of the second laser beam may be 550 [nm] or less.
  • the wavelength of the second laser light may be 400 [nm] or more and 500 [nm] or less.
  • a second spot formed on the surface may at least partially overlap.
  • the metal foil may be made of a copper-based material.
  • the welding device of the present invention includes a metal member having a first surface facing a first direction, and a plurality of metal foils, the plurality of metal foils being stacked on the first surface in the first direction.
  • An optical head that irradiates on two sides, and a welding device in which the metal member and the plurality of metal foils are held in a state in which wrinkles exceeding a predetermined height protruding in the first direction of the metal foils do not occur. .
  • the welding device may include a holding mechanism that holds the metal member and the plurality of metal foils in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foils do not occur.
  • the optical head irradiates the laser beam under conditions that do not cause wrinkles exceeding the predetermined height protruding in the first direction in the metal foil as the metal foil expands due to the irradiation of the laser beam. may be performed.
  • the welding device of the present invention includes a metal member having a first surface facing a first direction, and a plurality of metal foils, the plurality of metal foils being stacked on the first surface in the first direction.
  • an optical head that irradiates the surface, a sensor that detects the height of wrinkles protruding in the first direction of the plurality of metal foils, and a height of the wrinkles detected by the sensor that is equal to or less than a predetermined value. and a controller for controlling operation of the light source.
  • the metal laminate of the present invention is, for example, a metal laminate in which a metal member having a first surface facing a first direction and a plurality of metal foils are welded together, At least one weld that penetrates the plurality of metal foils and reaches the metal member from a second surface opposite to the metal member in one direction, and on the second surface, the The distance between the center of irradiation at the welded portion and the pinching mark formed by pinching the metal laminate between the pinching members or the center of irradiation at another welded portion is 3 mm or less.
  • a novel and improved welding method that can suppress the formation of gaps between a plurality of metal foils and metal members and the cutting of some metal foils.
  • Devices and metal laminates can be obtained.
  • FIG. 1 is an exemplary schematic configuration diagram of a laser welding device according to the first embodiment.
  • FIG. 2 is an exemplary and schematic cross-sectional view of a metal laminate as an object to be processed by the laser welding apparatus of the embodiment.
  • FIG. 3 is an exemplary and schematic cross-sectional view of a battery including a metal laminate as an object to be processed by the laser welding apparatus of the embodiment.
  • FIG. 4 is an exemplary schematic diagram showing a beam (spot) of a laser beam formed on the surface of a metal laminate as an object to be processed by the laser welding apparatus of the embodiment.
  • FIG. 5 is a graph showing the light absorptance of each metal material with respect to the wavelength of the irradiated laser light.
  • FIG. 6 is a flow chart showing an example of a procedure of a welding method using the laser welding device of the embodiment.
  • FIG. 7 is an exemplary and schematic cross-sectional view showing a part of the metal laminate to be processed by the laser welding apparatus of the embodiment, and is a cross-sectional view when a preferable bonding state is obtained.
  • FIG. 8 is an exemplary and schematic cross-sectional view showing a part of the metal laminate as a processing target of the laser welding apparatus of the embodiment, in which a gap is generated between the metal member and the plurality of metal foils.
  • FIG. 5 is a cross-sectional view when an unfavorable bonding state is obtained; FIG.
  • FIG. 9 is an exemplary and schematic cross-sectional view showing a part of the metal laminate as a processing target of the laser welding apparatus of the embodiment, in which a part of the metal foil is cut and an unfavorable joining state is obtained.
  • FIG. 10 is a cross-sectional view when the FIG. 10 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 11 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 10 is a cross-sectional view when the FIG. 10 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 11 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of
  • FIG. 12 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 13 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 14 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 15 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 16 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 17 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 18 is an exemplary and schematic plan view showing an example of welding sites and welding procedures on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment.
  • FIG. 19 is an exemplary schematic configuration diagram of the laser welding device of the second embodiment.
  • FIG. 20 is an explanatory diagram showing the concept of the principle of the diffractive optical element included in the laser welding device of the second embodiment.
  • FIG. 21 is an exemplary schematic configuration diagram of a laser welding device according to the third embodiment.
  • Exemplary embodiments of the present invention are disclosed below.
  • the configurations of the embodiments shown below and the actions and results (effects) brought about by the configurations are examples.
  • the present invention can be realized by configurations other than those disclosed in the following embodiments.
  • the X direction is indicated by an arrow X
  • the Y direction is indicated by an arrow Y
  • the Z direction is indicated by an arrow Z.
  • the X-, Y-, and Z-directions intersect and are orthogonal to each other.
  • the scanning direction SD is represented by an arrow SD.
  • the Z direction is the normal direction of the surface Wa (machined surface, welded surface) of the workpiece W, the thickness direction of the metal foil 12 , and the stacking direction of the metal foil 12 and the metal laminate 10 .
  • ordinal numbers are given for convenience to distinguish directions, processes, laser beams, spots, parts, members, sites, etc., and do not indicate priority or order.
  • FIG. 1 is a schematic configuration diagram of a laser welding device 100 of the first embodiment.
  • the laser welding device 100 includes a laser device 111, a laser device 112, an optical head 120, an optical fiber 130, a sensor 140, and a control device 150.
  • Laser welding device 100 is an example of a welding device.
  • the laser devices 111 and 112 each have a laser oscillator, and are configured to output laser light with a power of, for example, several kW.
  • the laser devices 111 and 112 emit laser light with a wavelength of 380 [nm] or more and 1200 [nm] or less.
  • the laser devices 111 and 112 internally have laser light sources such as fiber lasers, semiconductor lasers (elements), YAG lasers, and disk lasers.
  • the laser devices 111 and 112 may be configured to output multimode laser light with a power of several kW as the total output of a plurality of light sources.
  • the laser device 111 outputs a first laser beam with a wavelength of 800 [nm] or more and 1200 [nm] or less.
  • Laser device 111 is an example of a first laser device.
  • the laser device 111 has a fiber laser or a semiconductor laser (element) as a laser light source.
  • the laser oscillator included in the laser device 111 is an example of a light source and can also be called a first laser oscillator.
  • the laser device 112 outputs a second laser beam with a wavelength of 550 [nm] or less.
  • Laser device 112 is an example of a second laser device.
  • the laser device 112 has a semiconductor laser (element) as a laser light source.
  • the laser device 112 preferably outputs a second laser beam with a wavelength of 400 [nm] or more and 500 [nm] or less.
  • the laser oscillator included in the laser device 112 is an example of a light source and can also be called a second laser oscillator.
  • the optical fiber 130 guides the laser beams output from the laser devices 111 and 112 to the optical head 120, respectively.
  • the optical head 120 is an optical device for irradiating the object W to be processed with laser light input from the laser devices 111 and 112 .
  • the optical head 120 includes a collimating lens 121, a condensing lens 122, a mirror 123, and a filter .
  • Collimating lens 121, condensing lens 122, mirror 123, and filter 124 may also be referred to as optics.
  • the optical head 120 is configured to be able to change its relative position with respect to the processing target W in order to scan the laser light L while irradiating the surface Wa of the processing target W with the laser light L. Relative movement between the optical head 120 and the workpiece W can be realized by moving the optical head 120, moving the workpiece W, or moving both the optical head 120 and the workpiece W.
  • the optical head 120 may be configured to be able to scan the surface Wa with the laser light L by having a galvanometer scanner or the like (not shown).
  • the collimating lenses 121 (121-1, 121-2) collimate the laser light input via the optical fiber 130, respectively.
  • the collimated laser light becomes parallel light.
  • the mirror 123 reflects the first laser light collimated by the collimating lens 121-1.
  • the first laser beam reflected by the mirror 123 travels in the opposite direction of the Z direction and travels toward the filter 124 . Note that the mirror 123 is not necessary in the configuration in which the first laser light is input so as to travel in the direction opposite to the Z direction in the optical head 120 .
  • the filter 124 is a high-pass filter that transmits the first laser beam and reflects the second laser beam without transmitting it.
  • the first laser beam passes through the filter 124 and travels in the opposite direction of the Z direction to the condenser lens 122 .
  • the filter 124 reflects the second laser beam collimated by the collimating lens 121-2.
  • the second laser beam reflected by the filter 124 travels in the opposite direction of the Z direction and travels toward the condenser lens 122 .
  • the condensing lens 122 converges the first laser beam and the second laser beam as parallel light, and irradiates the object W to be processed as laser light L (output light). That is, the optical head 120 outputs the laser beam L substantially along the direction opposite to the Z direction, and irradiates the workpiece W with the laser beam.
  • the object W to be processed is a metal laminate 10 in which a metal member 11 and a plurality of metal foils 12 are laminated in the Z direction.
  • the metal laminate 10 has a metal member 11 , a plurality of metal foils 12 and welded portions 14 .
  • the welded portion 14 mechanically and electrically connects the metal member 11 and the plurality of metal foils 12 .
  • the metal member 11, the plurality of metal foils 12, and the welded portion 14 are all conductors, and are all made of a copper-based material such as copper or a copper alloy.
  • the welded portion 14 mechanically and electrically connects the metal member 11 and the plurality of metal foils 12 . Note that the metal member 11, the plurality of metal foils 12, and the welded portion 14 may not be made of a copper-based material.
  • the sensor 140 can detect wrinkles as unevenness on the surface Wa, and is, for example, a non-contact camera, a laser displacement meter, or the like.
  • the control device 150 stops the laser devices 111 and 112, for example, when the height of wrinkles from the surface Wa exceeds a predetermined value. Also, the operation of the laser devices 111 and 112 can be controlled by, for example, reducing the output of the laser devices 111 and 112 .
  • FIG. 2 is a cross-sectional view of the metal laminate 10.
  • the metal member 11 has a plate-like shape extending across the Z direction. However, the metal member 11 is not limited to a plate-like member.
  • the plurality of metal foils 12 are stacked in the Z direction on the end surface 11a of the metal member 11 in the Z direction, that is, on the end surface 11a facing the Z direction.
  • the laser light L output from the optical head 120 is irradiated onto the surfaces Wa of the plurality of metal foils 12 on the side opposite to the metal member 11 in the Z direction.
  • the Z direction is an example of a first direction.
  • the end surface 11a is an example of a first surface.
  • the surface Wa is an example of the second surface, and can also be referred to as a laser beam L irradiation surface.
  • the back surface Wb is the surface of the metal laminate 10 opposite to the front surface Wa in the Z direction.
  • the metal laminate 10 is laser-welded by the laser welding apparatus 100, as shown in FIG. It is set in a posture in which the normal direction of the surface Wa is substantially parallel to the Z direction. That is, laser welding is performed in a state in which the metal laminate 10 is held by a plurality of holding mechanisms 210 as shown in FIG.
  • the holding mechanism 210 has two clamping members 211a and 211b spaced apart from each other in the Z direction.
  • the clamping members 211a and 211b are pressed by a pressing mechanism (not shown) with an appropriate pressing force toward each other in the Z direction.
  • the ends of the metal laminate 10 in the Y direction and in the opposite direction to the Y direction are held in the Z direction by holding members 211a and 211b of two holding mechanisms 210, respectively.
  • Each of the holding mechanisms 210 also holds a spacer 220 spaced apart from the metal laminate 10 in a direction crossing the Z direction together with the metal laminate 10 . That is, in each holding mechanism 210, the holding members 211a and 211b hold the metal laminate 10 and the spacer 220 therebetween. Spacer 220 is an example of an intervening member.
  • the direction crossing the Z direction is an example of the second direction.
  • the inventors found that if the difference between the Z-direction thickness T1 of the metal laminate 10 and the Z-direction thickness T2 of the spacer 220 is too large, the metal foil 12 wrinkles on the surface Wa. It was found that the wrinkles caused welding defects. From this point of view, the absolute value of the difference between the thickness T1 and the thickness T2 is preferably 0.5 [mm] or less.
  • the welded portion 14 extends from the surface Wa in the direction opposite to the Z direction.
  • the direction opposite to the Z-direction may also be referred to as the depth direction of weld 14 .
  • the laser beam L is scanned on the surface Wa in a direction that intersects the Z direction (scanning direction SD, see FIG. 7, etc.), so that the welded portion 14 has a cross-sectional shape substantially similar to that of FIG. It will also extend to SD.
  • FIG. 3 is a cross-sectional view of a battery 1 as an electrical product having a metal laminate 10.
  • FIG. A battery 1 is one application example of the metal laminate 10 .
  • the metal laminate 10 is an example of an electrical component as a conductor, and an example of an electrical component included in an electrical product.
  • An electrical component may also be referred to as a component part of an electrical product.
  • the battery 1 shown in FIG. 3 is, for example, a laminated lithium ion battery cell.
  • the battery 1 has two film-like exterior materials 20 .
  • a storage chamber 20 a is formed between the two exterior materials 20 .
  • a plurality of flat positive electrode materials 13p, a plurality of flat negative electrode materials 13m, and a plurality of flat separators 15 are accommodated in the storage chamber 20a.
  • the positive electrode material 13p and the negative electrode material 13m are alternately stacked with the separator 15 interposed therebetween.
  • a metal foil 12 extends from each of the plurality of positive electrode materials 13p and the plurality of negative electrode materials 13m.
  • FIG. 3 In the example of FIG.
  • the plurality of metal foils 12 extending from each of the positive electrode materials 13p are overlapped on the metal member 11 at the opposite end of the battery 1 in the Y direction, and the metal member 11 and the plurality of metal foils 12 A metal laminate 10 welded with a metal foil 12 is provided.
  • Metal member 11 constitutes a positive electrode terminal of battery 1 .
  • the plurality of metal foils 12 extending from each of the negative electrode materials 13m are overlapped on the metal member 11 at the Y-direction end of the battery 1, and the metal member 11 and the plurality of metal foils 12 are overlapped at the end.
  • a welded metal laminate 10 is provided. Also on the negative electrode side, only a portion of the metal member 11 is exposed outside the exterior material 20, and the other portion of the metal member 11, the plurality of metal foils 12, and the welded portion 14 are exposed outside the exterior material 20. not.
  • Metal member 11 constitutes a negative electrode terminal of battery 1 .
  • each metal laminate 10 is sandwiched between two exterior materials 20 . Airtightness or liquidtightness is ensured between the metal laminate 10 and the exterior material 20 by a sealing material or the like. For this reason, it is preferable that the surface Wa and the rear surface Wb of the metal laminate 10 have as little, as little, or no unevenness as possible.
  • the welding method of the present embodiment as will be described in detail later, it is possible to suppress the occurrence of welding defects, so that unevenness of the surface Wa due to welding defects can be reduced. Therefore, the metal laminate 10 welded by the welding method of this embodiment is suitable for the negative electrode terminal of the battery 1 .
  • a negative terminal is an example of an electrical component.
  • the metal laminate 10 or the metal member 11 can also be called an electrode tab or a tab.
  • the metal member 11 can also be called a conductive member.
  • FIG. 4 is a schematic diagram showing a beam (spot) of the laser light L irradiated onto the surface Wa.
  • the beam of the laser light L includes the first laser light beam B1 output from the laser device 111 and the second laser light beam B2 output from the laser device 112 .
  • Each of the beams B1 and B2 has, for example, a Gaussian-shaped power distribution in the radial direction of the cross section perpendicular to the optical axis direction of the beam.
  • the power distributions of beam B1 and beam B2 are not limited to Gaussian shapes.
  • the diameter of the circle representing the beams B1 and B2 is the beam diameter of each beam B1 and B2.
  • the beam diameter of each of the beams B1 and B2 is defined as the diameter of the region including the peak of the beam and having an intensity of 1/e2 or more of the peak intensity.
  • the beam diameter can be defined as the length of the region in which the intensity is 1/ e2 or more of the peak intensity in the direction perpendicular to the scanning direction SD.
  • a beam diameter on the surface Wa is called a spot diameter.
  • the beam of the laser light L is such that the beam B1 of the first laser light and the beam B2 of the second laser light overlap on the surface Wa, and the beam B2 is It is formed so that it is larger (broader) than the beam B1, and the outer edge B2a of the beam B2 surrounds the outer edge B1a of the beam B1.
  • the spot diameter D2 of the beam B2 is larger than the spot diameter D1 of the beam B1.
  • the beam B1 is an example of a first spot and the beam B2 is an example of a second spot.
  • the beam (spot) of the laser light L has a point-symmetrical shape with respect to the center point C. Therefore, in an arbitrary scanning direction SD , the spot shape will be the same. Therefore, when a moving mechanism for relatively moving the optical head 120 and the workpiece W for scanning the surface Wa of the laser beam L is provided, the moving mechanism should have at least a relatively translatable mechanism. In some cases, the relatively rotatable mechanism can be omitted.
  • FIG. 5 is a graph showing the light absorptance of each metal material with respect to the wavelength of the laser light L to be irradiated.
  • the horizontal axis of the graph in FIG. 5 is the wavelength, and the vertical axis is the absorptance.
  • FIG. 5 shows the relationship between wavelength and absorptance for aluminum (Al), copper (Cu), gold (Au), nickel (Ni), silver (Ag), tantalum (Ta), and titanium (Ti). It is shown.
  • the wavelength of the first laser beam, the wavelength of the second laser beam, and the wavelength of the workpiece W are adjusted so that the absorptance of the workpiece W for the second laser beam is higher than the absorptivity for the first laser beam.
  • a material is selected.
  • the scanning direction is the scanning direction SD shown in FIG.
  • a second laser beam is irradiated by a region B2f located in front of SD in FIG. 5 of the beam B2 of the second laser beam.
  • the portion to be welded is irradiated with the beam B1 of the first laser beam, and then the beam B2 of the second laser beam is irradiated with the second laser beam again by the region B2b located behind in the scanning direction SD.
  • a heat-conducting melted region is generated by irradiation of the second laser beam, which has a high absorptivity in the region B2f.
  • a deeper keyhole-type melted region is generated in the welded portion by the irradiation of the first laser beam.
  • the required depth is obtained by the lower power first laser beam compared to the case where the heat-conducting melted region is not formed. fused regions can be formed.
  • the welded portion changes its molten state due to the irradiation of the second laser beam, which has a high absorptivity in the region B2b.
  • the wavelength of the second laser light is preferably 550 [nm] or less, more preferably 500 [nm] or less.
  • the plurality of metal foils 12 expands due to thermal expansion and separates from the metal member 11.
  • gaps are formed between the metal foils 12 and the metal members 11 , and only the metal foils 12 are welded or between the metal foils 12 and the metal members 11 .
  • welding is performed with a gap left open.
  • the inventors have found that welding with such a gap can be prevented by setting appropriate conditions. The suitable conditions will be described later.
  • FIG. 6 is a flow chart showing an example of a laser welding method by the laser welding device 100.
  • the metal laminate 10 is held by two holding mechanisms 210, and set in a state in which the surface Wa is irradiated with the laser light L (S1 ).
  • the surface Wa is irradiated with a laser beam from the optical head 120 (S2).
  • the irradiation of the laser beam L is terminated, and when the irradiation of all the irradiation points on the surface Wa is not completed (in S3 No), S2 is executed. That is, when the irradiation of the laser beam L is performed on a plurality of locations on the surface Wa, S2 is executed a plurality of times. In each time of S2, the laser light L may be irradiated at a fixed point on the surface Wa, that is, spot-irradiated, or may be scanned along the surface Wa in a scanning direction SD that intersects the Z direction. .
  • the portion irradiated with the laser light L melts and then solidifies as the temperature drops, thereby welding the metal member 11 and the plurality of metal foils 12 together, and the metal laminate 10 is integrated. (solidification step).
  • cooling of the metal laminate 10 may be natural cooling or forced cooling using a cooling mechanism.
  • FIG. 7 is a cross-sectional view (a photographic image of a cross section) of the metal laminate 10 including the welded portion 14 when a preferable bonding state is obtained.
  • the welded portion 14 penetrates the plurality of metal foils 12 from the surface Wa in the direction opposite to the Z direction, reaches the inside of the metal member 11, and reaches the inside of the metal member 11. is eating into
  • FIG. 8 shows a state in which a gap G is formed between a plurality of metal foils 12 and the metal member 11.
  • the plurality of metal foils 12 are thermally expanded by being heated by the irradiation of the laser light L.
  • the plurality of metal foils 12 are buckled according to the elongation, and the gap G is generated. If the gap G in this case becomes large, as shown in FIG. An unfavorable bonding state is obtained in which the two are not mechanically and electrically connected to each other.
  • the inventors According to the intensive research of the inventors, on the surface Wa of the metal foil 12, wrinkles do not occur, or even if wrinkles occur, the height of the wrinkles, that is, the general portion of the surface Wa (wrinkles occur) It has been found that the gap G shown in FIG. 8 does not occur unless the height of the wrinkles in the Z direction from the flat portion where the surface is not flat does not exceed 0.2 [mm]. In addition, the inventors' intensive research has revealed that the wrinkles, regardless of thermal expansion, also cause the same gap G even when they are generated before the laser beam L is applied in the set state. bottom. That is, it was found that the holding mechanism 210 needs to hold the metal laminate 10 in a state in which wrinkles with a height in the Z direction exceeding 0.2 [mm] do not occur.
  • FIG. 9 shows a state in which a part of the metal foils 12 located near the ends in the Z direction is cut. Since the metal foil 12 is thin by itself, in a state in which the plurality of metal foils 12 are likely to come apart, depending on the irradiation intensity of the laser beam L, some of the metal foils 12 may be cut as shown in FIG. An unfavorable bonding state is obtained in which the metal foil 12 is not mechanically and electrically connected to the metal member 11 . Hereinafter, this phenomenon will be referred to as partial cutting S.
  • the irradiation time of the laser light L is set to a predetermined time or less, or the scanning length ls (see FIG. 12) of the laser light L is set to a predetermined length or less.
  • the gap G and the partial cut S can be suppressed. It is considered that this is because gaps G and partial cuts S can be suppressed by suppressing local increases in irradiation energy.
  • the metal laminate 10 includes 50 metal foils 12 made of a copper-based material having a thickness of 8 [ ⁇ m] and metal members 11 made of a copper-based material having a thickness of 1 [mm].
  • the holding mechanism 210 is fixed so that the distance in the direction intersecting the Z direction is 3 [mm], and the wavelength is 1070 [nm] and the output power is 800 [W].
  • the laser light L including a laser light and a second laser light having a wavelength of 450 [nm] and an output power of 500 [W] is irradiated onto the surface Wa (hereinafter referred to as condition A)
  • the laser light It was found that the irradiation time of L is preferably 0.1 [s] or less. Further, according to such a point of view, the irradiation of the laser beam L may be performed, for example, at a plurality of locations on the surface Wa, at positions separated from each other on the surface Wa, or at a plurality of times.
  • this condition (1) is a condition determined according to specific specifications, and the irradiation time and scanning length of each welding portion are different from each other. It was found that the larger the volume of the laminate 10 or the plurality of metal foils 12 and the larger the area of the surface Wa, the longer the length can be set.
  • the position of the end point of the previous irradiation and the position of the start point of the next irradiation are separated from each other in two successive irradiations.
  • the gap G and the partial cut S can be suppressed.
  • the gap G and the partial cutting S can be suppressed by suppressing the local increase in the irradiation energy, as in (1).
  • the position of the end point of the irradiation performed first and the position of the start point of the irradiation performed next are 2 [ mm] or more has been found to be preferable.
  • this condition (2) is a condition determined according to specific specifications, and the length of the interval between the previous end point and the current start point is , the larger the volume of the metal laminate 10 or the plurality of metal foils 12 and the larger the area of the surface Wa, the shorter it can be set.
  • the distance d1 is the distance between the edge 10e and the current irradiation center in the direction intersecting the Z direction
  • the distance d2 is the distance between the irradiation center of the previous fixed location and the current irradiation center intersecting the Z direction. is the distance in the direction.
  • the distances d1 and d2 are preferably 3 [mm] or less.
  • the irradiation site may also be referred to as an irradiation area, an irradiation range, or an irradiation position.
  • the distance Dw (see FIGS. 2 and 10) of the plurality of holding mechanisms 210 in the direction crossing the Z direction is set to a predetermined length or longer. It has been found that the gap G can be suppressed by this. It is considered that this is because the shorter the distance Dw in the line of sight opposite to the Z direction, the greater the amount of bending in the Z direction due to the extension of the plurality of metal foils 12 . As an example, in the case of condition A, it was found that the distance Dw is preferably 2 [mm] or more.
  • 10 to 18 are plan views of the metal laminate 10 showing examples of welding sites (irradiation sites) and welding procedures (irradiation procedures) that satisfy the above conditions (1) to (4).
  • the metal laminate 10 is sandwiched by a plurality of (two in this embodiment) holding mechanisms 210 spaced apart in the Y direction, as shown in FIG.
  • two holding members 211a and 211b are arranged in the Z direction. Therefore, the end 10e of the metal laminate 10 on the front surface Wa and the end 10e of the metal laminate 10 on the back surface Wb are aligned in the Z direction. Also, as shown in FIGS.
  • clamping members 211a and 211b are provided on the front surface Wa and the back surface Wb of the metal laminate 10 corresponding to the end portion 10e.
  • a level difference or a concave groove is generated as a pressing mark (not shown) caused by being sandwiched by the two.
  • the press trace is formed in a linear shape extending in the X direction. Press marks may also be referred to as pinch marks.
  • the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P1, P2, and P3 (welding sites), thereby forming a plurality of (three) welds 14. be done.
  • Each of the irradiation sites P1 to P3 extends for a predetermined length in the X direction at a substantially central portion in the Y direction between two ends 10e separated from each other in the Y direction.
  • the dashed arrow in the figure indicates the scanning direction of the spot of the laser light L on the surface Wa.
  • the irradiation site P2 is located in the opposite direction in the X direction to the irradiation site P1, and the irradiation site P3 is located in the opposite direction in the X direction to the irradiation site P2.
  • the spots are scanned in the X direction at each of the irradiation sites P1 to P3. Therefore, the start point p2s of the irradiation site P2 is separated from the end point p1e of the previous irradiation site P1, and the start point p3s of the irradiation site P3 is separated from the end point p2e of the previous irradiation site P2.
  • the energy given to the metal laminate 10 by the laser light L is suppressed from locally increasing.
  • the extension of the plurality of metal foils 12 and the bending (buckling) in the Z direction due to the extension are locally increased, thereby suppressing the occurrence of partial cutting S of the metal foils 12 .
  • the previous irradiation start point (for example, start point p1s) and the current irradiation end point (for example, end point p2e) overlap each other in the example of FIG. 10, they do not necessarily overlap.
  • the irradiation on the irradiation site P1 is an example of the first scan
  • the irradiation on the irradiation site P2 is an example of the second scan.
  • the metal laminate 10 is irradiated with the spot of the laser beam L in order of the irradiation sites P1, P2, and P3, thereby welding at a plurality of sites (three sites).
  • a portion 14 is formed.
  • the scanning direction, start point p3s and end point p3e at the irradiation site P3 are reversed from the example of FIG. 10, and the start point p2s and the start point p3s overlap.
  • the start point of the current irradiation can be separated from the end point of the previous irradiation in each of the irradiation sites P1 to P3, thereby obtaining the same effect as in the example of FIG.
  • the irradiation on the irradiation site P2 is an example of the first scan
  • the irradiation on the irradiation site P3 is an example of the second scan.
  • the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P1, P2, P3, P4, and P5, thereby forming a plurality of (five) welds 14. be done.
  • the spots of the laser light L are not scanned at the irradiation sites P1 to P4, but are fixed point irradiation.
  • the distance Dw between the two holding mechanisms 210 is longer, so the bending amount (buckling amount) in the Z direction due to the extension of the plurality of metal foils 12 is reduced. This makes it difficult for the gap G to occur.
  • FIGS. 10 the distance Dw between the two holding mechanisms 210 is longer, so the bending amount (buckling amount) in the Z direction due to the extension of the plurality of metal foils 12 is reduced. This makes it difficult for the gap G to occur.
  • FIGS. 10 the bending amount in the Z direction due to the extension of the plurality of metal foils 12 is reduced. This makes it difficult for the gap G to occur.
  • the laser beam L is irradiated at the irradiation sites P1 to P4 having a smaller distance d1 from the end 10e, and the irradiation sites P1 to P4 are solidified to form the welded portion 14.
  • the laser light L is irradiated onto the irradiation site P5 at a distance d2 from the irradiation sites P1 to P4.
  • the scanning length ls of the irradiation site P5 is longer than the scanning lengths of the irradiation sites P1 to P4 in FIGS.
  • the scan length can be set longer.
  • the irradiation time and scanning length at each irradiation site can be set longer as long as the conditions (3) and (4) are satisfied.
  • the irradiation of the irradiation sites P1 to P4 is an example of the first irradiation
  • the irradiation of the irradiation site P5 is an example of the second irradiation.
  • the metal laminate 10 is irradiated with spots of the laser beam L in the order of the irradiation sites P1, P2, P3, P4, P5, P6, and P7, thereby welding at a plurality of sites (seven sites).
  • a portion 14 is formed.
  • the number of irradiated regions is increased compared to the example of FIG.
  • the number and arrangement of irradiation sites can be set arbitrarily within the range satisfying the above conditions (1) to (4).
  • the irradiation of the irradiation sites P1 to P6 is an example of the first irradiation
  • the irradiation of the irradiation site P7 is an example of the second irradiation.
  • the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P1, P2, P3, P4, and P5, thereby forming a plurality of (five) welded portions 14. be done.
  • the spot of the laser light L is scanned at each of the irradiation sites P1 to P5.
  • the scanning length of each irradiated portion can be arbitrarily set within the range satisfying the above conditions (1) to (4).
  • the metal laminate 10 is irradiated with spots of the laser beam L in the order of the irradiation sites P1, P2, P3, P4, and P5, thereby forming a plurality of (five) welds 14. be done.
  • the scanning direction is along the Y direction at each of the irradiation sites P1 to P5. In this manner, the scanning direction of each irradiation site can be arbitrarily set within the range satisfying the above conditions (1) to (4). Note that the order of a plurality of irradiation sites and the scanning direction can be arbitrarily set within the range satisfying the above conditions (1) to (4), and are not limited to the example in FIG.
  • the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P11 to P13, P21 to P23, and P31 to P33, thereby forming welded portions 14 at a plurality of locations. be done.
  • the spot of the laser light L is also irradiated to the irradiation sites P41 to P43 and P51 to P53.
  • a plurality of adjacent irradiation sites may be set so as to be slightly shifted and arranged so as to partially overlap each other. As a result, a massive welded portion is formed by gathering a plurality of welded portions 14 .
  • the surface Wa is irradiated in the Z direction.
  • the laser light L is irradiated in a state in which wrinkles exceeding a predetermined height are not generated. According to such a configuration and method, for example, gaps G and partial cuts S caused by wrinkles can be suppressed, and a higher quality metal laminate 10 can be formed.
  • FIG. 19 is a schematic configuration diagram of a laser welding device 100A of the second embodiment.
  • the optical head 120 has a DOE 125 between the collimating lens 121-1 and the mirror 123.
  • the laser welding device 100A has the same configuration as the laser welding device 100 of the first embodiment.
  • the DOE 125 shapes the shape of the beam B1 of the first laser light (hereinafter referred to as beam shape).
  • the DOE 125 has, for example, a structure in which a plurality of diffraction gratings 125a with different periods are superimposed.
  • the DOE 125 can shape the beam shape by bending or superimposing the parallel beams in the direction affected by each diffraction grating 125a.
  • DOE 125 may also be referred to as a beam shaper.
  • the optical head 120 includes a beam shaper provided after the collimating lens 121-2 for adjusting the beam shape of the second laser beam, and a filter 124 provided after the beam shape of the first laser beam and the second laser beam. It may also have a beam shaper or the like that adjusts. By appropriately adjusting the beam shape of the laser light L using the beam shaper, it is possible to further suppress the occurrence of spatters and blowholes during welding.
  • FIG. 21 is a schematic configuration diagram of a laser welding device 100B of the third embodiment.
  • the optical head 120 has a galvanometer scanner 126 between the filter 124 and the condenser lens 122 . Except for this point, the laser welding device 100B has the same configuration as the laser welding device 100 of the first embodiment.
  • the galvanometer scanner 126 has two mirrors 126a and 126b, and by controlling the angles of the two mirrors 126a and 126b, the irradiated portion of the laser beam L can be detected without moving the optical head 120. It is a device that can be moved and scanned with a laser beam L. FIG. The angles of the mirrors 126a and 126b are changed by, for example, motors (not shown). Such a configuration eliminates the need for a mechanism for moving the optical head 120 and the workpiece W relative to each other, and provides an advantage that, for example, the device configuration can be made smaller.
  • the present invention can be applied to lithium-ion battery cells with configurations different from those of the above embodiments, and can also be applied to batteries other than lithium-ion battery cells.
  • the surface area of the molten pool may be adjusted by performing scanning by known wobbling, weaving, output modulation, or the like.
  • a surface layer made of other substances may be formed on the surface of the metal foil or metal member.
  • the present invention can be used for welding methods, welding equipment, and metal laminates.

Abstract

This welding method is for welding together, for example, a plurality of metallic foils and a metallic member having a first surface facing a first direction, and comprises: a step for retaining the metallic member and the metallic foils in a state where the metallic foils are layered in the first direction on the first surface; and a step for emitting a laser beam on a second surface of the metallic foils located on the side opposite to the metallic member in the first direction. In the step for emitting the laser beam, the laser beam is emitted in such a manner as not to cause the metallic foils to form any wrinkles that protrude in the first direction beyond a prescribed height. Said prescribed height may be set at 0.2 [mm].

Description

溶接方法、溶接装置、および金属積層体Welding method, welding apparatus, and metal laminate
 本発明は、溶接方法、溶接装置、および金属積層体に関する。 The present invention relates to a welding method, a welding device, and a metal laminate.
 従来、複数のタブと端子とがレーザ溶接によって接合されている電池が知られている(例えば、特許文献1)。 Conventionally, a battery is known in which a plurality of tabs and terminals are joined by laser welding (for example, Patent Document 1).
特開2020-4643号公報Japanese Patent Application Laid-Open No. 2020-4643
 発明者らの鋭意研究により、この種のレーザ溶接においては、適切な条件でレーザ溶接を行わないと、タブとしての金属箔と端子としての金属部材との間に隙間が生じたり、一部の金属箔が切断されたりして、少なくとも一部のタブと端子との間で導通を確保し難くなる虞があることが判明した。 As a result of intensive research by the inventors, it has been found that, in this type of laser welding, if laser welding is not performed under appropriate conditions, a gap is generated between the metal foil as the tab and the metal member as the terminal, and some It has been found that the metal foil may be cut, making it difficult to ensure continuity between at least some of the tabs and the terminals.
 そこで、本発明の課題の一つは、例えば、複数の金属箔と金属部材との間に隙間が生じたり、一部の金属箔が切断されたりするのを抑制できるような、新規な改善された溶接方法、溶接装置、および金属積層体を得ること、である。 Therefore, one of the objects of the present invention is to provide a novel improvement that can suppress, for example, the formation of gaps between a plurality of metal foils and a metal member and the cutting of a part of the metal foils. a welding method, a welding apparatus, and obtaining a metal laminate.
 本発明の溶接方法は、例えば、第一方向を向く第一面を有した金属部材と、複数の金属箔とを、当該複数の金属箔が前記第一面上に前記第一方向に重ねられた状態で保持する工程と、前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面上にレーザ光を照射する工程と、を備え、前記金属部材と前記複数の金属箔とを溶接する溶接方法であって、前記レーザ光を照射する工程において、前記金属箔の前記第一方向に突出した所定高さを超える皺が生じない状態でレーザ光の照射を行う。 In the welding method of the present invention, for example, a metal member having a first surface facing a first direction and a plurality of metal foils are stacked on the first surface in the first direction. and irradiating a second surface of the plurality of metal foils opposite to the metal member in the first direction with a laser beam, wherein the metal member and the plurality of wherein, in the step of irradiating the metal foil with the laser beam, the laser beam is irradiated in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foil do not occur. .
 前記溶接方法では、前記所定高さは、0.2[mm]であってもよい。 In the welding method, the predetermined height may be 0.2 [mm].
 前記溶接方法では、前記レーザ光を照射する工程において、レーザ光の照射による前記金属箔の延びに伴って前記金属箔の前記第一方向に突出した前記所定高さを超える皺が生じない条件でレーザ光の照射を行ってもよい。 In the welding method, in the step of irradiating the laser beam, wrinkles exceeding the predetermined height protruding in the first direction of the metal foil do not occur as the metal foil expands due to the irradiation of the laser beam. Laser light irradiation may be performed.
 前記溶接方法では、前記レーザ光を照射する工程において、レーザ光の照射を複数回行ってもよい。 In the welding method, in the step of irradiating the laser light, the laser light irradiation may be performed multiple times.
 前記溶接方法では、前記レーザ光を照射する工程において、レーザ光の複数回の照射は、レーザ光のスポットを前記第二面上の所定区間で走査する第一走査と、当該第一走査の次にレーザ光のスポットを前記第二面上の所定区間で走査する第二走査と、を含み、前記第一走査の終点と前記第二走査の始点とが互いに離れてもよい。 In the welding method, in the step of irradiating the laser beam, the irradiation of the laser beam a plurality of times includes a first scan for scanning the spot of the laser beam in a predetermined section on the second surface, and a scan following the first scan. and a second scan of scanning a spot of laser light in a predetermined section on the second surface, and the end point of the first scan and the start point of the second scan may be separated from each other.
 前記溶接方法では、前記第一走査の始点と、前記第二走査の終点と、が重なってもよい。 In the welding method, the start point of the first scan and the end point of the second scan may overlap.
 前記溶接方法では、前記第一走査の始点と、前記第二走査の始点と、が重なってもよい。 In the welding method, the start point of the first scan and the start point of the second scan may overlap.
 前記溶接方法では、前記レーザ光を照射する工程において、前記レーザ光の各回の照射は、前記金属部材と前記複数の金属箔との保持機構によって保持された端部と今回の照射の照射中心との間の前記第一方向と交差した第二方向における距離、または複数回の照射における従前の照射によって前記金属部材と前記複数の金属箔とが溶接され固定された箇所における照射中心と今回の照射の照射中心との間の前記第二方向における距離が3[mm]以下となるように行われてもよい。 In the welding method, in the step of irradiating the laser beam, each irradiation of the laser beam is carried out between the end portion held by the holding mechanism of the metal member and the plurality of metal foils and the irradiation center of the current irradiation. The distance in the second direction intersecting the first direction between, or the irradiation center and the current irradiation at the location where the metal member and the plurality of metal foils are welded and fixed by previous irradiation in multiple irradiations may be performed so that the distance in the second direction between the irradiation center of is 3 [mm] or less.
 前記溶接方法では、前記レーザ光を照射する工程において、前記金属部材と前記複数の金属箔との保持機構によって保持された端部により近い位置に対するレーザ光の照射が先に行われ、前記端部からより遠い位置に対するレーザ光の照射が後に行われてもよい。 In the welding method, in the step of irradiating the laser light, a position closer to the end held by the holding mechanism between the metal member and the plurality of metal foils is first irradiated with the laser light, and the end is held by the holding mechanism. Irradiation of the laser light to a position farther from the position may be performed later.
 前記溶接方法では、前記レーザ光を照射する工程において、レーザ光の複数回の照射は、レーザ光の第一照射と、当該第一照射の後に行われ当該第一照射より前記端部からより遠い位置に対するレーザ光の照射であって前記第一照射より走査長さの長い第二照射と、を含んでもよい。 In the welding method, in the step of irradiating the laser beam, the plurality of irradiations of the laser beam include the first irradiation of the laser beam and the irradiation of the laser beam which is performed after the first irradiation and is farther from the end than the first irradiation. A second irradiation with a longer scanning length than the first irradiation may be included, which is irradiation of the position with a laser beam.
 前記溶接方法では、前記レーザ光を照射する工程において、前記金属部材と前記複数の金属箔とを含む積層体の互いに離れた二つの端部が、それぞれ前記保持機構によって保持され、レーザ光の複数回の照射は、前記二つの端部のそれぞれから離れた複数箇所に対するレーザ光の第一照射と、二つの端部の間の位置であって少なくとも二箇所の前記第一照射の間となる位置に対するレーザ光の第二照射と、を含んでもよい。 In the welding method, in the step of irradiating the laser beam, two mutually separated ends of the laminate including the metal member and the plurality of metal foils are respectively held by the holding mechanism, and the plurality of laser beams are emitted from the holding mechanism. The first irradiation of the laser beam to a plurality of locations away from each of the two ends, and a position between the two ends and between the first irradiation of at least two locations and a second irradiation of the laser light to the.
 前記溶接方法では、前記第二照射の走査長さは、当該第二照射が間に位置する前記少なくとも二箇所の前記第一照射の走査長さより長くてもよい。 In the welding method, the scanning length of the second irradiation may be longer than the scanning length of the first irradiation at the at least two locations between which the second irradiation is located.
 前記溶接方法では、前記レーザ光を照射する工程において、レーザ光の複数回の照射は、互いに部分的に重なるように行われ、塊状の溶接部を形成してもよい。 In the welding method, in the step of irradiating the laser beam, the laser beam irradiation may be performed a plurality of times so as to partially overlap each other to form a massive welded portion.
 前記溶接方法では、前記金属部材と前記複数の金属箔とを保持する工程において、前記複数の金属箔および前記金属部材を、それぞれ前記金属部材と前記複数の金属箔とを前記第一方向に挟持する二つの挟持部材を有し前記第一方向と交差した第二方向に離れた複数の保持機構によって保持し、前記レーザ光を照射する工程において、前記第二方向に離れた複数の保持機構の間において、前記第二面上に前記レーザ光を照射してもよい。 In the welding method, in the step of holding the metal member and the plurality of metal foils, the plurality of metal foils and the plurality of metal foils are respectively held in the first direction. In the step of holding by a plurality of holding mechanisms separated in a second direction intersecting the first direction and irradiating the laser beam, the plurality of holding mechanisms separated in the second direction In between, the second surface may be irradiated with the laser light.
 前記溶接方法では、前記複数の保持機構の、前記第二方向における距離が、2[mm]以上であってもよい。 In the welding method, the distance between the plurality of holding mechanisms in the second direction may be 2 [mm] or more.
 前記溶接方法では、前記複数の保持機構のうちの少なくとも一つは、前記二つの挟持部材によって、前記金属部材および前記複数の金属箔を含む積層体と、当該積層体から前記第二方向に離間した介在部材と、を挟持し、前記積層体の前記第一方向における厚さと、前記介在部材の前記第一方向における厚さとの差の絶対値が、0.5[mm]以下であってもよい。 In the welding method, at least one of the plurality of holding mechanisms is separated from the laminate including the metal member and the plurality of metal foils in the second direction by the two holding members. Even if the absolute value of the difference between the thickness of the laminate in the first direction and the thickness of the intervening member in the first direction is 0.5 [mm] or less good.
 前記溶接方法では、前記レーザ光を照射する工程において、レーザ光は、前記第二面上で第一スポットを形成する第一レーザ光と、前記第二面上で第二スポットを形成する第二レーザ光と、を含んでもよい。 In the welding method, in the step of irradiating the laser beam, the laser beam comprises a first laser beam that forms a first spot on the second surface and a second laser beam that forms a second spot on the second surface. and laser light.
 前記溶接方法では、前記第一レーザ光の波長は、800[nm]以上かつ1200[nm]以下であり、前記第二レーザ光の波長は、550[nm]以下であってもよい。 In the welding method, the wavelength of the first laser beam may be 800 [nm] or more and 1200 [nm] or less, and the wavelength of the second laser beam may be 550 [nm] or less.
 前記溶接方法では、前記第二レーザ光の波長は、400[nm]以上500[nm]以下であってもよい。 In the welding method, the wavelength of the second laser light may be 400 [nm] or more and 500 [nm] or less.
 前記溶接方法では、前記レーザ光を照射する工程において、前記第二面上で、前記第一レーザ光によって前記第二面上に形成される第一スポットと、前記第二レーザ光によって前記第二面上に形成される第二スポットとが、少なくとも部分的に重なってもよい。 In the welding method, in the step of irradiating the laser beam, on the second surface, a first spot formed on the second surface by the first laser beam and the second spot formed on the second surface by the second laser beam. A second spot formed on the surface may at least partially overlap.
 前記溶接方法では、前記金属箔は、銅系材料で作られてもよい。 In the welding method, the metal foil may be made of a copper-based material.
 本発明の溶接装置は、例えば、第一方向を向く第一面を有した金属部材と、複数の金属箔とを、当該複数の金属箔が前記第一面上に前記第一方向に重ねられた状態で溶接する溶接装置であって、レーザ光を出力する光源と、前記光源から出力されたレーザ光を、前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面上に照射する、光学ヘッドと、前記金属部材および前記複数の金属箔が、前記金属箔の前記第一方向に突出した所定高さを超える皺が生じない状態で保持された、溶接装置。 For example, the welding device of the present invention includes a metal member having a first surface facing a first direction, and a plurality of metal foils, the plurality of metal foils being stacked on the first surface in the first direction. A welding device for welding in a state in which a laser beam is output from a light source, and the laser beam output from the light source is directed to a second side of the plurality of metal foils opposite to the metal member in the first direction. An optical head that irradiates on two sides, and a welding device in which the metal member and the plurality of metal foils are held in a state in which wrinkles exceeding a predetermined height protruding in the first direction of the metal foils do not occur. .
 前記溶接装置は、前記金属部材および前記複数の金属箔を、前記金属箔の前記第一方向に突出した所定高さを超える皺が生じない状態で保持する保持機構を備えてもよい。 The welding device may include a holding mechanism that holds the metal member and the plurality of metal foils in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foils do not occur.
 前記溶接装置では、前記光学ヘッドは、レーザ光の照射による前記金属箔の延びに伴って前記金属箔の前記第一方向に突出した前記所定高さを超える皺が生じない条件でレーザ光の照射を行ってもよい。 In the welding device, the optical head irradiates the laser beam under conditions that do not cause wrinkles exceeding the predetermined height protruding in the first direction in the metal foil as the metal foil expands due to the irradiation of the laser beam. may be performed.
 本発明の溶接装置は、例えば、第一方向を向く第一面を有した金属部材と、複数の金属箔とを、当該複数の金属箔が前記第一面上に前記第一方向に重ねられた状態で溶接する溶接装置であって、レーザ光を出力する光源と、前記光源から出力されたレーザ光を前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面上に照射する光学ヘッドと、前記複数の金属箔の前記第一方向に突出した皺の高さを検出するセンサと、前記センサによって検出された前記皺の高さが所定値以下となるよう、前記光源の作動を制御する制御装置と、を備える。 For example, the welding device of the present invention includes a metal member having a first surface facing a first direction, and a plurality of metal foils, the plurality of metal foils being stacked on the first surface in the first direction. A welding device for welding in a state in which a light source for outputting a laser beam and a second laser beam output from the light source are provided on a second side of the plurality of metal foils opposite to the metal member in the first direction. an optical head that irradiates the surface, a sensor that detects the height of wrinkles protruding in the first direction of the plurality of metal foils, and a height of the wrinkles detected by the sensor that is equal to or less than a predetermined value. and a controller for controlling operation of the light source.
 本発明の金属積層体は、例えば、第一方向を向く第一面を有した金属部材と、複数の金属箔と、が溶接された金属積層体であって、前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面から、前記複数の金属箔を貫通するとともに前記金属部材に到達した、少なくとも一つの溶接部を有し、前記第二面上において、前記溶接部における照射中心と、前記金属積層体を挟持部材によって挟持した挟持痕または他の溶接部における照射中心との距離が、3[mm]以下である。 The metal laminate of the present invention is, for example, a metal laminate in which a metal member having a first surface facing a first direction and a plurality of metal foils are welded together, At least one weld that penetrates the plurality of metal foils and reaches the metal member from a second surface opposite to the metal member in one direction, and on the second surface, the The distance between the center of irradiation at the welded portion and the pinching mark formed by pinching the metal laminate between the pinching members or the center of irradiation at another welded portion is 3 mm or less.
 本発明によれば、例えば、複数の金属箔と金属部材との間に隙間が生じたり、一部の金属箔が切断されたりするのを抑制できるような、新規な改善された溶接方法、溶接装置、および金属積層体を得ることができる。 According to the present invention, for example, a novel and improved welding method that can suppress the formation of gaps between a plurality of metal foils and metal members and the cutting of some metal foils. Devices and metal laminates can be obtained.
図1は、第1実施形態のレーザ溶接装置の例示的な概略構成図である。FIG. 1 is an exemplary schematic configuration diagram of a laser welding device according to the first embodiment. 図2は、実施形態のレーザ溶接装置の加工対象としての金属積層体の例示的かつ模式的な断面図である。FIG. 2 is an exemplary and schematic cross-sectional view of a metal laminate as an object to be processed by the laser welding apparatus of the embodiment. 図3は、実施形態のレーザ溶接装置の加工対象としての金属積層体を含む電池の例示的かつ模式的な断面図である。FIG. 3 is an exemplary and schematic cross-sectional view of a battery including a metal laminate as an object to be processed by the laser welding apparatus of the embodiment. 図4は、実施形態のレーザ溶接装置によって加工対象としての金属積層体の表面上に形成されるレーザ光のビーム(スポット)を示す例示的な模式図である。FIG. 4 is an exemplary schematic diagram showing a beam (spot) of a laser beam formed on the surface of a metal laminate as an object to be processed by the laser welding apparatus of the embodiment. 図5は、照射するレーザ光の波長に対する各金属材料の光の吸収率を示すグラフである。FIG. 5 is a graph showing the light absorptance of each metal material with respect to the wavelength of the irradiated laser light. 図6は、実施形態のレーザ溶接装置による溶接方法の手順の一例を示すフローチャートである。FIG. 6 is a flow chart showing an example of a procedure of a welding method using the laser welding device of the embodiment. 図7は、実施形態のレーザ溶接装置の加工対象としての金属積層体の一部を示す例示的かつ模式的な断面図であって、好ましい接合状態が得られた場合の断面図である。FIG. 7 is an exemplary and schematic cross-sectional view showing a part of the metal laminate to be processed by the laser welding apparatus of the embodiment, and is a cross-sectional view when a preferable bonding state is obtained. 図8は、実施形態のレーザ溶接装置の加工対象としての金属積層体の一部を示す例示的かつ模式的な断面図であって、金属部材と複数の金属箔との間に隙間が生じた好ましくない接合状態が得られた場合の断面図である。FIG. 8 is an exemplary and schematic cross-sectional view showing a part of the metal laminate as a processing target of the laser welding apparatus of the embodiment, in which a gap is generated between the metal member and the plurality of metal foils. FIG. 5 is a cross-sectional view when an unfavorable bonding state is obtained; 図9は、実施形態のレーザ溶接装置の加工対象としての金属積層体の一部を示す例示的かつ模式的な断面図であって、一部の金属箔が切断された好ましくない接合状態が得られた場合の断面図である。FIG. 9 is an exemplary and schematic cross-sectional view showing a part of the metal laminate as a processing target of the laser welding apparatus of the embodiment, in which a part of the metal foil is cut and an unfavorable joining state is obtained. FIG. 10 is a cross-sectional view when the 図10は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 10 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図11は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 11 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図12は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 12 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図13は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 13 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図14は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 14 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図15は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 15 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図16は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 16 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図17は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 17 is an exemplary schematic plan view showing an example of a welded portion and a welding procedure on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図18は、実施形態のレーザ溶接装置による加工対象としての金属積層体の表面上における溶接部位および溶接手順の一例を示す例示的かつ模式的な平面図である。FIG. 18 is an exemplary and schematic plan view showing an example of welding sites and welding procedures on the surface of a metal laminate to be processed by the laser welding apparatus of the embodiment. 図19は、第2実施形態のレーザ溶接装置の例示的な概略構成図である。FIG. 19 is an exemplary schematic configuration diagram of the laser welding device of the second embodiment. 図20は、第2実施形態のレーザ溶接装置に含まれる回折光学素子の原理の概念を示す説明図である。FIG. 20 is an explanatory diagram showing the concept of the principle of the diffractive optical element included in the laser welding device of the second embodiment. 図21は、第3実施形態のレーザ溶接装置の例示的な概略構成図である。FIG. 21 is an exemplary schematic configuration diagram of a laser welding device according to the third embodiment.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 Exemplary embodiments of the present invention are disclosed below. The configurations of the embodiments shown below and the actions and results (effects) brought about by the configurations are examples. The present invention can be realized by configurations other than those disclosed in the following embodiments. Moreover, according to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the configuration.
 以下に示される実施形態は、同様の構成を備えている。よって、各実施形態の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。 The embodiments shown below have similar configurations. Therefore, according to the configuration of each embodiment, similar actions and effects based on the similar configuration can be obtained. Moreover, below, while the same code|symbol is provided to those same structures, the overlapping description may be abbreviate|omitted.
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表している。X方向、Y方向、およびZ方向は、互いに交差するとともに直交している。また、走査方向SDを矢印SDで表す。Z方向は、加工対象Wの表面Wa(加工面、溶接面)の法線方向であり、金属箔12の厚さ方向であり、金属箔12および金属積層体10の積層方向である。 Also, in each figure, the X direction is indicated by an arrow X, the Y direction is indicated by an arrow Y, and the Z direction is indicated by an arrow Z. The X-, Y-, and Z-directions intersect and are orthogonal to each other. Also, the scanning direction SD is represented by an arrow SD. The Z direction is the normal direction of the surface Wa (machined surface, welded surface) of the workpiece W, the thickness direction of the metal foil 12 , and the stacking direction of the metal foil 12 and the metal laminate 10 .
 また、本明細書において、序数は、方向や、工程、レーザ光、スポット、部品、部材、部位等を区別するために便宜上付与されており、優先度や順番を示すものではない。 Also, in this specification, ordinal numbers are given for convenience to distinguish directions, processes, laser beams, spots, parts, members, sites, etc., and do not indicate priority or order.
[第1実施形態]
 図1は、第1実施形態のレーザ溶接装置100の概略構成図である。図1に示されるように、レーザ溶接装置100は、レーザ装置111と、レーザ装置112と、光学ヘッド120と、光ファイバ130と、センサ140と、制御装置150と、を備えている。レーザ溶接装置100は、溶接装置の一例である。
[First embodiment]
FIG. 1 is a schematic configuration diagram of a laser welding device 100 of the first embodiment. As shown in FIG. 1, the laser welding device 100 includes a laser device 111, a laser device 112, an optical head 120, an optical fiber 130, a sensor 140, and a control device 150. Laser welding device 100 is an example of a welding device.
 レーザ装置111,112は、それぞれ、レーザ発振器を有しており、例えば、数kWのパワーのレーザ光を出力できるよう構成されている。レーザ装置111,112は、380[nm]以上かつ1200[nm]以下の波長のレーザ光を出射する。レーザ装置111,112は、内部に、例えば、ファイバレーザや、半導体レーザ(素子)、YAGレーザ、ディスクレーザのような、レーザ光源を有している。レーザ装置111,112は、複数の光源の出力の合計として、数kWのパワーのマルチモードのレーザ光を出力できるよう構成されてもよい。 The laser devices 111 and 112 each have a laser oscillator, and are configured to output laser light with a power of, for example, several kW. The laser devices 111 and 112 emit laser light with a wavelength of 380 [nm] or more and 1200 [nm] or less. The laser devices 111 and 112 internally have laser light sources such as fiber lasers, semiconductor lasers (elements), YAG lasers, and disk lasers. The laser devices 111 and 112 may be configured to output multimode laser light with a power of several kW as the total output of a plurality of light sources.
 レーザ装置111は、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光を出力する。レーザ装置111は、第一レーザ装置の一例である。一例として、レーザ装置111は、レーザ光源として、ファイバレーザかあるいは半導体レーザ(素子)を有する。レーザ装置111が有するレーザ発振器は、光源の一例であり、第一レーザ発振器とも称されうる。 The laser device 111 outputs a first laser beam with a wavelength of 800 [nm] or more and 1200 [nm] or less. Laser device 111 is an example of a first laser device. As an example, the laser device 111 has a fiber laser or a semiconductor laser (element) as a laser light source. The laser oscillator included in the laser device 111 is an example of a light source and can also be called a first laser oscillator.
 他方、レーザ装置112は、550[nm]以下の波長の第二レーザ光を出力する。レーザ装置112は、第二レーザ装置の一例である。一例として、レーザ装置112は、レーザ光源として、半導体レーザ(素子)を有する。レーザ装置112は、400[nm]以上500[nm]以下の波長の第二レーザ光を出力するのが好適である。レーザ装置112が有するレーザ発振器は、光源の一例であり、第二レーザ発振器とも称されうる。 On the other hand, the laser device 112 outputs a second laser beam with a wavelength of 550 [nm] or less. Laser device 112 is an example of a second laser device. As an example, the laser device 112 has a semiconductor laser (element) as a laser light source. The laser device 112 preferably outputs a second laser beam with a wavelength of 400 [nm] or more and 500 [nm] or less. The laser oscillator included in the laser device 112 is an example of a light source and can also be called a second laser oscillator.
 光ファイバ130は、それぞれ、レーザ装置111,112から出力されたレーザ光を光学ヘッド120に導く。 The optical fiber 130 guides the laser beams output from the laser devices 111 and 112 to the optical head 120, respectively.
 光学ヘッド120は、レーザ装置111,112から入力されたレーザ光を、加工対象Wに向かって照射するための光学装置である。光学ヘッド120は、コリメートレンズ121と、集光レンズ122と、ミラー123と、フィルタ124と、を備えている。コリメートレンズ121、集光レンズ122、ミラー123、およびフィルタ124は、光学部品とも称されうる。 The optical head 120 is an optical device for irradiating the object W to be processed with laser light input from the laser devices 111 and 112 . The optical head 120 includes a collimating lens 121, a condensing lens 122, a mirror 123, and a filter . Collimating lens 121, condensing lens 122, mirror 123, and filter 124 may also be referred to as optics.
 光学ヘッド120は、加工対象Wの表面Wa上でレーザ光Lの照射を行いながらレーザ光Lを走査するために、加工対象Wとの相対位置を変更可能に構成されている。光学ヘッド120と加工対象Wとの相対移動は、光学ヘッド120の移動、加工対象Wの移動、または光学ヘッド120および加工対象Wの双方の移動により、実現されうる。 The optical head 120 is configured to be able to change its relative position with respect to the processing target W in order to scan the laser light L while irradiating the surface Wa of the processing target W with the laser light L. Relative movement between the optical head 120 and the workpiece W can be realized by moving the optical head 120, moving the workpiece W, or moving both the optical head 120 and the workpiece W.
 なお、光学ヘッド120は、図示しないガルバノスキャナ等を有することにより、表面Wa上でレーザ光Lを走査可能に構成されてもよい。 Note that the optical head 120 may be configured to be able to scan the surface Wa with the laser light L by having a galvanometer scanner or the like (not shown).
 コリメートレンズ121(121-1,121-2)は、それぞれ、光ファイバ130を介して入力されたレーザ光をコリメートする。コリメートされたレーザ光は、平行光になる。 The collimating lenses 121 (121-1, 121-2) collimate the laser light input via the optical fiber 130, respectively. The collimated laser light becomes parallel light.
 ミラー123は、コリメートレンズ121-1で平行光となった第一レーザ光を反射する。ミラー123で反射した第一レーザ光は、Z方向の反対方向に進み、フィルタ124へ向かう。なお、第一レーザ光が光学ヘッド120においてZ方向の反対方向へ進むように入力される構成にあっては、ミラー123は不要である。 The mirror 123 reflects the first laser light collimated by the collimating lens 121-1. The first laser beam reflected by the mirror 123 travels in the opposite direction of the Z direction and travels toward the filter 124 . Note that the mirror 123 is not necessary in the configuration in which the first laser light is input so as to travel in the direction opposite to the Z direction in the optical head 120 .
 フィルタ124は、第一レーザ光を透過し、かつ第二レーザ光を透過せずに反射するハイパスフィルタである。第一レーザ光は、フィルタ124を透過してZ方向の反対方向へ進み、集光レンズ122へ向かう。他方、フィルタ124は、コリメートレンズ121-2で平行光となった第二レーザ光を反射する。フィルタ124で反射した第二レーザ光は、Z方向の反対方向に進み、集光レンズ122へ向かう。 The filter 124 is a high-pass filter that transmits the first laser beam and reflects the second laser beam without transmitting it. The first laser beam passes through the filter 124 and travels in the opposite direction of the Z direction to the condenser lens 122 . On the other hand, the filter 124 reflects the second laser beam collimated by the collimating lens 121-2. The second laser beam reflected by the filter 124 travels in the opposite direction of the Z direction and travels toward the condenser lens 122 .
 集光レンズ122は、平行光としての第一レーザ光および第二レーザ光を集光し、レーザ光L(出力光)として、加工対象Wへ照射する。すなわち、光学ヘッド120は、レーザ光Lを、Z方向の反対方向に略沿って出力し、加工対象Wへ照射する。 The condensing lens 122 converges the first laser beam and the second laser beam as parallel light, and irradiates the object W to be processed as laser light L (output light). That is, the optical head 120 outputs the laser beam L substantially along the direction opposite to the Z direction, and irradiates the workpiece W with the laser beam.
 加工対象Wは、金属部材11と、複数の金属箔12とが、Z方向に積層された金属積層体10である。金属積層体10は、金属部材11と、複数の金属箔12と、溶接部14と、を有している。溶接部14は、金属部材11と複数の金属箔12とを、機械的かつ電気的に接続している。金属部材11、複数の金属箔12、および溶接部14は、いずれも導体であるとともに、いずれも銅や、銅合金のような銅系材料で作られる。溶接部14は、金属部材11と、複数の金属箔12とを、機械的に接続するとともに、電気的に接続している。なお、金属部材11、複数の金属箔12、および溶接部14は、銅系材料でなくてもよい。 The object W to be processed is a metal laminate 10 in which a metal member 11 and a plurality of metal foils 12 are laminated in the Z direction. The metal laminate 10 has a metal member 11 , a plurality of metal foils 12 and welded portions 14 . The welded portion 14 mechanically and electrically connects the metal member 11 and the plurality of metal foils 12 . The metal member 11, the plurality of metal foils 12, and the welded portion 14 are all conductors, and are all made of a copper-based material such as copper or a copper alloy. The welded portion 14 mechanically and electrically connects the metal member 11 and the plurality of metal foils 12 . Note that the metal member 11, the plurality of metal foils 12, and the welded portion 14 may not be made of a copper-based material.
 センサ140は、表面Wa上の凹凸としての皺を検出することができ、例えば、非接触のカメラや、レーザ変位計等である。 The sensor 140 can detect wrinkles as unevenness on the surface Wa, and is, for example, a non-contact camera, a laser displacement meter, or the like.
 制御装置150は、レーザ光Lを照射する工程におけるセンサ140の検出結果に基づいて、表面Waからの皺の高さが所定値を超えた場合には、例えば、レーザ装置111,112を停止したり、レーザ装置111,112の出力を低下したりするなど、レーザ装置111,112の作動を制御することができる。 Based on the detection result of the sensor 140 in the step of irradiating the laser light L, the control device 150 stops the laser devices 111 and 112, for example, when the height of wrinkles from the surface Wa exceeds a predetermined value. Also, the operation of the laser devices 111 and 112 can be controlled by, for example, reducing the output of the laser devices 111 and 112 .
 図2は、金属積層体10の断面図である。金属部材11は、Z方向と交差して広がった板状の形状を有している。ただし、金属部材11は、板状の部材には限定されない。また、複数の金属箔12は、金属部材11のZ方向の端面11a、すなわちZ方向を向く端面11a上に、Z方向に重ねられている。光学ヘッド120から出力されたレーザ光Lは、複数の金属箔12の、Z方向において金属部材11とは反対側となる表面Wa上に、照射される。Z方向は、第一方向の一例である。端面11aは、第一面の一例である。また、表面Waは、第二面の一例であり、レーザ光Lの照射面とも称されうる。なお、裏面Wbは、金属積層体10の、Z方向において表面Waとは反対側の面である。 FIG. 2 is a cross-sectional view of the metal laminate 10. FIG. The metal member 11 has a plate-like shape extending across the Z direction. However, the metal member 11 is not limited to a plate-like member. In addition, the plurality of metal foils 12 are stacked in the Z direction on the end surface 11a of the metal member 11 in the Z direction, that is, on the end surface 11a facing the Z direction. The laser light L output from the optical head 120 is irradiated onto the surfaces Wa of the plurality of metal foils 12 on the side opposite to the metal member 11 in the Z direction. The Z direction is an example of a first direction. The end surface 11a is an example of a first surface. Further, the surface Wa is an example of the second surface, and can also be referred to as a laser beam L irradiation surface. The back surface Wb is the surface of the metal laminate 10 opposite to the front surface Wa in the Z direction.
 金属積層体10は、レーザ溶接装置100によってレーザ溶接されるに際し、図2に示されるように、Y方向に互いに離間した複数の保持機構210によって積層状態で一体的に保持され、金属箔12の表面Waの法線方向がZ方向と略平行となる姿勢で、セットされる。すなわち、レーザ溶接は、図2のような複数の保持機構210による金属積層体10の保持状態において、実行される。 When the metal laminate 10 is laser-welded by the laser welding apparatus 100, as shown in FIG. It is set in a posture in which the normal direction of the surface Wa is substantially parallel to the Z direction. That is, laser welding is performed in a state in which the metal laminate 10 is held by a plurality of holding mechanisms 210 as shown in FIG.
 保持機構210は、それぞれ、Z方向に互いに離間して配置された二つの挟持部材211a,211bを有している。挟持部材211a,211bは、不図示の押圧機構によって、Z方向に互いに近付く方向に、適宜な押圧力で押圧される。図2の例では、金属積層体10のY方向およびY方向の反対方向の端部が、それぞれ、二つの保持機構210の挟持部材211a,211bによって、Z方向に挟持されている。また、保持機構210は、それぞれ、金属積層体10とともに、当該金属積層体10からZ方向と交差した方向に離間したスペーサ220も、保持している。すなわち、各保持機構210において、挟持部材211a,211bは、金属積層体10と、スペーサ220とを挟持している。スペーサ220は、介在部材の一例である。また、Z方向と交差した方向は、第二方向の一例である。 The holding mechanism 210 has two clamping members 211a and 211b spaced apart from each other in the Z direction. The clamping members 211a and 211b are pressed by a pressing mechanism (not shown) with an appropriate pressing force toward each other in the Z direction. In the example of FIG. 2, the ends of the metal laminate 10 in the Y direction and in the opposite direction to the Y direction are held in the Z direction by holding members 211a and 211b of two holding mechanisms 210, respectively. Each of the holding mechanisms 210 also holds a spacer 220 spaced apart from the metal laminate 10 in a direction crossing the Z direction together with the metal laminate 10 . That is, in each holding mechanism 210, the holding members 211a and 211b hold the metal laminate 10 and the spacer 220 therebetween. Spacer 220 is an example of an intervening member. Also, the direction crossing the Z direction is an example of the second direction.
 発明者らは、このような構成において、金属積層体10のZ方向の厚さT1と、スペーサ220のZ方向の厚さT2との差が大き過ぎると、表面Waにおいて金属箔12の皺が生じ、この皺に起因した溶接不良が生じることを見出した。このような観点から、厚さT1と厚さT2との差の絶対値は、0.5[mm]以下であるのが好ましい。 In such a configuration, the inventors found that if the difference between the Z-direction thickness T1 of the metal laminate 10 and the Z-direction thickness T2 of the spacer 220 is too large, the metal foil 12 wrinkles on the surface Wa. It was found that the wrinkles caused welding defects. From this point of view, the absolute value of the difference between the thickness T1 and the thickness T2 is preferably 0.5 [mm] or less.
 このようなレーザ光Lの照射により、溶接部14は、表面Waから、Z方向の反対方向に向けて延びることになる。Z方向の反対方向は、溶接部14の深さ方向とも称されうる。また、レーザ光Lが表面Wa上でZ方向と交差した方向(走査方向SD,図7等参照)に走査されることにより、溶接部14は、図2と略同様の断面形状で、走査方向SDにも延びることになる。 By such irradiation of the laser beam L, the welded portion 14 extends from the surface Wa in the direction opposite to the Z direction. The direction opposite to the Z-direction may also be referred to as the depth direction of weld 14 . In addition, the laser beam L is scanned on the surface Wa in a direction that intersects the Z direction (scanning direction SD, see FIG. 7, etc.), so that the welded portion 14 has a cross-sectional shape substantially similar to that of FIG. It will also extend to SD.
 図3は、金属積層体10を有した電気製品としての電池1の断面図である。電池1は、金属積層体10の一つの適用例である。この場合、金属積層体10は、導体としての電気部品の一例であり、電気製品に含まれる電気部品の一例である。電気部品は、電気製品の構成部品とも称されうる。 FIG. 3 is a cross-sectional view of a battery 1 as an electrical product having a metal laminate 10. FIG. A battery 1 is one application example of the metal laminate 10 . In this case, the metal laminate 10 is an example of an electrical component as a conductor, and an example of an electrical component included in an electrical product. An electrical component may also be referred to as a component part of an electrical product.
 図3に示される電池1は、例えば、ラミネート型のリチウムイオン電池セルである。電池1は、フィルム状の二つの外装材20を有している。二つの外装材20の間には収容室20aが形成されている。収容室20a内には、複数の扁平な正極材13p、複数の扁平な負極材13m、および複数の扁平なセパレータ15が、収容されている。収容室20a内では、正極材13pと負極材13mとが、セパレータ15が間に介在した状態で、交互に積層されている。複数の正極材13pおよび複数の負極材13mからは、それぞれ金属箔12が延びている。図3の例では、正極材13pのそれぞれから延びた複数の金属箔12は、電池1のY方向の反対側の端部において金属部材11上に重ねられ、当該端部において金属部材11と複数の金属箔12とが溶接された金属積層体10が設けられている。正極側では、金属部材11の一部のみが外装材20の外に露出し、金属部材11の他の一部、複数の金属箔12、および溶接部14は、外装材20の外には露出していない。金属部材11は、電池1の正極端子を構成している。他方、負極材13mのそれぞれから延びた複数の金属箔12は、電池1のY方向の端部において金属部材11上に重ねられて、当該端部において金属部材11と複数の金属箔12とが溶接された金属積層体10が設けられている。負極側でも、金属部材11の一部のみが外装材20の外に露出し、金属部材11の他の一部、複数の金属箔12、および溶接部14は、外装材20の外には露出していない。金属部材11は、電池1の負極端子を構成している。 The battery 1 shown in FIG. 3 is, for example, a laminated lithium ion battery cell. The battery 1 has two film-like exterior materials 20 . A storage chamber 20 a is formed between the two exterior materials 20 . A plurality of flat positive electrode materials 13p, a plurality of flat negative electrode materials 13m, and a plurality of flat separators 15 are accommodated in the storage chamber 20a. In the housing chamber 20a, the positive electrode material 13p and the negative electrode material 13m are alternately stacked with the separator 15 interposed therebetween. A metal foil 12 extends from each of the plurality of positive electrode materials 13p and the plurality of negative electrode materials 13m. In the example of FIG. 3, the plurality of metal foils 12 extending from each of the positive electrode materials 13p are overlapped on the metal member 11 at the opposite end of the battery 1 in the Y direction, and the metal member 11 and the plurality of metal foils 12 A metal laminate 10 welded with a metal foil 12 is provided. On the positive electrode side, only a portion of the metal member 11 is exposed outside the exterior material 20, and the other portion of the metal member 11, the plurality of metal foils 12, and the welded portion 14 are exposed outside the exterior material 20. not. Metal member 11 constitutes a positive electrode terminal of battery 1 . On the other hand, the plurality of metal foils 12 extending from each of the negative electrode materials 13m are overlapped on the metal member 11 at the Y-direction end of the battery 1, and the metal member 11 and the plurality of metal foils 12 are overlapped at the end. A welded metal laminate 10 is provided. Also on the negative electrode side, only a portion of the metal member 11 is exposed outside the exterior material 20, and the other portion of the metal member 11, the plurality of metal foils 12, and the welded portion 14 are exposed outside the exterior material 20. not. Metal member 11 constitutes a negative electrode terminal of battery 1 .
 図3に示されるように、金属積層体10は、それぞれ、二つの外装材20の間に挟まれている。金属積層体10と外装材20との間は、封止材等により気密あるいは液密が確保される。このため、金属積層体10の表面Waおよび裏面Wbは、凹凸ができるだけ小さいか、少ないか、あるいは無い状態であるのが好ましい。この点、本実施形態の溶接方法によれば、後に詳しく述べるように、溶接不良の発生を抑制することができるため、溶接不良による表面Waの凹凸を減らすことができる。よって、本実施形態の溶接方法によって溶接された金属積層体10は、電池1の負極端子に好適である。負極端子は、電気部品の一例である。金属積層体10または金属部材11は、電極タブや、タブとも称されうる。また、金属部材11は、導電部材とも称されうる。 As shown in FIG. 3 , each metal laminate 10 is sandwiched between two exterior materials 20 . Airtightness or liquidtightness is ensured between the metal laminate 10 and the exterior material 20 by a sealing material or the like. For this reason, it is preferable that the surface Wa and the rear surface Wb of the metal laminate 10 have as little, as little, or no unevenness as possible. In this regard, according to the welding method of the present embodiment, as will be described in detail later, it is possible to suppress the occurrence of welding defects, so that unevenness of the surface Wa due to welding defects can be reduced. Therefore, the metal laminate 10 welded by the welding method of this embodiment is suitable for the negative electrode terminal of the battery 1 . A negative terminal is an example of an electrical component. The metal laminate 10 or the metal member 11 can also be called an electrode tab or a tab. Moreover, the metal member 11 can also be called a conductive member.
 図4は、表面Wa上に照射されたレーザ光Lのビーム(スポット)を示す模式図である。レーザ光Lのビームは、レーザ装置111から出力された第一レーザ光のビームB1と、レーザ装置112から出力された第二レーザ光のビームB2と、を含む。ビームB1およびビームB2のそれぞれは、例えば、そのビームの光軸方向と直交する断面の径方向において、たとえばガウシアン形状のパワー分布を有する。ただし、ビームB1およびビームB2のパワー分布はガウシアン形状に限定されない。図4のように各ビームB1,B2を円で表している各図において、当該ビームB1,B2を表す円の直径が、各ビームB1,B2のビーム径である。各ビームB1,B2のビーム径は、そのビームのピークを含み、ピーク強度の1/e以上の強度の領域の径として定義する。なお、図示されないが、円形でないビームの場合は、走査方向SDと垂直方向における、ピーク強度の1/e以上の強度となる領域の長さをビーム径と定義できる。また、表面Waにおけるビーム径は、スポット径と称する。 FIG. 4 is a schematic diagram showing a beam (spot) of the laser light L irradiated onto the surface Wa. The beam of the laser light L includes the first laser light beam B1 output from the laser device 111 and the second laser light beam B2 output from the laser device 112 . Each of the beams B1 and B2 has, for example, a Gaussian-shaped power distribution in the radial direction of the cross section perpendicular to the optical axis direction of the beam. However, the power distributions of beam B1 and beam B2 are not limited to Gaussian shapes. In each drawing, such as FIG. 4, in which the beams B1 and B2 are represented by circles, the diameter of the circle representing the beams B1 and B2 is the beam diameter of each beam B1 and B2. The beam diameter of each of the beams B1 and B2 is defined as the diameter of the region including the peak of the beam and having an intensity of 1/e2 or more of the peak intensity. Although not shown, in the case of a non-circular beam, the beam diameter can be defined as the length of the region in which the intensity is 1/ e2 or more of the peak intensity in the direction perpendicular to the scanning direction SD. A beam diameter on the surface Wa is called a spot diameter.
 図4に示されるように、本実施形態では、一例として、レーザ光Lのビームは、表面Wa上において、第一レーザ光のビームB1と第二レーザ光のビームB2とが重なり、ビームB2がビームB1よりも大きく(広く)、かつ、ビームB2の外縁B2aがビームB1の外縁B1aを取り囲むよう、形成されている。この場合、ビームB2のスポット径D2は、ビームB1のスポット径D1よりも大きい。表面Wa上において、ビームB1は、第一スポットの一例であり、ビームB2は、第二スポットの一例である。 As shown in FIG. 4, in this embodiment, as an example, the beam of the laser light L is such that the beam B1 of the first laser light and the beam B2 of the second laser light overlap on the surface Wa, and the beam B2 is It is formed so that it is larger (broader) than the beam B1, and the outer edge B2a of the beam B2 surrounds the outer edge B1a of the beam B1. In this case, the spot diameter D2 of the beam B2 is larger than the spot diameter D1 of the beam B1. On the surface Wa, the beam B1 is an example of a first spot and the beam B2 is an example of a second spot.
 また、本実施形態では、図4に示されるように、表面Wa上において、レーザ光Lのビーム(スポット)は、中心点Cに対する点対称形状を有しているため、任意の走査方向SDについて、スポットの形状は同じになる。よって、レーザ光Lの表面Wa上での走査のために光学ヘッド120と加工対象Wとを相対的に動かす移動機構を備える場合、当該移動機構は、少なくとも相対的に並進可能な機構を有すればよく、相対的に回転可能な機構は省略できる場合がある。 Further, in the present embodiment, as shown in FIG. 4, on the surface Wa, the beam (spot) of the laser light L has a point-symmetrical shape with respect to the center point C. Therefore, in an arbitrary scanning direction SD , the spot shape will be the same. Therefore, when a moving mechanism for relatively moving the optical head 120 and the workpiece W for scanning the surface Wa of the laser beam L is provided, the moving mechanism should have at least a relatively translatable mechanism. In some cases, the relatively rotatable mechanism can be omitted.
[波長と光の吸収率]
 ここで、金属材料の光の吸収率について説明する。図5は、照射するレーザ光Lの波長に対する各金属材料の光の吸収率を示すグラフである。図5のグラフの横軸は波長であり、縦軸は吸収率である。図5には、アルミニウム(Al)、銅(Cu)、金(Au)、ニッケル(Ni)、銀(Ag)、タンタル(Ta)、およびチタン(Ti)について、波長と吸収率との関係が示されている。
[Wavelength and light absorption rate]
Here, the light absorptivity of the metal material will be described. FIG. 5 is a graph showing the light absorptance of each metal material with respect to the wavelength of the laser light L to be irradiated. The horizontal axis of the graph in FIG. 5 is the wavelength, and the vertical axis is the absorptance. FIG. 5 shows the relationship between wavelength and absorptance for aluminum (Al), copper (Cu), gold (Au), nickel (Ni), silver (Ag), tantalum (Ta), and titanium (Ti). It is shown.
 材料によって特性が異なるものの、図5に示されている各金属に関しては、一般的な赤外線(IR)のレーザ光(第一レーザ光)を用いるよりも、青や緑のレーザ光(第二レーザ光)を用いた方が、エネルギの吸収率がより高いことが理解できよう。この特徴は、銅(Cu)や、金(Au)等においては顕著となる。 Although the characteristics differ depending on the material, for each metal shown in FIG. 5, blue or green laser light (second laser It can be seen that the energy absorption rate is higher when light is used. This feature becomes remarkable in copper (Cu), gold (Au), and the like.
 使用波長に対して吸収率が比較的低い加工対象Wにレーザ光が照射された場合、大部分の光エネルギは反射され、加工対象Wに熱としての影響を及ぼさない。そのため、十分な深さの溶融領域を得るには比較的高いパワーを与える必要がある。その場合、ビーム中心部は急激にエネルギが投入されることで、昇華が生じ、キーホールが形成される。 When the laser beam is irradiated onto the workpiece W, which has a relatively low absorptance with respect to the wavelength used, most of the light energy is reflected and does not affect the workpiece W as heat. Therefore, a relatively high power must be applied to obtain a sufficiently deep melted region. In that case, energy is suddenly applied to the center of the beam, causing sublimation and forming a keyhole.
 他方、使用波長に対して吸収率が比較的高い加工対象Wにレーザ光が照射された場合、投入されるエネルギの多くが加工対象Wに吸収され、熱エネルギへと変換される。すなわち、過度なパワーを与える必要はないため、キーホールの形成を伴わず、熱伝導型の溶融となる。 On the other hand, when laser light is applied to the processing target W, which has a relatively high absorption rate for the wavelength used, most of the input energy is absorbed by the processing target W and converted into heat energy. In other words, since it is not necessary to apply excessive power, the melting is of the thermal conduction type without the formation of keyholes.
 本実施形態では、加工対象Wの第二レーザ光に対する吸収率が、第一レーザ光に対する吸収率よりも高くなるよう、第一レーザ光の波長、第二レーザ光の波長、および加工対象Wの材質が、選択される。この場合、走査方向が図5に示される走査方向SDである場合、レーザ光Lのスポットの走査により、加工対象Wの溶接される部位(以下、被溶接部位と称する)には、まずは、第二レーザ光のビームB2の、図5におけるSDの前方に位置する領域B2fによって、第二レーザ光が照射される。その後、被溶接部位には、第一レーザ光のビームB1が照射され、その後、第二レーザ光のビームB2の、走査方向SDの後方に位置する領域B2bによって、再度第二レーザ光が照射される。 In this embodiment, the wavelength of the first laser beam, the wavelength of the second laser beam, and the wavelength of the workpiece W are adjusted so that the absorptance of the workpiece W for the second laser beam is higher than the absorptivity for the first laser beam. A material is selected. In this case, when the scanning direction is the scanning direction SD shown in FIG. A second laser beam is irradiated by a region B2f located in front of SD in FIG. 5 of the beam B2 of the second laser beam. After that, the portion to be welded is irradiated with the beam B1 of the first laser beam, and then the beam B2 of the second laser beam is irradiated with the second laser beam again by the region B2b located behind in the scanning direction SD. be.
 したがって、被溶接部位には、まずは、領域B2fにおける吸収率が高い第二レーザ光の照射により、熱伝導型の溶融領域が生じる。その後、被溶接部位には、第一レーザ光の照射によって、より深いキーホール型の溶融領域が生じる。この場合、被溶接部位には、予め熱伝導型の溶融領域が形成されているため、当該熱伝導型の溶融領域が形成されない場合に比べて、より低いパワーの第一レーザ光によって所要の深さの溶融領域を形成することができる。さらにその後、被溶接部位には、領域B2bにおける吸収率が高い第二レーザ光の照射により、溶融状態が変化する。このような観点から、第二レーザ光の波長は550[nm]以下とするのが好ましく、500[nm]以下とするのがより好ましい。 Therefore, in the welded part, first, a heat-conducting melted region is generated by irradiation of the second laser beam, which has a high absorptivity in the region B2f. After that, a deeper keyhole-type melted region is generated in the welded portion by the irradiation of the first laser beam. In this case, since the heat-conducting melted region is formed in advance in the welded portion, the required depth is obtained by the lower power first laser beam compared to the case where the heat-conducting melted region is not formed. fused regions can be formed. Furthermore, after that, the welded portion changes its molten state due to the irradiation of the second laser beam, which has a high absorptivity in the region B2b. From this point of view, the wavelength of the second laser light is preferably 550 [nm] or less, more preferably 500 [nm] or less.
 また、発明者らの実験的な研究により、図4のようなビームのレーザ光Lの照射による溶接にあっては、スパッタやブローホールのような溶接欠陥を低減できることが確認されている。これは、ビームB1が到来する前にビームB2の領域B2fによって加工対象Wを予め加熱しておくことにより、ビームB2およびビームB1によって形成される加工対象Wの溶融池がより安定化するためであると推定できる。 In addition, experimental research by the inventors has confirmed that welding defects such as spatter and blowholes can be reduced in welding by irradiation of the beam of laser light L as shown in FIG. This is because the molten pool of the workpiece W formed by the beams B2 and B1 is more stabilized by preheating the workpiece W by the area B2f of the beam B2 before the beam B1 arrives. We can assume that there is.
 さらに、発明者らの実験的な研究により、レーザ光Lの照射によって金属箔12の温度が金属部材11の温度よりも高くなると、複数の金属箔12が熱膨張によって伸び、金属部材11から離れて膨らむように撓んで座屈し、複数の金属箔12と金属部材11との間に隙間が生じ、複数の金属箔12だけが溶接されたり、複数の金属箔12と金属部材11との間に隙間が開いた状態で溶接されたりする場合があることが判明した。さらに、発明者らは、適切な条件の設定によって、このような隙間が生じた状態での溶接を防止できることを見出した。当該好適な条件については、後述する。 Furthermore, according to experimental research by the inventors, when the temperature of the metal foil 12 becomes higher than the temperature of the metal member 11 due to the irradiation of the laser light L, the plurality of metal foils 12 expands due to thermal expansion and separates from the metal member 11. As a result, gaps are formed between the metal foils 12 and the metal members 11 , and only the metal foils 12 are welded or between the metal foils 12 and the metal members 11 . It was found that there are cases where welding is performed with a gap left open. Furthermore, the inventors have found that welding with such a gap can be prevented by setting appropriate conditions. The suitable conditions will be described later.
[溶接方法]
 図6は、レーザ溶接装置100によるレーザ溶接方法の一例を示すフローチャートである。図6に示されるように、まずは、図2に示されるように、金属積層体10が、二つの保持機構210によって保持され、レーザ光Lが表面Waに照射される状態にセットされる(S1)。S1による図2に示される状態で、表面Wa上に、光学ヘッド120からレーザ光が照射される(S2)。表面Wa上の全ての照射箇所への照射が完了した場合(S3でYes)、レーザ光Lの照射が終了され、表面Wa上の全ての照射箇所への照射が完了していない場合(S3でNo)、S2が実行される。すなわち、レーザ光Lの照射が、表面Wa上の複数箇所に対して行われる場合、S2は、複数回実行されることになる。S2の各回において、レーザ光Lは、表面Wa上で定点照射、すなわちスポット照射されてもよいし、表面Wa上で当該表面Waに沿ってZ方向と交差した走査方向SDに走査されてもよい。S2において、レーザ光Lが照射された部分は、溶融し、その後、温度の低下に伴って凝固することにより、金属部材11と複数の金属箔12とが溶接され、金属積層体10が一体化される(固化工程)。固化工程において、金属積層体10の冷却は、自然冷却であってもよいし、冷却機構を用いた強制冷却であってもよい。
[Welding method]
FIG. 6 is a flow chart showing an example of a laser welding method by the laser welding device 100. As shown in FIG. As shown in FIG. 6, first, as shown in FIG. 2, the metal laminate 10 is held by two holding mechanisms 210, and set in a state in which the surface Wa is irradiated with the laser light L (S1 ). In the state shown in FIG. 2 by S1, the surface Wa is irradiated with a laser beam from the optical head 120 (S2). When the irradiation of all the irradiation points on the surface Wa is completed (Yes in S3), the irradiation of the laser beam L is terminated, and when the irradiation of all the irradiation points on the surface Wa is not completed (in S3 No), S2 is executed. That is, when the irradiation of the laser beam L is performed on a plurality of locations on the surface Wa, S2 is executed a plurality of times. In each time of S2, the laser light L may be irradiated at a fixed point on the surface Wa, that is, spot-irradiated, or may be scanned along the surface Wa in a scanning direction SD that intersects the Z direction. . In S2, the portion irradiated with the laser light L melts and then solidifies as the temperature drops, thereby welding the metal member 11 and the plurality of metal foils 12 together, and the metal laminate 10 is integrated. (solidification step). In the solidification process, cooling of the metal laminate 10 may be natural cooling or forced cooling using a cooling mechanism.
[溶接部の断面]
 図7は、好ましい接合状態が得られた場合における溶接部14を含む金属積層体10の断面図(断面の写真画像)である。図7に示されるように、好ましい接合状態においては、溶接部14は、複数の金属箔12を表面WaからZ方向の反対方向に貫通するとともに、金属部材11内へ到達し、当該金属部材11に食い込んでいる。
[Cross section of weld]
FIG. 7 is a cross-sectional view (a photographic image of a cross section) of the metal laminate 10 including the welded portion 14 when a preferable bonding state is obtained. As shown in FIG. 7, in a preferable bonded state, the welded portion 14 penetrates the plurality of metal foils 12 from the surface Wa in the direction opposite to the Z direction, reaches the inside of the metal member 11, and reaches the inside of the metal member 11. is eating into
 発明者らは、実験的な研究を重ねる中で、図8に示されるような好ましくない接合状態が得られる場合があることを見出した。図8は、複数の金属箔12と、金属部材11との間に、隙間Gができた状態である。複数の金属箔12は、レーザ光Lの照射による加熱によって熱膨張する。この場合において、複数の金属箔12のZ方向の反対方向には金属部材11が隣接しているため、複数の金属箔12は、延びに応じて座屈し、隙間Gが生じる。この場合の隙間Gが大きくなると、図8に示されるように、溶接部14は、複数の金属箔12を貫通するものの、金属部材11には到達できず、複数の金属箔12と金属部材11とが機械的かつ電気的に接続されないという、好ましくない接合状態が得られてしまう。 The inventors, through repeated experimental research, found that an unfavorable bonding state as shown in Fig. 8 may be obtained. FIG. 8 shows a state in which a gap G is formed between a plurality of metal foils 12 and the metal member 11. As shown in FIG. The plurality of metal foils 12 are thermally expanded by being heated by the irradiation of the laser light L. As shown in FIG. In this case, since the metal member 11 is adjacent to the plurality of metal foils 12 in the direction opposite to the Z direction, the plurality of metal foils 12 are buckled according to the elongation, and the gap G is generated. If the gap G in this case becomes large, as shown in FIG. An unfavorable bonding state is obtained in which the two are not mechanically and electrically connected to each other.
 発明者らの鋭意研究によれば、金属箔12の表面Waにおいて、皺が生じないか、あるいは皺が生じた場合にあっても当該皺の高さ、すなわち表面Waの一般部分(皺が生じていない平坦部分)からの皺のZ方向の高さが0.2[mm]を超えなければ、図8のような隙間Gが生じないことが判明した。また、発明者らの鋭意研究により、当該皺は、熱膨張によらず、セットした状態でレーザ光Lを照射する前に生じていた場合にも、同様の隙間Gの要因となることが判明した。すなわち、保持機構210は、Z方向の高さが0.2[mm]を超える皺が生じない状態で、金属積層体10を保持することが必要であることが判明した。 According to the intensive research of the inventors, on the surface Wa of the metal foil 12, wrinkles do not occur, or even if wrinkles occur, the height of the wrinkles, that is, the general portion of the surface Wa (wrinkles occur) It has been found that the gap G shown in FIG. 8 does not occur unless the height of the wrinkles in the Z direction from the flat portion where the surface is not flat does not exceed 0.2 [mm]. In addition, the inventors' intensive research has revealed that the wrinkles, regardless of thermal expansion, also cause the same gap G even when they are generated before the laser beam L is applied in the set state. bottom. That is, it was found that the holding mechanism 210 needs to hold the metal laminate 10 in a state in which wrinkles with a height in the Z direction exceeding 0.2 [mm] do not occur.
 また、発明者らは、実験的な研究を重ねる中で、図9に示されるような好ましくない接合状態が得られる場合があることも見出した。図9は、複数の金属箔12のうちの一部であるZ方向の端部近傍に位置する金属箔12が切断された状態である。金属箔12は単独では薄いため、複数の金属箔12がばらばらになりやすい状態では、レーザ光Lの照射強度によっては、図9のような一部の金属箔12が切断されてしまい、当該切断された金属箔12が金属部材11と機械的かつ電気的に接続されないという、好ましくない接合状態が得られてしまう。以下、この現象を部分切断Sと称する。 In addition, the inventors have also discovered through repeated experimental research that an unfavorable bonding state as shown in FIG. 9 may be obtained. FIG. 9 shows a state in which a part of the metal foils 12 located near the ends in the Z direction is cut. Since the metal foil 12 is thin by itself, in a state in which the plurality of metal foils 12 are likely to come apart, depending on the irradiation intensity of the laser beam L, some of the metal foils 12 may be cut as shown in FIG. An unfavorable bonding state is obtained in which the metal foil 12 is not mechanically and electrically connected to the metal member 11 . Hereinafter, this phenomenon will be referred to as partial cutting S.
[溶接条件]
 発明者らは鋭意研究を重ねた結果、以下の(1)~(4)の条件を満たすようにレーザ光Lの照射を行うことにより、図8,9に示されるような好ましくない接合状態が得られず、図7に示されるような好ましい接合状態が得られることを見出した。
[Welding conditions]
As a result of extensive studies by the inventors, it was found that by irradiating the laser beam L so as to satisfy the following conditions (1) to (4), the unfavorable bonding state shown in FIGS. However, it was found that a preferable bonded state as shown in FIG. 7 was obtained.
 (1)レーザ光Lの照射時間を所定時間以下とするか、あるいはレーザ光Lの走査長さls(図12参照)を所定長さ以下とする。
 これにより、隙間Gや部分切断Sを抑制できることが判明した。これは、照射エネルギの局所的な増大を抑制することにより、隙間Gや部分切断Sを抑制できるからであると考えられる。一例として、金属積層体10が、厚さが8[μm]の50枚の銅系材料で作られた金属箔12と、厚さが1[mm]の銅系材料で作られた金属部材11に対して、保持機構210のZ方向と交差した方向における距離が3[mm]となるように固定された状態で、波長が1070[nm]であり出力パワーが800[W]である第一レーザ光、および波長が450[nm]であり出力パワーが500[W]である第二レーザ光を含むレーザ光Lを、表面Wa上に照射した場合(以下、条件Aとする)、レーザ光Lの照射時間は、0.1[s]以下であるのが好ましいことが判明した。また、このような観点によれば、レーザ光Lの照射は、例えば、表面Wa上の複数箇所に対して実行したり、表面Wa上の互いに離間した位置に対して実行したり、複数回にわたって実行したりするのが好ましいと言える。この場合、複数箇所および複数回の照射の間に、適宜な時間間隔を設けてもよい。ただし、発明者らが実験的な研究を重ねたところ、この条件(1)は、特定のスペックに応じて定まる条件であって、各溶接部位の照射時間、および走査長さは、それぞれ、金属積層体10または複数の金属箔12の体積や表面Waの面積が大きいほど、より長く設定可能であることが判明した。
(1) The irradiation time of the laser light L is set to a predetermined time or less, or the scanning length ls (see FIG. 12) of the laser light L is set to a predetermined length or less.
As a result, it has been found that the gap G and the partial cut S can be suppressed. It is considered that this is because gaps G and partial cuts S can be suppressed by suppressing local increases in irradiation energy. As an example, the metal laminate 10 includes 50 metal foils 12 made of a copper-based material having a thickness of 8 [μm] and metal members 11 made of a copper-based material having a thickness of 1 [mm]. , the holding mechanism 210 is fixed so that the distance in the direction intersecting the Z direction is 3 [mm], and the wavelength is 1070 [nm] and the output power is 800 [W]. When laser light L including a laser light and a second laser light having a wavelength of 450 [nm] and an output power of 500 [W] is irradiated onto the surface Wa (hereinafter referred to as condition A), the laser light It was found that the irradiation time of L is preferably 0.1 [s] or less. Further, according to such a point of view, the irradiation of the laser beam L may be performed, for example, at a plurality of locations on the surface Wa, at positions separated from each other on the surface Wa, or at a plurality of times. It can be said that it is preferable to execute. In this case, an appropriate time interval may be provided between multiple locations and multiple times of irradiation. However, as a result of repeated experimental research by the inventors, this condition (1) is a condition determined according to specific specifications, and the irradiation time and scanning length of each welding portion are different from each other. It was found that the larger the volume of the laminate 10 or the plurality of metal foils 12 and the larger the area of the surface Wa, the longer the length can be set.
 (2)レーザ光Lの複数回の照射を行う場合、連続した2回の照射において、先の照射の終点の位置と、次の照射の始点の位置と、を互いに離す。
 これにより、隙間Gや部分切断Sを抑制できることが判明した。これも、(1)と同様に、照射エネルギの局所的な増大を抑制することにより、隙間Gや部分切断Sを抑制できるからであると考えられる。一例として、上記条件Aの場合、先に行われる照射の終点の位置と、次に行われる照射の始点位置とが、Z方向の反対方向の視線で、Z方向と交差した方向において、2[mm]以上離間しているのが好ましいことが判明した。ただし、発明者らが実験的な研究を重ねたところ、この条件(2)は、特定のスペックに応じて定まる条件であって、前回の終点と今回の始点との間の間隔の長さは、金属積層体10または複数の金属箔12の体積や表面Waの面積が大きいほど、より短く設定可能であることが判明した。
(2) When performing multiple irradiations of the laser light L, the position of the end point of the previous irradiation and the position of the start point of the next irradiation are separated from each other in two successive irradiations.
As a result, it has been found that the gap G and the partial cut S can be suppressed. This is also considered to be because the gap G and the partial cutting S can be suppressed by suppressing the local increase in the irradiation energy, as in (1). As an example, in the case of the above condition A, the position of the end point of the irradiation performed first and the position of the start point of the irradiation performed next are 2 [ mm] or more has been found to be preferable. However, as a result of repeated experimental research by the inventors, this condition (2) is a condition determined according to specific specifications, and the length of the interval between the previous end point and the current start point is , the larger the volume of the metal laminate 10 or the plurality of metal foils 12 and the larger the area of the surface Wa, the shorter it can be set.
 (3)固定位置から照射部位までの距離d1,d2(図10,12参照)を所定長さ以下とする。
 これにより、部分切断Sを抑制できることが判明した。これは、Z方向の反対方向の視線での当該距離d1,d2が長いほど、金属箔12の押さえが弱くなって当該金属箔12が単独で動きやすくなり、溶接中に溶融池から離間し易くなるからであると考えられる。ここで、固定位置は、金属積層体10の保持機構210によって保持された端部10e(図2,10参照)、または、複数回の照射が行われる場合、従前の照射において複数の金属箔12と金属部材11とが溶接され固定された箇所(14(P1)等、図12参照)である。また、距離d1は、端部10eと今回の照射中心までのZ方向と交差した方向における距離であり、距離d2は、従前の固定箇所の照射中心と今回の照射中心までのZ方向と交差した方向における距離である。一例として、上記条件Aの場合、当該距離d1,d2は、3[mm]以下であるのが好ましいことが判明した。なお、照射部位は、照射領域や、照射範囲、照射位置とも称されうる。
(3) Make the distances d1 and d2 (see FIGS. 10 and 12) from the fixed position to the irradiation site less than or equal to a predetermined length.
It has been found that this can suppress the partial cutting S. This is because the longer the distances d1 and d2 in the line of sight in the direction opposite to the Z direction, the weaker the holding force on the metal foil 12 becomes and the easier it is for the metal foil 12 to move independently, and the easier it is for the metal foil 12 to move away from the molten pool during welding. This is considered to be because Here, the fixed position is the end portion 10e (see FIGS. 2 and 10) held by the holding mechanism 210 of the metal laminate 10, or the plurality of metal foils 12 in the previous irradiation when multiple irradiations are performed. and the metal member 11 are welded and fixed (14 (P1), etc., see FIG. 12). In addition, the distance d1 is the distance between the edge 10e and the current irradiation center in the direction intersecting the Z direction, and the distance d2 is the distance between the irradiation center of the previous fixed location and the current irradiation center intersecting the Z direction. is the distance in the direction. As an example, in the case of condition A, it has been found that the distances d1 and d2 are preferably 3 [mm] or less. Note that the irradiation site may also be referred to as an irradiation area, an irradiation range, or an irradiation position.
 (4)複数の保持機構210のZ方向と交差した方向における距離Dw(図2,10参照)を所定長さ以上とする。
 これにより、隙間Gを抑制できることが判明した。これは、Z方向の反対方向の視線での当該距離Dwが短いほど、複数の金属箔12の延びに伴うZ方向への撓み量が大きくなるからであると考えられる。一例として、上記条件Aの場合、当該距離Dwは、2[mm]以上であるのが好ましいことが判明した。
(4) The distance Dw (see FIGS. 2 and 10) of the plurality of holding mechanisms 210 in the direction crossing the Z direction is set to a predetermined length or longer.
It has been found that the gap G can be suppressed by this. It is considered that this is because the shorter the distance Dw in the line of sight opposite to the Z direction, the greater the amount of bending in the Z direction due to the extension of the plurality of metal foils 12 . As an example, in the case of condition A, it was found that the distance Dw is preferably 2 [mm] or more.
[溶接部位および溶接手順の具体例]
 図10~18は、上記条件(1)~(4)を満たす溶接部位(照射部位)および溶接手順(照射手順)の例を示す金属積層体10の平面図である。図10~18の各例において、金属積層体10は、図2に示されるように、Y方向に離間した複数(本実施形態では二つ)の保持機構210によって挟持されている。保持機構210のそれぞれにおいて、二つの挟持部材211a,211bは、Z方向に並んでいる。よって、表面Waにおける金属積層体10の端部10eと、裏面Wbにおける金属積層体10の端部10eとは、Z方向に並んでいる。また、図10~18に示されるように、Y方向に離間した端部10eは、X方向に延びており、互いに略平行である。なお、図2,10~18の挟持状態を解放し、保持機構210を取り外した後において、金属積層体10の表面Waおよび裏面Wbには、端部10eに対応して、挟持部材211a,211bによって挟持されたことによって生じた押圧痕(不図示)となる段差あるいは凹溝が生じる。押圧痕は、X方向に延びた線状に形成される。押圧痕は、挟持痕とも称されうる。
[Specific examples of welding parts and welding procedures]
10 to 18 are plan views of the metal laminate 10 showing examples of welding sites (irradiation sites) and welding procedures (irradiation procedures) that satisfy the above conditions (1) to (4). 10 to 18, the metal laminate 10 is sandwiched by a plurality of (two in this embodiment) holding mechanisms 210 spaced apart in the Y direction, as shown in FIG. In each holding mechanism 210, two holding members 211a and 211b are arranged in the Z direction. Therefore, the end 10e of the metal laminate 10 on the front surface Wa and the end 10e of the metal laminate 10 on the back surface Wb are aligned in the Z direction. Also, as shown in FIGS. 10 to 18, the ends 10e spaced apart in the Y direction extend in the X direction and are substantially parallel to each other. 2 and 10 to 18 and after removing the holding mechanism 210, clamping members 211a and 211b are provided on the front surface Wa and the back surface Wb of the metal laminate 10 corresponding to the end portion 10e. A level difference or a concave groove is generated as a pressing mark (not shown) caused by being sandwiched by the two. The press trace is formed in a linear shape extending in the X direction. Press marks may also be referred to as pinch marks.
 図10の例では、金属積層体10には、レーザ光Lのスポットが照射部位P1,P2,P3(溶接部位)の順に照射されることにより、複数箇所(3箇所)の溶接部14が形成される。照射部位P1~P3は、いずれも、互いにY方向に離間した二つの端部10e間の、Y方向の略中央部において、X方向に所定長さで延びている。図中の破線の矢印は、表面Wa上でのレーザ光Lのスポットの走査方向を示している。ここで、照射部位P2は、照射部位P1に対してX方向の反対方向に位置し、照射部位P3は、照射部位P2に対してX方向の反対方向に位置している。また、各照射部位P1~P3において、スポットは、いずれもX方向に走査されている。よって、照射部位P2の始点p2sは、その前の照射部位P1の終点p1eから離間し、照射部位P3の始点p3sは、その前の照射部位P2の終点p2eから離間している。このように、各照射部位P1~P3において、今回の照射の始点を前回の照射の終点と離間することにより、レーザ光Lによって金属積層体10に与えられるエネルギが局所的に大きくなるのを抑制し、複数の金属箔12の延びひいては当該延びに伴うZ方向の屈曲(座屈)が局所的に大きくなって、金属箔12の部分切断Sが生じるのを抑制している。なお、前回の照射の始点(例えば、始点p1s)と、今回の照射の終点(例えば、終点p2e)とは、図10の例では互いに重なっているが、これらは必ずしも重ならなくてよい。この場合、照射部位P1に対する照射は、第一走査の一例であり、照射部位P2に対する照射は、第二走査の一例である。 In the example of FIG. 10, the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P1, P2, and P3 (welding sites), thereby forming a plurality of (three) welds 14. be done. Each of the irradiation sites P1 to P3 extends for a predetermined length in the X direction at a substantially central portion in the Y direction between two ends 10e separated from each other in the Y direction. The dashed arrow in the figure indicates the scanning direction of the spot of the laser light L on the surface Wa. Here, the irradiation site P2 is located in the opposite direction in the X direction to the irradiation site P1, and the irradiation site P3 is located in the opposite direction in the X direction to the irradiation site P2. Also, the spots are scanned in the X direction at each of the irradiation sites P1 to P3. Therefore, the start point p2s of the irradiation site P2 is separated from the end point p1e of the previous irradiation site P1, and the start point p3s of the irradiation site P3 is separated from the end point p2e of the previous irradiation site P2. In this manner, by separating the start point of the current irradiation from the end point of the previous irradiation in each of the irradiation sites P1 to P3, the energy given to the metal laminate 10 by the laser light L is suppressed from locally increasing. However, the extension of the plurality of metal foils 12 and the bending (buckling) in the Z direction due to the extension are locally increased, thereby suppressing the occurrence of partial cutting S of the metal foils 12 . Note that although the previous irradiation start point (for example, start point p1s) and the current irradiation end point (for example, end point p2e) overlap each other in the example of FIG. 10, they do not necessarily overlap. In this case, the irradiation on the irradiation site P1 is an example of the first scan, and the irradiation on the irradiation site P2 is an example of the second scan.
 図11の例でも、図10の例と同様に、金属積層体10には、レーザ光Lのスポットが照射部位P1,P2,P3の順に照射されることにより、複数箇所(3箇所)の溶接部14が形成される。ただし、図11の例では、照射部位P3における走査方向、ならびに始点p3sおよび終点p3eが、図10の例とは逆になっており、始点p2sと始点p3sとが重なっている。しかしながら、この場合も、各照射部位P1~P3において、今回の照射の始点を前回の照射の終点と離間することができ、これにより図10の例と同様の効果が得られる。この場合、照射部位P2に対する照射は、第一走査の一例であり、照射部位P3に対する照射は、第二走査の一例である。 In the example of FIG. 11, similarly to the example of FIG. 10, the metal laminate 10 is irradiated with the spot of the laser beam L in order of the irradiation sites P1, P2, and P3, thereby welding at a plurality of sites (three sites). A portion 14 is formed. However, in the example of FIG. 11, the scanning direction, start point p3s and end point p3e at the irradiation site P3 are reversed from the example of FIG. 10, and the start point p2s and the start point p3s overlap. However, in this case as well, the start point of the current irradiation can be separated from the end point of the previous irradiation in each of the irradiation sites P1 to P3, thereby obtaining the same effect as in the example of FIG. In this case, the irradiation on the irradiation site P2 is an example of the first scan, and the irradiation on the irradiation site P3 is an example of the second scan.
 図12の例では、金属積層体10には、レーザ光Lのスポットが照射部位P1,P2,P3,P4,P5の順に照射されることにより、複数箇所(5箇所)の溶接部14が形成される。なお、照射部位P1~P4において、レーザ光Lのスポットは、走査されず、定点照射されている。図12の例では、図10,11に比べて、二つの保持機構210間の距離Dwが長い分、複数の金属箔12の延びに伴うZ方向への撓み量(座屈量)を小さくすることができ、ひいては隙間Gが生じ難くなる。しかしながら、図10,11の例のように、端部10e間のY方向の中央となる位置に照射すると、固定位置から照射部位までの距離が長くなってしまい、部分切断Sが生じ易くなる。そこで、図12の例では、まず、端部10eからの距離d1がより小さい照射部位P1~P4においてレーザ光Lを照射し、それら照射部位P1~P4が固化し溶接部14が形成され、当該照射部位P1~P4が固定位置となった状態で、当該照射部位P1~P4からの距離d2の照射部位P5にレーザ光Lを照射している。このような照射部位および照射手順の設定により、表面Waのより広い範囲について、固定位置から各照射部位までの距離が長くなるのを抑制し、皺による部分切断Sを抑制しながら、溶接を行うことができる。また、図12に示されるように、照射部位P5の走査長さlsは、図10,11の照射部位P1~P4の走査長さよりも長い。このように、保持機構210間の距離Dwが長くなり、表面Waの面積が大きくなるほど、すなわち金属積層体10および複数の金属箔12の体積が大きくなるほど、隙間Gや部分切断Sの発生を抑制しながら、走査長さをより長く設定することができる。これは、条件(3),(4)を満たす範囲であれば、各照射部位における照射時間や、走査長さを、より長く設定できることを意味する。この場合、照射部位P1~P4に対する照射は、第一照射の一例であり、照射部位P5に対する照射は、第二照射の一例である。 In the example of FIG. 12, the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P1, P2, P3, P4, and P5, thereby forming a plurality of (five) welds 14. be done. Note that the spots of the laser light L are not scanned at the irradiation sites P1 to P4, but are fixed point irradiation. In the example of FIG. 12, compared to FIGS. 10 and 11, the distance Dw between the two holding mechanisms 210 is longer, so the bending amount (buckling amount) in the Z direction due to the extension of the plurality of metal foils 12 is reduced. This makes it difficult for the gap G to occur. However, as in the examples of FIGS. 10 and 11, if the central position in the Y direction between the end portions 10e is irradiated, the distance from the fixed position to the irradiation site becomes long, and partial cutting S is likely to occur. Therefore, in the example of FIG. 12, first, the laser beam L is irradiated at the irradiation sites P1 to P4 having a smaller distance d1 from the end 10e, and the irradiation sites P1 to P4 are solidified to form the welded portion 14. With the irradiation sites P1 to P4 at fixed positions, the laser light L is irradiated onto the irradiation site P5 at a distance d2 from the irradiation sites P1 to P4. By setting the irradiation site and the irradiation procedure in this way, welding is performed while suppressing the distance from the fixed position to each irradiation site from becoming long and suppressing partial cutting S due to wrinkles for a wider range of the surface Wa. be able to. Also, as shown in FIG. 12, the scanning length ls of the irradiation site P5 is longer than the scanning lengths of the irradiation sites P1 to P4 in FIGS. Thus, the longer the distance Dw between the holding mechanisms 210 and the larger the area of the surface Wa, that is, the larger the volume of the metal laminate 10 and the plurality of metal foils 12, the more the occurrence of the gap G and the partial cut S is suppressed. However, the scan length can be set longer. This means that the irradiation time and scanning length at each irradiation site can be set longer as long as the conditions (3) and (4) are satisfied. In this case, the irradiation of the irradiation sites P1 to P4 is an example of the first irradiation, and the irradiation of the irradiation site P5 is an example of the second irradiation.
 図13の例では、金属積層体10には、レーザ光Lのスポットが照射部位P1,P2,P3,P4,P5,P6,P7の順に照射されることにより、複数箇所(7箇所)の溶接部14が形成される。図13の例では、図12の例に対して、照射部位の数が増えている。図12,13に示されるように、上記(1)~(4)の条件を満たす範囲で、照射部位の数や配置は、任意に設定することができる。この場合、照射部位P1~P6に対する照射は、第一照射の一例であり、照射部位P7に対する照射は、第二照射の一例である。 In the example of FIG. 13, the metal laminate 10 is irradiated with spots of the laser beam L in the order of the irradiation sites P1, P2, P3, P4, P5, P6, and P7, thereby welding at a plurality of sites (seven sites). A portion 14 is formed. In the example of FIG. 13, the number of irradiated regions is increased compared to the example of FIG. As shown in FIGS. 12 and 13, the number and arrangement of irradiation sites can be set arbitrarily within the range satisfying the above conditions (1) to (4). In this case, the irradiation of the irradiation sites P1 to P6 is an example of the first irradiation, and the irradiation of the irradiation site P7 is an example of the second irradiation.
 図14の例では、金属積層体10には、レーザ光Lのスポットが照射部位P1,P2,P3,P4,P5の順に照射されることにより、複数箇所(5箇所)の溶接部14が形成される。図14の例では、各照射部位P1~P5において、レーザ光Lのスポットは、走査されている。図12,14に示されるように、上記(1)~(4)の条件を満たす範囲で、各照射部位の走査長さは、任意に設定することができる。 In the example of FIG. 14, the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P1, P2, P3, P4, and P5, thereby forming a plurality of (five) welded portions 14. be done. In the example of FIG. 14, the spot of the laser light L is scanned at each of the irradiation sites P1 to P5. As shown in FIGS. 12 and 14, the scanning length of each irradiated portion can be arbitrarily set within the range satisfying the above conditions (1) to (4).
 図15の例では、金属積層体10には、レーザ光Lのスポットが照射部位P1,P2,P3,P4,P5の順に照射されることにより、複数箇所(5箇所)の溶接部14が形成される。図15の例では、各照射部位P1~P5において、走査方向は、Y方向に沿っている。このように、上記(1)~(4)の条件を満たす範囲で、各照射部位の走査方向は、任意に設定することができる。なお、複数の照射部位の順番や、走査方向は、上記(1)~(4)の条件を満たす範囲で任意に設定することができ、図15の例には限定されない。 In the example of FIG. 15, the metal laminate 10 is irradiated with spots of the laser beam L in the order of the irradiation sites P1, P2, P3, P4, and P5, thereby forming a plurality of (five) welds 14. be done. In the example of FIG. 15, the scanning direction is along the Y direction at each of the irradiation sites P1 to P5. In this manner, the scanning direction of each irradiation site can be arbitrarily set within the range satisfying the above conditions (1) to (4). Note that the order of a plurality of irradiation sites and the scanning direction can be arbitrarily set within the range satisfying the above conditions (1) to (4), and are not limited to the example in FIG.
 図16,18の例では、金属積層体10には、レーザ光Lのスポットが照射部位P11~P13,P21~P23,P31~P33の順に照射されることにより、複数箇所の溶接部14が形成される。また、図17の例では、レーザ光Lのスポットがさらに、照射部位P41~P43,P51~P53にも照射されている。図16~18の例のように、隣接した複数の照射部位は、それぞれ少しずつずらして設定し、互いに部分的に重なるように配置してもよい。これにより、複数の溶接部14が集まった塊状の溶接部が形成される。 In the examples of FIGS. 16 and 18, the metal laminate 10 is irradiated with spots of the laser beam L in the order of irradiation sites P11 to P13, P21 to P23, and P31 to P33, thereby forming welded portions 14 at a plurality of locations. be done. In addition, in the example of FIG. 17, the spot of the laser light L is also irradiated to the irradiation sites P41 to P43 and P51 to P53. As in the examples of FIGS. 16 to 18, a plurality of adjacent irradiation sites may be set so as to be slightly shifted and arranged so as to partially overlap each other. As a result, a massive welded portion is formed by gathering a plurality of welded portions 14 .
 以上、説明したように、本実施形態のレーザ溶接装置100による溶接方法にあっては、例えば、金属積層体10の表面Waにレーザ光Lを照射する工程において、当該表面Waに、Z方向に突出した所定高さを超える皺が生じない状態でレーザ光Lの照射を行う。このような構成および方法によれば、例えば、皺に起因して生じる隙間Gや部分切断Sを抑制することができ、より高品質な金属積層体10を形成することができる。 As described above, in the welding method using the laser welding apparatus 100 of the present embodiment, for example, in the step of irradiating the surface Wa of the metal laminate 10 with the laser beam L, the surface Wa is irradiated in the Z direction. The laser light L is irradiated in a state in which wrinkles exceeding a predetermined height are not generated. According to such a configuration and method, for example, gaps G and partial cuts S caused by wrinkles can be suppressed, and a higher quality metal laminate 10 can be formed.
[第2実施形態]
 図19は、第2実施形態のレーザ溶接装置100Aの概略構成図である。本実施形態では、光学ヘッド120は、コリメートレンズ121-1とミラー123との間に、DOE125を有している。この点を除き、レーザ溶接装置100Aは、第1実施形態のレーザ溶接装置100と同様の構成を備えている。
[Second embodiment]
FIG. 19 is a schematic configuration diagram of a laser welding device 100A of the second embodiment. In this embodiment, the optical head 120 has a DOE 125 between the collimating lens 121-1 and the mirror 123. FIG. Except for this point, the laser welding device 100A has the same configuration as the laser welding device 100 of the first embodiment.
 DOE125は、第一レーザ光のビームB1の形状(以下、ビーム形状と称する)を成形する。図20に概念的に例示されるよう、DOE125は、例えば、周期の異なる複数の回折格子125aが重ね合わせられた構成を備えている。DOE125は、平行光を、各回折格子125aの影響を受けた方向に曲げたり、重ね合わせたりすることにより、ビーム形状を成形することができる。DOE125は、ビームシェイパとも称されうる。 The DOE 125 shapes the shape of the beam B1 of the first laser light (hereinafter referred to as beam shape). As conceptually illustrated in FIG. 20, the DOE 125 has, for example, a structure in which a plurality of diffraction gratings 125a with different periods are superimposed. The DOE 125 can shape the beam shape by bending or superimposing the parallel beams in the direction affected by each diffraction grating 125a. DOE 125 may also be referred to as a beam shaper.
 なお、光学ヘッド120は、コリメートレンズ121-2の後段に設けられ第二レーザ光のビーム形状を調整するビームシェイパや、フィルタ124の後段に設けられ第一レーザ光および第二レーザ光のビーム形状を調整するビームシェイパ等を有してもよい。ビームシェイパによってレーザ光Lのビーム形状を適宜に整えることにより、溶接においてスパッタやブローホールの発生をより一層抑制することができる。 The optical head 120 includes a beam shaper provided after the collimating lens 121-2 for adjusting the beam shape of the second laser beam, and a filter 124 provided after the beam shape of the first laser beam and the second laser beam. It may also have a beam shaper or the like that adjusts. By appropriately adjusting the beam shape of the laser light L using the beam shaper, it is possible to further suppress the occurrence of spatters and blowholes during welding.
[第3実施形態]
 図21は、第3実施形態のレーザ溶接装置100Bの概略構成図である。本実施形態では、光学ヘッド120は、フィルタ124と集光レンズ122との間に、ガルバノスキャナ126を有している。この点を除き、レーザ溶接装置100Bは、第1実施形態のレーザ溶接装置100と同様の構成を備えている。
[Third Embodiment]
FIG. 21 is a schematic configuration diagram of a laser welding device 100B of the third embodiment. In this embodiment, the optical head 120 has a galvanometer scanner 126 between the filter 124 and the condenser lens 122 . Except for this point, the laser welding device 100B has the same configuration as the laser welding device 100 of the first embodiment.
 ガルバノスキャナ126は、2枚のミラー126a,126bを有しており、当該2枚のミラー126a,126bの角度を制御することで、光学ヘッド120を移動させることなく、レーザ光Lの照射部位を移動させ、レーザ光Lを走査することができる装置である。ミラー126a,126bの角度は、それぞれ、例えば不図示のモータによって変更される。このような構成によれば、光学ヘッド120と加工対象Wとを相対的に移動する機構が不要になり、例えば、装置構成を小型化できるという利点が得られる。 The galvanometer scanner 126 has two mirrors 126a and 126b, and by controlling the angles of the two mirrors 126a and 126b, the irradiated portion of the laser beam L can be detected without moving the optical head 120. It is a device that can be moved and scanned with a laser beam L. FIG. The angles of the mirrors 126a and 126b are changed by, for example, motors (not shown). Such a configuration eliminates the need for a mechanism for moving the optical head 120 and the workpiece W relative to each other, and provides an advantage that, for example, the device configuration can be made smaller.
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。 Although the embodiment of the present invention has been illustrated above, the above embodiment is an example and is not intended to limit the scope of the invention. The above embodiments can be implemented in various other forms, and various omissions, replacements, combinations, and modifications can be made without departing from the scope of the invention. In addition, specifications such as each configuration and shape (structure, type, direction, model, size, length, width, thickness, height, number, arrangement, position, material, etc.) may be changed as appropriate. can be implemented.
 例えば、本発明は、上記実施形態とは異なる構成のリチウムイオン電池セルにも適用可能であるし、リチウムイオン電池セル以外の電池にも適用可能である。 For example, the present invention can be applied to lithium-ion battery cells with configurations different from those of the above embodiments, and can also be applied to batteries other than lithium-ion battery cells.
 また、レーザ光を走査する際に、公知のウォブリングやウィービングや出力変調等により走査を行い、溶融池の表面積を調節するようにしてもよい。 Further, when scanning the laser beam, the surface area of the molten pool may be adjusted by performing scanning by known wobbling, weaving, output modulation, or the like.
 また、金属箔や金属部材の表面には、他の物質等による表層が形成されてもよい。 In addition, a surface layer made of other substances may be formed on the surface of the metal foil or metal member.
 本発明は、溶接方法、溶接装置、および金属積層体に利用することができる。 The present invention can be used for welding methods, welding equipment, and metal laminates.
1…電池
10…金属積層体
10e…端部
11…金属部材
11a…端面(第一面)
12…金属箔
13p…正極材
13m…負極材
14…溶接部
15…セパレータ
20…外装材
20a…収容室
100,100A,100B…レーザ溶接装置(溶接装置)
111…レーザ装置(光源)
112…レーザ装置(光源)
120…光学ヘッド
121,121-1,121-2…コリメートレンズ
122…集光レンズ
123…ミラー
124…フィルタ
125…DOE(回折光学素子)
125a…回折格子
126…ガルバノスキャナ
126a,126b…ミラー
130…光ファイバ
140…センサ
150…制御装置
210…保持機構
211a,211b…挟持部材
220…スペーサ(介在部材)
B1…ビーム(第一スポット)
B1a…外縁
B2…ビーム(第二スポット)
B2a…外縁
B2b…領域
B2f…領域
C…中心点
D1…スポット径(外径)
D2…スポット径(外径)
d1,d2…距離
Dw…距離
G…隙間
L…レーザ光
p1e,p2e,p3e…終点
p1s,p2s,p3s…始点
P1~P7,P11~P13,P21~P23,P31~P33,P41~P43,P51~P53…照射部位
S…部分切断
SD…走査方向
T1,T2…厚さ
W…加工対象
Wa…表面(第二面)
Wb…裏面
X…方向
Y…方向
Z…方向(第一方向)
DESCRIPTION OF SYMBOLS 1... Battery 10... Metal laminate 10e... End part 11... Metal member 11a... End surface (first surface)
DESCRIPTION OF SYMBOLS 12... Metal foil 13p... Positive electrode material 13m... Negative electrode material 14... Welding part 15... Separator 20... Exterior material 20a... Storage chambers 100, 100A, 100B... Laser welding apparatus (welding apparatus)
111... Laser device (light source)
112... Laser device (light source)
120... Optical head 121, 121-1, 121-2... Collimating lens 122... Collecting lens 123... Mirror 124... Filter 125... DOE (diffractive optical element)
DESCRIPTION OF SYMBOLS 125a... Diffraction grating 126... Galvano scanner 126a, 126b... Mirror 130... Optical fiber 140... Sensor 150... Control device 210... Holding mechanism 211a, 211b... Clamping member 220... Spacer (intervening member)
B1... Beam (first spot)
B1a... Outer edge B2... Beam (second spot)
B2a... outer edge B2b... area B2f... area C... center point D1... spot diameter (outer diameter)
D2...Spot diameter (outer diameter)
d1, d2 --- distance Dw --- distance G --- gap L --- laser light p1e, p2e, p3e --- end point p1s, p2s, p3s --- start point P1-P7, P11-P13, P21-P23, P31-P33, P41-P43, P51 ~ P53 ... Irradiation part S ... Partial cutting SD ... Scanning direction T1, T2 ... Thickness W ... Processing object Wa ... Surface (second surface)
Wb Back surface X Direction Y Direction Z Direction (first direction)

Claims (26)

  1.  第一方向を向く第一面を有した金属部材と、複数の金属箔とを、当該複数の金属箔が前記第一面上に前記第一方向に重ねられた状態で保持する工程と、
     前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面上にレーザ光を照射する工程と、
     を備え、前記金属部材と前記複数の金属箔とを溶接する溶接方法であって、
     前記レーザ光を照射する工程において、前記金属箔の前記第一方向に突出した所定高さを超える皺が生じない状態でレーザ光の照射を行う、溶接方法。
    holding a metal member having a first surface facing a first direction and a plurality of metal foils in a state in which the plurality of metal foils are stacked on the first surface in the first direction;
    a step of irradiating a second surface of the plurality of metal foils opposite to the metal member in the first direction with a laser beam;
    A welding method for welding the metal member and the plurality of metal foils,
    The welding method, wherein in the step of irradiating the laser light, the laser light is radiated in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foil do not occur.
  2.  前記所定高さは、0.2[mm]である、請求項1に記載の溶接方法。 The welding method according to claim 1, wherein the predetermined height is 0.2 [mm].
  3.  前記レーザ光を照射する工程において、レーザ光の照射による前記金属箔の延びに伴って前記金属箔の前記第一方向に突出した前記所定高さを超える皺が生じない条件でレーザ光の照射を行う、請求項1または2に記載の溶接方法。 In the step of irradiating the laser light, the laser light irradiation is performed under conditions in which wrinkles exceeding the predetermined height protruding in the first direction of the metal foil do not occur as the metal foil expands due to the irradiation of the laser light. The welding method according to claim 1 or 2, wherein
  4.  前記レーザ光を照射する工程において、レーザ光の照射を複数回行う、請求項1に記載の溶接方法。 The welding method according to claim 1, wherein in the step of irradiating the laser light, the laser light irradiation is performed multiple times.
  5.  前記レーザ光を照射する工程において、レーザ光の複数回の照射は、レーザ光のスポットを前記第二面上の所定区間で走査する第一走査と、当該第一走査の次にレーザ光のスポットを前記第二面上の所定区間で走査する第二走査と、を含み、前記第一走査の終点と前記第二走査の始点とが互いに離れた、請求項4に記載の溶接方法。 In the step of irradiating the laser beam, the irradiation of the laser beam a plurality of times includes a first scan for scanning a laser beam spot in a predetermined section on the second surface, and a laser beam spot next to the first scan. in a predetermined section on the second surface, and the end point of the first scan and the start point of the second scan are separated from each other.
  6.  前記第一走査の始点と、前記第二走査の終点と、が重なった、請求項5に記載の溶接方法。 The welding method according to claim 5, wherein the start point of the first scan and the end point of the second scan overlap.
  7.  前記第一走査の始点と、前記第二走査の始点と、が重なった、請求項5に記載の溶接方法。 The welding method according to claim 5, wherein the starting point of the first scanning and the starting point of the second scanning overlap.
  8.  前記レーザ光を照射する工程において、レーザ光の各回の照射は、前記金属部材と前記複数の金属箔との保持機構によって保持された端部と今回の照射の照射中心との間の前記第一方向と交差した第二方向における距離、または複数回の照射における従前の照射によって前記金属部材と前記複数の金属箔とが溶接され固定された箇所における照射中心と今回の照射の照射中心との間の前記第二方向における距離が3[mm]以下となるように行われる、請求項4に記載の溶接方法。 In the step of irradiating the laser beam, each irradiation of the laser beam is performed between the end held by the holding mechanism of the metal member and the plurality of metal foils and the irradiation center of the current irradiation. A distance in a second direction that intersects the direction, or between the irradiation center at the location where the metal member and the plurality of metal foils are welded and fixed by previous irradiation in multiple irradiations and the irradiation center of the current irradiation The welding method according to claim 4, wherein the distance in said second direction is 3 mm or less.
  9.  前記レーザ光を照射する工程において、前記金属部材と前記複数の金属箔との保持機構によって保持された端部により近い位置に対するレーザ光の照射が先に行われ、前記端部からより遠い位置に対するレーザ光の照射が後に行われる、請求項4に記載の溶接方法。 In the step of irradiating the laser light, a position closer to the end held by the holding mechanism of the metal member and the plurality of metal foils is first irradiated with the laser light, and a position farther from the end is irradiated with the laser light. 5. The welding method according to claim 4, wherein irradiation with laser light is performed later.
  10.  前記レーザ光を照射する工程において、レーザ光の複数回の照射は、レーザ光の第一照射と、当該第一照射の後に行われ当該第一照射よりも前記端部からより遠い位置に対するレーザ光の照射であって前記第一照射より走査長さの長い第二照射と、を含む、請求項9に記載の溶接方法。 In the step of irradiating the laser light, the multiple irradiations of the laser light are performed after the first irradiation of the laser light and the laser light for a position farther from the end than the first irradiation. and a second irradiation having a longer scan length than the first irradiation.
  11.  前記レーザ光を照射する工程において、
     前記金属部材と前記複数の金属箔とを含む積層体の互いに離れた二つの端部が、それぞれ前記保持機構によって保持され、
     レーザ光の複数回の照射は、前記二つの端部のそれぞれから離れた複数箇所に対するレーザ光の第一照射と、二つの端部の間の位置であって少なくとも二箇所の前記第一照射の間となる位置に対するレーザ光の第二照射と、を含む、請求項9に記載の溶接方法。
    In the step of irradiating the laser light,
    two mutually separated ends of a laminate including the metal member and the plurality of metal foils are held by the holding mechanism;
    The multiple irradiations of the laser light include the first irradiation of the laser light to a plurality of positions away from each of the two ends, and the first irradiation of the at least two positions between the two ends. and a second irradiation of the laser light to an intervening position.
  12.  前記第二照射の走査長さは、当該第二照射が間に位置する前記少なくとも二箇所の前記第一照射の走査長さより長い、請求項11に記載の溶接方法。 The welding method according to claim 11, wherein the scan length of said second exposure is longer than the scan length of said first exposure at said at least two locations between which said second exposure is located.
  13.  前記レーザ光を照射する工程において、レーザ光の複数回の照射は、互いに部分的に重なるように行われ、
     塊状の溶接部を形成する、請求項4に記載の溶接方法。
    In the step of irradiating the laser light, the multiple irradiations of the laser light are performed so as to partially overlap each other,
    5. The welding method of claim 4, forming a bulk weld.
  14.  前記金属部材と前記複数の金属箔とを保持する工程において、前記複数の金属箔および前記金属部材を、それぞれ前記金属部材と前記複数の金属箔とを前記第一方向に挟持する二つの挟持部材を有し前記第一方向と交差した第二方向に離れた複数の保持機構によって保持し、
     前記レーザ光を照射する工程において、前記第二方向に離れた複数の保持機構の間において、前記第二面上に前記レーザ光を照射する、請求項1に記載の溶接方法。
    In the step of holding the metal member and the plurality of metal foils, two holding members for holding the plurality of metal foils and the metal members in the first direction, respectively. held by a plurality of holding mechanisms separated in a second direction intersecting the first direction,
    The welding method according to claim 1, wherein in the step of irradiating said laser beam, said laser beam is radiated onto said second surface between a plurality of holding mechanisms separated in said second direction.
  15.  前記複数の保持機構の、前記第二方向における距離が、2[mm]以上である、請求項14に記載の溶接方法。 The welding method according to claim 14, wherein the distance between the plurality of holding mechanisms in the second direction is 2 [mm] or more.
  16.  前記複数の保持機構のうちの少なくとも一つは、前記二つの挟持部材によって、前記金属部材および前記複数の金属箔を含む積層体と、当該積層体から前記第二方向に離間した介在部材と、を挟持し、
     前記積層体の前記第一方向における厚さと、前記介在部材の前記第一方向における厚さとの差の絶対値が、0.5[mm]以下である、請求項14または15に記載の溶接方法。
    At least one of the plurality of holding mechanisms includes a layered body including the metal member and the plurality of metal foils and an intervening member spaced apart from the layered body in the second direction by the two holding members, sandwiching the
    The welding method according to claim 14 or 15, wherein the absolute value of the difference between the thickness of the laminate in the first direction and the thickness of the intervening member in the first direction is 0.5 [mm] or less. .
  17.  前記レーザ光を照射する工程において、レーザ光は、前記第二面上で第一スポットを形成する第一レーザ光と、前記第二面上で第二スポットを形成する第二レーザ光と、を含む、請求項1に記載の溶接方法。 In the step of irradiating the laser beam, the laser beam is composed of a first laser beam that forms a first spot on the second surface and a second laser beam that forms a second spot on the second surface. 2. The welding method of claim 1, comprising:
  18.  前記第一レーザ光の波長は、800[nm]以上かつ1200[nm]以下であり、前記第二レーザ光の波長は、550[nm]以下である、請求項17に記載の溶接方法。 The welding method according to claim 17, wherein the first laser light has a wavelength of 800 [nm] or more and 1200 [nm] or less, and the second laser light has a wavelength of 550 [nm] or less.
  19.  前記第二レーザ光の波長は、400[nm]以上500[nm]以下である、請求項18に記載の溶接方法。 The welding method according to claim 18, wherein the second laser beam has a wavelength of 400 [nm] or more and 500 [nm] or less.
  20.  前記レーザ光を照射する工程において、前記第二面上で、前記第一レーザ光によって前記第二面上に形成される第一スポットと、前記第二レーザ光によって前記第二面上に形成される第二スポットとが、少なくとも部分的に重なる、請求項17~19のうちいずれか一つに記載の溶接方法。 In the step of irradiating the laser beam, on the second surface, a first spot formed on the second surface by the first laser beam and a spot formed on the second surface by the second laser beam The welding method according to any one of claims 17 to 19, wherein the second spot at least partially overlaps.
  21.  前記金属箔は、銅系材料で作られた、請求項1に記載の溶接方法。 The welding method according to claim 1, wherein the metal foil is made of a copper-based material.
  22.  第一方向を向く第一面を有した金属部材と、複数の金属箔とを、当該複数の金属箔が前記第一面上に前記第一方向に重ねられた状態で溶接する溶接装置であって、
     レーザ光を出力する光源と、
     前記光源から出力されたレーザ光を、前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面上に照射する、光学ヘッドと、
     前記金属部材および前記複数の金属箔が、前記金属箔の前記第一方向に突出した所定高さを超える皺が生じない状態で保持された、溶接装置。
    A welding device that welds a metal member having a first surface facing a first direction and a plurality of metal foils in a state in which the plurality of metal foils are stacked on the first surface in the first direction. hand,
    a light source that outputs laser light;
    an optical head that irradiates a laser beam output from the light source onto a second surface of the plurality of metal foils opposite to the metal member in the first direction;
    The welding device, wherein the metal member and the plurality of metal foils are held in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foils do not occur.
  23.  前記金属部材および前記複数の金属箔を、前記金属箔の前記第一方向に突出した所定高さを超える皺が生じない状態で保持する保持機構を備えた、請求項22に記載の溶接装置。 The welding device according to claim 22, comprising a holding mechanism that holds the metal member and the plurality of metal foils in a state in which wrinkles exceeding a predetermined height projecting in the first direction of the metal foils do not occur.
  24.  前記光学ヘッドは、レーザ光の照射による前記金属箔の延びに伴って前記金属箔の前記第一方向に突出した前記所定高さを超える皺が生じない条件でレーザ光の照射を行う、請求項22または23に記載の溶接装置。 3. The optical head irradiates the laser beam under conditions in which wrinkles exceeding the predetermined height protruding in the first direction of the metal foil do not occur as the metal foil extends due to the irradiation of the laser beam. 24. The welding device according to 22 or 23.
  25.  第一方向を向く第一面を有した金属部材と、複数の金属箔とを、当該複数の金属箔が前記第一面上に前記第一方向に重ねられた状態で溶接する溶接装置であって、
     レーザ光を出力する光源と、
     前記光源から出力されたレーザ光を前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面上に照射する光学ヘッドと、
     前記複数の金属箔の前記第一方向に突出した皺の高さを検出するセンサと、
     前記センサによって検出された前記皺の高さが所定値以下となるよう、前記光源の作動を制御する制御装置と、
     を備えた、溶接装置。
    A welding device that welds a metal member having a first surface facing a first direction and a plurality of metal foils in a state in which the plurality of metal foils are stacked on the first surface in the first direction. hand,
    a light source that outputs laser light;
    an optical head that irradiates a laser beam output from the light source onto a second surface of the plurality of metal foils opposite to the metal member in the first direction;
    a sensor that detects the height of wrinkles protruding in the first direction of the plurality of metal foils;
    a control device for controlling the operation of the light source so that the height of the wrinkles detected by the sensor is equal to or less than a predetermined value;
    Welding equipment with
  26.  第一方向を向く第一面を有した金属部材と、複数の金属箔と、が溶接された金属積層体であって、
     前記複数の金属箔の前記第一方向において前記金属部材とは反対側となる第二面から、前記複数の金属箔を貫通するとともに前記金属部材に到達した、少なくとも一つの溶接部を有し、
     前記第二面上において、前記溶接部における照射中心と、前記金属積層体を挟持部材によって挟持した挟持痕または他の溶接部における照射中心との距離が、3[mm]以下である、金属積層体。
    A metal laminate in which a metal member having a first surface facing a first direction and a plurality of metal foils are welded together,
    Having at least one weld that penetrates the plurality of metal foils and reaches the metal member from a second surface opposite to the metal member in the first direction of the plurality of metal foils,
    On the second surface, the distance between the center of irradiation in the welded portion and the pinching mark where the metal laminate is pinched by a pinching member or the center of irradiation in another welded portion is 3 mm or less. body.
PCT/JP2022/041791 2021-11-10 2022-11-09 Welding method, welding device, and metal laminate WO2023085336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021183605 2021-11-10
JP2021-183605 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023085336A1 true WO2023085336A1 (en) 2023-05-19

Family

ID=86335762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041791 WO2023085336A1 (en) 2021-11-10 2022-11-09 Welding method, welding device, and metal laminate

Country Status (1)

Country Link
WO (1) WO2023085336A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269787A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Method of deciding welding state
JP2019514694A (en) * 2016-04-29 2019-06-06 ヌブル インク Visible laser welding of electronic packaging, automotive electrical equipment, batteries and other components
WO2021132682A1 (en) * 2019-12-25 2021-07-01 古河電気工業株式会社 Metal foil welding method
US20210299785A1 (en) * 2020-03-24 2021-09-30 Corelase Oy Laser welding stacked foils

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269787A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Method of deciding welding state
JP2019514694A (en) * 2016-04-29 2019-06-06 ヌブル インク Visible laser welding of electronic packaging, automotive electrical equipment, batteries and other components
WO2021132682A1 (en) * 2019-12-25 2021-07-01 古河電気工業株式会社 Metal foil welding method
US20210299785A1 (en) * 2020-03-24 2021-09-30 Corelase Oy Laser welding stacked foils

Similar Documents

Publication Publication Date Title
EP3448622B1 (en) Method of visible laser beam welding of electronic packaging, automotive electrics, battery and other components
KR101418899B1 (en) Method for jointing metal foils in a superposed way and joint structure
US11203085B2 (en) Method and apparatus for laser welding
CN115697619A (en) Laser welding stacked foil
US20220314367A1 (en) Metal foil welding method
JP7336035B2 (en) Welding method and welding equipment
JP7354402B2 (en) Welding method and welding equipment
WO2023085336A1 (en) Welding method, welding device, and metal laminate
JP2021186861A (en) Welding method, welding device and product
JP7326617B2 (en) Busbar and busbar manufacturing method
JP2021191589A (en) Welding method, welding device, and battery assembly
CN111001930A (en) Method and apparatus for laser welding
WO2022270595A1 (en) Welding method, metal laminate, electrical component, and electrical product
WO2023157809A1 (en) Laser welding method
JP2022013800A (en) Semiconductor device and welding method
WO2023157810A1 (en) Laser welding method and metal joined body
JP2022011883A (en) Welding method, welding equipment and welding structure of metal conductor
JP5311207B2 (en) Metal foil connection method and capacitor
JP3828804B2 (en) Bonded body of metal foil and metal member and method for manufacturing the same
TW202319161A (en) Electron beam welding method and apparatus
JP6050928B2 (en) Manufacturing method of wire bonding structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892834

Country of ref document: EP

Kind code of ref document: A1