WO2023085231A1 - 分子性金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法 - Google Patents

分子性金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法 Download PDF

Info

Publication number
WO2023085231A1
WO2023085231A1 PCT/JP2022/041372 JP2022041372W WO2023085231A1 WO 2023085231 A1 WO2023085231 A1 WO 2023085231A1 JP 2022041372 W JP2022041372 W JP 2022041372W WO 2023085231 A1 WO2023085231 A1 WO 2023085231A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
single crystal
crystal thin
film according
group
Prior art date
Application number
PCT/JP2022/041372
Other languages
English (en)
French (fr)
Inventor
由佳 小林
和人 平田
恵 高橋
直子 西尾
良彦 武田
ロドリーゴ サトウ
ルイ ソン
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2023085231A1 publication Critical patent/WO2023085231A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a monomolecular organometallic single crystal thin film and a method for producing the same.
  • the present invention also relates to a synthetic metal single-crystal thin film, a part having the same, and a method for manufacturing the single-crystal thin film.
  • single-component molecular organic metals, molecular organic metals, TEDs and/or synthetic metals may be referred to as molecular metals.
  • Organic substances are originally insulating, but molecular metals are known that exhibit electrical conductivity (hereinafter sometimes referred to as "conductivity") by using dopants such as oxidation and reduction reagents.
  • dopants such as oxidation and reduction reagents.
  • contamination with dopants causes a decrease in the stability of the compounds, and the dopants themselves can adversely affect other parts of the product, significantly reducing the applicability of organic electronic materials.
  • the tetrathiafulvalene derivatives disclosed in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 are molecules that provide electrical conductivity without the addition of dopants due to their superior molecular structures. is a sexual metal.
  • Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 can be used to develop a thin film that combines high electrical conductivity, high optical transparency, and ultra-thin film properties. , transparent electrodes, etc., can be applied to various devices.
  • the synthetic metal powders (powder microcrystals) disclosed in Patent Documents 1 to 4 and Non-Patent Document 1 contain grain boundary resistance, so the highest electrical conductivity as a substance could not be obtained.
  • the thin film was an amorphous thin film instead of a single crystal, its electrical conductivity was several orders of magnitude lower than that of ordinary conductors.
  • Non-Patent Document 2 reports a single crystal of a synthetic metal.
  • the single-crystal synthetic metal disclosed in Non-Patent Document 2 exhibits a top-class high electrical conductivity among organic conductors of 2300 S/cm at room temperature according to the measurement by the four-probe method.
  • the single crystal disclosed in Non-Patent Document 2 has a large absorption band in the visible light region, is colored reddish brown, and has extremely low transparency.
  • the present invention solves the above problems, and provides a single-crystal thin film of a molecular metal that has both high electrical conductivity, high light transmittance, and ultra-thin thin film properties.
  • a single-component molecular metal-organic single-crystal thin film (referring to a single-component molecular metal single-crystal thin film based on the descriptions of P1 to P3 of the present invention.
  • single crystal thin film of molecular metal is any compound represented by the following general formula (wherein R1, R2, R3, R4 and R' are the same may be different).
  • the compound represented by the following formula is preferable.
  • the conductivity at room temperature is 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 7 S when the conductivity is measured using the two-probe method. /cm, more preferably 1 to 1 ⁇ 10 6 S/cm, and still more preferably 1 ⁇ 10 2 to 1 ⁇ 10 5 S/cm.
  • the thickness of the molecular metal single crystal thin film is preferably 1 nm or more and 1000 nm or less.
  • a method for producing a monomolecular organometallic (molecular metal) single crystal thin film based on the descriptions of P1 to P3 of the present invention includes: a step of adding a third proportion of an alkali metal hydroxide aqueous solution to a monomolecular organometallic single crystal of a predetermined shape under a temperature condition of -10°C to 100°C; a step of leaving the alkali metal hydroxide aqueous solution to stand to prepare a single crystal thin film aqueous solution; a step of forming a film using the single crystal thin film aqueous solution; It includes a step of cleaning the single-crystal thin film thus formed.
  • the alkali metal hydroxide aqueous solution has a third ratio with respect to the monomolecular organometallic single crystal having a predetermined shape. is preferably from 0°C to 50°C.
  • the temperature condition in the step of standing the alkali metal hydroxide aqueous solution is from -10°C to 100°C. C., more preferably from 0.degree. C. to 50.degree.
  • the temperature condition in the step of forming the film using the single crystal thin film aqueous solution is -10 C. to 100.degree. C., more preferably 0.degree. C. to 50.degree.
  • the temperature condition in the step of washing the single-crystal thin film thus formed is -10°C. to 100°C, more preferably 0°C to 50°C.
  • the step of forming the single-crystal thin film aqueous solution comprises a drop casting method or a spin coating method. , a dip coating method, a spray coating method, a Langmuir-Blodgett film forming method, and a substrate/particle surface functionalization method.
  • the aqueous alkali metal hydroxide solution is an aqueous lithium hydroxide solution, an aqueous sodium hydroxide solution, Any one kind of potassium hydroxide aqueous solution may be included.
  • the pH of the alkali metal hydroxide aqueous solution is preferably 7.5 or more and 12 or less.
  • the third ratio is preferably 1 ⁇ 10 ⁇ 3 times or more and 1 ⁇ 10 10 times or less, more preferably 2 times. 1 ⁇ 10 8 times or less, most preferably 2 times or more and 1 ⁇ 10 6 times or less.
  • the single-molecular organometallic single crystal is an organometallic molecular powder exhibiting high conductivity.
  • a temperature of 0° C. to 50° C. It is preferable that a dark brown needle-like single crystal of ring-fused tetrathiafulvalenedicarboxylic acid is obtained by allowing to stand still under the conditions.
  • the organometallic molecule is on a fused-ring tetrathiafulvalene skeleton or a fused-ring tetraselenafulvalene skeleton. It is preferable that the molecule is chemically stabilized by electrically neutralizing the radical cation due to proton defects.
  • the organometallic molecule is fused ring tetrathiafulvalene-extended dicarboxylic acid (TED for short) or A condensed tetraselenium fullvalenedicarboxylic acid, which is a selenium-substituted product, is preferable.
  • the ring-fused tetrathiafulvalenedicarboxylic acid powder or the ring-fused tetraselenafulvalenedicarboxylic acid is represented by the following chemical formula: It is preferably manufactured by a process.
  • the conductivity at room temperature is 1 ⁇ 10 to 1 ⁇ 10 12 S/cm when the conductivity is measured using the four-probe method.
  • a monomolecular organic metal (molecular metal) single crystal thin film (single crystal TED thin film) has anisotropy, but the conductivity in at least one of the a-axis direction and the b-axis direction is within the above range. is preferred. Also, the conductivity in both directions may be within the above range.
  • a single crystal thin film of a synthetic metal (molecular metal)
  • the molecular metal is a compound represented by the following formula (I)
  • the single crystal thin film has a transmittance of 80% or more for light with a wavelength of 360 to 830 nm.
  • X represents at least one atom selected from the group consisting of S, O, and Se, and the plurality of X may be the same or different, R represents a hydrogen atom or a monovalent substituent, and the plurality of R may be the same or different, but at least one of the R is from a group represented by the following formula (II) It is at least one group selected from the group consisting of, and the Rs substituted on adjacent atoms may be linked to each other to form a ring.
  • * represents a bonding position
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X represents an atom of S or Se, multiple X may be the same or different, R 1 represents a hydrogen atom, a hydrocarbon group, a (poly)alkyleneoxy group or a (poly)alkylenethio group, two R 1 may be the same or different, Either one of R 2 and R 3 is a group represented by formula (II), and the other is a corresponding Bronsted acid group or a salt thereof.
  • R 2 and R 3 is a group represented by formula (II)
  • the other is a corresponding Bronsted acid group or a salt thereof.
  • [10] The method for producing a single crystal thin film according to any one of [1] to [7], preparing a mixed solution containing a single crystal of a molecular metal compound represented by formula (I) and an aqueous alkali metal hydroxide solution; allowing the mixture to stand for a predetermined period of time; Contacting a base material with the mixed liquid that has been left standing to form the single crystal thin film on the base material; A method for producing a single crystal thin film, comprising washing the single crystal thin film formed on the substrate. [11] The method for producing a single crystal thin film according to [10], wherein the predetermined time for standing the mixed solution is 168 hours or longer.
  • the means for solving the problem based on the contents of P2 are as follows.
  • it is a single crystal thin film of a synthetic metal (molecular metal), wherein the molecular metal is a compound represented by the formula (I) described later.
  • the single crystal thin film may have a transmittance of 60% or more for light with a wavelength of 200 to 360 nm.
  • the film thickness of the single crystal thin film may be about 1 to 20 nm.
  • the single crystal thin film may be composed of about 1 to 10 molecular layers of the compound represented by formula (I).
  • the molecular metal may be a compound represented by (III) described later, or may be a compound represented by formula (IV) described later.
  • the single crystal thin film may have an electric conductivity of 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 7 S/cm as measured by a two-probe method.
  • a component comprising the single crystal thin film of the first aspect, A component is provided, wherein the component is an optical component or an electronic component.
  • the component may be a transparent electrode or an optical fiber.
  • a method for producing the single crystal thin film of the first aspect comprising a single crystal of a molecular metal that is a compound represented by formula (I) and an aqueous alkali metal hydroxide solution; allowing the mixed solution to stand still for a predetermined time; bringing a base material into contact with the left mixed solution;
  • a method for producing a single crystal thin film is provided, which includes forming a single crystal thin film and cleaning the single crystal thin film formed on the substrate.
  • the predetermined time for standing the mixed solution may be 168 hours or more.
  • the weight ratio of the alkali metal hydroxide aqueous solution to the single crystal of the molecular metal may be 2 to 1 ⁇ 10 6 .
  • the aqueous alkali metal hydroxide solution may have a pH of 7.5-11. Further, by allowing the mixed solution to stand still, a monomolecular layer of synthetic metal piece maintaining two-dimensional crystallinity may be peeled off from the single crystal of the molecular metal in the mixed solution. .
  • a single-crystal thin film of a synthetic metal (molecular metal) based on the description of P2 of the present invention combines high electrical conductivity, high light transmittance, and ultra-thin film properties.
  • FIGS. 1 to 16 are drawings based on the contents of P1 to P3. Of these drawings, the drawings that are the same as the drawings based on the content of P2 are indicated to that effect. 17 to 21, which are based on the contents of P2 and do not overlap with FIGS. 1 to 16 above. These drawings will be briefly described.
  • Example 1 is a photograph showing an example of an organometallic (TED) acicular single crystal grown by the production method of the present invention. Also, it is an optical micrograph of a TED single crystal (Tetrathiafulvalene-Extended Dicarboxylate) (sample (i)) produced in Example (same as FIG. 1 of P2). It is a photograph showing a comparative example in which a metal-organic (TED) acicular single crystal was not obtained, which is out of the scope of the production method of the present invention. Moreover, it is an optical microscope photograph of the amorphous TED (sample (ii)) produced in the section of Examples (same as FIG. 1 of P2).
  • TED organometallic
  • TED single crystal structure analysis shows a unit cell structure (unit: angstrom). The numbers in parentheses indicate the error value of the least significant digit (same as FIG. 4A of P2). TED single crystal structure analysis shows the b-axis projected layered structure (same as FIG. 4B of P2). TED single crystal structure analysis shows the a-axis projected layered structure (same as FIG. 4C of P2). TED single crystal structural analysis shows the layout of the intermolecular ⁇ orbitals (same as FIG. 4D on P2). It is a figure which shows the measuring method which mounted
  • FIG. 4B is a diagram showing the temperature dependence of the electric resistance of the TED single crystal obtained by the four-terminal method using the gold electrodes shown in FIG. 4A. It is a figure which shows the reflectance in the room temperature of a TED single crystal.
  • FIG. 2 shows powder X-ray diffraction patterns at room temperature of an organic metal (TED) acicular single crystal (lower) and powder (upper).
  • TED organic metal
  • 1 is an AFM image of a TED monomolecular layer film with a film thickness of about 1.6 nm, the film thickness of which is measured by tapping mode, showing an example of the present invention.
  • FIG. 4 is an AFM image of a TED thin film with a film thickness of about 4 nm, the film thickness of which is measured by tapping mode, showing an example of the present invention.
  • FIG. 2 is a graph showing the result of film thickness measurement by tapping a TED thin film with a film thickness of about 5 nm, showing an example of the present invention. It is the figure which showed the correlation of a film thickness and the number of layers (1 to 10 layers). Shaded parts indicate error bars generated from sample quality, measurement errors, etc. (same as FIG. 5A on P2).
  • FIG. 5B is a diagram showing the correlation between the film thickness and the number of layers (1 to 500 layers) (same as FIG. 5B of P2).
  • FIG. 1 is an optical microscope image of a TED monomolecular layer film with a film thickness of about 1.6 nm with two silver electrodes attached to both ends, showing an example of the present invention.
  • 1 is an optical microscope image of a TED thin film with a film thickness of about 8 nm with two-terminal silver electrodes attached to both ends, showing an embodiment of the present invention.
  • FIG. 1 is an optical microscope image of a TED thin film having a thickness of about 145 nm with two-terminal silver electrodes attached to both ends, showing an embodiment of the present invention.
  • Fig. 6 shows the current-voltage (IV) characteristics at room temperature of a TED monomolecular layer film with a film thickness of about 1.6 nm with two silver electrodes attached to both ends showing an example of the present invention (same as Fig. 6A of P2).
  • Fig. 6 shows the current-voltage (IV) characteristics at room temperature of a TED thin film with a film thickness of about 8 nm with two silver electrodes attached to both ends showing an embodiment of the present invention (same as Fig. 6B of P2).
  • Fig. 6 shows the current-voltage (IV) characteristics at room temperature of a TED thin film with a film thickness of about 8 nm with two silver electrodes attached to both ends showing an embodiment of the present invention (same as Fig. 6B of P2).
  • FIG. 6 shows current-voltage (IV) characteristics at room temperature of a TED thin film with a film thickness of about 145 nm with two silver electrodes attached to both ends showing an example of the present invention (same as Fig. 6C of P2).
  • FIG. 7 is a diagram showing the relationship of film thickness dependence of room temperature conductivity measured by a two-probe method showing an example of the present invention (same plot as FIG. 7 of P2).
  • Fig. 8 shows the temperature dependence of the resistivity of a TED monomolecular layer film with a thickness of about 1.6 nm with two silver electrodes attached to both ends showing an example of the present invention (same as Fig. 8A of P2).
  • Fig. 8A of P2 shows current-voltage
  • Fig. 8 shows the temperature dependence of the resistivity of a TED thin film with a film thickness of about 8 nm with two silver electrodes attached to both ends showing an embodiment of the present invention (same as Fig. 8B of P2).
  • Fig. 8 shows the temperature dependence of the resistivity of a TED thin film with a film thickness of about 145 nm with two silver electrodes attached to both ends showing an embodiment of the present invention (same as Fig. 8C of P2).
  • 1 is an AFM image of a monocrystalline TED monolayer film showing an example of the present invention.
  • 1 is an optical microscope image of a single-crystal TED single-layer film to which four gold electrodes are attached, showing an example of the present invention (the single-layer film exists within the dotted line).
  • FIG. 1 shows current-voltage (IV) characteristics at room temperature in the a-axis and b-axis directions of a single-crystal TED single-layer film showing an example of the present invention.
  • 1 shows the temperature dependence of electrical conductivity in the a-axis and b-axis directions of a single-crystal TED single-layer film showing an example of the present invention. It is an X-ray diffraction pattern of samples (i) and (ii) produced in Example (same as FIG. 3 of P2).
  • FIG. 3 is a diagram showing visible light transmittance of TED single crystal thin films (samples S1 to S3) measured at room temperature in Examples.
  • FIG. 2 is a diagram showing visible light reflectance of TED single crystal thin films (samples S1 to S3) measured at room temperature in Examples.
  • FIG. 3 is a diagram showing visible light transmittance of a TED single crystal (sample (i)) measured at room temperature in Examples.
  • FIG. 3 is a diagram showing visible light reflectance of a TED single crystal (sample (i)) measured at room temperature in Examples.
  • FIG. 2 is a diagram showing the ultraviolet transmittance of TED single crystal thin films (samples S1 to S3) measured at room temperature in Examples.
  • FIG. 2 is a diagram showing the ultraviolet light reflectance of TED single crystal thin films (samples S1 to S3) measured at room temperature in Examples.
  • 1 is a flow chart illustrating a method for producing a single crystal thin film of a molecular metal according to this embodiment.
  • a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
  • a notation that does not describe substituted or unsubstituted includes not having a substituent as well as one having a substituent within a range that does not impair the effect of the present invention.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). This is also the same for each compound.
  • the single-crystal thin film of this embodiment is a single-crystal thin film of a compound represented by formula (I) described later (hereinafter referred to as "compound A").
  • Compound A is a derivative compound in which a specific substituent is introduced into fulvalene such as tetrathiafulvalene or its condensed ring compound, and although it is an organic compound, it is a non-doped synthesis that exhibits conductivity without adding a dopant. It is metal.
  • Compound A tends to form a two-dimensional molecularly packed sheet structure, which delocalizes the electrons on the zwitterionic radical species in the molecular arrangement.
  • compound A has excellent electrical conductivity. That is, compound A metallizes the molecular spins stabilized by proton defects contained in intramolecular hydrogen bonds by delocalizing them within the self-assembled two-dimensional sheet by intermolecular forces. guessed.
  • the present inventors have succeeded in producing a single crystal of this compound A and further thinning it. They also discovered that the single-crystal thin film has both high transmittance in deep ultraviolet to visible light and high electrical conductivity.
  • the single-crystal thin film of compound A achieves a nanometer-scale ultra-thin film thickness that could not be achieved with an amorphous thin film, and furthermore, electrical conductivity and visible light transmittance are significantly higher than those of an amorphous thin film. improved significantly.
  • the single-crystal thin film of the present embodiment preferably comprises, for example, 1 to 10 molecular layers of compound A, more preferably 1 to 3 molecular layers. Further, the film thickness of the single crystal thin film of this embodiment is preferably 1 to 20 nm, more preferably 1 to 10 nm, for example. If the configuration and/or thickness of the single-crystal thin film are within the above range, it becomes easier to achieve high transmittance in deep ultraviolet to visible light and high electrical conductivity.
  • the visible light (wavelength: 360 to 830 nm) transmittance of the single crystal thin film may be, for example, 80% or more, 90% or more, or 98% or more.
  • the single crystal of compound A that is not a thin film has a large absorption band in the visible light region (around 490 nm) and is colored reddish brown. and the transparency is very low.
  • the single crystal thin film of this embodiment does not have a large absorption band in the visible light region, is almost colorless, and has high transparency. As can be understood from the comparison with FIGS.
  • the shape of the light transmission spectrum of the compound A crystal is changed by thinning. That is, the single-crystal thin film of the present embodiment does not simply increase the amount of light transmission due to its thin film thickness, but rather changes the light transmission characteristics due to the quantum effect, thereby achieving high transmittance in the visible light region. Realized.
  • the transmittance of deep ultraviolet light (wavelength 200 to 360 nm) of the single crystal thin film may be, for example, 60% or more, 80% or more, or 90% or more.
  • Materials with high transmittance in deep ultraviolet light (DUV) are extremely limited, and reported materials are insulators such as oxides, fluorides, and silica glass of light metal elements with large band gaps.
  • the single crystal thin film of this embodiment has both high transmittance of deep ultraviolet light and high electrical conductivity.
  • the electrical conductivity of the single-crystal thin film of this embodiment determined by the two-terminal method is, for example, 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 7 S/cm, 1 to 1 ⁇ 10 7 S/cm, or 1 ⁇ 10 It may be from 2 to 1 ⁇ 10 6 S/cm.
  • a single crystal of the compound A has an improved electric conductivity by thinning, and as shown in FIG. 7, the thinner the film, the higher the electric conductivity. Since photoelectron spectroscopy analysis does not reveal any external factors such as contamination of impurities, it is believed that this is due to the quantum effect of the band structure due to the confinement of electrons seen in graphene, etc., in a two-dimensional nanoscale space.
  • the single-crystal thin film of the present embodiment may be composed only of compound A, or may contain a crystallization solvent intercalated between sheet structures.
  • Compound A is preferably composed of one type of compound represented by formula (I).
  • the synthetic metal (compound A), which is the molecular metal of this embodiment, is a compound represented by the following formula (I) or a salt thereof.
  • the form in which compound A forms a salt is not particularly limited, but it is preferable that the Bronsted acid group described later (when it has a plurality of Bronsted acid groups, at least one of them) form a salt.
  • X represents at least one atom selected from the group consisting of S, O, and Se, and the plurality of X may be the same or different, R represents a hydrogen atom or a monovalent substituent, and the plurality of R may be the same or different, but at least one of the R is from a group represented by the following formula (II) It is at least one group selected from the group consisting of, and the Rs substituted on adjacent atoms may be linked to each other to form a ring.
  • * represents a bonding position
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • substituted R' is not particularly limited, but for example, hydrogen An atom, a hydrocarbon group (which may be linear, branched, or cyclic), a (poly)alkyleneoxy group, or a (poly)alkylenethio group.
  • the (poly)alkyleneoxy group is a group represented by the following formula (i), and the number of carbon atoms in the alkylene chain R 12 portion is not particularly limited, but is generally preferably 1 to 30, and 1 to 20. more preferred.
  • the number n1 of repeating alkyleneoxy units is not particularly limited, it is generally preferably from 1 to 30.
  • the (poly)alkylenethio group is a group represented by the following formula (ii), and the number of carbon atoms in the alkylene chain R 13 portion is not particularly limited, but is generally preferably 1 to 30, more preferably 1 to 20. preferable.
  • the repeating number n2 of the alkylenethio unit is not particularly limited, but generally 1 to 30 is preferable.
  • * represents a bonding position.
  • the group represented by formula (II) above is the conjugate base of the Bronsted acid group.
  • a Bronsted acid group means a substituent having a function as a Bronsted acid, and the compound A is a self-assembled network (hydrogen bond network) by hydrogen bonding, or a proton defect is generated in an intramolecular hydrogen bond. It means a substituent having the function of allowing
  • the monovalent substituent R' among R in formula (I) may be a Bronsted acid group.
  • the Bronsted acid group in compound A may be in a state of forming a salt.
  • the counter ion is not particularly limited, but is an ammonium ion, an alkali metal ion (lithium ion, sodium ion, or potassium ion), and organic cations (guanidinium ions, pyridinium ions, imidazolium ions, anilinium ions, etc.).
  • the Bronsted acid group may be in a state of forming a hydroxyamine salt.
  • one of R is a group represented by formula (II), and one or more of R is a Bronsted acid group or a salt thereof, in which case one of R substituted on adjacent atoms is a group represented by formula (II), and the other is more preferably a Bronsted acid group or a salt thereof .
  • Suitable forms of compound A include, for example, compounds represented by the following formula (III).
  • X represents an S or Se atom, and multiple X's may be the same or different.
  • R 1 is the same as the form of the monovalent substituent R' of formula (I), and two R 1 's may be the same or different.
  • Either one of R 2 and R 3 is a group represented by formula (II), and the other is a corresponding Bronsted acid group or a salt thereof.
  • R 2 is *—COO — and R 3 is *—COOH, *—COO ⁇ NH 4 + , or *—COOLi (* represents a bonding position). be done.
  • compound A examples include, for example, compounds represented by the following formula (IV).
  • the compound represented by the above formula (IV) is also referred to as "TED" (Tetrathiafulvalene-Extended Dicarboxylate).
  • the method for synthesizing compound A is not particularly limited, and known methods can be applied. Methods for synthesizing compound A include, for example, the methods described in Patent Documents 1 and 2.
  • the single-crystal thin film of the synthetic metal (molecular metal) of the present embodiment has extremely thin film properties, high electrical conductivity, and high light transmittance in the deep ultraviolet to visible light region. Therefore, it can be applied to various devices such as optical parts and electronic parts.
  • the synthetic metal single-crystal thin film of the present embodiment is suitable as an electrode material for a transparent electrode.
  • the single crystal thin film of this embodiment has a high transmittance for deep ultraviolet light (DUV), and is therefore suitable for DUV-transmitting materials such as DUV optical fibers.
  • DUV deep ultraviolet light
  • the single crystal thin film according to the present embodiment is, for example, an electric wire, an information transmission medium, an electronic device, an electrode used for an electronic element, a spintronics element, an information communication element, a memory element, a magnetic shield, a medical magnetic shield, a magnet, Magnetic semiconductors, field effect transistors (FET), magnetic plasters, hard disk drive heads, GMR (giant magnetoresistive) heads for high-sensitivity playback, solid-state magnetic memories, magnetoresistive memories (MRAM), optical isolators for fiber communications, magnetic fields It can be used for materials that change color at different temperatures, materials that utilize the interaction between conduction electron spins and atomic magnetic moments, and so on.
  • FET field effect transistors
  • MRAM magnetoresistive memories
  • the transparent electrode provided with the single crystal thin film of the present embodiment can be used as an anode (hole injection layer), solar cells, antistatic agents, electromagnetic wave shielding materials, optical coating agents, infrared reflective materials, gas sensors, antireflection coatings, surface treatment agents, semiconductor lasers, optical devices, optical elements, devices utilizing bending resistance, electrolysis It can also be applied to capacitors, electronic devices, electrodes of lithium-ion batteries, light-emitting elements, and the like.
  • the method for manufacturing the single-crystal thin film of this embodiment is not particularly limited, but it can be manufactured, for example, by the method described below.
  • a mixed solution containing (a) a single crystal of compound A and (b) an alkali metal hydroxide aqueous solution is prepared (step S1 in FIG. 12), and then the prepared mixed solution is allowed to stand for a predetermined time. (step S2 in FIG. 12).
  • the inventors of the present invention have discovered that a synthetic metal piece (two-dimensional crystal) exfoliates in layers from a single crystal of compound A in a mixed solution (exfoliation) through the steps described above.
  • the synthetic metal piece exfoliated from the single crystal of Compound A is an extremely thin monomolecular layer that maintains two-dimensional crystallinity.
  • a single crystal of compound A may be produced by a known method. For example, it may be produced by the method disclosed in Non-Patent Document 2 and described below.
  • compound A is synthesized.
  • the method for synthesizing compound A is not particularly limited, and it may be synthesized by the method disclosed in Patent Document 1 or 2, for example.
  • a solution containing the synthesized powdery compound A (amorphous), a high-boiling organic solvent, and a basic additive is prepared. By allowing the prepared solution to stand for a predetermined period of time, needle-like single crystals of compound A precipitate in the solution. The precipitated single crystal is filtered, washed with water and dried to obtain a single crystal of compound A as the final product.
  • the high-boiling organic solvent is preferably a solvent having a boiling point of 100° C. to 250° C.
  • examples include dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), N-methyl pyrrolidone (NMP) and the like. These solvents may be used alone, or two or more of them may be mixed and used.
  • DMSO dimethylsulfoxide
  • DMF N,N-dimethylformamide
  • NMP N-methyl pyrrolidone
  • these solvents may be used alone, or two or more of them may be mixed and used.
  • a hydroxylamine aqueous solution, an ammonia aqueous solution, a dimethylamine aqueous solution, or the like can be used. These basic additives may be used alone or in combination of two or more.
  • the pH of the basic additive is preferably 7.5 or higher.
  • the weight ratio of the high-boiling organic solvent to the powdery compound A (amorphous) may be, for example, 30-400.
  • the ratio of the weight of the basic additive to the weight of the powdered compound A (amorphous) may be, for example, 5-300.
  • Aqueous solution of alkali metal hydroxide is preferably an aqueous solution of lithium hydroxide, sodium hydroxide, or potassium hydroxide from the viewpoints of promoting single-layer exfoliation of compound A and reducing production costs.
  • Aqueous solutions of lithium hydroxide are more preferred. These may be used alone or in combination of two or more.
  • the pH of the aqueous alkali metal hydroxide solution can be appropriately adjusted according to the amount of compound A mixed with it. pH 9-11 is preferred, and pH 9-11 is more preferred.
  • the concentration in the alkali metal hydroxide aqueous solution is not particularly limited, and may be adjusted as appropriate so that the aqueous solution has a desired pH.
  • compound A is an acidic substance
  • mixing with compound A neutralizes the alkali metal hydroxide and raises the pH of the aqueous solution.
  • the preferable pH range of the aqueous alkali metal hydroxide solution mentioned above means the pH before mixing with the compound A.
  • the weight ratio of the aqueous alkali metal hydroxide solution to the single crystal of compound A is not particularly limited and can be adjusted as appropriate . may be
  • the time (predetermined time) for standing the prepared mixed solution is not particularly limited, but from the viewpoint of promoting single layer exfoliation of compound A, for example, 1 week (168 hours) or more, 1 week to 1 month, or 1 It may be from 1 month to 6 months.
  • the temperature of the mixed liquid during standing is not particularly limited, and may be, for example, ⁇ 10° C. to 100° C., 0° C. to 50° C., or room temperature.
  • the substrate is brought into contact with the mixed liquid that has been allowed to stand, and a single crystal thin film is formed on the substrate (step S3 in FIG. 12).
  • the base material is not particularly limited and can be appropriately selected according to the device to be used.
  • the substrate is preferably transparent (has high transmittance) to ultraviolet light and/or visible light.
  • substrates include glass substrates and quartz substrates.
  • the method of forming a single crystal thin film is not particularly limited, and may be a drop casting method, a spin coating method, a dip coating method, a spray coating method, a Langmuir-Blodgett film forming method, a substrate/ A method for surface functionalization of particles and the like can be selected as appropriate.
  • Synthetic metal pieces peeled off from the single crystal are dispersed in the mixed liquid after standing.
  • a monocrystalline thin film is formed by depositing this synthetic metal piece on the substrate.
  • a solvent such as water may be added to the mixture to adjust (dilute) the concentration of the synthetic metal pieces before the mixture is brought into contact with the substrate. Dilution facilitates more uniform dispersion of the synthetic metal pieces in the mixture.
  • the temperature of the mixed liquid that is brought into contact with the substrate is preferably around room temperature.
  • the single crystal thin film formed on the substrate is washed (step S4 in FIG. 12). By washing, unnecessary alkaline components and the like adhering to the single crystal thin film are removed.
  • the cleaning method is not particularly limited, for example, a method of cleaning a single crystal thin film arranged on a substrate with water can be used.
  • the method for manufacturing a single-crystal thin film described above has a simple manufacturing process, and can increase the yield of products having a single-crystal thin film. Also, the thickness of the single-crystal thin film can be adjusted, for example, by appropriately changing the manufacturing conditions of the manufacturing method described above.
  • the production method is suitable for, for example, production of electrodes using printing (production of printable electrodes).
  • Example 1 As an example of a monomolecular organometallic (molecular metal) single crystal thin film, a method for growing a single crystal thin film of tetrathiafulvalene-extended dicarboxylic acid (hereinafter also referred to as TED for short) will be described.
  • TED tetrathiafulvalene-extended dicarboxylic acid
  • a TED powder crystal (1 mg) was pulverized in a mortar and dissolved in DMSO (160 ⁇ L). Hydroxylamine (50 wt % solution, 50 ⁇ L) was added to the solution to control the acidity of the solution. The solution was placed in a sealed vial container and stored at room temperature for several months. The grown single crystal was recovered by filtration, washed with about 10 times the weight of the TED, and then air-dried. Brown needle-shaped single crystals are obtained with typical dimensions of 400 ⁇ m ⁇ 20 ⁇ m ⁇ 10 ⁇ m. (See, eg, FIG. 1).
  • TED powder was pulverized, and a high boiling point organic solvent and a basic additive were added in a certain ratio to the weight, and then allowed to stand for a long period of time under temperature conditions from 0°C to 50°C. A single crystal is obtained. The grown single crystal is filtered, washed with an appropriate amount of water, and dried to obtain a needle-like single crystal of TED.
  • Table 1 shows an example of single crystal growth conditions in the present invention. Numerical values in the table indicate the ratio of the respective weights used when the weight of the substrate is set to 1.
  • solvents are dimethylsulfoxide (DMSO), dimethylformamide (DMF), N-methylpyrrolidone (NMP), hydroxylamine (NH 2 OH), ammonia (NH 3 ) , dimethylamine (NH(Me) 2 ).
  • the single crystal will not grow and will remain powder (Fig. 2).
  • the needle-like single crystal has a layered crystal structure consisting of molecular sheets laminated in the a- and b-axis directions, which has a periodic structure with two molecules as an asymmetric unit in X-ray crystallographic analysis.
  • FIG. 3A shows a unit cell structure (in angstroms) in TED single crystal structure analysis. Numbers in parentheses indicate the minimum error value.
  • FIG. 3B shows the b-axis projected layered structure in TED single crystal structure analysis.
  • FIG. 3C shows a layered structure projected on the a-axis by TED single crystal structure analysis.
  • FIG. 3D is a TED single crystal structural analysis showing the arrangement of ⁇ orbitals between molecules.
  • the numbers in parentheses indicate the error value of the lowest digit in the X-ray structure analysis.
  • the gray and black dotted lines indicate the intermolecular distance of S...S contacts and intramolecular hydrogen bonds, respectively, in Angstroms.
  • gray shaded areas indicate monolayers.
  • the ⁇ -orbital overlaps are vertically overlapping by ⁇ ... ⁇ stacks along the a-axis and laterally by S...S contacts along the b-axis, respectively.
  • 4A and 4B show the temperature dependence of the electric resistance of the TED single crystal obtained by the four-terminal method using gold electrodes.
  • the electric resistance ⁇ is proportional to the cube of the absolute temperature T.
  • the electrical resistance ⁇ is about 5 ⁇ 10 ⁇ 3 [ ⁇ cm], and at around 113K, which is the boiling point of liquefied natural gas LNG, it is about 8 to 12 ⁇ 10 ⁇ 4 [ ⁇ cm].
  • FIG. 5 is a diagram showing the reflectance of a TED single crystal at room temperature. Reflectance is 30 to 40% in the wavenumber range of 1 to 4 ⁇ 10 3 [cm ⁇ 1 ] corresponding to far infrared to mid-infrared rays, but the wavenumber range is 4 to 12 ⁇ 10 3 within the range of near infrared rays. At [cm ⁇ 1 ], the reflectance is 0 to 2%.
  • FIG. 6 shows the powder X-ray diffraction patterns at room temperature of the organic metal (TED) acicular single crystal (lower) and the powder (upper).
  • a single crystal has a sharp peak near 2 ⁇ of 27°.
  • the powder has a high peak near the region of 25° to 28°.
  • Crystal structure analysis of the single crystal was performed using 1922 reflections based on high-resolution diffraction images collected at 113 K with a Rigaku Saturn CCD system. All atoms except hydrogen atoms were determined anisotropically.
  • Example 2 ⁇ Method for preparing single crystal thin film> Next, a lithium hydroxide aqueous solution (0 .5 ⁇ L) are added at room temperature. This solution is allowed to stand for at least one week. After that, a large excess amount (50 ⁇ L) of water is added and left to stand for 10 minutes. After drop-casting the TED single crystal thin film aqueous solution onto a glass substrate, after air-drying, it was washed twice with water (50 ⁇ L) heated to 50° C., and then air-dried for 20 minutes to obtain the desired metal thin film. The film thickness was evaluated by measurement using a laser microscope or by an atomic force microscope (AFM).
  • AFM atomic force microscope
  • FIG. 7A is an AFM image of a TED monolayer film with a thickness of 1 to 3 nm, the film thickness of which was measured by tapping mode, showing one embodiment of the present invention.
  • FIG. 7B is an AFM image of a TED thin film with a thickness of about 4 nm.
  • FIG. 7C is an AFM image of a TED thin film with a thickness of about 5 nm.
  • FIG. 7D is a diagram showing the correlation between the film thickness and the number of layers (1 to 10 layers). The shaded area indicates the error bars generated due to poor sample quality and measurement errors.
  • FIG. 7E is a diagram showing the correlation between the film thickness and the number of layers (1 to 600 layers).
  • FIG. 8A is a diagram showing the arrangement of a sample and electrodes in the two-probe method used for the conductivity measurement of the present invention.
  • silver electrodes or gold electrodes are provided as positive and negative terminals at both ends of the sample to be measured.
  • a positive electrode of electric potential and a positive electrode of current are connected to the positive silver electrode.
  • the resistance value measured by the two-probe method includes the contribution of both the sample itself and the contact resistance generated from the junction between the sample and the silver electrode. It is a sufficiently reliable method for the purpose of confirming the sex.
  • FIG. 8B is a diagram showing the arrangement of samples and electrodes in the four-probe method.
  • the contact resistances R2 and R3 between the sample and the lead wires of the voltmeter are negligible compared to the internal resistance RV of the voltmeter, so the effects of the contact resistances R2 and R3 need not be considered.
  • the contact resistances R1 and R4 between the sample and the leads of the ammeter do not affect the voltage across the sample. This is also negligible (including the resistance of the lead wire itself).
  • the contact resistance depends on the bonding with the sample, it is often on the order of 0 to 100 ⁇ as a rough value, for example.
  • FIG. 11 is a graph showing the relationship of film thickness dependence of room-temperature conductivity, showing an example of the present invention, where the horizontal axis is film thickness and the vertical axis is electrical conductivity [S/cm].
  • the electrical conductivity is 2700 [S/cm] at a film thickness of 1.6 nm, the electrical conductivity is 520 [S/cm] at a film thickness of 8 nm, and the electrical conductivity is 330 [S/cm] at a film thickness of 145 nm. Since it is a two-terminal measurement, the contact resistance between the sample and the electrode is included, but it was confirmed that the thinner the film, the higher the conductivity.
  • FIG. 12A shows the temperature dependence of the resistivity of a TED monolayer film with a thickness of about 1.6 nm with two silver electrodes attached to both ends, showing an example of the present invention.
  • FIG. 12B is the temperature dependence of the resistivity of a TED thin film about 8 nm thick with two silver electrodes attached at both ends.
  • FIG. 12C is the temperature dependence of the resistivity of a TED thin film about 145 nm thick with two silver electrodes attached at both ends.
  • FIGS. 12A-12C show the temperature dependence of the resistivity of three TED thin films with different thicknesses electroded and electrically measured by the method of IV characterization described above.
  • the vertical axis is the resistivity ( ⁇ cm) and the horizontal axis is the temperature (K), both exhibiting metal conduction behavior in which the resistivity monotonously decreases with temperature in the measured temperature range.
  • a TED monolayer film was prepared.
  • current terminals (I a + , I a ⁇ , I b + , I b ⁇ ) and voltage terminals (V a + , V a ⁇ , V b + , V b ⁇ ) were arranged.
  • a current terminal and a voltage terminal are gold electrodes, which are formed by an inkjet printer using water-soluble ink in which gold nanoparticles are dispersed.
  • the contact resistance between the electrodes at this time was 133 ⁇ to 7.7 k ⁇ (see Table 2), and as shown in FIG. 15, the voltage exhibited ohmic behavior with respect to the current of ⁇ 500 mA.
  • the resistivity ( ⁇ ) at room temperature is 3.4 n ⁇ cm (a-axis direction) and 29.3 n ⁇ cm (b-axis direction), and the conductivity ( ⁇ ) is 0.29 GS/cm (a-axis direction) and 34 MS/cm (b-axis direction). direction).
  • gold has a resistivity of 2.4 m ⁇ cm (20°C) and a conductivity of 0.42 MS/cm (20°C). Conductivity is nearly 1000 times higher.
  • Sample (ii) was prepared in the same manner as sample (i), except that the ratio of hydroxylamine (50 wt% solution) to dimethylsulfoxide (DMSO, 160 ⁇ L) was 1% by weight.
  • FIG. 17 shows the X-ray diffraction patterns of sample (i) (lower) and sample (ii) (upper).
  • sample (i) lower
  • sample (ii) upper
  • sample (i) was a single crystal of TED and that sample (i) was TED in an amorphous state.
  • FIGS. 3A-3D Structural analysis results are shown in FIGS. 3A-3D. It was confirmed that the TED single crystal has a periodic structure with two molecules as an asymmetric unit, and has a layered crystal structure composed of molecular sheets laminated in the directions of the a and b axes.
  • dashed lines indicate intermolecular distances of S...S contacts and intramolecular hydrogen bonds.
  • the gray shaded area indicates one molecular layer.
  • the ⁇ -orbitals overlap vertically with ⁇ ... ⁇ stacks along the a-axis and laterally with S...S contacts along the b-axis, respectively.
  • the crystal lattice of a TED takes the following values.
  • Samples 1 to 20 were prepared in the same manner as sample (i) described above, except that the type and ratio of the high-boiling organic solvent and basic additive contained in the solution were changed. Table 3 shows the types and ratios of the solvents used in the preparation of Samples 1-20.
  • the numerical values in Table 3 indicate the weight ratio of each solvent when the weight of the TED powder is set to 1.
  • the high boiling point organic solvent and basic additive in Table 3 mean the following.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • NH 2 OH aqueous hydroxylamine solution
  • NH 3 aqueous ammonia solution
  • NH(Me) 2 aqueous solution of dimethylamine
  • samples 1 to 20 shown in Table 3 optical microscopic observation and XRD analysis were performed in the same manner as samples (i) and (ii) described above. As a result, it was confirmed that samples 1 to 20 were also TED single crystals.
  • TED single crystal thin film Fabrication of TED Single-Crystal Thin Film Samples S1 to S5 having different film thicknesses shown in Table 4 were fabricated by the method described below. To the TED single crystal (Sample (i) described above, approximately 400 ⁇ 20 ⁇ 10 ⁇ m size), as an aqueous alkali metal hydroxide solution, an aqueous lithium hydroxide solution (0.5 ⁇ L) having a pH of 9 to 11 is added to form a mixed solution. prepared. The mixture was allowed to stand at room temperature for at least one week. After standing still, a large excess amount (50 ⁇ L) of water was added, and the mixture was further left standing for 10 minutes. After standing still for 10 minutes, the mixture was drop-cast onto a glass substrate. After air-drying, it was washed twice with water (50 ⁇ L) heated to 50°C. After washing, it was naturally dried for 20 minutes to obtain the desired nanoscale single crystal thin films (Samples S1 to S5).
  • the film thickness was measured using an atomic force microscope (AFM) (Bruker model MultiMode 8), a silicon cantilever (SCANASYST-AIR), or a nanosearch microscope (Shimadzu Corporation SFT3500).
  • AFM atomic force microscope
  • SCANASYST-AIR silicon cantilever
  • nanosearch microscope Shiadzu Corporation SFT3500
  • FIGS. 7D and 7E show the correlation between the thickness of the TED single crystal thin film and the number of layers (number of molecular layers) calculated based on the results of X-ray crystallographic analysis of the TED single crystal. 7D and 7E, the number of layers of the single crystal thin films of the samples S1 to S5 was determined and shown in Table 4.
  • the electrical characteristics of the TED single-crystalline thin film described below were evaluated using a two-probe method capable of measuring even a small sample because the samples to be evaluated were small.
  • the resistance value measured by the two-probe method includes contributions of both the sample itself and the contact resistance generated from the joint between the sample and the electrode, but the two-probe method estimates the approximate resistance value of the sample It is a sufficiently reliable method for the purpose of confirming temperature dependence.
  • IV characteristics The IV characteristics of the sample S1 (1.6 nm), the sample S4 (8 nm), and the sample S5 (145 nm) were evaluated by a two-probe method. More specifically, changes in voltage versus applied current were detected in a He cryostat at 300 K with a source meter (KEITHLEY 2450) and a nanovoltmeter (KEITHLEY 2182A). The results are shown in FIGS. 10A-10C, respectively. The IV characteristics of all samples S1, S4 and S5 were linear, confirming that they had ohmic contact with the electrodes.
  • the two-probe method was used to evaluate the electrical conductivity, but it is presumed that a higher value (for example, a value about two digits higher) can be obtained when the four-probe method is used.
  • Visible light transmittance and reflectance were measured at room temperature using a xenon light source (manufactured by Asahi Spectrosco Co., Ltd., MAX-303, UV-VIS mirror module). Also, since the sample size is small, a 100x objective lens was used for the measurement of samples S1, S2, and S3, and a 20x objective lens was used for the measurement of sample (i). Reflectance is on a thin film on glass. The reflectance was measured at the position of the thin film sample on the glass substrate and corrected for the measured value (and refractive index) of the glass substrate.
  • the visible light transmittance of sample S1 (monomolecular layer) and sample S2 (bimolecular layer) was 98% or more, which was higher than the transmittance of single-layer graphene.
  • the visible light transmittance of sample S3 (three molecular layers) also showed a high value of 96% or more.
  • the visible light reflectance of samples S1 to S3 was 6% or less. This is because the nanoscale single crystal thin films (Samples S1 to S5) have plasma edges outside the visible light range, unlike general metals.
  • Graphene is a covalently bonded sheet (film), and due to its band structure, even a single layer has a large absorption band in the visible light region.
  • samples S1 to S3 are non-covalent sheets (films), do not have a large absorption band in the visible light region, and do not have a plasma edge in the visible light region. be done.
  • the visible light transmittance of sample (i) was as low as 50% or less. In addition, it had a large absorption band in the visible light region and was colored reddish brown. From a comparison between FIG. 18A and FIG. 19A, it was confirmed that the crystal of Compound A improved in transmittance and disappeared from a large absorption band in the visible light region by thinning, and became colorless. Moreover, as shown in FIG. 19B, the visible light reflectance of sample (i) was 10% or less.
  • sample S1 monomolecular layer
  • sample S2 two-molecular layer
  • sample S3 three-molecular layer
  • the ultraviolet light reflectance of samples S1 to S3 was 12% or less. From these results, samples S1 to S3 do not have a large absorption band in the deep ultraviolet light region (wavelength 200 to 360 nm), that is, they are transparent, and the transmittance and reflectance in this region are comparable to glass. was confirmed.
  • a TED thin film as a monomolecular organometallic (molecular metal) single crystal thin film based on the descriptions of P1 to P3 of the present invention is an ideal electrode material that combines high conductivity and ultrathin thin film properties. , transparent electrodes and a variety of other electrode materials.
  • the method for producing a monomolecular organometallic (molecular metal) single crystal thin film based on the descriptions of P1 to P3 of the present invention enables film formation using, for example, only drop casting, and the production process is simple. Together with this, it is possible to increase the yield of products, contributing to the promotion of industrial use of printable electrodes, for example.
  • a single-crystal thin film of a synthetic metal (molecular metal) based on the description of P2 of the present invention combines high electrical conductivity, high light transmittance, and ultra-thin film properties.
  • the single-crystal thin film of the synthetic metal of the present invention is suitable for various electrode materials including, for example, transparent electrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

高い電気伝導度と高い光透過率を兼ね備えた分子性金属の単結晶薄膜を提供する。 分子性金属の単結晶薄膜であって、前記分子性金属が下記式(I)で表される化合物であり、波長360~830nmの光の透過率が80%以上である。 式(I)中、XはS、O、及び、Seからなる群より選択される少なくとも1種の原子を表し、複数ある前記Xはそれぞれ同一でも異なっていてもよく、Rは水素原子、又は、1価の置換基を表し、複数ある前記Rはそれぞれ同一でも異なっていてもよいが、前記Rのうち少なくとも1つは、下記式(II)で表される基からなる群より選択される少なくとも1種の基であり、隣接する原子に置換する前記Rは互いに連結して環を形成してもよい。 式(II)中、*は結合位置を表し、R11は、水素原子、又は、炭素数1~4個のアルキル基を表す。

Description

分子性金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法
(関連出願への相互参照)
 本出願は、2021年11月10日に出願された日本特許出願第2021-182911号、2021年12月28日に出願された日本特許出願第2021-213585号、及び2022年9月16日に出願された日本特許出願第2022-147972号(以下、それぞれ「P1」、「P2」及び「P3」と称することがある)の優先権及び利益を主張する。
(技術分野)
 本発明は、単一分子性有機金属単結晶薄膜及びその製造方法に関する。また、本発明は、合成金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法に関する。なお、本明細書において、単一(single-component)分子性有機金属、分子性有機金属、TED及び/又は合成金属を、分子性金属と称することがある。
 有機物は元来、絶縁性であるが、酸化、還元試薬などのドープ剤を用いることにより電気伝導性(以下、「伝導性」と称することがある)を示す分子性金属が知られている。しかしながら、ドープ剤の混入が化合物の安定性低下の原因となり、また、ドープ剤そのものが製品の他の部分に悪影響を及ぼすことがあり、有機電子材料の応用可能性を著しく低下させている。一方で、例えば、特許文献1~4及び非特許文献1及び2に開示されているテトラチアフルバレン誘導体は、その分子構造の優位性により、ドープ剤を添加することなく電気伝導性が得られる分子性金属である。
特許第5943285号 特許第6145660号 特開2020-15680号公報 特開2020-07253号公報
Nature Mat. 2017, 16, 109 Chem.Sci.2020, 11, 11699
 特許文献1~4及び非特許文献1及び2に開示される合成金属(分子性金属)を用いて、高い電気伝導性、高い光透過性、及び極薄の薄膜性を兼ね備えた薄膜が開発できれば、透明電極等、様々なデバイスへの応用が可能となる。
 しかし、特許文献1~4及び非特許文献1に開示された粉体(粉末微結晶体)の合成金属は、粒界抵抗を含むため、物質として最高の電気伝導性が得られなかった。また、粉体の合成金属をナノメートルスケールに薄膜化することは難しく、得られた薄膜の膜厚はマイクロメートルスケールであった。また、該薄膜は、単結晶性ではなくアモルファス薄膜であったため、通常の導電体と比較して電気伝導度が数桁低かった。
 一方で、非特許文献2では、合成金属の単結晶が報告されている。非特許文献2に開示される単結晶の合成金属は、4端子法による測定によると室温で2300S/cmと有機伝導体の中でもトップクラスの高い電気伝導度を示している。しかし、非特許文献2に開示される単結晶は、可視光領域に大きな吸収帯を有して赤褐色に着色しており、透明性は極めて低かった。
 本発明は上記課題を解決するものであり、高い電気伝導性、高い光透過性、及び極薄の薄膜性を兼ね備えた分子性金属の単結晶薄膜を提供する。
 P1ないしP3の記載内容に基づき、課題を解決するための手段は、以下のとおりである。
[1]本発明のP1ないしP3の記載内容に基づく単一(single-component)分子性有機金属単結晶薄膜(単一成分からなる分子性金属の単結晶薄膜を指す。なお、本明細書において、単に「分子性金属の単結晶薄膜」と称することがある)は、下記一般式で表されるいずれかの化合物(式中、R1、R2、R3、R4及びR’は同一であっても異なっていてもよい。)である。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013
[2]本発明の分子性金属の単結晶薄膜[1]において、好ましくは、下記式で表される化合物であるとよい。
Figure JPOXMLDOC01-appb-C000014

[3]本発明の分子性金属の単結晶薄膜[1]~[2]において、二端子法を用いて伝導度を測定した場合、室温伝導度が1×10-3~1×10S/cm、より好ましくは、1~1×10S/cm、さらに好ましくは、1×10~1×10S/cmの伝導性を有するとよい。
[4]本発明の分子性金属の単結晶薄膜[1]~[3]において、前記分子性金属の単結晶薄膜の膜厚は1nm以上1000nm以下であるとよい。
[5]本発明のP1ないしP3の記載内容に基づく単一分子性有機金属(分子性金属)単結晶薄膜の製造方法は、
 所定形状の単一分子性有機金属単結晶に対して、第3の比率のアルカリ金属水酸化物水溶液を-10℃から100℃までの温度条件で添加する工程と、
 前記アルカリ金属水酸化物水溶液を静置して単結晶薄膜水溶液を作製する工程と、
 前記単結晶薄膜水溶液を用いて製膜する工程と、
 前記製膜した単結晶薄膜を洗浄する工程を備えるものである。
[6]本発明の分子性金属の単結晶薄膜の製造方法[5]において、好ましくは、所定形状の単一分子性有機金属単結晶に対して、第3の比率のアルカリ金属水酸化物水溶液を添加する工程の温度条件は、0℃から50℃までの温度条件であるとよい。
[7]本発明の分子性金属の単結晶薄膜の製造方法[5]又は[6]において、好ましくは、前記アルカリ金属水酸化物水溶液を静置する工程の温度条件は、-10℃から100℃までの温度条件であるとよく、更に好ましくは0℃から50℃までの温度条件であるとよい。
[8]本発明の分子性金属の単結晶薄膜の製造方法[5]~[7]のいずれかにおいて、好ましくは、前記単結晶薄膜水溶液を用いて製膜する工程の温度条件は、-10℃から100℃までの温度条件であるとよく、更に好ましくは0℃から50℃までの温度条件であるとよい。
[9]本発明の分子性金属の単結晶薄膜の製造方法[5]~[8]のいずれかにおいて、好ましくは、前記製膜した単結晶薄膜を洗浄する工程の温度条件は、-10℃から100℃までの温度条件であるとよく、更に好ましくは0℃から50℃までの温度条件であるとよい。
[10]本発明の分子性金属の単結晶薄膜の製造方法[5]~[9]のいずれかにおいて、好ましくは、前記単結晶薄膜水溶液を製膜する工程は、ドロップキャスティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、ラングミュア-ブロジェット成膜法、基板・粒子の表面機能化法のいずれか1種類を含むとよい。
[11]本発明の分子性金属の単結晶薄膜の製造方法[5]~[10]のいずれかにおいて、好ましくは、前記アルカリ金属水酸化物水溶液は、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液のいずれか1種類を含むとよい。
[12]本発明の分子性金属の単結晶薄膜の製造方法[11]において、好ましくは、前記アルカリ金属水酸化物水溶液のpHは、7.5以上12以下であるとよい。
[13]本発明の分子性金属の単結晶薄膜の製造方法[5]において、好ましくは、前記第3の比率は、1×10-3倍以上1×1010倍以下、さらに好ましくは2倍以上1×10倍以下、最も好ましくは2倍以上1×10倍以下であるとよい。
[14]本発明の分子性金属の単結晶薄膜の製造方法[5]~[13]において、好ましくは、前記単一分子性有機金属単結晶は、高伝導性を発現する有機金属分子粉末を粉砕し、前記有機金属分子粉末の重量に対して、沸点が100℃から250℃までの高沸点有機溶媒および、pH7.5以上の塩基性添加剤を加えた後に0℃から50℃までの温度条件で静置し、縮環テトラチアフルバレンジカルボン酸の茶褐色の針状単結晶が得られるとよい。
[15]本発明の単一分子性純有機金属単結晶薄膜の製造方法[14]において、好ましくは、前記有機金属分子は、縮環テトラチアフルバレン骨格上または縮環テトラセレナフルバレン骨格上のラジカルカチオンをプロトン欠陥によって電気的に中性することにより、化学的に安定化した分子であるとよい。
[16]本発明の分子性金属の単結晶薄膜の製造方法[15]において、好ましくは、前記有機金属分子は、縮環テトラチアフルバレンジカルボン酸(Tetrathiafulvalene-Extended Dicarboxylate、略してTED)または、そのセレン置換体である縮環テトラセレナフルバレンジカルボン酸であるとよい。
[17]本発明の分子性金属の単結晶薄膜の製造方法[16]において、好ましくは、前記縮環テトラチアフルバレンジカルボン酸粉末または縮環テトラセレナフルバレンジカルボン酸は、次の化学式で示される工程により製造されるとよい。
Figure JPOXMLDOC01-appb-C000015

[18]本発明の分子性金属の単結晶薄膜[1]~[4]において、4端子法を用いて伝導度を測定した場合、室温伝導度が1×10~1×1012S/cm、より好ましくは、1×10~1×1010S/cm、さらに好ましくは、1×10~1×10S/cmの伝導性を有するとよい。
 単一分子性有機金属(分子性金属)単結晶薄膜(単結晶性TED薄膜)は異方性を有するが、少なくとも、a軸方向及びb軸方向、いずれかにおける伝導度が上記範囲内であることが好ましい。また、両方向おける伝導度が上記範囲内であってもよい。
 さらに、P2の記載内容に基づき、課題を解決するための手段は、以下のとおりである。
[1] 合成金属(分子性金属)の単結晶薄膜であって、
 前記分子性金属が下記式(I)で表される化合物であり、
 好ましくは、波長360~830nmの光の透過率が80%以上である単結晶薄膜。
Figure JPOXMLDOC01-appb-C000016

 式(I)中、
 Xは、S、O、及びSeからなる群より選択される少なくとも1種の原子を表し、複数ある前記Xはそれぞれ同一でも異なっていてもよく、
 Rは、水素原子、又は1価の置換基を表し、複数ある前記Rはそれぞれ同一でも異なっていてもよいが、前記Rのうち少なくとも1つは、下記式(II)で表される基からなる群より選択される少なくとも1種の基であり、隣接する原子に置換する前記Rは互いに連結して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000017

 式(II)中、*は結合位置を表し、R11は、水素原子、又は、炭素数1~4個のアルキル基を表す。
[2] 前記単結晶薄膜の波長200~360nmの光の透過率が60%以上である[1]に記載の単結晶薄膜。
[3] 前記単結晶薄膜の膜厚が、1~20nmである[1]又は[2]に記載の単結晶薄膜。
[4] 前記単結晶薄膜が、式(I)で表される化合物の1~10分子層で構成されている[1]~[3]のいずれかに記載の単結晶薄膜。
[5] 前記分子性金属が下記式(III)で表される化合物である[1]~[4]のいずれかに記載の単結晶薄膜。
Figure JPOXMLDOC01-appb-C000018

 式(III)中、
 XはS又はSeの原子を表し、複数あるXはそれぞれ同一でも異なっていてもよく、
 Rは、水素原子、炭化水素基、(ポリ)アルキレンオキシ基又は(ポリ)アルキレンチオ基を表し、2つのRは、同一でも異なっていてもよく、
 R及びRのいずれか一方は、式(II)で表される基であり、他方は、それに対応するブレンステッド酸基又はその塩である。
[6] 前記分子性金属が下記式(IV)で表される化合物である[1]~[5]のいずれかに記載の単結晶薄膜。
Figure JPOXMLDOC01-appb-C000019

[7] 前記単結晶薄膜の2端子法の評価による電気伝導度が、1×10-3~1×10S/cmである[1]~[6]のいずれかに記載の単結晶薄膜。
[8] [1]~[7]のいずれかに記載の前記単結晶薄膜を備える部品であって、
 前記部品が、光学部品又は電子部品である部品。
[9] 透明電極又は光ファイバーである、[8]に記載の部品。
[10] [1]~[7]のいずれかに記載の前記単結晶薄膜の製造方法であって、
 式(I)で表される化合物である分子性金属の単結晶と、アルカリ金属水酸化物水溶液とを含む混合液を調製することと、
 前記混合液を所定時間静置することと、
 静置した前記混合液に基材を接触させ、前記基材上に前記単結晶薄膜を形成することと、
 前記基材上に形成した前記単結晶薄膜を洗浄することを含む、単結晶薄膜の製造方法。
[11] 前記混合液を静置する所定時間が、168時間以上である[10]に記載の単結晶薄膜の製造方法。
[12] 前記混合液において、前記分子性金属の単結晶に対する、前記アルカリ金属水酸化物水溶液の重量比が2~1×10である[10]又は[11]に記載の単結晶薄膜の製造方法。
[13] 前記アルカリ金属水酸化物水溶液のpHが、7.5~11である[10]~[12]のいずれかに記載の単結晶薄膜の製造方法。
[14] 前記混合液を静置することにより、前記混合液中で前記分子性金属の単結晶から、二次元方向の結晶性が維持されている単分子層の合成金属片が剥離する、[10]~[13]のいずれかに記載の単結晶薄膜の製造方法。
 さらに、P2の記載内容に基づく、課題を解決するための手段について述べると、以下のとおりである。
 本発明のP2の記載内容に基づく第1の態様に従えば、合成金属(分子性金属)の単結晶薄膜であって、前記分子性金属が後述する式(I)で表される化合物であり、波長360~830nmの光の透過率が80%以上である単結晶薄膜が提供される。
 前記単結晶薄膜の波長200~360nmの光の透過率が60%以上であってもよい。前記単結晶薄膜の膜厚が、1~20nm程度であってもよい。前記単結晶薄膜が、式(I)で表される化合物の1~10分子層程度で構成されていてもよい。
 前記分子性金属が後述する(III)で表される化合物であってもよく、または、後述する式(IV)で表される化合物であってもよい。
 前記単結晶薄膜の2端子法の評価による電気伝導度が、1×10-3~1×10S/cmであってもよい。
 本発明のP2の記載内容に基づく第2の態様に従えば、第1の態様の前記単結晶薄膜を備える部品であって、
 前記部品が、光学部品又は電子部品である部品が提供される。
 前記部品は、透明電極又は光ファイバーであってもよい。
 本発明のP2の記載内容に基づく第3の態様に従えば、第1の態様の前記単結晶薄膜の製造方法であって、式(I)で表される化合物である分子性金属の単結晶と、アルカリ金属水酸化物水溶液とを含む混合液を調製することと、前記混合液を所定時間静置することと、静置した前記混合液に基材を接触させ、前記基材上に前記単結晶薄膜を形成することと、前記基材上に形成した単結晶薄膜を洗浄することを含む、単結晶薄膜の製造方法が提供される。
 前記混合液を静置する所定時間が、168時間以上であってもよい。前記混合液において、前記分子性金属の単結晶に対する、前記アルカリ金属水酸化物水溶液の重量比が2~1×10であってもよい。前記アルカリ金属水酸化物水溶液のpHが、7.5~11であってもよい。また、前記混合液を静置することにより、前記混合液中で前記分子性金属の単結晶から、二次元方向の結晶性が維持されている単分子層の合成金属片が剥離してもよい。
 本発明のP1ないしP3の記載内容に基づく単一分子性有機金属(分子性金属)単結晶薄膜によれば、ナノスケール厚での薄膜化が可能になるため、室温電気伝導率が飛躍的に向上する。
 本発明のP1ないしP3の記載内容に基づく単一分子性有機金属(分子性金属)単結晶薄膜の製造方法によれば、応用用途に適した薄膜化が可能となり、電極を始めとする多くの電子機器において、その波及効果は極めて大きい。
 本発明のP2の記載内容に基づく合成金属(分子性金属)の単結晶薄膜は、高い電気伝導性、高い光透過性、及び極薄の薄膜性を兼ね備える。
 以下、P1ないしP3の記載内容に基づく図面を図1~図16とした。このうち、P2の記載内容に基づく図面と同一の図面については、その旨を記載した。さらに、P2の記載内容に基づく図面のうち、上記図1~図16と重複しない図面を図17~図21とした。これらの図面について簡単に説明する。
本発明の製造方法によって育成された有機金属(TED)針状単結晶の一例を示す写真である。また、実施例で作製したTED単結晶(Tetrathiafulvalene-Extended Dicarboxylate)(試料(i))の光学顕微鏡写真である(P2の図1と同じ)。 本発明の製造方法の範囲外を示すもので、有機金属(TED)針状単結晶が得られなかった比較例を示す写真である。また、実施例の項で作製したアモルファス状態のTED(試料(ii))の光学顕微鏡写真である(P2の図1と同じ)。 TED単結晶構造解析で、ユニットセル構造(単位はオングストローム)を示している。括弧内の数字は最小桁の誤差値を示す(P2の図4Aと同じ)。 TED単結晶構造解析で、b軸投影した層状構造を示している(P2の図4Bと同じ)。 TED単結晶構造解析で、a軸投影した層状構造を示している(P2の図4Cと同じ)。 TED単結晶構造解析で、分子間のπ軌道の配置図を示している(P2の図4Dと同じ)。 TED単結晶に金電極の四端子を装着した測定方法を示す図である。 図4Aに示した金電極を用いた四端子法によるTED単結晶の電気抵抗の温度依存性を示す図である。 TED単結晶の室温における反射率を示す図である。 有機金属(TED)針状単結晶(下段)と粉末体(上段)の室温における粉末X線回折パターンを示す図である。 本発明の一実施例を示すタッピングモードにより膜厚が計測された膜厚約1.6nmのTED単分子層膜のAFM画像である。 本発明の一実施例を示すタッピングモードにより膜厚が計測された膜厚約4nmのTED薄膜のAFM画像である。 本発明の一実施例を示す膜厚約5nmのTED薄膜のタッピングによる膜厚測定結果図である。 膜厚とレイヤー数(1から10レイヤー)の相関関係を示した図である。網掛け部はサンプル品質の良し悪しや測定誤差などから発生するエラーバーを示す(P2の図5Aと同じ)。 膜厚とレイヤー数(1から500レイヤー)の相関関係を示した図である(P2の図5Bと同じ)。 本発明の伝導度測定に用いた二端子法におけるサンプルと電極の配置を示す図である。 四端子法におけるサンプルと電極の配置を示す図である。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約1.6nmのTED単分子層膜の光学顕微鏡像である。 本発明の一実施例を示す両端に二端子の銀電極を装着した膜厚約8nmのTED薄膜の光学顕微鏡像である。 本発明の一実施例を示す両端に二端子の銀電極を装着した膜厚約145nmのTED薄膜の光学顕微鏡像である。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約1.6nmのTED単分子層膜の室温における電流―電圧(IV)特性である(P2の図6Aと同じ)。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約8nmのTED薄膜の室温における電流―電圧(IV)特性である(P2の図6Bと同じ)。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約145nmのTED薄膜の室温における電流―電圧(IV)特性である(P2の図6Cと同じ)。 本発明の実施例を示す二端子法により測定された室温伝導度の膜厚依存性の関係を示した図である(P2の図7とプロットが同じ)。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約1.6nmのTED単分子層膜の抵抗率の温度依存性である(P2の図8Aと同じ)。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約8nmのTED薄膜の抵抗率の温度依存性である(P2の図8Bと同じ)。 本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約145nmのTED薄膜の抵抗率の温度依存性である(P2の図8Cと同じ)。 本発明の一実施例を示す単結晶性TED単層膜のAFM像である。 本発明の一実施例を示す金電極四端子を装着した単結晶性TED単層膜の光学顕微鏡像である(点線内に単層膜が存在する)。 本発明の一実施例を示す単結晶性TED単層膜のa軸およびb軸方向の室温における電流―電圧(IV)特性である。 本発明の一実施例を示す単結晶性TED単層膜のa軸およびb軸方向の電気伝導率の温度依存性である。 実施例で作製した試料(i)及び(ii)のX線回折パターンである(P2の図3と同じ)。 実施例において室温において測定した、TED単結晶薄膜(試料S1~S3)の可視光の透過率を示す図である。 実施例において室温において測定した、TED単結晶薄膜(試料S1~S3)の可視光の反射率を示す図である。 実施例において室温において測定した、TED単結晶(試料(i))の可視光の透過率を示す図である。 実施例において室温において測定した、TED単結晶(試料(i))の可視光の反射率を示す図である。 実施例において室温において測定した、TED単結晶薄膜(試料S1~S3)の紫外光の透過率を示す図である。 実施例において室温において測定した、TED単結晶薄膜(試料S1~S3)の紫外光の反射率を示す図である。 本実施形態の分子性金属の単結晶薄膜の製造方法を説明するフローチャートである。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。このことは、各化合物についても同義である。
[合成金属(分子性金属)の単結晶薄膜]
 以下に、本実施形態の単結晶薄膜について説明する。本実施形態の単結晶薄膜は、後述する式(I)で表される化合物(以下、「化合物A」と記載する)の単結晶薄膜である。化合物Aは、テトラチアフルバレン等のフルバレン又はその縮環化合物に特定の置換基を導入した誘導体化合物であり、有機化合物でありながら、ドープ剤を添加すること無しに導電性を示す非ドープ型合成金属である。化合物Aは、その拡張されたπ共役部により2次元に分子集積したシート構造を形成する傾向があり、このことが、両性イオンラジカル種上の電子を分子配列中で非局在化させる。その結果、化合物Aは優れた導電性を有する。すなわち、化合物Aは、分子内水素結合が含むプロトン欠陥によって安定化された分子スピンを、分子間力によって自己集積化した二次元シート内に非局在化することにより、金属化しているものと推測される。
 本発明者らは、この化合物Aの単結晶を作製し、更に薄膜化することに成功した。そして、該単結晶薄膜が、深紫外光~可視光における高い透過率と、高い電気伝導度とを併せ持つことを発見した。また、化合物Aの単結晶薄膜は、アモルファス薄膜では達成できなかったナノメートルスケールの極薄の膜厚を達成し、更に、電気伝導度及び可視光の透過率がアモルファス薄膜のそれと比較して飛躍的に向上している。
 本実施形態の単結晶薄膜は、例えば、化合物Aの1~10分子層で構成されていることが好ましく、1~3分子層で構成されていることがより好ましい。また、本実施形態の単結晶薄膜の膜厚は、例えば、1~20nmが好ましく、1~10nmがより好ましい。単結晶薄膜の構成及び/又は厚さが上記範囲内であれば、深紫外光~可視光における高い透過率と、高い電気伝導度とをより実現し易くなる。
 単結晶薄膜の可視光(波長360~830nm)の透過率は、例えば、80%以上、90%以上、または98%以上であってよい。図10Aに示すように、薄膜ではない化合物Aの単結晶(長軸がマイクロメートルスケールの針状単結晶)は、可視光領域(490nm付近)に大きな吸収帯を有して赤褐色に着色しており、透明性は極めて低い。これに対して、本実施形態の単結晶薄膜は、図9Aに示すように、可視光領域に大きな吸収帯を持たず、ほぼ無色であり、高い透明性を有する。図9A及び図10Aとの比較から理解できるように、化合物Aの結晶は薄膜化により光透過スペクトルの形状が変化している。即ち、本実施形態の単結晶薄膜は、膜厚が薄いために単純に光透過量が増加したのではなく、量子効果により光透過特性が変化し、これにより、可視光領域の高い透過率を実現している。
 また、単結晶薄膜の深紫外光(波長200~360nm)の透過率は、例えば、60%以上、80%以上、または90%以上であってよい。深紫外光(DUV)において高透過率を有する材料は極めて限られており、報告されている材料は、バンドギャップの大きい軽金属元素の酸化物、フッ化物、シリカガラス等の絶縁体である。一方、本実施形態の単結晶薄膜は、深紫外光の高い透過率と、高い電気伝導度を兼ね備えている。
 本実施形態の単結晶薄膜の2端子法の評価による電気伝導度は、例えば、1×10-3~1×10S/cm、1~1×10S/cm、または、1×10~1×10S/cmであってよい。化合物Aの単結晶は、薄膜化により電気伝導度が向上し、図7に示すように、その膜厚が薄いほど、高い電気伝導度を示す。光電子分光法による分析では、不純物の混入などの外的な要因は確認されないため、グラフェンなどで見られる電子を二次元ナノスケール空間に閉じ込めることによるバンド構造の量子効果によるものと考えられる。
 本実施形態の単結晶薄膜は、化合物Aのみから構成されてもよいし、シート構造間にインターカレートした結晶化溶媒を含んでもよい。また、化合物Aは、式(I)で表される1種類の化合物から構成されることが好ましい。
[化合物A]
 本実施形態の分子性金属である合成金属(化合物A)は、下記式(I)で表される化合物又はその塩である。化合物Aが塩を形成する形態としては特に制限されないが、後述するブレンステッド酸基が(ブレンステッド酸基を複数有する場合には少なくとも1つが)塩を形成した形態であることが好ましい。
Figure JPOXMLDOC01-appb-C000020

 式(I)中、XはS、O、及び、Seからなる群より選択される少なくとも1種の原子を表し、複数ある前記Xはそれぞれ同一でも異なっていてもよく、
 Rは水素原子、又は、1価の置換基を表し、複数ある前記Rはそれぞれ同一でも異なっていてもよいが、前記Rのうち少なくとも1つは、下記式(II)で表される基からなる群より選択される少なくとも1種の基であり、隣接する原子に置換する前記Rは互いに連結して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000021

 式(II)中、*は結合位置を表し、R11は、水素原子、又は炭素数1~4個のアルキル基を表す。
 ここで、式(I)のRのうち式(II)で表される基以外の1価の置換基(以下、「置換基R′」と記載する)としては特に制限されないが、例えば、水素原子、炭化水素基(直鎖状、分岐鎖状、若しくは、環状のいずれであってもよい)、(ポリ)アルキレンオキシ基、又は(ポリ)アルキレンチオ基が挙げられる。
 上記炭化水素基の炭素数としては特に制限されないが、一般に1~30個が好ましく、1~20個がより好ましい。上記(ポリ)アルキレンオキシ基は、下記式(i)で表される基であり、アルキレン鎖R12部分の炭素数としては特に制限されないが、一般に1~30個が好ましく、1~20個がより好ましい。また、アルキレンオキシ単位の繰り返し数n1としては特に制限されないが、一般に1~30が好ましい。上記(ポリ)アルキレンチオ基は下記式(ii)で表される基であり、アルキレン鎖R13部分の炭素数としては特に制限されないが、一般に1~30個が好ましく、1~20個がより好ましい。また、アルキレンチオ単位の繰り返し数n2としては特に制限されないが、一般に1~30が好ましい。尚、式(i)及び(ii)において、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000022
 上記式(II)で表される基は、ブレンステッド酸基の共役塩基である。ブレンステッド酸基とは、ブレンステッド酸としての機能を有する置換基を意味し、上記化合物Aが水素結合により自己集積化したネットワーク(水素結合ネットワーク)、又は分子内水素結合において、プロトン欠陥を生じさせる機能を有する置換基を意味する。
 また、式(I)のRのうち、1価の置換基R′は、ブレンステッド酸基であってもよい。ブレンステッド酸基としては、例えば、カルボキシ基、スルホン酸基、リン酸基、*-P(=X)OR14OHで表される基(ただし、Xは、酸素原子、又は硫黄原子を表し、R14は、水素原子、又は炭素数1~4のアルキレン基を表し、*は結合位置を表す。)を表す。
 化合物Aにおけるブレンステッド酸基は塩を形成した状態でもよく、この場合、対イオンとしては、特に制限さなれないが、アンモニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、又は、カリウムイオン)、及び、有機カチオン(グアニジウムイオン、ピリジニウムイオン、イミダゾリウムイオン、及び、アニリニウムイオン等)が挙げられる。また、ブレンステッド酸基は、ヒドロキシアミン塩を形成した状態であってもよい。
 化合物Aがより優れた安定性を有する点では、式(I)において、Rのうち1つが式(II)で表される基であり、Rのうち他の1つ以上が、ブレンステッド酸基又はその塩であることが好ましく、その場合、隣接する原子に置換するRのうち一方が式(II)で表される基であり、他方がブレンステッド酸基又はその塩であることがより好ましい。
 化合物Aの好適形態としては、例えば、以下の式(III)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 式(III)中、XはS又はSeの原子を表し、複数あるXはそれぞれ同一でも異なっていてもよい。Rは、式(I)の1価の置換基R′の形態と同様であり、2つのRは、同一でも異なっていてもよい。R、及びRのいずれか一方は、式(II)で表される基であり、他方は、それに対応するブレンステッド酸基又はその塩である。典型的には、Rが*-COOであり、Rが*-COOH、*-COONH 、又は、*-COOLi(いずれも*は結合位置を表す)である場合が挙げられる。
 化合物Aのさらなる好適形態としては、例えば、以下の式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024

 なお、以下では、上記式(IV)で表される化合物を「TED」(Tetrathiafulvalene-Extended Dicarboxylate)とも記載する。
 化合物Aの合成方法としては特に制限されず、公知の方法が適用できる。化合物Aの合成方法としては、例えば、特許文献1及び2に記載の方法が挙げられる。
[単結晶薄膜の用途]
 上述したように、本実施形態の合成金属(分子性金属)の単結晶薄膜は、極薄の薄膜性、高い電気伝導度、及び深紫外光~可視光領域における高い光透過率を兼ね備える。このため、光学部品、電子部品等の様々なデバイスへ応用可能である。例えば、本実施形態の合成金属の単結晶薄膜は、透明電極の電極材料に好適である。また、本実施形態の単結晶薄膜は、深紫外光(DUV)に対して高い透過率を有することから、DUV光ファイバー等のDUV透過材料に好適である。
 更に、本実施形態に係る単結晶薄膜は、例えば、電線、情報伝達媒体、電子デバイス、電子素子に利用する電極、スピントロニクス素子、情報通信素子、メモリ素子、磁気シールド、医療用磁気シールド、磁石、磁性半導体、電界効果トランジスタ(FET)、磁石入り絆創膏、ハードディスクドライブのヘッド、高感度再生用GMR(巨大磁気抵抗効果)ヘッド、固体磁気メモリ、磁気抵抗メモリ(MRAM)、ファイバー通信用光アイソレータ、磁界で色が変わる材料、伝導電子スピンと原子磁気モーメントの相互作用を利用した材料等に使用可能である。
 また、本実施形態の単結晶薄膜を備えた透明電極は、タッチパネル、表示装置、ディスプレイ、電子デバイス、液晶ディスプレイ、薄型テレビ、プラズマディスプレイ、電子インク、有機EL(エレクトロルミネッセンス)におけるアノード(正孔注入層)、太陽電池、帯電防止剤、電磁波シールド材料、光学コーティング剤、赤外線反射材、ガスセンサー、反射防止膜、表面処理剤、半導体レーザー、光学デバイス、光学素子、曲げ耐性を利用したデバイス、電解コンデンサ、電子機器、リチウムイオン電池の電極、及び、発光素子等にも適用可能である。
[単結晶薄膜の製造方法]
 本実施形態の単結晶薄膜の製造方法は特に限定されないが、例えば、以下に説明する方法により製造できる。
 まず、(a)化合物Aの単結晶と、(b)アルカリ金属水酸化物水溶液とを含む混合液を調製し、(図12のステップS1)、次に、調製した混合液を所定時間静置する(図12のステップS2)。本発明者らは、上記ステップを経ることで、混合液中で化合物Aの単結晶から、合成金属片(二次元結晶)が層状に剥離すること(exfoliation)を発見した。化合物Aの単結晶から剥離される合成金属片は、二次元方向の結晶性が維持されている、極めて薄い単分子層である。上記ステップを経ることで化合物Aの単結晶から合成金属片が剥離する理由(メカニズム)は定かではないが、弱い分子間力(van der Waals力)により集積した原子(分子)シートが層状に積層したグラフェンや遷移金属ダイカルコゲナイドなどが単層膜に剥離する多くの例に見られるように、バルク単結晶構造の強い二次元性がこの現象を引き起こすものと推測される。尚、このメカニズムは推測であり、本発明を何ら限定するものではない。
(a)化合物Aの単結晶
 化合物Aの単結晶は、公知の方法により製造してよい。例えば、非特許文献2に開示される以下に説明する方法で製造してもよい。まず、化合物Aを合成する。化合物Aの合成方法は特に限定されず、例えば、特許文献1又は2に開示する方法により合成してよい。次に、合成した粉末状の化合物A(アモルファス)、高沸点有機溶媒、及び塩基性添加剤を含む溶液を調製する。調製した溶液を所定時間静置することにより、溶液中に化合物Aの針状単結晶が析出する。析出した単結晶を濾過し、水洗、乾燥を経て、最終生成物としての化合物Aの単結晶が得られる。
 化合物Aの単結晶の製造方法において、高沸点有機溶媒としては、沸点が100℃~250℃の溶媒が好ましく、例えば、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等が挙げられる。これらの溶媒は単独で用いてもよいし、2種類以上を混合して用いてもよい。塩基性添加剤としては、ヒドロキシアミン水溶液、アンモニア水溶液、ジメチルアミン水溶液等を用いることができる。これらの塩基性添加剤は単独で用いてもよいし、2種類以上を混合して用いてもよい。塩基性添加剤のpHは、7.5以上が好ましい。粉末状の化合物A(アモルファス)の重量に対する、高沸点有機溶媒の重量の比率は、例えば、30~400としてよい。粉末状の化合物A(アモルファス)の重量に対する、塩基性添加剤の重量の比率は、例えば、5~300としてよい。
(b)アルカリ金属水酸化物水溶液
 アルカリ金属水酸化物水溶液としては、化合物Aの単層剥離促進、製造コスト低減等の観点から、水酸化リチウム、水酸化ナトリウム、水酸化カリウムの水溶液が好ましく、水酸化リチウムの水溶液がより好ましい。これらは単独で用いてもよいし、2種類以上を混合して用いてもよい。アルカリ金属水酸化物水溶液のpHは、それと混合する化合物Aの量に応じて適宜調整することが可能であるが、化合物Aの単層剥離を促進する観点から、例えば、pH7.5~11が好ましく、pH9~11がより好ましい。アルカリ金属水酸化物水溶液中の濃度は特に限定されず、水溶液が所望のpHを得られるように適宜調整してよい。尚、化合物Aは酸性物質であるため、化合物Aとの混合により、アルカリ金属水酸化物は中和され、水溶液のpHは上昇する。上述したアルカリ金属水酸化物水溶液のpHの好ましい範囲は、化合物Aとの混合前のpHを意味する。
 混合液において、化合物Aの単結晶に対する、アルカリ金属水酸化物水溶液の重量比は特に限定されず適宜調整できるが、化合物Aの単層剥離を促進する観点から、例えば、2~1×10としてよい。
 調製した混合液を静置する時間(所定時間)は特に限定されないが、化合物Aの単層剥離を促進する観点から、例えば、1週間(168時間)以上、1週間~1ヶ月、又は、1ヶ月~6ヶ月としてよい。静置中の混合液の温度は特に限定されず、例えば、-10℃~100℃、0℃~50℃、又は室温であってよい。
 次に、静置した混合液に基材を接触させ、基材上に単結晶薄膜を形成する(図12のステップS3)。基材は、特に限定されず、利用されるデバイスに応じて適宜選択できる。例えば、基材も含めて単結晶薄膜が透明電極等に利用する場合、基材は紫外光及び/又は可視光に対して透明である(高い透過率を有する)ことが好ましい。基材としては、例えば、ガラス基板、石英基板等が挙げられる。単結晶薄膜の成膜方法(混合液に基材を接触させる方法)は特に限定されず、ドロップキャスティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、ラングミュア-ブロジェット成膜法、基板・粒子の表面機能化法等を適宜選択できる。静置後の混合液中には、単結晶から剥離した合成金属片が分散している。この合成金属片が基板上に堆積することにより、単結晶薄膜が形成される。尚、混合液を基材に接触させる前に、混合液に水等の溶媒を加えて合成金属片の濃度を調整(希釈)してもよい。希釈することで、混合液中に合成金属片がより均一に分散し易くなる。基材に接触させる混合液の温度は、室温付近が好ましい。
 次に、基材上に形成した単結晶薄膜を洗浄する(図12のステップS4)。洗浄により、単結晶薄膜に付着している不要なアルカリ成分等を除去する。洗浄方法は特に限定されないが、例えば、基板上に配置した単結晶薄膜を水で洗浄する方法が挙げられる。
 以上説明した単結晶薄膜の製造方法は、製造工程が簡易であり、単結晶薄膜を備える製品の歩留まりを高めることができる。また、単結晶薄膜の膜厚は、例えば、以上説明した製造方法の製造条件を適宜変更することで調整可能である。該製造方法は、例えば、印刷を利用した電極の製造(プリンタブル電極の製造)等に好適である。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 なお、以下の実施例では、P1ないしP3の記載内容に基づく実施例について詳述した後、次いで、P2の記載内容に基づく実施例について詳述する。
[I.P1ないしP3の記載内容に基づく実施例]
[例1]
 以下、単一分子性有機金属(分子性金属)単結晶薄膜の一例として、縮環テトラチアフルバレンジカルボン酸(Tetrathiafulvalene-Extended Dicarboxylate,以下、略してTEDともいう)の単結晶薄膜の育成法について説明する
<単結晶の育成法>
 ジメチルスルホキシド(DMSO)とヒドロキシルアミンは、それぞれ和光純薬とアルドリッチから購入した。TEDは、単一分子性有機金属の合成法を示す次の化学式に従って合成された。
Figure JPOXMLDOC01-appb-C000025
 TEDの粉末結晶(1mg)を乳鉢で粉砕し、DMSO(160μL)に溶解した。溶液の酸性度を制御するために、ヒドロキシルアミン(50wt%溶液、50μL)を溶液に加えた。溶液を密閉バイアル容器に入れ、室温で数か月間保管した。成長した単結晶は濾過により回収し、TED重量の10倍量ほどの水で洗浄した後に、自然乾燥した。茶褐色針状単結晶は、400μm×20μm×10μmの典型的な寸法で得られる。(例えば、図1参照)。
 TED粉末を粉砕し、重量に対してある特定の比率の高沸点有機溶媒および、塩基性添加剤を加えた後に0℃から50℃までの温度条件で長期間静置することにより茶褐色の針状単結晶を得る。成長した単結晶を濾過し、適量の水にて洗浄した後に乾燥してTEDの針状単結晶を得る。
<単結晶の物性評価>
 TED粉末はナノスケール片であるが、例1の方法により結晶成長を行った場合、長軸がサブミリスケールの針状単結晶が得られる(図1)。
 表1は、本発明における単結晶成長条件の一例を示す。表内の数値は、基質重量を1とした時のそれぞれの使用重量の比を示す。ここで、溶媒は、左からジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、ヒドロキシアミン(NHOH)、アンモニア(NH3)、ジメチルアミン(NH(Me))である。
Figure JPOXMLDOC01-appb-T000026
 一方で、本発明で示す好適な条件(例えば表1)での成長を行わない場合は、単結晶が成長せず、粉体のままである(図2)。
 針状単結晶は、X線結晶解析にて2分子を非対称単位とした周期構造を取り、a、b軸方向に積層した分子シートから成る層状結晶構造である。
 図3Aは、TED単結晶構造解析で、ユニットセル構造(単位はオングストローム)を示している。括弧内の数字は最小桁の誤差値を示す。図3Bは、TED単結晶構造解析で、b軸投影した層状構造を示している。図3Cは、TED単結晶構造解析で、a軸投影した層状構造を示している。図3Dは、TED単結晶構造解析で、分子間のπ軌道の配置図を示している。
 結晶格子は:P2/m,a=3.7464(2)Å,b=11.8946(6)Å,c=20.2094(11)Å,b=93.506(2)Å,V=898.88(8)Å,R=5.38%.(X線構造解析は113Kにて行った。)括弧内の数値は、X線構造解析における最小桁の誤差値を示す。
 図3Aにおいて、灰色点線と黒色点線はそれぞれ、オングストローム単位で示されたS…S接触の分子間距離と分子内水素結合を示す。図3B、Cにおいて、灰色網掛け部は、1分子層を示す。図3Dにおいて、π軌道の重なり方は、それぞれa軸に沿ってπ…πスタックにより縦方向に重なり、b軸に沿ってS…S接触により横方向に重なっている。
 図4は、金電極を用いた四端子法によるTED単結晶の電気抵抗の温度依存性を示す図で、図4Aは四端子法によるTED単結晶の金電極接触部位の顕微鏡拡大図、図4BはTED単結晶の電気抵抗の温度依存性を示す図である。電気抵抗ρは、絶対温度Tの三乗に比例している。常温である300Kでは、電気抵抗ρは約5×10-3[Ω・cm]であり、液化天然ガスLNGの沸点温度である113K付近では約8~12×10-4[Ω・cm]であり、液体窒素の沸点温度である77Kでは約8×10-4[Ω・cm]であり
、液体ヘリウムの沸点温度である4K付近では約2.5~5×10-4[Ω・cm]となっている。
 図5は、TED単結晶の室温における反射率を示す図である。波数範囲が遠赤外線から中赤外線に相当する1~4×10[cm-1]では反射率が30~40%であるが、波数範囲が近赤外線の範囲に含まれる4~12×10[cm-1]では反射率が0~2%となっている。
 図6は、有機金属(TED)針状単結晶(下段)と粉末体(上段)の室温における粉末X線回折パターンを示す図である。単結晶では、2θが27°付近に鋭いピークがある。これに対して、粉末体では25°~28°の領域付近に高いピークがある。
<X線結晶解析>
 単結晶の結晶構造解析は、Rigaku SaturnCCDシステムを用いて113Kにて収集された高解像度の回折画像に基づく1922の反射を使用して行われた。水素原子を除くすべての原子は非等方的に決定された。
[例2]
<単結晶薄膜の調製法>
 次に、単結晶(おおよそ400×20×10μmサイズ)1つに対して、アルカリ金属水酸化物水溶液として、pH7.5からpH12に調整した温度0℃から50℃までの水酸化リチウム水溶液(0.5μL)を室温で添加する。
 この溶液を少なくとも一週間以上静置する。
 その後、水を大過剰量(50μL)添加して、10分静置する。
 TED単結晶薄膜水溶液をガラス基板の上にドロップキャストした後、自然乾燥後、50℃に加熱した水(50μL)により2回洗浄した後に20分間自然乾燥して目的とする金属薄膜を得た。
 膜厚の評価は、レーザー顕微鏡を用いた計測または、原子間力顕微鏡(AFM)によって行った。
<膜厚評価>
 単結晶薄膜の膜厚評価は大気中で原子間力顕微鏡(AFM)(Bruker model MultiMode 8)およびシリコンカンチレバー(SCANASYST-AIR)またはナノサーチ顕微鏡(島津製作所 SFT3500)を用いて行った。例2の方法により作製された膜厚の異なる3種のナノスケール薄膜についてAFM測定を用いて表面の様子を観察した。タッピングモードを用いて膜厚を決定した。単分子層膜(約2nm厚)を含む様々なナノスケール単結晶性薄膜が得られた確認された。
 図7Aは、本発明の一実施例を示すタッピングモードにより膜厚が計測された膜厚1から3nmのTED単分子層膜のAFM画像で、左側の画像は探針の走査領域、右側上部は高さのプロフィール図、右側下部はヒストグラムである。下側の表は、探針の走査線上の数値データを表している。図7Bは、膜厚約4nmのTED薄膜のAFM画像である。図7Cは、膜厚約5nmのTED薄膜のAFM画像である。
 図7Dは、膜厚とレイヤー数(1から10レイヤー)の相関関係を示した図である。網掛け部はサンプル品質の良し悪しや測定誤差などから発生するエラーバーを示す。図7Eは、膜厚とレイヤー数(1から600レイヤー)の相関関係を示した図である。
<I-V特性評価>
 図8Aは、本発明の伝導度測定に用いた二端子法におけるサンプルと電極の配置を示す図である。図において、測定対象のサンプルの両端には、プラス極とマイナス極の端子として、銀電極又は金電極が設けられている。プラス極の銀電極には、電位のプラス極と電流のプラス極が接続されている。二端子法において測定される抵抗値は、サンプル自身と、サンプル-銀電極間の接合部から発生する接触抵抗の両方の寄与を含むものであるが、サンプルの抵抗値の概略値を見積もることや温度依存性を確認する目的では十分に信頼に足る方法である。
 図8Bは、四端子法におけるサンプルと電極の配置を示す図である。四端子法では、サンプルと電圧計のリード線との間の接触抵抗R2、R3は電圧計の内部抵抗RVに比べ無視できるほど小さいので、接触抵抗R2、R3の影響は考えなくとも良い。サンプルにかかっている電圧を電圧計で読む際には、サンプルと電流計のリード線との間の接触抵抗R1、R4はサンプルにかかっている電圧を電圧計で読む際には影響しないので、こちらも無視できる(リード線そのものの抵抗も含む)。
 接触抵抗はサンプルとの接合に依存するが、例えば概略値として0~100Ω程度のオーダーであることが多い。
 酸化チタンにより絶縁コーティングされたシリコン基板上にドロップキャストされた3種類の膜厚の異なるTED単結晶薄膜に対して二端子法の測定を行うため(図8A)、電極プローブとして金ワイヤー(0.01mmΦ)を、接触点に銀ペースト(Dupont 4922N)を用いての長軸方向に2本装着した(図9A-図9C)。
 印加した電流値に対する電圧値の変化をHeクライオスタット内で300Kにて、ソースメーター(KEITHLEY 2450)およびナノボルトメーター(KEITHLEY 2182A)により検出した。いずれもIV特性は直線的であり、電極とオーミック接触を有することが確認された。(図10A-図10C)
<抵抗率(伝導度)測定>
 前述のI-V特性評価の方法で電極付けおよび電気測定がなされた膜厚の異なる3種のTED薄膜に対して、室温における伝導度測定を行い、膜厚に対する伝導度の変化をプロットした。図11は、本発明の実施例を示す室温伝導度の膜厚依存性の関係を示した図で、横軸は膜厚、縦軸は電気伝導度[S/cm]である。膜厚1.6nmでは電気伝導度2700[S/cm]、膜厚8nmでは電気伝導度520[S/cm]、膜厚145nmでは電気伝導度330[S/cm]である。
 二端子測定であるためサンプル―電極間での接触抵抗を含むが、膜厚が薄いほど伝導度が高い傾向が確認された。
 図12Aは、本発明の一実施例を示す両端に銀電極二端子を装着した膜厚約1.6nmのTED単分子層膜の抵抗率の温度依存性である。図12Bは、両端に銀電極二端子を装着した膜厚約8nmのTED薄膜の抵抗率の温度依存性である。図12Cは、両端に銀電極二端子を装着した膜厚約145nmのTED薄膜の抵抗率の温度依存性である。
 図12A-図12Cは、前述のI-V特性評価の方法で電極付けおよび電気測定がなされた膜厚の異なる3種のTED薄膜の抵抗率の温度依存性を示している。ここで、縦軸は抵抗率(Ωcm)、横軸は温度(K)であり、いずれも測定した温度範囲において抵抗率が温度に対して単調に減少する金属伝導挙動を示した。
<4端子法を用いた測定>
 測定用試料として、a軸方向の大きさが103μm、b軸方向の大きさが32μmであり、原子間力顕微鏡(AFM)によって計測した膜厚が1.82nm(図13参照)である単結晶性TED単層膜を用意した。図14に示すように、測定用試料に対して、a軸方向、b軸方向それぞれに電流端子(I ,I ,I ,I )、電圧端子(V ,V ,V ,V )を配置した。電流端子及び電圧端子は金電極であり、インクジェットプリンタにより、金ナノ粒子を分散させた水溶性インクを用いて形成した。この時の各電極間の接触抵抗は、133Ω~7.7kΩであり(表2参照)、図15に示すように、±500mAの電流に対して電圧はオーミック挙動を示した。
Figure JPOXMLDOC01-appb-T000027
 単結晶性TED単層膜は異方性があるため、a軸方向、b軸両方向について、500mAの電流を印加して4端子測定を行った。室温の抵抗率(ρ)は3.4nΩcm(a軸方向)、29.3nΩcm(b軸方向)で、伝導率(σ)は0.29GS/cm(a軸方向)、34MS/cm(b軸方向)であった。一般に、金の抵抗率は2.4mΩcm(20℃)、伝導率は0.42MS/cm(20℃)程度と知られているので、単結晶性TED単層膜は金よりも室温で100~1000倍近く伝導率が高い。また、これは既知の伝導性物質のうち、常温常圧下で最も高い伝導率である。また、図16に示すように、伝導率の温度依存性はa軸方向、b軸方向共に金属的挙動を示した。尚、本測定に用いた試料以外の試料も、同サイズの単結晶性TED単層膜であって、電極が良好に装着され、その接触抵抗が表2と同等の場合は、図16と類似した電気特性を示した。
[II.P2の記載内容に基づく実施例]
[化合物Aの単結晶]
1.TEDの合成
 特許文献2の段落0105~0121の記載を参照して、上述の式(IV)で表される化合物TEDを合成した(化合物Aに該当する。)。合成した化合物の構造は、H-NMR(Nuclear Magnetic Resonance)、及び、飛行時間形質量分析計(エレクトロスプレーイオン化)を用いて確認した。
2.TED単結晶の作製(試料(i)及び(ii))
(1)試料(i)
 合成したTED粉末(1mg)を乳鉢で粉砕し、高沸点有機溶媒であるジメチルスルホキシド(DMSO、160μL)に溶解し、そこに塩基性添加剤であるヒドロキシルアミン(50wt%溶液、50μL)を加えて溶液を調製した。その後、溶液を密閉バイアル容器に入れ、室温で数か月間静置した。静置後の溶液中には、析出物が認められた。析出物を濾過により回収し、回収物の重量の10倍量ほどの水で洗浄した後に自然乾燥し、茶褐色の試料(i)を得た。
(2)試料(ii)
 ジメチルスルホキシド(DMSO、160μL)に対する、ヒドロキシルアミン(50wt%溶液)の比率を1重量%とした以外は、試料(i)と同様の方法で、試料(ii)を作製した。
3.TED単結晶の物性評価
(1)光学顕微鏡観察、及びX線回折分析(XRD分析)
 試料(i)及び(ii)の光学顕微鏡観察を行った。合成したTED粉末はナノメートルスケール片であったが、TED粉末に上述の処理を施した試料(i)は、長軸がマイクロメートルスケール(400μm×20μm×10μm程度)の針状結晶に成長した(図1参照)。一方、試料(ii)は、処理前のTED粉末と同様の外観であった(図2参照)。
 次に、試料(i)及び(ii)のX線回折分析(XRD分析)を行った。図17に、試料(i)(下段)と試料(ii)(上段)のX線回折パターンを示す。試料(i)では、2θが27°付近に鋭いピークが認められた。一方、試料(ii)では、25°~28°の領域付近にピークが認められるものの、全体的にブロードなパターンであった。
 以上の光学顕微鏡観察及びXRD分析から、試料(i)はTEDの単結晶であり、試料(i)はアモルファス状態のTEDであることが確認できた。
(2)TED単結晶のX線結晶解析
 X線結晶解析により、試料(i)(TED単結晶)の結晶構造解析を行った。結晶構造解析は、Rigaku SaturnCCDシステムを用いて113Kにて収集された高解像度の回折画像に基づく1922の反射を使用して行った。水素原子を除くすべての原子は非等方的に決定された。
 構造解析結果を、図3A~図3Dに示す。TED単結晶は、2分子を非対称単位とした周期構造を取り、a、b軸方向に積層した分子シートから成る層状結晶構造であることが確認された。図3Aにおいて、破線はS…S接触の分子間距離と分子内水素結合を示す。図3B、及び図3Cにおいて、灰色網掛け部は、1分子層を示す。図3Dに示すように、π軌道の重なり方は、それぞれa軸に沿ってπ…πスタックにより縦方向に重なり、b軸に沿ってS…S接触により横方向に重なっている。TEDの結晶格子は、次の値を取る。P2/m,a=3.7464(2)Å,b=11.8946(6)Å,c=20.2094(11)Å,β=93.506(2)Å,V=898.88(8)Å,R=5.38%。括弧内の数値は、X線構造解析における最小桁の誤差値を示す。
4.TED単結晶の作製(試料1~20)
 溶液に含有される高沸点有機溶媒、及び塩基性添加剤の種類及び比率を変更した以外は、上述した試料(i)と同様の方法により、試料1~20を調製した。試料1~20の調製に用いた溶媒の種類、比率を表3に示す。
 表3内の数値は、TED粉末の重量を1とした時のそれぞれの溶媒の重量比率を示す。表3中の高沸点有機溶媒、塩基性添加剤は、以下を意味する。
  DMSO:ジメチルスルホキシド
  DMF:ジメチルホルムアミド
  NMP:N-メチルピロリドン
  NHOH:ヒドロキシアミン水溶液
  NH:アンモニア水溶液
  NH(Me):ジメチルアミン水溶液
Figure JPOXMLDOC01-appb-T000028
 表3に示す試料1~20について、上述の試料(i)及び(ii)と同様に光学顕微鏡観察、XRD分析を行った。この結果、試料1~20も、TED単結晶であることが確認できた。
[TED単結晶薄膜]
1.TED単結晶薄膜の作製
 表4に示す膜厚がそれぞれ異なる試料S1~S5を以下に説明する方法により作製した。TEDの単結晶(上述の試料(i)、おおよそ400×20×10μmサイズ)に、アルカリ金属水酸化物水溶液として、pH9~11の水酸化リチウム水溶液(0.5μL)を添加して混合液を調製した。混合液を室温で、少なくとも一週間以上静置した。静置後、水を大過剰量(50μL)添加して、更に10分静置した。10分間の静置後、混合液をガラス基板の上にドロップキャストした。自然乾燥後、50℃に加熱した水(50μL)により2回洗浄した。洗浄後、20分間自然乾燥して目的とするナノスケール単結晶薄膜(試料S1~S5)を得た。
 膜厚の測定は、原子間力顕微鏡(AFM)(Bruker model MultiMode 8)、シリコンカンチレバー(SCANASYST-AIR)、またはナノサーチ顕微鏡(島津製作所 SFT3500)を用いて行った。
 また、TED単結晶のX線結晶解析結果に基づいて計算した、TED単結晶薄膜の膜厚とレイヤー数(分子層数)との相関関係を図7D及び図7Eに示す。図7D及び図7Eを参照して、試料S1~S5の単結晶薄膜のレイヤー数を求め、表4に示す。
Figure JPOXMLDOC01-appb-T000029
2.TED単結晶薄膜の電気特性評価
 以下に説明するTED単結晶薄膜の電気特性評価は、評価試料が小さいため、小さい試料でも測定可能な2端子法を用いて行った。2端子法により測定される抵抗値は、試料自身と、試料-電極間の接合部から発生する接触抵抗の両方の寄与を含むものであるが、2端子法は、試料の抵抗値の概略値を見積もることや、温度依存性を確認する目的では十分に信頼に足る方法である。
(1)電圧-電流特性(I-V特性)
 試料S1(1.6nm)、試料S4(8nm)、及び試料S5(145nm)について、I-V特性を2端子法により評価した。より詳細には、印加した電流値に対する電圧値の変化をHeクライオスタット内で300Kにて、ソースメーター(KEITHLEY 2450)およびナノボルトメーター(KEITHLEY 2182A)により検出した。結果を図10A~図10Cにそれぞれ示す。試料S1、S4及びS5のいずれのI-V特性も直線的であり、電極とオーミック接触を有することが確認された。
(2)電気伝導度
 試料S1(1.6nm)、試料S4(8nm)、及び試料S5(145nm)について、室温における電気伝導度を2端子法により評価した。結果を表4に示す。この測定結果に基づき、膜厚に対する電気伝導度の変化を図11に示す。即ち、図11のグラフは、室温におけるTED単結晶薄膜の電気伝導度の膜厚依存性を示す。図11から理解できるように、TED単結晶薄膜の膜厚が薄い程、電気伝導度が高くなる傾向が確認された。
 尚、上述したように電気電導度の評価には2端子法を用いたが、4端子法を用いた場合、より高い値(例えば、2桁程高い値)が得られると推測される。
(3)電気抵抗率の温度依存性
 試料S1(1.6nm)、試料S4(8nm)、及び試料S5(145nm)について、電気抵抗率の温度依存性を2端子法により評価した。結果を図12A~図12Cに示す。試料S1、S4及びS5のいずれも、測定した温度範囲において、温度の低下に対して、抵抗率が単調に減少する金属伝導挙動を示した。
3.TEDの単結晶薄膜の光学特性評価
(1)可視光の透過率、反射率
 試料S1(単分子層)、試料S2(2分子層)、及び試料S3(3分子層)について、可視光(波長450~750nm)の透過率及び反射率を測定した。結果を図18A及び図18Bにそれぞれ示す。図18Aには、比較のため、併せてグラフェン(単層)の可視光の透過率も示す。更に、比較のため、薄膜ではない化合物Aの単結晶(針状単結晶、上述の試料(i))の透過率及び反射率を測定した。結果を図19A及び図19Bにそれぞれ示す。可視光の透過率及び反射率の測定は室温で、光源としてキセノン光源(朝日分光株式会社製、MAX-303,UV-VISミラーモジュール)を用いて行った。また、試料サイズが小さいため、試料S1、試料S2、及び試料S3の測定には100倍の対物レンズを用い、試料(i)の測定には20倍の対物レンズを用いた。反射率はガラスに乗った薄膜上のものである。反射率は、ガラス基板上の薄膜試料の位置で測定し、ガラス基板の測定値(と屈折率)から補正したものである。
 図18Aに示すように、試料S1(単分子層)、試料S2(2分子層)の可視光透過率は98%以上であり、単層グラフェンの透過率よりも高かった。試料S3(3分子層)の可視光透過率も96%以上と高い値を示した。また、図18Bに示すように、試料S1~S3の可視光反射率は6%以下であった。これは、一般的な金属と異なり、ナノスケール単結晶薄膜(試料S1~S5)ではプラズマ端が可視光領域外に存在するためである。
 グラフェンは共有結合性シート(膜)であり、そのバンド構造から単層であっても可視光領域に大きな吸収帯を有する。一方、試料S1~S3は非共有結合性シート(膜)であり、可視光領域に大きな吸収帯を持たず、更にプラズマ端が可視光領域に無いため、グラフェンを上回る透明性を実現できたと推測される。
 一方、図19Aに示すように、試料(i)(針状単結晶)の可視光透過率は50%以下と低かった。また、可視光領域に大きな吸収帯を有して赤褐色に着色していた。図18Aと図19Aとの比較から、化合物Aの結晶は薄膜化により、透過率が向上する共に可視光領域の大きな吸収帯が消失し、無色化したことが確認できた。また、図19Bに示すように、試料(i)の可視光反射率は10%以下であった。
(2)紫外光の透過率、反射率
 試料S1(単分子層)、試料S2(2分子層)、及び試料S3(3分子層)について、紫外光(波長200~400nm)の透過率及び反射率を測定した。結果を図20A及び図20Bにそれぞれ示す。紫外光の透過率及び反射率の測定は、顕微紫外可視近赤外分光光度計(日本分光株式会社製、MSV-5700)を用いて行った。
 図20Aに示すように、試料S1(単分子層)、試料S2(2分子層)の紫外光透過率は90%以上であり、試料S3(3分子層)の紫外光透過率も80%と高かった。また、図20Bに示すように、試料S1~S3の紫外光反射率は12%以下であった。これらの結果から、試料S1~S3が深紫外光領域(波長200~360nm)に大きな吸収帯を持たず、即ち透明であり、この領域での透過率、反射率がガラスと同程度であることが確認できた。
 本発明のP1ないしP3の記載内容に基づく単一分子性有機金属(分子性金属)単結晶薄膜としてのTED薄膜は、高い伝導性と極薄の薄膜性を兼ね備えた理想的な電極材料であり、透明電極と始めとする様々な電極材料に好適である。
 本発明のP1ないしP3の記載内容に基づく単一分子性有機金属(分子性金属)単結晶薄膜の製造方法は、例えばドロップキャストのみを用いて成膜が可能であり、製造工程が簡単であると共に、製品の歩留まりを高めることが可能であり、例えばプリンタブル電極の産業利用の推進に貢献する。
 本発明のP2の記載内容に基づく合成金属(分子性金属)の単結晶薄膜は、高い電気伝導性、高い光透過性、及び極薄の薄膜性を兼ね備える。本発明の合成金属の単結晶薄膜は、例えば、透明電極を始めとする様々な電極材料に好適である。

Claims (20)

  1.  下記一般式で表される群から選択されるいずれかの化合物(式中、R、R、R、R及びR’は同一であっても異なっていてもよい。)である分子性金属の単結晶薄膜。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004
  2.  下記一般式で表される化合物である分子性金属の単結晶薄膜。
    Figure JPOXMLDOC01-appb-C000005
  3.  1×10-3~1×10S/cmの電気伝導性を有する請求項1又は2に記載の単結晶薄膜。
  4.  膜厚が、1nm以上1000nm以下である請求項1~3のいずれか一項に記載の単結晶薄膜。
  5.  4端子法を用いて電気伝導度を測定した場合に、1×10~1×1012S/cm電気伝導性を有する請求項1~4のいずれか一項に記載の単結晶薄膜。
  6.  前記分子性金属が下記式(I)で表される化合物である請求項1~5のいずれか一項に記載の単結晶薄膜。
    Figure JPOXMLDOC01-appb-C000006

     式(I)中、
     Xは、S、O、及びSeからなる群より選択される少なくとも1種の原子を表し、複数ある前記Xはそれぞれ同一でも異なっていてもよく、
     Rは、水素原子、又は1価の置換基を表し、複数ある前記Rはそれぞれ同一でも異なっていてもよいが、前記Rのうち少なくとも1つは、下記式(II)で表される基からなる群より選択される少なくとも1種の基であり、隣接する原子に置換する前記Rは互いに連結して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000007

     式(II)中、*は結合位置を表し、R11は、水素原子、又は、炭素数1~4個のアルキル基を表す。
  7.  前記単結晶薄膜の波長360~830nmの光の透過率が80%以上である請求項1~6のいずれか一項に記載の単結晶薄膜。
  8.  前記単結晶薄膜の波長200~360nmの光の透過率が60%以上である請求項1~7のいずれか一項に記載の単結晶薄膜。
  9.  前記単結晶薄膜の膜厚が、1~20nmである請求項1~8のいずれか一項に記載の単結晶薄膜。
  10.  前記単結晶薄膜が、式(I)で表される化合物の1~10分子層で構成されている請求項1~9のいずれか一項に記載の単結晶薄膜。
  11.  前記分子性金属が下記式(III)で表される化合物である請求項1~10のいずれか一項に記載の単結晶薄膜。
    Figure JPOXMLDOC01-appb-C000008

     式(III)中、
     XはS又はSeの原子を表し、複数あるXはそれぞれ同一でも異なっていてもよく、
     Rは、水素原子、炭化水素基、(ポリ)アルキレンオキシ基又は(ポリ)アルキレンチオ基を表し、2つのRは、同一でも異なっていてもよく、
     R及びRのいずれか一方は、式(II)で表される基であり、他方は、それに対応するブレンステッド酸基又はその塩である。
  12.  前記分子性金属が下記式(IV)で表される化合物である請求項1~11のいずれか一項に記載の単結晶薄膜。
    Figure JPOXMLDOC01-appb-C000009
  13.  前記単結晶薄膜の2端子法の評価による電気伝導度が、1×10-3~1×10S/cmである請求項1~12のいずれか一項に記載の単結晶薄膜。
  14.  請求項1~13のいずれか一項に記載の前記単結晶薄膜を備える部品であって、
     前記部品が、光学部品又は電子部品である部品。
  15.  透明電極又は光ファイバーである、請求項14に記載の部品。
  16.  請求項1~13のいずれか一項に記載の前記単結晶薄膜の製造方法であって、
     前記分子性金属の単結晶と、アルカリ金属水酸化物水溶液とを含む混合液を調製することと、
     前記混合液を所定時間静置することと、
     静置した前記混合液に基材を接触させ、前記基材上に前記単結晶薄膜を形成することと、
     前記基材上に形成した前記単結晶薄膜を洗浄することを含む、単結晶薄膜の製造方法。
  17.  前記混合液を静置する所定時間が、168時間以上である請求項16に記載の単結晶薄膜の製造方法。
  18.  前記混合液において、前記合成金属の単結晶に対する、前記アルカリ金属水酸化物水溶液の重量比が2~1×10である請求項16又は17に記載の単結晶薄膜の製造方法。
  19.  前記アルカリ金属水酸化物水溶液のpHが、7.5~11である請求項16~18のいずれか一項に記載の単結晶薄膜の製造方法。
  20.  前記混合液を静置することにより、前記混合液中で前記合成金属の単結晶から、二次元方向の結晶性が維持されている単分子層の合成金属片が剥離する、請求項16~19のいずれか一項に記載の単結晶薄膜の製造方法。
PCT/JP2022/041372 2021-11-10 2022-11-07 分子性金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法 WO2023085231A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021182911 2021-11-10
JP2021-182911 2021-11-10
JP2021-213585 2021-12-28
JP2021213585 2021-12-28
JP2022-147972 2022-09-16
JP2022147972 2022-09-16

Publications (1)

Publication Number Publication Date
WO2023085231A1 true WO2023085231A1 (ja) 2023-05-19

Family

ID=86335990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041372 WO2023085231A1 (ja) 2021-11-10 2022-11-07 分子性金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法

Country Status (1)

Country Link
WO (1) WO2023085231A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288992A (ja) * 2003-03-24 2004-10-14 Japan Science & Technology Agency 極薄分子結晶を用いたアバランシェ増幅型フォトセンサー及びその製造方法
JP2011003852A (ja) * 2009-06-22 2011-01-06 Asahi Kasei Corp 硫黄原子を含有する縮合多環芳香族化合物のシート状結晶が基板上に積層された有機半導体薄膜、及びその製法
JP2013041984A (ja) * 2011-08-15 2013-02-28 Tokyo Institute Of Technology 有機半導体材料
JP2020015680A (ja) * 2018-07-25 2020-01-30 国立研究開発法人物質・材料研究機構 分子シート、分子シートの製造方法、透明電極、表示装置、及び、タッチパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288992A (ja) * 2003-03-24 2004-10-14 Japan Science & Technology Agency 極薄分子結晶を用いたアバランシェ増幅型フォトセンサー及びその製造方法
JP2011003852A (ja) * 2009-06-22 2011-01-06 Asahi Kasei Corp 硫黄原子を含有する縮合多環芳香族化合物のシート状結晶が基板上に積層された有機半導体薄膜、及びその製法
JP2013041984A (ja) * 2011-08-15 2013-02-28 Tokyo Institute Of Technology 有機半導体材料
JP2020015680A (ja) * 2018-07-25 2020-01-30 国立研究開発法人物質・材料研究機構 分子シート、分子シートの製造方法、透明電極、表示装置、及び、タッチパネル

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEM. SCI., vol. 11, 2020, pages 11699
MAS-TORRENT M., HADLEY P., BROMLEY S., CRIVILLERS N., VECIANA J., ROVIRA C.: "Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 86, no. 1, 28 December 2004 (2004-12-28), 2 Huntington Quadrangle, Melville, NY 11747, pages 012110 - 012110, XP012064442, ISSN: 0003-6951, DOI: 10.1063/1.1848179 *
NAM M-S, ET AL.: "INTRINSIC ELECTRONIC TRANSPORT PROPERTIES OF ORGANIC FIELD-EFFECT TRANSISTORS BASED ON SINGLE CRYSTALLINE TETRAMETHYLTETRASELENAFULVALENE", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 83, no. 23, 8 December 2003 (2003-12-08), 2 Huntington Quadrangle, Melville, NY 11747, pages 4782 - 4784, XP001193051, ISSN: 0003-6951, DOI: 10.1063/1.1631751 *
NATURE MAT., vol. 16, 2017, pages 109

Similar Documents

Publication Publication Date Title
Chao et al. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air
Chao et al. Solvent engineering of the precursor solution toward large‐area production of perovskite solar cells
Cowen et al. Organic materials for thermoelectric energy generation
Mahajan et al. Review of current progress in hole-transporting materials for perovskite solar cells
Prabukanthan et al. Single step electrochemical deposition of p-type undoped and Co2+ doped FeS2 thin films and performance in heterojunction solid solar cells
US11492546B2 (en) 2D electrochromic metal-organic-frameworks
US20210175439A1 (en) Two-dimensional perovskite compositions and devices therefrom
Asemi et al. Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells
Wang et al. A surface modifier enhances the performance of the all-inorganic CsPbI 2 Br perovskite solar cells with efficiencies approaching 15%
Singla et al. Dielectric behaviour of emeraldine base polymer–ZnO nanocomposite film in the low to medium frequency
Lin et al. Two-step annealing of NiOx enhances the NiOx–perovskite interface for high-performance ambient-stable p–i–n perovskite solar cells
Kang et al. Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals
Bagha et al. The effect of reduced graphene oxide sheet on the optical and electrical characteristics of Ni-doped and Ag-doped ZnO ETLs in planar perovskite solar cells
Badrooj et al. Roles of Sn content in physical features and charge transportation mechanism of Pb-Sn binary perovskite solar cells
Choi et al. Cerium and zinc co-doped nickel oxide hole transport layers for gamma-butyrolactone based ambient air fabrication of CH3NH3PbI3 perovskite solar cells
Meng et al. Functionalizing phenethylammonium by methoxy to achieve low-dimensional interface defects passivation for efficient and stable perovskite solar cells
Praveen et al. Boosting of power conversion efficiency of 2D ZnO nanostructures-based DSSC by the Lorentz force with chitosan polymer electrolyte
Singh et al. Novel KFeO2 nanoparticles for dye-sensitized solar cell
Covaliu et al. Electrical properties of new organo-inorganic layered perovskites
Abdelhamied et al. Boosting the photoluminescence of 2D organic–inorganic perovskite films by mixing with polymers
WO2023085231A1 (ja) 分子性金属の単結晶薄膜、それを備えた部品、及び単結晶薄膜の製造方法
Hoseinpour et al. Design, synthesis, optical studies, and application of all-inorganic layered double perovskites as stabilizers in ambient air processed perovskite solar cells
Cao et al. Ionic compensation for defect reduction and enhanced performance of tin-based perovskite solar cells
Li et al. Electrochemical deposition of nanosemiconductor CuSe on multiwalled carbon nanotubes/polyimide membrane and photoelectric property researches
Kaur et al. Preparation and incorporation of NiSe@ MoSe2 nano arrays in PVA matrix for resistive switching memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559617

Country of ref document: JP