WO2023085147A1 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
WO2023085147A1
WO2023085147A1 PCT/JP2022/040639 JP2022040639W WO2023085147A1 WO 2023085147 A1 WO2023085147 A1 WO 2023085147A1 JP 2022040639 W JP2022040639 W JP 2022040639W WO 2023085147 A1 WO2023085147 A1 WO 2023085147A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous region
semiconductor substrate
porous
solid
state imaging
Prior art date
Application number
PCT/JP2022/040639
Other languages
French (fr)
Japanese (ja)
Inventor
元昭 中村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023085147A1 publication Critical patent/WO2023085147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • This technology relates to solid-state imaging devices.
  • a so-called moth-eye structure has been proposed as a structure for reducing the reflection of incident light, in which a fine uneven structure is provided on the interface on the light incident surface side of a semiconductor substrate on which a photoelectric conversion element is formed (for example, Patent Document 1 below).
  • the main purpose of the present technology is to provide a solid-state imaging device having a novel structure for reducing reflection of incident light.
  • This technology a semiconductor substrate having a first surface that is a light incident surface and a second surface that faces the first surface; and two or more pixels including the semiconductor substrate,
  • the semiconductor substrate includes, within one or more pixels, a first porous region formed on the first surface, and a non-porous region formed on the second surface side of the first porous region; having A solid-state imaging device is provided.
  • the porosity of the first porous region may increase continuously or stepwise from the second surface side toward the first surface side.
  • the semiconductor substrate may further have a second porous region in one or more of the pixels, and the second porous region may be formed in a direction perpendicular to the first surface of the semiconductor substrate.
  • the semiconductor substrate may further have a third porous region within one or more of the pixels.
  • the third porous region may be formed on the second surface of the semiconductor substrate.
  • the third porous region may be formed inside the non-porous region.
  • FIG. 3A is a schematic diagram of a semiconductor substrate in a conventional solid-state imaging device.
  • 3B is a schematic diagram of a semiconductor substrate in the solid-state imaging device according to the first embodiment;
  • FIG. 4A is a schematic diagram showing a first porous region with continuously increasing porosity.
  • FIG. 4B is a schematic diagram showing a first porous region with a stepwise increase in porosity. It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system
  • FIG. 3 is a block diagram showing an example of functional configurations of a camera head and a CCU
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • First Embodiment 1-1 Overall configuration 1-2.
  • Cross-sectional configuration 1-3 Semiconductor substrate 1-4.
  • Example of application to endoscopic surgery system6 Example of application to mobile objects
  • FIG. 1 is a diagram showing an example of the overall configuration of a solid-state imaging device 1.
  • the solid-state imaging device 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging device
  • CMOS Complementary Metal Oxide Semiconductor
  • the solid-state imaging device 1 includes, for example, a semiconductor substrate 11, a pixel region 3 having a plurality of pixels 2 arranged on the semiconductor substrate 11, a vertical driving circuit 4, a column signal processing circuit 5, a horizontal driving circuit 6, an output circuit 7, and a control circuit 8 and the like.
  • the pixel 2 has, for example, a photodiode as a photoelectric conversion element and a plurality of pixel transistors.
  • the plurality of pixel transistors may be, for example, four MOS transistors including a transfer transistor, a reset transistor, a select transistor, and an amplifier transistor.
  • the pixel region 3 has a plurality of pixels 2 regularly arranged in a two-dimensional array on the semiconductor substrate 11 .
  • the pixel area 3 includes an effective pixel area for amplifying the signal charge generated by photoelectric conversion by actually receiving light and reading it out to the column signal processing circuit 5, and a black area for outputting optical black as a reference of the black level. and a reference pixel region (not shown).
  • the black reference pixel area can usually be formed on the periphery of the effective pixel area.
  • the control circuit 8 generates a clock signal, a control signal, and the like, which serve as references for the operation of the vertical driving circuit 4, the column signal processing circuit 5, the horizontal driving circuit 6, and the like, based on the vertical synchronizing signal, the horizontal synchronizing signal, and the master clock. Generate. A clock signal, a control signal, and the like generated by the control circuit 8 are input to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • the vertical drive circuit 4 is composed of, for example, a shift register.
  • the vertical drive circuit 4 sequentially selectively scans each pixel 2 in the pixel region 3 in units of rows in the vertical direction. Then, the vertical drive circuit 4 supplies pixel signals based on signal charges generated in the photodiode of each pixel 2 according to the amount of light received to the column signal processing circuit 5 through the vertical signal lines 9 .
  • the column signal processing circuit 5 is arranged for each column of pixels 2, for example.
  • the column signal processing circuit 5 performs signal processing such as noise elimination and signal amplification on the signals output from the pixels 2 of one row for each pixel column. Such signal processing may be performed, for example, using signals from a black reference pixel region (not shown).
  • the horizontal driving circuit 6 is composed of, for example, a shift register. By sequentially outputting horizontal scanning pulses, the horizontal drive circuit 6 sequentially selects each of the column signal processing circuits 5 and outputs pixel signals from each of the column signal processing circuits 5 to the horizontal signal line 10 .
  • the output circuit 7 performs signal processing on signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 10, and outputs the processed signals.
  • FIG. 2 is a diagram showing an example of a cross-sectional configuration of the solid-state imaging device 1. As shown in FIG. In FIG. 2 , the upper side is the back side of the solid-state imaging device 1 and the lower side is the front side of the solid-state imaging device 1 .
  • the solid-state imaging device 1 includes, for example, a semiconductor substrate 11, a multilayer wiring layer 21, a support substrate 31, a transparent insulating film 41, and an on-chip lens 51. Moreover, the solid-state imaging device 1 includes two or more pixels 2 .
  • the pixel 2 includes, for example, a semiconductor substrate 11, a photodiode (not shown) provided in the semiconductor substrate 11, a multilayer wiring layer 21, a support substrate 31, a transparent insulating film 41, an on-chip lens 51, and the like. be done.
  • the semiconductor substrate 11 has a first surface 11a, which is a light incident surface, and a second surface 11b facing the first surface 11a.
  • the first surface 11a of the semiconductor substrate 11 is the back surface
  • the second surface 11b of the semiconductor substrate 11 is the front surface.
  • the semiconductor substrate 11 is made of, for example, silicon (Si) (especially single crystal silicon).
  • the thickness of the semiconductor substrate may be, for example, 1 ⁇ m to 6 ⁇ m.
  • a photodiode (not shown) is provided for each pixel 2 in the semiconductor substrate 11 .
  • a photodiode is an example of a photoelectric conversion element.
  • the semiconductor substrate 11 has, in one or more pixels 2, a first porous region 12 formed on the first surface 11a and a non-porous region 13 formed on the second surface 11b side of the first porous region 12. and have The first porous region 12 is a region provided to reduce reflection of incident light on the semiconductor substrate 11 . Details of the first porous region 12 and the non-porous region 13 will be described later.
  • the semiconductor substrate 11 may have pixel isolation portions 14 between adjacent pixels 2 .
  • the pixel separation section 14 includes an insulating film. Adjacent pixels 2, ie, adjacent photodiodes are thereby electrically isolated. Viewing the structure of the semiconductor substrate 11 shown in FIG. 2 from the side of the first surface 11a, the pixel separation section 14 may be formed in a grid pattern so as to separate adjacent pixels 2, for example. A photodiode can be formed in a region separated by the pixel isolation portion 14 .
  • the multilayer wiring layer 21 is formed on the second surface 11b side of the semiconductor substrate 11 (the surface side, that is, the lower side).
  • the multilayer wiring layer 21 has a plurality of wiring layers 22 and an interlayer insulating film 23 . Furthermore, the multilayer wiring layer 21 has a plurality of pixel transistors for reading out electric charges accumulated in the photodiodes.
  • the pixel transistor has a gate electrode 24 . In FIG. 2, the presence of the pixel transistor is indicated by showing the gate electrode 24. As shown in FIG.
  • the support substrate 31 is formed on the front side (lower side) of the multilayer wiring layer 21 .
  • the support substrate 31 is made of silicon (Si), for example.
  • the thickness of the support substrate 31 is not particularly limited, and may be several hundred ⁇ m, for example.
  • the transparent insulating film 41 is formed on the side of the first surface 11a of the semiconductor substrate 11 (the back side, that is, the upper side).
  • the transparent insulating film 41 transmits light and has insulating properties.
  • the transparent insulating film 41 may be formed using one or more materials selected from, for example, silicon oxide, silicon nitride, silicon oxynitride, and hafnium oxide (HfO 2 ).
  • the on-chip lens 51 is formed on the back side (upper side) of the transparent insulating film 41 .
  • the on-chip lens 51 can be made of, for example, a resin material such as styrene resin, acrylic resin, styrene-acrylic copolymer resin, and siloxane resin.
  • An on-chip lens 51 collects the incident light. The collected light is efficiently incident on the photodiode.
  • the semiconductor substrate 11 will be described with continued reference to FIG.
  • the semiconductor substrate 11 has a first porous region 12 formed on the first surface 11a within one or more pixels 2 .
  • the first porous region 12 includes a first surface 11a. That is, the back surface (upper surface) of the first porous region 12 is the first surface 11a.
  • the first porous region 12 is a region having many pores. If the semiconductor substrate 11 is made of silicon (especially monocrystalline silicon), the first porous region 12 may be made of porous silicon, for example.
  • the semiconductor substrate 11 further has a non-porous region 13 formed on the second surface 11b side of the first porous region 12 in one or more pixels 2 .
  • the non-porous region 13 shown in FIG. 2 includes the second surface 11b. That is, in FIG. 2, the front surface (lower surface) of the non-porous region 13 is the second surface 11b. However, the non-porous region 13 only needs to be located closer to the second surface 11b (below the first porous region 12) than the first porous region 12 in the semiconductor substrate 11. may be configured without That is, the semiconductor substrate 11 may further have another region formed on the second surface side of the non-porous region 13 .
  • the other region may be, for example, a third porous region which will be described later.
  • the non-porous region 13 is a region that does not have pores.
  • the non-porous region 13 may be made of bulk silicon, for example.
  • the first porous region 12 and the non-porous region 13 have different refractive indices. Specifically, the refractive index of the first porous region is lower than that of the non-porous region 13 due to the presence of numerous pores. By forming the region having a smaller refractive index than the non-porous region 13 on the first surface 11a (light incident surface) of the semiconductor substrate 11, reflection of incident light on the semiconductor substrate 11 can be reduced.
  • FIG. 3A is a schematic diagram of a semiconductor substrate 91 in a conventional solid-state imaging device.
  • FIG. 3B is a schematic diagram of the semiconductor substrate 11 in the solid-state imaging device according to this embodiment.
  • the upper side is the back side of the semiconductor substrate, and the lower side is the front side of the semiconductor substrate.
  • the semiconductor substrate 91 in the prior art shown in FIG. 3A is made of non-porous material and has no porous regions.
  • Incident light L91 travels from the member 90 with a low refractive index toward the semiconductor substrate 91 with a high refractive index. Since the member 90 and the semiconductor substrate 91 have different refractive indexes, part of the incident light L91 is reflected at the interface between the member 90 and the semiconductor substrate 91 to generate reflected light L92. In the conventional solid-state imaging device, the difference in refractive index between the member 90 and the semiconductor substrate 91 is large, so the reflected light L92 tends to be large.
  • the following formula (1) is a formula for calculating the magnitude (intensity) of reflected light generated at the interface between two substances of different types (substance 1 and substance 2).
  • I is the magnitude (intensity) of reflected light
  • I0 is the magnitude (intensity) of incident light
  • n1 is the refractive index of substance 1
  • n2 is the refractive index of substance 2.
  • the semiconductor substrate 11 in this embodiment shown in FIG. 3B has a first porous region 12 and a non-porous region 13 .
  • a member having a small refractive index (for example, a transparent insulating film 41) is provided on the first surface 11a side (light incident surface side) of the semiconductor substrate 11 .
  • the transparent insulating film 41 has the lowest refractive index (refractive index: small)
  • the first porous region 12 has the next lowest refractive index (refractive index: medium)
  • the non-porous region 13 has the highest refractive index (refractive index: large).
  • Incident light L1 travels from the transparent insulating film 41 having the lowest refractive index to the first porous region 12 having a medium refractive index and the non-porous region 13 having the highest refractive index. Part of the incident light L1 is reflected at the interface between the transparent insulating film 41 and the first porous region 12 to generate reflected light L2.
  • the difference in refractive index between the transparent insulating film 41 and the first porous region 12 is smaller than the difference in refractive index between the member 90 and the semiconductor substrate 91 in the prior art (FIG. 3A). Therefore, the intensity of the reflected light L2 is lower than the intensity of the reflected light L92 in the prior art.
  • the presence of the first porous region 12 makes it possible to reduce the reflection of incident light.
  • the thickness d of the first porous region 12 preferably satisfies the following formula (2). sell.
  • d ⁇ /4n (2) (In the above formula (2), d is the thickness of the first porous region, ⁇ is the wavelength of incident light, and n is the refractive index of the first porous region.)
  • the thickness d of the first porous region 12 satisfies the above formula (2), the magnitude (intensity) of the reflected light L3 at the interface between the first porous region 12 and the non-porous region 13 is can be minimized by the interference effects of By adjusting the thickness of the first porous region 12 in this manner, the effect of reducing the reflection of incident light by the first porous region 12 can be further enhanced.
  • the refractive index correlates with the porosity. Specifically, the higher the porosity, the lower the refractive index.
  • the porosity is the ratio of voids (pores) in the first porous region 12, specifically, the void fraction per unit volume in the first porous region 12. Porosity can be measured, for example, by Gravimetry, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-Ray Reflectivity (XRR). (Reference: Leigh Canham, "Handbook of porous silicon", Second edition, P. 157).
  • the upper limit of porosity is preferably 90% or less, more preferably 70% or less, even more preferably 60% or less, and particularly preferably 50% or less.
  • the lower limit of porosity is preferably 10% or more, more preferably 20% or more, even more preferably 30% or more, and particularly preferably 40% or more.
  • the numerical range of the porosity may be, for example, a combination selected from the upper limit value and the lower limit value described above, preferably 10% or more and 90% or less, more preferably 20% or more and 90% or less, still more preferably 30% or more and 70% or less, particularly preferably 30% or more and 60% or less or 40% or more and 50% or less.
  • the first porous region 12 may be made of porous silicon and the non-porous region 13 may be made of bulk silicon.
  • Porous silicon can have, for example, the following porosities and refractive indices: ⁇ Refractive index of porous silicon> 30% porosity: about 2.3 Porosity 45%: about 1.8 Porosity 60%: about 1.5 Porosity 75%: about 1.3
  • the refractive index of bulk silicon can be, for example, about 4.0.
  • the refractive index of air is 1.0.
  • the refractive index of porous silicon with a porosity of 30% (approximately 2.3) can be said to be approximately halfway between the refractive indices of bulk silicon and air.
  • a porosity of 30% or more may be selected for the porous silicon.
  • the porosity of the first porous region 12 may be uniform or non-uniform. If the porosity is non-uniform in the first porous region 12, the porosity preferably increases continuously or stepwise from the second surface 11b side of the semiconductor substrate 11 toward the first surface 11a side. ing.
  • continuous is meant a seamless change in porosity.
  • gradient is meant that there is a seam in the change in porosity.
  • Such a continuous or stepwise increase in porosity can improve the effect of reducing reflection of incident light on the semiconductor substrate 11 . This is because the change in the refractive index in the semiconductor substrate 11 becomes smaller, and the intensity of the reflected light can be further reduced. If the porosity is non-uniform in the first porous region 12, it is preferred that the minimum and maximum porosity values fall within the numerical ranges for porosity described above.
  • FIG. 4A is a schematic diagram showing a first porous region 12A with continuously increasing porosity.
  • FIG. 4B is a schematic diagram showing a first porous region 12B with a stepwise increase in porosity.
  • the upper side is the back side of the semiconductor substrate, and the lower side is the front side of the semiconductor substrate.
  • the difference in porosity is indicated by the shades of color. A lighter color indicates greater porosity and more voids, and a darker color indicates smaller porosity and fewer voids.
  • Non-porous regions 13A (FIG. 4A) and non-porous regions 13B (FIG. 4B) do not have voids and are therefore shown in the darkest color.
  • the porosity of the first porous region 12A shown in FIG. 4A increases continuously from the second surface 11Ab side of the semiconductor substrate 11A toward the first surface 11Aa side. That is, the porosity varies seamlessly.
  • the first porous region 12B shown in FIG. 4B is formed by stacking three porous layers 121, 122, 123 each having a certain degree of porosity.
  • the porosity increases in order of the porous layer 123, the porous layer 122, and the porous layer 121.
  • FIG. A porous layer 123, a porous layer 122, and a porous layer 121 are laminated in this order from the second surface 11Bb side of the semiconductor substrate 11B toward the first surface 11Ba side. Accordingly, the porosity of the first porous region 12B increases stepwise from the second surface 11Bb side of the semiconductor substrate 11B toward the first surface 11Ba side.
  • the interface between the non-porous region 13B and the porous layer 123, the interface between the porous layer 123 and the porous layer 122, and the interface between the porous layer 122 and the porous layer 121 correspond to the seams where the porosity changes. do.
  • the porosity preferably increases continuously from the second surface 11Ab side of the semiconductor substrate 11A toward the first surface 11Aa side, as shown in FIG. 4A.
  • the first porous region 12A does not have an interface (surface where members having different porosities are in contact with each other) within the semiconductor substrate 11A. Since there is no interface that causes the generation of reflected light, the generation of incident light itself can be prevented. That is, the effect of reducing reflection of incident light can be further improved.
  • the semiconductor substrate 11 used in this embodiment is not limited to the configuration shown in FIGS. 4A and 4B.
  • Semiconductor substrate 11 may, for example, be configured by combining the elements shown in FIGS. 4A and 4B.
  • the semiconductor substrate 11 may have, for example, a structure in which the first porous region 12A shown in FIG. 4A is laminated on the non-porous region 13B shown in FIG. 4B. That is, the structure in which the first porous region 12 having the porosity continuously increasing from the second surface 11b side to the first surface 11a side is laminated on the first surface 11a side of the non-porous region 13. may be
  • the solid-state imaging device 1 of this embodiment shown in FIG. 2 includes a semiconductor substrate 11 having a first porous region 12 . Thereby, the solid-state imaging device 1 can reduce the reflection of incident light.
  • the configuration having the first porous region 12 can suppress the diffraction of light compared to the moth-eye structure described in Patent Document 1, for example.
  • crosstalk color mixture
  • the solid-state imaging device 1 of this embodiment can also suppress the occurrence of crosstalk (color mixture) by suppressing diffraction.
  • the first porous region 12 is formed by porosifying a non-porous material. Therefore, hereinafter, a method for making a non-porous material porous will be described with an example.
  • the non-porous material is a silicon substrate made of single crystal silicon, and the resulting porous material is porous silicon.
  • the silicon substrate is made porous by an anodizing method.
  • the anodizing method is a method of making porous by subjecting single crystal silicon to anodizing treatment (anodizing treatment) in a hydrogen fluoride (HF) solution.
  • the porosity of porous silicon can be adjusted, for example, by the HF concentration in the anodizing treatment. Specifically, lowering the HF concentration lowers the density of pores, resulting in lower porosity. For example, by controlling the HF concentration within the range of 20 mass % to 50 mass %, the pore density can be within the range of 0.6 g/cm 3 to 1.1 g/cm 3 .
  • the porosity of the porous silicon can be adjusted, for example, by the current density in the anodizing treatment. Specifically, increasing the current density increases the diameter of the pores in the porous silicon, resulting in increased porosity. For example, at high current densities (eg, 100 mA/cm 2 ), the pore diameter can be in the range of 10 nm to 60 nm, and at low current densities, the pore diameter can be several nm. .
  • the porosity of porous silicon may be adjusted by HF concentration alone, current density alone, or a combination of HF concentration and current density. That is, the porosity of porous silicon may be adjusted by HF concentration and/or current density.
  • a method for manufacturing the semiconductor substrate 11 will be described. Also in the description, a silicon substrate and porous silicon are taken as examples. Examples of the method for manufacturing the semiconductor substrate 11 can be broadly classified into two. A method of making a portion of a silicon substrate porous, and a method of combining a silicon substrate and porous silicon.
  • the method of making part of the silicon substrate porous is, specifically, a method of forming porous silicon on one surface of the silicon substrate and its vicinity by the above-described anodization method.
  • the porous silicon corresponds to the first porous region 12 in this embodiment, and the non-porous portion corresponds to the non-porous region 13 in this embodiment.
  • the porosity of the porous silicon can be varied continuously by varying the HF concentration and/or current density during the anodizing treatment. For example, increasing the HF concentration and/or increasing the current density during the anodizing process can continuously increase the porosity towards one surface of the silicon substrate. More specifically, for example, in the anodizing treatment, first, a region with small porosity (a region with a pore diameter of several nm) is formed at a low current density, and then at a high current density (eg, 100 mA/cm 2 ). A region of high porosity (region with pore diameters of 10 nm to 60 nm) can be formed. As a result, for example, a first porous region 12A can be formed in which the porosity increases continuously from the second surface 11Ab side toward the first surface 11Aa side, as shown in FIG. 4A.
  • the method of combining a silicon substrate and porous silicon is, specifically, to form a porous layer made of porous silicon by the above-described anodizing method, and one or more of the porous layers are formed on a silicon substrate. It is a method of laminating on one side surface of One or more porous layers correspond to the first porous region 12 in this embodiment, and the silicon substrate corresponds to the non-porous region 13 in this embodiment.
  • a plurality of porous layers may have different porosities.
  • the plurality of porous layers preferably have porosities different from each other, and are stacked on one side surface of the silicon substrate in order of decreasing porosity.
  • a first porous region 12B can be formed in which the porosity increases stepwise from the second surface 11Bb side to the first surface 11Ba side, for example, as shown in FIG. 4B.
  • the two methods for manufacturing the semiconductor substrate 11 have been described above as examples, these two methods may be used in combination.
  • a porous layer made of porous silicon with continuously increasing porosity may be formed, and the porous layer may be stacked on one side surface of the silicon substrate.
  • semiconductor substrate 11 having a configuration in which first porous region 12A shown in FIG. 4A is laminated on non-porous region 13B shown in FIG. 4B is obtained.
  • FIGS. 5 to 10 are diagrams showing an example of a cross-sectional configuration in each manufacturing process of the solid-state imaging device 1.
  • FIG. 5 to 7 the upper side is the front side of the solid-state imaging device 1, and the lower side is the rear side of the solid-state imaging device 1.
  • FIG. 8 to 10 the upper side is the back side of the solid-state imaging device 1, and the lower side is the front side of the solid-state imaging device 1.
  • a p-type impurity layer 52 which is a high-concentration p-type impurity layer, is formed in a first silicon substrate 51 by ion implantation (FIG. 5).
  • the impurity concentration is preferably 1.0 ⁇ 10 18 /cm 3 or higher.
  • the impurity layer of the pixel is formed by ion implantation.
  • a pixel isolation portion 14 is formed between adjacent pixels.
  • a multilayer wiring layer 21 having a wiring layer 22, an interlayer insulating film 23, and a gate electrode 24 is formed.
  • a multilayer wiring layer 21 is laminated on the front side of the semiconductor substrate 11 having the pixel separation section 14 (FIG. 6).
  • a support substrate 31 is laminated on the front side of the multilayer wiring layer 21 (FIG. 7). Next, the substrate is turned upside down so that the first silicon substrate 51 located at the bottom layer in FIG. 7 is located at the top layer. The first silicon substrate 51 located on the uppermost layer is etched to expose the p-type impurity layer 52 (FIG. 8).
  • the p-type impurity layer 52 is made porous by an anodizing method to form the first porous region 12 (FIG. 9).
  • the front side of the first porous region 12 becomes the non-porous region 13 .
  • the method of making the substrate porous by anodization can be, for example, as described in the above “1-3. Semiconductor substrate”.
  • the surface of the first porous region 12 is etched (Fig. 10). After that, a transparent insulating film 41 and an on-chip lens 51 are formed in this order on the back side of the first porous region 12 (FIG. 2).
  • the manufacturing method of the solid-state imaging device 1 described above is an example, and is not limited to this.
  • the first silicon substrate 51 may be etched to make the p-type impurity layer 52 porous before laminating the support substrate 31 on the back side of the multilayer wiring layer 21 .
  • FIG. 11 is a schematic diagram showing an example of a cross section of a semiconductor substrate 11C in the second embodiment.
  • FIG. 11 only a part of one pixel 2 is extracted and description of other adjacent pixels is omitted.
  • the upper side is the back side of the semiconductor substrate 11C, and the lower side is the front side of the semiconductor substrate 11C.
  • the semiconductor substrate 11C has the first porous region 12 and the non-porous region 13, the pixel separating portion 14 as necessary, and the second porous region 61 in one or more pixels 2.
  • the second porous region 61 is formed perpendicular to the first surface 11Ca of the semiconductor substrate 11C.
  • the second porous region 61 shown in FIG. 11 extends from the first surface 11Ca of the semiconductor substrate 11C to the second surface 11Cb, but the shape of the second porous region 61 is not limited to this.
  • the second porous region 61 has, for example, a shape extending from the first surface 11Ca to the middle of the non-porous region 13, or a shape extending from the second surface 11Cb to the middle of the non-porous region 13.
  • a shape, or a shape located in the middle of the non-porous region 13 away from the first surface 11Ca and the second surface 11Cb may be used.
  • the second porous region 61 is preferably formed outside and adjacent to the non-porous region 13 within one or more pixels 2 . Further, the second porous region 61 is more preferably formed adjacent to the outside of the non-porous region 13 and the inside of the pixel separating portion 14 in one or more pixels 2, that is, the one or more pixels 2 is formed between the non-porous region 13 and the pixel separating portion 14 . Although two second porous regions 61 are shown in one pixel 2 in FIG. 11, the number of second porous regions 61 in one pixel 2 may be one or more. you can
  • the second porous region 61 like the first porous region 12, has a large number of pores.
  • the semiconductor substrate 11C is made of silicon (especially single crystal silicon)
  • the second porous region 61 may be made of porous silicon, for example.
  • the refractive index of the second porous region 61 is small due to the presence of many pores. Therefore, the difference in refractive index between the non-porous region 13 and the second porous region 61 is greater than the difference in refractive index between the non-porous region 13 and the pixel separating portion 14 . As described above, the greater the difference in refractive index, the greater the reflected light. Therefore, the second porous region 61 can increase the reflected light L5 of the incident light L4, thereby efficiently concentrating the light toward the inside of the pixel 2 .
  • FIGS. 12 and 13 are schematic diagrams showing an example of the cross section of the semiconductor substrate 11D in the third embodiment.
  • FIGS. 12 and 13 only a part of one pixel 2 is extracted and the description of other adjacent pixels is omitted. 12 and 13, the upper side is the back side of the semiconductor substrate 11D, and the lower side is the front side of the semiconductor substrate 11D.
  • a semiconductor substrate 11D shown in FIG. 12 has a first porous region 12 and a non-porous region 13, a pixel separating portion 14 as necessary, and a third porous region 71 in one or more pixels 2.
  • the third porous region 71 shown in FIG. 12 is formed on the second surface 11Db of the semiconductor substrate 11D.
  • the third porous region 71 is configured including the second surface 11Db. That is, the front side surface (lower side surface) of the third porous region 71 is the second surface 11Db.
  • the third porous region 71 like the first porous region 12, has a large number of pores.
  • the semiconductor substrate 11D is made of silicon
  • the third porous region 71 may be made of porous silicon, for example.
  • the third porous region 71 reflects incident light L6 that has reached the front surface (lower surface) of the non-porous region 13 to generate reflected light L7. In this way, the third porous region 71 can suppress the incident light L6 from escaping from the front side of the non-porous region 13, thereby efficiently concentrating the light toward the inside of the pixel 2.
  • a third porous region 71 shown in FIG. 13 is formed inside the non-porous region 13 . That is, the third porous region 71 shown in FIG. 13 is surrounded by the non-porous region 13 .
  • a third porous region 71 shown in FIGS. 13A to 13C has, for example, a rectangular parallelepiped shape inside the pixel 2 .
  • the third porous region 71 in FIG. 13A is formed at a position spaced apart from the center of the non-porous region 13 toward the rear side (upper side).
  • a third porous region 71 in FIG. 13B is formed near the center of the non-porous region 13 .
  • the third porous region 71 in FIG. 13C is formed at a position spaced from the center of the non-porous region 13 toward the front side (lower side).
  • the third porous region 71 shown in FIG. 13D has a box shape with an opening on the back side (upper side) inside the pixel 2 and is formed near the center of the non-porous region 13 .
  • the third porous region 71 shown in FIG. 13E has a box shape with an opening on the front side (lower side) inside the pixel 2 and is formed near the center of the non-porous region 13 .
  • the number of third porous regions 71 may be one or more in one pixel 2 .
  • the plurality of third porous regions 71 are selected from the third porous regions 71 shown in FIGS. 12 and 13A to 13E. It may be a combination of two or more.
  • the third porous regions 71 shown in Figures 12 and 13A-13E may be combined unless technical conflicts arise.
  • the configuration of the third embodiment described above may be combined with the configuration of the second embodiment as long as there is no technical contradiction. That is, in the solid-state imaging device 1 , the semiconductor substrate 11 includes one or more second porous regions 61 and one or more third porous regions 71 in addition to the first porous region 12 and the non-porous region 13 . may further have
  • the solid-state imaging device of the present technology has been described using the backside illumination type as an example, but the solid-state imaging device of the present technology may be a front side illumination type. Even in the case of the front illumination type, the reflection of incident light can be reduced by providing the configuration of the present technology.
  • FIG. 14 is a diagram showing a usage example of the solid-state imaging device of the present technology.
  • the solid-state imaging device of this technology can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays. That is, as shown in FIG. 14, for example, the field of appreciation for photographing images to be used for viewing, the field of transportation, the field of home appliances, the field of medicine/healthcare, the field of security, the field of beauty, the field of sports, and the like.
  • the solid-state imaging device of the present technology can be used for devices used in the fields of agriculture, agriculture, and the like.
  • the solid-state imaging device of this technology is used in devices for capturing images for viewing, such as digital cameras, smartphones, and mobile phones with camera functions. can be used.
  • in-vehicle sensors that capture images of the front, back, surroundings, and interior of a vehicle, and monitor running vehicles and roads for safe driving such as automatic stopping and recognition of the driver's condition.
  • the solid-state imaging device of the present technology can be used for devices used for transportation, such as surveillance cameras that monitor traffic, distance sensors that measure distances between vehicles, and the like.
  • the present technology can be applied to devices used in home appliances, such as television receivers, refrigerators, and air conditioners, in order to photograph user gestures and perform device operations according to the gestures.
  • a solid-state imager can be used.
  • the solid-state imaging device of this technology can be used in medical and healthcare devices such as endoscopes and devices that perform angiography by receiving infrared light. can be used.
  • the solid-state imaging device of the present technology can be used for devices used for security, such as surveillance cameras for crime prevention and cameras for person authentication.
  • the solid-state imaging device of this technology can be used in devices used for beauty, such as skin measuring instruments that photograph the skin and microscopes that photograph the scalp.
  • the solid-state imaging device of this technology can be used in devices used for sports, such as action cameras and wearable cameras for sports.
  • the solid-state imaging device of this technology can be used for equipment used in agriculture, such as cameras for monitoring the condition of fields and crops.
  • FIG. 15 shows a schematic configuration of an electronic device 102 (camera) as an example.
  • the electronic device 102 is, for example, a video camera capable of capturing still images or moving images, and includes a solid-state imaging device 101, an optical system (optical lens) 310, a shutter device 311, and the solid-state imaging device 101 and the shutter device 311. It has a drive unit 313 for driving and a signal processing unit 312 .
  • the optical system 310 guides image light (incident light) from a subject to the pixel portion of the solid-state imaging device 101 .
  • This optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls a light irradiation period and a light shielding period for the solid-state imaging device 101 .
  • the drive unit 313 controls the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 311 .
  • the signal processing unit 312 performs various signal processing on the signal output from the solid-state imaging device 101 .
  • the video signal Dout after signal processing is stored in a storage medium such as a memory, or output to a monitor or the like.
  • This technology can be applied to various products.
  • the technology may be applied to an endoscopic surgical system.
  • FIG. 16 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology (this technology) according to the present disclosure can be applied.
  • FIG. 16 illustrates a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 .
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 .
  • an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 .
  • the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the imaging device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
  • the light source device 11203 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 11100 with irradiation light for imaging a surgical site or the like.
  • a light source such as an LED (light emitting diode)
  • LED light emitting diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 .
  • the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in.
  • the recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time division manner, and by controlling the drive of the imaging device of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer.
  • irradiation light i.e., white light
  • Narrow Band Imaging in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is examined.
  • a fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIG. 17 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 .
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
  • a lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 .
  • a lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the number of imaging elements constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 .
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 .
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 .
  • the communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 .
  • Image signals and control signals can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
  • the control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 .
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize.
  • the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the present technology can be applied to the endoscope 11100, the camera head 11102 (the imaging unit 11402 thereof), and the like among the configurations described above.
  • the solid-state imaging device according to the present technology can be applied to the imaging unit 11402 .
  • an endoscopic surgery system has been described as an example, but the present technology may also be applied to other systems such as a microsurgery system.
  • the present technology can be implemented as a device mounted on any type of moving object such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. .
  • FIG. 18 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a driving system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated as the functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 19 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 19 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the obstacle is detected through the audio speaker 12061 and the display unit 12062. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the present technology can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the solid-state imaging device according to the present technology can be applied to the imaging unit 12031 .
  • the performance of the imaging unit 12031 can be improved.
  • This technique can also take the following configurations.
  • a semiconductor substrate having a first surface that is a light incident surface and a second surface that faces the first surface; and two or more pixels including the semiconductor substrate,
  • the semiconductor substrate includes, within one or more pixels, a first porous region formed on the first surface, and a non-porous region formed on the second surface side of the first porous region; having Solid-state imaging device.
  • Solid-state imaging device according to [1], wherein the porosity of the first porous region increases continuously or stepwise from the second surface side toward the first surface side.
  • the semiconductor substrate further having a second porous region within one or more of the pixels;
  • the third porous region is formed on the second surface of the semiconductor substrate.
  • the third porous region is formed inside the non-porous region.
  • 1 solid-state imaging device 2 pixels 11, 11A, 11B, 11C, 11D semiconductor substrates 11a, 11Aa, 11Ba, 11Ca, 11Da first surfaces 11b, 11Ab, 11Bb, 11Cb, 11Db second surfaces 12, 12A, 12B first porous Regions 13, 13A, 13B Non-porous Region 14 Pixel Separating Portion 21 Multilayer Wiring Layer 22 Wiring Layer 23 Interlayer Insulating Film 24 Gate Electrode 31 Supporting Substrate 41 Transparent Insulating Film 51 On-Chip Lens 61 Second Porous Region 71 Third Porous Region Regions 121, 122, 123 porous layer

Abstract

The main purpose of the present invention is to provide a solid-state imaging device having a novel structure for reducing reflection of incident light. The present technology provides a solid-state imaging device comprising: a semiconductor substrate having a first surface that is a light incident surface, and a second surface opposing the first surface; and two or more pixels including the semiconductor substrate. The semiconductor substrate includes, in one or more of the pixels, a first porous region formed on the first surface, and a non-porous region formed on the second surface side of the first porous region.

Description

固体撮像装置Solid-state imaging device
 本技術は、固体撮像装置に関する。 This technology relates to solid-state imaging devices.
 固体撮像装置において、入射光の反射を低減するための構造として、光電変換素子が形成された半導体基板の光入射面側の界面に微細な凹凸構造を設ける、いわゆるモスアイ構造が提案されている(例えば、下記特許文献1)。 In a solid-state imaging device, a so-called moth-eye structure has been proposed as a structure for reducing the reflection of incident light, in which a fine uneven structure is provided on the interface on the light incident surface side of a semiconductor substrate on which a photoelectric conversion element is formed ( For example, Patent Document 1 below).
特開2020-61576号公報JP 2020-61576 A
 近年、固体撮像装置において多画素化が進んでおり、1画素のサイズが縮小される傾向にある。今後、1画素のサイズがさらに縮小されると、上記モスアイ構造における入射光の反射を低減する効果が十分に発揮されない可能性がある。 In recent years, the number of pixels in solid-state imaging devices has been increasing, and the size of one pixel tends to be reduced. If the size of one pixel is further reduced in the future, there is a possibility that the effect of reducing the reflection of incident light in the moth-eye structure will not be sufficiently exhibited.
 そこで、本技術は、入射光の反射を低減するための新規な構造を有する固体撮像装置を提供することを主目的とする。 Therefore, the main purpose of the present technology is to provide a solid-state imaging device having a novel structure for reducing reflection of incident light.
 本技術は、
 光入射面である第1面及び前記第1面に対向する第2面を有する半導体基板と、
 前記半導体基板を含む2以上の画素と、を備え、
 前記半導体基板が、1以上の前記画素内に、前記第1面に形成された第1多孔質領域と、前記第1多孔質領域の前記第2面側に形成された非多孔質領域と、を有する、
 固体撮像装置を提供する。
 前記第1多孔質領域の多孔度が、前記第2面側から前記第1面側に向かって連続的又は段階的に大きくなっていてよい。
 前記半導体基板が、1以上の前記画素内に第2多孔質領域をさらに有し、前記第2多孔質領域が、前記半導体基板の前記第1面に対して垂直方向に形成されていてよい。
 前記半導体基板が、1以上の前記画素内に第3多孔質領域をさらに有していてよい。 前記第3多孔質領域が、前記半導体基板の前記第2面に形成されていてよい。
 前記第3多孔質領域が、前記非多孔質領域の内部に形成されていてよい。
This technology
a semiconductor substrate having a first surface that is a light incident surface and a second surface that faces the first surface;
and two or more pixels including the semiconductor substrate,
The semiconductor substrate includes, within one or more pixels, a first porous region formed on the first surface, and a non-porous region formed on the second surface side of the first porous region; having
A solid-state imaging device is provided.
The porosity of the first porous region may increase continuously or stepwise from the second surface side toward the first surface side.
The semiconductor substrate may further have a second porous region in one or more of the pixels, and the second porous region may be formed in a direction perpendicular to the first surface of the semiconductor substrate.
The semiconductor substrate may further have a third porous region within one or more of the pixels. The third porous region may be formed on the second surface of the semiconductor substrate.
The third porous region may be formed inside the non-porous region.
固体撮像装置の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of a solid-state imaging device. 固体撮像装置の断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of a solid-state imaging device. 図3Aは、従来技術の固体撮像装置における半導体基板の模式図である。図3Bは、第1実施形態に係る固体撮像装置における半導体基板の模式図である。FIG. 3A is a schematic diagram of a semiconductor substrate in a conventional solid-state imaging device. 3B is a schematic diagram of a semiconductor substrate in the solid-state imaging device according to the first embodiment; FIG. 図4Aは、多孔度が連続的に大きくなっている第1多孔質領域を示す模式図である。図4Bは、多孔度が段階的に大きくなっている第1多孔質領域を示す模式図である。FIG. 4A is a schematic diagram showing a first porous region with continuously increasing porosity. FIG. 4B is a schematic diagram showing a first porous region with a stepwise increase in porosity. 固体撮像装置の製造工程における断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程における断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程における断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程における断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程における断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程における断面構成の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the manufacturing process of a solid-state imaging device. 第2実施形態における半導体基板の断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section of the semiconductor substrate in 2nd Embodiment. 第3実施形態における半導体基板の断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section of the semiconductor substrate in 3rd Embodiment. 第3実施形態における半導体基板の断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section of the semiconductor substrate in 3rd Embodiment. 本技術の固体撮像装置の使用例を示す図である。It is a figure which shows the usage example of the solid-state imaging device of this technique. 本技術の固体撮像装置を適用した電子機器の一例を示す機能ブロック図である。It is a functional block diagram showing an example of electronic equipment to which a solid-state imaging device of this art is applied. 内視鏡手術システムの概略的な構成の一例を示す図である。1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system; FIG. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。3 is a block diagram showing an example of functional configurations of a camera head and a CCU; FIG. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。 A preferred embodiment for implementing this technology will be described below. It should be noted that the embodiments described below show typical embodiments of the present technology, and the scope of the present technology is not limited only to these embodiments.
 特に断りがない限り、本明細書において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面に示された同一又は同等の要素又は部材には、同一の符号を付し、重複する説明は省略する。 Unless otherwise specified, in this specification, "upper" means upward or upward in the figure, "bottom" means downward or downward in the figure, and "left" means It means the left direction or the left side in the drawing, and "right" means the right direction or the right side in the drawing. Also, the same or equivalent elements or members shown in the drawings are denoted by the same reference numerals, and overlapping descriptions are omitted.
 本技術について、以下の順序で説明を行う。
1.第1実施形態
1-1.全体構成
1-2.断面構成
1-3.半導体基板
1-4.固体撮像装置の製造方法
2.第2実施形態
3.第3実施形態
4.本技術を適用した固体撮像装置の使用例
5.内視鏡手術システムへの応用例
6.移動体への応用例
The present technology will be described in the following order.
1. First Embodiment 1-1. Overall configuration 1-2. Cross-sectional configuration 1-3. Semiconductor substrate 1-4. Method for manufacturing a solid-state imaging device2. Second Embodiment 3. Third Embodiment 4. Usage example of solid-state imaging device to which this technology is applied5. Example of application to endoscopic surgery system6. Example of application to mobile objects
1.第1実施形態 1. 1st embodiment
1-1.全体構成 1-1. overall structure
 図1を参照して、本技術の第1実施形態に係る固体撮像装置の全体構成例について説明する。図1は、固体撮像装置1の全体構成の一例を示す図である。以下、一例として、固体撮像装置1が、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)型固体撮像装置である場合について説明する。裏面照射型のCMOS型固体撮像装置において、光は、画素トランジスタが形成される半導体基板の裏側の面から入射する。 An overall configuration example of a solid-state imaging device according to the first embodiment of the present technology will be described with reference to FIG. FIG. 1 is a diagram showing an example of the overall configuration of a solid-state imaging device 1. As shown in FIG. As an example, a case where the solid-state imaging device 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging device will be described below. In a back-illuminated CMOS solid-state imaging device, light enters from the back side of a semiconductor substrate on which pixel transistors are formed.
 固体撮像装置1は、例えば、半導体基板11、半導体基板11上に配列された複数の画素2を有する画素領域3、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7、及び制御回路8などを有する。 The solid-state imaging device 1 includes, for example, a semiconductor substrate 11, a pixel region 3 having a plurality of pixels 2 arranged on the semiconductor substrate 11, a vertical driving circuit 4, a column signal processing circuit 5, a horizontal driving circuit 6, an output circuit 7, and a control circuit 8 and the like.
 画素2は、例えば、光電変換素子としてのフォトダイオードと、複数の画素トランジスタと、を有する。複数の画素トランジスタは、例えば、転送トランジスタ、リセットトランジスタ、選択トランジスタ、及びアンプトランジスタで構成される4つのMOSトランジスタであってよい。 The pixel 2 has, for example, a photodiode as a photoelectric conversion element and a plurality of pixel transistors. The plurality of pixel transistors may be, for example, four MOS transistors including a transfer transistor, a reset transistor, a select transistor, and an amplifier transistor.
 画素領域3は、半導体基板11上に、2次元アレイ状に規則的に配列された複数の画素2を有する。画素領域3は、実際に光を受光し光電変換によって生成された信号電荷を増幅してカラム信号処理回路5に読み出す有効画素領域と、黒レベルの基準になる光学的黒を出力するための黒基準画素領域(図示せず)と、を有していてよい。黒基準画素領域は、通常は、有効画素領域の外周部に形成されうる。 The pixel region 3 has a plurality of pixels 2 regularly arranged in a two-dimensional array on the semiconductor substrate 11 . The pixel area 3 includes an effective pixel area for amplifying the signal charge generated by photoelectric conversion by actually receiving light and reading it out to the column signal processing circuit 5, and a black area for outputting optical black as a reference of the black level. and a reference pixel region (not shown). The black reference pixel area can usually be formed on the periphery of the effective pixel area.
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6などの動作の基準となるクロック信号及び制御信号などを生成する。制御回路8によって生成されたクロック信号及び制御信号などは、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6などに入力される。 The control circuit 8 generates a clock signal, a control signal, and the like, which serve as references for the operation of the vertical driving circuit 4, the column signal processing circuit 5, the horizontal driving circuit 6, and the like, based on the vertical synchronizing signal, the horizontal synchronizing signal, and the master clock. Generate. A clock signal, a control signal, and the like generated by the control circuit 8 are input to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
 垂直駆動回路4は、例えば、シフトレジスタによって構成される。垂直駆動回路4は、画素領域3の各画素2を行単位で順次垂直方向に選択走査する。そして、垂直駆動回路4は、各画素2のフォトダイオードにおいて受光量に応じて生成した信号電荷に基づく画素信号を、垂直信号線9を通してカラム信号処理回路5に供給する。 The vertical drive circuit 4 is composed of, for example, a shift register. The vertical drive circuit 4 sequentially selectively scans each pixel 2 in the pixel region 3 in units of rows in the vertical direction. Then, the vertical drive circuit 4 supplies pixel signals based on signal charges generated in the photodiode of each pixel 2 according to the amount of light received to the column signal processing circuit 5 through the vertical signal lines 9 .
 カラム信号処理回路5は、例えば、画素2の列毎に配置されている。カラム信号処理回路5は、1行分の画素2から出力される信号のノイズ除去及び信号増幅などの信号処理を画素列毎に行う。当該信号処理は、例えば、黒基準画素領域(図示せず)からの信号を用いて行われてよい。 The column signal processing circuit 5 is arranged for each column of pixels 2, for example. The column signal processing circuit 5 performs signal processing such as noise elimination and signal amplification on the signals output from the pixels 2 of one row for each pixel column. Such signal processing may be performed, for example, using signals from a black reference pixel region (not shown).
 水平駆動回路6は、例えば、シフトレジスタによって構成される。水平駆動回路6は、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々からの画素信号を水平信号線10に出力させる。 The horizontal driving circuit 6 is composed of, for example, a shift register. By sequentially outputting horizontal scanning pulses, the horizontal drive circuit 6 sequentially selects each of the column signal processing circuits 5 and outputs pixel signals from each of the column signal processing circuits 5 to the horizontal signal line 10 .
 出力回路7は、カラム信号処理回路5の各々から水平信号線10を通して順次に供給される信号に対し信号処理を行い、出力する。 The output circuit 7 performs signal processing on signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 10, and outputs the processed signals.
1-2.断面構成 1-2. cross section
 図2を参照して、固体撮像装置1の断面構成例について説明する。図2は、固体撮像装置1の断面構成の一例を示す図である。図2において、上側が固体撮像装置1の裏側であり、下側が固体撮像装置1の表側である。 A cross-sectional configuration example of the solid-state imaging device 1 will be described with reference to FIG. FIG. 2 is a diagram showing an example of a cross-sectional configuration of the solid-state imaging device 1. As shown in FIG. In FIG. 2 , the upper side is the back side of the solid-state imaging device 1 and the lower side is the front side of the solid-state imaging device 1 .
 固体撮像装置1は、例えば、半導体基板11、多層配線層21、支持基板31、透明絶縁膜41、及びオンチップレンズ51を備える。また、固体撮像装置1は、2以上の画素2を備える。画素2は、例えば、半導体基板11、半導体基板11内に設けられたフォトダイオード(図示せず)、多層配線層21、支持基板31、透明絶縁膜41、及びオンチップレンズ51などを含んで構成される。 The solid-state imaging device 1 includes, for example, a semiconductor substrate 11, a multilayer wiring layer 21, a support substrate 31, a transparent insulating film 41, and an on-chip lens 51. Moreover, the solid-state imaging device 1 includes two or more pixels 2 . The pixel 2 includes, for example, a semiconductor substrate 11, a photodiode (not shown) provided in the semiconductor substrate 11, a multilayer wiring layer 21, a support substrate 31, a transparent insulating film 41, an on-chip lens 51, and the like. be done.
 半導体基板11は、光入射面である第1面11aと、第1面11aに対向する第2面11bと、を有する。固体撮像装置1において、半導体基板11の第1面11aは裏側の面であり、半導体基板11の第2面11bは表側の面である。 The semiconductor substrate 11 has a first surface 11a, which is a light incident surface, and a second surface 11b facing the first surface 11a. In the solid-state imaging device 1, the first surface 11a of the semiconductor substrate 11 is the back surface, and the second surface 11b of the semiconductor substrate 11 is the front surface.
 半導体基板11は、例えばシリコン(Si)(特には単結晶シリコン)からなる。半導体基板の厚みは、例えば1μm~6μmであってよい。半導体基板11内には、フォトダイオード(図示せず)が画素2毎に設けられている。フォトダイオードは、光電変換素子の一例である。 The semiconductor substrate 11 is made of, for example, silicon (Si) (especially single crystal silicon). The thickness of the semiconductor substrate may be, for example, 1 μm to 6 μm. A photodiode (not shown) is provided for each pixel 2 in the semiconductor substrate 11 . A photodiode is an example of a photoelectric conversion element.
 半導体基板11は、1以上の画素2内に、第1面11aに形成された第1多孔質領域12と、第1多孔質領域12の第2面11b側に形成された非多孔質領域13と、を有する。第1多孔質領域12は、半導体基板11における入射光の反射を低減するために設けられた領域である。第1多孔質領域12及び非多孔質領域13の詳細については、後述する。 The semiconductor substrate 11 has, in one or more pixels 2, a first porous region 12 formed on the first surface 11a and a non-porous region 13 formed on the second surface 11b side of the first porous region 12. and have The first porous region 12 is a region provided to reduce reflection of incident light on the semiconductor substrate 11 . Details of the first porous region 12 and the non-porous region 13 will be described later.
 半導体基板11は、隣接する画素2の間において、画素分離部14を有していてよい。画素分離部14は、絶縁膜を備える。これにより、隣接する画素2、すなわち隣接するフォトダイオードが電気的に分離される。図2に示された半導体基板11の構造を第1面11a側から捉えると、画素分離部14は、例えば、隣接する画素2を分離するように格子状に形成されてよい。フォトダイオードは、画素分離部14で区切られた領域内に形成されうる。 The semiconductor substrate 11 may have pixel isolation portions 14 between adjacent pixels 2 . The pixel separation section 14 includes an insulating film. Adjacent pixels 2, ie, adjacent photodiodes are thereby electrically isolated. Viewing the structure of the semiconductor substrate 11 shown in FIG. 2 from the side of the first surface 11a, the pixel separation section 14 may be formed in a grid pattern so as to separate adjacent pixels 2, for example. A photodiode can be formed in a region separated by the pixel isolation portion 14 .
 多層配線層21は、半導体基板11の第2面11b側(表面側、すなわち下側)に形成されている。多層配線層21は、複数の配線層22と、層間絶縁膜23と、を有する。さらに、多層配線層21は、フォトダイオードに蓄積された電荷の読み出しなどを行う複数の画素トランジスタを有する。画素トランジスタは、ゲート電極24を有する。図2では、ゲート電極24を図示することにより、画素トランジスタの存在を示している。 The multilayer wiring layer 21 is formed on the second surface 11b side of the semiconductor substrate 11 (the surface side, that is, the lower side). The multilayer wiring layer 21 has a plurality of wiring layers 22 and an interlayer insulating film 23 . Furthermore, the multilayer wiring layer 21 has a plurality of pixel transistors for reading out electric charges accumulated in the photodiodes. The pixel transistor has a gate electrode 24 . In FIG. 2, the presence of the pixel transistor is indicated by showing the gate electrode 24. As shown in FIG.
 支持基板31は、多層配線層21の表側(下側)に形成されている。支持基板31は、例えばシリコン(Si)からなる。支持基板31の厚みは、特に限定されず、例えば数百μmであってよい。 The support substrate 31 is formed on the front side (lower side) of the multilayer wiring layer 21 . The support substrate 31 is made of silicon (Si), for example. The thickness of the support substrate 31 is not particularly limited, and may be several hundred μm, for example.
 透明絶縁膜41は、半導体基板11の第1面11a側(裏面側、すなわち上側)に形成されている。透明絶縁膜41は、光を透過させるとともに絶縁性を有する。透明絶縁膜41は、例えば、酸化シリコン、窒化シリコン、酸化窒化シリコン、及び酸化ハフニウム(HfO)などから選択される1種又は2種以上の材料を用いて形成されてよい。 The transparent insulating film 41 is formed on the side of the first surface 11a of the semiconductor substrate 11 (the back side, that is, the upper side). The transparent insulating film 41 transmits light and has insulating properties. The transparent insulating film 41 may be formed using one or more materials selected from, for example, silicon oxide, silicon nitride, silicon oxynitride, and hafnium oxide (HfO 2 ).
 オンチップレンズ51は、透明絶縁膜41の裏側(上側)に形成されている。オンチップレンズ51は、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、及びシロキサン系樹脂などの樹脂材料によって形成されうる。オンチップレンズ51は、入射光を集める。集められた光は、フォトダイオードに効率的に入射される。 The on-chip lens 51 is formed on the back side (upper side) of the transparent insulating film 41 . The on-chip lens 51 can be made of, for example, a resin material such as styrene resin, acrylic resin, styrene-acrylic copolymer resin, and siloxane resin. An on-chip lens 51 collects the incident light. The collected light is efficiently incident on the photodiode.
1-3.半導体基板 1-3. semiconductor substrate
 引き続き図2を参照して、半導体基板11について説明する。 The semiconductor substrate 11 will be described with continued reference to FIG.
 半導体基板11は、1以上の画素2内に、第1面11aに形成された第1多孔質領域12を有する。第1多孔質領域12は、第1面11aを含んで構成されている。すなわち、第1多孔質領域12の裏側の面(上側の面)は、第1面11aである。 The semiconductor substrate 11 has a first porous region 12 formed on the first surface 11a within one or more pixels 2 . The first porous region 12 includes a first surface 11a. That is, the back surface (upper surface) of the first porous region 12 is the first surface 11a.
 第1多孔質領域12は、多数の細孔を有している領域である。半導体基板11がシリコン(特には単結晶シリコン)からなる場合、第1多孔質領域12は、例えば多孔質シリコン(ポーラスシリコン)によって形成されていてよい。 The first porous region 12 is a region having many pores. If the semiconductor substrate 11 is made of silicon (especially monocrystalline silicon), the first porous region 12 may be made of porous silicon, for example.
 半導体基板11は、1以上の画素2内に、第1多孔質領域12の第2面11b側に形成された非多孔質領域13をさらに有する。図2に示される非多孔質領域13は、第2面11bを含んで構成されている。すなわち、図2において、非多孔質領域13の表側の面(下側の面)は、第2面11bである。ただし、非多孔質領域13は、半導体基板11において第1多孔質領域12よりも第2面11b側(第1多孔質領域12よりも下側)に位置していればよく、第2面11bを含まずに構成されていてもよい。すなわち、半導体基板11は、非多孔質領域13の第2面側に形成された他の領域をさらに有していてもよい。当該他の領域は、例えば、後述する第3多孔質領域であってよい。 The semiconductor substrate 11 further has a non-porous region 13 formed on the second surface 11b side of the first porous region 12 in one or more pixels 2 . The non-porous region 13 shown in FIG. 2 includes the second surface 11b. That is, in FIG. 2, the front surface (lower surface) of the non-porous region 13 is the second surface 11b. However, the non-porous region 13 only needs to be located closer to the second surface 11b (below the first porous region 12) than the first porous region 12 in the semiconductor substrate 11. may be configured without That is, the semiconductor substrate 11 may further have another region formed on the second surface side of the non-porous region 13 . The other region may be, for example, a third porous region which will be described later.
 非多孔質領域13は、細孔を有していない領域である。非多孔質領域13は、例えばバルクシリコンによって形成されていてよい。 The non-porous region 13 is a region that does not have pores. The non-porous region 13 may be made of bulk silicon, for example.
 第1多孔質領域12及び非多孔質領域13は、屈折率が異なる。具体的には、第1多孔質領域の屈折率は、多数の細孔が存在するために非多孔質領域13の屈折率よりも小さい。非多孔質領域13よりも屈折率の小さい領域が半導体基板11の第1面11a(光入射面)に形成されていることによって、半導体基板11における入射光の反射が低減されうる。 The first porous region 12 and the non-porous region 13 have different refractive indices. Specifically, the refractive index of the first porous region is lower than that of the non-porous region 13 due to the presence of numerous pores. By forming the region having a smaller refractive index than the non-porous region 13 on the first surface 11a (light incident surface) of the semiconductor substrate 11, reflection of incident light on the semiconductor substrate 11 can be reduced.
 図3を参照して、半導体基板11の第1多孔質領域12による入射光の反射低減効果について、従来技術の固体撮像装置における半導体基板と対比して説明する。図3Aは、従来技術の固体撮像装置における半導体基板91の模式図である。図3Bは、本実施形態に係る固体撮像装置における半導体基板11の模式図である。図3において、上側が半導体基板の裏側であり、下側が半導体基板の表側である。 With reference to FIG. 3, the effect of reducing the reflection of incident light by the first porous region 12 of the semiconductor substrate 11 will be described in comparison with the semiconductor substrate in the conventional solid-state imaging device. FIG. 3A is a schematic diagram of a semiconductor substrate 91 in a conventional solid-state imaging device. FIG. 3B is a schematic diagram of the semiconductor substrate 11 in the solid-state imaging device according to this embodiment. In FIG. 3, the upper side is the back side of the semiconductor substrate, and the lower side is the front side of the semiconductor substrate.
 図3Aに示される従来技術における半導体基板91は、非多孔質の材料からなり、多孔質領域を有していない。入射光L91は、屈折率の小さい部材90から屈折率の大きい半導体基板91へと向かう。部材90と半導体基板91との屈折率が異なるため、部材90と半導体基板91との界面において入射光L91の一部は反射し、反射光L92が発生する。従来技術の固体撮像装置においては、部材90と半導体基板91との屈折率の差が大きいため、反射光L92は大きくなる傾向にある。 The semiconductor substrate 91 in the prior art shown in FIG. 3A is made of non-porous material and has no porous regions. Incident light L91 travels from the member 90 with a low refractive index toward the semiconductor substrate 91 with a high refractive index. Since the member 90 and the semiconductor substrate 91 have different refractive indexes, part of the incident light L91 is reflected at the interface between the member 90 and the semiconductor substrate 91 to generate reflected light L92. In the conventional solid-state imaging device, the difference in refractive index between the member 90 and the semiconductor substrate 91 is large, so the reflected light L92 tends to be large.
 屈折率の差が大きいほど反射光が大きくなることは、反射光の大きさ(強度)を算出するための下記式(1)から理解される。下記式(1)は、種類の異なる2つの物質(物質1及び物質2)の界面において発生する反射光の大きさ(強度)を算出するための式である。 It can be understood from the following formula (1) for calculating the magnitude (intensity) of reflected light that the greater the difference in refractive index, the greater the reflected light. The following formula (1) is a formula for calculating the magnitude (intensity) of reflected light generated at the interface between two substances of different types (substance 1 and substance 2).
Figure JPOXMLDOC01-appb-M000001
 
(上記式(1)中、Iは反射光の大きさ(強度)、Iは入射光の大きさ(強度)、nは物質1の屈折率、n2は物質2の屈折率である。)
Figure JPOXMLDOC01-appb-M000001

(In the above formula (1), I is the magnitude (intensity) of reflected light, I0 is the magnitude (intensity) of incident light, n1 is the refractive index of substance 1, and n2 is the refractive index of substance 2. )
 上記式(1)から、「n-n」の値が大きいほど、すなわち、物質1の屈折率nと物質2の屈折率nとの差が大きいほど、反射光の大きさ(強度)Iが大きくなることが分かる。 From the above formula (1), the larger the value of “n 1 −n 2 ”, that is, the larger the difference between the refractive index n 1 of the substance 1 and the refractive index n 2 of the substance 2, the greater the magnitude of the reflected light ( intensity) I increases.
 一方、図3Bに示される本実施形態における半導体基板11は、第1多孔質領域12と非多孔質領域13とを有する。半導体基板11の第1面11a側(光入射面側)には、屈折率が小さい部材(例えば透明絶縁膜41)が設けられている。図4Bにおいて、透明絶縁膜41が最も小さい屈折率を有し(屈折率:小)、第1多孔質領域12が次に小さい屈折率を有し(屈折率:中)、そして非多孔質領域13が最も大きい屈折率を有する(屈折率:大)。入射光L1は、屈折率が最も小さい透明絶縁膜41から、屈折率が中程度の第1多孔質領域12及び屈折率が最も大きい非多孔質領域13へと向かう。入射光L1の一部は、透明絶縁膜41と第1多孔質領域12との界面において反射し、反射光L2が発生する。透明絶縁膜41と第1多孔質領域12との屈折率の差は、従来技術(図3A)における部材90と半導体基板91との屈折率の差よりも小さい。このため、反射光L2の強度は、従来技術における反射光L92の強度よりも小さくなる。このように、本実施形態においては、第1多孔質領域12を有していることにより入射光の反射低減を可能としている。 On the other hand, the semiconductor substrate 11 in this embodiment shown in FIG. 3B has a first porous region 12 and a non-porous region 13 . A member having a small refractive index (for example, a transparent insulating film 41) is provided on the first surface 11a side (light incident surface side) of the semiconductor substrate 11 . In FIG. 4B, the transparent insulating film 41 has the lowest refractive index (refractive index: small), the first porous region 12 has the next lowest refractive index (refractive index: medium), and the non-porous region 13 has the highest refractive index (refractive index: large). Incident light L1 travels from the transparent insulating film 41 having the lowest refractive index to the first porous region 12 having a medium refractive index and the non-porous region 13 having the highest refractive index. Part of the incident light L1 is reflected at the interface between the transparent insulating film 41 and the first porous region 12 to generate reflected light L2. The difference in refractive index between the transparent insulating film 41 and the first porous region 12 is smaller than the difference in refractive index between the member 90 and the semiconductor substrate 91 in the prior art (FIG. 3A). Therefore, the intensity of the reflected light L2 is lower than the intensity of the reflected light L92 in the prior art. As described above, in this embodiment, the presence of the first porous region 12 makes it possible to reduce the reflection of incident light.
 また、入射光L1の他の一部は、第1多孔質領域12と非多孔質領域13との界面において反射し、反射光L3が発生する。反射光L3を低減させるために、すなわち、半導体基板11における入射光の反射をさらに低減させるために、第1多孔質領域12の厚みdは、好ましくは、下記式(2)を満たす値でありうる。 Another part of the incident light L1 is reflected at the interface between the first porous region 12 and the non-porous region 13 to generate reflected light L3. In order to reduce the reflected light L3, that is, to further reduce the reflection of the incident light on the semiconductor substrate 11, the thickness d of the first porous region 12 preferably satisfies the following formula (2). sell.
 d=λ/4n ・・・(2)
(上記式(2)中、dは第1多孔質領域の厚み、λは入射光の波長、nは第1多孔質領域の屈折率である。)
d=λ/4n (2)
(In the above formula (2), d is the thickness of the first porous region, λ is the wavelength of incident light, and n is the refractive index of the first porous region.)
 第1多孔質領域12の厚みdが上記式(2)を満たす値である場合、第1多孔質領域12と非多孔質領域13との界面における反射光L3の大きさ(強度)は、光の干渉作用によって最小となりうる。このように第1多孔質領域12の厚みを調節することによって、第1多孔質領域12による入射光の反射低減効果をさらに高めることができる。 When the thickness d of the first porous region 12 satisfies the above formula (2), the magnitude (intensity) of the reflected light L3 at the interface between the first porous region 12 and the non-porous region 13 is can be minimized by the interference effects of By adjusting the thickness of the first porous region 12 in this manner, the effect of reducing the reflection of incident light by the first porous region 12 can be further enhanced.
 なお、図3Bに示される半導体基板11においては、第1多孔質領域12と非多孔質領域13との間に界面が存在しているが、半導体基板11においては当該界面が存在しない構成も採用されうる。当該構成の場合、反射光の発生そのものが防止されるため、入射光の反射低減効果をさらに高めることができる。当該界面が存在しない構成の詳細については後述する。 In addition, in the semiconductor substrate 11 shown in FIG. 3B, an interface exists between the first porous region 12 and the non-porous region 13, but in the semiconductor substrate 11, a configuration in which the interface does not exist is also adopted. can be In the case of this configuration, since the occurrence of reflected light itself is prevented, the effect of reducing the reflection of incident light can be further enhanced. The details of the configuration in which the interface does not exist will be described later.
 第1多孔質領域12において、屈折率は、多孔度(porosity)と相関する。具体的には、多孔度が大きくなるほど、屈折率は小さくなる。  In the first porous region 12, the refractive index correlates with the porosity. Specifically, the higher the porosity, the lower the refractive index.
 多孔度は、第1多孔質領域12において空隙(細孔)が占める割合であり、具体的には、第1多孔質領域12における単位体積当たりの空隙率(void fraction per unit volume)である。多孔度は、例えば、重量測定(Gravimetry)、走査型電子顕微鏡(Scanning Electron Microscope:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、及びX線反射率法(X-Ray Reflectivity:XRR)などの公知の測定方法によって測定されうる(参考文献:Leigh Canham, “Handbook of porous silicon”, Second edition, P. 157)。 The porosity is the ratio of voids (pores) in the first porous region 12, specifically, the void fraction per unit volume in the first porous region 12. Porosity can be measured, for example, by Gravimetry, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-Ray Reflectivity (XRR). (Reference: Leigh Canham, "Handbook of porous silicon", Second edition, P. 157).
 多孔度の上限値は、好ましくは90%以下、より好ましくは70%以下、さらにより好ましくは60%以下、特に好ましくは50%以下である。多孔度の下限値は、好ましくは10%以上、より好ましくは20%以上、さらにより好ましくは30%以上、特に好ましくは40%以上である。多孔度の数値範囲は、例えば上記で述べた上限値及び下限値から選択された組み合わせであってよく、好ましくは10%以上90%以下、より好ましくは20%以上90%以下、さらにより好ましくは30%以上70%以下、特に好ましくは30%以上60%以下又は40%以上50%以下である。 The upper limit of porosity is preferably 90% or less, more preferably 70% or less, even more preferably 60% or less, and particularly preferably 50% or less. The lower limit of porosity is preferably 10% or more, more preferably 20% or more, even more preferably 30% or more, and particularly preferably 40% or more. The numerical range of the porosity may be, for example, a combination selected from the upper limit value and the lower limit value described above, preferably 10% or more and 90% or less, more preferably 20% or more and 90% or less, still more preferably 30% or more and 70% or less, particularly preferably 30% or more and 60% or less or 40% or more and 50% or less.
 上述のとおり、第1多孔質領域12は多孔質シリコンによって形成されていてよく、非多孔質領域13はバルクシリコンによって形成されていてよい。多孔質シリコンは、例えば以下の多孔度及び屈折率を有しうる。
 <多孔質シリコンの屈折率>
  多孔度30%:約2.3
  多孔度45%:約1.8
  多孔度60%:約1.5
  多孔度75%:約1.3
 バルクシリコンの屈折率は、例えば約4.0でありうる。空気の屈折率は1.0である。多孔度30%の多孔質シリコンの屈折率(約2.3)は、バルクシリコンと空気の屈折率のおよそ中間値といえる。このため、例えば、第1多孔質領域12が多孔質シリコンであり非多孔質領域13がバルクシリコンである場合、多孔質シリコンの多孔度として30%以上が選択されてよい。
As mentioned above, the first porous region 12 may be made of porous silicon and the non-porous region 13 may be made of bulk silicon. Porous silicon can have, for example, the following porosities and refractive indices:
<Refractive index of porous silicon>
30% porosity: about 2.3
Porosity 45%: about 1.8
Porosity 60%: about 1.5
Porosity 75%: about 1.3
The refractive index of bulk silicon can be, for example, about 4.0. The refractive index of air is 1.0. The refractive index of porous silicon with a porosity of 30% (approximately 2.3) can be said to be approximately halfway between the refractive indices of bulk silicon and air. Thus, for example, when the first porous region 12 is porous silicon and the non-porous region 13 is bulk silicon, a porosity of 30% or more may be selected for the porous silicon.
 第1多孔質領域12において、多孔度は、均一であってもよく、不均一であってもよい。第1多孔質領域12において多孔度が不均一である場合、当該多孔度は、好ましくは、半導体基板11の第2面11b側から第1面11a側へ向かって連続的又は段階的に大きくなっている。「連続的」とは、多孔度の変化に継ぎ目がない状態を意味する。「段階的」とは、多孔度の変化に継ぎ目がある状態を意味する。多孔度がこのように連続的又は段階的に大きくなっていることによって、半導体基板11における入射光の反射低減効果が向上されうる。半導体基板11内における屈折率の変化がより小さくなり、反射光の強度がより低減されうるからである。第1多孔質領域12において多孔度が不均一である場合、多孔度の最小値及び最大値が、上述した多孔度の数値範囲内に収まることが好ましい。 The porosity of the first porous region 12 may be uniform or non-uniform. If the porosity is non-uniform in the first porous region 12, the porosity preferably increases continuously or stepwise from the second surface 11b side of the semiconductor substrate 11 toward the first surface 11a side. ing. By "continuous" is meant a seamless change in porosity. By "gradual" is meant that there is a seam in the change in porosity. Such a continuous or stepwise increase in porosity can improve the effect of reducing reflection of incident light on the semiconductor substrate 11 . This is because the change in the refractive index in the semiconductor substrate 11 becomes smaller, and the intensity of the reflected light can be further reduced. If the porosity is non-uniform in the first porous region 12, it is preferred that the minimum and maximum porosity values fall within the numerical ranges for porosity described above.
 図4を参照して、第1多孔質領域12の多孔度の変化について説明する。図4Aは、多孔度が連続的に大きくなっている第1多孔質領域12Aを示す模式図である。図4Bは、多孔度が段階的に大きくなっている第1多孔質領域12Bを示す模式図である。図4において、上側が半導体基板の裏側、下側が半導体基板の表側である。第1多孔質領域12A(図4A)及び第1多孔質領域12B(図4B)において、色の濃淡によって多孔度の違いが表されている。色が淡いほど多孔度が大きく空隙が多いことを表し、色が濃いほど多孔度が小さく空隙が少ないことを表している。非多孔質領域13A(図4A)及び非多孔質領域13B(図4B)は、空隙を有していないため、最も濃い色で表されている。 A change in the porosity of the first porous region 12 will be described with reference to FIG. FIG. 4A is a schematic diagram showing a first porous region 12A with continuously increasing porosity. FIG. 4B is a schematic diagram showing a first porous region 12B with a stepwise increase in porosity. In FIG. 4, the upper side is the back side of the semiconductor substrate, and the lower side is the front side of the semiconductor substrate. In the first porous region 12A (FIG. 4A) and the first porous region 12B (FIG. 4B), the difference in porosity is indicated by the shades of color. A lighter color indicates greater porosity and more voids, and a darker color indicates smaller porosity and fewer voids. Non-porous regions 13A (FIG. 4A) and non-porous regions 13B (FIG. 4B) do not have voids and are therefore shown in the darkest color.
 図4Aに示される第1多孔質領域12Aの多孔度は、半導体基板11Aの第2面11Ab側から第1面11Aa側に向かって連続的に大きくなっている。すなわち、多孔度は継ぎ目なく変化している。 The porosity of the first porous region 12A shown in FIG. 4A increases continuously from the second surface 11Ab side of the semiconductor substrate 11A toward the first surface 11Aa side. That is, the porosity varies seamlessly.
 図4Bに示される第1多孔質領域12Bは、それぞれ一定の多孔度を有する3つの多孔質層121、122、123が積層されることによって形成されている。多孔度は、多孔質層123、多孔質層122、多孔質層121の順に大きくなっている。半導体基板11Bの第2面11Bb側から第1面11Ba側に向かって、多孔質層123、多孔質層122、多孔質層121がこの順に積層されている。これにより、第1多孔質領域12Bの多孔度は、半導体基板11Bの第2面11Bb側から第1面11Ba側に向かって段階的に大きくなっている。非多孔質領域13Bと多孔質層123との界面、多孔質層123と多孔質層122との界面、及び多孔質層122と多孔質層121との界面が、多孔度の変化の継ぎ目に相当する。 The first porous region 12B shown in FIG. 4B is formed by stacking three porous layers 121, 122, 123 each having a certain degree of porosity. The porosity increases in order of the porous layer 123, the porous layer 122, and the porous layer 121. FIG. A porous layer 123, a porous layer 122, and a porous layer 121 are laminated in this order from the second surface 11Bb side of the semiconductor substrate 11B toward the first surface 11Ba side. Accordingly, the porosity of the first porous region 12B increases stepwise from the second surface 11Bb side of the semiconductor substrate 11B toward the first surface 11Ba side. The interface between the non-porous region 13B and the porous layer 123, the interface between the porous layer 123 and the porous layer 122, and the interface between the porous layer 122 and the porous layer 121 correspond to the seams where the porosity changes. do.
 本実施形態において、多孔度は、図4Aに示されるように半導体基板11Aの第2面11Ab側から第1面11Aa側へ向かって連続的に大きくなっていることが好ましい。第1多孔質領域12Aは、半導体基板11A内に界面(異なる多孔度を有する部材同士が接触している面)を有していない。反射光の発生要因となる界面を有していないことによって、入射光の発生そのものが防止されうる。すなわち、入射光の反射低減効果がさらに向上されうる。 In this embodiment, the porosity preferably increases continuously from the second surface 11Ab side of the semiconductor substrate 11A toward the first surface 11Aa side, as shown in FIG. 4A. The first porous region 12A does not have an interface (surface where members having different porosities are in contact with each other) within the semiconductor substrate 11A. Since there is no interface that causes the generation of reflected light, the generation of incident light itself can be prevented. That is, the effect of reducing reflection of incident light can be further improved.
 なお、本実施形態において用いられる半導体基板11は、図4A及び4Bに示される構成に限定されない。半導体基板11は、例えば、図4A及び4Bに示される要素を組み合わせて構成されてもよい。半導体基板11は、例えば、図4Bに示される非多孔質領域13Bに、図4Aに示される第1多孔質領域12Aが積層された構成であってもよい。すなわち、非多孔質領域13の第1面11a側に、多孔度が第2面11b側から第1面11a側に向かって連続的に大きくなっている第1多孔質領域12が積層された構成であってもよい。 The semiconductor substrate 11 used in this embodiment is not limited to the configuration shown in FIGS. 4A and 4B. Semiconductor substrate 11 may, for example, be configured by combining the elements shown in FIGS. 4A and 4B. The semiconductor substrate 11 may have, for example, a structure in which the first porous region 12A shown in FIG. 4A is laminated on the non-porous region 13B shown in FIG. 4B. That is, the structure in which the first porous region 12 having the porosity continuously increasing from the second surface 11b side to the first surface 11a side is laminated on the first surface 11a side of the non-porous region 13. may be
 再度図2を参照する。図2に示される本実施形態の固体撮像装置1は、第1多孔質領域12を有する半導体基板11を備えている。これにより、固体撮像装置1は、入射光の反射を低減することができる。 Refer to Figure 2 again. The solid-state imaging device 1 of this embodiment shown in FIG. 2 includes a semiconductor substrate 11 having a first porous region 12 . Thereby, the solid-state imaging device 1 can reduce the reflection of incident light.
 また、第1多孔質領域12を有する構成は、例えば上記特許文献1に記載されているようなモスアイ構造と比較して、光の回折を抑制できる。一般的に固体撮像装置においては、回折光が隣接する画素に漏れ込むと、クロストーク(混色)が発生しうる。本実施形態の固体撮像装置1は、回折を抑制することによって、クロストーク(混色)の発生を抑制することもできる。 In addition, the configuration having the first porous region 12 can suppress the diffraction of light compared to the moth-eye structure described in Patent Document 1, for example. Generally, in a solid-state imaging device, crosstalk (color mixture) may occur when diffracted light leaks into adjacent pixels. The solid-state imaging device 1 of this embodiment can also suppress the occurrence of crosstalk (color mixture) by suppressing diffraction.
 次に、第1多孔質領域12を形成する方法について説明する。第1多孔質領域12は、具体的には、非多孔質材料を多孔質化することによって形成される。そこで、以下では、非多孔質材料を多孔質化する方法について、例を挙げて説明する。当該例において、非多孔質材料を単結晶シリコンからなるシリコン基板とし、得られる多孔質材料を多孔質シリコン(ポーラスシリコン)とする。 Next, a method for forming the first porous region 12 will be described. Specifically, the first porous region 12 is formed by porosifying a non-porous material. Therefore, hereinafter, a method for making a non-porous material porous will be described with an example. In this example, the non-porous material is a silicon substrate made of single crystal silicon, and the resulting porous material is porous silicon.
 シリコン基板は、陽極化成法によって多孔質化される。これにより、多孔質シリコンが形成される。陽極化成法は、単結晶シリコンをフッ化水素(HF)溶液中で陽極化成処理(陽極酸化処理)することによって多孔質化する手法である。 The silicon substrate is made porous by an anodizing method. This forms porous silicon. The anodizing method is a method of making porous by subjecting single crystal silicon to anodizing treatment (anodizing treatment) in a hydrogen fluoride (HF) solution.
 多孔質シリコンの多孔度は、例えば陽極化成処理におけるHF濃度によって調整されうる。具体的には、HF濃度を低くすることによって細孔の密度が低くなり、その結果、多孔度が小さくなる。例えば、HF濃度を20質量%~50質量%の範囲内に制御することによって、細孔の密度を0.6g/cm~1.1g/cmの範囲内とすることができる。 The porosity of porous silicon can be adjusted, for example, by the HF concentration in the anodizing treatment. Specifically, lowering the HF concentration lowers the density of pores, resulting in lower porosity. For example, by controlling the HF concentration within the range of 20 mass % to 50 mass %, the pore density can be within the range of 0.6 g/cm 3 to 1.1 g/cm 3 .
 また、多孔質シリコンの多孔度は、例えば陽極化成処理における電流密度によって調整されうる。具体的には、電流密度を高くすることによって多孔質シリコン内の細孔の径が大きくなり、その結果、多孔度が大きくなる。例えば、高い電流密度(例えば100mA/cm)の場合、細孔の径を10nm~60nmの範囲内とすることができ、低い電流密度の場合、細孔の径を数nmとすることができる。 Also, the porosity of the porous silicon can be adjusted, for example, by the current density in the anodizing treatment. Specifically, increasing the current density increases the diameter of the pores in the porous silicon, resulting in increased porosity. For example, at high current densities (eg, 100 mA/cm 2 ), the pore diameter can be in the range of 10 nm to 60 nm, and at low current densities, the pore diameter can be several nm. .
 多孔質シリコンの多孔度は、HF濃度のみ、電流密度のみ、又は、HF濃度と電流密度との組み合わせによって調整されてよい。すなわち、多孔質シリコンの多孔度は、HF濃度及び/又は電流密度によって調整されてよい。 The porosity of porous silicon may be adjusted by HF concentration alone, current density alone, or a combination of HF concentration and current density. That is, the porosity of porous silicon may be adjusted by HF concentration and/or current density.
 次に、半導体基板11の製造方法について説明する。当該説明においても、シリコン基板及び多孔質シリコンを例に挙げる。半導体基板11の製造方法の例は、大別すると2つ挙げられる。シリコン基板の一部を多孔質化する方法、及び、シリコン基板と多孔質シリコンとを組み合わせる方法である。 Next, a method for manufacturing the semiconductor substrate 11 will be described. Also in the description, a silicon substrate and porous silicon are taken as examples. Examples of the method for manufacturing the semiconductor substrate 11 can be broadly classified into two. A method of making a portion of a silicon substrate porous, and a method of combining a silicon substrate and porous silicon.
 まず、シリコン基板の一部を多孔質化する方法は、具体的には、シリコン基板の片側表面及びその近傍に、上述した陽極化成法によって多孔質シリコンを形成する方法である。多孔質シリコンが本実施形態における第1多孔質領域12に相当し、多孔質化されていない部分が本実施形態における非多孔質領域13に相当する。 First, the method of making part of the silicon substrate porous is, specifically, a method of forming porous silicon on one surface of the silicon substrate and its vicinity by the above-described anodization method. The porous silicon corresponds to the first porous region 12 in this embodiment, and the non-porous portion corresponds to the non-porous region 13 in this embodiment.
 この方法においては、陽極化成処理中にHF濃度及び/又は電流密度を変化させることによって、多孔質シリコンの多孔度を連続的に変化させることできる。例えば、陽極化成処理中に、HF濃度を上げること及び/又は電流密度を高めることによって、シリコン基板の片側表面に向かって多孔度を連続的に大きくすることができる。より具体的には、例えば、陽極化成処理において、まずは低い電流密度で多孔度の小さい領域(細孔の径が数nmの領域)を形成し、次いで高い電流密度(例えば100mA/cm)で多孔度の大きい領域(細孔の径が10nm~60nmの領域)を形成することができる。これにより、例えば図4Aに示されるような、多孔度が第2面11Ab側から第1面11Aa側に向かって連続的に大きくなっている第1多孔質領域12Aが形成されうる。 In this method, the porosity of the porous silicon can be varied continuously by varying the HF concentration and/or current density during the anodizing treatment. For example, increasing the HF concentration and/or increasing the current density during the anodizing process can continuously increase the porosity towards one surface of the silicon substrate. More specifically, for example, in the anodizing treatment, first, a region with small porosity (a region with a pore diameter of several nm) is formed at a low current density, and then at a high current density (eg, 100 mA/cm 2 ). A region of high porosity (region with pore diameters of 10 nm to 60 nm) can be formed. As a result, for example, a first porous region 12A can be formed in which the porosity increases continuously from the second surface 11Ab side toward the first surface 11Aa side, as shown in FIG. 4A.
 次に、シリコン基板と多孔質シリコンとを組み合わせる方法は、具体的には、上述した陽極化成法によって多孔質シリコンからなる多孔質層を形成し、1又は複数の当該多孔質層を、シリコン基板の片側表面に積層する方法である。1又は複数の多孔質層が本実施形態における第1多孔質領域12に相当し、シリコン基板が本実施形態における非多孔質領域13に相当する。 Next, the method of combining a silicon substrate and porous silicon is, specifically, to form a porous layer made of porous silicon by the above-described anodizing method, and one or more of the porous layers are formed on a silicon substrate. It is a method of laminating on one side surface of One or more porous layers correspond to the first porous region 12 in this embodiment, and the silicon substrate corresponds to the non-porous region 13 in this embodiment.
 複数の多孔質層は、互いに異なる多孔度を有していてよい。複数の多孔質層は、好ましくは、互いに異なる多孔度を有しており、且つ、多孔度の小さいものから順にシリコン基板の片側表面に積層されている。これにより、例えば図4Bに示されるような、多孔度が第2面11Bb側から第1面11Ba側に向かって段階的に大きくなっている第1多孔質領域12Bが形成されうる。 A plurality of porous layers may have different porosities. The plurality of porous layers preferably have porosities different from each other, and are stacked on one side surface of the silicon substrate in order of decreasing porosity. As a result, a first porous region 12B can be formed in which the porosity increases stepwise from the second surface 11Bb side to the first surface 11Ba side, for example, as shown in FIG. 4B.
 以上、半導体基板11の製造方法について2つの方法を例に挙げて説明したが、これら2つの方法は、組み合わせて用いられてもよい。例えば、多孔度が連続的に大きくなっている多孔質シリコンからなる多孔質層を形成し、当該多孔質層をシリコン基板の片側表面に積層してもよい。これにより、図4Bに示される非多孔質領域13Bに、図4Aに示される第1多孔質領域12Aが積層された構成を有する半導体基板11が得られる。 Although the two methods for manufacturing the semiconductor substrate 11 have been described above as examples, these two methods may be used in combination. For example, a porous layer made of porous silicon with continuously increasing porosity may be formed, and the porous layer may be stacked on one side surface of the silicon substrate. As a result, semiconductor substrate 11 having a configuration in which first porous region 12A shown in FIG. 4A is laminated on non-porous region 13B shown in FIG. 4B is obtained.
1-4.固体撮像装置の製造方法 1-4. Manufacturing method of solid-state imaging device
 図5~10を参照して、図2に示される固体撮像装置1の製造方法の例について説明する。図5~10は、固体撮像装置1の各製造工程における断面構成の一例を示す図である。以下の説明においては、シリコン基板を用いる製造方法を例として挙げる。図5~7において、上側が固体撮像装置1の表側であり、下側が固体撮像装置1の裏側である。図8~10において、上側が固体撮像装置1の裏側であり、下側が固体撮像装置1の表側である。 An example of a method for manufacturing the solid-state imaging device 1 shown in FIG. 2 will be described with reference to FIGS. 5 to 10 are diagrams showing an example of a cross-sectional configuration in each manufacturing process of the solid-state imaging device 1. FIG. In the following description, a manufacturing method using a silicon substrate is taken as an example. 5 to 7, the upper side is the front side of the solid-state imaging device 1, and the lower side is the rear side of the solid-state imaging device 1. FIG. 8 to 10, the upper side is the back side of the solid-state imaging device 1, and the lower side is the front side of the solid-state imaging device 1. FIG.
 まず、第1シリコン基板51に、イオン注入法によってp型の高濃度不純物層であるp型不純物層52を形成する(図5)。p型不純物層52において、不純物濃度は、好ましくは1.0×1018/cm以上である。 First, a p-type impurity layer 52, which is a high-concentration p-type impurity layer, is formed in a first silicon substrate 51 by ion implantation (FIG. 5). In the p-type impurity layer 52, the impurity concentration is preferably 1.0×10 18 /cm 3 or higher.
 イオン注入法によって画素の不純物層を形成する。隣接する画素の間に、画素分離部14を形成する。さらに、配線層22、層間絶縁膜23、及びゲート電極24を有する多層配線層21を形成する。これにより、画素分離部14を備える半導体基板11の表側に多層配線層21が積層された構成となる(図6)。 The impurity layer of the pixel is formed by ion implantation. A pixel isolation portion 14 is formed between adjacent pixels. Furthermore, a multilayer wiring layer 21 having a wiring layer 22, an interlayer insulating film 23, and a gate electrode 24 is formed. As a result, a multilayer wiring layer 21 is laminated on the front side of the semiconductor substrate 11 having the pixel separation section 14 (FIG. 6).
 多層配線層21の表側に支持基板31を積層する(図7)。次いで、図7において最下層に位置している第1シリコン基板51が最上層に位置するように、上下を反転させる。最上層に位置する第1シリコン基板51をエッチングし、p型不純物層52を露出させる(図8)。 A support substrate 31 is laminated on the front side of the multilayer wiring layer 21 (FIG. 7). Next, the substrate is turned upside down so that the first silicon substrate 51 located at the bottom layer in FIG. 7 is located at the top layer. The first silicon substrate 51 located on the uppermost layer is etched to expose the p-type impurity layer 52 (FIG. 8).
 p型不純物層52を陽極化成法によって多孔質化し、第1多孔質領域12を形成する(図9)。第1多孔質領域12の表側が非多孔質領域13となる。陽極化成法による多孔質化の方法は、例えば上記「1-3.半導体基板」に記載のとおりでありうる。 The p-type impurity layer 52 is made porous by an anodizing method to form the first porous region 12 (FIG. 9). The front side of the first porous region 12 becomes the non-porous region 13 . The method of making the substrate porous by anodization can be, for example, as described in the above “1-3. Semiconductor substrate”.
 第1多孔質領域12の表面をエッチングする(図10)。その後、第1多孔質領域12の裏側に、透明絶縁膜41とオンチップレンズ51とをこの順に形成する(図2)。 The surface of the first porous region 12 is etched (Fig. 10). After that, a transparent insulating film 41 and an on-chip lens 51 are formed in this order on the back side of the first porous region 12 (FIG. 2).
 以上説明した固体撮像装置1の製造方法は一例であり、これに限定されない。例えば、多層配線層21の裏側に支持基板31を積層する前に、第1シリコン基板51をエッチングし、p型不純物層52を多孔質化してもよい。 The manufacturing method of the solid-state imaging device 1 described above is an example, and is not limited to this. For example, the first silicon substrate 51 may be etched to make the p-type impurity layer 52 porous before laminating the support substrate 31 on the back side of the multilayer wiring layer 21 .
2.第2実施形態 2. Second embodiment
 図11を参照して、本技術の第2実施形態に係る固体撮像装置について説明する。図11は、第2実施形態における半導体基板11Cの断面の一例を示す模式図である。図11においては、1つの画素2の一部のみが抜粋して記載されており、隣接する他の画素などの記載は省略されている。また、図11において、上側が半導体基板11Cの裏側であり、下側が半導体基板11Cの表側である。 A solid-state imaging device according to a second embodiment of the present technology will be described with reference to FIG. FIG. 11 is a schematic diagram showing an example of a cross section of a semiconductor substrate 11C in the second embodiment. In FIG. 11, only a part of one pixel 2 is extracted and description of other adjacent pixels is omitted. Also, in FIG. 11, the upper side is the back side of the semiconductor substrate 11C, and the lower side is the front side of the semiconductor substrate 11C.
 半導体基板11Cは、1以上の画素2内に、第1多孔質領域12及び非多孔質領域13、必要に応じて画素分離部14、並びに第2多孔質領域61を有する。第2多孔質領域61は、半導体基板11Cの第1面11Caに対して垂直方向に形成されている。図11に示される第2多孔質領域61は、半導体基板11Cの第1面11Caから第2面11Cbまで延在しているが、第2多孔質領域61の形状はこれに限定されない。第2多孔質領域61は、例えば、第1面11Caから非多孔質領域13の中程まで延在している形状、第2面11Cbから非多孔質領域13の中程まで延在している形状、又は、第1面11Ca及び第2面11Cbから離間して非多孔質領域13の中程に位置している形状などであってもよい。 The semiconductor substrate 11C has the first porous region 12 and the non-porous region 13, the pixel separating portion 14 as necessary, and the second porous region 61 in one or more pixels 2. The second porous region 61 is formed perpendicular to the first surface 11Ca of the semiconductor substrate 11C. The second porous region 61 shown in FIG. 11 extends from the first surface 11Ca of the semiconductor substrate 11C to the second surface 11Cb, but the shape of the second porous region 61 is not limited to this. The second porous region 61 has, for example, a shape extending from the first surface 11Ca to the middle of the non-porous region 13, or a shape extending from the second surface 11Cb to the middle of the non-porous region 13. A shape, or a shape located in the middle of the non-porous region 13 away from the first surface 11Ca and the second surface 11Cb may be used.
 図11に示されるように、第2多孔質領域61は、好ましくは、1以上の画素2内において非多孔質領域13の外側に隣接して形成されている。また、第2多孔質領域61は、より好ましくは、1以上の画素2内において非多孔質領域13の外側且つ画素分離部14の内側に隣接して形成されており、すなわち、1以上の画素2内において非多孔質領域13と画素分離部14との間に形成されている。なお、図11においては、1つの画素2内に2つの第2多孔質領域61が示されているが、1つの画素2内の第2多孔質領域61の数は、1つ又は複数であってよい。 As shown in FIG. 11, the second porous region 61 is preferably formed outside and adjacent to the non-porous region 13 within one or more pixels 2 . Further, the second porous region 61 is more preferably formed adjacent to the outside of the non-porous region 13 and the inside of the pixel separating portion 14 in one or more pixels 2, that is, the one or more pixels 2 is formed between the non-porous region 13 and the pixel separating portion 14 . Although two second porous regions 61 are shown in one pixel 2 in FIG. 11, the number of second porous regions 61 in one pixel 2 may be one or more. you can
 第2多孔質領域61は、第1多孔質領域12と同様に、多数の細孔を有している。半導体基板11Cがシリコン(特には単結晶シリコン)からなる場合、第2多孔質領域61は、例えば多孔質シリコン(ポーラスシリコン)によって形成されていてよい。 The second porous region 61, like the first porous region 12, has a large number of pores. When the semiconductor substrate 11C is made of silicon (especially single crystal silicon), the second porous region 61 may be made of porous silicon, for example.
 第2多孔質領域61の屈折率は、多数の細孔が存在するため、小さい。したがって、非多孔質領域13と第2多孔質領域61との屈折率の差は、非多孔質領域13と画素分離部14との屈折率の差よりも大きい。上述したとおり、屈折率の差が大きいほど反射光は大きくなる。このため、第2多孔質領域61は、入射光L4の反射光L5を大きくすることができ、これにより、光を画素2の内部方向へ効率的に集めることができる。 The refractive index of the second porous region 61 is small due to the presence of many pores. Therefore, the difference in refractive index between the non-porous region 13 and the second porous region 61 is greater than the difference in refractive index between the non-porous region 13 and the pixel separating portion 14 . As described above, the greater the difference in refractive index, the greater the reflected light. Therefore, the second porous region 61 can increase the reflected light L5 of the incident light L4, thereby efficiently concentrating the light toward the inside of the pixel 2 .
3.第3実施形態 3. Third embodiment
 図12及び13を参照して、本技術の第3実施形態に係る固体撮像装置について説明する。図12及び13は、第3実施形態における半導体基板11Dの断面の一例を示す模式図である。図12及び13においては、1つの画素2の一部のみが抜粋して記載されており、隣接する他の画素などの記載は省略されている。また、図12及び13において、上側が半導体基板11Dの裏側であり、下側が半導体基板11Dの表側である。 A solid-state imaging device according to a third embodiment of the present technology will be described with reference to FIGS. 12 and 13 are schematic diagrams showing an example of the cross section of the semiconductor substrate 11D in the third embodiment. In FIGS. 12 and 13, only a part of one pixel 2 is extracted and the description of other adjacent pixels is omitted. 12 and 13, the upper side is the back side of the semiconductor substrate 11D, and the lower side is the front side of the semiconductor substrate 11D.
 図12に示される半導体基板11Dは、1以上の画素2内に、第1多孔質領域12及び非多孔質領域13、必要に応じて画素分離部14、並びに第3多孔質領域71を有する。図12に示される第3多孔質領域71は、半導体基板11Dの第2面11Dbに形成されている。第3多孔質領域71は、第2面11Dbを含んで構成されている。すなわち、第3多孔質領域71の表側の面(下側の面)は、第2面11Dbである。 A semiconductor substrate 11D shown in FIG. 12 has a first porous region 12 and a non-porous region 13, a pixel separating portion 14 as necessary, and a third porous region 71 in one or more pixels 2. The third porous region 71 shown in FIG. 12 is formed on the second surface 11Db of the semiconductor substrate 11D. The third porous region 71 is configured including the second surface 11Db. That is, the front side surface (lower side surface) of the third porous region 71 is the second surface 11Db.
 第3多孔質領域71は、第1多孔質領域12と同様に、多数の細孔を有している。半導体基板11Dがシリコンからなる場合、第3多孔質領域71は、例えば多孔質シリコン(ポーラスシリコン)によって形成されていてよい。 The third porous region 71, like the first porous region 12, has a large number of pores. When the semiconductor substrate 11D is made of silicon, the third porous region 71 may be made of porous silicon, for example.
 第3多孔質領域71は、非多孔質領域13の表側の面(下側の面)に到達した入射光L6を反射させて反射光L7を発生させる。このように、第3多孔質領域71は、入射光L6が非多孔質領域13の表側から抜けることを抑制でき、これにより、光を画素2の内部方向へ効率的に集めることができる。 The third porous region 71 reflects incident light L6 that has reached the front surface (lower surface) of the non-porous region 13 to generate reflected light L7. In this way, the third porous region 71 can suppress the incident light L6 from escaping from the front side of the non-porous region 13, thereby efficiently concentrating the light toward the inside of the pixel 2. FIG.
 図13に示される第3多孔質領域71は、非多孔質領域13の内部に形成されている。すなわち、図13に示される第3多孔質領域71は、周囲を非多孔質領域13によって囲まれている。入射光を半導体基板11Dの内部でより多く反射させることによって、より多くの光を画素2の内部に留まらせて光の利用効率を高めることができる。 A third porous region 71 shown in FIG. 13 is formed inside the non-porous region 13 . That is, the third porous region 71 shown in FIG. 13 is surrounded by the non-porous region 13 . By reflecting more incident light inside the semiconductor substrate 11</b>D, more light stays inside the pixel 2 and the light utilization efficiency can be improved.
 図13A~13Cに示される第3多孔質領域71は、例えば、画素2の内部において直方体形状を有している。図13Aの第3多孔質領域71は、非多孔質領域13の中央から裏側(上側)に離間した位置に形成されている。図13Bの第3多孔質領域71は、非多孔質領域13の中央付近に形成されている。図13Cの第3多孔質領域71は、非多孔質領域13の中央から表側(下側)に離間した位置に形成されている。 A third porous region 71 shown in FIGS. 13A to 13C has, for example, a rectangular parallelepiped shape inside the pixel 2 . The third porous region 71 in FIG. 13A is formed at a position spaced apart from the center of the non-porous region 13 toward the rear side (upper side). A third porous region 71 in FIG. 13B is formed near the center of the non-porous region 13 . The third porous region 71 in FIG. 13C is formed at a position spaced from the center of the non-porous region 13 toward the front side (lower side).
 図13Dに示される第3多孔質領域71は、画素2の内部において裏側(上側)に開口を有する箱形状を有しており、非多孔質領域13の中央付近に形成されている。図13Eに示される第3多孔質領域71は、画素2の内部において表側(下側)に開口を有する箱形状を有しており、非多孔質領域13の中央付近に形成されている。 The third porous region 71 shown in FIG. 13D has a box shape with an opening on the back side (upper side) inside the pixel 2 and is formed near the center of the non-porous region 13 . The third porous region 71 shown in FIG. 13E has a box shape with an opening on the front side (lower side) inside the pixel 2 and is formed near the center of the non-porous region 13 .
 第3多孔質領域71の数は、1つの画素2内において1つ又は複数であってよい。1つの画素2内に複数の第3多孔質領域71が形成されている場合、当該複数の第3多孔質領域71は、図12及び図13A~13Eに示される第3多孔質領域71から選択された2以上の組み合わせであってもよい。このように、図12及び図13A~13Eに示される第3多孔質領域71は、技術的な矛盾が生じない限り、組み合わせられてよい。 The number of third porous regions 71 may be one or more in one pixel 2 . When a plurality of third porous regions 71 are formed in one pixel 2, the plurality of third porous regions 71 are selected from the third porous regions 71 shown in FIGS. 12 and 13A to 13E. It may be a combination of two or more. Thus, the third porous regions 71 shown in Figures 12 and 13A-13E may be combined unless technical conflicts arise.
 上述した第3実施形態の構成は、技術的な矛盾が生じない限り、第2実施形態の構成と組み合わせられてよい。すなわち、固体撮像装置1において、半導体基板11は、第1多孔質領域12及び非多孔質領域13に加えて、1又は複数の第2多孔質領域61及び1又は複数の第3多孔質領域71をさらに有していてもよい。 The configuration of the third embodiment described above may be combined with the configuration of the second embodiment as long as there is no technical contradiction. That is, in the solid-state imaging device 1 , the semiconductor substrate 11 includes one or more second porous regions 61 and one or more third porous regions 71 in addition to the first porous region 12 and the non-porous region 13 . may further have
 以上、本技術の固体撮像装置について裏面照射型を例に挙げて説明したが、本技術の固体撮像装置は表面照射型であってもよい。表面照射型の場合であっても、本技術の構成を備えることにより、入射光の反射を低減することができる。 As described above, the solid-state imaging device of the present technology has been described using the backside illumination type as an example, but the solid-state imaging device of the present technology may be a front side illumination type. Even in the case of the front illumination type, the reflection of incident light can be reduced by providing the configuration of the present technology.
4.本技術を適用した固体撮像装置の使用例 4. Usage example of a solid-state imaging device to which this technology is applied
 図14は、本技術の固体撮像装置の使用例を示す図である。 FIG. 14 is a diagram showing a usage example of the solid-state imaging device of the present technology.
 本技術の固体撮像装置は、例えば、可視光や、赤外光、紫外光、X線等の光をセンシングするさまざまなケースに使用することができる。すなわち、図14に示すように、例えば、鑑賞の用に供される画像を撮影する鑑賞の分野、交通の分野、家電の分野、医療・ヘルスケアの分野、セキュリティの分野、美容の分野、スポーツの分野、農業の分野等において用いられる装置に、本技術の固体撮像装置を使用することができる。 The solid-state imaging device of this technology can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays. That is, as shown in FIG. 14, for example, the field of appreciation for photographing images to be used for viewing, the field of transportation, the field of home appliances, the field of medicine/healthcare, the field of security, the field of beauty, the field of sports, and the like. The solid-state imaging device of the present technology can be used for devices used in the fields of agriculture, agriculture, and the like.
 具体的には、鑑賞の分野においては、例えば、デジタルカメラやスマートフォン、カメラ機能付きの携帯電話機等の、鑑賞の用に供される画像を撮影するための装置に、本技術の固体撮像装置を使用することができる。 Specifically, in the field of viewing, for example, the solid-state imaging device of this technology is used in devices for capturing images for viewing, such as digital cameras, smartphones, and mobile phones with camera functions. can be used.
 交通の分野においては、例えば、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of transportation, for example, in-vehicle sensors that capture images of the front, back, surroundings, and interior of a vehicle, and monitor running vehicles and roads for safe driving such as automatic stopping and recognition of the driver's condition. The solid-state imaging device of the present technology can be used for devices used for transportation, such as surveillance cameras that monitor traffic, distance sensors that measure distances between vehicles, and the like.
 家電の分野においては、例えば、ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレビ受像機や冷蔵庫、エアーコンディショナ等の家電に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of home appliances, for example, the present technology can be applied to devices used in home appliances, such as television receivers, refrigerators, and air conditioners, in order to photograph user gestures and perform device operations according to the gestures. A solid-state imager can be used.
 医療・ヘルスケアの分野においては、例えば、内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of medicine and healthcare, the solid-state imaging device of this technology can be used in medical and healthcare devices such as endoscopes and devices that perform angiography by receiving infrared light. can be used.
 セキュリティの分野においては、例えば、防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of security, the solid-state imaging device of the present technology can be used for devices used for security, such as surveillance cameras for crime prevention and cameras for person authentication.
 美容の分野においては、例えば、肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of beauty, for example, the solid-state imaging device of this technology can be used in devices used for beauty, such as skin measuring instruments that photograph the skin and microscopes that photograph the scalp.
 スポーツの分野において、例えば、スポーツ用途等向けのアクションカメラやウェアラプルカメラ等の、スポーツの用に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of sports, for example, the solid-state imaging device of this technology can be used in devices used for sports, such as action cameras and wearable cameras for sports.
 農業の分野においては、例えば、畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置に、本技術の固体撮像装置を使用することができる。 In the field of agriculture, the solid-state imaging device of this technology can be used for equipment used in agriculture, such as cameras for monitoring the condition of fields and crops.
 次に、本技術の固体撮像装置の使用例を具体的に説明する。本技術の固体撮像装置は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話など、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図15に、その一例として、電子機器102(カメラ)の概略構成を示す。この電子機器102は、例えば、静止画または動画を撮影可能なビデオカメラであり、固体撮像装置101と、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像装置101およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。 Next, a specific example of using the solid-state imaging device of this technology will be described. The solid-state imaging device of the present technology can be applied to all types of electronic devices having imaging functions, such as camera systems such as digital still cameras and video cameras, and mobile phones having imaging functions. FIG. 15 shows a schematic configuration of an electronic device 102 (camera) as an example. The electronic device 102 is, for example, a video camera capable of capturing still images or moving images, and includes a solid-state imaging device 101, an optical system (optical lens) 310, a shutter device 311, and the solid-state imaging device 101 and the shutter device 311. It has a drive unit 313 for driving and a signal processing unit 312 .
 光学系310は、被写体からの像光(入射光)を固体撮像装置101の画素部へ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置101への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置101の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置101から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリなどの記憶媒体に記憶されるか、あるいは、モニタ等に出力される。 The optical system 310 guides image light (incident light) from a subject to the pixel portion of the solid-state imaging device 101 . This optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls a light irradiation period and a light shielding period for the solid-state imaging device 101 . The drive unit 313 controls the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 311 . The signal processing unit 312 performs various signal processing on the signal output from the solid-state imaging device 101 . The video signal Dout after signal processing is stored in a storage medium such as a memory, or output to a monitor or the like.
5.内視鏡手術システムへの応用例 5. Example of application to an endoscopic surgery system
 本技術は、様々な製品へ応用することができる。例えば、本技術は、内視鏡手術システムに適用されてもよい。 This technology can be applied to various products. For example, the technology may be applied to an endoscopic surgical system.
 図16は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 16 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology (this technology) according to the present disclosure can be applied.
 図16では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 16 illustrates a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 . As illustrated, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 . In the illustrated example, an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 The tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 . Note that the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system. The imaging device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 11100 with irradiation light for imaging a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 . For example, the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like. The pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in. The recorder 11207 is a device capable of recording various types of information regarding surgery. The printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 It should be noted that the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out. Further, in this case, the observation target is irradiated with laser light from each of the RGB laser light sources in a time division manner, and by controlling the drive of the imaging device of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. By controlling the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Also, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer. So-called Narrow Band Imaging, in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is examined. A fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
 図17は、図16に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 17 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405. The CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 . The camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 A lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 . A lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The number of imaging elements constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type). When the image pickup unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals. Alternatively, the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. The 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site. Note that when the imaging unit 11402 is configured as a multi-plate type, a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Also, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 . For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Also, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 . The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good. In the latter case, the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 . The communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Also, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 . Image signals and control signals can be transmitted by electrical communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 In addition, the control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 . At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize. When displaying the captured image on the display device 11202, the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 A transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本技術が適用され得る内視鏡手術システムの一例について説明した。本技術は、以上説明した構成のうち、内視鏡11100や、カメラヘッド11102(の撮像部11402)等に適用され得る。例えば、本技術に係る固体撮像装置は、撮像部11402に適用することができる。内視鏡11100や、カメラヘッド11102(の撮像部11402)等に本技術を適用することにより、内視鏡11100や、カメラヘッド11102(の撮像部11402)等の性能を向上させることが可能となる。 An example of an endoscopic surgery system to which this technology can be applied has been described above. The present technology can be applied to the endoscope 11100, the camera head 11102 (the imaging unit 11402 thereof), and the like among the configurations described above. For example, the solid-state imaging device according to the present technology can be applied to the imaging unit 11402 . By applying the present technology to (the imaging unit 11402 of) the endoscope 11100 and the camera head 11102, the performance of the endoscope 11100 and the camera head 11102 (the imaging unit 11402 of) can be improved. Become.
 ここでは、一例として内視鏡手術システムについて説明したが、本技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Here, an endoscopic surgery system has been described as an example, but the present technology may also be applied to other systems such as a microsurgery system.
6.移動体への応用例 6. Example of application to mobile objects
 本技術は、様々な製品へ応用することができる。例えば、本技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。 This technology can be applied to various products. For example, the present technology may be implemented as a device mounted on any type of moving object such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. .
 図18は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 18 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図18に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 18, the vehicle control system 12000 includes a driving system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図18の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 18, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図19は、撮像部12031の設置位置の例を示す図である。 FIG. 19 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図19では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 19, the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図19には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 19 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the obstacle is detected through the audio speaker 12061 and the display unit 12062. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本技術が適用され得る車両制御システムの一例について説明した。本技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。具体的には、本技術に係る固体撮像装置は、撮像部12031に適用することができる。撮像部12031に本技術を適用することにより、撮像部12031の性能を向上させることが可能となる。 An example of a vehicle control system to which this technology can be applied has been described above. The present technology can be applied to, for example, the imaging unit 12031 among the configurations described above. Specifically, the solid-state imaging device according to the present technology can be applied to the imaging unit 12031 . By applying the present technology to the imaging unit 12031, the performance of the imaging unit 12031 can be improved.
 なお、本技術は、上述した実施形態及び使用例並びに応用例に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The present technology is not limited to the above-described embodiments, usage examples, and application examples, and various modifications are possible without departing from the gist of the present technology.
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 In addition, the effects described in this specification are merely examples and are not limited, and other effects may also occur.
 本技術は、以下のような構成をとることもできる。
[1]
 光入射面である第1面及び前記第1面に対向する第2面を有する半導体基板と、
 前記半導体基板を含む2以上の画素と、を備え、
 前記半導体基板が、1以上の前記画素内に、前記第1面に形成された第1多孔質領域と、前記第1多孔質領域の前記第2面側に形成された非多孔質領域と、を有する、
 固体撮像装置。
[2]
 前記第1多孔質領域の多孔度が、前記第2面側から前記第1面側に向かって連続的又は段階的に大きくなっている、[1]に記載の固体撮像装置。
[3]
 前記半導体基板が、1以上の前記画素内に第2多孔質領域をさらに有し、
 前記第2多孔質領域が、前記半導体基板の前記第1面に対して垂直方向に形成されている、[1]又は[2]に記載の固体撮像装置。
[4]
 前記半導体基板が、1以上の前記画素内に第3多孔質領域をさらに有する、[1]~[3]のいずれか一つに記載の固体撮像装置。
[5]
 前記第3多孔質領域が、前記半導体基板の前記第2面に形成されている、[4]に記載の固体撮像装置。
[6]
 前記第3多孔質領域が、前記非多孔質領域の内部に形成されている、[4]に記載の固体撮像装置。
This technique can also take the following configurations.
[1]
a semiconductor substrate having a first surface that is a light incident surface and a second surface that faces the first surface;
and two or more pixels including the semiconductor substrate,
The semiconductor substrate includes, within one or more pixels, a first porous region formed on the first surface, and a non-porous region formed on the second surface side of the first porous region; having
Solid-state imaging device.
[2]
The solid-state imaging device according to [1], wherein the porosity of the first porous region increases continuously or stepwise from the second surface side toward the first surface side.
[3]
the semiconductor substrate further having a second porous region within one or more of the pixels;
The solid-state imaging device according to [1] or [2], wherein the second porous region is formed in a direction perpendicular to the first surface of the semiconductor substrate.
[4]
The solid-state imaging device according to any one of [1] to [3], wherein the semiconductor substrate further has a third porous region in one or more of the pixels.
[5]
The solid-state imaging device according to [4], wherein the third porous region is formed on the second surface of the semiconductor substrate.
[6]
The solid-state imaging device according to [4], wherein the third porous region is formed inside the non-porous region.
1 固体撮像装置
2 画素
11,11A,11B,11C,11D 半導体基板
11a,11Aa,11Ba,11Ca,11Da 第1面
11b,11Ab,11Bb,11Cb,11Db 第2面
12,12A,12B 第1多孔質領域
13,13A,13B 非多孔質領域
14 画素分離部
21 多層配線層
22 配線層
23 層間絶縁膜
24 ゲート電極
31 支持基板
41 透明絶縁膜
51 オンチップレンズ
61 第2多孔質領域
71 第3多孔質領域
121,122,123 多孔質層 
1 solid-state imaging device 2 pixels 11, 11A, 11B, 11C, 11D semiconductor substrates 11a, 11Aa, 11Ba, 11Ca, 11Da first surfaces 11b, 11Ab, 11Bb, 11Cb, 11Db second surfaces 12, 12A, 12B first porous Regions 13, 13A, 13B Non-porous Region 14 Pixel Separating Portion 21 Multilayer Wiring Layer 22 Wiring Layer 23 Interlayer Insulating Film 24 Gate Electrode 31 Supporting Substrate 41 Transparent Insulating Film 51 On-Chip Lens 61 Second Porous Region 71 Third Porous Region Regions 121, 122, 123 porous layer

Claims (6)

  1.  光入射面である第1面及び前記第1面に対向する第2面を有する半導体基板と、
     前記半導体基板を含む2以上の画素と、を備え、
     前記半導体基板が、1以上の前記画素内に、前記第1面に形成された第1多孔質領域と、前記第1多孔質領域の前記第2面側に形成された非多孔質領域と、を有する、
     固体撮像装置。
    a semiconductor substrate having a first surface that is a light incident surface and a second surface that faces the first surface;
    and two or more pixels including the semiconductor substrate,
    The semiconductor substrate includes, within one or more pixels, a first porous region formed on the first surface, and a non-porous region formed on the second surface side of the first porous region; having
    Solid-state imaging device.
  2.  前記第1多孔質領域の多孔度が、前記第2面側から前記第1面側に向かって連続的又は段階的に大きくなっている、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the porosity of said first porous region increases continuously or stepwise from said second surface side toward said first surface side.
  3.  前記半導体基板が、1以上の前記画素内に第2多孔質領域をさらに有し、
     前記第2多孔質領域が、前記半導体基板の前記第1面に対して垂直方向に形成されている、請求項1に記載の固体撮像装置。
    the semiconductor substrate further having a second porous region within one or more of the pixels;
    2. The solid-state imaging device according to claim 1, wherein said second porous region is formed in a direction perpendicular to said first surface of said semiconductor substrate.
  4.  前記半導体基板が、1以上の前記画素内に第3多孔質領域をさらに有する、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein said semiconductor substrate further has a third porous region within said one or more pixels.
  5.  前記第3多孔質領域が、前記半導体基板の前記第2面に形成されている、請求項4に記載の固体撮像装置。 The solid-state imaging device according to claim 4, wherein said third porous region is formed on said second surface of said semiconductor substrate.
  6.  前記第3多孔質領域が、前記非多孔質領域の内部に形成されている、請求項4に記載の固体撮像装置。  The solid-state imaging device according to claim 4, wherein said third porous region is formed inside said non-porous region. 
PCT/JP2022/040639 2021-11-12 2022-10-31 Solid-state imaging device WO2023085147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-184787 2021-11-12
JP2021184787A JP2023072323A (en) 2021-11-12 2021-11-12 Solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2023085147A1 true WO2023085147A1 (en) 2023-05-19

Family

ID=86335859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040639 WO2023085147A1 (en) 2021-11-12 2022-10-31 Solid-state imaging device

Country Status (2)

Country Link
JP (1) JP2023072323A (en)
WO (1) WO2023085147A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214598A (en) * 2002-12-26 2004-07-29 Samsung Electro Mech Co Ltd Photodiode, photoelectric integrated circuit device equipped with it, and its manufacturing method
JP2006054262A (en) * 2004-08-10 2006-02-23 Sony Corp Solid-state imaging device
JP2010204154A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Method of manufacturing color filter and solid state imaging element
US20130341746A1 (en) * 2012-06-22 2013-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Porous Si As CMOS Image Sensor ARC Layer
US20180076341A1 (en) * 2015-03-19 2018-03-15 Specmat, Inc. Silicon-containing semiconductor structures, methods of making the same and devices including the same
US20190148570A1 (en) * 2017-11-13 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with an absorption enhancement semiconductor layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214598A (en) * 2002-12-26 2004-07-29 Samsung Electro Mech Co Ltd Photodiode, photoelectric integrated circuit device equipped with it, and its manufacturing method
JP2006054262A (en) * 2004-08-10 2006-02-23 Sony Corp Solid-state imaging device
JP2010204154A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Method of manufacturing color filter and solid state imaging element
US20130341746A1 (en) * 2012-06-22 2013-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Porous Si As CMOS Image Sensor ARC Layer
US20180076341A1 (en) * 2015-03-19 2018-03-15 Specmat, Inc. Silicon-containing semiconductor structures, methods of making the same and devices including the same
US20190148570A1 (en) * 2017-11-13 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with an absorption enhancement semiconductor layer

Also Published As

Publication number Publication date
JP2023072323A (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US11424284B2 (en) Solid-state imaging device and electronic apparatus
US20220173150A1 (en) Solid-state imaging apparatus
JP2018064758A (en) Semiconductor device, production method, and electronic apparatus
JP2019165136A (en) Solid state imaging device, manufacturing method therefor, and electronic apparatus
JPWO2018180569A1 (en) Solid-state imaging device and electronic device
US11284046B2 (en) Imaging element and imaging device for controlling polarization of incident light
WO2019207978A1 (en) Image capture element and method of manufacturing image capture element
WO2021044716A1 (en) Solid-state imaging device and electronic apparatus
US20240030250A1 (en) Solid-state imaging device and electronic apparatus
WO2020162196A1 (en) Imaging device and imaging system
WO2023013444A1 (en) Imaging device
JPWO2020158443A1 (en) Imaging equipment and electronic equipment
US20240030252A1 (en) Solid-state imaging device and electronic apparatus
WO2023085147A1 (en) Solid-state imaging device
US11362123B2 (en) Imaging device, camera module, and electronic apparatus to enhance sensitivity to light
WO2022158170A1 (en) Photodetector and electronic device
WO2023058326A1 (en) Imaging device
WO2022230355A1 (en) Imaging device and electronic apparatus
WO2023105678A1 (en) Light detection device and optical filter
US20220392931A1 (en) Solid-state imaging device and electronic apparatus
US11887950B2 (en) Solid-state imaging device and electronic apparatus
US20240145506A1 (en) Semiconductor package and electronic device
WO2023127498A1 (en) Light detection device and electronic instrument
WO2023149187A1 (en) Vertical transistor, light detection device, and electronic apparatus
WO2023067891A1 (en) Semiconductor device, solid-state imaging device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892646

Country of ref document: EP

Kind code of ref document: A1