WO2023084967A1 - IMMOBILIZED NSPCS AND γ-EC PRODUCTION METHOD USING SAME - Google Patents

IMMOBILIZED NSPCS AND γ-EC PRODUCTION METHOD USING SAME Download PDF

Info

Publication number
WO2023084967A1
WO2023084967A1 PCT/JP2022/037718 JP2022037718W WO2023084967A1 WO 2023084967 A1 WO2023084967 A1 WO 2023084967A1 JP 2022037718 W JP2022037718 W JP 2022037718W WO 2023084967 A1 WO2023084967 A1 WO 2023084967A1
Authority
WO
WIPO (PCT)
Prior art keywords
nspcs
immobilized
cellulose
gly
producing
Prior art date
Application number
PCT/JP2022/037718
Other languages
French (fr)
Japanese (ja)
Inventor
未彩 戸田
收正 平田
一也 長野
浩 宇山
萌華 大野
宏充 田端
善彦 平田
Original Assignee
サラヤ株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サラヤ株式会社, 国立大学法人大阪大学 filed Critical サラヤ株式会社
Publication of WO2023084967A1 publication Critical patent/WO2023084967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for producing ⁇ -glutamylcysteine (also referred to as " ⁇ -EC” in the present invention) applicable to industrial production. More specifically, it relates to a method for producing ⁇ -EC using a PCS-like enzyme (also referred to as “NsPCS” in the present invention) that is similar to phytochelatine synthase (also referred to as “PCS” in the present invention).
  • PCS PCS-like enzyme
  • the present invention also relates to an NsPCS-immobilized enzyme (also referred to as "immobilized NsPCS” in the present invention) used in the production method.
  • ⁇ -EC ( ⁇ -Glu-Cys) exists in a high concentration in the body, and glutathione (in the present invention, It is a dipeptide that functions as an intermediate for the biosynthesis of GSH (also called "GSH") (Fig. 1).
  • GSH also called "GSH"
  • ⁇ -EC when administered intravenously or orally to laboratory animals, enhances the action of GSH by increasing GSH levels in vivo
  • Non-Patent Documents 1 and 2 since it has a similar structure to GSH, it is expected to have the same beneficial action as GSH (Non-Patent Document 3).
  • Non-Patent Documents 4 and 5 Since GSH cannot pass through the brain-blood vessel barrier, ⁇ -EC is drawing attention because the above action indicates that the administered ⁇ -EC itself passes through the brain-blood vessel barrier and exerts its function in the brain.
  • the rate-limiting step in GSH synthesis in vivo is the ⁇ -EC synthesis reaction catalyzed by glutamic acid-cysteine ligase (hereinafter also referred to as “GCL”) (Fig. 1), and the synthesized ⁇ -EC is immediately converted into glutathione. It is converted to GSH by a synthetase (hereinafter also referred to as "GS"). Therefore, the intracellular concentration of GSH is as high as 0.5-10 mM (Non-Patent Document 6), whereas the intracellular concentration of ⁇ -EC is very low as 0.5-10 ⁇ M (Non-Patent Document 7). Therefore, unlike GSH, ⁇ -EC is difficult to ferment and produce using living organisms such as yeast, and although chemically synthesized products are available on the market, it is extremely expensive, and its reagent level is 1000 times more expensive than GSH. reach.
  • GCL glutamic acid-cysteine ligase
  • Patent Document 1 Non-Patent Document 8
  • Patent Document 2 an enzymatic method for synthesizing ⁇ -EC by transferring a ⁇ -glutamyl group of a ⁇ -glutamyl donor to a cysteine group using ⁇ -glutamyltransferase (hereinafter also referred to as “GGT”)
  • Patent Document 3 an enzymatic method of synthesizing ⁇ -EC from glutamic acid and cysteine using GCL
  • Some studies on the physiological effects of ⁇ -EC have used ⁇ -EC prepared using GGT (Non-Patent Documents 9 and 10). There is no example where the produced ⁇ -EC is marketed as a product.
  • PCS Phytochelatine synthase
  • PC phytokeratin
  • GSH a heavy metal-conjugated peptide
  • the synthesis reaction of PC by this enzyme consists of (a) a reaction in which GSH is cleaved into ⁇ -EC and glycine (Gly), and (b) a reaction in which the generated ⁇ -EC is bound to the N-terminus of GSH.
  • NsPCS PCS-like enzyme
  • PCS PCS-like enzyme
  • NsPCS is a PCS-like enzyme encoded by the alr0975 gene from the prokaryotic cyanobacterium Nostoc sp. PCC7120, which has high homology to the PCS gene.
  • NsPCS unlike PCS, does not require heavy metal activation, and among the reactions catalyzed by PCS, only a) catalyzes the synthesis of ⁇ -EC and Gly using GSH as a substrate. (see Patent Document 4 above).
  • NsPCS NsPCS
  • GSH can be used as a raw material (substrate) to produce ⁇ -EC that has excellent physiological activity and is useful as a raw material for pharmaceuticals, functional foods, or highly functional cosmetics.
  • NsPCS as a method for producing ⁇ -EC using NsPCS, the alr0975 gene encoding NsPCS is highly expressed in host cells such as E. coli, and NsPCS produced in the host cells uses GSH as a substrate to produce ⁇ -EC.
  • a method for producing -EC and a method for producing ⁇ -EC from GSH by an in vitro enzymatic reaction using NsPCS have been proposed.
  • ⁇ -glutamylcysteine lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD, Neurochem. Int., 144 (2021) 104931.
  • porous cellulose is used as a carrier for immobilizing enzymes
  • an active esterifying agent having an NHS ester group is used as a carbonyl group-introducing reagent to introduce carbonyl groups into the hydroxyl groups.
  • the immobilized NsPCS prepared by the above method can be stored stably by freezing with liquid nitrogen in a state of being immersed in a buffer solution containing an antifreeze solution, and stable distribution in the market is possible. It was confirmed.
  • (I) Method for producing ⁇ -EC and/or Gly (I-1) NsPCS immobilized by amide bonding with the carbonyl group introduced into the hydroxyl group of the porous cellulose carrier is added at pH 4 to 10, preferably pH 7.
  • a method for producing ⁇ -EC and/or Gly comprising a step (Step 1) of contacting GSH with GSH under conditions of 1 to 9.
  • (I-2) ⁇ -EC or/and according to (I-1) further comprising a step (step 2) of isolating and recovering ⁇ -EC or/and Gly from the product obtained in step 1 above.
  • Gly manufacturing method comprising a step (Step 1) of contacting GSH with GSH under conditions of 1 to 9.
  • step 2 is a step of contacting the product obtained in the step 1 with an ion exchanger to separate ⁇ -EC and Gly.
  • a method for producing ⁇ -EC and/or Gly. (I-4)
  • the ion exchanger is a cation exchanger, and the solution containing the product obtained in step 1 is acidified and then brought into contact with the cation exchanger to exchange ⁇ -EC and Gly.
  • the method for producing ⁇ -EC and/or Gly according to (I-3), which is a method for separation.
  • (I-5) A method in which the ion exchanger is a strong anion exchanger, and the solution containing the product obtained in step 1 is brought into contact with the strong anion exchanger to separate ⁇ -EC and Gly.
  • the method for producing ⁇ -EC and/or Gly according to (I-3), wherein (I-6) The porous cellulose carrier according to any one of (I-1) to (I-5), wherein the porous cellulose carrier is cellulose filter paper, cellulose sponge, cellulose monolith, or aggregate of powdery porous cellulose.
  • Immobilized NsPCS II-1) Immobilized NsPCS in which NsPCS is immobilized on porous cellulose by amide bonding between carbonyl groups introduced into hydroxyl groups of porous cellulose and primary amino groups of NsPCS.
  • II-2 The immobilized NsPCS of (II-1), wherein the porous cellulose is a cellulose filter paper, a cellulose sponge, a cellulose monolith, or an aggregate of powdery porous cellulose.
  • (III) Method for producing immobilized NsPCS (III-1) Method for producing immobilized NsPCS according to (II-1) or (II-2), comprising the following steps: (1) a step of introducing a carbonyl group to the hydroxyl group of the porous cellulose; (2) A step of immobilizing NsPCS on the surface of the porous cellulose by amide bonding the primary amino group of NsPCS to the carbonyl group introduced in step (1) above.
  • the step (1) is a step of producing an activated ester of porous cellulose using an active esterifying agent having an NHS ester group as a carbonyl group-introducing reagent (III-1). The immobilized NsPCS production method described in .
  • (III-3) The method for producing immobilized NsPCS according to (III-2), wherein the active esterifying agent having an NHS ester group is N,N'-disuccinimidyl carbonate.
  • (III-4) The immobilization according to any one of (III-1) to (III-3), wherein the porous cellulose is cellulose filter paper, cellulose sponge, cellulose monolith, or aggregate of powdery porous cellulose. Chemical NsPCS manufacturing method.
  • (IV) Method for storing immobilized NsPCS A method for storing immobilized NsPCS according to (IV-1), (II-1) or (II-2), wherein the immobilized NsPCS is immersed in a buffer containing antifreeze. The above method, characterized in that the product is stored at an ultra-low temperature of -150°C or lower in the state of being frozen. (IV-2) The method for storing immobilized NsPCS according to (IV-1), wherein the cryopreservation is cryopreservation in liquid nitrogen.
  • the present invention relates to an immobilized enzyme (immobilized NsPCS) obtained by immobilizing a cyanobacteria-derived enzyme NsPCS that synthesizes ⁇ -EC using GSH as a substrate (raw material) on a porous cellulose carrier (immobilized NsPCS), and ⁇ -EC using the same. manufacturing method.
  • immobilized NsPCS immobilized enzyme obtained by immobilizing a cyanobacteria-derived enzyme NsPCS that synthesizes ⁇ -EC using GSH as a substrate (raw material) on a porous cellulose carrier (immobilized NsPCS), and ⁇ -EC using the same. manufacturing method.
  • a porous cellulose carrier from among many solid phase carriers, NsPCS can be stably immobilized without the problem of deactivation or detachment of NsPCS.
  • ⁇ -EC can be produced efficiently.
  • NsPCS is stably immobilized
  • immobilized NsPCS can be used repeatedly, and ⁇ -EC can be produced economically and efficiently. Therefore, according to the present invention, it is possible to provide a production method effective for industrial production and stable supply of ⁇ -EC having excellent physiological activity.
  • immobilized NsPCS can be stably preserved by freezing in a state of being immersed in a buffer containing antifreeze. Therefore, it can be commercially distributed, and the labor and burden of preparation at the time of use are small.
  • GCL glutamate-cysteine ligase
  • GS glutathione synthetase
  • NsPCS means a PCS-like enzyme encoded by the alr0975 gene.
  • DSC disuccinimidyl carbonate
  • NHS ester an NHS ester
  • porous cellulose denoted as "(M)-OH” in the figure
  • the carbonyl group introduced into the hydroxyl group of the porous cellulose is amide-bonded to the primary amino group of NsPCS to form a porous
  • An outline of the reaction for immobilizing NsPCS on the hydroxyl groups of cellulose is shown.
  • 4 is a scanning electron microscope (SEM) image of the inside of the cellulose monolith produced in Production Example 2.
  • FIG. 3 shows the results of measuring % conversion from GSH to ⁇ -EC by changing the flow rate (rpm) of the substrate solution supplied to the immobilized NsPCS in Experimental Example 3.
  • FIG. 3 small scale
  • substrate solution was continuously supplied to immobilized NsPCS at a rate of 0.25 mL/h for 10 days, and the % conversion rate from GSH to ⁇ -EC was measured over time.
  • Experimental Example 4 scale-up
  • the substrate solution was continuously supplied to the immobilized NsPCS at a rate of 0.1 mL/h for 10 days, and the % conversion rate from GSH to ⁇ -EC was measured over time. .
  • the main object of the present invention is to provide a method for producing ⁇ -EC, but the production method of the present invention also produces Gly at the same time. . Therefore, the method for producing ⁇ -EC of the present invention can be said to be a method for producing ⁇ -EC and a method for producing Gly at the same time. Therefore, the production method of the present invention can be said to be a production method of ⁇ -EC and/or Gly.
  • this target product or “this product”.
  • the method for producing ⁇ -EC and/or Gly is referred to as "this production method”.
  • NsPCS having an amide bond with a carbonyl group introduced into a hydroxyl group of a porous cellulose carrier is brought into contact with GSH, and the enzymatic action of NsPCS cleaves GSH to produce ⁇ -EC and Gly (step 1).
  • NsPCS is a PCS-like enzyme encoded by the alr 0975 gene, which is highly homologous to the PCS gene derived from the prokaryotic cyanobacterium Nostoc sp. PCC7120 (see Patent Document 4).
  • the alr 0975 gene (SEQ ID NO: 1) corresponds to the nucleotide sequence alr 0975 in the genome of cyanobacteria Nostoc sp.PCC7120.
  • the cyanobacterium Nostoc sp. PCC 7120, from which this gene is derived, is commercially available from the Pasteur Institute in France under the catalog number PCC 7120.
  • Cloning of the alr 0975 gene can be carried out with reference to the description in Example 4 of Patent Document 4. Also, NsPCS encoded by the alr0975 gene can be produced and obtained with reference to the description of Example 4 of Patent Document 4. These details will be described in an example (manufacturing example 1) described later.
  • the NsPCS targeted by the present invention includes not only the alr 0975 gene consisting of the nucleotide sequence shown in SEQ ID NO: 1, but also enzymes encoded by genes having substantially the same function as this.
  • the gene having substantially the same function as the alr 0975 gene is a gene consisting of DNA that hybridizes under stringent conditions with the DNA consisting of the base sequence of SEQ ID NO: 1, and the protein encoded by the gene is Genes with enzymatic activity that catalyze reactions that produce ⁇ -EC and Gly from GSH are included.
  • the above gene also includes a gene encoding an amino acid sequence (SEQ ID NO: 2) encoded by the alr 0975 gene (SEQ ID NO: 1) in which one or several amino acids are deleted, substituted, or added, Also included is a gene having an enzymatic activity that catalyzes a reaction in which a protein consisting of the amino acid sequence produces ⁇ -EC and Gly from GSH.
  • Genes included in these so-called equivalent ranges can be obtained by sequence searches using databases such as NCBI-BLAST. It can also be obtained by colony or plaque hybridization using the nucleotide sequence shown by SEQ ID NO: 1 or a portion thereof as a probe.
  • stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. More preferably, the conditions can be such that only DNAs having 95% or more of homology specifically hybridize. Such conditions can be set by adjusting the salt concentration, temperature conditions, etc. of the hybridization solution.
  • Genes with catalytic enzymatic activity can be obtained by substituting DNA sequences using commercially available kits such as Site-Directed Mutagenesis Kit (manufactured by Takara Bio) and QuichChange Site-Directed Mutagenesis Kit (manufactured by STRATAGENE). be able to.
  • the NsPCS is used in a state of being immobilized on porous cellulose.
  • the porous cellulose used to immobilize NsPCS is water-insoluble porous cellulose having hydroxyl groups on its surface. Examples of such porous cellulose include, but are not limited to, cellulose filter paper, cellulose sponge, cellulose monolith, aggregates of powdery porous cellulose, and the like.
  • cellulose filter paper and cellulose sponge are well-known substances as porous cellulose and are widely commercially available.
  • Cellulose filter paper regardless of whether it is for quantitative or qualitative use, should comply with JIS P3801 standards ( ⁇ cellulose 90% or more, copper value 1.6 or less, pH 5.0 to 8.0).
  • JIS P3801 standards ⁇ cellulose 90% or more, copper value 1.6 or less, pH 5.0 to 8.0.
  • Cellulose sponge is a 100% natural material made from pulp-derived cellulose (cellulose) and natural fibers such as cotton added as reinforcing fibers.
  • a cellulose sponge having the following properties is available from Toray Fine Chemicals Co., Ltd.
  • the powdery porous cellulose may be porous powder of cellulose having hydroxyl groups on its surface.
  • the porous powder includes, for example, powdery crystalline cellulose.
  • powdery crystalline cellulose examples include, but are not limited to, Avicel (trademark) (powder grade) (manufactured by Asahi Kasei), microcrystalline cellulose (for column chromatography) (manufactured by Merck Millipore), and the like. can.
  • Avicel is a product obtained by subjecting high-purity natural cellulose to acid hydrolysis under controlled conditions, removing the non-crystalline regions and extracting only the pure crystalline portion, followed by purification and drying.
  • powder grades are non-fibrous porous particles that are secondary aggregates of fine cellulose crystals (Microcrystalline Cellulose: MCC) due to hydrogen bonding (irregular secondary aggregates).
  • MCC microcrystalline Cellulose
  • Such pulverulent porous cellulose aggregates include aggregates in powder form (i.e., the final form is a powder), but also powders that have been compacted or compressed, so long as the porosity is not compromised. It also includes those having a granule shape or a tablet shape prepared by processing such as tableting.
  • the final form is in powder form.
  • a block of porous structure having a skeleton of a three-dimensional network structure and voids, respectively, is called a "monolith” or a “monolith structure.”
  • Cellulose monoliths are those in which the skeleton forming the monolith is mainly made of cellulose material (for example, 90% by mass or more of the skeleton, preferably 100% by mass), and the three-dimensional network formed by the cellulose skeleton and its voids ( It is a three-dimensional porous body in which continuous pores are integrated.
  • a continuous hole also referred to as a through-hole
  • the pores are continuous pores can be determined from images of the outside and inside of the cellulose monolith taken using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the shape of the pores inside or outside the cellulose monolith is preferably circular, elliptical, or similar, but is not limited thereto.
  • the cellulose monolith used in the present invention can introduce an arbitrary amount of functional group (a functional group having a carbonyl group, which will be described later) on its surface.
  • the amount of functional groups introduced and the amount of NsPCS immobilized thereon the enzymatic reaction efficiency of the NsPCS can be appropriately adjusted.
  • Cellulose monoliths can be produced using phase separation of polymer solutions.
  • phase separation methods the non-solvent induced phase separation method (NIPS method), which induces phase separation by incorporating a non-solvent (water) (solvent exchange), and the thermally induced phase separation method (TIPS method), which induces phase separation by cooling method), a phase separation method using a mixed solvent, and various other methods are known. All of these phase separation methods for producing cellulose monoliths are known.
  • methods for producing cellulose monoliths using the NIPS method are described in US Pat.
  • a method for producing a cellulose monolith using the TIPS method is described in Patent Document 14.
  • cellulose acetate which has excellent solubility, is used as a raw material, and a monolith is synthesized by a phase separation method using a mixed solvent of DMF and 1-hexanol. It is a method of converting to cellulose monolith by alkaline decomposition at , the details of which are described in Non-Patent Documents 12 and 13.
  • the cellulose monolith used in the present invention can be produced by these known methods.
  • a phase separation method using a mixed solvent is preferred.
  • Cellulose acetate used as a raw material in the production of cellulose monoliths may be commercially available as long as a monolith can be synthesized by a phase separation method using a mixed solvent with 1-hexanol.
  • it can be appropriately selected from typical physical properties (degree of substitution, degree of polymerization) of cellulose acetate.
  • the degree of substitution is a numerical value indicating how many of the hydroxyl groups of one glucose residue of cellulose are substituted with acetyl groups, and serves as an index indicating the degree of acetylation of cellulose acetate.
  • the degree of acetyl substitution is 0.5 or more. It can be classified as cellulose monoacetate when it is less than 5, cellulose diacetate when it is 1.5 or more and less than 2.7, and cellulose triacetate when it is 2.7 or more.
  • cellulose diacetate can be preferably used because of its excellent solubility in organic solvents.
  • the degree of polymerization is not limited, it is preferably 50 or more in terms of mass average in order to increase the mechanical strength of the resulting cellulose monolith and to prevent elution into solvents or the like during use. There is no particular upper limit.
  • the phase separation method using a mixed solvent consists of two steps: step 1 to prepare a cellulose acetate monolith (CA monolith) from cellulose acetate and step 2 to prepare a cellulose monolith from the CA monolith.
  • step 1 to prepare a cellulose acetate monolith (CA monolith) from cellulose acetate
  • step 2 to prepare a cellulose monolith from the CA monolith.
  • N,N-dimethylformamide (DMF) and 1-hexanol are used as solvents for dissolving cellulose acetate.
  • Cellulose acetate is first dissolved in DMF and then 1-hexanol is added.
  • the amount of cellulose acetate to be dissolved in MDF is not limited, it can be, for example, 100-500 mg/mL. It is preferably 100-300 mg/mL, more preferably 150-250 mg/mL.
  • the mixture is heated at about 70° C. until it becomes transparent, and then allowed to stand still at 20° C. for about 24 hours to phase-separate into a solid phase consisting of a cellulose acetate monolith (CA monolith) and an aqueous phase.
  • CA monolith cellulose acetate monolith
  • step 2 the CA monolith produced in step 1 is deacetylated to obtain a cellulose monolith.
  • Deacetylation can be carried out by hydrolyzing the CA monolith in a hydrous alcohol containing a basic substance such as sodium hydroxide at room temperature.
  • a basic substance such as sodium hydroxide
  • a lower alcohol having 1 to 5 carbon atoms can be used, preferably methanol.
  • the concentration of the basic substance used for deacetylation can be appropriately set within the range of 0.001 to 1% by mass, preferably within the range of 0.005 to 0.5% by mass.
  • a cellulose monolith produced by deacetylation can be used as a porous cellulose carrier for immobilizing the NsPCS by successively rinsing with water and a lower alcohol and drying.
  • the cellulose monolith used in the present invention includes porous bodies having continuous pores with an average pore size of 0.01 to 20.0 ⁇ m.
  • the flat pore size can be obtained by the NLDFT method (Non-Local Density Functional Theory), which is one of the pore size distribution analysis methods.
  • the NLDFT method conforms to ISO standards (ISO 15901-3:2007, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 3: Analysis of micropores by gas adsorption) and JIS standards (JIS Z 8831-3).
  • Measurement methods for pore size distribution and pore characteristics of powders (solids) - Part 3 Measurement methods for micropores by gas adsorption), software supplied with commercial gas adsorption devices and pore size analyzers available by
  • the porous cellulose used in the present invention includes porous bodies having a specific surface area of 10 m 2 /g or more, preferably 20 to 50 m 2 /g.
  • the specific surface area can be determined by the BET formula, preferably the multipoint BET formula.
  • the BET formula can be used by software attached to commercially available gas adsorption devices and specific surface area analyzers.
  • the porous cellulose used in the present invention also includes porous bodies with a high porosity, for example, 20% by volume or more, preferably 30 to 90% by volume.
  • the shape and size of the porous cellulose used in the present invention are not particularly limited, and various shapes such as spherical, granular, sheet-like, plate-like, cubic, cuboid, cylindrical, conical, cylindrical and rod-like. can have any size.
  • Porous cellulose has alcoholic hydroxyl groups on its surface, which is a characteristic of cellulose. Therefore, it is possible to bond various atomic groups through chemical reactions.
  • proteins including NsPCS do not have a group that directly binds to a hydroxyl group, so an atomic group having binding reactivity with proteins, preferably a carbonyl group, is first introduced into the hydroxyl group of cellulose, and then reacted with NsPCS.
  • an amide bond can be formed between the carbonyl group and the primary amino group of NsPCS.
  • the immobilized NsPCS used in this production method is obtained by immobilizing NsPCS on the porous cellulose by forming an amide bond between the carbonyl group introduced into the hydroxyl group of the porous cellulose and the primary amino group of NsPCS. is an enzyme.
  • the method for producing immobilized NsPCS can be carried out by the following two steps, as described above: (i) introducing carbonyl groups to the hydroxyl groups of the porous cellulose; (ii) A step of immobilizing NsPCS on the porous cellulose by amide bonding the primary amino group of NsPCS to the carbonyl group introduced in step (i) above.
  • the method for producing immobilized NsPCS may be any method as long as the above steps (i) and (ii) can be performed. It is not limited, and can be appropriately set based on the common technical knowledge in the industry.
  • step can also be carried out by using a carbonyl group-introducing reagent.
  • carbonyl group-introducing reagents include active esters of carboxy groups (carbonyl agents) that react with primary amines of proteins to form amide bonds.
  • carbonyl group-introducing reagents include NHS esters and water-soluble sulfo-NHS.
  • NHS esters include N,N'-disuccinimidyl carbonate (DSC) and disuccinimidyl suberate (DCC).
  • DCC N,N'-disuccinimidyl carbonate
  • DCC disuccinimidyl suberate
  • sulfo-NHS include bis(disuccinimidyl)suberate (BS3).
  • NHS esters are preferred, and DSCs are more preferred.
  • the reaction scheme (outline) of the steps (i) and (ii) is shown in FIG. 2, using DSC, which is an NHS ester, as a carbonyl group-introducing reagent.
  • DSC which is an NHS ester
  • a strong base (nucleophilic agent) having a nucleophilic action as a catalyst are dissolved in an organic solvent (eg, acetonitrile) in advance, and porous cellulose is added thereto to react at room temperature.
  • an active ester of porous cellulose is produced by an ester reaction.
  • the nucleophile may be any one that is compatible with the organic solvent, and is preferably N,N-dimethyl-5-aminopyridine or dimethylaminopyridine (DMAP) such as N,N-dimethyl-5-aminopyridine. ) can be used. DSC and DMAP are preferably used in an amount of 1 to 3 equivalents, preferably 1.5 to 2.5 equivalents, relative to the porous cellulose.
  • step (ii) the produced active ester of cellulose is reacted with NsPCS in a buffer solution of pH 7-9, preferably pH 7.2-8.5, under conditions of 4° C. to room temperature.
  • the active ester of cellulose produced in step (i) is hydrolyzed to liberate N-hydroxysuccinimide, and the primary amino group of NsPCS binds to the carbonyl group introduced into the hydroxyl group of cellulose.
  • NsPCS is immobilized on the porous cellulose.
  • the buffer solution may have a buffering capacity in the range of pH 7 to 9, preferably pH 7.2 to 8.5. Its salts, HEPES and the like can be exemplified.
  • the immobilized NsPCS obtained in step (ii) can be used for production of ⁇ -EC or/and Gly of the present invention, for example, after washing with the same buffer as above.
  • cryopreservation when not used immediately, they can be frozen and stored in a state of being immersed in the above-mentioned buffer solution to which an antifreeze solution has been added without drying.
  • cryopreservation is not limited, it is preferably cryopreservation in liquid nitrogen, and examples thereof include cryopreservation at -150°C or lower, preferably -180°C or lower.
  • Step 1 Production method of ⁇ -EC and/or Gly
  • This production method has a step (Step 1) of bringing GSH into contact with immobilized NsPCS and reacting NsPCS with GSH to produce ⁇ -EC and Gly from GSH.
  • the conditions for contacting GSH with immobilized NsPCS may be conditions under which ⁇ -EC and Gly are produced from GSH.
  • a method in which the reaction is performed in a buffered solution can be mentioned.
  • the pH of the buffer include pH 7-9, preferably pH 7.2-8.5.
  • buffers include, without limitation, phosphate buffers, carbonate buffers, bicarbonate buffers, borate buffers, HEPES and the like.
  • a phosphate buffer is preferred, and a potassium phosphate buffer is more preferred.
  • the concentration of the buffer solution can be set as long as it does not interfere with the above reaction.
  • the above reaction is preferably carried out in the presence of a reducing agent.
  • the reducing agent examples include, but are not limited to, tris(2-carboxyethyl)phosphine hydrochloride and the like. Specifically, it can be carried out by dissolving GSH as a substrate in the buffer solution to which the reducing agent has been added and bringing this into contact with the immobilized NsPCS.
  • concentration of GSH dissolved in the buffer is desirably set within a range that does not precipitate during the reaction (during the manufacturing process), taking into consideration the solubility of GSH in water (approximately 160 mM at 25°C). Preferred examples include 50 to 110 mM, more preferably 80 to 100 mM.
  • the reaction temperature contact temperature, buffer solution temperature
  • the above reaction can be carried out in a batch mode in a container (batch reaction), or a buffer solution containing GSH is continuously sent to a column or tube filled with immobilized NsPCS, It can also be carried out in a flow mode in which the reaction is carried out continuously in a column or tube (flow reaction).
  • batch-type reaction although it is necessary to separate the reaction products ( ⁇ -EC, Gly) from the immobilized NsPCS, it is possible to obtain a large amount of It is a useful method in that the present product can be obtained in The flow reaction is a useful method in that it does not require separation of the reaction products ( ⁇ -EC, Gly) from the immobilized NsPCS, and the product can be obtained continuously. Since the immobilized NsPCS of the present invention is stably immobilized on the porous cellulose without deactivation of NsPCS, there is no separation of NsPCS, and it is suitable for repeated reactions in both batch and flow modes. can do.
  • ⁇ -EC and/or Gly can be obtained by isolating and recovering ⁇ -EC and/or Gly from the reaction product obtained in step 1 above.
  • GSH elutes with a retention time of about 12.56 minutes, ⁇ -EC with a retention time of about 13.01 minutes, and Gly with a retention time of about 3.57 minutes, so ⁇ -EC is separated from GSH and Gly. can be recovered.
  • Gly can be isolated and obtained at the same time as ⁇ -EC.
  • the recovery of the Gly fraction (isolation and recovery of Gly) can also be carried out again from the residue from which ⁇ -EC has been isolated and recovered.
  • the reaction products ( ⁇ -EC, Gly) can be quantified under the HPLC conditions described above using a calibration curve prepared using known amounts of ⁇ -EC and Gly.
  • Gly can be recovered separately from GSH and ⁇ -EC under the HPLC conditions described above, and is therefore useful as a method for isolating and recovering Gly.
  • the ⁇ -EC fraction may be separated and recovered in parallel with Gly, or the ⁇ -EC fraction may be recovered again from the residue from which Gly was isolated and recovered. (Isolation and recovery of ⁇ -EC) may be performed.
  • a method of connecting a column or tube filled with an ion exchanger to a column or tube filled with immobilized NsPCS can be used.
  • ⁇ -EC can be directly recovered, so that a column or tube packed with immobilized NsPCS can be effectively used as a flow reactor for ⁇ -EC.
  • Gly which is a neutral amino acid and has pKa and pKb of 2.35 and 9.78, respectively, reduces the column passage speed due to its interaction with the sulfone group. Therefore, by connecting a column or tube filled with immobilized NsPCS to a column filled with a cation exchanger, if a buffer solution containing GSH is sent to this column, ⁇ -EC is first generated as a reaction product. Elution can be obtained. In this case, when using a buffer solution of pH 8.0, the separation of ⁇ -EC and Gly is not clear. Since Gly can be strongly retained on this, the separation from ⁇ -EC can be performed more clearly.
  • reaction solution create a branch between the column or tube packed with immobilized NsPCS and the column or tube packed with a cation exchanger, and run an acid or highly concentrated acidic buffer with another pump. It can be carried out by mixing with the reaction liquid and adjusting the pH.
  • the immobilized NsPCS can also be used as a flow reactor for stable, continuous, and efficient production of ⁇ -EC or/and Gly from GSH. and is useful for industrial production of ⁇ -EC and/or Gly.
  • the immobilized NsPCS of the present invention is immersed in a buffer containing an antifreeze solution at -150°C or lower, preferably in liquid nitrogen (-196 to -150°C).
  • the antifreeze is preferably one that does not affect the effect of the immobilized NsPCS during use, and glycerol, for example, can be used.
  • the immobilized NsPCS are subjected to the above-described treatment in a 100-300 mM buffer at pH 7-9, preferably pH 7.2-8.5, containing 10-30% by weight, preferably 20-30% by weight of glycerol.
  • the buffer solution may have a buffering capacity in the pH range described above, and examples include phosphoric acid or its salts, carbonic acid or its salts, bicarbonate or its salts, boric acid or its salts, and HEPES. can be done.
  • N,N'-Disuccinimidyl carbonate/glucose unit Tokyo Chemical Industry Co., Ltd.
  • N,N-dimethyl-5-aminopyridine glucose unit Wako Pure Chemical Industries, Ltd.
  • Cellulose diacetate (Mn 3.0 ⁇ 10 4 ; 39.3-40.3 wt% acetyl content): Sigma-Aldrichs glutathione (GSH): ⁇ -Glutamylcysteine ( ⁇ -EC) manufactured by Nacalai Tesque (for standard): Glycine manufactured by Sigma-ardrich (for standard): Cellulose filter paper manufactured by Nacalai Tesque: Circular quantitative filter paper No.
  • eluent A A 7.5 mM sodium octanesulfonate aqueous solution containing 0.02% trifluoroacetic acid was used as the eluent A, and a 30% acetonitrile aqueous solution containing 0.02% trifluoroacetic acid and 7.5 mM sodium octanesulfonate was used as the eluent B.
  • Gly was detected by UV in the above post-column-HPLC method and quantified using a calibration curve prepared using known amounts of Gly.
  • NsPCS was produced by the following method. Note that the description of Example 4 of Patent Document 4 can be incorporated into this specification by reference.
  • (1) Cloning of alr 0975 gene Using the genomic DNA extracted from Nostoc sp.PCC 7120 as a template, the alr 0975 gene (SEQ ID NO: 1) was amplified by PCR using the following primers.
  • NsF1 (5'-CTTCATATGATAGTTATGAAACTTCTTTATC-3': SEQ ID NO: 3)
  • NsR1 (5'-ATCGGATCCTAATCTTGTGTTTTACTTACG-3': SEQ ID NO: 4)
  • the resulting DNA fragment was treated with restriction enzymes NdeI and BamHI, inserted into a pET25b(+) vector (purchased from Novagen) (pET25b-alr 0975), and subjected to sequence analysis. It was confirmed.
  • the resulting plasmid was used to transform E. coli BL21 (DE3) cells.
  • the cell suspension was sonicated to extract a soluble fraction, which was dialyzed overnight against a 20 mM Tris-HCl buffer (pH 8.0) containing 1 mM EDTA and 1 mM ⁇ -mercaptoethanol. After that, the sample was applied to a DEAE-Toyopearl column (5 cm x 15 cm; Tosho) and the flow-through fraction was collected. This was dialyzed overnight using 20 mM phosphate buffer (pH 6.0) containing 1 mM EDTA. The resulting protein fraction was applied to a HiTrap SP column (Pharmacia Biotech, Uppsala, Sweden) equipped with an AKTA protein purification system for purification. Purified protein was obtained by a gradient program from 0 to 10 mM NaCl in 20 mM phosphate buffer (pH 6.0).
  • Non-Patent Document 12 A cellulose monolith was produced according to the method described in Non-Patent Document 12. The manufacturing method described in Non-Patent Document 12 can be incorporated herein by reference. Non-Patent Document 12 describes that a cellulose monolith having continuous pores with an average pore diameter of 11.2 nm and a non-surface area of 42.3 m 2 /g can be obtained by this production method. Specifically, first, cellulose diacetate powder (0.20 g) was completely dissolved in N,N-dimethylformamide (DMF) (1.0 mL) at room temperature. 1-Hexanol (1.5 mL) was added dropwise to this while stirring gently. The mixture was then heated at 70°C until it became clear.
  • DMF N,N-dimethylformamide
  • this solution was allowed to stand still at 20° C. for 24 hours to undergo phase separation into a liquid phase and a solid phase.
  • the solvent (liquid phase) was exchanged with ethanol three times, followed by drying the solid phase in vacuum to obtain a cellulose acetate monolith (CA monolith).
  • the resulting CA monolith was then hydrolyzed to prepare a cellulose monolith.
  • the CA monolith 50 mg was immersed in 2.0 mL of methanol. After degassing for 5 minutes, 0.15 L of 2M NaOH aqueous solution was added to methanol to initiate hydrolysis reaction at room temperature. Three hours after initiation, the hydrolysis was stopped by neutralizing the solution with 1M aqueous HCl.
  • SEM scanning electron microscope
  • Production Example 3 Production of immobilized NsPCS To dehydrated acetonitrile, N,N'-disuccinimidyl carbonate (DSC)/glucose units and N,N-dimethyl- 5-Aminopyridine (DMAP) and glucose units were added and dissolved, and the porous cellulose [cellulose monolith produced in Production Example 2 (Experimental Examples 3 and 4: 0.0317 g, Example 5: 0.3182 g), Cellulose filter paper (Experimental Examples 1 and 2: 0.00165 g/piece) and cellulose sponge (Experimental Example 5: 0.03375-0.03875 g/piece x 4 pieces)] were added, degassed under reduced pressure for 10 minutes, and then at room temperature for 24 hours. Stirred.
  • DSC N,N'-disuccinimidyl carbonate
  • DMAP N,N-dimethyl- 5-Aminopyridine
  • the reaction was stopped by adding an appropriate amount of 3.6 N hydrochloric acid, and the reaction solution from which the immobilized NsPCS had been removed was subjected to high-performance liquid chromatography under the conditions described above, and the substrate (GSH) and the reaction product ( ⁇ -EC , Gly) were separated and quantified. Since the solubility of GSH in water is about 160 mM, 100 mM is considered to be the maximum concentration at which GSH does not precipitate during the production process.
  • FIG. 4 shows changes in reaction time (h) and amounts (mM) of substrate (GSH) and reaction product ( ⁇ -EC) in the reaction solution.
  • 100 mM GSH completely disappeared after about 13 hours, and about 100 mM ⁇ -EC was obtained.
  • the immobilized NsPCS of the present invention can almost completely convert GSH at a high concentration of 100 mM to ⁇ -EC.
  • the concentration of NsPCS in this reaction solution was 26 mg/L
  • the production rate of ⁇ -EC was about one-third that when free NsPCS was used.
  • the production amount of ⁇ -EC can be improved as a result.
  • ⁇ - EC production speed can also be increased.
  • Fig. 5 shows the relative ratio (%) of the 2nd to 5th generation rates when the 1st ⁇ -EC generation rate is 100%.
  • the ⁇ -EC production rate gradually decreased with each repetition, but was maintained at about 80% even after the fifth repetition.
  • the conversion rate of GSH to ⁇ -EC did not change, and almost 100% conversion was achieved in the second to fifth reactions, which was the same as in the first reaction.
  • the immobilized NsPCS of the present invention showed no significant reduction in the production rate even when the reaction was repeated up to at least 5 times using 100 mM GSH as a substrate, and almost completely ⁇ - It was confirmed that it can be converted to EC. From this, it was confirmed that the immobilized NsPCS of the present invention is very stable physically (immobilized state) and enzymatically (activity).
  • FIGS. 11(2) shows the change in the ⁇ -EC conversion rate (%) over time.
  • the first reaction ⁇ -EC conversion rate: 97%) at 37 ° C. for 48 hours and the fourth reaction ( ⁇ -EC conversion rate: 81.5%) were 15.5 % decrease, and a 21.5% decrease was observed in the 4th reaction ( ⁇ -EC conversion rate: 54.9%) compared to the first reaction ( ⁇ -EC conversion rate: 76.4%) at 25 ° C for 48 hours, but it is certain It was confirmed that ⁇ -EC was obtained in In addition, no deterioration of the cellulose sponge was observed in any of the reaction systems after 4 reactions. From these results, it was confirmed that the immobilized NsPCS prepared using the cellulose sponge is durable against repeated use (continuous reaction) as a carrier and as an enzyme.
  • the amount of enzyme immobilized per volume is about 2.5 times that of cellulose monolith, and it was confirmed that a large amount of enzyme NsPCS can be efficiently immobilized on crystalline cellulose powder.
  • ⁇ -EC was continuously produced using GSH as a starting material. Specifically, first, 2.5 mL of immobilized NsPCS (total weight of immobilized NsPCS: about 1460 ⁇ g) was placed in a glass tube whose lower end was sealed with a glass wool plug, and a reactor having the configuration shown in FIG. 12 was assembled. ⁇ -EC was produced using GSH as a raw material. As a substrate solution, 100 mM GSH, 1 mM TCEP, and 200 mM potassium phosphate buffer (pH 8.0) were used as in Experimental Example 4.
  • dry storage by freeze-drying is performed by immersing the immobilized NsPCS produced in Production Example 2 in 200 mM potassium phosphate buffer (pH 8.0) containing 25% glycerol, treating it with liquid nitrogen, and freezing it. Freeze-dried in a desiccator and stored for 2 days. Thereafter, according to the method described in Experimental Example 2, ⁇ -EC was produced using GSH as a starting material, and the production rate of ⁇ -EC before storage was compared.
  • Table 3 shows the relative ratio (%) of the ⁇ -EC production rate after storage when the ⁇ -EC production rate before storage is taken as 100%.
  • the immobilized NsPCS of the present invention and the method for producing ⁇ -EC using the same have high industrial applicability in at least one of the following points. 1) By using the immobilized NsPCS of the present invention, the raw material GSH can be completely converted into ⁇ -EC and Gly. 2) This production method does not require magnesium or expensive ATP as cofactors. 3) According to the present invention, ⁇ -EC can be easily separated from substrates, enzymes and the like. 4) Unlike Patent Document 2, this production method does not use cells, so the reaction solution does not contain cell-derived contaminants (including amino acids, peptides, etc.), making it easy to separate and purify ⁇ -EC. is.
  • Gly is an amino acid that is difficult to produce by a fermentation method that is usually used for industrial production of amino acids, but according to this production method, an equal amount of Gly can be produced simultaneously with ⁇ -EC from GSH.
  • Gly can be stably and continuously produced without the need for separation from substrates and enzymes. It can also be easily separated from ⁇ -EC by passing the reaction product through an ion exchange resin.
  • SEQ ID NO: 1 is the nucleotide sequence of the alr 0975 gene, which has high homology with the PCS gene derived from Cyanobacteria Nostoc sp. PCC7120;
  • SEQ ID NO: 2 is the amino acid sequence of the PCS-like enzyme (NsPCS) encoded by the alr 0975 gene.
  • SEQ ID NOs: 3 and 4 show the nucleotide sequences of the primer set (NsF1, NsrR1) used when the alr 0975 gene was amplified by PCR using the genomic DNA extracted from Nostoc sp.PCC 7120 as a template.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

The present invention provides a production method of γ-glutamylcysteine (γ-EC) that is applicable to industrial production, and immobilized NsPCS enzyme (immobilized NsPCS) to be used in the production method. This production method, which is for producing γ-EC and/or Gly, comprises a step for contacting NsPCS, which is immobilized by amide bonding with carbonyl groups introduced into hydroxyl groups of a porous cellulose carrier, with GSH under the condition of pH 4-10 to thereby synthesize γ-EC and Gly.

Description

固定化NsPCS、及びそれを用いたγ-ECの製造方法Immobilized NsPCS and method for producing γ-EC using the same
 本発明は、工業的生産に適用可能なγ-グルタミルシステイン(本発明では「γ-EC」とも称する)の製造方法に関する。より詳細には、フィトケラチン合成酵素(本発明では「PCS」とも称する)に類するPCS様酵素(本発明では「NsPCS」とも称する)を用いたγ-ECの製造方法に関する。また、本発明は当該製造方法に用いるNsPCS固定化酵素(本発明では「固定化NsPCS」とも称する)に関する。 The present invention relates to a method for producing γ-glutamylcysteine (also referred to as "γ-EC" in the present invention) applicable to industrial production. More specifically, it relates to a method for producing γ-EC using a PCS-like enzyme (also referred to as “NsPCS” in the present invention) that is similar to phytochelatine synthase (also referred to as “PCS” in the present invention). The present invention also relates to an NsPCS-immobilized enzyme (also referred to as "immobilized NsPCS" in the present invention) used in the production method.
 γ-EC(γ-Glu-Cys)は、生体内に高濃度で存在し、直接的及び間接的に活性酸素消去作用、抗酸化作用、及び生体内異物の解毒作用を有するグルタチオン(本発明では「GSH」とも称する)を生合成する中間体として機能するジペプチドである(図1)。
 γ-ECは、実験動物に静脈注射あるいは経口で投与した場合、生体内のGSHレベルを上昇させることによりGSHの作用を強化することが報告されている(非特許文献1及び2)。また、GSHと類似構造を有することからGSHと同様の有益な作用を有することが期待されている(非特許文献3)。さらに、最近では実験動物において認知症やアルツハイマー病の緩和作用があることが報告されている(非特許文献4及び5)。GSHは脳-血管関門を通過できないことから、上記作用は投与したγ-ECそのものが脳-血管関門を通過して脳で機能を発揮することを示すとして、γ-ECが注目されている。
γ-EC (γ-Glu-Cys) exists in a high concentration in the body, and glutathione (in the present invention, It is a dipeptide that functions as an intermediate for the biosynthesis of GSH (also called "GSH") (Fig. 1).
It has been reported that γ-EC, when administered intravenously or orally to laboratory animals, enhances the action of GSH by increasing GSH levels in vivo (Non-Patent Documents 1 and 2). In addition, since it has a similar structure to GSH, it is expected to have the same beneficial action as GSH (Non-Patent Document 3). Furthermore, recently, it has been reported that it has a mitigating effect on dementia and Alzheimer's disease in experimental animals (Non-Patent Documents 4 and 5). Since GSH cannot pass through the brain-blood vessel barrier, γ-EC is drawing attention because the above action indicates that the administered γ-EC itself passes through the brain-blood vessel barrier and exerts its function in the brain.
 しかし、生体内でのGSH合成における律速段階はグルタミン酸-システインリガーゼ(以下、「GCL」とも称する)によって触媒されるγ-EC合成反応であり(図1)、合成されたγ-ECは直ちにグルタチオンシンセターゼ(以下、「GS」とも称する)によってGSHへ変換される。このため、GSHの細胞内濃度が0.5~10mMと高濃度であるのに対して(非特許文献6)、γ-ECの細胞内濃度は0.5~10μMと非常に低い(非特許文献7)。したがって、γ-ECは、GSHと異なり、酵母等の生物を用いた発酵生産が難しく、化学合成品が市販されているものの非常に高価であり、その価格は試薬レベルでGSHの1000倍にも及ぶ。 However, the rate-limiting step in GSH synthesis in vivo is the γ-EC synthesis reaction catalyzed by glutamic acid-cysteine ligase (hereinafter also referred to as “GCL”) (Fig. 1), and the synthesized γ-EC is immediately converted into glutathione. It is converted to GSH by a synthetase (hereinafter also referred to as "GS"). Therefore, the intracellular concentration of GSH is as high as 0.5-10 mM (Non-Patent Document 6), whereas the intracellular concentration of γ-EC is very low as 0.5-10 μM (Non-Patent Document 7). Therefore, unlike GSH, γ-EC is difficult to ferment and produce using living organisms such as yeast, and although chemically synthesized products are available on the market, it is extremely expensive, and its reagent level is 1000 times more expensive than GSH. reach.
 γ-EC生産については、化学合成のほか、生化学的な方法がいくつか知られている。
 例えば、遺伝子操作によってGS活性を弱めγ-ECがGSHに変換されることを抑制してγ-ECを蓄積するようにした酵母の変異株を用いてγ-ECを生産する方法(特許文献1、非特許文献8)、γ-グルタミルトランスフェラーゼ(以下、「GGT」とも称する)を用いて、γ-グルタミルドナーのγ-グルタミル基をシステイン基に転移することでγ-ECを合成する酵素法(特許文献2)、及びGCLを用いてグルタミン酸とシステインを原料としてγ-ECを合成する酵素法(特許文献3)が知られている。γ-ECの生理作用に関する研究では、一部GGTを用いて調製したγ-ECが使われているが(非特許文献9及び10)、いずれも生産コストが非常に大きいためか、この方法によって生産されたγ-ECが製品として市販されている例はない。
In addition to chemical synthesis, several biochemical methods are known for γ-EC production.
For example, a method of producing γ-EC using a yeast mutant strain that has been genetically engineered to weaken GS activity, suppress the conversion of γ-EC to GSH, and accumulate γ-EC (Patent Document 1 , Non-Patent Document 8), an enzymatic method for synthesizing γ-EC by transferring a γ-glutamyl group of a γ-glutamyl donor to a cysteine group using γ-glutamyltransferase (hereinafter also referred to as “GGT”) ( Patent Document 2) and an enzymatic method of synthesizing γ-EC from glutamic acid and cysteine using GCL (Patent Document 3) are known. Some studies on the physiological effects of γ-EC have used γ-EC prepared using GGT (Non-Patent Documents 9 and 10). There is no example where the produced γ-EC is marketed as a product.
 フィトケラチン合成酵素(PCS)は、主に高等植物などの真核生物において、カドミウムなどの重金属によって活性化されることにより、GSHを基質として重金属抱合ペプチドであるフィトケラチン(PC)を生成する酵素である。この酵素によるPCの合成反応は、(a)GSHをγ-ECとグリシン(以下、Gly)に切断する反応、(b)生成したγ-ECをGSHのN末端に結合させる反応によって最も鎖長の短いPCである(γ-EC)2-Gly(PC2)を合成する反応から構成される。なお、(b)の反応ではGSHだけではなく、(b)で合成されたPC2をも基質とし、そのN末端にγ-ECを結合させ、(γ-EC)3-Gly(PC)が合成される。以下、この反応が繰り返され、(γ-EC)n-Glyから(γ-EC)n+1-Glyが合成されるが、通常、nは2~4程度である。 Phytochelatine synthase (PCS) is an enzyme that is activated by heavy metals such as cadmium to produce phytokeratin (PC), a heavy metal-conjugated peptide, using GSH as a substrate, mainly in eukaryotes such as higher plants. is. The synthesis reaction of PC by this enzyme consists of (a) a reaction in which GSH is cleaved into γ-EC and glycine (Gly), and (b) a reaction in which the generated γ-EC is bound to the N-terminus of GSH. consists of reactions that synthesize (γ-EC) 2 -Gly (PC 2 ), a short PC of In addition, in the reaction of (b), not only GSH but also PC2 synthesized in (b) was used as a substrate, and γ-EC was bound to the N-terminus to form (γ-EC) 3 -Gly (PC 3 ). is synthesized. This reaction is then repeated to synthesize (γ-EC) n+1 -Gly from (γ-EC) n -Gly, where n is usually about 2-4.
 前記PCSに類似する酵素として、PCS様酵素(NsPCS)が知られている。NsPCSは、PCS遺伝子に高い相同性を有する、原核生物であるラン藻Nostoc sp.PCC7120由来のalr0975遺伝子がコードするPCS様酵素である。NsPCSは、PCSとは異なり、重金属による活性化を必要とせず、PCSが触媒する前記の反応のうち、a)のみ、すなわちGSHを基質として、γ-ECとGlyとを合成する反応を触媒する作用を有する(以上、特許文献4参照)。このため、NsPCSを用いることで、GSHを原料(基質)として、優れた生理活性を持ち、医薬品原料、機能性食品、又は高機能化粧品原料として有用なγ-ECを製造することができる。前記特許文献4では、NsPCSを用いたγ-ECの生産方法として、NsPCSをコードするalr0975遺伝子を大腸菌等の宿主細胞で高発現させ、その宿主細胞内で産生されたNsPCSによってGSHを基質としてγ-ECを生産させる方法、及びNsPCSを用いてin vitro酵素反応によってGSHからγ-ECを生産する方法が提案されている。 A PCS-like enzyme (NsPCS) is known as an enzyme similar to the PCS. NsPCS is a PCS-like enzyme encoded by the alr0975 gene from the prokaryotic cyanobacterium Nostoc sp. PCC7120, which has high homology to the PCS gene. NsPCS, unlike PCS, does not require heavy metal activation, and among the reactions catalyzed by PCS, only a) catalyzes the synthesis of γ-EC and Gly using GSH as a substrate. (see Patent Document 4 above). Therefore, by using NsPCS, GSH can be used as a raw material (substrate) to produce γ-EC that has excellent physiological activity and is useful as a raw material for pharmaceuticals, functional foods, or highly functional cosmetics. In Patent Document 4, as a method for producing γ-EC using NsPCS, the alr0975 gene encoding NsPCS is highly expressed in host cells such as E. coli, and NsPCS produced in the host cells uses GSH as a substrate to produce γ-EC. A method for producing -EC and a method for producing γ-EC from GSH by an in vitro enzymatic reaction using NsPCS have been proposed.
 しかし、こうした方法は、γ-ECを連続的に生産することができない点に加えて、生成したγ-ECを他成分(使用した酵素NsPCS、基質GSH、副生成物のGly)から分離精製する工程が別途必要であるため、γ-ECの工業的生産に適さない。 However, these methods cannot produce γ-EC continuously, and the γ-EC produced must be separated and purified from other components (the enzyme NsPCS used, the substrate GSH, and the by-product Gly). It is not suitable for industrial production of γ-EC because a separate process is required.
WO2008/126784A1WO2008/126784A1 WO2006/102722A1WO2006/102722A1 WO2016/017631A1WO2016/017631A1 特開2005-137235号公報JP-A-2005-137235 WO2016/159334A1WO2016/159334A1 WO2020/022524A1WO2020/022524A1
 本発明の目的は、工業的生産を可能にするγ-ECの製造方法を提供することである。より詳細には、NsPCSを担体に固定化した固定化酵素(固定化NsPCS)を用いて、効率的又は/及び連続的にγ-ECを製造する方法を提供することを目的とする。
 また本発明は、当該製造方法に用いる固定化NsPCS、その製造方法、及びその保存方法を提供することを目的とする。
An object of the present invention is to provide a method for producing γ-EC that enables industrial production. More specifically, the object is to provide a method for efficiently and/or continuously producing γ-EC using an immobilized enzyme in which NsPCS is immobilized on a carrier (immobilized NsPCS).
Another object of the present invention is to provide immobilized NsPCS used in the production method, a method for producing the same, and a method for storing the same.
 本発明者らは、上記課題を解決するために、鋭意検討を重ねた。
 具体的には、固定化NsPCSの作製にあたり、酵素の固定化に一般的に用いられるガラスビーズ表面へのグルタルアルデヒドを介した結合(架橋法)、アルギン酸カルシウムへの包埋(包括法)、及び多孔質セルロース担体への吸着(物理的吸着法)を用いた固定化方法を、様々な固定化条件及び反応条件で実施した。その結果、ガラスビーズへの固定化では固定化過程で酵素が失活し、またアルギン酸カルシウムゲルへの包埋と多孔質セルロースへの吸着では反応過程で酵素の離脱が起こり、いずれの方法もうまくいかなかった。
In order to solve the above problems, the present inventors have made extensive studies.
Specifically, in preparing immobilized NsPCS, binding via glutaraldehyde to the surface of glass beads generally used for enzyme immobilization (crosslinking method), embedding in calcium alginate (inclusive method), and An immobilization method using adsorption onto a porous cellulose carrier (physical adsorption method) was performed under various immobilization and reaction conditions. As a result, the immobilization on glass beads deactivated the enzyme during the immobilization process, and the embedding in calcium alginate gel and adsorption on porous cellulose caused the enzyme to be released during the reaction process. I did not go.
 これに対して、酵素を固定させる担体として多孔質セルロースを用い、その水酸基に、カルボニル基導入試薬としてNHSエステル基を有する活性エステル化剤を用いて、カルボニル基を導入した後に、NsPCSの1級アミノ基とアミド結合させる方法を用いると、固定化過程での酵素(NsPCS)の失活や反応工程での酵素の離脱は認められず、NsPCSを多孔質セルロース担体に安定して固定化できることを見出した。また当該方法で固定化したNsPCS(固定化NsPCS)を用いることで、NsPCSが安定的に固定化できている結果として、基質GSHを高い収率でγ-ECに変換することができ、効率よくγ-ECが得られること、またγ-ECへの変換効率を大きく低下させることなく繰り返し連続的に使用できることを確認した。またさらに、前記方法で調製した固定化NsPCSは、不凍液を入れた緩衝液に浸漬した状態で液体窒素を用いて冷凍することで安定に保存することができ、市場での安定流通が可能であることを確認した。 On the other hand, porous cellulose is used as a carrier for immobilizing enzymes, and an active esterifying agent having an NHS ester group is used as a carbonyl group-introducing reagent to introduce carbonyl groups into the hydroxyl groups. Using the method of forming an amide bond with an amino group, neither deactivation of the enzyme (NsPCS) nor detachment of the enzyme during the reaction process was observed, indicating that NsPCS can be stably immobilized on the porous cellulose carrier. Found it. In addition, by using NsPCS immobilized by this method (immobilized NsPCS), as a result of the stable immobilization of NsPCS, the substrate GSH can be converted to γ-EC at a high yield and efficiently. It was confirmed that γ-EC can be obtained, and that it can be used repeatedly and continuously without significantly lowering the conversion efficiency to γ-EC. Furthermore, the immobilized NsPCS prepared by the above method can be stored stably by freezing with liquid nitrogen in a state of being immersed in a buffer solution containing an antifreeze solution, and stable distribution in the market is possible. It was confirmed.
 本発明は、これらの知見をもとにさらに検討を重ねて完成したものであり、下記の実施形態を有する。
(I)γ-EC又は/及びGlyの製造方法
(I-1)多孔質セルロース担体の水酸基に導入されたカルボニル基とアミド結合することで固定化されたNsPCSに、pH4~10、好ましくはpH7~9の条件下で、GSHを接触させてγ-EC及びGlyを生成する工程(工程1)を有する、γ-EC又は/及びGlyの製造方法。
(I-2)さらに前記工程1で得られた生成物からγ-EC又は/及びGlyを単離回収する工程(工程2)を有する、(I-1)に記載するγ-EC又は/及びGlyの製造方法。
(I-3)前記工程2が、前記工程1で得られた生成物を、イオン交換体に接触させて、γ-ECとGlyとを分離する工程である、(I-2)に記載するγ-EC又は/及びGlyの製造方法。
(I-4)前記イオン交換体が陽イオン交換体であり、工程1で得られた生成物を含む溶液を酸性に調整した後に陽イオン交換体に接触させて、γ-ECとGlyとを分離する方法である、(I-3)に記載するγ-EC又は/及びGlyの製造方法。
(I-5)前記イオン交換体が強陰イオン交換体であり、工程1で得られた生成物を含む溶液を強陰イオン交換体に接触させて、γ-ECとGlyとを分離する方法である、(I-3)に記載するγ-EC又は/及びGlyの製造方法。
(I-6)前記多孔質セルロース担体がセルロース製ろ紙、セルローススポンジ、セルロースモノリス、又は粉体状多孔質セルロースの集合物である、(I-1)~(I-5)のいずれかに記載するγ-EC又は/及びGlyの製造方法。
The present invention has been completed through further studies based on these findings, and has the following embodiments.
(I) Method for producing γ-EC and/or Gly (I-1) NsPCS immobilized by amide bonding with the carbonyl group introduced into the hydroxyl group of the porous cellulose carrier is added at pH 4 to 10, preferably pH 7. A method for producing γ-EC and/or Gly, comprising a step (Step 1) of contacting GSH with GSH under conditions of 1 to 9.
(I-2) γ-EC or/and according to (I-1), further comprising a step (step 2) of isolating and recovering γ-EC or/and Gly from the product obtained in step 1 above. Gly manufacturing method.
(I-3) Described in (I-2), wherein the step 2 is a step of contacting the product obtained in the step 1 with an ion exchanger to separate γ-EC and Gly. A method for producing γ-EC and/or Gly.
(I-4) The ion exchanger is a cation exchanger, and the solution containing the product obtained in step 1 is acidified and then brought into contact with the cation exchanger to exchange γ-EC and Gly. The method for producing γ-EC and/or Gly according to (I-3), which is a method for separation.
(I-5) A method in which the ion exchanger is a strong anion exchanger, and the solution containing the product obtained in step 1 is brought into contact with the strong anion exchanger to separate γ-EC and Gly. The method for producing γ-EC and/or Gly according to (I-3), wherein
(I-6) The porous cellulose carrier according to any one of (I-1) to (I-5), wherein the porous cellulose carrier is cellulose filter paper, cellulose sponge, cellulose monolith, or aggregate of powdery porous cellulose. A method for producing γ-EC and/or Gly.
(II)固定化NsPCS
(II-1)多孔質セルロースの水酸基に導入されたカルボニル基とNsPCSの1級アミノ基とがアミド結合することで、多孔質セルロースにNsPCSが固定化されてなる、固定化NsPCS。
(II-2)多孔質セルロースがセルロース製ろ紙、セルローススポンジ、セルロースモノリス、又は粉体状多孔質セルロースの集合物である、(II-1)の固定化NsPCS。
(II) Immobilized NsPCS
(II-1) Immobilized NsPCS in which NsPCS is immobilized on porous cellulose by amide bonding between carbonyl groups introduced into hydroxyl groups of porous cellulose and primary amino groups of NsPCS.
(II-2) The immobilized NsPCS of (II-1), wherein the porous cellulose is a cellulose filter paper, a cellulose sponge, a cellulose monolith, or an aggregate of powdery porous cellulose.
(III)固定化NsPCSの製造方法
(III-1)下記の工程を有する、(II-1)又は(II-2)に記載する固定化NsPCSの製造方法:
(1)多孔質セルロースの水酸基にカルボニル基を導入する工程、
(2)前記(1)工程で導入されたカルボニル基にNsPCSの1級アミノ基をアミド結合させて、多孔質セルロースの表面にNsPCSを固定化する工程。
(III-2)前記(1)工程が、カルボニル基導入試薬としてNHSエステル基を有する活性エステル化剤を用いて、多孔質セルロースの活性化エステル体を生成する工程である、(III-1)に記載する固定化NsPCS製造方法。
(III-3)前記NHSエステル基を有する活性エステル化剤が、N,N’-ジスクシンイミジルカルボナートである(III-2)に記載する固定化NsPCS製造方法。
(III-4)多孔質セルロースがセルロース製ろ紙、セルローススポンジ、セルロースモノリス、又は粉体状多孔質セルロースの集合物である、(III-1)~(III-3)のいずれかに記載する固定化NsPCS製造方法。
(III) Method for producing immobilized NsPCS (III-1) Method for producing immobilized NsPCS according to (II-1) or (II-2), comprising the following steps:
(1) a step of introducing a carbonyl group to the hydroxyl group of the porous cellulose;
(2) A step of immobilizing NsPCS on the surface of the porous cellulose by amide bonding the primary amino group of NsPCS to the carbonyl group introduced in step (1) above.
(III-2) The step (1) is a step of producing an activated ester of porous cellulose using an active esterifying agent having an NHS ester group as a carbonyl group-introducing reagent (III-1). The immobilized NsPCS production method described in .
(III-3) The method for producing immobilized NsPCS according to (III-2), wherein the active esterifying agent having an NHS ester group is N,N'-disuccinimidyl carbonate.
(III-4) The immobilization according to any one of (III-1) to (III-3), wherein the porous cellulose is cellulose filter paper, cellulose sponge, cellulose monolith, or aggregate of powdery porous cellulose. Chemical NsPCS manufacturing method.
(IV)固定化NsPCSの保存方法
(IV-1)(II-1)または(II-2)に記載する固定化NsPCSの保存方法であって、固定化NsPCSを不凍液を入れた緩衝液に浸漬した状態で、-150℃以下の条件で超低温保存することを特徴とする、前記方法。
(IV-2)前記超低温保存が、液体窒素中での超低温保存である、(IV-1)に記載する固定化NsPCSの保存方法。
(IV) Method for storing immobilized NsPCS A method for storing immobilized NsPCS according to (IV-1), (II-1) or (II-2), wherein the immobilized NsPCS is immersed in a buffer containing antifreeze. The above method, characterized in that the product is stored at an ultra-low temperature of -150°C or lower in the state of being frozen.
(IV-2) The method for storing immobilized NsPCS according to (IV-1), wherein the cryopreservation is cryopreservation in liquid nitrogen.
 本発明は、GSHを基質(原料)としてγ-ECを合成するラン藻由来の酵素NsPCSを多孔質セルロース担体に固定化した固定化酵素(固定化NsPCS)、及びそれを用いたγ-ECの製造方法である。多くの固相担体のなかから多孔質セルロース担体を選択することで、NsPCSの失活や離脱という問題がなく、NsPCSを安定して固定化することができる。その結果、当該固定化NsPCSを用いた本発明のγ-ECの製造方法によれば、γ-ECを効率的に製造することができる。また、固定化NsPCSは、NsPCSが安定して固定化されているため、繰り返し利用することもでき、経済的且つ効率的にγ-ECを製造することができる。このため、本発明によれば、優れた生理活性を有するγ-ECの工業的生産及び安定供給に有効な製造方法を提供することができる。また、固定化NsPCSは、不凍液を入れた緩衝液に浸漬した状態で冷凍することで安定に保存することができる。このため、商業的に流通可能であり、用時調製する手間や負担が少ない。 The present invention relates to an immobilized enzyme (immobilized NsPCS) obtained by immobilizing a cyanobacteria-derived enzyme NsPCS that synthesizes γ-EC using GSH as a substrate (raw material) on a porous cellulose carrier (immobilized NsPCS), and γ-EC using the same. manufacturing method. By selecting a porous cellulose carrier from among many solid phase carriers, NsPCS can be stably immobilized without the problem of deactivation or detachment of NsPCS. As a result, according to the method for producing γ-EC of the present invention using the immobilized NsPCS, γ-EC can be produced efficiently. In addition, since NsPCS is stably immobilized, immobilized NsPCS can be used repeatedly, and γ-EC can be produced economically and efficiently. Therefore, according to the present invention, it is possible to provide a production method effective for industrial production and stable supply of γ-EC having excellent physiological activity. In addition, immobilized NsPCS can be stably preserved by freezing in a state of being immersed in a buffer containing antifreeze. Therefore, it can be commercially distributed, and the labor and burden of preparation at the time of use are small.
生体におけるγ-グルタミルシステイン(γ-EC)及びグルタチオン(GSH)の生合成反応スキームを示す。図中、「GCL」はグルタミン酸システインリガーゼ、「GS」はグルタチオンシンセターゼ、「NsPCS」はalr0975遺伝子がコードするPCS様酵素を意味する。The biosynthetic reaction scheme of γ-glutamylcysteine (γ-EC) and glutathione (GSH) in a living body is shown. In the figure, "GCL" means glutamate-cysteine ligase, "GS" means glutathione synthetase, and "NsPCS" means a PCS-like enzyme encoded by the alr0975 gene. カルボニル基導入試薬としてNHSエステルであるDSC(ジスクシンイミジルカルボネート)を用いる場合を例として、(i)多孔質セルロース(porous cellulose)(図中、「(M)-OH」として記載する)の水酸基にカルボニル基を導入してセルロースの活性化エステル体を生成する反応、(ii)多孔質セルロースの水酸基に導入されたカルボニル基に、NsPCSの1級アミノ基をアミド結合させて、多孔質セルロースの水酸基にNsPCSを固定化する反応の概略を示す。As an example of using DSC (disuccinimidyl carbonate), which is an NHS ester, as a carbonyl group-introducing reagent, (i) porous cellulose (denoted as "(M)-OH" in the figure) (ii) the carbonyl group introduced into the hydroxyl group of the porous cellulose is amide-bonded to the primary amino group of NsPCS to form a porous An outline of the reaction for immobilizing NsPCS on the hydroxyl groups of cellulose is shown. 製造例2で製造したセルロースモノリス内部を撮影した走査型電子顕微鏡(SEM)画像である。4 is a scanning electron microscope (SEM) image of the inside of the cellulose monolith produced in Production Example 2. FIG. 実験例1のγ-ECの製造方法の結果として、反応時間(h)と反応液中の基質(GSH)(―▲―)と反応生成物(γ-EC)(―●―)の量(mM)の推移を示す。As a result of the method for producing γ-EC in Experimental Example 1, the reaction time (h) and the amount of substrate (GSH) (-▲-) and reaction product (γ-EC) (-●-) in the reaction solution ( mM). 実験例2(固定化NsPCSの繰り返し利用)の結果を示す。1回目のγ-EC生成速度100%とした場合の2~5回目の生成速度の相対比(比生成速度(%))を示す。The results of Experimental Example 2 (repeated use of immobilized NsPCS) are shown. Shown is the relative ratio (specific production rate (%)) of the 2nd to 5th production rates when the 1st γ-EC production rate is assumed to be 100%. 実験例3(固定化NsPCSを用いたγ-ECの連続製法)で使用した反応装置の概略図を示す。A schematic diagram of the reactor used in Experimental Example 3 (continuous production of γ-EC using immobilized NsPCS) is shown. 実験例4で使用した反応装置の概略図を示す。The schematic of the reactor used in Experimental example 4 is shown. 実験例3において、固定化NsPCSに供給する基質溶液の流速(rpm)を変化させてGSHからγ-ECへの変換率%を測定した結果を示す。3 shows the results of measuring % conversion from GSH to γ-EC by changing the flow rate (rpm) of the substrate solution supplied to the immobilized NsPCS in Experimental Example 3. FIG. 実験例3(スモールスケール)において、0.25 mL/hの速度で10日間連続して固定化NsPCSに基質溶液を供給し、GSHからγ-ECへの変換率%を経時的に測定した結果を示す。In Experimental Example 3 (small scale), substrate solution was continuously supplied to immobilized NsPCS at a rate of 0.25 mL/h for 10 days, and the % conversion rate from GSH to γ-EC was measured over time. . 実験例4(スケールアップ)において、0.1 mL/hの速度で10日間連続して固定化NsPCSに基質溶液を供給し、GSHからγ-ECへの変換率%を経時的に測定した結果を示す。In Experimental Example 4 (scale-up), the substrate solution was continuously supplied to the immobilized NsPCS at a rate of 0.1 mL/h for 10 days, and the % conversion rate from GSH to γ-EC was measured over time. . (1)温度37℃での4回にわたる反応(37_1~37_4)におけるγ-EC変換率(%)の経時的変化を示す。(2)温度25℃での4回にわたる反応(25_1~25_4)におけるγ-EC変換率(%)を経時的変化を示す(実験例5)。(1) Time course of γ-EC conversion rate (%) in four reactions (37_1 to 37_4) at 37°C. (2) The change over time in the γ-EC conversion rate (%) in four reactions (25_1 to 25_4) at a temperature of 25°C is shown (Experimental Example 5). 実験例6(γ-ECの製造)で使用した反応装置の概略図を示す。A schematic diagram of the reactor used in Experimental Example 6 (production of γ-EC) is shown.
(I)γ-EC又は/及びGlyの製造方法
 本発明は、γ-ECの製造方法を提供することを主な目的とするが、本発明の製造方法を実施することで同時にGlyも生成する。このことから、本発明のγ-ECの製造方法は、γ-ECの製造方法であると同時にGlyの製造方法ということができる。このことから、本発明の製造方法は、γ-EC又は/及びGlyの製造方法ということができる。
 以下、γ-ECとGlyを区別することなく称する場合、「本目的物」または「本生成物」と称する場合がある。またγ-EC又は/及びGlyの製造方法を「本製造方法」と称する。
(I) Method for Producing γ-EC and/or Gly The main object of the present invention is to provide a method for producing γ-EC, but the production method of the present invention also produces Gly at the same time. . Therefore, the method for producing γ-EC of the present invention can be said to be a method for producing γ-EC and a method for producing Gly at the same time. Therefore, the production method of the present invention can be said to be a production method of γ-EC and/or Gly.
Hereinafter, when γ-EC and Gly are referred to without distinction, they may be referred to as "this target product" or "this product". Also, the method for producing γ-EC and/or Gly is referred to as "this production method".
 本製造方法は、多孔質セルロース担体の水酸基に導入されたカルボニル基とアミド結合したNsPCSにGSHを接触させ、NsPCSの酵素作用により、GSHを切断してγ-EC及びGlyを生成する工程(工程1)を有する。 In this production method, NsPCS having an amide bond with a carbonyl group introduced into a hydroxyl group of a porous cellulose carrier is brought into contact with GSH, and the enzymatic action of NsPCS cleaves GSH to produce γ-EC and Gly (step 1).
(1)NsPCS
 前述するように、NsPCSは、原核生物であるラン藻Nostoc sp.PCC7120由来のPCS遺伝子に高い相同性を有するalr 0975遺伝子によってコードされるPCS様酵素である(特許文献4参照)。alr 0975遺伝子(配列番号1)は、シアノバクテリアNostoc sp.PCC7120のゲノム中の塩基配列alr 0975に相当するものである。この遺伝子の由来生物であるシアノバクテリアNostoc sp.PCC 7120はフランスのパスツール研究所からPCC 7120のカタログ番号で商業的に入手することができる。alr 0975遺伝子のクローニングは、特許文献4の実施例4の記載を参考にして実施することができる。また、alr 0975遺伝子によってコードされるNsPCSは、特許文献4の実施例4の記載を参考にして製造取得することができる。これらの詳細は、後述する実施例(製造例1)において説明する。
(1) NsPCS
As described above, NsPCS is a PCS-like enzyme encoded by the alr 0975 gene, which is highly homologous to the PCS gene derived from the prokaryotic cyanobacterium Nostoc sp. PCC7120 (see Patent Document 4). The alr 0975 gene (SEQ ID NO: 1) corresponds to the nucleotide sequence alr 0975 in the genome of cyanobacteria Nostoc sp.PCC7120. The cyanobacterium Nostoc sp. PCC 7120, from which this gene is derived, is commercially available from the Pasteur Institute in France under the catalog number PCC 7120. Cloning of the alr 0975 gene can be carried out with reference to the description in Example 4 of Patent Document 4. Also, NsPCS encoded by the alr0975 gene can be produced and obtained with reference to the description of Example 4 of Patent Document 4. These details will be described in an example (manufacturing example 1) described later.
 また、本発明が対象とするNsPCSには、配列番号1で示される塩基配列からなるalr 0975遺伝子に限らず、これと実質的に同一の機能を有する遺伝子でコードされる酵素が含まれる。alr 0975遺伝子と実質的に同一の機能を有する遺伝子としては、配列番号1の塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNAからなる遺伝子であって、当該遺伝子によってコードされる蛋白質がGSHからγ-EC及びGlyを生成する反応を触媒する酵素活性を有する遺伝子が含まれる。また上記遺伝子には、alr 0975遺伝子(配列番号1)がコードするアミノ酸配列(配列番号2)において、一又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列をコードする遺伝子であって、当該アミノ酸配列からなる蛋白質が、GSHからγ-EC及びGlyを生成する反応を触媒する酵素活性を有する遺伝子も含まれる。 In addition, the NsPCS targeted by the present invention includes not only the alr 0975 gene consisting of the nucleotide sequence shown in SEQ ID NO: 1, but also enzymes encoded by genes having substantially the same function as this. The gene having substantially the same function as the alr 0975 gene is a gene consisting of DNA that hybridizes under stringent conditions with the DNA consisting of the base sequence of SEQ ID NO: 1, and the protein encoded by the gene is Genes with enzymatic activity that catalyze reactions that produce γ-EC and Gly from GSH are included. The above gene also includes a gene encoding an amino acid sequence (SEQ ID NO: 2) encoded by the alr 0975 gene (SEQ ID NO: 1) in which one or several amino acids are deleted, substituted, or added, Also included is a gene having an enzymatic activity that catalyzes a reaction in which a protein consisting of the amino acid sequence produces γ-EC and Gly from GSH.
 これらのいわゆる均等の範囲に含まれる遺伝子は、例えばNCBI-BLAST等のデータベースを用いて配列検索することで得ることができる。また、配列番号1で示される塩基配列またはその一部をプローブとしてコロニー又はプラークハイブリダイゼーションを行うことにより取得することもできる。なお、前記「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、例えば対象とする塩基配列と85%以上、好ましくは90%以上、より好ましくは95%以上の相同性を有するDNAのみが特異的にハイブリダイズする条件であることができる。このような条件はハイブリダイゼーション溶液の塩濃度、温度条件等を調節することで設定することができる。また、配列番号2において、一又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列をコードする遺伝子であって、前記アミノ酸からなる蛋白質がGSHからγ-EC及びGlyを生成する反応を触媒する酵素活性を有する遺伝子は、例えばサイトダイレクテドミュータジェネシスキット(タカラバイオ製)やQuichChange Site-Directed Mutagenesis Kit(STRATAGENE社製)等の市販キットを用いてDNAの塩基配列を置換することで得ることができる。 Genes included in these so-called equivalent ranges can be obtained by sequence searches using databases such as NCBI-BLAST. It can also be obtained by colony or plaque hybridization using the nucleotide sequence shown by SEQ ID NO: 1 or a portion thereof as a probe. The above-mentioned "stringent conditions" refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. More preferably, the conditions can be such that only DNAs having 95% or more of homology specifically hybridize. Such conditions can be set by adjusting the salt concentration, temperature conditions, etc. of the hybridization solution. Also, a gene encoding an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO: 2, wherein the protein consisting of said amino acids reacts to produce γ-EC and Gly from GSH. Genes with catalytic enzymatic activity can be obtained by substituting DNA sequences using commercially available kits such as Site-Directed Mutagenesis Kit (manufactured by Takara Bio) and QuichChange Site-Directed Mutagenesis Kit (manufactured by STRATAGENE). be able to.
(2)多孔質セルロース担体
 本製造方法において、前記NsPCSは多孔質セルロースに固定した状態で使用される。
 NsPCSを固定するために使用される多孔質セルロースは、表面に水酸基を有する水不溶性の多孔質セルロースである。こうした多孔質セルロースとして、制限されないものの、例えば、セルロース製ろ紙、セルローススポンジ、セルロースモノリス、及び粉体状多孔質セルロースの集合物などを挙げることができる。
(2) Porous Cellulose Carrier In this production method, the NsPCS is used in a state of being immobilized on porous cellulose.
The porous cellulose used to immobilize NsPCS is water-insoluble porous cellulose having hydroxyl groups on its surface. Examples of such porous cellulose include, but are not limited to, cellulose filter paper, cellulose sponge, cellulose monolith, aggregates of powdery porous cellulose, and the like.
 中でもセルロース製ろ紙、及びセルローススポンジは多孔質セルロースとして周知の物質であり、広く商業的に入手することができる。セルロース製ろ紙は定量用及び定性用の別なく、JIS P3801の規格(αセルロース90%以上、銅価1.6以下、pH5.0~8.0)に適合したものであればよく、例えばアドバンテック東洋(ADVANTEC)社製などを制限なく例示することができる。またセルローススポンジは、パルプ由来のセルロース(繊維素)と、補強繊維として加えられている綿などの天然繊維からなる100%天然素材であり、例えば体積に占める気泡部分が約95%の連続気泡を有するセルローススポンジは東レ・ファインケミカル株式会社から入手することができる。 Among them, cellulose filter paper and cellulose sponge are well-known substances as porous cellulose and are widely commercially available. Cellulose filter paper, regardless of whether it is for quantitative or qualitative use, should comply with JIS P3801 standards (α cellulose 90% or more, copper value 1.6 or less, pH 5.0 to 8.0). For example, Advantec Toyo Co., Ltd. Any company can be exemplified without limitation. Cellulose sponge is a 100% natural material made from pulp-derived cellulose (cellulose) and natural fibers such as cotton added as reinforcing fibers. A cellulose sponge having the following properties is available from Toray Fine Chemicals Co., Ltd.
 粉体状多孔質セルロースは、表面に水酸基を有するセルロースの多孔性粉末であればよい。当該多孔性粉末には、一例として粉体状の結晶セルロースが含まれる。商業的に入手できる粉末状結晶セルロースとして、制限されないものの、アビセル(商標)(粉体グレード)(旭化成製)、微結晶セルロース(カラムクロマトグラフィー用)(Merck Millipore社製)等を例示することができる。
 アビセルは、高純度の天然セルロースをコントロールされた条件下で酸加水分解し、非結晶領域を除去して純粋な結晶部分だけを取り出して精製、乾燥することによって得られる製品である。特に、粉体グレードは、微細なセルロース結晶体(微結晶セルロース Microcrystalline Cellulose : MCC)が水素結合により二次凝集したものであり(不定形二次凝集体)、非繊維状の多孔性粒子であることが知られている(非特許文献15及び16参照)。
 こうした粉体状多孔質セルロースの集合物には、粉末形態の集合物(つまり、最終形態が粉末)が含まれるが、それだけでなく、多孔性が損なわれないことを限度として、粉末を圧縮又は打錠等の加工処理をすることで調製される顆粒形状や錠剤形状を有するものも含まれる。好ましくは最終形態が粉末形状のものである。
The powdery porous cellulose may be porous powder of cellulose having hydroxyl groups on its surface. The porous powder includes, for example, powdery crystalline cellulose. Examples of commercially available powdery crystalline cellulose include, but are not limited to, Avicel (trademark) (powder grade) (manufactured by Asahi Kasei), microcrystalline cellulose (for column chromatography) (manufactured by Merck Millipore), and the like. can.
Avicel is a product obtained by subjecting high-purity natural cellulose to acid hydrolysis under controlled conditions, removing the non-crystalline regions and extracting only the pure crystalline portion, followed by purification and drying. In particular, powder grades are non-fibrous porous particles that are secondary aggregates of fine cellulose crystals (Microcrystalline Cellulose: MCC) due to hydrogen bonding (irregular secondary aggregates). is known (see Non-Patent Documents 15 and 16).
Such pulverulent porous cellulose aggregates include aggregates in powder form (i.e., the final form is a powder), but also powders that have been compacted or compressed, so long as the porosity is not compromised. It also includes those having a granule shape or a tablet shape prepared by processing such as tableting. Preferably the final form is in powder form.
 一般に、三次元網目構造の骨格と空隙をそれぞれ連続に有する一塊の多孔体構造を「モノリス」又は「モノリス構造」という。セルロースモノリスは、モノリスを形成する骨格が主として(例えば、骨格の90質量%以上、好ましくは100質量%)セルロース材料で出来ているものであり、セルロース骨格で形成された三次元ネットワークとその空隙(連続孔)が一体となった立体的な多孔質体である。
 ここで連続孔(貫通孔ともいう)とは、1つ1つが独立した空洞ではなく、連続的な空隙をいう。孔が連続孔であることは、セルロースモノリスの外部や内部を走査型電子顕微鏡(SEM)を用いて撮影した画像から判断することができる。なお、セルロースモノリスの外部や内部にある孔の形状は、円形若しくは楕円又はそれらに近いものであることが好ましいが、これに限定されない。本発明で用いられるセルロースモノリスは、このような連続孔を有することにより、その表面に官能基(後述するカルボニル基を有する官能基)を任意の量で導入することができる。また官能基の導入量やそれに対するNsPCSの固定量を適宜調節することで、当該NsPCSによる酵素反応効率を適宜調整することができる。
In general, a block of porous structure having a skeleton of a three-dimensional network structure and voids, respectively, is called a "monolith" or a "monolith structure." Cellulose monoliths are those in which the skeleton forming the monolith is mainly made of cellulose material (for example, 90% by mass or more of the skeleton, preferably 100% by mass), and the three-dimensional network formed by the cellulose skeleton and its voids ( It is a three-dimensional porous body in which continuous pores are integrated.
Here, a continuous hole (also referred to as a through-hole) means a continuous void, not a cavity that is independent of each other. Whether the pores are continuous pores can be determined from images of the outside and inside of the cellulose monolith taken using a scanning electron microscope (SEM). The shape of the pores inside or outside the cellulose monolith is preferably circular, elliptical, or similar, but is not limited thereto. By having such continuous pores, the cellulose monolith used in the present invention can introduce an arbitrary amount of functional group (a functional group having a carbonyl group, which will be described later) on its surface. By appropriately adjusting the amount of functional groups introduced and the amount of NsPCS immobilized thereon, the enzymatic reaction efficiency of the NsPCS can be appropriately adjusted.
 セルロースモノリスは、高分子溶液の相分離を利用して製造することができる。このような相分離法として、非溶媒(水)の取り込み(溶媒交換)により相分離を誘起する非溶媒誘起相分離法(NIPS法)、冷却により相分離を誘起する熱誘起相分離法(TIPS法)、混合溶媒を用いる相分離法等、各種の方法が知られている。これらの相分離法によるセルロースモノリスの製造方法はいずれも公知である。例えば、NIPS法を用いたセルロースモノリスの製造方法は、特許文献5及び6、並びにこれらの明細書の背景技術の欄に記載されている。またTIPS法を用いたセルロースモノリスの製造方法は、特許文献14に記載されている。さらに、混合溶媒を用いる相分離法は、溶解性に優れた酢酸セルロースを原料として、これをDMFと1-ヘキサノールとの混合溶媒を用いる相分離法によりモノリスを合成し、次いでこれを含水アルコール中でアルカリ分解することでセルロースモノリスに変換する方法であり、その詳細は、非特許文献12及び13に記載されている。 Cellulose monoliths can be produced using phase separation of polymer solutions. As such phase separation methods, the non-solvent induced phase separation method (NIPS method), which induces phase separation by incorporating a non-solvent (water) (solvent exchange), and the thermally induced phase separation method (TIPS method), which induces phase separation by cooling method), a phase separation method using a mixed solvent, and various other methods are known. All of these phase separation methods for producing cellulose monoliths are known. For example, methods for producing cellulose monoliths using the NIPS method are described in US Pat. A method for producing a cellulose monolith using the TIPS method is described in Patent Document 14. Furthermore, in the phase separation method using a mixed solvent, cellulose acetate, which has excellent solubility, is used as a raw material, and a monolith is synthesized by a phase separation method using a mixed solvent of DMF and 1-hexanol. It is a method of converting to cellulose monolith by alkaline decomposition at , the details of which are described in Non-Patent Documents 12 and 13.
 本発明で用いられるセルロースモノリスは、これらの公知方法で製造することができる。好ましくは混合溶媒を用いる相分離法である。
 セルロースモノリスの製造において原料として使用される酢酸セルロースは、1-ヘキサノールとの混合溶媒を用いる相分離法によりモノリスを合成できるものであればよく、商業的に入手できるものを用いることができる。好ましくは、酢酸セルロースの代表的な物性(置換度、重合度)から適宜選択することができる。
 置換度は、セルロースのグルコース残基1個が有する水酸基のうち、何個がアセチル基に置換されているかを示す数値であり、酢酸セルロースのアセチル化の程度を示す指標となる。アセチル化の程度による一酢酸セルロース(セルロースモノアセテート)、二酢酸セルロース(セルロースジアセテート)、及び三酢酸セルロース(セルローストリアセテート)の区別は、明確ではないものの、アセチル置換度が0.5以上1.5未満のものを一酢酸セルロース、1.5以上2.7未満のものを二酢酸セルロース、2.7以上のものを三酢酸セルロースと分類することができる。本発明では、有機溶媒への溶解性が優れていることから、二酢酸セルロースが好適に使用できる。
 重合度としては、制限されないものの、得られるセルロースモノリスの機械的強度を高め、使用時の溶媒等への溶出を防ぐために、質量平均で50以上であることが好ましい。上限は特に制限されない。
The cellulose monolith used in the present invention can be produced by these known methods. A phase separation method using a mixed solvent is preferred.
Cellulose acetate used as a raw material in the production of cellulose monoliths may be commercially available as long as a monolith can be synthesized by a phase separation method using a mixed solvent with 1-hexanol. Preferably, it can be appropriately selected from typical physical properties (degree of substitution, degree of polymerization) of cellulose acetate.
The degree of substitution is a numerical value indicating how many of the hydroxyl groups of one glucose residue of cellulose are substituted with acetyl groups, and serves as an index indicating the degree of acetylation of cellulose acetate. Although the distinction between cellulose monoacetate (cellulose monoacetate), cellulose diacetate (cellulose diacetate), and cellulose triacetate (cellulose triacetate) according to the degree of acetylation is not clear, the degree of acetyl substitution is 0.5 or more. It can be classified as cellulose monoacetate when it is less than 5, cellulose diacetate when it is 1.5 or more and less than 2.7, and cellulose triacetate when it is 2.7 or more. In the present invention, cellulose diacetate can be preferably used because of its excellent solubility in organic solvents.
Although the degree of polymerization is not limited, it is preferably 50 or more in terms of mass average in order to increase the mechanical strength of the resulting cellulose monolith and to prevent elution into solvents or the like during use. There is no particular upper limit.
 混合溶媒を用いる相分離法は、前述するように、酢酸セルロースから酢酸セルロースモノリス(CAモノリス)を調製する工程1とCAモノリスからセルロースモノリスを調製する工程2の2工程からなる。 As described above, the phase separation method using a mixed solvent consists of two steps: step 1 to prepare a cellulose acetate monolith (CA monolith) from cellulose acetate and step 2 to prepare a cellulose monolith from the CA monolith.
 工程1では、酢酸セルロースを溶解する溶媒としてN, N-ジメチルホルムアミド(DMF)と1-ヘキサノールが使用される。酢酸セルロースを先にDMFに溶解させた後、これに1-ヘキサノールを添加する。MDFに溶解させる酢酸セルロースの量としては、制限されないものの、例えば100~500mg/mLを例示することができる。好ましくは100~300mg/mL、より好ましくは150~250mg/mLである。1-ヘキサノールの添加量は、混合溶媒中でのDMFと1-ヘキサノールの混合比(容量比)が、DMF:1-ヘキサノール=1:0.5~1:5の範囲になるように設定することができる。好ましい混合比は、DMF:1-ヘキサノール=1:1~1:3、より好ましくは1:1~1:2である。
 次いで、混合物を透明になるまで70℃程度で加熱し、それから20℃で24時間程度そのまま静置して、酢酸セルロースモノリス(CAモノリス)からなる固相と水相に相分離する。
In step 1, N,N-dimethylformamide (DMF) and 1-hexanol are used as solvents for dissolving cellulose acetate. Cellulose acetate is first dissolved in DMF and then 1-hexanol is added. Although the amount of cellulose acetate to be dissolved in MDF is not limited, it can be, for example, 100-500 mg/mL. It is preferably 100-300 mg/mL, more preferably 150-250 mg/mL. The amount of 1-hexanol added is set so that the mixing ratio (volume ratio) of DMF and 1-hexanol in the mixed solvent is in the range of DMF:1-hexanol = 1:0.5 to 1:5. be able to. A preferred mixing ratio is DMF:1-hexanol=1:1 to 1:3, more preferably 1:1 to 1:2.
Next, the mixture is heated at about 70° C. until it becomes transparent, and then allowed to stand still at 20° C. for about 24 hours to phase-separate into a solid phase consisting of a cellulose acetate monolith (CA monolith) and an aqueous phase.
 工程2では、前記工程1で生成したCAモノリスを脱アセチル化して、セルロースモノリスを取得する。
 脱アセチル化は、前記CAモノリスを、例えば水酸化ナトリウムなどの塩基性物質を含む含水アルコール中で、室温で加水分解することで実施することができる。ここでアルコールとしては、炭素数1~5の低級アルコールを用いることができ、好ましくはメタノールである。脱アセチル化に使用する塩基性物質の濃度は、0.001~1質量%の範囲、好ましくは0.005~0.5質量%の範囲で適宜設定することができる。
 脱アセチル化により生成したセルロースモノリスは、水と低級アルコールで連続的に濯ぎ乾燥することで、前記NsPCSを固定化する多孔質セルロース担体として使用することができる。
In step 2, the CA monolith produced in step 1 is deacetylated to obtain a cellulose monolith.
Deacetylation can be carried out by hydrolyzing the CA monolith in a hydrous alcohol containing a basic substance such as sodium hydroxide at room temperature. As the alcohol, a lower alcohol having 1 to 5 carbon atoms can be used, preferably methanol. The concentration of the basic substance used for deacetylation can be appropriately set within the range of 0.001 to 1% by mass, preferably within the range of 0.005 to 0.5% by mass.
A cellulose monolith produced by deacetylation can be used as a porous cellulose carrier for immobilizing the NsPCS by successively rinsing with water and a lower alcohol and drying.
 本発明で用いられるセルロースモノリスには、平均孔径が0.01~20.0μmの連続孔を有する多孔質体が含まれる。
 なお、平孔孔径は、細孔径分布解析手法の一つであるNLDFT 法(Non-Local Density Functional Theory:非局在密度汎関数法)により求めることができる。NLDFT 法はISO 規格(ISO 15901-3:2007, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 3: Analysis of micropores by gas adsorption)やJIS 規格(JIS Z 8831-3 ガス吸着による粉体(固体)の細孔径分布及び細孔特性の測定方法-第3 部:ガス吸着によるミクロ細孔の測定方法)で規定されており、市販のガス吸着装置や細孔径アナライザーに付属のソフトウェアにより利用可能である。
The cellulose monolith used in the present invention includes porous bodies having continuous pores with an average pore size of 0.01 to 20.0 μm.
The flat pore size can be obtained by the NLDFT method (Non-Local Density Functional Theory), which is one of the pore size distribution analysis methods. The NLDFT method conforms to ISO standards (ISO 15901-3:2007, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 3: Analysis of micropores by gas adsorption) and JIS standards (JIS Z 8831-3). Measurement methods for pore size distribution and pore characteristics of powders (solids) - Part 3: Measurement methods for micropores by gas adsorption), software supplied with commercial gas adsorption devices and pore size analyzers available by
 本発明で用いられる多孔質セルロースには、比表面積が10m2/g以上、好ましくは20~50m2/gである多孔質体が含まれる。比表面積は、BETの式、好ましくはマルチポイントBETの式により求めることができる。BET式は、市販のガス吸着装置や比表面積アナライザーに付属のソフトウェアにより利用可能である。 The porous cellulose used in the present invention includes porous bodies having a specific surface area of 10 m 2 /g or more, preferably 20 to 50 m 2 /g. The specific surface area can be determined by the BET formula, preferably the multipoint BET formula. The BET formula can be used by software attached to commercially available gas adsorption devices and specific surface area analyzers.
 また本発明で用いられる多孔質セルロースには、空隙率が例えば20容量%以上、好ましくは30~90容量%といった空隙率の高い多孔質体が含まれる。 The porous cellulose used in the present invention also includes porous bodies with a high porosity, for example, 20% by volume or more, preferably 30 to 90% by volume.
 本発明で用いられる多孔質セルロースの形状や大きさは特に制限されず、球状、粒状、シート状、板状、立方体、直方体、円柱体、円錐状、円筒体、棒状体などの様々な形状や大きさを有することができる。 The shape and size of the porous cellulose used in the present invention are not particularly limited, and various shapes such as spherical, granular, sheet-like, plate-like, cubic, cuboid, cylindrical, conical, cylindrical and rod-like. can have any size.
(3)固定化NsPCS、及びその製造方法
 多孔質セルロースは、セルロースの特徴として、その表面にアルコール性水酸基を有するため、化学反応により多様な原子団を結合することが可能である。しかし、NsPCSを始めとする蛋白質は、水酸基と直接結合する基を有しないため、先にセルロースの水酸基に蛋白質と結合反応性を有する原子団、好ましくはカルボニル基を導入した後に、NsPCSと反応させることで、そのカルボニル基とNsPCSの1級アミノ基をアミド結合させることができる。
 つまり、本製造方法で使用する固定化NsPCSは、多孔質セルロースの水酸基に導入されたカルボニル基とNsPCSの1級アミノ基とがアミド結合することで、多孔質セルロースにNsPCSが固定化されてなる酵素である。
(3) Immobilized NsPCS and method for producing the same Porous cellulose has alcoholic hydroxyl groups on its surface, which is a characteristic of cellulose. Therefore, it is possible to bond various atomic groups through chemical reactions. However, proteins including NsPCS do not have a group that directly binds to a hydroxyl group, so an atomic group having binding reactivity with proteins, preferably a carbonyl group, is first introduced into the hydroxyl group of cellulose, and then reacted with NsPCS. Thus, an amide bond can be formed between the carbonyl group and the primary amino group of NsPCS.
In other words, the immobilized NsPCS used in this production method is obtained by immobilizing NsPCS on the porous cellulose by forming an amide bond between the carbonyl group introduced into the hydroxyl group of the porous cellulose and the primary amino group of NsPCS. is an enzyme.
 固定化NsPCSの製造方法は、前述するように、下記の2つの工程により実施することができる: 
(i)多孔質セルロースの水酸基にカルボニル基を導入する工程、
(ii)前記(i)工程で導入されたカルボニル基にNsPCSの1級アミノ基をアミド結合させて、多孔質セルロースにNsPCSを固定化する工程。
The method for producing immobilized NsPCS can be carried out by the following two steps, as described above:
(i) introducing carbonyl groups to the hydroxyl groups of the porous cellulose;
(ii) A step of immobilizing NsPCS on the porous cellulose by amide bonding the primary amino group of NsPCS to the carbonyl group introduced in step (i) above.
 固定化NsPCSの製造方法は、上記(i)及び(ii)の工程が実施できる方法であればよく、使用する試薬(例えばカルボニル基導入試薬)や触媒、並びに反応条件(温度や溶媒)は特に制限されず、当業界の技術常識に基づいて、適宜設定することができる。 The method for producing immobilized NsPCS may be any method as long as the above steps (i) and (ii) can be performed. It is not limited, and can be appropriately set based on the common technical knowledge in the industry.
 (i)工程は、カルボニル基導入試薬を用いることで実施することもできる。カルボニル基導入試薬としては、蛋白質の1級アミンと反応してアミド結合を形成するカルボキシ基の活性エステル(カルボニル化剤)を挙げることができる。これらのカルボニル基導入試薬には、NHSエステル及び水溶性のsulfo-NHSが含まれる。NHSエステルとしては、N,N’-ジスクシンイミジルカルボナート(DSC)、及びジスクシンイミジルスベラート(DCC)等を挙げることができる。sulfo-NHSとしてはビス(ジスクシンイミジル)スベラート(BS3)等を挙げることができる。好ましくはNHSエステルであり、より好ましくはDSCである。 (i) step can also be carried out by using a carbonyl group-introducing reagent. Examples of carbonyl group-introducing reagents include active esters of carboxy groups (carbonyl agents) that react with primary amines of proteins to form amide bonds. These carbonyl group-introducing reagents include NHS esters and water-soluble sulfo-NHS. NHS esters include N,N'-disuccinimidyl carbonate (DSC) and disuccinimidyl suberate (DCC). Examples of sulfo-NHS include bis(disuccinimidyl)suberate (BS3). NHS esters are preferred, and DSCs are more preferred.
 一例として、カルボニル基導入試薬としてNHSエステルであるDSCを用いる場合を例として、前記(i)及び(ii)工程の反応スキーム(概略)を図2に示す。
(i)工程は、有機溶媒(例えばアセトニトリル)に、予め、DSC及び触媒として求核作用を有する強塩基(求核剤)を溶解し、これに多孔質セルロースを加えて、室温で反応する。こうすることで、エステル反応により、多孔質セルロースの活性エステル体が生成する。
 前記求核剤としては、有機溶媒に相溶性のあるものであればよく、好ましくはN,N-ジメチル-5-アミノピリジンやN,N-ジメチル-5-アミノピリジン等のジメチルアミノピリジン(DMAP)を用いることができる。DSC及びDMAPは、多孔質セルロースに対して、各々1~3当量、好ましくは1.5~2.5当量の割合になるように用いることが好ましい。
 次いで、生成したセルロースの活性エステル体を、(ii)工程で、NsPCSと、pH7~9、好ましくはpH7.2~8.5の緩衝液中で、4℃~室温条件下で反応させる。そうすることで、(i)工程で生成したセルロースの活性エステル体が加水分解し、N-ヒドロキシスクシンイミドが遊離するとともに、セルロースの水酸基に導入されたカルボニル基にNsPCSの1級アミノ基が結合して、多孔質セルロースにNsPCSが固定化される。
 前記緩衝液としては、pH7~9、好ましくはpH7.2~8.5の範囲で緩衝能を有するものであればよく、リン酸またはその塩、炭酸又はその塩、重炭酸又はその塩、ホウ酸又はその塩、及びHEPESなどを例示することができる。
 (ii)工程で得られた固定化NsPCSは、例えば前記と同じ緩衝液で洗浄した後、本発明のγ-EC又は/及びGlyの製造に使用することができる。また、直ぐに使用しない場合は、乾燥することなく、不凍液を添加した前記緩衝液中に浸漬した状態で冷凍保存することもできる。冷凍保存としては、制限されないものの、好ましくは液体窒素による冷凍保存であり、例えば-150℃またはそれ以下、好ましくは-180℃またはそれ以下での冷凍保存を挙げることができる。
As an example, the reaction scheme (outline) of the steps (i) and (ii) is shown in FIG. 2, using DSC, which is an NHS ester, as a carbonyl group-introducing reagent.
In the step (i), DSC and a strong base (nucleophilic agent) having a nucleophilic action as a catalyst are dissolved in an organic solvent (eg, acetonitrile) in advance, and porous cellulose is added thereto to react at room temperature. By doing so, an active ester of porous cellulose is produced by an ester reaction.
The nucleophile may be any one that is compatible with the organic solvent, and is preferably N,N-dimethyl-5-aminopyridine or dimethylaminopyridine (DMAP) such as N,N-dimethyl-5-aminopyridine. ) can be used. DSC and DMAP are preferably used in an amount of 1 to 3 equivalents, preferably 1.5 to 2.5 equivalents, relative to the porous cellulose.
Next, in step (ii), the produced active ester of cellulose is reacted with NsPCS in a buffer solution of pH 7-9, preferably pH 7.2-8.5, under conditions of 4° C. to room temperature. By doing so, the active ester of cellulose produced in step (i) is hydrolyzed to liberate N-hydroxysuccinimide, and the primary amino group of NsPCS binds to the carbonyl group introduced into the hydroxyl group of cellulose. NsPCS is immobilized on the porous cellulose.
The buffer solution may have a buffering capacity in the range of pH 7 to 9, preferably pH 7.2 to 8.5. Its salts, HEPES and the like can be exemplified.
The immobilized NsPCS obtained in step (ii) can be used for production of γ-EC or/and Gly of the present invention, for example, after washing with the same buffer as above. In addition, when not used immediately, they can be frozen and stored in a state of being immersed in the above-mentioned buffer solution to which an antifreeze solution has been added without drying. Although the cryopreservation is not limited, it is preferably cryopreservation in liquid nitrogen, and examples thereof include cryopreservation at -150°C or lower, preferably -180°C or lower.
(4)γ-EC又は/及びGlyの製造方法
 本発明が対象とする製造方法は、GSHをγ-ECとGlyとに分解する酵素として、前述する固定化NsPCSを用いることを特徴とする。つまり、本製造方法は、固定化NsPCSにGSHを接触させて、NsPCSにGSHを反応させることで、GSHからγ-EC及びGlyを生成する工程(工程1)を有する。
(4) Production method of γ-EC and/or Gly The production method targeted by the present invention is characterized by using the above-described immobilized NsPCS as an enzyme that degrades GSH into γ-EC and Gly. That is, this production method has a step (Step 1) of bringing GSH into contact with immobilized NsPCS and reacting NsPCS with GSH to produce γ-EC and Gly from GSH.
 固定化NsPCSにGSHを接触させる条件、つまり、NsPCSにGSHを反応させる条件は、GSHからγ-EC及びGlyが生成する条件であればよいが、例えば、生体内または微アルカリ性のpH条件に調製した緩衝液の中で反応させる方法を挙げることができる。緩衝液のpHとしては、例えばpH7~9、好ましくはpH7.2~8.5を例示することができる。緩衝液としては、リン酸塩緩衝液、炭酸塩緩衝液、重炭酸塩緩衝液、ホウ酸塩緩衝液、HEPESなどを制限なく、例示することができる。好ましくはリン酸塩緩衝液、より好ましくはリン酸カリウム緩衝液である。緩衝液の濃度としては、上記反応を妨げないことを限度として、設定することができ、例えば50~300mMの範囲、好ましくは100~250mMの濃度を例示することができる。
 また、上記反応は、好ましくは還元剤の存在で行なわれる。還元剤としては、制限されないものの、好ましくはトリス(2-カルボキシエチル)ホスフィン塩酸塩等を例示することができる。
 具体的には、前記還元剤を添加した前記緩衝液中に基質となるGSHを溶解し、これを固定化NsPCSに接触することで実施することができる。緩衝液へのGSHの溶解濃度は、GSHの水への溶解度(25℃で約160mM)を考慮して、反応中(製造工程中)に析出しない範囲で設定することが望ましい。好ましくは、50~110mM、より好ましくは80~100mMを例示することができる。反応温度(接触温度、緩衝液温度)としては、15~37℃、好ましくは30~37℃を挙げることができる。
The conditions for contacting GSH with immobilized NsPCS, that is, the conditions for reacting GSH with NsPCS may be conditions under which γ-EC and Gly are produced from GSH. A method in which the reaction is performed in a buffered solution can be mentioned. Examples of the pH of the buffer include pH 7-9, preferably pH 7.2-8.5. Examples of buffers include, without limitation, phosphate buffers, carbonate buffers, bicarbonate buffers, borate buffers, HEPES and the like. A phosphate buffer is preferred, and a potassium phosphate buffer is more preferred. The concentration of the buffer solution can be set as long as it does not interfere with the above reaction.
Also, the above reaction is preferably carried out in the presence of a reducing agent. Examples of the reducing agent include, but are not limited to, tris(2-carboxyethyl)phosphine hydrochloride and the like.
Specifically, it can be carried out by dissolving GSH as a substrate in the buffer solution to which the reducing agent has been added and bringing this into contact with the immobilized NsPCS. The concentration of GSH dissolved in the buffer is desirably set within a range that does not precipitate during the reaction (during the manufacturing process), taking into consideration the solubility of GSH in water (approximately 160 mM at 25°C). Preferred examples include 50 to 110 mM, more preferably 80 to 100 mM. The reaction temperature (contact temperature, buffer solution temperature) is 15 to 37°C, preferably 30 to 37°C.
 上記反応は、容器の中で、バッチ様式で実施することもできるし(バッチ式反応)、また固定化NsPCSを充填したカラムやチューブなどに、GSHを含む緩衝液を連続的に送液し、カラムやチューブ内で連続的に反応を行うフロー様式で実施することもできる(フロー式反応)。バッチ式反応は、反応生成物(γ-EC、Gly)を固定化NsPCSと分離する必要があるものの、容器内で固定化NsPCSにGSHを含む溶液を接触させるという簡便な方法で、一度に大量に本生成物が得られる点で有用な方法である。フロー式反応は、反応生成物(γ-EC、Gly)を、固定化NsPCSと分離する必要がなく、また連続的に本生成物が得られる点で、有用な方法である。
 本発明の固定化NsPCSは、多孔質セルロースにNsPCSが失活することなく安定に固定化されているため、NsPCSの離脱がなく、バッチ式様式でも、またフロー様式でも、繰り返し反応に好適に使用することができる。
The above reaction can be carried out in a batch mode in a container (batch reaction), or a buffer solution containing GSH is continuously sent to a column or tube filled with immobilized NsPCS, It can also be carried out in a flow mode in which the reaction is carried out continuously in a column or tube (flow reaction). In the batch-type reaction, although it is necessary to separate the reaction products (γ-EC, Gly) from the immobilized NsPCS, it is possible to obtain a large amount of It is a useful method in that the present product can be obtained in The flow reaction is a useful method in that it does not require separation of the reaction products (γ-EC, Gly) from the immobilized NsPCS, and the product can be obtained continuously.
Since the immobilized NsPCS of the present invention is stably immobilized on the porous cellulose without deactivation of NsPCS, there is no separation of NsPCS, and it is suitable for repeated reactions in both batch and flow modes. can do.
 前記工程1で得られる反応生成物からγ-EC又は/及びGlyを単離回収することで、γ-EC又は/及びGlyを取得することができる。 γ-EC and/or Gly can be obtained by isolating and recovering γ-EC and/or Gly from the reaction product obtained in step 1 above.
(γ-ECの単離回収)
 反応生成物(本生成物)からγ-ECを単離回収する方法は、制限されないものの、一つの方法として、液体クロマトグラフィーを用いることができる。
 その条件は、γ-EC が、共存するGSH及びGlyと分別できる条件、好ましくはγ-EC 、GSH、及びGlyとが各々分別できる条件であればよく、特に制限されるものではないが、一例として下記の条件を挙げることができる。
(Isolation and recovery of γ-EC)
Although the method for isolating and recovering γ-EC from the reaction product (this product) is not limited, liquid chromatography can be used as one method.
The conditions are not particularly limited as long as γ-EC can be separated from coexisting GSH and Gly, preferably γ-EC, GSH and Gly can be separated from each other. The following conditions can be mentioned as.
[HPLC条件]
ポストカラム-HPLC法
・逆相カラム(Inertsil ODS-3 5μm 4.6×250 nm, GL Sciences)
・溶離液
 溶離液A:0.02%トリフルオロ酢酸を含む7.5 mMオクタンスルホン酸ナトリウム水溶液
 溶離液B:0.02%トリフルオロ酢酸と、7.5 mMオクタンスルホン酸ナトリウムを含む30% アセトニトリル水溶液
・グラジエント
 0分→1分:溶離液A100%→溶離液A87%+溶離液B13%
 1分→20分:溶離液A87%+溶離液B13%→溶離液A30%+溶離液B70%
 20分→21分:溶離液A30%+溶離液B70%→溶離液B100%
 21分→28分:溶離液B100%維持
 28分→29分:溶離液B100%→溶離液A 100%とし、そのまま3分間維持。
・流速:1.5 ml/min
[HPLC conditions]
Post-column-HPLC method, reversed-phase column (Inertsil ODS-3 5 μm 4.6×250 nm, GL Sciences)
・Eluent Eluent A: 7.5 mM sodium octanesulfonate aqueous solution containing 0.02% trifluoroacetic acid Eluent B: 0.02% trifluoroacetic acid and 30% acetonitrile aqueous solution containing 7.5 mM sodium octanesulfonate ・Gradient: 0 min → 1 Minutes: Eluent A 100% → Eluent A 87% + Eluent B 13%
1 minute → 20 minutes: Eluent A 87% + Eluent B 13% → Eluent A 30% + Eluent B 70%
20 minutes → 21 minutes: Eluent A 30% + Eluent B 70% → Eluent B 100%
21 minutes → 28 minutes: Eluent B 100% maintained 28 minutes → 29 minutes: Eluent B 100% → Eluent A 100%, maintained for 3 minutes.
・Flow rate: 1.5ml/min
 この条件によれば、GSHは保持時間約12.56分、γ-ECは保持時間約13.01分、及びGlyは保持時間約3.57分に溶出するため、γ-ECを、GSH及びGlyとは分離して回収することができる。また、並行してGly画分を回収することで、γ-ECとは別に、これと同時にGlyを単離取得することができる。なお、Gly画分の回収(Glyの単離回収)は、γ-ECを単離回収した残留物から改めて実施することもできる。反応生成物(γ-EC、Gly)の定量は、前記HPLC条件下で、既知量のγ-EC及びGlyを用いて作成した検量線を用いることで実施することができる。このように、前記のHPLC条件によれば、Glyを、GSH及びγ-ECとは分離して回収することができるため、Glyの単離回収方法としても有用である。この場合も、Gly の単離回収とは別に、Glyと並行してγ-EC画分を分離回収してもよいし、Glyを単離回収した残留物から改めて、γ-EC画分の回収(γ-ECの単離回収)を実施してもよい。 Under these conditions, GSH elutes with a retention time of about 12.56 minutes, γ-EC with a retention time of about 13.01 minutes, and Gly with a retention time of about 3.57 minutes, so γ-EC is separated from GSH and Gly. can be recovered. In addition, by collecting the Gly fraction in parallel, Gly can be isolated and obtained at the same time as γ-EC. The recovery of the Gly fraction (isolation and recovery of Gly) can also be carried out again from the residue from which γ-EC has been isolated and recovered. The reaction products (γ-EC, Gly) can be quantified under the HPLC conditions described above using a calibration curve prepared using known amounts of γ-EC and Gly. As described above, Gly can be recovered separately from GSH and γ-EC under the HPLC conditions described above, and is therefore useful as a method for isolating and recovering Gly. In this case also, apart from the isolation and recovery of Gly, the γ-EC fraction may be separated and recovered in parallel with Gly, or the γ-EC fraction may be recovered again from the residue from which Gly was isolated and recovered. (Isolation and recovery of γ-EC) may be performed.
 反応生成物からγ-ECを単離回収する方法として、他の方法として、例えば、固定化NsPCSを充填したカラム又はチューブに、イオン交換体を充填したカラム又はチューブを連結する方法を用いることができる。この方法によれば、ダイレクトにγ-ECが回収できるため、固定化NsPCSを充填したカラム又はチューブを、γ-ECのフローリアクターとして有効に活用することができる。 As another method for isolating and recovering γ-EC from the reaction product, for example, a method of connecting a column or tube filled with an ion exchanger to a column or tube filled with immobilized NsPCS can be used. can. According to this method, γ-EC can be directly recovered, so that a column or tube packed with immobilized NsPCS can be effectively used as a flow reactor for γ-EC.
 例えばGSHが100%γ-ECに変換された場合、反応液中にはγ-ECと等量のGlyが存在する。この反応液をそのままスルホン基のような陰イオンと強く反発するような陽イオン交換体を充てんしたカラムに流すと、γ-EC及びGlyは各々下記の挙動をとる:
 酸性アミノ酸GluとSH基を持つものの中性アミノ酸に分類されるγ-ECのpKa及びpKbはそれぞれ2.21及び11.78である。このため、陰性度が強いスルホン基と反発してカラムの通過速度は変化しない。
 一方、中性アミノ酸でありpKa及びpKbがそれぞれ2.35及び9.78であるGlyは、スルホン基との相互作用によりカラム通過速度が小さくなる。
 このため、固定化NsPCSを充填したカラム又はチューブに陽イオン交換体を充てんしたカラムを連結することで、これにGSHを含む緩衝液を送液すれば、反応生成物として先にγ-ECを溶出取得することができる。この場合、pH 8.0の緩衝液を用いる場合はγ-ECとGlyの分離が明確ではないことから、反応物のpHを酸性側にして(例えばpH5程度)、陽イオン交換体に通すことにより、Glyをこれにへ強く保持させることができるため、γ-ECとの分離をより明確に行うことが可能になる。反応液のpHの変更は、固定化NsPCSを充填したカラム又はチューブと陽イオン交換体を充填したカラム又はチューブの間に分岐をつくり、別のポンプで酸あるいは高濃度の酸性緩衝液を流して反応液と混合させてpHを調整することで実施することができる。
For example, when GSH is 100% converted to γ-EC, Gly is present in the reaction solution in an amount equivalent to γ-EC. When this reaction solution is passed through a column packed with a cation exchanger that strongly repels anions such as sulfone groups, γ-EC and Gly behave as follows:
The pKa and pKb of γ-EC, which is classified as a neutral amino acid having an acidic amino acid Glu and an SH group, are 2.21 and 11.78, respectively. Therefore, it repels the strongly negative sulfone group and does not change the passage speed of the column.
On the other hand, Gly, which is a neutral amino acid and has pKa and pKb of 2.35 and 9.78, respectively, reduces the column passage speed due to its interaction with the sulfone group.
Therefore, by connecting a column or tube filled with immobilized NsPCS to a column filled with a cation exchanger, if a buffer solution containing GSH is sent to this column, γ-EC is first generated as a reaction product. Elution can be obtained. In this case, when using a buffer solution of pH 8.0, the separation of γ-EC and Gly is not clear. Since Gly can be strongly retained on this, the separation from γ-EC can be performed more clearly. To change the pH of the reaction solution, create a branch between the column or tube packed with immobilized NsPCS and the column or tube packed with a cation exchanger, and run an acid or highly concentrated acidic buffer with another pump. It can be carried out by mixing with the reaction liquid and adjusting the pH.
 一方、四級アンモニウム基を有するような強陰イオン交換体を充てんしたカラムでは、γ-ECは強く保持され通過速度は非常に遅くなるが、Glyはこれと反発して通過速度は変わらない。このため、固定化NsPCSを充填したカラム又はチューブに強陰イオン交換体を充てんしたカラムを連結することで、これにGSHを含む緩衝液を送液すれば、反応生成物として先にGlyを溶出させ、後からγ-ECを溶出取得することができる。特に、移動相として、反応液と同じ条件であるpH 8.0の緩衝液を用いる場合、γ-ECとGlyのカラム通過速度に大きな差が生じ、より明確に分離できる。また陰イオン交換カラムからのγ-ECの溶出はその濃縮にも有効であることから、多様な基質濃度における効率的な生産が可能となる。 On the other hand, in a column packed with a strong anion exchanger that has a quaternary ammonium group, γ-EC is strongly retained and the passage speed is very slow, but Gly repels this and the passage speed does not change. Therefore, if a column or tube filled with immobilized NsPCS is connected to a column filled with a strong anion exchanger, and a buffer solution containing GSH is sent to this column, Gly is first eluted as a reaction product. γ-EC can be eluted and obtained later. In particular, when a pH 8.0 buffer, which is the same condition as the reaction solution, is used as the mobile phase, there is a large difference in the column passage speeds of γ-EC and Gly, enabling clearer separation. Elution of γ-EC from an anion exchange column is also effective for its concentration, enabling efficient production at various substrate concentrations.
このように、固定化NsPCSはフローリアクターとして使用することもでき、こうすることで、GSHを原料とするγ-EC又は/及びGlyの製造を、安定かつ連続的、さらには効率的に実施することができ、γ-EC又は/及びGlyの工業的生産に有用である。 In this way, the immobilized NsPCS can also be used as a flow reactor for stable, continuous, and efficient production of γ-EC or/and Gly from GSH. and is useful for industrial production of γ-EC and/or Gly.
(II)固定化NsPCSの保存方法
 前述する本発明の固定化NsPCSは、後述する実験例7に示すように、凍結乾燥した状態では不活化して保存できなかったものの、不凍液を入れた緩衝液に浸漬した状態で、-150℃以下、好ましくは液体窒素(-196~-150℃)の中で超低温保存することで、酵素活性を維持した状態で安定に保存することができる。
 このため、本発明は、本発明の固定化NsPCSの保存方法として、不凍液を入れた緩衝液に浸漬した状態で、-150℃以下、好ましくは液体窒素(-196~-150℃)の中で超低温保存する方法を提供する。不凍液としては、固定化NsPCSの使用時の効果に影響を与えないものであることが好ましく、例えばグリセロールを挙げることができる。好ましくは固定化NsPCSを、10~30質量%、好ましくは20~30質量%のグリセロールを含むpH7~9、好ましくはpH7.2~8.5の100~300mMの緩衝液にいれた状態で、上記の超低温条件で保存する方法を挙げることができる。緩衝液としては、前述するpH範囲で緩衝能を有するものであればよく、リン酸またはその塩、炭酸又はその塩、重炭酸又はその塩、ホウ酸又はその塩、及びHEPESなどを例示することができる。
(II) Storage method of immobilized NsPCS Although the above-mentioned immobilized NsPCS of the present invention was inactivated and could not be stored in a freeze-dried state as shown in Experimental Example 7 described later, it was stored in a buffer solution containing an antifreeze solution. It can be stored stably while maintaining its enzymatic activity by immersing it in and storing it at -150°C or below, preferably in liquid nitrogen (-196 to -150°C) at an ultra-low temperature.
Therefore, as a method for preserving the immobilized NsPCS of the present invention, the immobilized NsPCS of the present invention is immersed in a buffer containing an antifreeze solution at -150°C or lower, preferably in liquid nitrogen (-196 to -150°C). To provide a method of cryopreservation. The antifreeze is preferably one that does not affect the effect of the immobilized NsPCS during use, and glycerol, for example, can be used. Preferably, the immobilized NsPCS are subjected to the above-described treatment in a 100-300 mM buffer at pH 7-9, preferably pH 7.2-8.5, containing 10-30% by weight, preferably 20-30% by weight of glycerol. A method of preservation under ultra-low temperature conditions can be mentioned. The buffer solution may have a buffering capacity in the pH range described above, and examples include phosphoric acid or its salts, carbonic acid or its salts, bicarbonate or its salts, boric acid or its salts, and HEPES. can be done.
 以上、本明細書において、「含む」及び「含有する」の用語には、「からなる」及び「から実質的になる」という意味が含まれる。 As used herein, the terms "include" and "contain" include the meanings of "consisting of" and "consisting essentially of".
 以下、本発明の構成及び効果について、その理解を助けるために、実験例を用いて本発明を説明する。但し、本発明はこれらの実験例によって何ら制限を受けるものではない。以下の実験は、特に言及しない限り、室温(25±5℃)、及び大気圧条件下で実施した。なお、特に言及しない限り、以下に記載する「%」は「質量%」、「部」は「質量部」を意味する。 In the following, the present invention will be described using experimental examples in order to facilitate understanding of the configuration and effects of the present invention. However, the present invention is not limited by these experimental examples. Unless otherwise specified, the following experiments were performed at room temperature (25±5° C.) and atmospheric pressure conditions. Unless otherwise specified, "%" described below means "% by mass", and "part" means "parts by mass".
 後述する製造例及び実験例で使用した材料とその入手先は以下の通りである。
N,N’-ジスクシンイミジルカルボナート・グルコースユニット:東京化成工業株式会社
N,N-ジメチル-5-アミノピリジン・グルコースユニット:和光純薬工業株式会社
二酢酸セルロース(Mn = 3.0×10; 39.3-40.3 wt%アセチル含有量):Sigma-Aldrichs社
グルタチオン(GSH):ナカライテスク製
γ-グルタミルシステイン(γ―EC)(標品用):Sigma-ardrich製
グリシン(標品用):ナカライテスク製
セルロース製ろ紙:円形定量ろ紙No.5B(保留粒子径4μm、厚さ0.21mm、JIS P3801 5種B):ADVANTEC製を直径5mmの円状に切断
セルローススポンジ:替綿セルローススポンジハンディ墨つぼProシリーズ用:シンワ測定株式会社製を直径約 0.5 cm の立方体状に切断
結晶セルロース粉末: Cellulose microcrystalline for column chromatography (Cat. No. 1.02331.0500):Merck Millipore製
Materials used in Production Examples and Experimental Examples to be described later and their sources are as follows.
N,N'-Disuccinimidyl carbonate/glucose unit: Tokyo Chemical Industry Co., Ltd.
N,N-dimethyl-5-aminopyridine glucose unit: Wako Pure Chemical Industries, Ltd. Cellulose diacetate (Mn = 3.0 × 10 4 ; 39.3-40.3 wt% acetyl content): Sigma-Aldrichs glutathione (GSH): γ-Glutamylcysteine (γ-EC) manufactured by Nacalai Tesque (for standard): Glycine manufactured by Sigma-ardrich (for standard): Cellulose filter paper manufactured by Nacalai Tesque: Circular quantitative filter paper No. 5B (retention particle diameter 4 μm, thickness 0.21 mm, JIS P3801 Type 5 B): Cut ADVANTEC into a circle with a diameter of 5 mm. Cellulose powder: Cellulose microcrystalline for column chromatography (Cat. No. 1.02331.0500): Merck Millipore
 後述する実験例において生成したγ-EC及びGlyの定量は、下記の方法に従って実施した。
[共通方法]
 反応溶液を遠心分離(15,000×g、4℃、10分間)に供し、上清20μLを回収後、超純水を加えて液量を200 μLとして10倍希釈後、さらに5倍希釈し以下に示す方法で測定した。
 上清を逆相カラム(Inertsil ODS-3 5μm 4.6×250 nm, GL Sciences)を用いたポストカラム-HPLC法に供した。溶離液Aとして0.02%トリフルオロ酢酸を含む7.5 mMオクタンスルホン酸ナトリウム水溶液、溶離液Bとして0.02%トリフルオロ酢酸と、7.5 mMオクタンスルホン酸ナトリウムを含む30% acetonitrile水溶液を用いた。流速1.5 ml/minで溶離液A 100%、溶離液B 0%で送液開始し、1分後に溶離液Aを87%、B液を13%、20分後に溶離液A 30%、溶離液B 70%、21分後に溶離液A 0%、溶離液B 100%とし、そのまま7分間維持し、次の1分で溶離液A 100%、溶離液B 0%としてそのまま3分間維持した。
Quantification of γ-EC and Gly produced in Experimental Examples described later was carried out according to the following method.
[Common method]
The reaction solution is subjected to centrifugation (15,000 x g, 4°C, 10 minutes), and after collecting 20 μL of the supernatant, add ultrapure water to make the liquid volume 200 μL, dilute 10-fold, and then dilute 5-fold as follows. Measured by the method shown.
The supernatant was subjected to a post-column-HPLC method using a reversed-phase column (Inertsil ODS-3 5 μm 4.6×250 nm, GL Sciences). A 7.5 mM sodium octanesulfonate aqueous solution containing 0.02% trifluoroacetic acid was used as the eluent A, and a 30% acetonitrile aqueous solution containing 0.02% trifluoroacetic acid and 7.5 mM sodium octanesulfonate was used as the eluent B. Start feeding 100% eluent A and 0% eluent B at a flow rate of 1.5 ml/min. After 1 minute, 87% eluent A and 13% B. After 20 minutes, 30% eluent A and 30% eluent. B 70%, eluent A 0%, eluent B 100% after 21 minutes, maintained for 7 minutes, eluent A 100%, eluent B 0% for 1 minute, maintained for 3 minutes.
[γ-ECの定量]
 上記ポストカラム-HPLC法により分離したチオール化合物を、75.7μM 5’-dethiobis(2-nitrobenzoic acid)を含む50 mM phosphate buffer in 10% acetonitrile溶液とポストカラム法で40℃に加温することによってチオール基を誘導体化し、412 nmの吸光度を検出した。既知量のγ-ECを用いて作成した検量線を用いることで定量した。
[Quantification of γ-EC]
The thiol compounds separated by the above post-column-HPLC method were treated with 50 mM phosphate buffer in 10% acetonitrile solution containing 75.7 μM 5'-dethiobis(2-nitrobenzoic acid) and heated to 40°C by the post-column method. The groups were derivatized and absorbance detected at 412 nm. Quantitation was performed using a calibration curve prepared using known amounts of γ-EC.
[Glyの定量方法]
 上記ポストカラム-HPLC法においてUVによりGlyを検出し、既知量のGlyを用いて作成した検量線を用いることで定量した。
[Gly determination method]
Gly was detected by UV in the above post-column-HPLC method and quantified using a calibration curve prepared using known amounts of Gly.
製造例1 NsPCSの製造
 特許文献4の実施例4の記載をもとにして、下記の方法によりNsPCSを製造した。なお、特許文献4の実施例4の記載は、援用により、本明細書に組み込むことができる。
(1)alr 0975遺伝子のクローニング
 Nostoc sp.PCC 7120から抽出したゲノムDNAをテンプレートとして、以下に示すプライマーを用いてalr 0975遺伝子(配列番号1)をPCRにより増幅した。
NsF1(5’-CTTCATATGATAGTTATGAAACTCTTTATC-3’:配列番号3)
NsR1(5’-ATCGGATCCTAATCTTGTGTTTTACTTACG-3’:配列番号4)
 得られたDNA断片を制限酵素NdeIとBamHIを用いて処理し、これをpET25b(+)ベクター(Novagenより購入)に挿入し(pET25b-alr 0975)、シークエンス解析を行い、alr 0975配列であることを確認した。得られたプラスミドを用いて、E.coli BL21(DE3)細胞を形質転換した。
Production Example 1 Production of NsPCS Based on the description of Example 4 of Patent Document 4, NsPCS was produced by the following method. Note that the description of Example 4 of Patent Document 4 can be incorporated into this specification by reference.
(1) Cloning of alr 0975 gene Using the genomic DNA extracted from Nostoc sp.PCC 7120 as a template, the alr 0975 gene (SEQ ID NO: 1) was amplified by PCR using the following primers.
NsF1 (5'-CTTCATATGATAGTTATGAAACTTCTTTATC-3': SEQ ID NO: 3)
NsR1 (5'-ATCGGATCCTAATCTTGTGTTTTACTTACG-3': SEQ ID NO: 4)
The resulting DNA fragment was treated with restriction enzymes NdeI and BamHI, inserted into a pET25b(+) vector (purchased from Novagen) (pET25b-alr 0975), and subjected to sequence analysis. It was confirmed. The resulting plasmid was used to transform E. coli BL21 (DE3) cells.
(2)組換えalr 0975タンパク質(NsPCS)の精製
 得られた形質転換体を50μg/mLカルベニシリンを含むLB培地にて液体培養し、対数増殖期に0.1 mMになるようにイソプロピル-β-D-チオガラクトピラノシド(IPTG)を添加することによって、タンパク質合成を誘導した。IPTG処理後、6時間培養した細胞を遠心分離により回収し、バッファー(1mM EDTA 及び1mM β-メルカプトエタノールを含む100mM Tris-HCl バッファー(pH8.0))に懸濁した。細胞懸濁液を超音波破砕にかけ、可溶性画分を抽出し、これを1mM EDTAと1mM β-メルカプトエタノールを含む20mM Tris-HClバッファー(pH8.0)を用いて、一晩透析を行った。その後、サンプルをDEAE-Toyopearl column(5cm x 15cm;Tosho)に供し、素通り画分を回収した。これを1mM EDTAを含む20mM リン酸バッファー(pH6.0)を用いて、一晩かけて透析を行った。得られたタンパク質画分AKTAタンパク質精製システムを備え付けたHiTrap SP column(Pharmacia Biotech, Uppsala, Sweden)に供し、精製を行った。20mM リン酸バッファー(pH6.0)中において0~10mM NaClのグラジエントプログラムによって精製タンパク質を得た。
(2) Purification of recombinant alr 0975 protein (NsPCS) The resulting transformant was liquid-cultured in LB medium containing 50 µg/mL carbenicillin, and isopropyl-β-D- Protein synthesis was induced by adding thiogalactopyranoside (IPTG). After IPTG treatment, cells cultured for 6 hours were collected by centrifugation and suspended in a buffer (100 mM Tris-HCl buffer (pH 8.0) containing 1 mM EDTA and 1 mM β-mercaptoethanol). The cell suspension was sonicated to extract a soluble fraction, which was dialyzed overnight against a 20 mM Tris-HCl buffer (pH 8.0) containing 1 mM EDTA and 1 mM β-mercaptoethanol. After that, the sample was applied to a DEAE-Toyopearl column (5 cm x 15 cm; Tosho) and the flow-through fraction was collected. This was dialyzed overnight using 20 mM phosphate buffer (pH 6.0) containing 1 mM EDTA. The resulting protein fraction was applied to a HiTrap SP column (Pharmacia Biotech, Uppsala, Sweden) equipped with an AKTA protein purification system for purification. Purified protein was obtained by a gradient program from 0 to 10 mM NaCl in 20 mM phosphate buffer (pH 6.0).
 特許文献4の実施例4の記載に従って、得られた精製組換えタンパク質の純度及び分子量、及び活性を測定した。
 その結果、このタンパク質は、GSHを基質としてγ-ECとGlyを生成する反応を触媒する活性を示したことから、所望のNsPCSであることが確認された。
Purity, molecular weight, and activity of the resulting purified recombinant protein were determined according to the description in Example 4 of Patent Document 4.
As a result, this protein was confirmed to be the desired NsPCS, since it exhibited activity to catalyze the reaction that produces γ-EC and Gly using GSH as a substrate.
製造例2 セルロースモノリスの製造
 非特許文献12に記載する方法に従って、セルロースモノリスを製造した。非特許文献12に記載された製造方法は、援用により、本明細書に組み込むことができる。なお、非特許文献12には、その製造方法によれば、平均孔径11.2 nmの連続孔及び非表面積42.3m2/gのセルロースモノリスが得られることが記載されている。
 具体的には、まず、二酢酸セルロースの粉末(0.20 g)を室温でN, N-ジメチルホルムアミド(DMF)(1.0 mL)に完全に溶解した。これを穏やかに攪拌しながら、これに1-ヘキサノール(1.5 mL)を滴下した。次いで、混合物を透明になるまで70℃で加熱した。次に、この溶液を20℃で24時間そのまま静置して、液相と固相とに相分離した。溶媒(液相)をエタノールで3回交換し、続いて、固相を真空中で乾燥して、酢酸セルロースモノリス(CAモノリス)を得た。
 次いで、得られたCAモノリスを加水分解して、セルロースモノリスを調製した。具体的には、まずCAモノリス(50 mg)を2.0 mLのメタノールに浸漬した。5分間脱気した後、メタノールに2M NaOH水溶液0.15 Lを加えて、室温で加水分解反応を開始した。開始から3時間後、溶液を1M HCl水溶液で中和して加水分解を停止した。加水分解により生成したセルロースモノリスを、水とメタノールで連続的にすすぎ、真空で乾燥した。
 得られたセルロースモノリスを、走査型電子顕微鏡(SEM)(Hitachi S-3000 N instrument、15kV)に供することで、内部モルフォロジーが比較的均一なモノリスが形成されていることを確認した。SEM画像を図3に示す。
Production Example 2 Production of Cellulose Monolith A cellulose monolith was produced according to the method described in Non-Patent Document 12. The manufacturing method described in Non-Patent Document 12 can be incorporated herein by reference. Non-Patent Document 12 describes that a cellulose monolith having continuous pores with an average pore diameter of 11.2 nm and a non-surface area of 42.3 m 2 /g can be obtained by this production method.
Specifically, first, cellulose diacetate powder (0.20 g) was completely dissolved in N,N-dimethylformamide (DMF) (1.0 mL) at room temperature. 1-Hexanol (1.5 mL) was added dropwise to this while stirring gently. The mixture was then heated at 70°C until it became clear. Next, this solution was allowed to stand still at 20° C. for 24 hours to undergo phase separation into a liquid phase and a solid phase. The solvent (liquid phase) was exchanged with ethanol three times, followed by drying the solid phase in vacuum to obtain a cellulose acetate monolith (CA monolith).
The resulting CA monolith was then hydrolyzed to prepare a cellulose monolith. Specifically, first, the CA monolith (50 mg) was immersed in 2.0 mL of methanol. After degassing for 5 minutes, 0.15 L of 2M NaOH aqueous solution was added to methanol to initiate hydrolysis reaction at room temperature. Three hours after initiation, the hydrolysis was stopped by neutralizing the solution with 1M aqueous HCl. Cellulose monoliths produced by hydrolysis were rinsed successively with water and methanol and dried in vacuum.
By subjecting the obtained cellulose monolith to a scanning electron microscope (SEM) (Hitachi S-3000 N instrument, 15 kV), it was confirmed that a monolith having a relatively uniform internal morphology was formed. A SEM image is shown in FIG.
製造例3 固定化NsPCSの製造
 脱水アセトニトリルに、多孔質セルロースのモル数に対してそれぞれ2倍量のN,N’-ジスクシンイミジルカルボナート(DSC)・グルコースユニットとN,N-ジメチル-5-アミノピリジン(DMAP)・グルコースユニットとを加えて溶解し、これに、多孔質セルロース〔製造例2で製造したセルロースモノリス(実験例3及び4:0.0317g、実施例5:0.3182 g)、セルロース製ろ紙(実験例1及び2:0.00165 g/枚)、セルローススポンジ(実験例5:0.03375~0.03875 g/片×4片)〕を加えて、10分間減圧脱気したのち、24時間常温で撹拌した。その後、脱水アセトニトリルで3回洗浄し、これを減圧乾燥後、20 mMリン酸カリウム緩衝液(pH8.0)で洗浄した。
 次いで、得られた多孔質セルロース(活性化エステル体)を、220μg/ml濃度に調製したNsPCS溶液(リン酸緩衝液に溶解後、超純水で希釈、pH8.0)に30分間浸漬した。こうすることで、NsPCSの1級アミノ基と多孔質セルロースの水酸基に導入したカルボニル基とがアミド結合して、多孔質セルロース担体の表面(外側表面と孔表面の両者を総称して「表面」という)にNsPCSが固定化された。その後、20 mMリン酸カリウム緩衝液(pH8.0)で3回洗浄した。
 これを、NsPCSを固定化した多孔質セルロース(固定化NsPCS)として、以下の実験例で使用した。
Production Example 3 Production of immobilized NsPCS To dehydrated acetonitrile, N,N'-disuccinimidyl carbonate (DSC)/glucose units and N,N-dimethyl- 5-Aminopyridine (DMAP) and glucose units were added and dissolved, and the porous cellulose [cellulose monolith produced in Production Example 2 (Experimental Examples 3 and 4: 0.0317 g, Example 5: 0.3182 g), Cellulose filter paper (Experimental Examples 1 and 2: 0.00165 g/piece) and cellulose sponge (Experimental Example 5: 0.03375-0.03875 g/piece x 4 pieces)] were added, degassed under reduced pressure for 10 minutes, and then at room temperature for 24 hours. Stirred. Then, it was washed with dehydrated acetonitrile three times, dried under reduced pressure, and washed with 20 mM potassium phosphate buffer (pH 8.0).
Next, the resulting porous cellulose (activated ester) was immersed in an NsPCS solution (dissolved in phosphate buffer, diluted with ultrapure water, pH 8.0) adjusted to a concentration of 220 μg/ml for 30 minutes. By doing so, the primary amino group of NsPCS and the carbonyl group introduced to the hydroxyl group of the porous cellulose form an amide bond, forming the surface of the porous cellulose carrier (both the outer surface and the pore surface are collectively referred to as the "surface"). ) was immobilized with NsPCS. Then, it was washed three times with 20 mM potassium phosphate buffer (pH 8.0).
This was used in the following experimental examples as NsPCS-immobilized porous cellulose (immobilized NsPCS).
実験例1 γ-ECの製造方法
 多孔質セルロース担体としてセルロース製ろ紙を用いて製造例3で調製した固定化NsPCSを、反応溶液中のNsPCS濃度が26 mg/Lとなる割合で、1 mM トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)(還元剤)の存在下、200 mMリン酸カリウム緩衝液(pH8.0)中で、37℃において100 mMのGSHと反応させた。次いで、3.6 N塩酸を適量添加することで反応を停止させ、固定化NsPCSを取り除いた反応液について、前述する条件の高速液体クロマトグラフィーを用いて、基質(GSH)と反応生成物(γ-EC、Gly)を分離し、定量した。なお、GSHの水に対する溶解度は約160 mMであることから、100 mMは生産過程でGSHの析出を起こさないほぼ最大濃度と考えられる。
Experimental Example 1 Method for producing γ-EC The immobilized NsPCS prepared in Production Example 3 using cellulose filter paper as a porous cellulose carrier was added to 1 mM Tris at a rate that the NsPCS concentration in the reaction solution was 26 mg/L. It was reacted with 100 mM GSH at 37° C. in 200 mM potassium phosphate buffer (pH 8.0) in the presence of (2-carboxyethyl)phosphine hydrochloride (TCEP) (reducing agent). Next, the reaction was stopped by adding an appropriate amount of 3.6 N hydrochloric acid, and the reaction solution from which the immobilized NsPCS had been removed was subjected to high-performance liquid chromatography under the conditions described above, and the substrate (GSH) and the reaction product (γ-EC , Gly) were separated and quantified. Since the solubility of GSH in water is about 160 mM, 100 mM is considered to be the maximum concentration at which GSH does not precipitate during the production process.
 図4に、反応時間(h)と反応液中の基質(GSH)と反応生成物(γ-EC)の量(mM)の推移を示す。図4に示すように、100 mMのGSHは約13時間後には完全に消失し、約100 mMのγ-ECが得られた。この結果から、本発明の固定化NsPCSによれば、100 mMという高濃度のGSHをほぼ完全にγ-ECへ変換できることが示された。
 本反応溶液中のNsPCS濃度は26 mg/Lであることから、γ-ECの生産速度は、遊離NsPCSを用いた場合の約3分の1であったが、固定化NsPCSは、遊離NsPCSと異なり、繰り返し使用できることから、結果としてγ-ECの生産量を向上することができる。また、製造例2で製造したセルロースモノリスには、固定化する酵素量をさらに増大させることが可能であることから、多孔質セルロースに固定化するNsPCS量を増やすことで、それに比例してγ-EC生産速度も上昇させることができる。
FIG. 4 shows changes in reaction time (h) and amounts (mM) of substrate (GSH) and reaction product (γ-EC) in the reaction solution. As shown in FIG. 4, 100 mM GSH completely disappeared after about 13 hours, and about 100 mM γ-EC was obtained. This result indicates that the immobilized NsPCS of the present invention can almost completely convert GSH at a high concentration of 100 mM to γ-EC.
Since the concentration of NsPCS in this reaction solution was 26 mg/L, the production rate of γ-EC was about one-third that when free NsPCS was used. In contrast, since it can be used repeatedly, the production amount of γ-EC can be improved as a result. In addition, since it is possible to further increase the amount of immobilized enzyme in the cellulose monolith produced in Production Example 2, by increasing the amount of NsPCS immobilized on the porous cellulose, γ- EC production speed can also be increased.
実験例2 固定化NsPCSの繰り返し利用の確認
 実験例1と同じ方法で、多孔質セルロースとしてセルロース製ろ紙に固定化したNsPCS(固定化NsPCS)を用いて、GSHを原料としてγ-EC製造を行った。反応終了後、反応液を取り除いた固定化NsPCSを、20 mMリン酸カリウム緩衝液(pH8.0)で洗浄し、洗浄した固定化NsPCSを用いて、実験例1と同じ条件で反応を行った。これを4回繰り返し、1回目の反応におけるγ-EC生成速度に対する2~5回目の反応速度の割合を求めた。
Experimental Example 2 Confirmation of repeated use of immobilized NsPCS In the same manner as in Experimental Example 1, γ-EC was produced using NsPCS immobilized on cellulose filter paper as porous cellulose (immobilized NsPCS) using GSH as a raw material. rice field. After completion of the reaction, the immobilized NsPCS from which the reaction solution was removed was washed with 20 mM potassium phosphate buffer (pH 8.0). . This was repeated four times, and the ratio of the 2nd to 5th reaction rates to the γ-EC production rate in the first reaction was determined.
 1回目のγ-EC生成速度100%とした場合の2~5回目の生成速度の相対比(%)を図5に示す。図5に示すように、γ-EC生成速度は、回数を重ねるごとに緩やかに減少するものの、5回目でも約80%維持されることが確認された。一方、GSHのγ-ECへの変換率は変化せず、反応2~5回目のいずれも1回目と同じほぼ100%の変換が行われた。この結果から、本発明の固定化NsPCSによれば、100 mMのGSHを基質として用いて、少なくとも5回までの繰り返し反応した場合でも、生成速度に大きな低下はなく、また、ほぼ完全にγ-ECへ変換できることが確認された。このことから、本発明の固定化NsPCSにおいて、NsPCSは物理的(固定状態)及び酵素学的(活性)において非常に安定であることが確認された。 Fig. 5 shows the relative ratio (%) of the 2nd to 5th generation rates when the 1st γ-EC generation rate is 100%. As shown in FIG. 5, it was confirmed that the γ-EC production rate gradually decreased with each repetition, but was maintained at about 80% even after the fifth repetition. On the other hand, the conversion rate of GSH to γ-EC did not change, and almost 100% conversion was achieved in the second to fifth reactions, which was the same as in the first reaction. From these results, the immobilized NsPCS of the present invention showed no significant reduction in the production rate even when the reaction was repeated up to at least 5 times using 100 mM GSH as a substrate, and almost completely γ- It was confirmed that it can be converted to EC. From this, it was confirmed that the immobilized NsPCS of the present invention is very stable physically (immobilized state) and enzymatically (activity).
実験例3 固定化NsPCSを用いたγ-ECの連続製法(スモールスケール)
 多孔質セルロース担体として製造例2で製造したセルロースモノリスを用いて製造例3で作製した固定化NsPCSを用いて、GSHを原料としてγ-ECを連続的に製造した。
 具体的には、まず固定化NsPCS 0.29 mL(固定化したNsPCSの総重量84.5μg )をラミネートチューブに入れ、熱処理によって円柱状(内径5 mm、長さ15 mm)に成型したものを用いて、図6に示す構成を有する反応装置を組み立て、これを用いてGSHを原料としてγ-ECを製造した。なお、基質溶液として、実験例1と同様に、10 mM GSH、1 mM TCEP、及び200 mMリン酸カリウム緩衝液(pH8.0)を用いた。
Experimental Example 3 Continuous production of γ-EC using immobilized NsPCS (small scale)
Using the cellulose monolith produced in Production Example 2 as a porous cellulose carrier and the immobilized NsPCS produced in Production Example 3, γ-EC was continuously produced using GSH as a starting material.
Specifically, first, 0.29 mL of immobilized NsPCS (total weight of immobilized NsPCS: 84.5 μg) was placed in a laminate tube, and heat-treated to form a cylinder (inner diameter: 5 mm, length: 15 mm). A reactor having the configuration shown in FIG. 6 was assembled and used to produce γ-EC using GSH as a starting material. As a substrate solution, 10 mM GSH, 1 mM TCEP, and 200 mM potassium phosphate buffer (pH 8.0) were used as in Experimental Example 1.
 ぺリスタリックポンプにより基質溶液の供給速度を約0.25 mL/h~12.5 mL/hの範囲で調節した結果、表1及び図8に示すように、約0.25 mL/hの供給速度において約93%の変換率(GSH→γ-EC)が得られた。この結果から、本発明の固定化NsPCSを使用することによって、GSHを基質としてγ-ECの連続生産が可能であることが示された。 As a result of adjusting the supply rate of the substrate solution in the range of about 0.25 mL/h to 12.5 mL/h by the peristaltic pump, as shown in Table 1 and FIG. conversion rate (GSH→γ-EC) was obtained. These results indicated that the immobilized NsPCS of the present invention enabled continuous production of γ-EC using GSH as a substrate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この実験では、約0.3 mLの小容量の固定化NsPCSを用いたが、理論上この実験系をスケールアップすれば、γ-ECの大量製造も可能である。具体的には、例えば5 mLの固定化NsPCSを用いた場合は流速2.5 mL/h、5 Lの固定化NsPCSを用いた場合は流速2.5 L/hで、カラムに基質溶液を流すことで90%以上の収率でGSHからγ-ECを得ることができると考えられる。なお、基質供給速度をさらに小さくすれば理論上100%の変換が可能となる。また、多孔質セルロースに固定化するNsPCSの量を増やせば、より短い時間で90%以上、さらには100%の変換が可能となり、反応条件、さらには反応装置の運転条件の最適化によって工業生産に適した効率的な生産が可能となる。 In this experiment, a small volume of immobilized NsPCS of about 0.3 mL was used, but theoretically, if this experimental system is scaled up, mass production of γ-EC is possible. Specifically, for example, when using 5 mL of immobilized NsPCS, the flow rate is 2.5 mL/h, and when using 5 L of immobilized NsPCS, the flow rate is 2.5 L/h. It is believed that γ-EC can be obtained from GSH with a yield of 10% or more. Theoretically, 100% conversion can be achieved by further reducing the substrate supply rate. In addition, by increasing the amount of NsPCS immobilized on the porous cellulose, it is possible to achieve a conversion of 90% or more, or even 100%, in a shorter time. Efficient production suitable for
 次に、どの程度の期間、連続的にγ-EC製造が可能か試験した。
 その結果、図9に示すように、上記の実験系で0.25 mL/hの速度で基質を供給した場合、240時間(10日間)にわたり、90%以上の変換率(GSH→γ-EC)が維持された。この結果から、本発明の固定化NsPCSを用いたGSHを原料とするγ-EC製造は、NsPCSの劣化なく、少なくとも10日間に亘って連続的に実施することができるが判明した。
Next, we tested how long γ-EC can be produced continuously.
As a result, as shown in Fig. 9, when the substrate was supplied at a rate of 0.25 mL/h in the above experimental system, the conversion rate (GSH → γ-EC) was 90% or more for 240 hours (10 days). maintained. From this result, it was found that the production of γ-EC from GSH using the immobilized NsPCS of the present invention can be carried out continuously for at least 10 days without deterioration of NsPCS.
実験例4 固定化NsPCSを用いたγ-ECの連続製法(スケールアップ)
 実験例3で使用した円柱状カラム(内径5 mm、長さ15 mm)に代えて、セルロースモノリスを用いて製造例3で作製した固定化NsPCS 2.2 mL(NsPCSの総重量261μg)をラミネートチューブに入れて円柱状(内径13 mm、長さ17 mm)に成型したものを用いて、図7に示す構成を有する反応装置を用いて、GSHを原料としてγ-EC製造を行った。
 その結果、100 mMのGSH溶液を用いた場合、約0.2 mL/hの供給速度で固定化NsPCSと反応させることで、GSHをほぼ完全にγ-ECに変換することができた。結果として、実験例3と比べて、固定化NsPCSの容量を約10倍に増やし、NsPCSの量を3倍に増やすことで、100 mM GSHをほぼ完全にγ-ECに変換することができた。
 実験例3と同様に、この反応装置を用いて、どの程度の期間、連続的にγ-EC製造が可能か試験した。その結果、図10に示すように、上記の実験系で約0.2 mL/hの速度で基質を供給した場合、240時間(10日間)にわたり、90%以上の変換率(GSH→γ-EC)が維持された。
Experimental Example 4 Continuous production of γ-EC using immobilized NsPCS (scale-up)
Instead of the cylindrical column (inner diameter 5 mm, length 15 mm) used in Experimental Example 3, 2.2 mL of immobilized NsPCS prepared in Production Example 3 using cellulose monolith (total weight of NsPCS: 261 μg) was placed in a laminate tube. γ-EC was produced using GSH as a raw material using a reaction apparatus having the configuration shown in FIG.
As a result, when using a 100 mM GSH solution, it was possible to almost completely convert GSH to γ-EC by reacting it with immobilized NsPCS at a supply rate of about 0.2 mL/h. As a result, 100 mM GSH could be almost completely converted to γ-EC by increasing the volume of immobilized NsPCS about 10-fold and increasing the amount of NsPCS by 3-fold compared to Experimental Example 3. .
As in Experimental Example 3, this reactor was used to test how long γ-EC can be continuously produced. As a result, as shown in FIG. 10, when the substrate was supplied at a rate of about 0.2 mL/h in the above experimental system, the conversion rate (GSH → γ-EC) was 90% or more for 240 hours (10 days). was maintained.
 この結果から、下記の試算をすることができる。
 ・0.2 mL/h の流速で100 mM GSHが完全にγ-ECとGlyへ変換された。
 このことから、24時間(1日)では0.2 mL x 24 = 4.8 mLの100 mM のγ-ECが得られると試算される。またその生産量は、250(g/mol) x 0.1 mol/L x 0.0048 L = 0.12 g/日である。
From this result, the following trial calculation can be made.
・100 mM GSH was completely converted to γ-EC and Gly at a flow rate of 0.2 mL/h.
From this, it is estimated that 0.2 mL x 24 = 4.8 mL of 100 mM γ-EC can be obtained in 24 hours (1 day). Its production volume is 250(g/mol) x 0.1 mol/L x 0.0048 L = 0.12 g/day.
実験例5 固定化NsPCSを用いたγ-ECの製造と、固定化NsPCSの耐久性評価
(1)固定化NsPCSを用いたγ-ECの製
 多孔質セルロース担体としてセルローススポンジを用いて製造例3で調製した固定化NsPCSを、反応溶液中のNsPCS濃度が26 mg/Lとなる割合で、1 mM トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)(還元剤)の存在下、200 mMリン酸カリウム緩衝液(pH8.0)中で、37℃で100 mMのGSHと反応させた。次いで、3.6 N塩酸を適量添加することで反応を停止させ、固定化NsPCSを取り除いた反応液について、前述する条件の高速液体クロマトグラフィーを用いて、基質(GSH)と反応生成物(γ-EC、Gly)を分離し、定量した。
 その結果、72時間の反応でGSHから100%の割合でγ-EC及びGlyが生成されることが確認された(変換率100%)。また、72時間の反応でセルローススポンジは劣化が認められなかった。
Experimental Example 5 Production of γ-EC using immobilized NsPCS and evaluation of durability of immobilized NsPCS (1) Production of γ-EC using immobilized NsPCS Production example using cellulose sponge as a porous cellulose carrier The immobilized NsPCS prepared in 3 was added to 200 mM It was reacted with 100 mM GSH at 37°C in a potassium phosphate buffer (pH 8.0). Next, the reaction was stopped by adding an appropriate amount of 3.6 N hydrochloric acid, and the reaction solution from which the immobilized NsPCS had been removed was subjected to high-performance liquid chromatography under the conditions described above, and the substrate (GSH) and the reaction product (γ-EC , Gly) were separated and quantified.
As a result, it was confirmed that γ-EC and Gly were produced at a rate of 100% from GSH after 72 hours of reaction (conversion rate 100%). No deterioration was observed in the cellulose sponge after 72 hours of reaction.
(2)固定化NsPCSの耐久性評価
 多孔質セルロース担体としてセルローススポンジを用いて製造例3で調製した固定化NsPCSについて、耐久性を評価した。
 具体的には、前記(1)に記載する方法に準じて、温度37℃で48時間の反応を4回、又は温度25℃で48時間の反応を4回、それぞれ繰り返した。各反応系において、1~4回の各反応におけるγ-ECへの変換率(%)を経時的に測定した。
 温度37℃での4回にわたる反応(37_1~37_4)におけるγ-EC変換率(%)を経時的変化を図11(1)に、温度25℃での4回にわたる反応(25_1~25_4)におけるγ-EC変換率(%)を経時的変化を図11(2)に示す。
 図11(1)及び(2)に示すように、37℃で48時間の反応1回目(γ-EC変換率:97%)に対して4回目(γ-EC変換率:81.5%)は15.5%低下、また、25℃で48時間の反応1回目(γ-EC変換率:76.4%)に対して4回目(γ-EC変換率:54.9%)は21.5%低下が認められたものの、確実にγ-ECが得られることが確認された。また、いずれの反応系も4回の反応でセルローススポンジの劣化は認められなかった。これらのことから、セルローススポンジを用いて調製した固定化NsPCSは、担体として、また酵素として、繰り返し使用(連続反応)に対して耐久性があることが確認された。
(2) Evaluation of durability of immobilized NsPCS The durability of the immobilized NsPCS prepared in Production Example 3 using cellulose sponge as a porous cellulose carrier was evaluated.
Specifically, according to the method described in (1) above, the reaction at a temperature of 37° C. for 48 hours was repeated four times, or the reaction at a temperature of 25° C. for 48 hours was repeated four times. In each reaction system, the conversion rate (%) to γ-EC in each of 1 to 4 reactions was measured over time.
Figure 11 (1) shows the γ-EC conversion rate (%) in four reactions (37_1 to 37_4) at a temperature of 37 °C over time, and in four reactions (25_1 to 25_4) at a temperature of 25 °C FIG. 11(2) shows the change in the γ-EC conversion rate (%) over time.
As shown in FIGS. 11 (1) and (2), the first reaction (γ-EC conversion rate: 97%) at 37 ° C. for 48 hours and the fourth reaction (γ-EC conversion rate: 81.5%) were 15.5 % decrease, and a 21.5% decrease was observed in the 4th reaction (γ-EC conversion rate: 54.9%) compared to the first reaction (γ-EC conversion rate: 76.4%) at 25 ° C for 48 hours, but it is certain It was confirmed that γ-EC was obtained in In addition, no deterioration of the cellulose sponge was observed in any of the reaction systems after 4 reactions. From these results, it was confirmed that the immobilized NsPCS prepared using the cellulose sponge is durable against repeated use (continuous reaction) as a carrier and as an enzyme.
実験例6 固定化NsPCSの調製、及びそれを用いたγ-ECの製造
(1)固定化NsPCSの調製
 多孔質セルロース担体として結晶セルロース粉末を用いて、下記の方法で固定化NsPCSを調製した。
 具体的には、製造例3の手順に従い脱水アセトニトリルに、結晶セルロース粉末のモル数に対してそれぞれ2倍量のN,N’-ジスクシンイミジルカルボナート(DSC)・グルコースユニットとN,N-ジメチル-5-アミノピリジン(DMAP)・グルコースユニットとを加えて溶解し、これに、結晶セルロース粉末約 100 mg を加え、24時間常温で撹拌した。その後、脱水アセトニトリルで3回洗浄し、これを減圧乾燥後、20 mMリン酸カリウム緩衝液(pH8.0)で洗浄した。
 次いで、得られた結晶セルロース粉末(活性化エステル体)を、220μg/ml濃度に調製したNsPCS溶液(超純水で希釈)4 mL に30分間浸漬した。こうすることで、NsPCSの1級アミノ基と多孔質セルロースの水酸基に導入したカルボニル基とがアミド結合して、多孔質セルロース担体の表面(外側表面と孔表面の両者を総称して「表面」という)にNsPCSが固定化された。その後、20 mMリン酸カリウム緩衝液(pH8.0)で3回洗浄した。
 得られた固定化NsPCSの体積当たりの酵素固定量を表2に示す。
Experimental Example 6 Preparation of Immobilized NsPCS and Production of γ-EC Using the Same (1) Preparation of Immobilized NsPCS Using crystalline cellulose powder as a porous cellulose carrier, immobilized NsPCS was prepared by the following method.
Specifically, according to the procedure of Production Example 3, dehydrated acetonitrile was added with twice the amount of N,N'-disuccinimidyl carbonate (DSC)/glucose unit and N,N with respect to the number of moles of the crystalline cellulose powder. -Dimethyl-5-aminopyridine (DMAP)·glucose unit was added and dissolved, to which about 100 mg of crystalline cellulose powder was added and stirred at room temperature for 24 hours. Then, it was washed with dehydrated acetonitrile three times, dried under reduced pressure, and washed with 20 mM potassium phosphate buffer (pH 8.0).
Next, the resulting crystalline cellulose powder (activated ester) was immersed in 4 mL of NsPCS solution (diluted with ultrapure water) adjusted to a concentration of 220 μg/ml for 30 minutes. By doing so, the primary amino group of NsPCS and the carbonyl group introduced to the hydroxyl group of the porous cellulose form an amide bond, forming the surface of the porous cellulose carrier (both the outer surface and the pore surface are collectively referred to as the "surface"). ) was immobilized with NsPCS. Then, it was washed three times with 20 mM potassium phosphate buffer (pH 8.0).
Table 2 shows the amount of immobilized enzyme per volume of immobilized NsPCS obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 体積当たりの酵素固定量はセルロースモノリスの約2.5倍であり、結晶セルロース粉末に、効率的に多くの酵素NsPCSが固定できることが確認された。 The amount of enzyme immobilized per volume is about 2.5 times that of cellulose monolith, and it was confirmed that a large amount of enzyme NsPCS can be efficiently immobilized on crystalline cellulose powder.
(2)固定化NsPCSを用いたγ-ECの製造
 前記で作製した固定化NsPCSを用いて、GSHを原料としてγ-ECを連続的に製造した。
 具体的には、まず固定化NsPCS 2.5 mL(固定化したNsPCSの総重量約1460μg)をガラスウール栓により下端を封じたガラス管に入れ、図12に示す構成を有する反応装置を組み立て、これを用いてGSHを原料としてγ-ECを製造した。なお、基質溶液として、実験例4と同様に、100 mM GSH、1 mM TCEP、及び200 mMリン酸カリウム緩衝液(pH8.0)を用いた。
(2) Production of γ-EC using immobilized NsPCS Using the immobilized NsPCS prepared above, γ-EC was continuously produced using GSH as a starting material.
Specifically, first, 2.5 mL of immobilized NsPCS (total weight of immobilized NsPCS: about 1460 μg) was placed in a glass tube whose lower end was sealed with a glass wool plug, and a reactor having the configuration shown in FIG. 12 was assembled. γ-EC was produced using GSH as a raw material. As a substrate solution, 100 mM GSH, 1 mM TCEP, and 200 mM potassium phosphate buffer (pH 8.0) were used as in Experimental Example 4.
 ぺリスタリックポンプにより基質溶液の供給速度を約0.10mL/h~3.0mL/hの範囲で調節した結果、約0.15 mL/hの供給速度において約100%の変換率(GSH→γ-EC)が得られた。この結果から、前記固定化NsPCSを使用することによって、GSHを基質としてγ-ECの連続生産が安定して効率的に可能であることが示された。 As a result of adjusting the feed rate of the substrate solution in the range of about 0.10 mL/h to 3.0 mL/h with a peristaltic pump, a conversion rate of about 100% (GSH → γ-EC) was obtained at a feed rate of about 0.15 mL/h. was gotten. These results indicate that the immobilized NsPCS enables stable and efficient continuous production of γ-EC using GSH as a substrate.
実験例7 固定化NsPCSの保存安定性
 固定化NsPCSの保存安定性を評価した。
 具体的には、製造例1で作製した固定化NsPCSを、液体窒素中で超低温保存するか(-196℃)、または凍結乾燥後に乾燥状態で保存して、保存前後で活性の変化を調べた。より詳細には、液体窒素中での超低温保存は、製造例2で製造した固定化NsPCSを、不凍液としてグリセロール25%を含む200 mMリン酸カリウム緩衝液(pH8.0)に浸し、これを液体窒素中に投入して2日間保存した。また、凍結乾燥による乾燥保存は、製造例2で製造した固定化NsPCSを、グリセロール25%を含む200 mMリン酸カリウム緩衝液(pH8.0)に浸し、これを液体窒素で処理した後、凍結乾燥器内で凍結乾燥して2日間保存した。
 その後、実験例2に記載する方法に従って、GSHを原料とするγ-EC製造に供し、保存前のγ-ECの生成速度と比較した。
Experimental Example 7 Storage Stability of Immobilized NsPCS The storage stability of immobilized NsPCS was evaluated.
Specifically, the immobilized NsPCS prepared in Production Example 1 were either stored at ultra-low temperature in liquid nitrogen (-196°C) or stored in a dry state after freeze-drying, and changes in activity before and after storage were examined. . More specifically, ultra-low-temperature storage in liquid nitrogen is carried out by immersing the immobilized NsPCS produced in Production Example 2 in a 200 mM potassium phosphate buffer (pH 8.0) containing 25% glycerol as an antifreeze solution. Stored in nitrogen for 2 days. In addition, dry storage by freeze-drying is performed by immersing the immobilized NsPCS produced in Production Example 2 in 200 mM potassium phosphate buffer (pH 8.0) containing 25% glycerol, treating it with liquid nitrogen, and freezing it. Freeze-dried in a desiccator and stored for 2 days.
Thereafter, according to the method described in Experimental Example 2, γ-EC was produced using GSH as a starting material, and the production rate of γ-EC before storage was compared.
 保存前のγ-EC生成速度100%とした場合の保存後の生成速度の相対比(%)を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the relative ratio (%) of the γ-EC production rate after storage when the γ-EC production rate before storage is taken as 100%.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、不凍液を入れた緩衝液に浸漬した状態で液体窒素中で保存した場合は90%以上の活性が維持され、また反応時間は多少延びるものの、GSHはほぼ100%γ-ECに変換された。一方、凍結乾燥後、乾燥保存した場合は酵素活性が失われ、γ-ECの生成は認められなかった。この結果から、NsPCSは、多孔質セルロースに共有結合により固定化することで、不凍液を入れた緩衝液に浸漬した状態で、液体窒素中で超低温保存することで長期にわたり、酵素活性を維持した状態で安定して保存できることが確認された。 As shown in Table 3, when immersed in a buffer containing antifreeze solution and stored in liquid nitrogen, the activity was maintained at 90% or more, and although the reaction time was somewhat prolonged, GSH was almost 100% γ- Converted to EC. On the other hand, the enzymatic activity was lost after freeze-drying, and no γ-EC was produced. Based on these results, NsPCS was immobilized on porous cellulose by covalent bonding, and when it was immersed in a buffer solution containing antifreeze solution and stored at ultra-low temperature in liquid nitrogen, the enzymatic activity was maintained for a long period of time. It was confirmed that it can be stored stably at
 本発明の固定化NsPCS、及びそれを用いたγ-ECの製造方法は、下記の少なくとも1つの点で産業利用性が高いものである。
1)本発明の固定化NsPCSを用いることで、原料のGSHを完全にγ-ECとGlyに変換できる。2)本製造方法では、マグネシウムや高価なATPを補因子として必要としない。
3)本発明によれば、γ-ECを基質や酵素等から簡便に分離することができる。
4)本製造方法は、特許文献2とは異なり、細胞を使用しないため、反応液に細胞由来の夾雑物質(アミノ酸やペプチド等を含む)が含まないため、γ-ECの分離及び精製が容易である。
5)少なくとも10日以上の期間、GSHからγ-ECへの高い変換率を維持しながら、安定的に及び/又は連続的にγ-ECを製造することが可能である。
6)固定化NsPCSは、不凍液の存在下、液体窒素中の超低温保存条件下で失活することなく安定に保存できる。
7)Glyは、通常アミノ酸の工業生産に用いられる発酵法による生産が難しいアミノ酸であるが、本製造方法によれば、GSHからγ-ECと同時にGlyも等量生産することができる。
8)本発明の固定化NsPCSを用いた連続製法によれば、Glyも、γ-ECと同様に、基質や酵素との分離操作を必要とせず安定かつ連続的に生産できる。また、これは、反応生成物をイオン交換樹脂に通すことによって、容易にγ-ECと分離できる。
The immobilized NsPCS of the present invention and the method for producing γ-EC using the same have high industrial applicability in at least one of the following points.
1) By using the immobilized NsPCS of the present invention, the raw material GSH can be completely converted into γ-EC and Gly. 2) This production method does not require magnesium or expensive ATP as cofactors.
3) According to the present invention, γ-EC can be easily separated from substrates, enzymes and the like.
4) Unlike Patent Document 2, this production method does not use cells, so the reaction solution does not contain cell-derived contaminants (including amino acids, peptides, etc.), making it easy to separate and purify γ-EC. is.
5) It is possible to stably and/or continuously produce γ-EC while maintaining a high conversion rate from GSH to γ-EC for a period of at least 10 days.
6) The immobilized NsPCS can be stably stored without deactivation under cryogenic storage conditions in liquid nitrogen in the presence of an antifreeze solution.
7) Gly is an amino acid that is difficult to produce by a fermentation method that is usually used for industrial production of amino acids, but according to this production method, an equal amount of Gly can be produced simultaneously with γ-EC from GSH.
8) According to the continuous production method using immobilized NsPCS of the present invention, similarly to γ-EC, Gly can be stably and continuously produced without the need for separation from substrates and enzymes. It can also be easily separated from γ-EC by passing the reaction product through an ion exchange resin.
 配列番号1は、ラン藻Nostoc sp.PCC7120由来のPCS遺伝子と高い相同性を有するalr 0975遺伝子の塩基配列;配列番号2は、前記alr 0975遺伝子によってコードされるPCS様酵素(NsPCS)のアミノ酸配列;配列番号3及び4は、Nostoc sp.PCC 7120から抽出したゲノムDNAをテンプレートとして、alr 0975遺伝子をPCRにより増幅した際に利用したプライマーセット(NsF1、NsrR1)の塩基配列を示す。 SEQ ID NO: 1 is the nucleotide sequence of the alr 0975 gene, which has high homology with the PCS gene derived from Cyanobacteria Nostoc sp. PCC7120; SEQ ID NO: 2 is the amino acid sequence of the PCS-like enzyme (NsPCS) encoded by the alr 0975 gene. SEQ ID NOs: 3 and 4 show the nucleotide sequences of the primer set (NsF1, NsrR1) used when the alr 0975 gene was amplified by PCR using the genomic DNA extracted from Nostoc sp.PCC 7120 as a template.

Claims (14)

  1.  多孔質セルロース担体の水酸基に導入されたカルボニル基とアミド結合することで固定化されたNsPCSに、pH4~10の条件下でGSHを接触させてγ-EC及びGlyを生成する工程(工程1)を有する、γ-EC又は/及びGlyの製造方法。 A step of contacting NsPCS immobilized by amide bonding with a carbonyl group introduced into a hydroxyl group of a porous cellulose carrier with GSH under conditions of pH 4 to 10 to generate γ-EC and Gly (Step 1). A method for producing γ-EC or/and Gly.
  2.  さらに前記工程1で得られた生成物からγ-EC又は/及びGlyを単離回収する工程(工程2)を有する、請求項1に記載するγ-EC又は/及びGlyの製造方法。 The method for producing γ-EC and/or Gly according to claim 1, further comprising a step (step 2) of isolating and recovering γ-EC and/or Gly from the product obtained in step 1 above.
  3.  前記工程2が、前記工程1で得られた生成物を、イオン交換体に接触させて、γ-ECとGlyとを分離する工程である、請求項2に記載するγ-EC又は/及びGlyの製造方法。 γ-EC or/and Gly according to claim 2, wherein said step 2 is a step of contacting the product obtained in said step 1 with an ion exchanger to separate γ-EC and Gly. manufacturing method.
  4.  前記イオン交換体が陽イオン交換体であり、工程1で得られた生成物を含む溶液を酸性に調整した後に陽イオン交換体に接触させて、γ-ECとGlyとを分離する方法である、請求項3に記載するγ-EC又は/及びGlyの製造方法。 The ion exchanger is a cation exchanger, and the solution containing the product obtained in step 1 is acidified and then brought into contact with the cation exchanger to separate γ-EC and Gly. , a method for producing γ-EC or/and Gly according to claim 3.
  5.  前記イオン交換体が強陰イオン交換体であり、工程1で得られた生成物を含む溶液を強陰イオン交換体に接触させて、γ-ECとGlyとを分離する方法である、請求項3に記載するγ-EC又は/及びGlyの製造方法。 The method for separating γ-EC and Gly by contacting the solution containing the product obtained in step 1 with the strong anion exchanger, wherein the ion exchanger is a strong anion exchanger. 3. A method for producing γ-EC or/and Gly according to 3.
  6.  前記多孔質セルロース担体がセルロース製ろ紙、セルローススポンジ、セルロースモノリス、又は粉末状多孔質セルロースの集合物である、請求項1又は2に記載するγ-EC又は/及びGlyの製造方法。 The method for producing γ-EC or/and Gly according to claim 1 or 2, wherein the porous cellulose carrier is cellulose filter paper, cellulose sponge, cellulose monolith, or aggregate of powdered porous cellulose.
  7.  多孔質セルロースの水酸基に導入されたカルボニル基とNsPCSの1級アミノ基とがアミド結合することで、多孔質セルロースにNsPCSが固定化されてなる、固定化NsPCS。 Immobilized NsPCS, in which NsPCS is immobilized on porous cellulose by amide bonding between the carbonyl groups introduced into the hydroxyl groups of porous cellulose and the primary amino groups of NsPCS.
  8.  多孔質セルロースがセルロース製ろ紙、セルローススポンジ、セルロースモノリス、又は粉末状多孔質セルロースの集合物である、請求項7に記載する固定化NsPCS。 The immobilized NsPCS according to claim 7, wherein the porous cellulose is a cellulose filter paper, a cellulose sponge, a cellulose monolith, or an aggregate of powdered porous cellulose.
  9.  下記の工程を有する、請求項7又は8に記載する固定化NsPCSの製造方法:
    (1)多孔質セルロースの水酸基にカルボニル基を導入する工程、
    (2)前記(1)工程で導入されたカルボニル基にNsPCSの1級アミノ基をアミド結合させて、多孔質セルロースにNsPCSを固定化する工程。
    A method for producing immobilized NsPCS according to claim 7 or 8, comprising the steps of:
    (1) a step of introducing a carbonyl group to the hydroxyl group of the porous cellulose;
    (2) A step of immobilizing NsPCS on the porous cellulose by amide bonding the primary amino group of NsPCS to the carbonyl group introduced in step (1) above.
  10.  前記(1)工程が、カルボニル基導入試薬としてNHSエステル基を有する活性エステル化剤を用いて、多孔質セルロースの活性化エステル体を生成する工程である、請求項9に記載する固定化NsPCS製造方法。 10. The immobilized NsPCS production according to claim 9, wherein the step (1) is a step of producing an activated ester of porous cellulose using an active esterifying agent having an NHS ester group as a carbonyl group-introducing reagent. Method.
  11.  前記NHSエステル基を有する活性エステル化剤が、N,N’-ジスクシンイミジルカルボナートである、請求項10に記載する固定化NsPCS製造方法。 The method for producing immobilized NsPCS according to claim 10, wherein the active esterifying agent having an NHS ester group is N,N'-disuccinimidyl carbonate.
  12.  多孔質セルロースがセルロース製ろ紙、セルローススポンジ、セルロースモノリス、又は粉末状多孔質セルロースの集合物である、請求項9又は10に記載する固定化NsPCS製造方法。 The method for producing immobilized NsPCS according to claim 9 or 10, wherein the porous cellulose is a cellulose filter paper, a cellulose sponge, a cellulose monolith, or an aggregate of powdered porous cellulose.
  13.  請求項7又は8に記載する固定化NsPCSの保存方法であって、固定化NsPCSを不凍液を入れた緩衝液に浸漬した状態で、-150℃以下の条件で超低温保存することを特徴とする、前記方法。 9. The method for preserving the immobilized NsPCS according to claim 7 or 8, wherein the immobilized NsPCS is immersed in a buffer solution containing an antifreeze solution and stored at a low temperature of -150°C or less, the aforementioned method.
  14.  前記超低温保存が、液体窒素中での超低温保存である、請求項13に記載する固定化NsPCSの保存方法。  The method for preserving immobilized NsPCS according to claim 13, wherein the cryopreservation is cryopreservation in liquid nitrogen. 
PCT/JP2022/037718 2021-11-15 2022-10-07 IMMOBILIZED NSPCS AND γ-EC PRODUCTION METHOD USING SAME WO2023084967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021185985 2021-11-15
JP2021-185985 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023084967A1 true WO2023084967A1 (en) 2023-05-19

Family

ID=86335643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037718 WO2023084967A1 (en) 2021-11-15 2022-10-07 IMMOBILIZED NSPCS AND γ-EC PRODUCTION METHOD USING SAME

Country Status (1)

Country Link
WO (1) WO2023084967A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137235A (en) * 2003-11-05 2005-06-02 Kansai Electric Power Co Inc:The Protein catalyzing reaction for producing gamma-glutamyl cysteine from glutathione and gene encoding the same
JP2005224132A (en) * 2004-02-12 2005-08-25 Kansai Electric Power Co Inc:The Recombinant plant having improved oxidation stress resistance and/or heavy metal stress resistance
JP2020065486A (en) * 2018-10-24 2020-04-30 国立大学法人東京工業大学 Enzyme immobilization carrier and immobilized enzyme
WO2020123714A1 (en) * 2018-12-12 2020-06-18 Purilogics, LLC Affinity membrane and method of preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137235A (en) * 2003-11-05 2005-06-02 Kansai Electric Power Co Inc:The Protein catalyzing reaction for producing gamma-glutamyl cysteine from glutathione and gene encoding the same
JP2005224132A (en) * 2004-02-12 2005-08-25 Kansai Electric Power Co Inc:The Recombinant plant having improved oxidation stress resistance and/or heavy metal stress resistance
JP2020065486A (en) * 2018-10-24 2020-04-30 国立大学法人東京工業大学 Enzyme immobilization carrier and immobilized enzyme
WO2020123714A1 (en) * 2018-12-12 2020-06-18 Purilogics, LLC Affinity membrane and method of preparation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MURAOKA MISA, OHNO MOEKA, NAKAI TAKUYA, MATSUURA HIDEYUKI, NAGANO KAZUYA, ARAI MASAYOSHI, HIRATA YOSHIHIKO, UYAMA HIROSHI, HIRATA : "Gamma-Glutamylcysteine Production Using Phytochelatin Synthase-Like Enzyme Derived from <i>Nostoc</i> sp. Covalently Immobilized on a Cellulose Carrier", BIOLOGICAL & PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN, TOKYO., JP, vol. 45, no. 8, 1 August 2022 (2022-08-01), JP , pages 1191 - 1197, XP093066971, ISSN: 0918-6158, DOI: 10.1248/bpb.b22-00316 *
MURAOKA MISA, OHNO MOEKA, TATEISHI MAKOTO, MATSUURA HIDEYUKI, NAGANO KAZUYA, HIRATA YOSHIHIKO, HIRATA KAZUMASA: "Optimization of Reaction Conditions for γ-Glutamylcysteine Production from Glutathione Using a Phytochelatin Synthase-Like Enzyme from <i>Nostoc</i> sp. Pasteur Culture Collection 7120", BIOLOGICAL & PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN, TOKYO., JP, vol. 44, no. 12, 1 December 2021 (2021-12-01), JP , pages 1832 - 1836, XP093066974, ISSN: 0918-6158, DOI: 10.1248/bpb.b21-00494 *
XIN YUANRONG, WANG GUOWEI, HAN WENJUAN, SHEN YEHUA, UYAMA HIROSHI: "An ideal enzyme immobilization carrier: a hierarchically porous cellulose monolith fabricated by phase separation method", PURE & APPLIED CHEMISTRY, PERGAMON PRESS, OXFORD, GB, vol. 90, no. 6, 1 June 2018 (2018-06-01), GB , pages 1055 - 1062, XP093066968, ISSN: 0033-4545, DOI: 10.1515/pac-2017-0710 *

Similar Documents

Publication Publication Date Title
US10683525B2 (en) Method for producing 2-O-glyceryl-alpha-D-glucopyranoside
ES2339278T3 (en) METHOD OF PRODUCTION OF D-PSYCHOSE BY D-PSYCHOSE EPIMERASE.
Singh et al. Carboxymethyl tamarind gum–silica nanohybrids for effective immobilization of amylase
Patel et al. Periplasmic expression of carbonic anhydrase in Escherichia coli: a new biocatalyst for CO2 hydration
Plieva et al. Immobilization of hog pancreas lipase in macroporous poly (vinyl alcohol)-cryogel carrier for the biocatalysis in water-poor media
Bryjak et al. Evaluation of man-tailored cellulose-based carriers in glucoamylase immobilization
Xu et al. Robust enhancing stability and fructose tolerance of sucrose phosphorylase by immobilization on Ni-NTA functionalized agarose microspheres for the biosynthesis of 2-α-glucosylglycerol
WO2019210606A1 (en) Acid phosphatase mutant, application thereof, and method for preparing nicotinamide riboside
WO2023084967A1 (en) IMMOBILIZED NSPCS AND γ-EC PRODUCTION METHOD USING SAME
CN112626061B (en) Multienzyme ordered co-immobilization method for improving efficiency of cascade catalytic system
Haroun et al. Functionalized multi-walled carbon nanotubes as emerging carrier for biological applications
CN103627691B (en) A kind of immobilization glutathione synthetase and its preparation and application
JPH04507193A (en) Immobilized lipase preparations and their use for ester synthesis
CN114606221B (en) Immobilized enzyme, preparation method and application thereof
Kovaleva et al. Inulinase immobilization on macroporous anion-exchange resins by different methods
EP2094840B1 (en) Novel n-acetylglucosamine-2-epimerase and method for producing cmp-neuraminic acid using the same
Trelles et al. Immobilization techniques applied to the development of biocatalysts for the synthesis of nucleoside analogue derivatives
PT98863B (en) PROCESS FOR THE CONTINUOUS TRANSFORMATION OF CEFALOSPORIN DERIVATIVES IN GLUTARIL-7-AMINOFEPALOSPORANIC ACID DERIVATIVES
KR100457546B1 (en) A microsphere and process for producting thereof using polyfructose and its derivatives
JPS6030513B2 (en) Method for purifying glucose isomerase
MXPA01002918A (en) Microbead immobilization of enzymes.
Fu et al. Entrapment of carbonic anhydrase from Sulfurihydrogenibium azorense with polyallylamine-mediated biomimetic silica
US4675292A (en) Stabilization of glucose isomerase
JP2017163881A (en) Processes for producing oligosaccharides
Lu et al. Linker-peptide-mediated one-step purification and immobilization of α-L-rhamnosidase from Bacteroides thetaiotaomicron for direct biotransformation from epimedin C to icariin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559484

Country of ref document: JP

Kind code of ref document: A