WO2023084956A1 - Electric motor control device and winding machine - Google Patents

Electric motor control device and winding machine Download PDF

Info

Publication number
WO2023084956A1
WO2023084956A1 PCT/JP2022/037422 JP2022037422W WO2023084956A1 WO 2023084956 A1 WO2023084956 A1 WO 2023084956A1 JP 2022037422 W JP2022037422 W JP 2022037422W WO 2023084956 A1 WO2023084956 A1 WO 2023084956A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
control unit
electric motor
winding
speed control
Prior art date
Application number
PCT/JP2022/037422
Other languages
French (fr)
Japanese (ja)
Inventor
振寧 陳
隆之 鬼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023559477A priority Critical patent/JPWO2023084956A1/ja
Publication of WO2023084956A1 publication Critical patent/WO2023084956A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present disclosure relates to a motor control device and a winding machine that control a motor that rotates a rotor.
  • the rotation speed of the rotor rotated by the electric motor (hereinafter also referred to as “motor rotation speed”) is increasing.
  • the number of rotations of the motor is the number of rotations of the rotor per unit time.
  • the motor speed of the conventional winding machine was 10 krpm or less. 2. Description of the Related Art
  • the range of motor rotation speeds of recent winding machines (hereinafter also referred to as “high-speed winding machines”) in which the motor rotation speed has been increased is in the range of 0 krpm to 80 krpm. That is, the high-speed winding machine has a wide speed range.
  • high-speed winding machines can reduce the number of rotating shafts by increasing the number of rotations of the electric motor, which can significantly reduce equipment costs.
  • PI control In conventional motor speed control, feedback control such as PI control is mainly used as rotor rotation speed control.
  • P in PI control indicates “proportional”.
  • I in PI control stands for "integral”.
  • the actual speed which is the actual speed of the electric motor
  • the actual speed is detected or estimated, and the actual speed is compared with the speed indicated by the speed command.
  • a difference between the actual speed and the speed indicated by the speed command is fed back.
  • a current for driving the electric motor is calculated based on the difference.
  • the electric motor is hereinafter also referred to as a "motor".
  • Patent Literature 1 discloses a configuration (hereinafter also referred to as “related configuration A”) that performs feedback control and feedforward control as speed control of an electric motor.
  • the parameter used for feedforward control in controlling the electric motor is one parameter "FF". That is, in related configuration A, the number of parameters used for feedforward control in motor control is one. Therefore, it cannot be said that the accuracy of the feedforward control in controlling the electric motor is sufficient.
  • the present disclosure has been made to solve such problems, and aims to provide a motor control device or the like capable of performing feedforward control in motor control with high accuracy.
  • an electric motor control device controls an electric motor that rotates a rotor.
  • the electric motor control device includes a speed control unit that controls the electric motor, and the speed control unit controls the rotation state of the rotor at the drive timing at which the electric motor is driven so that the rotation state approaches the target rotation state, which is the target rotation state.
  • a speed control process is performed to control the electric motor, and the speed control process includes feedback control and feedforward control.
  • the speed control unit performs wind resistance estimation processing and acceleration estimation processing. In the wind resistance estimation processing, the speed control unit estimates the wind resistance associated with the rotation of the rotor at the drive timing.
  • the speed control unit estimates the acceleration of the rotation of the rotor at the drive timing, and in the feedforward control, the speed control unit adjusts the rotation state of the rotor at the drive timing so that it approaches the target rotation state. is the process of controlling the electric motor based on the estimated wind resistance and the estimated acceleration.
  • the speed control unit performs speed control processing for controlling the electric motor so that the rotation state of the rotor at the drive timing at which the electric motor is driven approaches the target rotation state.
  • Speed control processing includes feedback control and feedforward control.
  • Feedforward control is a process in which the speed control unit controls the electric motor based on the estimated wind resistance and the estimated acceleration so that the rotational state of the rotor at the drive timing approaches the target rotational state. .
  • feedforward control uses two parameters: wind resistance and acceleration. Therefore, feedforward control in controlling the electric motor can be performed with high accuracy.
  • FIG. 1 is a diagram showing a configuration of a motor control device according to Embodiment 1;
  • FIG. It is a sectional view showing composition of an electric motor. It is a figure which shows the structure of a stator. It is a figure which shows the structure of an armature. It is a figure which shows the structure of a three-phase inverter.
  • FIG. 4 is a diagram for explaining a speed command;
  • FIG. 2 is a block diagram showing the configuration of a speed control unit according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing characteristics of q-axis current and d-axis current as simulation results; It is a figure which shows an example of a test result. It is a graph which shows an example of a characteristic line.
  • FIG. 1 is a diagram showing the configuration of a motor control device 100 according to Embodiment 1.
  • the electric motor M1 is shown for explanation of the electric motor control device 100.
  • Electric motor control device 100 controls electric motor M1.
  • the motor control device 100 is built in the winding machine. Note that the motor control device 100 may be incorporated in the fan motor.
  • the fan motor is, for example, a ventilation fan.
  • the motor control device 100 includes a control unit Ct1 and a three-phase inverter Iv1.
  • Control unit Ct1 controls electric motor M1 via three-phase inverter Iv1.
  • the controller Ct1 is, for example, a processor. Note that the control unit Ct1 is not limited to a processor.
  • the control unit Ct1 may be, for example, a device including a CPU (Central Processing Unit) and a memory.
  • the electric motor M1 is a brushless motor.
  • the driving method of the electric motor M1, which is a brushless motor, is a sine wave driving method.
  • PWM (Pulse Width Modulation) control is performed on the electric motor M1.
  • the configuration for controlling the brushless motor is also referred to as "brushless motor control configuration”.
  • Motor controller 100 has a brushless motor control configuration.
  • the brushless motor control configuration of the electric motor control device 100 is also referred to as “brushless motor control configuration A”.
  • FIG. 2 is a cross-sectional view showing the configuration of the electric motor M1.
  • the X, Y and Z directions are orthogonal to each other.
  • the X, Y and Z directions shown in the following figures are also orthogonal to each other.
  • the direction including the X direction and the direction opposite to the X direction ( ⁇ X direction) is also referred to as the “X-axis direction”.
  • the direction including the Y direction and the direction opposite to the Y direction ( ⁇ Y direction) is also referred to as the “Y-axis direction”.
  • the direction including the Z direction and the direction opposite to the Z direction ( ⁇ Z direction) is also referred to as the “Z-axis direction”.
  • the plane including the X-axis direction and the Y-axis direction is also referred to as the "XY plane”.
  • a plane including the X-axis direction and the Z-axis direction is also referred to as an "XZ plane”.
  • a plane including the Y-axis direction and the Z-axis direction is also referred to as a "YZ plane”.
  • the electric motor M1 which is a brushless motor, includes a stator 20 and a rotating member X1.
  • the shape of the rotating member X1 is elongated. In FIG. 2, the longitudinal direction of the rotating member X1 is the Z-axis direction.
  • the rotating member X1 includes a shaft X1a and a rotor X1b.
  • the shape of the shaft X1a is rod-like.
  • the shape of the rotor X1b is cylindrical.
  • the rotor X1b is composed of permanent magnets.
  • the rotor X1b is fixed to the shaft X1a.
  • the rotating member X1 is configured so that the rotating member X1 is rotatable about the shaft X1a as a rotation axis.
  • the rotation axis of the rotating member X1 is in the Z-axis direction.
  • the electric motor M1 has a function of rotating the rotor X1b.
  • FIG. 3 is a diagram showing the configuration of the stator 20. As shown in FIG. Moreover, FIG. 3 is a view of the stator 20 viewed from the rotation axis direction of the rotation member X1. That is, FIG. 3 is a diagram showing the configuration of the stator 20 on the XY plane.
  • the shape of the stator 20 is cylindrical.
  • the rotating member X1 is provided in the electric motor M1 so that the rotating member X1 is surrounded by the cylindrical stator 20 .
  • the stator 20 includes nine armatures 21.
  • the configuration of each of the nine armatures 21 is the same.
  • the nine armatures 21 are hereinafter also referred to as armatures 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, and 21i, respectively.
  • FIG. 4 is a diagram showing the configuration of the armature 21. As shown in FIG. FIG. 4 shows the armature 21 as an armature 21a as an example.
  • FIG. 4A is a diagram showing the configuration of the armature 21 as the armature 21a on the XY plane.
  • FIG. 4B is a diagram showing the configuration of the armature 21 as the armature 21a on the XZ plane.
  • armature 21 has armature core 22 .
  • the armature core 22 is also called a "workpiece”.
  • the armature core 22 is a winding tooth.
  • the armature core 22 has a substantially T-shaped cross section along the XY plane. A detailed configuration of the armature 21 will be described later.
  • a chuck 75 is connected to the end of the shaft X1a of the rotating member X1. That is, the chuck 75 is connected to the end of the rotating member X1.
  • the chuck 75 is a workpiece gripping member for gripping the armature core 22 as a workpiece.
  • the chuck 75 rotates as the rotating member X1 (that is, the rotor X1b) rotates.
  • the rotation of the rotating member X1 causes the chuck 75 and the armature core 22 to rotate.
  • the brushless motor control configuration A that the electric motor control device 100 has is a configuration that does not use an angle sensor for detecting the position (that is, the angle) of the rotor X1b.
  • a known brushless motor control configuration that does not use an angle sensor is hereinafter also referred to as "brushless motor control configuration N.”
  • the configuration of the three-phase inverter Iv1 in the brushless motor control configuration A is the same as the configuration of the three-phase inverter in the brushless motor control configuration N. Therefore, the configuration of the three-phase inverter Iv1 will be briefly described.
  • FIG. 5 is a diagram showing the configuration of the three-phase inverter Iv1.
  • FIG. 5 also shows the control unit Ct1 and the electric motor M1 for explanation of the three-phase inverter Iv1.
  • the three-phase inverter Iv1 includes a power supply circuit Cp1 and an inverter circuit Cp2.
  • the power supply circuit Cp1 is connected to an external AC three-phase power supply (not shown).
  • the AC three-phase power supply supplies AC voltage to the power supply circuit Cp1.
  • the power supply circuit Cp1 includes a diode bridge Db1 and a capacitor C1. Capacitor C1 is a smoothing capacitor.
  • the power supply circuit Cp1 converts an AC voltage supplied from an AC three-phase power supply into a high-voltage DC voltage using a diode bridge Db1 and a capacitor C1. That is, the power supply circuit Cp1 generates a high-voltage DC voltage.
  • the inverter circuit Cp2 includes IGBT (Insulated Gate Bipolar Transistor) modules Cr1a, Cr1b, Cr1c, Cr1d, Cr1e, and Cr1f.
  • IGBT Insulated Gate Bipolar Transistor
  • Each of the IGBT modules Cr1a, Cr1b, Cr1c, Cr1d, Cr1e, and Cr1f is an RC-IGBT (Reverse Conducting IGBT).
  • IGBT modules Cr1a and Cr1d are connected to the U phase.
  • IGBT modules Cr1b and Cr1e are connected to the V phase.
  • IGBT modules Cr1c and Cr1f are connected to the W phase.
  • each of the IGBT modules Cr1a, Cr1b, Cr1c, Cr1d, Cr1e, and Cr1f is also collectively referred to as "IGBT module Cr1". That is, the inverter circuit Cp2 includes six IGBT modules Cr1. Each of the six IGBT modules Cr1 includes a transistor Tr1 and a freewheeling diode D1. The transistor Tr1 is an IGBT. The six IGBT modules Cr1 use the high-voltage DC voltage generated by the power supply circuit Cp1 to generate PWM pseudo-sine wave signals for controlling the electric motor M1.
  • the PWM pseudo sine wave signal is a signal representing a pseudo sine wave.
  • the inverter circuit Cp2 operates under the control of the control section Ct1.
  • the inverter circuit Cp2 drives the electric motor M1 by transmitting a PWM pseudo sine wave signal to the electric motor M1.
  • Six IGBT modules Cr1 are used to transmit the PWM pseudo-sinusoidal signal.
  • controller Ct1 In electric motor control device 100, current values of some of the U-phase, V-phase and W-phase are detected, and controller Ct1 outputs a switch signal for controlling transistor Tr1 of each IGBT module Cr1 based on the detected current values. Generate Sgw.
  • the switch signal Sgw is a PWM signal.
  • the motor control device 100 has current detection units Dt1 and Dt2 having a function of detecting current values.
  • FIG. 5 shows a configuration in which the current detection unit Dt1 detects a U-phase current value and the current detection unit Dt2 detects a W-phase current value.
  • the current value detected by the current detection unit Dt1 is notified to the control unit Ct1 as the current value If1.
  • the current value detected by the current detection unit Dt2 is notified to the control unit Ct1 as the current value If2.
  • Current value If1 and current value If2 are feedback current values.
  • each of current value If1 and current value If2 is also referred to as "current value If" or "If".
  • FIG. 5 shows the switch signal Sgw that controls the transistor Tr1.
  • the transistor Tr1 of each of the IGBT modules Cr1a and Cr1f is turned on, a current flows through the U-phase and the W-phase.
  • control unit Ct1 includes speed control unit 101, current control unit 102, PWM control unit 103, and estimation unit . All or part of the functions of the speed control unit 101, the current control unit 102, the PWM control unit 103 and the estimation unit 106 are realized by executing a program by the control unit Ct1, for example. All or part of the speed control unit 101, the current control unit 102, the PWM control unit 103, and the estimation unit 106 may be configured by dedicated hardware.
  • the electric motor control device 100 has the brushless motor control configuration A.
  • Brushless motor control configuration A is a configuration using current commands and voltage commands.
  • a known brushless motor control configuration N like the brushless motor control configuration A, is a configuration that uses current commands and voltage commands.
  • the current command is hereinafter also referred to as "current command Iref”.
  • the voltage command is hereinafter also referred to as "voltage command Vtref”.
  • the brushless motor control configuration A differs from the brushless motor control configuration N only in the configuration of the speed control unit 101 .
  • the configurations of the current control unit 102, the PWM control unit 103, and the estimation unit 106 are the same as those in the brushless motor control configuration N. FIG. Therefore, the operations of current control section 102, PWM control section 103 and estimation section 106 will be briefly described.
  • the timing at which the electric motor M1 is driven is also referred to as “driving timing”.
  • the drive timing is the timing at which the electric motor M1 rotates the rotor X1b.
  • the actual rotational speed of the rotor X1b is also referred to as “speed Vs" or “actual speed”.
  • the speed Vs is, for example, the speed at the driving timing.
  • the position of the rotor X1b at the driving timing is also called “position Pd”.
  • the position Pd corresponds to the rotation angle of the rotor X1b at the drive timing.
  • the voltage applied to the electric motor M1 at the drive timing is also referred to as “voltage Vds”.
  • the voltage Vds is the driving voltage of the electric motor M1 at the driving timing.
  • the rotational speed of the rotor X1b is also referred to as “motor rotational speed”, “rotational speed”, or “speed”.
  • the number of rotations of the rotor X1b per unit time is also referred to as "unit number of rotations”.
  • a unit time is, for example, one minute.
  • the rotation speed of the rotor X1b is proportional to the unit rotation speed. That is, the rotation speed of the rotor X1b corresponds to the unit number of rotations.
  • the rotating state of the rotor X1b at the drive timing is also referred to as "drive rotating state”.
  • the drive rotation state is, for example, the actual rotation speed of the rotor X1b.
  • the target rotation state of the rotor X1b is also referred to as a "target rotation state.”
  • the target rotation state is, for example, the target rotation speed of the rotor X1b. That is, each of the drive rotation state and the target rotation state is, for example, the rotation speed of the rotor X1b. Note that each of the drive rotation state and the target rotation state may be a unit number of rotations.
  • Speed control processing includes feedback control and feedforward control.
  • the command for controlling the rotation speed of the rotor X1b is also referred to as "speed command Vref" or "Vref".
  • the speed command Vref indicates a target rotational speed of the rotor X1b.
  • the aforementioned target rotational state corresponds to the speed command Vref.
  • the speed command Vref may indicate the target unit rotation speed of the rotor X1b.
  • the speed command Vref is sent to the speed control unit 101 from, for example, a speed setting unit (not shown) in the motor control device 100 .
  • the speed command Vref is expressed by a linear function.
  • FIG. 6 is a diagram for explaining the speed command Vref.
  • FIG. 6A is a diagram showing a graph showing simulation results.
  • the speed command Vref is expressed, for example, by a linear function indicated by the characteristic line Ls in the graph of FIG. 6(a).
  • Characteristic line Ls is, for example, a trapezoidal speed pattern used in a winding machine.
  • the horizontal axis is time.
  • the vertical axis is speed as rotational speed.
  • the velocity on the vertical axis is the normalized velocity.
  • a time corresponding to a portion of the characteristic line Ls indicating a speed greater than "0" corresponds to the driving timing.
  • the speed command Vref may be expressed by a quadratic function.
  • FIG. 6(b) is a graph showing an acceleration pattern corresponding to the trapezoidal velocity pattern indicated by the characteristic line Ls.
  • the horizontal axis is time.
  • the vertical axis is acceleration. Acceleration on the vertical axis is normalized acceleration.
  • a characteristic line L2 in the graph of FIG. 6(b) indicates an acceleration pattern corresponding to the trapezoidal velocity pattern indicated by the characteristic line Ls of FIG. 6(a).
  • Speed control unit 101 controls electric motor M1 via current control unit 102, PWM control unit 103 and three-phase inverter Iv1. That is, the speed control unit 101 controls the electric motor M1.
  • the speed control unit 101 performs speed control processing. That is, the speed control unit 101 performs feedback control and feedforward control included in speed control processing.
  • speed control process A the speed control process performed by the speed control unit 101 is also referred to as "speed control process A”.
  • the speed control process A is a process using the current command Iref.
  • feedback control A the feedback control performed by the speed control unit 101 is hereinafter also referred to as "feedback control A”.
  • Feedback control A is a process in which the speed control unit 101 controls the electric motor M1 based on control parameters for controlling the rotation state of the rotor X1b of the electric motor M1.
  • the control parameters are current values If1 and If2 as feedback current values.
  • the feedforward control performed by the speed control unit 101 is hereinafter also referred to as "feedforward control A".
  • Speed control processing A includes feedback control A and feedforward control A.
  • the estimating unit 106 estimates the speed Vs and notifies the speed control unit 101 of the estimated speed Vs. Further, the estimation unit 106 estimates the position Pd and notifies the current control unit 102 of the estimated position Pd, which will be described later in detail.
  • the speed control unit 101 uses the speed command Vref and the estimated speed Vs to generate the current command Iref. Speed control unit 101 transmits the generated current command Iref to current control unit 102 .
  • the current control unit 102 generates the voltage command Vtref based on the voltage command generation method in the brushless motor control configuration A.
  • the voltage command generation method is a method of generating the voltage command Vtref based on the current command Iref, the position Pd, and the current values If1 and If2, which are feedback current values.
  • the method of generating the voltage command in the brushless motor control configuration A is a known method, and detailed description thereof will be omitted.
  • the voltage command Vtref is a command corresponding to the current command Iref.
  • a voltage command Vtref indicates a target voltage value.
  • Voltage command Vtref is a command for rotating rotor X1b at a rotational speed based on current command Iref generated by speed control unit 101 .
  • Current control unit 102 transmits voltage command Vtref to PWM control unit 103 and estimation unit 106 .
  • the estimation unit 106 estimates the speed Vs based on the speed estimation method in the brushless motor control configuration A.
  • the speed estimation method is a method of estimating speed Vs based on voltage command Vtref and current values If1 and If2, which are feedback current values. Since the speed estimation method in the brushless motor control configuration A is a known method, detailed description thereof will be omitted.
  • Estimating section 106 notifies speed control section 101 of estimated speed Vs.
  • the estimation unit 106 estimates the position Pd based on the position estimation method in the brushless motor control configuration A.
  • the position estimation method is a method of estimating the position Pd based on the current values If1 and If2, which are feedback current values, and the voltage command Vtref.
  • the above-described position estimation method in the brushless motor control configuration A is a known method, and detailed description thereof will be omitted.
  • the estimation unit 106 notifies the current control unit 102 of the estimated position Pd.
  • the PWM control unit 103 generates the switch signal Sgw based on the voltage command Vtref.
  • the switch signal Sgw is a PWM signal.
  • the switch signal Sgw is a signal representing a sine wave.
  • the switch signal Sgw is a signal for rotating the rotor X1b at a rotational speed based on the current command Iref generated by the speed control unit 101.
  • the PWM control unit 103 transmits the switch signal Sgw to the inverter circuit Cp2 of the three-phase inverter Iv1.
  • the inverter circuit Cp2 generates the aforementioned PWM pseudo sine wave signal based on the switch signal Sgw.
  • the inverter circuit Cp2 drives the electric motor M1 by supplying the PWM pseudo sine wave signal to the electric motor M1.
  • Six IGBT modules Cr1 are used to transmit the PWM pseudo-sinusoidal signal.
  • the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotation speed based on the current command Iref generated by the speed control unit 101 according to the PWM pseudo sine wave signal.
  • FIG. 7 is a block diagram showing the configuration of speed control section 101 according to the first embodiment.
  • the state in which the electric motor M1 rotates the rotor X1b is also referred to as “rotor rotation state”.
  • the air resistance generated against the rotor X1b in the rotor rotation state is also referred to as “wind resistance Wr" or “wind resistance”.
  • the wind resistance Wr is the air resistance associated with the rotation of the rotor X1b.
  • the state in which the electric motor M1 rotates the rotor X1b so that the wind resistance Wr is proportional to the square of the rotation speed of the rotor X1b is also referred to as "high-speed rotation state".
  • the unit rotation speed of the rotor X1b in high-speed rotation is, for example, 40 krpm or more.
  • the rotational speed of the rotor X1b in the high-speed rotation state is also referred to as "high speed”.
  • the rotational acceleration of the rotor X1b of the electric motor M1 is also referred to as “acceleration Ac” or “Ac”.
  • control timing is, for example, the time “1 second" in FIG. 6(a).
  • control timing is changed each time a predetermined process is performed.
  • the control timing is the drive timing.
  • the control timing is the drive timing.
  • Speed control processing A includes feedback control A and feedforward control A. Although the details will be described later, in the feedforward control A, the speed control unit 101 controls the electric motor M1 based on the estimated wind resistance Wr and the estimated acceleration Ac so that the drive rotation state approaches the target rotation state. is a process for controlling
  • the speed controller 101 includes a PI controller 201, a wind resistance estimator 202, an acceleration estimator 203, a gain compensator 204, and an LPF (Low Pass Filter) 205. All or part of the functions of the PI controller 201, the wind resistance estimator 202, the acceleration estimator 203, the gain compensator 204, and the LPF 205 are implemented by the controller Ct1 executing a program, for example. All or part of the wind resistance estimator 202, the acceleration estimator 203, the gain compensator 204, and the LPF 205 may be configured by dedicated hardware. PI controller 201, wind resistance estimator 202, acceleration estimator 203, gain compensator 204, and LPF 205 will be described later.
  • Feedback control A is similar to feedback control in a known brushless motor control configuration N. Therefore, feedback control A will be briefly described.
  • the feedback control A in the comparative configuration performed under the following premise Pm1 will be described.
  • the speed command Vref expressed by a linear function indicated by the characteristic line Ls in FIG. 6(a) is used.
  • the range of unit rotation speed of the rotor X1b in the electric motor M1 is in the range of 0 krpm to 80 krpm. That is, in the premise Pm1, a high-speed rotation situation occurs in the electric motor M1.
  • the speed control unit 101 compares the speed indicated by the speed command Vref with the estimated speed Vs to obtain the speed deviation Verr.
  • the speed deviation Verr indicates the difference between the speed indicated by the speed command Vref and the speed Vs.
  • the PI control unit 201 calculates a current value Ip corresponding to the speed deviation Verr.
  • the PI control unit 201 calculates the sum of the current component proportional to the speed deviation Verr and the current component proportional to the integral of the speed deviation Verr as the current value Ip.
  • the current value Ip is a feedback component of the current command.
  • speed control unit 101 generates current value Ip as current command Iref and transmits the current command Iref to current control unit 102 .
  • Current control unit 102, estimation unit 106, PWM control unit 103, and three-phase inverter Iv1 then perform the above-described processing.
  • the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotation speed based on the current command Iref.
  • FIG. 8 is a diagram showing the characteristics of the q-axis current and the d-axis current as simulation results.
  • FIG. 8(a) shows the characteristics of the q-axis current.
  • a characteristic line Lq0 indicates the q-axis current characteristic corresponding to the comparative configuration.
  • FIG. 8(b) shows the characteristics of the d-axis current.
  • a characteristic line Ld0 indicates the characteristic of the d-axis current corresponding to the comparative configuration.
  • FIG. 9 is a diagram showing an example of test results.
  • FIG. 9(a) shows an example of the test results of the comparative configuration.
  • the horizontal axis indicates time.
  • a characteristic Li0 indicates a current characteristic.
  • a characteristic Lcs indicates a characteristic of the speed command Vref.
  • a characteristic Lc0 represents the rotational speed characteristic of the rotor X1b in the comparative configuration.
  • feedforward control A is performed in the present embodiment.
  • speed control unit 101 performs feedback control A and feedforward control A based on speed command Vref.
  • the feedforward control A is performed in parallel with the feedback control A.
  • control timing is used to facilitate understanding of the process.
  • the speed control unit 101 compares the speed indicated by the speed command Vref and the estimated speed Vs to obtain the speed deviation Verr.
  • the PI control unit 201 calculates a control timing current value Ip corresponding to the speed deviation Verr.
  • the current value Ip is a feedback component of the current command. That is, the current value Ip corresponds to the current command.
  • speed control unit 101 performs wind resistance estimation processing, acceleration estimation processing, speed control processing Aw, and speed control processing Ak.
  • the speed control unit 101 estimates the wind resistance Wr at the control timing.
  • the control timing is the drive timing. Therefore, in the wind resistance estimation process in the rotor rotation state, the speed control unit 101 estimates the wind resistance Wr at the drive timing.
  • the wind resistance estimation unit 202 of the speed control unit 101 estimates the wind resistance Wr at the control timing based on the following formula related to the characteristic line Lci and the speed command Vref.
  • FIG. 10 is a graph showing an example of the characteristic line Lci.
  • the horizontal axis of FIG. 10 indicates the number of revolutions as a unit number of revolutions.
  • the rotation speed corresponds to the speed of the electric motor M1 (that is, the rotation speed of the rotor X1b).
  • the characteristic line Lci is a characteristic line obtained from Experiment A conducted in advance.
  • motor M1 is driven at different speeds.
  • the plurality of speeds also includes the aforementioned high speed.
  • the current of the motor M1 driven at each speed is measured. Current measurements are made, for example, by an external current sensor. Plot the current corresponding to each speed on a graph. Then, create a characteristic line that approximates the values plotted on the graph. Thereby, the characteristic line Lci of FIG. 10 is obtained.
  • the current of electric motor M1 driven at each speed may be calculated by the control unit Ct1.
  • the characteristic line Lci represents a quadratic function representing the current I, such as the following equation (1).
  • Vs in equation (1) is the speed of the electric motor M1.
  • a, b, and c are variables. Variables a, b, and c in equation (1) change depending on the characteristics of the electric motor M1, the mounting location of the electric motor M1, and the like. Also, in situations where the motor M1 is used in a winding machine, the variables a, b, and c will vary depending on the construction of the winding machine. The variables a, b, and c are specified by Experiment A above.
  • the current value for canceling the wind resistance Wr is also referred to as "current value Ifw” or “Ifw”.
  • the current value Ifw is a value for feedforward compensation.
  • the wind resistance estimation unit 202 substitutes the speed at the control timing indicated by the speed command Vref for “Vs” in the equation (2), thereby obtaining the wind resistance corresponding to the torque Ta. Calculate the resistance Wr. That is, the wind resistance estimator 202 estimates the wind resistance Wr at the control timing. Next, the wind resistance estimator 202 calculates the current value Ifw at the control timing by substituting the estimated wind resistance Wr into Equation (3).
  • the speed control unit 101 adds the calculated current value Ifw to the current value Ip at the control timing, which corresponds to the current command. That is, speed control unit 101 corrects the current command.
  • the speed control unit 101 estimates the acceleration Ac at the driving timing.
  • the control timing is the drive timing. Therefore, in the acceleration estimation process in the rotor rotation state, the speed control unit 101 estimates the acceleration Ac at the driving timing.
  • the acceleration estimation unit 203 estimates the acceleration Ac based on the speed command Vref.
  • the process of estimating the acceleration Ac at the control timing will be explained as an example.
  • the acceleration estimating unit 203 differentiates the speed command Vref, which is expressed by a linear function, so that the acceleration Ac at the control timing is calculated. That is, speed control unit 101 estimates acceleration Ac by differentiating speed command Vref. This gives the acceleration Ac.
  • the inertia of the electric motor M1 is also called “motor inertia J".
  • the motor inertia J is the inertia of the rotor X1b.
  • Gain compensator 204 holds motor inertia J and torque constant Kt, which are known values.
  • the above torque Tb corresponds to the acceleration force Ap.
  • the gain compensator 204 multiplies the acceleration Ac by the motor inertia J to calculate the acceleration force Ap.
  • current value related to acceleration and for increasing the rotational speed responsiveness is also referred to as "current value Ifa” or "Ifa".
  • Current value Ifa is, for example, a current value related to acceleration Ac.
  • the gain compensator 204 calculates the current value Ifa at the control timing by substituting the calculated acceleration force Ap into the equation (4). That is, the gain compensator 204 divides the acceleration force Ap by the torque constant Kt to calculate the current value Ifa at the control timing.
  • the LPF 205 is provided to prevent problems caused by noise, excessive speed changes, and the like.
  • the LPF 205 is, for example, a primary filter. By passing a plurality of consecutive current values Ifa through the LPF 205, it is possible to prevent the occurrence of sudden changes in the current value Ifa. Therefore, the LPF 205 can prevent problems caused by noise, excessive speed changes, and the like. Further, the time constant of LPF 205 is set so that the frequency components of a plurality of continuous current values Ifa are equal to or less than a predetermined frequency, depending on the actual application.
  • the speed control unit 101 adds the current value Ifa at the control timing, which has passed through the LPF 205, to the current value Ip at the control timing, which corresponds to the current command.
  • the current value Ifa that has passed through the LPF 205 is the current value Ifa to which the LPF 205, which is a low-pass filter, has been applied. That is, speed control unit 101 corrects the current command based on current value Ifa to which LPF 205 is applied.
  • the current value Ifa to which the LPF 205 is applied is the current value in the case where the current value Ifa needs to be corrected in order to prevent a sudden change in any of the continuous current values Ifa, or the correction is unnecessary. is the current value in the case of The current value when the correction is necessary is the current value Ifa corrected based on the LPF 205 . The current value when the correction is unnecessary is the uncorrected current value Ifa.
  • the current value Ifa to which the LPF 205 is applied is a value calculated using the estimated acceleration Ac according to the above equation (4). That is, the current value Ifa is a value calculated based on the estimated acceleration Ac. Therefore, the speed control unit 101 corrects the current command based on the estimated acceleration Ac.
  • Speed control unit 101 By the speed control processing Aw and the speed control processing Ak described above, the current value Ifw and the current value Ifa are added to the current value Ip corresponding to the current command.
  • Speed control unit 101 generates a current value obtained by calculation of "current value Ip+current value Ifw+current value Ifa" as current command Iref.
  • the current command Iref is a command obtained by correcting the current value Ip corresponding to the current command based on the estimated wind resistance Wr and the estimated acceleration Ac. Further, the generated current command Iref is a command for suppressing a decrease in speed due to wind resistance Wr, improving the responsiveness of the electric motor, and the like.
  • the speed control unit 101 transmits to the current control unit 102 a current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command.
  • the current control unit 102, the estimation unit 106, the PWM control unit 103, and the three-phase inverter Iv1 perform the processing described above.
  • the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotational speed based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in speed control processing A in premise Pm1, speed control unit 101 controls electric motor M1 based on the corrected current command.
  • the control timing is changed each time the above processes of the speed control process A are repeated.
  • the period during which the above processes of the speed control process A are continuously performed includes the period during which the high-speed rotation situation occurs. During this period, the speed control unit 101 performs feedback control A and feedforward control A in a high-speed rotation state. As described above, the speed control process A in the premise Pm1 is performed.
  • the wind resistance Wr in the high-speed rotation condition is estimated by performing the wind resistance estimation process of the feedforward control A in the high-speed rotation condition.
  • the current value Ifw based on the wind resistance Wr in the high-speed rotation state is added to the current value Ip corresponding to the current command.
  • the state of the rotational speed of the rotor X1b in the speed control processing A of the present embodiment becomes the state of speed as the rotational speed indicated by the characteristic line L1 in FIG. 6(a).
  • the rotation speed which is the actual speed, substantially follows the rotation speed of the speed command Vref at each time as timing.
  • Configuration A is the configuration of the present embodiment.
  • FIG. 8 shows the characteristics of the q-axis current and the d-axis current as simulation results.
  • a characteristic line Lq1 in FIG. As described above, the characteristic line Lq0 indicates the q-axis current characteristic corresponding to the comparative configuration.
  • the configuration A outputs a large q-axis current at an earlier timing than the comparative configuration in which the feedforward control A is not performed.
  • a characteristic line Ld1 in FIG. 8(b) indicates the characteristic of the d-axis current corresponding to the configuration A.
  • the characteristic line Ld0 indicates the characteristic of the d-axis current corresponding to the comparative configuration.
  • FIG. 8B it can be seen that the configuration A outputs a large d-axis current at an earlier timing than the comparative configuration in which the feedforward control A is not performed.
  • FIG. 9 shows an example of test results.
  • FIG. 9B shows an example of test results for configuration A.
  • the horizontal axis indicates time.
  • a characteristic Li1 indicates the current characteristic of the configuration A.
  • a characteristic Lcs indicates a characteristic of the speed command Vref.
  • a characteristic Lc1 indicates the characteristic of the rotation speed of the rotor X1b in the configuration A. According to FIG. 9B, it can be seen that the rotation speed of the rotor X1b in the configuration A can follow the speed indicated by the speed command Vref. Moreover, it can be seen that almost no speed deviation occurs in the configuration A.
  • the speed control unit 101 controls the rotation of the electric motor M1 so that the rotation state of the rotor X1b at the drive timing at which the electric motor M1 is driven approaches the target rotation state.
  • a speed control process A for controlling is performed.
  • Speed control processing A includes feedback control A and feedforward control A.
  • the speed control unit 101 controls the electric motor M1 based on the estimated wind resistance Wr and the estimated acceleration Ac so that the rotation state of the rotor X1b at the drive timing approaches the target rotation state. is a process for controlling
  • feedforward control uses two parameters: wind resistance and acceleration. Therefore, feedforward control in controlling the electric motor can be performed with high accuracy.
  • feedback control A is performed to suppress abrupt changes in current due to disturbances, reduce speed deviation, and the like. Further, in the feedforward control A, the current command Iref used for speed control can be quickly obtained regardless of the actual speed of the rotor X1b. Therefore, it is possible to obtain an effect that the responsiveness of the electric motor can be improved.
  • feedforward control A and feedback control A are performed in parallel. Therefore, a two-degree-of-freedom control system combining feedforward control A and feedback control A is configured.
  • feedback control A and feedforward control A are performed in high-speed rotation conditions. Therefore, even in a high-speed rotation state, high responsiveness of the rotation speed of the rotor X1b can be realized. Therefore, it is possible to provide speed control capable of generating a speed Vs that accurately follows the speed command in high-speed rotation conditions. Further, in feedback control A, for example, a current value Ip corresponding to disturbance or the like is set. As described above, it is possible to suppress the occurrence of vibration in the electric motor M1. Also, the stability of the control of the electric motor M1 can be improved.
  • the speed Vs is estimated from the voltage command Vtref and the feedback current value (that is, the current supplied to the electric motor M1).
  • the speed Vs can be accurately estimated by improving the stability of the control of the electric motor M1 as described above.
  • the electric motor control device 100 that provides the effects described above is applied to, for example, a fan motor such as a ventilation fan, the operation of the fan motor can be speeded up, and the occurrence of insufficient air volume can be prevented. As a result, it is possible to reduce the size of the fan motor, increase the output of the fan motor, and the like.
  • the electric motor control device 100 when the electric motor control device 100 is applied to a winding machine, the winding machine can be controlled with high accuracy. Therefore, an armature with a high coil density can be used in the winding machine.
  • the gain of PI control is set to a large value in order to follow the speed command without deviation.
  • the PI control gain is set to an excessive value, there is a problem that the following problems occur in high-speed rotation conditions.
  • the defect is, for example, a defect that vibration occurs in the electric motor.
  • the problem is, for example, a problem that the overshoot of the speed response becomes large and the speed control becomes unstable.
  • the electric motor control device 100 of the present embodiment has a configuration for achieving the above effects. Therefore, the above problem can be solved by the electric motor control device 100 of the present embodiment.
  • the configuration of the present embodiment is a configuration in which the motor control device 100 is applied to a winding machine.
  • the winding machine of this embodiment is the winding machine M10 in FIG.
  • FIG. 11 is a perspective view showing the configuration of a winding machine M10 according to the second embodiment.
  • FIG. 12 is a block diagram showing the configuration of the control system of winding machine M10 according to the second embodiment.
  • configuration Cm1 the configuration in which the motor control device 100 is applied to the winding machine M10 is also referred to as "configuration Cm1".
  • the configuration of this embodiment is configuration Cm1.
  • FIG. 12 does not show the three-phase inverter Iv1 of FIG. 1 in order to simplify the configuration.
  • the controller 11 which is the electric motor control device 100 and will be described later, includes a three-phase inverter Iv1.
  • a winding machine M10 includes a frame 2, a wire bobbin 3, a tensioner 4, a peeling unit 5, a wire drawing unit 6, a spindle section 7, a cutting unit 8, an input conveying device 9, and an ejecting conveying device. 10 and controller 11 .
  • controller 11 is motor control device 100 . That is, the winding machine M10 includes a motor control device 100 . Winding machine M10 has the function of winding wire 24 around armature core 22 included in stator 20 of electric motor M1 in FIG.
  • stator 20 the configuration of the stator 20 will be described using FIG.
  • shape of the stator 20 in FIG. 3 is cylindrical.
  • Nine armatures 21 included in the stator 20 are arranged in a circle.
  • FIG. 4 shows the armature 21 as an armature 21a as an example.
  • the armature 21 as the armature 21a has an armature core 22 and an insulator .
  • the shape of the armature core 22 is elongated.
  • the shape of the armature core 22 on the XZ plane is substantially rectangular.
  • the cross-sectional shape of the armature core 22 along the XY plane is substantially T-shaped.
  • the armature core 22 is constructed by laminating a plurality of T-shaped magnetic steel sheets.
  • core lamination direction the direction in which the T-shaped magnetic steel sheets are laminated.
  • the core lamination direction of the armature core 22 in FIG. 4B is the Z-axis direction.
  • Insulators 23 are inserted into the armature core 22 from above and below in the core stacking direction of the armature core 22 . Thereby, the insulator 23 is attached to the armature core 22 .
  • a wire 24 is wound around the armature core 22 .
  • a wire 24 is wound around the insulator 23 of the armature core 22 .
  • the wire 24 is wound around the insulator 23 of the armature core 22" may be simply expressed as “the wire 24 is wound around the armature core 22".
  • the insulator 23 of the armature core 22 included in the armature 21a has a corner portion 26a shown in FIG.
  • the wire 24 has conductivity.
  • the wire 24 is, for example, a copper wire, an aluminum wire, or the like.
  • the surface of the wire 24 is covered with an insulating coating.
  • the wire 24 has a winding start portion and a winding end portion.
  • the winding start portion is a portion where winding of the wire 24 starts.
  • the winding end portion is a portion where the winding of the wire 24 ends.
  • a stripped portion 25a exists at each of the winding start portion and the winding end portion of the wire 24 in the armature 21a.
  • the stripped portion 25a is a portion from which the insulating coating is stripped.
  • each of the armatures 21b, 21c, 21d, 21e, 21f, 21g, 21h, and 21i is similar to that of the armature 21a.
  • the wire 24 wound around the insulator 23 of the armature 21b has a stripped portion 25b at the winding end.
  • the insulator 23 of the armature 21b has a corner portion 26b.
  • a stripped portion 25c exists at the winding end of the wire 24 wound around the insulator 23 of the armature 21c.
  • the insulator 23 of the armature 21c has a corner portion 26c.
  • the winding end portion of the wire 24 wound around the armature 21a is wound around the corner portion 26a of the insulator 23 of the armature 21a, and then wound around the adjacent armature 21b. is wound around the corner portion 26b of the insulator 23 of . Further, the winding end portion of the wire 24 is wound around the corner portion 26c of the insulator 23 of the armature 21c adjacent to the armature 21b.
  • the winding end portion of the wire 24 wound around the armature 21b is wound around the corner portion 26b of the insulator 23 of the armature 21b and then wound around the corner portion 26c of the insulator 23 of the adjacent armature 21c. be put on. Further, the winding end portion of the wire 24 wound around the armature 21c is wound around the corner portion 26c of the insulator 23 of the armature 21c.
  • Positioning is performed for each of the stripped portion 25a at the winding end portion of the armature 21a, the stripped portion 25b at the winding end portion of the armature 21b, and the stripped portion 25c at the winding end portion of the armature 21c, which is not shown. Terminals are attached. Also, the terminals attached to the peeled portions 25a, 25b, and 25c are joined by brazing.
  • the alignment of the stripped portion of the wire 24 is performed in the same manner as described above. , attachment of terminals, brazing of the terminals, and the like are performed.
  • each of the peeled portions 25a, 25b, and 25c is hereinafter also referred to as “the peeled portion 25".
  • the thickness of the armature core 22 in the core lamination direction is also referred to as “lamination thickness of the armature core 22" or “core lamination thickness”.
  • the tensioner 4, stripping unit 5, spindle section 7 and cutting unit 8 of the winding machine M10 are the main parts of the winding machine M10.
  • the tensioner 4 , stripping unit 5 , spindle section 7 and cutting unit 8 are mounted on the base 2 .
  • a wire bobbin 3 is installed outside the pedestal 2 .
  • the wire bobbin 3 is a component that supplies the wire 24 .
  • a wire 24 pulled out from the wire bobbin 3 passes through the tensioner 4 . Appropriate tension is applied to the wire 24 by the tensioner 4 .
  • a stripping unit 5 is installed adjacent to the tensioner 4 .
  • the wire 24 tensioned by the tensioner 4 passes through the stripping unit 5 .
  • a laser marker 51 is installed on the top of the peeling unit 5 .
  • the laser marker 51 has a function of emitting laser light.
  • the laser marker 51 has a function of exfoliating the insulating coating of the wire 24 by irradiating the insulating coating of the wire 24 with a laser beam.
  • the insulating coating of the wire 24 is peeled off by the laser marker 51 .
  • the position irradiated with the laser beam emitted by the laser marker 51 is also referred to as "irradiation position".
  • a wire drawing unit 6 is arranged on the exit side of the stripping unit 5 .
  • Wire drawing unit 6 includes pulley 61 and nozzle 62 .
  • the pulley 61 changes the traveling direction of the wire 24 by 90 degrees.
  • the wire 24 is then fed to the nozzle 62 .
  • the wire 24 that has passed through the nozzle 62 is supplied to the spindle section 7 .
  • wound around may be expressed as “wound around”.
  • to wind may be expressed as “to wind”.
  • process of winding the wire 24 around the armature core 22 as a member is also referred to as “winding process”.
  • the winding machine M10 has a function of performing winding processing using the spindle section 7.
  • the winding process is performed using wire 24 fed from nozzle 62 .
  • the wire 24 is wound around the armature core 22 by the winding process.
  • the spindle section 7 includes a servomotor 71 and an encoder 72 .
  • the servo motor 71 is the electric motor M1 of FIG. That is, the winding machine M10 includes an electric motor M1.
  • a servomotor 71, which is the electric motor M1 includes a rotor X1b.
  • the spindle part 7 further includes the chuck 75 of FIG.
  • the chuck 75 is a member for holding the armature core 22 . Further, the chuck 75 of the spindle section 7 rotates when the force of the servomotor 71 is transmitted to the chuck 75 .
  • the rotation speed of the chuck 75 is also referred to as "the rotation speed of the spindle section 7".
  • the rotation speed of the spindle part 7 is the rotation speed of the rotor X1b.
  • the rotation angle of the chuck 75 is also referred to as “the rotation angle of the spindle portion 7".
  • the rotation angle of the spindle portion 7 is the rotation angle of the rotor X1b.
  • the rotation speed and rotation angle of the spindle section 7 are precisely controlled by the output signal of the encoder 72 .
  • a cutting unit 8 is arranged near the spindle section 7 . After the wire 24 is wound around the armature core 22 by the spindle section 7 , the wire 24 is cut by the cutting unit 8 .
  • the state of the armature core 22 when the winding process is performed on the armature core 22 is also referred to as "winding state".
  • the armature core 22 in the wound state is the armature core 22 that has undergone winding processing by the spindle section 7 .
  • the input transport device 9 and the discharge transport device 10 are provided so that the spindle part 7 exists between the input transport device 9 and the discharge transport device 10 . Further, a transfer hand (not shown) is provided above the pedestal 2 .
  • the transport hand has a function of transporting the armature core 22 from the input transport device 9 to the spindle section 7 .
  • the transport hand also has a function of transporting the armature core 22 wound by the spindle unit 7 to the discharge transport device 10 .
  • a controller 11 is attached adjacent to the discharge transport device 10 .
  • Controller 11 includes control unit 111 , memory 112 , input unit 113 , and display unit 114 .
  • the control unit 111 is the control unit Ct1 of the electric motor control device 100.
  • FIG. A control unit 111 which is the control unit Ct1, controls a servomotor 71, which is the electric motor M1, via a three-phase inverter Iv1 (not shown).
  • the input unit 113 is an interface that can be operated by the operator.
  • the input unit 113 is, for example, a keyboard.
  • the operator inputs the operating conditions of the winding machine M10 to the input unit 113 .
  • the display unit 114 is a display.
  • the display unit 114 displays, for example, the operation status of the winding machine M10.
  • FIG. 13 is a diagram showing the configuration of the tensioner 4.
  • the traveling direction is changed by the guide rollers 41a, 41b, 41c and 41d.
  • the wire 24 passes through the eyelet guide 46 and is supplied to the stripping unit 5 .
  • a felt pad 47 is provided on the upstream side of the guide roller 41a. Wire 24 is cleaned by felt pad 47 .
  • An encoder 42 is connected to the guide roller 41b via a coupling (not shown).
  • the encoder 42 detects the number of rotations of the guide roller 41b.
  • the number of rotations of the guide roller 41b corresponds to the length of the wire 24 passing through the guide roller 41b. Therefore, the amount of movement of the wire 24 can be measured from the number of revolutions of the guide roller 41b detected by the encoder 42.
  • FIG. Data on the number of revolutions of the guide roller 41 b (hereinafter also referred to as “roller number of revolutions”) detected by the encoder 42 is notified to the controller 11 .
  • a pulley 43a is fixed to the guide roller 41c.
  • the pulley 43a is connected via a timing belt 44 to the pulley 43b.
  • the pulley 43 b is fixed to the shaft of the powder brake 45 . Appropriate tension is applied to the wire 24 by the powder brake 45 .
  • FIG. 14A and 14B are diagrams showing the configuration of the input conveying device 9.
  • the input conveying device 9 has a belt 91 that conveys the armature core 22 .
  • the input conveying device 9 is configured such that the belt 91 is movable.
  • Belt 91 is attached to rotating shaft 92 .
  • a motor 95 is attached to a motor mounting plate 94 supported by the base plate 93 .
  • a motor 95 is a motor that drives the belt 91 to move.
  • a pulley 96 is fixed to the rotating shaft 92 of the belt 91 .
  • a pulley 97 is fixed to the output shaft of the motor 95 .
  • Pulleys 96 and 97 are connected via a timing belt 98 .
  • a positioning plate 99 used for positioning the armature core 22 is attached to the downstream side of the belt 91 .
  • a length measuring sensor 12 is attached at a position facing the positioning plate 99 .
  • the area between the positioning plate 99 and the length measuring sensor 12 is also referred to as the "measurement area”.
  • the measurement area is an area for measuring the lamination thickness of the armature core 22 .
  • the measurement area faces the positioning plate 99 .
  • the length measurement sensor 12 has a function of measuring the lamination thickness of the armature core 22 (that is, the core lamination thickness).
  • the length measurement sensor 12 is, for example, a non-contact laser displacement meter. Note that the length measurement sensor 12 may be a contact-type displacement meter.
  • the contact-type displacement gauge is, for example, a sensor that detects the amount of movement of the rod of the cylinder using an MR element. Data of the lamination thickness of the armature core 22 measured by the length measuring sensor 12 is notified to the controller 11 .
  • controller 11 controls each component of winding machine M10.
  • the control unit 111 receives data on the lamination thickness of the armature core 22 from the length measurement sensor 12 . Further, the control unit 111 receives data regarding the number of revolutions from the encoder 42 of the tensioner 4 . Further, the control unit 111 receives data regarding the number of rotations and the rotation angle of the spindle unit 7 from the encoder 72 built in the spindle unit 7 .
  • the control unit 111 also outputs a control signal for the servomotor 71 of the spindle unit 7 , a control signal for the laser marker 51 , a control signal for the cutting unit 8 , and a control signal for the motor 95 of the input conveying device 9 .
  • the memory 112 of the controller 11 stores in advance data necessary for creating these control signals.
  • the control unit 111 adjusts the rotation speed and rotation angle of the spindle unit 7 by controlling the rotation of the servomotor 71 based on the output signal of the encoder 72 of the spindle unit 7 .
  • the transport and winding process of the armature core 22 will be described.
  • the state of the armature core 22 included in the armature 21 in which the wire 24 is not wound around the armature core 22 is also referred to as a "non-wound state".
  • the non-wound armature core 22 is, for example, the armature core 22 in which the wire 24 is not wound around the armature core 22 in FIG.
  • An insulator 23 is attached to the armature core 22 in a non-wound state.
  • the non-wound armature core 22 is the armature core 22 in which the wire 24 is not wound around the insulator 23 .
  • the armature core 22 in a non-wound state is placed on the belt 91 of the input conveying device 9 in FIG.
  • the motor 95 is rotated by the control signal from the control section 111, and the armature core 22 in the non-wound state is conveyed by the belt 91 in the direction indicated by the arrow.
  • the rotation of the motor 95 stops.
  • the length measurement sensor 12 measures the lamination thickness of the armature core 22 (that is, the core lamination thickness).
  • the layer thickness data output from the length measurement sensor 12 is notified to the control section 111 of the controller 11 .
  • the control unit 111 performs arithmetic processing according to the measured core lamination thickness. Detailed contents of the arithmetic processing will be described later.
  • the non-wound armature core 22 is transported to the spindle section 7 by a transport hand (not shown).
  • the non-wound armature core 22 is gripped by the chuck 75 of the spindle section 7 .
  • the state in which the armature core 22 is gripped by the chuck 75 is also referred to as a "gripped state.”
  • FIG. 2 shows the armature core 22 in a non-wound state in a gripped state.
  • the winding process is performed by the spindle portion 7 in the holding state.
  • the wire 24 supplied from the wire bobbin 3 is guided by the eyelet guide 40 of the tensioner 4 and passes through the felt pad 47 . Then, the wire 24 is guided by the guide rollers 41a, 41b, 41c, and 41d, and while being properly tensioned, passes through the tensioner 4 and moves to the stripping unit 5. As shown in FIG. 13 , the wire 24 supplied from the wire bobbin 3 is guided by the eyelet guide 40 of the tensioner 4 and passes through the felt pad 47 . Then, the wire 24 is guided by the guide rollers 41a, 41b, 41c, and 41d, and while being properly tensioned, passes through the tensioner 4 and moves to the stripping unit 5. As shown in FIG.
  • the traveling direction of the wire 24 that has passed through the stripping unit 5 is changed by the pulley 61 .
  • the wire 24 then passes through the nozzle 62 and is gripped by a terminal clip (not shown) on the spindle portion 7 .
  • the winding process is performed in the holding state.
  • the servomotor 71 rotates the rotor X1b and the chuck 75 so that the wire 24 is wound around the armature core 22 in the non-wound state.
  • the wire 24 is wound around the armature core 22 .
  • the cutting process is performed.
  • the cutting unit 8 cuts the wire 24 wound around the armature core 22 so that the stripped portion 25 at the winding end of the wire 24 remains.
  • the manufacture of the armature 21 is completed.
  • the armature 21 is transported to the discharge transport device 10 by a transport hand (not shown). Then, the armature 21 is ejected from the winding machine M10.
  • the position of the wire 24 for stripping the insulating coating of the wire 24 is also referred to as "film stripping position”.
  • the stripped portion 25 of the wire 24 is formed by irradiating the insulating coating of the wire 24 with a laser beam from the laser marker 51 provided on the upper portion of the stripping unit 5 and stripping the insulating coating.
  • the position of the peeled portion 25 is also referred to as the "peeled portion position".
  • the following problems occur when the end portion of the wire 24 is cut by the cutting unit 8.
  • the problem is, for example, the problem that the length of the peeled portion 25 is extremely short. Further, the problem is, for example, the problem that the peeled portion 25 is not formed.
  • the cause of the occurrence of the unbonded state is, for example, variations in the lamination thickness of the armature core 22 (that is, the core lamination thickness).
  • the reason why the non-bonding state occurs is that the difference between the speed indicated by the speed command and the actual speed increases when the rotational speed of the spindle unit 7 is high, and the position of the peeling portion deviates from the desired position. That is.
  • the following first processing method is used to suppress the occurrence of defects caused by variations in the lamination thickness of the armature core 22 .
  • the defect is, for example, the defect that the position of the peeled portion 25 is deviated from the desired position.
  • the length of the wire 24 required to wind the wire 24 around the armature core 22 in the non-wound state a predetermined number of times is also referred to as "predetermined winding wire length”.
  • the length of the wire 24 necessary for winding the wire 24 around the armature core 22 in the non-wound state by the predetermined number of times is referred to as the "planned winding wire length" or the “final winding wire length”. It is also called “winding length”.
  • the planned number of times is the number of windings required to manufacture the armature 21 .
  • the predetermined number of times corresponding to the predetermined winding wire length is the number of times different from the predetermined number of times or the same number of times as the predetermined number of times.
  • the following second processing method suppresses an increase in the difference between the speed indicated by the speed command and the actual speed when the rotational speed of the spindle unit 7 is high. do. Also, the occurrence of positional displacement of the delaminated portion of the wire caused by an increase in the difference between the speed indicated by the speed command and the actual speed is suppressed.
  • the length measurement sensor 12 measures the lamination thickness of the armature core 22 .
  • the expected winding wire length is calculated using the above-described arithmetic expression. Then, the length of the wire 24 of the armature core 22 that has undergone the winding process is measured, and the film peeling position of the wire 24 is determined based on the calculated planned winding wire length.
  • the first processing method will be specifically described below.
  • an arithmetic expression showing the lamination thickness of the armature core 22 as a variable, and a predetermined winding wire length or planned winding wire length corresponding to the armature core 22 Create an equation to calculate
  • the arithmetic expression is, for example, an expression using coefficients. If the predetermined number of turns corresponding to the predetermined wound wire length is the same as the predetermined number of turns corresponding to the predetermined wound wire length, then the predetermined wound wire length is the same as the scheduled wound wire length.
  • a provisional arithmetic expression is created by considering that the length of the wire required for one winding increases as the number of turns of the wire increases due to the layering of the wire. .
  • the coefficient of the arithmetic expression is obtained by collating the result of calculation by the temporary arithmetic expression with the result of the experiment using the temporary arithmetic expression. An arithmetic expression is thus created.
  • the data of the arithmetic expression are stored in advance in the memory 112 of the controller 11 .
  • the control unit 111 controls the measurement area where the armature core 22 conveyed by the belt 91 of the input conveying device 9 faces the positioning plate 99 . is reached, motor 95 is stopped.
  • the length measurement sensor 12 measures the lamination thickness of the armature core 22 and notifies the controller 111 of the lamination thickness data of the armature core 22 .
  • the control unit 111 reads the arithmetic expression from the memory 112, and calculates the expected winding wire length based on the arithmetic expression and the measured lamination thickness.
  • control unit 111 compares the length of the wire 24, which corresponds to the roller rotation speed detected by the encoder 42 of the tensioner 4, with the calculated expected winding wire length. Determine the film peel location at 24 .
  • the control unit 111 controls the movement of the wire 24 by adjusting the rotation speed and rotation angle of the servomotor 71 based on the output signal of the encoder 72 of the spindle unit 7. Then, as shown in FIG. 12, when the film peeling position of the wire 24 reaches the irradiation position of the laser beam emitted by the laser marker 51, the control unit 111 controls the moving speed of the wire 24 to be slowed down and performs the peeling process. to control and perform.
  • the laser marker 51 irradiates the insulating coating of the wire 24 with laser light under the control of the control unit 111 .
  • the insulating coating irradiated with the laser light is stripped from the wire 24 .
  • the final winding length which is the planned winding wire length corresponding to the lamination thickness of the armature core 22, is calculated using an arithmetic expression. Also, the film peeling position of the wire 24 is determined based on the calculated planned winding wire length.
  • the stripped portion of the wire 24 is always formed at a predetermined position at the winding end of the wire 24 without being affected by variations in the lamination thickness of the armature core 22 .
  • the planned winding wire length was calculated using the arithmetic expression stored in the memory, but it is not limited to this.
  • the planned winding wire length is measured, and the planned winding wire length is plotted on a graph. Then, create a characteristic line that approximates the values plotted on the graph.
  • the characteristic line is a line showing the relationship between the lamination thickness and the expected winding wire length.
  • a characteristic is, for example, a straight line or a curve.
  • the planned winding wire length may be calculated based on the characteristic line.
  • configuration of the second processing method in configuration Cm1 is also referred to as “configuration Cm1-2”.
  • controller 11 which is motor control device 100, includes control unit 111, which is control unit Ct1, and three-phase inverter Iv1.
  • the controller 11 in the configuration Cm1-2 is expressed as the motor control device 100. Further, in the following description, the servomotor 71 in the configuration Cm1-2 is expressed as the electric motor M1. Also, in the following description, the controller 111 in the configuration Cm1-2 is expressed as a controller Ct1.
  • the winding machine M10 has the function of performing winding processing.
  • the member for winding the wire 24 in the winding machine M10 is also referred to as a "winding work”.
  • the winding work is the armature core 22 in a non-wound state.
  • the inertia of the winding work is also referred to as “winding inertia Jw", “winding inertia” or "Jw”.
  • Winding machine M10 in configuration Cm1-2 has a configuration in which electric motor M1 rotates rotor X1b to wind wire 24 around a winding work as a member.
  • winding time T is the time elapsed for winding the wire 24 around the winding work as a member.
  • winding time T is also referred to as “winding time TN", “time TN” or “TN”.
  • N is an integer of 0 or more. In configuration Cm1-2, winding times T are T0, T1, T2, T3, and T4.
  • the winding weight is the weight of the wire 24 wound around the winding work.
  • the relationship between the winding inertia and the winding time T is used to estimate the actual winding inertia according to the winding time T to calculate the acceleration force. do.
  • FIG. 15 is a block diagram showing the configuration of the speed control section 101 included in the control section Ct1 in the configuration Cm1-2.
  • speed control unit 101 in configuration Cm1-2 differs from speed control unit 101 in FIG. 7 in that it further includes a T-Jw table Tb1.
  • winding speed is the rotational speed of the rotor X1b.
  • FIG. 16 is a diagram for explaining the T-Jw table Tb1.
  • FIG. 16(a) is a graph showing the relationship between winding time T and winding speed.
  • the vertical axis is the winding speed and the horizontal axis is the winding time T.
  • a period from T0 to T4 corresponds to one cycle.
  • the one cycle includes periods Pd1, Pd2, Pd3 and Pd4.
  • a period Pd1 is a preparation period for performing the winding process.
  • a period Pd2 is an acceleration period during which the winding speed increases.
  • a period Pd3 is a constant period during which the winding speed is constant.
  • a period Pd4 is a deceleration period during which the winding speed decreases.
  • FIG. 16(a) shows the characteristic line Lm.
  • a characteristic line Lm indicates the relationship between winding time T and winding speed.
  • a characteristic line Lm indicates a characteristic in a situation where the electric motor M1 is driven by a speed command Vref expressed by a linear function indicated by the characteristic line Ls of FIG. 6(a), for example.
  • a characteristic line Lm is a trapezoidal winding pattern.
  • winding weight MN the winding weight corresponding to the time TN as the winding time T is also referred to as “winding weight MN" or “MN".
  • N is an integer of 0 or more.
  • the winding weight is the weight of the wire 24 wound around the winding work. When the wire 24 is not wound around the winding work, the winding weight is zero.
  • M0, M1, M2, M3 and M4 are used as winding weights MN.
  • winding inertia Jw corresponding to the time TN as the winding time T is also referred to as “winding inertia JwN" or “JwN".
  • N is an integer of 0 or more.
  • Jw0, Jw1, Jw2, Jw3 and Jw4 are used as the winding inertia JwN.
  • the inertia increase rate is used.
  • the inertia increase rate is the increase rate of the winding inertia Jw.
  • the inertia increase rate corresponding to the time TN as the winding time T is also referred to as "inertia increase rate KN" or "KN".
  • KN is an integer of 0 or more.
  • K0, K1, K2 and K3 are used as the inertia increase rate KN.
  • FIG. 16(b) is a diagram showing an example of the T-Jw table Tb1.
  • time is the winding time T.
  • the winding weight, winding inertia, and inertia increase rate corresponding to the winding time T are shown in the T-Jw table Tb1.
  • Each value shown in the T-Jw table Tb1 is a value obtained from Experiment B conducted in advance.
  • the winding machine M10 is caused to perform the winding process.
  • a speed command Vref expressed by a linear function indicated by the characteristic line Ls in FIG. 6(a) is used.
  • the motor M1 is driven by the speed command Vref.
  • Winding time T includes T0, T1, T2, T3, and T4.
  • the winding weight MN and the winding inertia JwN corresponding to each of T0, T1, T2, T3 and T4 are measured.
  • the inertia increase rate KN corresponding to the periods Pd1, Pd2, Pd3, and Pd4 is obtained.
  • Periods Pd1, Pd2, Pd3 and Pd4 correspond to T0, T1, T2 and T3, respectively.
  • a T-Jw table Tb1 showing the winding weight MN, the winding inertia JwN and the inertia increase rate KN is created.
  • the T-Jw table Tb1 is a table showing the winding time T and the inertia of the winding work as a member at the winding time T (that is, the winding inertia Jw) in association with each other.
  • the inertia of the winding work as a member is the inertia corresponding to the winding weight of the wire 24 wound around the winding work as a member.
  • the T-Jw table Tb1 is also a table showing the winding time T and the inertia increase rate of the winding work as a member (that is, the inertia increase rate KN) in the winding time T in association with each other. .
  • the T-Jw table Tb1 is stored in advance in the control unit Ct1. That is, Jw0, Jw1, Jw2, Jw3, and Jw4 as winding inertias JwN corresponding to T0, T1, T2, T3, and T4 as winding times T are stored in the control unit Ct1 in advance.
  • K0, K1, K2, and K3 as inertia increase rates KN corresponding to T0, T1, T2, and T3 as winding times T are stored in the control unit Ct1 in advance.
  • K0 is the inertia increase rate corresponding to period Pd1.
  • K1 is the inertia increase rate corresponding to the period Pd2.
  • K2 is the inertia increase rate corresponding to period Pd3.
  • K3 is the inertia increase rate corresponding to period Pd4.
  • control unit Ct1 performs a winding time calculation process when the speed control process A is started.
  • the winding time calculation process is a process of calculating the winding time T as needed.
  • the winding time T corresponds to the elapsed time after the winding time calculation process is started. Therefore, the speed control section 101 of the control section Ct1 keeps track of the latest winding time T at all times.
  • the speed control unit 101 performs feedback control A and feedforward control A based on the speed command Vref.
  • Feedback control A in configuration Cm1-2 is performed in the same manner as feedback control A in the first embodiment. Thereby, the current value Ip corresponding to the current command is calculated.
  • Feedforward control A in configuration Cm1-2 can be summarized as follows: speed control unit 101 controls electric motor M1 based on estimated wind resistance Wr, estimated acceleration Ac, and estimated winding inertia Jw. It is a process to control.
  • speed control unit 101 performs wind resistance estimation processing, acceleration estimation processing, inertia estimation processing, speed control processing Aw, and speed control processing Ak.
  • wind resistance estimation process in configuration Cm1-2 is performed in the same manner as the wind resistance estimation process in the first embodiment.
  • Wind resistance Wr is estimated by the wind resistance estimation process.
  • the acceleration estimation process in configuration Cm1-2 is performed in the same manner as the acceleration estimation process in the first embodiment. Acceleration Ac is thereby estimated.
  • the speed control unit 101 uses the latest winding time T and the T-Jw table Tb1 to calculate the winding inertia Jw at the winding time T corresponding to the control timing.
  • the control timing is the drive timing.
  • the speed control unit 101 estimates the winding inertia Jw at the control timing as "Jw2" from the T-Jw table Tb1. .
  • the winding inertia Jw of the winding time T other than T0, T1, T2, T3, and T4 is calculated from the following equation (5).
  • T in equation (5) is the winding time T.
  • N in “JwN”, “KN” and “TN” in formula (5) is an integer in the range of 1-4.
  • Inertia increase rate KN in equation (5) is set to an inertia increase rate corresponding to each of periods Pd2, Pd3, and Pd4. For example, when the winding time T is included in the period Pd2, the inertia increase rate K1 corresponding to the period Pd2 is set for "KN" in Equation (5).
  • the winding inertia Jw of the winding time T other than T0, T1, T2, T3, and T4 may be calculated from the following equation (6).
  • J(T) in formula (6) is an approximation formula for calculating the inertia more accurately.
  • Approximation formula J(T) is, for example, a formula showing the relationship between the passage of time and the increase in inertia.
  • the approximation J(T) may be obtained, for example, from CAD data capable of deriving the relationship between the passage of time and the increase in inertia.
  • the approximate expression J(T) is a quadratic function of the winding time T or a cubic function of the winding time T.
  • the winding inertia Jw may be estimated using a table showing the winding inertia Jw corresponding to all winding times T in the period from T0 to T4.
  • the motor inertia J which is the inertia of the motor M1 is also referred to as “motor inertia Jm” or “Jm”.
  • a motor inertia Jm is an inertia unique to the electric motor M1.
  • Motor inertia Jm is a fixed value.
  • the inertia considering the winding process is also referred to as “total inertia Jg" or "Jg”.
  • Motor inertia Jm and torque constant Kt are known values.
  • Gain compensator 204 holds motor inertia Jm and torque constant Kt in advance.
  • the gain compensation section 204 calculates the total inertia Jg from the following equation (7).
  • the gain compensation unit 204 calculates the total inertia Jg by adding the estimated winding inertia Jw to the motor inertia Jm.
  • the gain compensation section 204 of the speed control section 101 calculates the acceleration force Ap by multiplying the estimated acceleration Ac by the total inertia Jg.
  • the total inertia Jg is the inertia calculated based on the estimated winding inertia Jw. That is, the speed control unit 101 calculates the acceleration force Ap of the rotor X1b based on the estimated winding inertia Jw.
  • speed control processing Aw in configuration Cm1-2 is performed in the same manner as in the first embodiment.
  • the speed control unit 101 adds the calculated current value Ifw to the current value Ip at the control timing, which corresponds to the current command.
  • the speed control processing Ak in the configuration Cm1-2 is performed.
  • the speed control processing Ak in configuration Cm1-2 is performed in the same manner as the speed control processing Ak of the first embodiment.
  • the speed control unit 101 adds the current value Ifa at the control timing, which has passed through the LPF 205, to the current value Ip at the control timing, which corresponds to the current command. That is, the speed control unit 101 corrects the current command based on the current value Ifa.
  • the current value Ifa is a value calculated based on the calculated acceleration force Ap. Therefore, the speed control unit 101 corrects the current command based on the calculated acceleration force Ap.
  • the speed control unit 101 generates a current value obtained by calculating "current value Ip+current value Ifw+current value Ifa" as the current command Iref.
  • the speed control unit 101 transmits to the current control unit 102 a current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command.
  • current control unit 102, estimation unit 106, PWM control unit 103, and three-phase inverter Iv1 perform the above-described processing, as in the first embodiment.
  • the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotational speed based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in speed control processing A in configuration Cm1-2, speed control unit 101 controls electric motor M1 based on the corrected current command.
  • the control timing is changed each time the above processes of the speed control process A are repeated.
  • the speed control process A in the configuration Cm1-2 is performed.
  • tensioner 4 of the winding machine M10 always applies a constant tension to the wire 24 in order to prevent the winding of the wire 24 from being disturbed.
  • the tension applied to the wire 24 by the tensioner 4 is hereinafter also referred to as "tension F” or "F".
  • a tension F is a tension applied to the wire 24 .
  • the magnitude of the tension F changes depending on, for example, the shape of the wire 24, the shape of the winding work, and the like.
  • Configuration Cm1-2 is a configuration that uses current value Ite based on tension F.
  • FIG. The current value Ite is a value for feedforward compensation.
  • the speed control process A in the configuration Cm1-2A differs from the speed control process A in the configuration Cm1-2 only in that the current value Ite is added to the current value Ip corresponding to the current command.
  • Other processes of speed control processing A in configuration Cm1-2A are the same as speed control processing A in configuration Cm1-2.
  • the tension F is measured in advance by experiments, and the tension F is stored in the speed control unit 101 in advance.
  • the turning radius R is the turning radius of the winding composed of the wire 24 wound around the winding work.
  • the turning radius R changes according to the winding time T. Therefore, the speed control unit 101 holds a table Tbr showing the winding time T and the rotation radius R corresponding to the winding time T in association with each other.
  • the table Tbr is created by experiments.
  • the speed control unit 101 In order to calculate the motor torque Tm, the speed control unit 101 first uses the table Tbr to determine the rotation radius R corresponding to the latest winding time T calculated by the winding time calculation process described above. identify. Then, the speed control unit 101 multiplies the tension F by the specified rotation radius R to calculate the motor torque Tm.
  • Kt is the torque constant of the electric motor M1.
  • Kt is a known value. Specifically, the speed control unit 101 calculates the current value Ite by dividing the calculated motor torque Tm by the torque constant Kt.
  • the speed control unit 101 adds the current value Ite at the control timing to the current value Ip at the control timing, which corresponds to the current command. That is, the speed control unit 101 corrects the current command based on the current value Ite.
  • the current value Ite is a value calculated based on the tension F. Therefore, the speed control unit 101 corrects the current command based on the tension F applied to the wire 24 .
  • the speed control unit 101 generates a current value obtained by calculating "current value Ip+current value Ifw+current value Ifa+current value Ite" as the current command Iref.
  • the current control unit 102, the estimation unit 106, the PWM control unit 103, and the three-phase inverter Iv1 perform the above-described processing.
  • the electric motor M1 is controlled based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in speed control processing A in configuration Cm1-2A, speed control unit 101 controls electric motor M1 based on the corrected current command.
  • the present embodiment it is possible to suppress the displacement of the peeled portion position in a situation where the lamination thickness of the armature core 22 varies, a situation where the winding speed is high, or the like. can be done. Variation in lamination thickness occurs, for example, due to lot differences. Also, by suppressing the occurrence of displacement of the peeled portion position, the peeled portion 25 of the wire 24 can always be formed at a predetermined position at the winding end portion.
  • the winding machine M10 determines the position of the coil made up of the wire 24 while the winding process is being performed. Therefore, it is necessary to drive the nozzle 62 according to the rotation angle of the spindle portion 7 . If the position of the coil is properly controlled, the wire 24 can be precisely placed. In other words, the wire 24 can be wound in a limited space at high density, and the miniaturization of the electric motor M1, the high efficiency of the electric motor M1, the high output of the electric motor M1, and the like can be realized.
  • the difference between the speed indicated by the speed command and the actual speed can be made very small. Therefore, it is possible to set the driving timing of the nozzles 62 to the intended timing. Thereby, the wire 24 can be wound with high density in a limited space. Therefore, miniaturization of the electric motor M1, high efficiency of the electric motor M1, high output of the electric motor M1, and the like can be realized.
  • Modified configuration A In the configurations Cm1-2 and Cm1-2A described above, the current value Ifa is calculated from the acceleration estimated from the speed command Vref, but the present invention is not limited to this.
  • Modified configuration A is a configuration in which acceleration is estimated based on a winding pattern, which is a drive pattern of a winding machine, and current value Ifa is calculated based on the acceleration.
  • the winding pattern is, for example, a waveform indicated by the characteristic line Lm in FIG. 16(a).
  • a winding speed waveform is a speed pattern.
  • the winding speed waveform is, for example, the waveform indicated by the characteristic line Lm in FIG. 16(a).
  • a winding speed waveform, which is a speed pattern is obtained through experiments. Specifically, in the experiment, a winding speed waveform, which is a speed pattern, is obtained by actually driving the winding machine M10.
  • Modified configuration A is a configuration in which the winding pattern control configuration is applied to configuration Cm1-2.
  • the modified configuration A differs from configuration Cm1-2 only in the configuration of the speed control unit 101 .
  • Other configurations of modified configuration A are similar to configuration Cm1-2.
  • the winding machine M10 comprises a motor control device 100 (ie a controller 11).
  • the configuration of the speed control unit 101 in the modified configuration A is a configuration obtained by modifying the configuration of the speed control unit 101 shown in FIG.
  • FIG. 17 is a block diagram showing the configuration of the speed control unit 101 in the modified configuration A.
  • speed control unit 101 in modified configuration A differs from speed control unit 101 in FIG. 15 in configuration Cm1-2 in that the configuration for calculating current value Ifa is different. The difference is that there is no configuration for using Ite.
  • the acceleration pattern is stored in advance in the controller Ct1.
  • the acceleration pattern is, for example, a waveform of acceleration obtained by differentiating a winding speed waveform, which is a speed pattern, indicated by the characteristic line Lm in FIG. 16(a).
  • a winding speed waveform, which is a speed pattern was obtained by the above-described experiment.
  • the acceleration pattern is obtained by previously performing a calculation of differentiating the winding speed waveform, which is the speed pattern.
  • the obtained acceleration pattern is stored in advance in the controller Ct1.
  • the acceleration pattern is also called “acceleration waveform”.
  • the acceleration waveform, which is the acceleration pattern corresponds to changes in the rotational acceleration of the rotor X1b over time. That is, the acceleration waveform, which is the acceleration pattern, corresponds to the driving pattern of the electric motor M1. That is, the acceleration waveform, which is the acceleration pattern, corresponds to the drive pattern of the winding machine M10.
  • acceleration command is also referred to as “acceleration command Aref” or “Aref”.
  • Acceleration command Aref indicates acceleration Ac.
  • graph Gf the graph in which the horizontal axis indicates time and the vertical axis indicates the acceleration command Aref is also referred to as "graph Gf”.
  • the acceleration waveform, which is the acceleration pattern, is the waveform shown in the graph Gf.
  • the acceleration waveform which is the acceleration pattern, indicates time in association with the acceleration command Aref.
  • the value of the acceleration command Aref indicated by the acceleration waveform may vary with time.
  • the control unit Ct1 performs the above-described winding time calculation process.
  • the speed control unit 101 of the control unit Ct1 always grasps the latest winding time T by performing the winding time calculation process.
  • the winding time T corresponds to the operating time of the winding machine M10.
  • the speed control unit 101 performs feedback control A and feedforward control A based on the speed command Vref.
  • Feedback control A in modified configuration A is performed in the same manner as feedback control A in the first embodiment. Thereby, the current value Ip corresponding to the current command is calculated.
  • speed control unit 101 performs wind resistance estimation processing, acceleration estimation processing A, speed control processing Aw, and speed control processing Ak.
  • wind resistance estimation processing in modified configuration A is performed in the same manner as the wind resistance estimation processing in the first embodiment.
  • Wind resistance Wr is estimated by the wind resistance estimation process.
  • the current value Ifw at the control timing is calculated using the estimated wind resistance Wr.
  • the speed control unit 101 adds the calculated current value Ifw to the current value Ip at the control timing, which corresponds to the current command. That is, speed control unit 101 corrects the current command.
  • the speed control unit 101 estimates the acceleration Ac at the control timing based on the acceleration pattern, which is the drive pattern of the electric motor M1. In the rotor rotation situation, the control timing is the drive timing.
  • the speed control unit 101 uses the latest winding time T and the acceleration waveform, which is the acceleration pattern, to identify the acceleration command Aref. Specifically, the speed control unit 101 specifies the acceleration command Aref at the control timing, which is associated with the winding time T as time in the acceleration waveform, which is the acceleration pattern. That is, the speed control unit 101 estimates the acceleration command Aref as the acceleration Ac.
  • Gain compensator 204 holds motor inertia J and torque constant Kt. The values of the motor inertia J and the torque constant Kt are known values.
  • speed control processing Ak is performed.
  • the speed control unit 101 adds the current value Ifa at the control timing, which has passed through the LPF 205, to the current value Ip at the control timing, which corresponds to the current command. That is, the speed control unit 101 corrects the current command based on the current value Ifa.
  • the current value Ifa is a value calculated based on the estimated acceleration command Aref. Therefore, the speed control unit 101 corrects the current command based on the estimated acceleration command Aref.
  • the speed control unit 101 generates a current value obtained by calculating "current value Ip+current value Ifw+current value Ifa" as the current command Iref.
  • the current control unit 102, the estimation unit 106, the PWM control unit 103, and the three-phase inverter Iv1 perform the above-described processing.
  • the electric motor M1 is controlled based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in the speed control process A in the modified configuration A, the speed control unit 101 controls the electric motor M1 based on the corrected current command.
  • the acceleration command Aref may be set so that the acceleration command Aref does not change abruptly with the passage of time.
  • the LPF 205 may not be provided. Thereby, the processing time for calculating the current value Ifa can be shortened by software.
  • FIG. 18 is a block diagram showing a characteristic functional configuration of the motor control device 100. As shown in FIG. In other words, FIG. 18 is a block diagram showing main functions related to the present technology among the functions of the electric motor control device 100. As shown in FIG. In FIG. 18, the electric motor M1 is shown for explanation.
  • the electric motor control device 100 controls the electric motor M1 that rotates the rotor.
  • the motor control device 100 functionally includes a speed control section 101 .
  • a speed control unit 101 controls the electric motor M1.
  • the speed control unit 101 performs speed control processing for controlling the electric motor M1 so that the rotation state of the rotor at the drive timing when the electric motor M1 is driven approaches the target rotation state, which is the target rotation state.
  • Speed control processing includes feedback control and feedforward control.
  • Feedback control is a process in which the speed control unit 101 controls the electric motor M1 based on control parameters for controlling the rotation state of the rotor of the electric motor M1.
  • the speed control unit 101 performs wind resistance estimation processing and acceleration estimation processing.
  • the speed control unit 101 estimates the wind resistance accompanying the rotation of the rotor at the drive timing.
  • the speed control unit 101 estimates the rotational acceleration of the rotor at the drive timing.
  • Feedforward control is a process in which the speed control unit 101 controls the electric motor M1 based on the estimated wind resistance and the estimated acceleration so that the rotational state of the rotor at the drive timing approaches the target rotational state. is.
  • FIGS. 19 and 20 are diagram showing an example of the hardware configuration of electric motor control device 100.
  • Functions of main components related to the present technology included in the electric motor control device 100 shown in FIG. 1 are realized by, for example, a processing circuit 80 shown in FIG. That is, the electric motor control device 100 includes the processing circuit 80 as a main component related to the present technology.
  • the processing circuit 80 performs speed control processing.
  • Speed control processing includes feedback control and feedforward control.
  • the processing circuit 80 estimates the wind resistance accompanying the rotation of the rotor at the drive timing.
  • the processing circuit 80 estimates the rotational acceleration of the rotor at the drive timing.
  • Feedforward control is a process in which the processing circuit 80 controls the electric motor M1 based on the estimated wind resistance and the estimated acceleration so that the rotational state of the rotor at the drive timing approaches the target rotational state. be.
  • the processing circuit 80 may be dedicated hardware. Moreover, the processing circuit 80 may be configured using a processor that executes a program stored in a memory.
  • the processor is, for example, a CPU (Central Processing Unit), a central processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • situation St1 the situation in which the processing circuit 80 is dedicated hardware is also referred to as "situation St1". Further, hereinafter, a situation in which the processing circuit 80 is configured using a processor is also referred to as "situation St2".
  • the processing circuit 80 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or any of these A combination is applicable.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FIG. 20 is a diagram showing an example of the hardware configuration of the motor control device 100 in the situation St2 in which the processing circuit 80 is configured using a processor.
  • the configuration of FIG. 20 is a configuration in which the processing circuit 80 of FIG. 19 is realized by a processor 81 and a memory 82.
  • the function of the speed control unit 101 is implemented by software A.
  • Software A is software or firmware. Also, the software A may be composed of a combination of software and firmware.
  • Software A is written as a program and stored in memory 82 .
  • the processor 81 reads out the program stored in the memory 82 and executes the program, thereby realizing the function of the speed control unit 101 . That is, the memory 82 stores the following programs.
  • This program is a program for causing the processor 81 to execute the speed control process.
  • Speed control processing includes feedback control and feedforward control.
  • Feedforward control is a process of controlling the electric motor M1 based on the estimated wind resistance and the estimated acceleration so that the rotation state of the rotor at the drive timing approaches the target rotation state.
  • the program also causes the computer to execute the processing performed by the speed control unit 101, the method of executing the processing, and the like.
  • the memory 82 is a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM, EEPROM, or the like. Also, the memory 82 is, for example, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like. Also, the memory 82 may be any storage medium that will be used in the future.
  • the motor control device 100 can realize each function described above by means of hardware or software A.
  • the present technology may be implemented as a motor control method in which operations of characteristic components included in the motor control device 100 are performed as steps.
  • the present technology may be implemented as a program that causes a computer to execute each step included in such a motor control method.
  • the present technology may be implemented as a computer-readable recording medium that stores such a program.
  • the program may be distributed via a transmission medium such as the Internet.
  • the motor control device 100 shown in FIG. 1 is configured to estimate the position Pd based on the current values If1 and If2, which are feedback current values, and the voltage command Vtref, but the configuration is not limited to this.
  • a configuration (hereinafter also referred to as “configuration Cn1”) that uses the electric motor M1 provided with a sensor for detecting the position Pd may be employed.
  • the sensor is, for example, a Hall IC.
  • the velocity Vs is calculated based on the position Pd detected by the sensor.
  • Feedback control A in configuration Cn1 is control in which the calculated speed Vs is used instead of the estimated speed Vs.
  • current control unit 102 generates voltage command Vtref based on current command Iref, position Pd detected by the sensor, and current values If1 and If2, which are feedback current values.
  • a configuration may be adopted in which a sensor that detects the speed Vs is provided.
  • feedback control A is performed using the detected speed Vs.
  • the speed control unit 101 may be configured without the LPF 205 .
  • the speed control unit 101 in FIG. 7 may be configured without the LPF 205 .
  • the current value Ifa calculated by the gain compensator 204 is added to the current value Ip corresponding to the current command.
  • the configuration is such that the laser marker 51 is used as a means for peeling off the insulating coating, but the present invention is not limited to this.
  • a means for peeling off the insulating coating a configuration may be adopted in which another peeling means different from the laser marker 51 is used. The same effect as the configuration using the laser marker 51 can be obtained in the configuration using the other peeling means.
  • the configuration using the laser marker 51 as a means for stripping the insulating coating has the following effects, it is desirable to apply the configuration using the laser marker 51 to the winding machine M10.
  • the laser marker 51 is fixed and the insulating coating is stripped by laser light while the wire 24 is moved. Therefore, it is not necessary to move the peeling unit 5 using a ball screw, a motor, or the like. As a result, the winding machine can be downsized, and the winding machine can be manufactured at low cost.
  • variables a, b, and c of the above-described formulas (1) and (2) are specified by the above-described experiment A, but the present invention is not limited to this.
  • the variables a, b, c may be specified by controlling the speed of motor M1.
  • configuration Cn2 the configuration that specifies variables a, b, and c by controlling the speed of electric motor M1 is also referred to as “configuration Cn2.”
  • measurement also includes the meaning of "identification.” For example, “measuring a current” also includes “identifying a current”.
  • variable identification control processing for identifying variables a, b, and c is performed.
  • variable identification control processing using the ventilation fan F10 shown in FIG. 21 will be described. Note that the variable identification control process may be performed using the aforementioned winding machine M10 including the electric motor M1.
  • FIG. 21 is a diagram showing the configuration of the ventilation fan F10.
  • the upper half of the ventilation fan F10 shown in FIG. 21 shows the appearance of the ventilation fan F10.
  • the lower half of the ventilation fan F10 shown in FIG. 21 shows the internal configuration of the ventilation fan F10.
  • the ventilation fan F10 includes an electric motor M1, an impeller f2, and a grill part f3.
  • the electric motor M1 of the ventilation fan F10 is the electric motor M1 in FIG.
  • the electric motor M1 of the ventilation fan F10 is controlled by the electric motor control device 100 of FIG.
  • the electric motor M1 of the ventilation fan F10 includes the rotating member X1 of FIG.
  • the rotating member X1 includes a shaft X1a and a rotor X1b.
  • An impeller f2 is connected to the shaft X1a of the electric motor M1 of the ventilation fan F10. That is, the impeller f2 is connected to the end of the rotating member X1.
  • the impeller f2 rotates as the rotating member X1 (that is, the rotor X1b) rotates.
  • the rotation of the rotating member X1 causes the impeller f2 to rotate.
  • the grill portion f3 is provided so as to cover the impeller f2.
  • FIG. 22 is a flowchart of variable identification control processing.
  • the wind resistance estimator 202 is disabled (step S110). Specifically, control by the speed control unit 101 is performed so that the operation of the wind resistance estimation unit 202 is stopped.
  • step S120 motor current measurement processing is performed (step S120).
  • the motor drive process and the current measurement process are performed in parallel.
  • multiple speeds are used to drive the motor M1.
  • the multiple speeds used in the motor drive processing are explained as three speeds as an example. Note that the multiple speeds used in the motor drive process are not limited to three speeds, and may be four or more speeds.
  • each of the speed Vt1, the speed Vt2, and the speed Vt3 is hereinafter also referred to as a "target speed”.
  • the speed Vt1 is also referred to as “low speed” or “Vt1”.
  • the speed Vt2 is also referred to as “medium speed” or “Vt2”.
  • the speed Vt3 is hereinafter also referred to as “high speed” or "Vt3”.
  • Each of the target speeds Vt1, Vt2, and Vt3 is a predetermined speed.
  • Velocity Vt1, velocity Vt2 and velocity Vt3 are velocities that satisfy the relational expression "Vt1 ⁇ Vt2 ⁇ Vt3".
  • velocity Vt1, velocity Vt2 and velocity Vt3 are respectively "low speed”, “medium speed” and “high speed” in FIG.
  • the "high" speed Vt3 corresponds to the above-described high speed.
  • the control unit Ct1 performs control to drive the motor M1 so that the speed of the motor M1 becomes the target speed.
  • the speed of the electric motor M1 is the rotational speed of the rotor X1b. Since the wind resistance estimator 202 is disabled, the control of the speed of the electric motor M1 is performed using the PI controller 201 in the same manner as the feedback control A in the comparative configuration described above.
  • the electric motor control device 100 measures the driving current of the electric motor M1. Specifically, in a situation where the rotational speed of the rotor X1b is the target speed, in the current measurement process, the motor control device 100 measures the drive current of the motor M1 for a certain period of time using the current measurement method A. That is, the measurement of the drive current of the electric motor M1 by the current measurement method A is performed over a certain period of time.
  • Current measurement method A is a method of measuring the drive current of electric motor M1, which is a brushless motor. Since the current measurement method A is a known method, detailed description thereof will be omitted.
  • the drive current of the electric motor M1 is measured by the control unit Ct1 of the electric motor control device 100 based on the current values If1 and If2 obtained by the current detection units Dt1 and Dt2.
  • a current value If1 is a U-phase current value.
  • the current value If2 is the current value of the W phase.
  • the V-phase current value is specified from the U-phase current value and the W-phase current value.
  • Control unit Ct1 measures the drive current of electric motor M1 based on part or all of the U-phase current value, the W-phase current value, and the V-phase current value.
  • the current measured when the rotational speed of the rotor X1b is the target speed is also referred to as "measured current".
  • the measured current is a current value.
  • the measured current is the average value of the driving current of the electric motor M1 measured over a certain period of time. In the current measurement process of the motor current measurement process, the measured current is measured. The measured current is measured by the controller Ct1.
  • the measured current does not have to be the average value of the driving current of the electric motor M1 measured over a certain period of time.
  • the measured current may be, for example, the driving current of the electric motor M1 measured at a specific timing.
  • the current measurement process of the motor current measurement process is performed in a situation where the target speed is one of speed Vt1, speed Vt2, and speed Vt3.
  • the measured current measured in the situation where the speed of interest is the speed Vt1 is also referred to as "current I1" or “I1”.
  • the measured current measured when the target speed is the speed Vt2 is also referred to as “current I2" or “I2”.
  • the measured current measured when the target speed is the speed Vt3 is also referred to as "current I3" or "I3”.
  • Each of currents I1, I2, and I3 is a drive current for electric motor M1.
  • each of the currents I1, I2, and I3 is a current value.
  • a motor current measurement process using speed Vt1, speed Vt2, and speed Vt3 as target speeds will be described below. Since the contents of the current measurement process of the motor current measurement process have been described above, the current measurement process will be briefly described.
  • the control unit Ct1 performs control to drive the electric motor M1 so that the speed of the electric motor M1 becomes the speed Vt1.
  • the control unit Ct1 of the motor control device 100 measures the current I1 as the measured current in the situation where the rotation speed of the rotor X1b is the speed Vt1.
  • the current I1 is stored in the internal memory of the controller Ct1.
  • the control unit Ct1 performs control to drive the motor M1 so that the speed of the motor M1 becomes the speed Vt2.
  • the control unit Ct1 of the motor control device 100 measures the current I2 as the measurement current in the situation where the rotation speed of the rotor X1b is the speed Vt2.
  • the current I2 is stored in the internal memory of the controller Ct1.
  • the control unit Ct1 performs control to drive the motor M1 so that the speed of the motor M1 becomes the speed Vt3.
  • the control unit Ct1 of the motor control device 100 measures the current I3 as the measured current in a situation where the rotation speed of the rotor X1b is the speed Vt3.
  • the current I3 is stored in the internal memory of the controller Ct1.
  • the measured currents I1, I2, I3 correspond to the velocities Vt1, Vt2, Vt3, respectively.
  • variable identification processing is performed (step S130).
  • the variables a, b, and c of the formulas (1) and (2) are specified.
  • the currents I1, I2, and I3 measured by the current measurement process are plotted on a graph as shown in FIG. Plotting of the currents I1, I2 and I3 on the graph is performed by the controller Ct1.
  • control unit Ct1 generates a characteristic line Lci that approximates the currents I1, I2, and I3 plotted on the graph.
  • the characteristic line Lci is a characteristic line expressing the quadratic function of Equation (1).
  • Control unit Ct1 specifies variables a, b, and c based on a quadratic function expressing characteristic line Lci.
  • the specified variables a, b, and c are stored in the internal memory of the control unit Ct1 of the motor control device 100 (step S140).
  • variable identification control process ends. Along with this, the invalidation of the wind resistance estimator 202 is cancelled. As a result, the motor control device 100 performs normal operation. Motor M1 is then controlled as usual.
  • the wind resistance estimation unit 202 of the speed control unit 101 substitutes the speed at the control timing indicated by the speed command Vref for "Vs" in equation (2).
  • the wind resistance estimator 202 also substitutes the specified variables a, b, and c into equation (2).
  • the wind resistance estimator 202 calculates the wind resistance Wr corresponding to the torque Ta based on the variables a, b, and c. That is, the wind resistance estimator 202 estimates the wind resistance Wr at the control timing based on the variables a, b, and c.
  • the variables a, b, and c are specified based on the measured drive currents I1, I2, and I3. That is, in the wind resistance estimation process in the configuration Cn2, the speed control unit 101 estimates the wind resistance Wr at the drive timing based on the measured drive current.
  • variable identification control process using the ventilation fan F10 has been described above, but as described above, the variable identification control process may be performed using the winding machine M10 including the electric motor M1.

Abstract

In the present invention, a speed controller 101 performs speed control processing A to control an electric motor M1 such that a rotational state of a rotor X1b, at a driving timing at which the electric motor M1 performs driving, approaches a target which is a target rotational state. The speed control processing A includes feedback control A and feedforward control A. The feed-forward control A is processing in which the speed controller 101 controls the electric motor M1, on the basis of an estimated wind resistance Wr and an estimated acceleration Ac, such that the rotational state of the rotor X1b at the driving timing approaches the target rotational state.

Description

電動機制御装置および巻線機Motor controller and winding machine
 本開示は、回転子を回転させる電動機を制御する電動機制御装置および巻線機に関する。 The present disclosure relates to a motor control device and a winding machine that control a motor that rotates a rotor.
 巻線機において、電動機が回転させる回転子の回転数(以下、「電動機回転数」ともいう)が高速化しつつある。電動機回転数は、単位時間における、回転子の回転数である。従来の巻線機の電動機回転数は、10krpm以下であった。電動機回転数が高速化されている近年の巻線機(以下、「高速巻線機」ともいう)の電動機回転数の範囲は、0krpm~80krpmの範囲となっている。すなわち、高速巻線機は、広い速度域を有する。 In winding machines, the rotation speed of the rotor rotated by the electric motor (hereinafter also referred to as "motor rotation speed") is increasing. The number of rotations of the motor is the number of rotations of the rotor per unit time. The motor speed of the conventional winding machine was 10 krpm or less. 2. Description of the Related Art The range of motor rotation speeds of recent winding machines (hereinafter also referred to as “high-speed winding machines”) in which the motor rotation speed has been increased is in the range of 0 krpm to 80 krpm. That is, the high-speed winding machine has a wide speed range.
 高速巻線機では、従来の巻線機と比較して、電動機回転数の高速化により、旋回軸の数を抑制でき、設備コストを大幅に低減できる。  Compared to conventional winding machines, high-speed winding machines can reduce the number of rotating shafts by increasing the number of rotations of the electric motor, which can significantly reduce equipment costs.
 従来の、電動機の速度制御では、回転子の回転速度制御として、主に、PI制御等のフィードバック制御が使用されている。PI制御の「P」は、「比例」を示す。PI制御の「I」は、「積分」を示す。 In conventional motor speed control, feedback control such as PI control is mainly used as rotor rotation speed control. "P" in PI control indicates "proportional". The "I" in PI control stands for "integral".
 PI制御では、電動機の実際の速度である実速度を検出または推定し、当該実速度が、速度指令が示す速度と比較される。実速度と速度指令が示す速度との差分が、フィードバックされる。PI制御では、当該差分に基づいて、電動機を駆動させるための電流が算出される。以下においては、電動機を、「モーター」ともいう。 In PI control, the actual speed, which is the actual speed of the electric motor, is detected or estimated, and the actual speed is compared with the speed indicated by the speed command. A difference between the actual speed and the speed indicated by the speed command is fed back. In PI control, a current for driving the electric motor is calculated based on the difference. The electric motor is hereinafter also referred to as a "motor".
 近年では、電動機の速度制御として、フィードバック制御およびフィードフォワード制御が行われている。特許文献1には、電動機の速度制御として、フィードバック制御およびフィードフォワード制御を行う構成(以下、「関連構成A」ともいう)が開示されている。 In recent years, feedback control and feedforward control have been performed as motor speed control. Patent Literature 1 discloses a configuration (hereinafter also referred to as “related configuration A”) that performs feedback control and feedforward control as speed control of an electric motor.
特開2011-152005号公報Japanese Unexamined Patent Application Publication No. 2011-152005
 上記の関連構成Aでは、電動機の制御におけるフィードフォワード制御に使用されるパラメータは、「FF」という1つのパラメータである。すなわち、関連構成Aでは、電動機の制御におけるフィードフォワード制御に使用されるパラメータの数は1つである。そのため、電動機の制御におけるフィードフォワード制御の精度は十分であるとは言えない。 In the related configuration A above, the parameter used for feedforward control in controlling the electric motor is one parameter "FF". That is, in related configuration A, the number of parameters used for feedforward control in motor control is one. Therefore, it cannot be said that the accuracy of the feedforward control in controlling the electric motor is sufficient.
 本開示は、このような問題を解決するためになされたものであり、電動機の制御におけるフィードフォワード制御を高い精度で行うことが可能な電動機制御装置等を提供することを目的とする。 The present disclosure has been made to solve such problems, and aims to provide a motor control device or the like capable of performing feedforward control in motor control with high accuracy.
 上記目的を達成するために、本開示の一態様に係る電動機制御装置は、回転子を回転させる電動機を制御する。電動機制御装置は、電動機を制御する速度制御部を備え、速度制御部は、電動機が駆動する駆動タイミングにおける回転子の回転状態が、目標となる回転状態である目標回転状態に近づくように、当該電動機を制御する速度制御処理を行い、速度制御処理は、フィードバック制御およびフィードフォワード制御を含み、フィードバック制御は、速度制御部が、電動機の回転子の回転状態を制御する制御パラメータに基づいて、当該電動機を制御する処理であり、速度制御部は、風抵抗推定処理および加速度推定処理を行い、風抵抗推定処理では、速度制御部が、駆動タイミングにおける、回転子の回転に伴う風抵抗を推定し、加速度推定処理では、速度制御部が、駆動タイミングにおける、回転子の回転の加速度を推定し、フィードフォワード制御は、駆動タイミングにおける回転子の回転状態が目標回転状態に近づくように、速度制御部が、推定された風抵抗、および、推定された加速度に基づいて、電動機を制御する処理である。 In order to achieve the above object, an electric motor control device according to one aspect of the present disclosure controls an electric motor that rotates a rotor. The electric motor control device includes a speed control unit that controls the electric motor, and the speed control unit controls the rotation state of the rotor at the drive timing at which the electric motor is driven so that the rotation state approaches the target rotation state, which is the target rotation state. A speed control process is performed to control the electric motor, and the speed control process includes feedback control and feedforward control. The speed control unit performs wind resistance estimation processing and acceleration estimation processing. In the wind resistance estimation processing, the speed control unit estimates the wind resistance associated with the rotation of the rotor at the drive timing. In the acceleration estimation process, the speed control unit estimates the acceleration of the rotation of the rotor at the drive timing, and in the feedforward control, the speed control unit adjusts the rotation state of the rotor at the drive timing so that it approaches the target rotation state. is the process of controlling the electric motor based on the estimated wind resistance and the estimated acceleration.
 本開示によれば、速度制御部は、電動機が駆動する駆動タイミングにおける回転子の回転状態が、目標となる目標回転状態に近づくように、当該電動機を制御する速度制御処理を行う。速度制御処理は、フィードバック制御およびフィードフォワード制御を含む。フィードフォワード制御は、駆動タイミングにおける回転子の回転状態が目標回転状態に近づくように、速度制御部が、推定された風抵抗、および、推定された加速度に基づいて、電動機を制御する処理である。 According to the present disclosure, the speed control unit performs speed control processing for controlling the electric motor so that the rotation state of the rotor at the drive timing at which the electric motor is driven approaches the target rotation state. Speed control processing includes feedback control and feedforward control. Feedforward control is a process in which the speed control unit controls the electric motor based on the estimated wind resistance and the estimated acceleration so that the rotational state of the rotor at the drive timing approaches the target rotational state. .
 すなわち、フィードフォワード制御では、風抵抗および加速度という、2つのパラメータが使用される。そのため、電動機の制御におけるフィードフォワード制御を高い精度で行うことができる。 That is, feedforward control uses two parameters: wind resistance and acceleration. Therefore, feedforward control in controlling the electric motor can be performed with high accuracy.
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present disclosure will become more apparent with the following detailed description and accompanying drawings.
実施の形態1に係る電動機制御装置の構成を示す図である。1 is a diagram showing a configuration of a motor control device according to Embodiment 1; FIG. 電動機の構成を示す断面図である。It is a sectional view showing composition of an electric motor. 固定子の構成を示す図である。It is a figure which shows the structure of a stator. 電機子の構成を示す図である。It is a figure which shows the structure of an armature. 三相インバータの構成を示す図である。It is a figure which shows the structure of a three-phase inverter. 速度指令を説明するための図である。FIG. 4 is a diagram for explaining a speed command; FIG. 実施の形態1に係る速度制御部の構成を示すブロック図である。2 is a block diagram showing the configuration of a speed control unit according to Embodiment 1; FIG. シミュレーション結果としてのq軸電流およびd軸電流の特性を示す図である。FIG. 4 is a diagram showing characteristics of q-axis current and d-axis current as simulation results; 試験結果の一例を示す図である。It is a figure which shows an example of a test result. 特性線の一例を示すグラフである。It is a graph which shows an example of a characteristic line. 実施の形態2に係る巻線機の構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of a winding machine according to Embodiment 2; 実施の形態2に係る巻線機の制御系の構成を示すブロック図である。8 is a block diagram showing the configuration of a control system of a winding machine according to Embodiment 2; FIG. テンショナの構成を示す図である。It is a figure which shows the structure of a tensioner. 投入搬送装置の構成を示す図である。It is a figure which shows the structure of an input conveying apparatus. 実施の形態2に係る速度制御部の構成を示すブロック図である。8 is a block diagram showing the configuration of a speed control unit according to Embodiment 2; FIG. T-Jwテーブルを説明するための図である。FIG. 4 is a diagram for explaining a T-Jw table; FIG. 変形構成Aにおける速度制御部の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a speed control unit in modified configuration A; 電動機制御装置の特徴的な機能構成を示すブロック図である。It is a block diagram showing a characteristic functional configuration of a motor control device. 電動機制御装置のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of an electric motor control apparatus. 電動機制御装置のハードウェア構成の別の例を示す図である。It is a figure which shows another example of the hardware constitutions of an electric motor control apparatus. 換気扇の構成を示す図である。It is a figure which shows the structure of a ventilation fan. 変数特定制御処理のフローチャートである。9 is a flowchart of variable identification control processing;
 以下、図面を参照しつつ、実施の形態について説明する。以下の図面では、同一の構成要素には同一の符号を付してある。同一の符号が付されている構成要素の名称および機能は同じである。したがって、同一の符号が付されている構成要素の一部についての詳細な説明を省略する場合がある。 Embodiments will be described below with reference to the drawings. In the following drawings, the same components are given the same reference numerals. Components with the same reference numerals have the same names and functions. Therefore, detailed descriptions of some of the components denoted by the same reference numerals may be omitted.
 なお、実施の形態において例示される構成要素の寸法、材質、形状、当該構成要素の相対配置などは、装置の構成、各種条件等により適宜変更されてもよい。また、図における構成要素の寸法は、実際の寸法と異なる場合がある。 It should be noted that the dimensions, materials, shapes, and relative arrangement of the constituent elements exemplified in the embodiments may be appropriately changed according to the configuration of the device, various conditions, and the like. Also, the dimensions of components in the drawings may differ from the actual dimensions.
 <実施の形態1>
 (構成)
 図1は、実施の形態1に係る電動機制御装置100の構成を示す図である。図1では、電動機制御装置100の説明のために、電動機M1が示されている。電動機制御装置100は、電動機M1を制御する。電動機制御装置100は、巻線機に内蔵される。なお、電動機制御装置100は、ファンモーターに内蔵されてもよい。当該ファンモーターは、例えば、換気扇である。
<Embodiment 1>
(composition)
FIG. 1 is a diagram showing the configuration of a motor control device 100 according to Embodiment 1. As shown in FIG. In FIG. 1, the electric motor M1 is shown for explanation of the electric motor control device 100. As shown in FIG. Electric motor control device 100 controls electric motor M1. The motor control device 100 is built in the winding machine. Note that the motor control device 100 may be incorporated in the fan motor. The fan motor is, for example, a ventilation fan.
 電動機制御装置100は、制御部Ct1と、三相インバータIv1とを含む。制御部Ct1は、三相インバータIv1を介して、電動機M1を制御する。制御部Ct1は、例えば、プロセッサである。なお、制御部Ct1は、プロセッサに限定されない。制御部Ct1は、例えば、CPU(Central Processing Unit)と、メモリとを含む装置であってもよい。 The motor control device 100 includes a control unit Ct1 and a three-phase inverter Iv1. Control unit Ct1 controls electric motor M1 via three-phase inverter Iv1. The controller Ct1 is, for example, a processor. Note that the control unit Ct1 is not limited to a processor. The control unit Ct1 may be, for example, a device including a CPU (Central Processing Unit) and a memory.
 電動機M1は、ブラシレスモーターである。ブラシレスモーターである電動機M1の駆動方式は、正弦波駆動方式である。電動機M1に対しては、PWM(Pulse Width Modulation)制御が行われる。 The electric motor M1 is a brushless motor. The driving method of the electric motor M1, which is a brushless motor, is a sine wave driving method. PWM (Pulse Width Modulation) control is performed on the electric motor M1.
 以下においては、ブラシレスモーターを制御する構成を、「ブラシレスモーター制御構成」ともいう。電動機制御装置100は、ブラシレスモーター制御構成を有する。以下においては、電動機制御装置100が有するブラシレスモーター制御構成を、「ブラシレスモーター制御構成A」ともいう。 In the following, the configuration for controlling the brushless motor is also referred to as "brushless motor control configuration". Motor controller 100 has a brushless motor control configuration. Hereinafter, the brushless motor control configuration of the electric motor control device 100 is also referred to as "brushless motor control configuration A".
 図2は、電動機M1の構成を示す断面図である。図2において、X方向、Y方向およびZ方向は、互いに直交する。以下の図に示されるX方向、Y方向およびZ方向も、互いに直交する。以下においては、X方向と、当該X方向の反対の方向(-X方向)とを含む方向を「X軸方向」ともいう。また、以下においては、Y方向と、当該Y方向の反対の方向(-Y方向)とを含む方向を「Y軸方向」ともいう。また、以下においては、Z方向と、当該Z方向の反対の方向(-Z方向)とを含む方向を「Z軸方向」ともいう。 FIG. 2 is a cross-sectional view showing the configuration of the electric motor M1. In FIG. 2, the X, Y and Z directions are orthogonal to each other. The X, Y and Z directions shown in the following figures are also orthogonal to each other. Hereinafter, the direction including the X direction and the direction opposite to the X direction (−X direction) is also referred to as the “X-axis direction”. Also, hereinafter, the direction including the Y direction and the direction opposite to the Y direction (−Y direction) is also referred to as the “Y-axis direction”. Also, hereinafter, the direction including the Z direction and the direction opposite to the Z direction (−Z direction) is also referred to as the “Z-axis direction”.
 また、以下においては、X軸方向およびY軸方向を含む平面を、「XY面」ともいう。また、以下においては、X軸方向およびZ軸方向を含む平面を、「XZ面」ともいう。また、以下においては、Y軸方向およびZ軸方向を含む平面を、「YZ面」ともいう。 Also, hereinafter, the plane including the X-axis direction and the Y-axis direction is also referred to as the "XY plane". Also, hereinafter, a plane including the X-axis direction and the Z-axis direction is also referred to as an "XZ plane". Also, hereinafter, a plane including the Y-axis direction and the Z-axis direction is also referred to as a "YZ plane".
 図2に示すように、ブラシレスモーターである電動機M1は、固定子20と、回転部材X1とを含む。回転部材X1の形状は、長尺状である。図2において、回転部材X1の長手方向は、Z軸方向である。回転部材X1は、シャフトX1aと、回転子X1bとを含む。シャフトX1aの形状は、棒状である。回転子X1bの形状は、円筒状である。回転子X1bは、永久磁石で構成される。回転子X1bはシャフトX1aに固定されている。 As shown in FIG. 2, the electric motor M1, which is a brushless motor, includes a stator 20 and a rotating member X1. The shape of the rotating member X1 is elongated. In FIG. 2, the longitudinal direction of the rotating member X1 is the Z-axis direction. The rotating member X1 includes a shaft X1a and a rotor X1b. The shape of the shaft X1a is rod-like. The shape of the rotor X1b is cylindrical. The rotor X1b is composed of permanent magnets. The rotor X1b is fixed to the shaft X1a.
 シャフトX1aを回転軸として回転部材X1が回転自在なように、当該回転部材X1は構成されている。回転部材X1の回転軸は、Z軸方向である。電動機M1は、回転子X1bを回転させる機能を有する。 The rotating member X1 is configured so that the rotating member X1 is rotatable about the shaft X1a as a rotation axis. The rotation axis of the rotating member X1 is in the Z-axis direction. The electric motor M1 has a function of rotating the rotor X1b.
 ここで、電動機M1に含まれる固定子20の構成について簡単に説明する。図3は、固定子20の構成を示す図である。また、図3は、回転部材X1の回転軸方向から、固定子20を見た図である。すなわち、図3は、XY面における、固定子20の構成を示す図である。固定子20の形状は、円筒状である。回転部材X1が円筒状の固定子20に囲まれるように、当該回転部材X1は電動機M1に設けられている。 Here, the configuration of the stator 20 included in the electric motor M1 will be briefly described. FIG. 3 is a diagram showing the configuration of the stator 20. As shown in FIG. Moreover, FIG. 3 is a view of the stator 20 viewed from the rotation axis direction of the rotation member X1. That is, FIG. 3 is a diagram showing the configuration of the stator 20 on the XY plane. The shape of the stator 20 is cylindrical. The rotating member X1 is provided in the electric motor M1 so that the rotating member X1 is surrounded by the cylindrical stator 20 .
 固定子20は、9個の電機子21を含む。9個の電機子21の各々の構成は、同じである。以下においては、9個の電機子21を、それぞれ、電機子21a,21b,21c,21d,21e,21f,21g,21h,21iともいう。 The stator 20 includes nine armatures 21. The configuration of each of the nine armatures 21 is the same. The nine armatures 21 are hereinafter also referred to as armatures 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, and 21i, respectively.
 図4は、電機子21の構成を示す図である。図4では、一例として、電機子21aとしての電機子21が示されている。図4(a)は、XY面における、電機子21aとしての電機子21の構成を示す図である。図4(b)は、XZ面における、電機子21aとしての電機子21の構成を示す図である。 FIG. 4 is a diagram showing the configuration of the armature 21. As shown in FIG. FIG. 4 shows the armature 21 as an armature 21a as an example. FIG. 4A is a diagram showing the configuration of the armature 21 as the armature 21a on the XY plane. FIG. 4B is a diagram showing the configuration of the armature 21 as the armature 21a on the XZ plane.
 ここで、電機子21の構成について簡単に説明する。図4(a)および図4(b)に示すように、電機子21は、電機子コア22を有する。電機子コア22は、「ワーク」とも呼ばれる。電機子コア22は、巻線用ティースである。図4(a)において、XY面に沿った、電機子コア22の断面の形状は、略T字状である。電機子21の詳細な構成については後述する。 Here, the configuration of the armature 21 will be briefly described. As shown in FIGS. 4A and 4B, armature 21 has armature core 22 . The armature core 22 is also called a "workpiece". The armature core 22 is a winding tooth. In FIG. 4A, the armature core 22 has a substantially T-shaped cross section along the XY plane. A detailed configuration of the armature 21 will be described later.
 再び、図2を参照して、回転部材X1のシャフトX1aの端部には、チャック75が接続されている。すなわち、回転部材X1の端部には、チャック75が接続されている。チャック75は、ワークとしての電機子コア22を把持するためのワーク把持部材である。チャック75は、回転部材X1(すなわち、回転子X1b)の回転に伴い、回転する。回転部材X1が回転することにより、チャック75および電機子コア22が回転する。 Again, referring to FIG. 2, a chuck 75 is connected to the end of the shaft X1a of the rotating member X1. That is, the chuck 75 is connected to the end of the rotating member X1. The chuck 75 is a workpiece gripping member for gripping the armature core 22 as a workpiece. The chuck 75 rotates as the rotating member X1 (that is, the rotor X1b) rotates. The rotation of the rotating member X1 causes the chuck 75 and the armature core 22 to rotate.
 電動機制御装置100が有するブラシレスモーター制御構成Aは、回転子X1bの位置(すなわち、角度)を検出する角度センサーを使用しない構成である。以下においては、角度センサーを使用しない公知なブラシレスモーター制御構成を、「ブラシレスモーター制御構成N」ともいう。 The brushless motor control configuration A that the electric motor control device 100 has is a configuration that does not use an angle sensor for detecting the position (that is, the angle) of the rotor X1b. A known brushless motor control configuration that does not use an angle sensor is hereinafter also referred to as "brushless motor control configuration N."
 次に、三相インバータIv1の構成について説明する。ブラシレスモーター制御構成Aにおける三相インバータIv1の構成は、ブラシレスモーター制御構成Nにおける三相インバータの構成と同様である。そのため、三相インバータIv1の構成については簡単に説明する。 Next, the configuration of the three-phase inverter Iv1 will be described. The configuration of the three-phase inverter Iv1 in the brushless motor control configuration A is the same as the configuration of the three-phase inverter in the brushless motor control configuration N. Therefore, the configuration of the three-phase inverter Iv1 will be briefly described.
 図5は、三相インバータIv1の構成を示す図である。図5には、三相インバータIv1の説明のために、制御部Ct1および電動機M1も示されている。 FIG. 5 is a diagram showing the configuration of the three-phase inverter Iv1. FIG. 5 also shows the control unit Ct1 and the electric motor M1 for explanation of the three-phase inverter Iv1.
 三相インバータIv1は、電源回路Cp1と、インバータ回路Cp2とを含む。電源回路Cp1は、図示されない、外部の交流三相電源に接続されている。交流三相電源は、交流電圧を電源回路Cp1に供給する。 The three-phase inverter Iv1 includes a power supply circuit Cp1 and an inverter circuit Cp2. The power supply circuit Cp1 is connected to an external AC three-phase power supply (not shown). The AC three-phase power supply supplies AC voltage to the power supply circuit Cp1.
 電源回路Cp1は、ダイオードブリッジDb1と、コンデンサC1とを含む。コンデンサC1は、平滑用コンデンサである。電源回路Cp1は、ダイオードブリッジDb1およびコンデンサC1により、交流三相電源から供給される交流電圧を高圧直流電圧に変換する。すなわち、電源回路Cp1は、高圧直流電圧を生成する。 The power supply circuit Cp1 includes a diode bridge Db1 and a capacitor C1. Capacitor C1 is a smoothing capacitor. The power supply circuit Cp1 converts an AC voltage supplied from an AC three-phase power supply into a high-voltage DC voltage using a diode bridge Db1 and a capacitor C1. That is, the power supply circuit Cp1 generates a high-voltage DC voltage.
 三相インバータIv1のインバータ回路Cp2と電動機M1との間には、電流の経路である、U相、V相およびW相が形成される。 Between the inverter circuit Cp2 of the three-phase inverter Iv1 and the electric motor M1, U-phase, V-phase and W-phase, which are current paths, are formed.
 インバータ回路Cp2は、IGBT(Insulated Gate Bipolar Transistor)モジュールCr1a,Cr1b,Cr1c,Cr1d,Cr1e,Cr1fを含む。IGBTモジュールCr1a,Cr1b,Cr1c,Cr1d,Cr1e,Cr1fの各々は、RC-IGBT(Reverse Conducting IGBT)である。IGBTモジュールCr1a,Cr1dは、U相に接続される。IGBTモジュールCr1b,Cr1eは、V相に接続される。IGBTモジュールCr1c,Cr1fは、W相に接続される。 The inverter circuit Cp2 includes IGBT (Insulated Gate Bipolar Transistor) modules Cr1a, Cr1b, Cr1c, Cr1d, Cr1e, and Cr1f. Each of the IGBT modules Cr1a, Cr1b, Cr1c, Cr1d, Cr1e, and Cr1f is an RC-IGBT (Reverse Conducting IGBT). IGBT modules Cr1a and Cr1d are connected to the U phase. IGBT modules Cr1b and Cr1e are connected to the V phase. IGBT modules Cr1c and Cr1f are connected to the W phase.
 以下においては、IGBTモジュールCr1a,Cr1b,Cr1c,Cr1d,Cr1e,Cr1fの各々を、総括的に、「IGBTモジュールCr1」ともいう。すなわち、インバータ回路Cp2は、6個のIGBTモジュールCr1を含む。6個のIGBTモジュールCr1の各々は、トランジスタTr1と、フリーホイールダイオードD1とを含む。トランジスタTr1は、IGBTである。6個のIGBTモジュールCr1は、電源回路Cp1が生成した高圧直流電圧を使用して、電動機M1を制御するためのPWM疑似正弦波信号を生成する。当該PWM疑似正弦波信号は、疑似的な正弦波を示す信号である。 Hereinafter, each of the IGBT modules Cr1a, Cr1b, Cr1c, Cr1d, Cr1e, and Cr1f is also collectively referred to as "IGBT module Cr1". That is, the inverter circuit Cp2 includes six IGBT modules Cr1. Each of the six IGBT modules Cr1 includes a transistor Tr1 and a freewheeling diode D1. The transistor Tr1 is an IGBT. The six IGBT modules Cr1 use the high-voltage DC voltage generated by the power supply circuit Cp1 to generate PWM pseudo-sine wave signals for controlling the electric motor M1. The PWM pseudo sine wave signal is a signal representing a pseudo sine wave.
 インバータ回路Cp2は、制御部Ct1の制御に従って動作する。インバータ回路Cp2は、PWM疑似正弦波信号を電動機M1へ送信することにより、電動機M1を駆動させる。PWM疑似正弦波信号の送信には、6個のIGBTモジュールCr1が使用される。 The inverter circuit Cp2 operates under the control of the control section Ct1. The inverter circuit Cp2 drives the electric motor M1 by transmitting a PWM pseudo sine wave signal to the electric motor M1. Six IGBT modules Cr1 are used to transmit the PWM pseudo-sinusoidal signal.
 電動機制御装置100では、U相、V相およびW相の一部の電流値が検出され、制御部Ct1が、検出された電流値に基づいて、各IGBTモジュールCr1のトランジスタTr1を制御するスイッチ信号Sgwを生成する。スイッチ信号Sgwは、PWM信号である。 In electric motor control device 100, current values of some of the U-phase, V-phase and W-phase are detected, and controller Ct1 outputs a switch signal for controlling transistor Tr1 of each IGBT module Cr1 based on the detected current values. Generate Sgw. The switch signal Sgw is a PWM signal.
 また、電動機制御装置100は、電流値を検出する機能を有する電流検出部Dt1,Dt2を有する。図5では、一例として、電流検出部Dt1によりU相の電流値が検出され、電流検出部Dt2によりW相の電流値が検出される構成が示されている。電流検出部Dt1により検出された電流値は、電流値If1として、制御部Ct1に通知される。電流検出部Dt2により検出された電流値は、電流値If2として、制御部Ct1に通知される。電流値If1および電流値If2は、フィードバック電流値である。以下においては、電流値If1および電流値If2の各々を、「電流値If」または「If」ともいう。 In addition, the motor control device 100 has current detection units Dt1 and Dt2 having a function of detecting current values. As an example, FIG. 5 shows a configuration in which the current detection unit Dt1 detects a U-phase current value and the current detection unit Dt2 detects a W-phase current value. The current value detected by the current detection unit Dt1 is notified to the control unit Ct1 as the current value If1. The current value detected by the current detection unit Dt2 is notified to the control unit Ct1 as the current value If2. Current value If1 and current value If2 are feedback current values. Hereinafter, each of current value If1 and current value If2 is also referred to as "current value If" or "If".
 図5では、トランジスタTr1を制御するスイッチ信号Sgwが示されている。ここで、一例として、IGBTモジュールCr1a,Cr1fの各々のトランジスタTr1がオン状態になると、U相およびW相に電流が流れる。 FIG. 5 shows the switch signal Sgw that controls the transistor Tr1. Here, as an example, when the transistor Tr1 of each of the IGBT modules Cr1a and Cr1f is turned on, a current flows through the U-phase and the W-phase.
 次に、制御部Ct1の構成について説明する。再び、図1を参照して、制御部Ct1は、速度制御部101と、電流制御部102と、PWM制御部103と、推定部106とを含む。速度制御部101、電流制御部102、PWM制御部103および推定部106の全てまたは一部の機能は、例えば、制御部Ct1が、プログラムを実行することにより実現される。なお、速度制御部101、電流制御部102、PWM制御部103および推定部106の全てまたは一部は、専用のハードウェアで構成されてもよい。 Next, the configuration of the control unit Ct1 will be described. Referring to FIG. 1 again, control unit Ct1 includes speed control unit 101, current control unit 102, PWM control unit 103, and estimation unit . All or part of the functions of the speed control unit 101, the current control unit 102, the PWM control unit 103 and the estimation unit 106 are realized by executing a program by the control unit Ct1, for example. All or part of the speed control unit 101, the current control unit 102, the PWM control unit 103, and the estimation unit 106 may be configured by dedicated hardware.
 前述したように、電動機制御装置100は、ブラシレスモーター制御構成Aを有する。ブラシレスモーター制御構成Aは、電流指令および電圧指令を使用した構成である。公知なブラシレスモーター制御構成Nは、ブラシレスモーター制御構成Aと同様に、電流指令および電圧指令を使用した構成である。以下においては、電流指令を、「電流指令Iref」ともいう。また、以下においては、電圧指令を、「電圧指令Vtref」ともいう。 As described above, the electric motor control device 100 has the brushless motor control configuration A. Brushless motor control configuration A is a configuration using current commands and voltage commands. A known brushless motor control configuration N, like the brushless motor control configuration A, is a configuration that uses current commands and voltage commands. The current command is hereinafter also referred to as "current command Iref". In addition, the voltage command is hereinafter also referred to as "voltage command Vtref".
 ブラシレスモーター制御構成Aは、ブラシレスモーター制御構成Nと比較して、速度制御部101の構成のみが異なる。電流制御部102、PWM制御部103および推定部106の構成は、ブラシレスモーター制御構成Nにおける構成と同様である。そのため、電流制御部102、PWM制御部103および推定部106の動作については簡単に説明する。 The brushless motor control configuration A differs from the brushless motor control configuration N only in the configuration of the speed control unit 101 . The configurations of the current control unit 102, the PWM control unit 103, and the estimation unit 106 are the same as those in the brushless motor control configuration N. FIG. Therefore, the operations of current control section 102, PWM control section 103 and estimation section 106 will be briefly described.
 以下においては、電動機M1が駆動するタイミングを、「駆動タイミング」ともいう。駆動タイミングは、電動機M1が回転子X1bを回転させているタイミングである。以下においては、回転子X1bの実際の回転速度を、「速度Vs」または「実速度」ともいう。速度Vsは、例えば、駆動タイミングにおける速度である。 In the following, the timing at which the electric motor M1 is driven is also referred to as "driving timing". The drive timing is the timing at which the electric motor M1 rotates the rotor X1b. Hereinafter, the actual rotational speed of the rotor X1b is also referred to as "speed Vs" or "actual speed". The speed Vs is, for example, the speed at the driving timing.
 以下においては、駆動タイミングにおける回転子X1bの位置を、「位置Pd」ともいう。位置Pdは、駆動タイミングにおける回転子X1bの回転角度に相当する。以下においては、駆動タイミングにおいて電動機M1に印加されている電圧を、「電圧Vds」ともいう。電圧Vdsは、駆動タイミングにおける電動機M1の駆動電圧である。 In the following, the position of the rotor X1b at the driving timing is also called "position Pd". The position Pd corresponds to the rotation angle of the rotor X1b at the drive timing. Hereinafter, the voltage applied to the electric motor M1 at the drive timing is also referred to as "voltage Vds". The voltage Vds is the driving voltage of the electric motor M1 at the driving timing.
 以下においては、回転子X1bの回転速度を、「電動機の回転速度」、「回転速度」または「速度」ともいう。また、以下においては、単位時間における回転子X1bの回転数を、「単位回転数」ともいう。単位時間は、例えば、1分である。回転子X1bの回転速度は、単位回転数と比例関係にある。すなわち、回転子X1bの回転速度は、単位回転数に相当する。 In the following, the rotational speed of the rotor X1b is also referred to as "motor rotational speed", "rotational speed", or "speed". Further, hereinafter, the number of rotations of the rotor X1b per unit time is also referred to as "unit number of rotations". A unit time is, for example, one minute. The rotation speed of the rotor X1b is proportional to the unit rotation speed. That is, the rotation speed of the rotor X1b corresponds to the unit number of rotations.
 以下においては、駆動タイミングにおける回転子X1bの回転状態を、「駆動回転状態」ともいう。駆動回転状態は、例えば、回転子X1bの実際の回転速度である。以下においては、目標となる、回転子X1bの回転状態を、「目標回転状態」ともいう。目標回転状態は、例えば、目標となる、回転子X1bの回転速度である。すなわち、駆動回転状態および目標回転状態の各々は、例えば、回転子X1bの回転速度である。なお、駆動回転状態および目標回転状態の各々は、単位回転数であってもよい。 In the following, the rotating state of the rotor X1b at the drive timing is also referred to as "drive rotating state". The drive rotation state is, for example, the actual rotation speed of the rotor X1b. Hereinafter, the target rotation state of the rotor X1b is also referred to as a "target rotation state." The target rotation state is, for example, the target rotation speed of the rotor X1b. That is, each of the drive rotation state and the target rotation state is, for example, the rotation speed of the rotor X1b. Note that each of the drive rotation state and the target rotation state may be a unit number of rotations.
 以下においては、駆動回転状態が目標回転状態に近づくように、電動機M1を制御する処理を、「速度制御処理」ともいう。速度制御処理は、フィードバック制御およびフィードフォワード制御を含む。 In the following, the process of controlling the electric motor M1 so that the drive rotation state approaches the target rotation state is also referred to as "speed control processing". Speed control processing includes feedback control and feedforward control.
 以下においては、回転子X1bの回転速度を制御するための指令を、「速度指令Vref」または「Vref」ともいう。速度指令Vrefは、目標となる、回転子X1bの回転速度を示す。前述の目標回転状態は、速度指令Vrefに相当する。なお、速度指令Vrefは、目標となる、回転子X1bの単位回転数を示してもよい。 In the following, the command for controlling the rotation speed of the rotor X1b is also referred to as "speed command Vref" or "Vref". The speed command Vref indicates a target rotational speed of the rotor X1b. The aforementioned target rotational state corresponds to the speed command Vref. Note that the speed command Vref may indicate the target unit rotation speed of the rotor X1b.
 速度指令Vrefは、例えば、電動機制御装置100における図示されない速度設定部から、速度制御部101へ送信される。 The speed command Vref is sent to the speed control unit 101 from, for example, a speed setting unit (not shown) in the motor control device 100 .
 速度指令Vrefは、1次関数で表現される。図6は、速度指令Vrefを説明するための図である。図6(a)は、ミュレーション結果を示すグラフを示す図である。速度指令Vrefは、例えば、図6(a)のグラフにおける特性線Lsが示す1次関数で表現される。特性線Lsは、例えば、巻線機で使用される台形速度パターンである。図6(a)において、横軸は時間である。縦軸は、回転速度としての速度である。縦軸の速度は、正規化された速度である。特性線Lsのうち、「0」より大きい速度を示す部分に対応する時間が、駆動タイミングに相当する。なお、速度指令Vrefは、2次関数で表現されてもよい。  The speed command Vref is expressed by a linear function. FIG. 6 is a diagram for explaining the speed command Vref. FIG. 6A is a diagram showing a graph showing simulation results. The speed command Vref is expressed, for example, by a linear function indicated by the characteristic line Ls in the graph of FIG. 6(a). Characteristic line Ls is, for example, a trapezoidal speed pattern used in a winding machine. In FIG. 6A, the horizontal axis is time. The vertical axis is speed as rotational speed. The velocity on the vertical axis is the normalized velocity. A time corresponding to a portion of the characteristic line Ls indicating a speed greater than "0" corresponds to the driving timing. Note that the speed command Vref may be expressed by a quadratic function.
 図6(b)は、特性線Lsが示す台形速度パターンに対応する加速度パターンを説明するためのグラフを示す図である。図6(b)において、横軸は時間である。縦軸は、加速度である。縦軸の加速度は、正規化された加速度である。図6(b)のグラフにおける特性線L2は、図6(a)の特性線Lsが示す台形速度パターンに対応する加速度パターンを示す。 FIG. 6(b) is a graph showing an acceleration pattern corresponding to the trapezoidal velocity pattern indicated by the characteristic line Ls. In FIG. 6B, the horizontal axis is time. The vertical axis is acceleration. Acceleration on the vertical axis is normalized acceleration. A characteristic line L2 in the graph of FIG. 6(b) indicates an acceleration pattern corresponding to the trapezoidal velocity pattern indicated by the characteristic line Ls of FIG. 6(a).
 図1を参照して、フィードバック電流値である前述の電流値If1,If2は、推定部106および電流制御部102に通知される。速度制御部101は、電流制御部102、PWM制御部103および三相インバータIv1を介して、電動機M1を制御する。すなわち、速度制御部101は、電動機M1を制御する。 With reference to FIG. 1, the aforementioned current values If1 and If2, which are feedback current values, are notified to estimation section 106 and current control section 102 . Speed control unit 101 controls electric motor M1 via current control unit 102, PWM control unit 103 and three-phase inverter Iv1. That is, the speed control unit 101 controls the electric motor M1.
 また、速度制御部101は、速度制御処理を行う。すなわち、速度制御部101は、速度制御処理に含まれるフィードバック制御およびフィードフォワード制御を行う。以下においては、速度制御部101が行う速度制御処理を、「速度制御処理A」ともいう。速度制御処理Aは、電流指令Irefを使用した処理である。また、以下においては、速度制御部101が行うフィードバック制御を、「フィードバック制御A」ともいう。 Also, the speed control unit 101 performs speed control processing. That is, the speed control unit 101 performs feedback control and feedforward control included in speed control processing. Hereinafter, the speed control process performed by the speed control unit 101 is also referred to as "speed control process A". The speed control process A is a process using the current command Iref. Further, the feedback control performed by the speed control unit 101 is hereinafter also referred to as "feedback control A".
 フィードバック制御Aは、速度制御部101が、電動機M1の回転子X1bの回転状態を制御する制御パラメータに基づいて、当該電動機M1を制御する処理である。当該制御パラメータは、フィードバック電流値としての電流値If1,If2である。以下においては、速度制御部101が行うフィードフォワード制御を、「フィードフォワード制御A」ともいう。速度制御処理Aは、フィードバック制御Aおよびフィードフォワード制御Aを含む。 Feedback control A is a process in which the speed control unit 101 controls the electric motor M1 based on control parameters for controlling the rotation state of the rotor X1b of the electric motor M1. The control parameters are current values If1 and If2 as feedback current values. The feedforward control performed by the speed control unit 101 is hereinafter also referred to as "feedforward control A". Speed control processing A includes feedback control A and feedforward control A.
 推定部106は、詳細は後述するが、速度Vsを推定して、推定された当該速度Vsを、速度制御部101に通知する。また、推定部106は、詳細は後述するが、位置Pdを推定して、推定された当該位置Pdを電流制御部102に通知する。 Although the details will be described later, the estimating unit 106 estimates the speed Vs and notifies the speed control unit 101 of the estimated speed Vs. Further, the estimation unit 106 estimates the position Pd and notifies the current control unit 102 of the estimated position Pd, which will be described later in detail.
 速度制御部101は、詳細は後述するが、速度指令Vref、および、推定された速度Vsを使用して、電流指令Irefを生成する。速度制御部101は、生成した電流指令Irefを、電流制御部102へ送信する。 Although the details will be described later, the speed control unit 101 uses the speed command Vref and the estimated speed Vs to generate the current command Iref. Speed control unit 101 transmits the generated current command Iref to current control unit 102 .
 電流制御部102は、ブラシレスモーター制御構成Aにおける電圧指令生成方法に基づき、電圧指令Vtrefを生成する。電圧指令生成方法は、電流指令Irefと、位置Pdと、フィードバック電流値である電流値If1,If2とに基づいて、電圧指令Vtrefを生成する方法である。ブラシレスモーター制御構成Aにおける上記の電圧指令生成方法は、公知な方法であるので詳細な説明は省略する。 The current control unit 102 generates the voltage command Vtref based on the voltage command generation method in the brushless motor control configuration A. The voltage command generation method is a method of generating the voltage command Vtref based on the current command Iref, the position Pd, and the current values If1 and If2, which are feedback current values. The method of generating the voltage command in the brushless motor control configuration A is a known method, and detailed description thereof will be omitted.
 電圧指令Vtrefは、電流指令Irefに対応する指令である。電圧指令Vtrefは、目標となる電圧値を示す。電圧指令Vtrefは、速度制御部101が生成した電流指令Irefに基づいた回転速度で回転子X1bを回転させるための指令である。 The voltage command Vtref is a command corresponding to the current command Iref. A voltage command Vtref indicates a target voltage value. Voltage command Vtref is a command for rotating rotor X1b at a rotational speed based on current command Iref generated by speed control unit 101 .
 電流制御部102は、電圧指令Vtrefを、PWM制御部103および推定部106へ送信する。 Current control unit 102 transmits voltage command Vtref to PWM control unit 103 and estimation unit 106 .
 推定部106は、ブラシレスモーター制御構成Aにおける速度推定方法に基づき、速度Vsを推定する。当該速度推定方法は、電圧指令Vtrefと、フィードバック電流値である電流値If1,If2とに基づいて、速度Vsを推定する方法である。ブラシレスモーター制御構成Aにおける上記の速度推定方法は、公知な方法であるので詳細な説明は省略する。推定部106は、推定した速度Vsを、速度制御部101に通知する。 The estimation unit 106 estimates the speed Vs based on the speed estimation method in the brushless motor control configuration A. The speed estimation method is a method of estimating speed Vs based on voltage command Vtref and current values If1 and If2, which are feedback current values. Since the speed estimation method in the brushless motor control configuration A is a known method, detailed description thereof will be omitted. Estimating section 106 notifies speed control section 101 of estimated speed Vs.
 また、推定部106は、ブラシレスモーター制御構成Aにおける位置推定方法に基づき、位置Pdを推定する。当該位置推定方法は、フィードバック電流値である電流値If1,If2と、電圧指令Vtrefとに基づいて、位置Pdを推定する方法である。ブラシレスモーター制御構成Aにおける上記の位置推定方法は、公知な方法であるので詳細な説明は省略する。推定部106は、推定した位置Pdを、電流制御部102に通知する。 Also, the estimation unit 106 estimates the position Pd based on the position estimation method in the brushless motor control configuration A. The position estimation method is a method of estimating the position Pd based on the current values If1 and If2, which are feedback current values, and the voltage command Vtref. The above-described position estimation method in the brushless motor control configuration A is a known method, and detailed description thereof will be omitted. The estimation unit 106 notifies the current control unit 102 of the estimated position Pd.
 PWM制御部103は、電圧指令Vtrefに基づいて、スイッチ信号Sgwを生成する。スイッチ信号Sgwは、PWM信号である。スイッチ信号Sgwは、正弦波を示す信号である。スイッチ信号Sgwは、速度制御部101が生成した電流指令Irefに基づいた回転速度で回転子X1bを回転させるための信号である。 The PWM control unit 103 generates the switch signal Sgw based on the voltage command Vtref. The switch signal Sgw is a PWM signal. The switch signal Sgw is a signal representing a sine wave. The switch signal Sgw is a signal for rotating the rotor X1b at a rotational speed based on the current command Iref generated by the speed control unit 101. FIG.
 PWM制御部103は、スイッチ信号Sgwを、三相インバータIv1のインバータ回路Cp2へ送信する。インバータ回路Cp2は、スイッチ信号Sgwに基づいて、前述のPWM疑似正弦波信号を生成する。そして、インバータ回路Cp2は、PWM疑似正弦波信号を電動機M1に供給することにより、当該電動機M1を駆動させる。PWM疑似正弦波信号の送信には、6個のIGBTモジュールCr1が使用される。 The PWM control unit 103 transmits the switch signal Sgw to the inverter circuit Cp2 of the three-phase inverter Iv1. The inverter circuit Cp2 generates the aforementioned PWM pseudo sine wave signal based on the switch signal Sgw. The inverter circuit Cp2 drives the electric motor M1 by supplying the PWM pseudo sine wave signal to the electric motor M1. Six IGBT modules Cr1 are used to transmit the PWM pseudo-sinusoidal signal.
 電動機M1は、PWM疑似正弦波信号に従って、速度制御部101が生成した電流指令Irefに基づいた回転速度で回転子X1b(すなわち、回転部材X1)を回転させる。 The electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotation speed based on the current command Iref generated by the speed control unit 101 according to the PWM pseudo sine wave signal.
 次に、速度制御部101の構成について説明する。図7は、実施の形態1に係る速度制御部101の構成を示すブロック図である。以下においては、電動機M1が回転子X1bを回転させている状況を、「回転子回転状況」ともいう。また、以下においては、回転子回転状況において、当該回転子X1bに対して発生する空気抵抗を、「風抵抗Wr」または「風抵抗」ともいう。風抵抗Wrは、回転子X1bの回転に伴う空気抵抗である。 Next, the configuration of the speed control unit 101 will be described. FIG. 7 is a block diagram showing the configuration of speed control section 101 according to the first embodiment. Hereinafter, the state in which the electric motor M1 rotates the rotor X1b is also referred to as "rotor rotation state". Further, hereinafter, the air resistance generated against the rotor X1b in the rotor rotation state is also referred to as "wind resistance Wr" or "wind resistance". The wind resistance Wr is the air resistance associated with the rotation of the rotor X1b.
 以下においては、風抵抗Wrが回転子X1bの回転速度の2乗に比例するように、電動機M1が当該回転子X1bを回転させている状況を、「高速回転状況」ともいう。高速回転状況における、回転子X1bの単位回転数は、例えば、40krpm以上である。以下においては、高速回転状況における、回転子X1bの回転速度を、「高速速度」ともいう。また、以下においては、電動機M1の回転子X1bの回転の加速度を、「加速度Ac」または「Ac」ともいう。 Hereinafter, the state in which the electric motor M1 rotates the rotor X1b so that the wind resistance Wr is proportional to the square of the rotation speed of the rotor X1b is also referred to as "high-speed rotation state". The unit rotation speed of the rotor X1b in high-speed rotation is, for example, 40 krpm or more. Hereinafter, the rotational speed of the rotor X1b in the high-speed rotation state is also referred to as "high speed". Further, hereinafter, the rotational acceleration of the rotor X1b of the electric motor M1 is also referred to as “acceleration Ac” or “Ac”.
 また、以下においては、回転子X1bの回転速度の制御を行うためのタイミングを、「制御タイミング」ともいう。制御タイミングは、例えば、図6(a)における時間「1秒」である。詳細は後述するが、制御タイミングは、所定の処理が行われる毎に、変更される。回転子回転状況では、制御タイミングは、駆動タイミングである。例えば、高速回転状況では、制御タイミングは、駆動タイミングである。 Also, hereinafter, the timing for controlling the rotational speed of the rotor X1b is also referred to as "control timing". The control timing is, for example, the time "1 second" in FIG. 6(a). Although the details will be described later, the control timing is changed each time a predetermined process is performed. In the rotor rotation situation, the control timing is the drive timing. For example, in a high speed rotation situation, the control timing is the drive timing.
 前述したように、速度制御部101は、速度制御処理Aを行う。速度制御処理Aは、フィードバック制御Aおよびフィードフォワード制御Aを含む。詳細は後述するが、フィードフォワード制御Aは、駆動回転状態が目標回転状態に近づくように、速度制御部101が、推定された風抵抗Wr、および、推定された加速度Acに基づいて、電動機M1を制御する処理である。 As described above, the speed control unit 101 performs speed control processing A. Speed control processing A includes feedback control A and feedforward control A. Although the details will be described later, in the feedforward control A, the speed control unit 101 controls the electric motor M1 based on the estimated wind resistance Wr and the estimated acceleration Ac so that the drive rotation state approaches the target rotation state. is a process for controlling
 図7に示すように、速度制御部101は、PI制御部201と、風抵抗推定部202と、加速度推定部203と、ゲイン補償部204と、LPF(Low Pass Filter)205とを含む。PI制御部201、風抵抗推定部202、加速度推定部203、ゲイン補償部204およびLPF205の全てまたは一部の機能は、例えば、制御部Ct1が、プログラムを実行することにより実現される。なお、風抵抗推定部202、加速度推定部203、ゲイン補償部204およびLPF205の全てまたは一部は、専用のハードウェアで構成されてもよい。PI制御部201、風抵抗推定部202、加速度推定部203、ゲイン補償部204およびLPF205については後述する。 As shown in FIG. 7, the speed controller 101 includes a PI controller 201, a wind resistance estimator 202, an acceleration estimator 203, a gain compensator 204, and an LPF (Low Pass Filter) 205. All or part of the functions of the PI controller 201, the wind resistance estimator 202, the acceleration estimator 203, the gain compensator 204, and the LPF 205 are implemented by the controller Ct1 executing a program, for example. All or part of the wind resistance estimator 202, the acceleration estimator 203, the gain compensator 204, and the LPF 205 may be configured by dedicated hardware. PI controller 201, wind resistance estimator 202, acceleration estimator 203, gain compensator 204, and LPF 205 will be described later.
 次に、フィードバック制御Aについて説明する。フィードバック制御Aは、公知なブラシレスモーター制御構成Nにおけるフィードバック制御と同様である。そのため、フィードバック制御Aについては、簡単に説明する。 Next, feedback control A will be explained. Feedback control A is similar to feedback control in a known brushless motor control configuration N. Therefore, feedback control A will be briefly described.
 ここで、本実施の形態の構成と比較するために、まず、速度制御処理Aにおいて、フィードバック制御Aのみが行われる構成(以下、「比較構成」ともいう)について説明する。 Here, in order to compare with the configuration of the present embodiment, first, a configuration in which only feedback control A is performed in speed control processing A (hereinafter also referred to as "comparative configuration") will be described.
 ここで、以下の前提Pm1のもとで行われる、比較構成におけるフィードバック制御Aについて説明する。前提Pm1では、図6(a)の特性線Lsが示す1次関数で表現される速度指令Vrefが使用される。また、前提Pm1では、電動機M1における回転子X1bの単位回転数の範囲は、0krpm~80krpmの範囲である。すなわち、前提Pm1では、電動機M1において高速回転状況が発生する。 Here, the feedback control A in the comparative configuration performed under the following premise Pm1 will be described. In the premise Pm1, the speed command Vref expressed by a linear function indicated by the characteristic line Ls in FIG. 6(a) is used. Further, in the premise Pm1, the range of unit rotation speed of the rotor X1b in the electric motor M1 is in the range of 0 krpm to 80 krpm. That is, in the premise Pm1, a high-speed rotation situation occurs in the electric motor M1.
 前提Pm1のもとで行われる、比較構成におけるフィードバック制御Aでは、速度制御部101が、速度指令Vrefが示す速度と、推定された速度Vsとを比較し、速度偏差Verrを得る。速度偏差Verrは、速度指令Vrefが示す速度と、速度Vsとの差分を示す。PI制御部201は、速度偏差Verrに対応する電流値Ipを算出する。PI制御部201は、速度偏差Verrに比例する電流成分と、速度偏差Verrの積分に比例する電流成分との和を、電流値Ipとして算出する。電流値Ipは、電流指令のフィードバック成分である。 In the feedback control A in the comparison configuration performed under the premise Pm1, the speed control unit 101 compares the speed indicated by the speed command Vref with the estimated speed Vs to obtain the speed deviation Verr. The speed deviation Verr indicates the difference between the speed indicated by the speed command Vref and the speed Vs. The PI control unit 201 calculates a current value Ip corresponding to the speed deviation Verr. The PI control unit 201 calculates the sum of the current component proportional to the speed deviation Verr and the current component proportional to the integral of the speed deviation Verr as the current value Ip. The current value Ip is a feedback component of the current command.
 次に、比較構成では、速度制御部101が、電流値Ipを電流指令Irefとして生成し、当該電流指令Irefを電流制御部102へ送信する。そして、電流制御部102、推定部106、PWM制御部103および三相インバータIv1が、前述した処理を行う。これにより、電動機M1は、電流指令Irefに基づいた回転速度で回転子X1b(すなわち、回転部材X1)を回転させる。 Next, in the comparison configuration, speed control unit 101 generates current value Ip as current command Iref and transmits the current command Iref to current control unit 102 . Current control unit 102, estimation unit 106, PWM control unit 103, and three-phase inverter Iv1 then perform the above-described processing. Thereby, the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotation speed based on the current command Iref.
 比較構成における上記の各処理が、図6(a)の特性線Lsに対応する期間にわたって、継続的に、繰り返して行われる。これにより、比較構成における回転子X1bの回転速度の状態は、図6(a)の特性線L0が示す、回転速度としての速度の状態となる。速度指令Vrefに対応する特性線Lsと、特性線L0とによれば、比較構成における、回転子X1bの回転速度の応答は、速度指令Vrefの回転速度の応答よりも遅くなっている。特に、高速回転状況が発生しているときに、比較構成における、回転子X1bの回転速度の応答特性は悪い。すなわち、回転子X1bの回転速度は、速度指令Vrefの回転速度に追従していない。 Each of the above processes in the comparison configuration is continuously and repeatedly performed over a period corresponding to the characteristic line Ls in FIG. 6(a). As a result, the state of the rotational speed of the rotor X1b in the comparative configuration becomes the state of speed as the rotational speed indicated by the characteristic line L0 in FIG. 6(a). According to the characteristic line Ls corresponding to the speed command Vref and the characteristic line L0, the rotational speed response of the rotor X1b in the comparison configuration is slower than the rotational speed response of the speed command Vref. In particular, when a high-speed rotation situation occurs, the rotation speed response characteristic of the rotor X1b in the comparative configuration is poor. That is, the rotational speed of rotor X1b does not follow the rotational speed of speed command Vref.
 図8は、シミュレーション結果としてのq軸電流およびd軸電流の特性を示す図である。図8(a)は、q軸電流の特性を示す。図8(a)において、特性線Lq0は、比較構成に対応するq軸電流の特性を示す。図8(b)は、d軸電流の特性を示す。図8(b)において、特性線Ld0は、比較構成に対応するd軸電流の特性を示す。 FIG. 8 is a diagram showing the characteristics of the q-axis current and the d-axis current as simulation results. FIG. 8(a) shows the characteristics of the q-axis current. In FIG. 8A, a characteristic line Lq0 indicates the q-axis current characteristic corresponding to the comparative configuration. FIG. 8(b) shows the characteristics of the d-axis current. In FIG. 8B, a characteristic line Ld0 indicates the characteristic of the d-axis current corresponding to the comparative configuration.
 図9は、試験結果の一例を示す図である。図9(a)は、比較構成の試験結果の一例を示す。図9(a)において、横軸は、時間を示す。特性Li0は、電流特性を示す。特性Lcsは、速度指令Vrefの特性を示す。特性Lc0は、比較構成における回転子X1bの回転速度の特性を示す。 FIG. 9 is a diagram showing an example of test results. FIG. 9(a) shows an example of the test results of the comparative configuration. In FIG. 9A, the horizontal axis indicates time. A characteristic Li0 indicates a current characteristic. A characteristic Lcs indicates a characteristic of the speed command Vref. A characteristic Lc0 represents the rotational speed characteristic of the rotor X1b in the comparative configuration.
 図9(a)によれば、比較構成における回転子X1bの回転速度は、速度指令Vrefが示す速度に追従できていないことが分かる。 According to FIG. 9(a), it can be seen that the rotational speed of the rotor X1b in the comparative configuration cannot follow the speed indicated by the speed command Vref.
 上記の比較構成における回転速度の応答特性を改善するために、本実施の形態では、フィードバック制御Aに加え、フィードフォワード制御Aが行われる。 In order to improve the rotational speed response characteristics in the above comparative configuration, in addition to feedback control A, feedforward control A is performed in the present embodiment.
 次に、前述の前提Pm1のもとで行われる、本実施の形態の速度制御処理Aについて説明する。前提Pm1における速度制御処理Aでは、速度制御部101は、速度指令Vrefに基づいて、フィードバック制御Aおよびフィードフォワード制御Aを行う。フィードフォワード制御Aは、フィードバック制御Aと並列して行われる。 Next, a description will be given of the speed control process A of the present embodiment, which is performed under the premise Pm1 described above. In speed control processing A in premise Pm1, speed control unit 101 performs feedback control A and feedforward control A based on speed command Vref. The feedforward control A is performed in parallel with the feedback control A.
 ここでは、前提Pm1における速度制御処理Aの説明のために、前提Pm1におけるフィードバック制御Aと、前提Pm1におけるフィードフォワード制御Aとについて説明する。以下の説明では、処理を分かり易くするために、用語「制御タイミング」を使用している。 Here, in order to explain the speed control process A in the premise Pm1, the feedback control A in the premise Pm1 and the feedforward control A in the premise Pm1 will be explained. In the following description, the term "control timing" is used to facilitate understanding of the process.
 前提Pm1におけるフィードバック制御Aでは、速度制御部101が、速度指令Vrefが示す速度と、推定された速度Vsとを比較し、速度偏差Verrを得る。PI制御部201は、速度偏差Verrに対応する、制御タイミングの電流値Ipを算出する。電流値Ipは、電流指令のフィードバック成分である。すなわち、電流値Ipは、電流指令に相当する。 In the feedback control A in the premise Pm1, the speed control unit 101 compares the speed indicated by the speed command Vref and the estimated speed Vs to obtain the speed deviation Verr. The PI control unit 201 calculates a control timing current value Ip corresponding to the speed deviation Verr. The current value Ip is a feedback component of the current command. That is, the current value Ip corresponds to the current command.
 また、前提Pm1におけるフィードフォワード制御Aでは、速度制御部101は、風抵抗推定処理、加速度推定処理、速度制御処理Awおよび速度制御処理Akを行う。 Also, in feedforward control A in premise Pm1, speed control unit 101 performs wind resistance estimation processing, acceleration estimation processing, speed control processing Aw, and speed control processing Ak.
 風抵抗推定処理では、要約すれば、速度制御部101が、制御タイミングにおける風抵抗Wrを推定する。前述したように、回転子回転状況では、制御タイミングは、駆動タイミングである。そのため、回転子回転状況における風抵抗推定処理では、速度制御部101が、駆動タイミングにおける風抵抗Wrを推定する。 In the wind resistance estimation process, to summarize, the speed control unit 101 estimates the wind resistance Wr at the control timing. As mentioned above, in the rotor rotation situation, the control timing is the drive timing. Therefore, in the wind resistance estimation process in the rotor rotation state, the speed control unit 101 estimates the wind resistance Wr at the drive timing.
 風抵抗推定処理では、速度制御部101の風抵抗推定部202が、以下の特性線Lciに関連する式と、速度指令Vrefとに基づいて、制御タイミングにおける風抵抗Wrを推定する。 In the wind resistance estimation process, the wind resistance estimation unit 202 of the speed control unit 101 estimates the wind resistance Wr at the control timing based on the following formula related to the characteristic line Lci and the speed command Vref.
 図10は、特性線Lciの一例を示すグラフである。図10の横軸は、単位回転数としての回転数を示す。当該回転数は、電動機M1の速度(すなわち、回転子X1bの回転速度)に相当する。 FIG. 10 is a graph showing an example of the characteristic line Lci. The horizontal axis of FIG. 10 indicates the number of revolutions as a unit number of revolutions. The rotation speed corresponds to the speed of the electric motor M1 (that is, the rotation speed of the rotor X1b).
 特性線Lciは、事前に行われた実験Aにより得られた特性線である。実験Aでは、電動機M1を、異なる複数の速度で駆動させる。当該複数の速度には、前述の高速速度も含まれる。また、実験Aでは、各速度で駆動している電動機M1の電流が測定される。電流の測定は、例えば、外部の電流センサーにより測定される。各速度に対応する電流をグラフにプロットする。そして、グラフにプロットされた値に近似する特性線を作成する。これにより、図10の特性線Lciが得られる。なお、実験Aにおいて、各速度で駆動している電動機M1の電流は、制御部Ct1による演算により算出されてもよい。 The characteristic line Lci is a characteristic line obtained from Experiment A conducted in advance. In experiment A, motor M1 is driven at different speeds. The plurality of speeds also includes the aforementioned high speed. Also, in Experiment A, the current of the motor M1 driven at each speed is measured. Current measurements are made, for example, by an external current sensor. Plot the current corresponding to each speed on a graph. Then, create a characteristic line that approximates the values plotted on the graph. Thereby, the characteristic line Lci of FIG. 10 is obtained. In Experiment A, the current of electric motor M1 driven at each speed may be calculated by the control unit Ct1.
 特性線Lciは、電流Iを示す以下の式(1)のような2次関数を示す。 The characteristic line Lci represents a quadratic function representing the current I, such as the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)のVsは、電動機M1の速度である。式(1)において、a,b,cは、変数である。式(1)の変数a,b,cは、電動機M1の特性、電動機M1の取り付け場所等によって変わる。また、電動機M1が巻線機に使用される状況では、変数a,b,cは、巻線機の構造によって変わる。変数a,b,cは、上記の実験Aにより特定される。  Vs in equation (1) is the speed of the electric motor M1. In formula (1), a, b, and c are variables. Variables a, b, and c in equation (1) change depending on the characteristics of the electric motor M1, the mounting location of the electric motor M1, and the like. Also, in situations where the motor M1 is used in a winding machine, the variables a, b, and c will vary depending on the construction of the winding machine. The variables a, b, and c are specified by Experiment A above.
 特性線Lciが示す式(1)により、回転数に相当する速度の増加に伴い、電動機M1の電流が、当該速度の2乗で増加することが分かる。 From the equation (1) indicated by the characteristic line Lci, it can be seen that the current of the electric motor M1 increases by the square of the speed as the speed corresponding to the rotation speed increases.
 また、「トルクT=電流I×トルク定数Kt」の関係式と、式(1)とから、以下の式(2)が得られる。トルク定数Ktは、既知の値である。 Also, the following formula (2) is obtained from the relational formula "torque T=current I×torque constant Kt" and formula (1). Torque constant Kt is a known value.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)から、トルクTaは、速度の2乗に比例関係があることが分かる。式(2)のトルクTaは、風抵抗Wrに相当する。すなわち、式(2)は、風抵抗Wrを算出するための式である。 From the formula (2), it can be seen that the torque Ta is proportional to the square of the speed. Torque Ta in equation (2) corresponds to wind resistance Wr. That is, equation (2) is an equation for calculating wind resistance Wr.
 以下においては、風抵抗Wrを相殺するための電流値を、「電流値Ifw」または「Ifw」ともいう。電流値Ifwは、フィードフォワード補償としての値である。電流値Ifwは、「トルクT=電流I×トルク定数Kt」の関係式に基づいた、以下の式(3)により表現される。トルク定数Ktは、既知の値である。 In the following, the current value for canceling the wind resistance Wr is also referred to as "current value Ifw" or "Ifw". The current value Ifw is a value for feedforward compensation. The current value Ifw is expressed by the following equation (3) based on the relational expression "torque T=current I×torque constant Kt". Torque constant Kt is a known value.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 具体的には、風抵抗推定処理では、風抵抗推定部202が、速度指令Vrefが示す、制御タイミングにおける速度を、式(2)の「Vs」に代入することにより、トルクTaに相当する風抵抗Wrを算出する。すなわち、風抵抗推定部202は、制御タイミングにおける当該風抵抗Wrを推定する。次に、風抵抗推定部202が、推定された風抵抗Wrを、式(3)に代入することにより、制御タイミングにおける電流値Ifwを算出する。 Specifically, in the wind resistance estimation process, the wind resistance estimation unit 202 substitutes the speed at the control timing indicated by the speed command Vref for “Vs” in the equation (2), thereby obtaining the wind resistance corresponding to the torque Ta. Calculate the resistance Wr. That is, the wind resistance estimator 202 estimates the wind resistance Wr at the control timing. Next, the wind resistance estimator 202 calculates the current value Ifw at the control timing by substituting the estimated wind resistance Wr into Equation (3).
 次に、速度制御処理Awにおいて、速度制御部101は、算出された電流値Ifwを、電流指令に相当する、制御タイミングの電流値Ipに加算する。すなわち、速度制御部101は、電流指令を補正する。 Next, in the speed control process Aw, the speed control unit 101 adds the calculated current value Ifw to the current value Ip at the control timing, which corresponds to the current command. That is, speed control unit 101 corrects the current command.
 また、加速度推定処理では、要約すれば、速度制御部101が、駆動タイミングにおける加速度Acを推定する。前述したように、回転子回転状況では、制御タイミングは、駆動タイミングである。そのため、回転子回転状況における加速度推定処理では、速度制御部101が、駆動タイミングにおける加速度Acを推定する。 Also, in the acceleration estimation process, in summary, the speed control unit 101 estimates the acceleration Ac at the driving timing. As mentioned above, in the rotor rotation situation, the control timing is the drive timing. Therefore, in the acceleration estimation process in the rotor rotation state, the speed control unit 101 estimates the acceleration Ac at the driving timing.
 加速度推定処理では、加速度推定部203が、速度指令Vrefに基づいて、加速度Acを推定する。ここでは、説明を分かり易くするために、一例として、制御タイミングにおける加速度Acを推定する処理について説明する。 In the acceleration estimation process, the acceleration estimation unit 203 estimates the acceleration Ac based on the speed command Vref. Here, in order to make the explanation easier to understand, the process of estimating the acceleration Ac at the control timing will be explained as an example.
 具体的には、加速度推定部203が、1次関数で表現される速度指令Vrefのうち、制御タイミングにおける加速度Acが算出されるように、当該加速度推定部203が、速度指令Vrefを微分する。すなわち、速度制御部101は、速度指令Vrefを微分することにより、加速度Acを推定する。これにより、加速度Acが得られる。 Specifically, the acceleration estimating unit 203 differentiates the speed command Vref, which is expressed by a linear function, so that the acceleration Ac at the control timing is calculated. That is, speed control unit 101 estimates acceleration Ac by differentiating speed command Vref. This gives the acceleration Ac.
 以下においては、電動機M1のイナーシャを、「電動機イナーシャJ」ともいう。電動機イナーシャJは、回転子X1bのイナーシャである。ゲイン補償部204は、既知の値である電動機イナーシャJおよびトルク定数Ktを保持している。 In the following, the inertia of the electric motor M1 is also called "motor inertia J". The motor inertia J is the inertia of the rotor X1b. Gain compensator 204 holds motor inertia J and torque constant Kt, which are known values.
 次に、ゲイン補償部204は、「加速度Ac×電動機イナーシャJ=トルクTb」の関係式から、加速力Apを算出する。上記のトルクTbは、加速力Apに相当する。具体的には、ゲイン補償部204は、加速度Acに電動機イナーシャJを乗算することにより、加速力Apを算出する。 Next, the gain compensator 204 calculates the acceleration force Ap from the relational expression "acceleration Ac×motor inertia J=torque Tb". The above torque Tb corresponds to the acceleration force Ap. Specifically, the gain compensator 204 multiplies the acceleration Ac by the motor inertia J to calculate the acceleration force Ap.
 以下においては、加速度に関連する電流値であって、かつ、回転速度の応答性を高くするための電流値を、「電流値Ifa」または「Ifa」ともいう。電流値Ifaは、例えば、加速度Acに関連する電流値である。電流値Ifaは、「トルクT=電流I×トルク定数Kt」の関係式に基づいた、以下の式(4)により表現される。トルク定数Ktは、既知の値である。 In the following, the current value related to acceleration and for increasing the rotational speed responsiveness is also referred to as "current value Ifa" or "Ifa". Current value Ifa is, for example, a current value related to acceleration Ac. The current value Ifa is expressed by the following equation (4) based on the relational expression "torque T=current I×torque constant Kt". Torque constant Kt is a known value.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)の「J×Ac」は、加速力Apである。 "J×Ac" in formula (4) is the acceleration force Ap.
 また、ゲイン補償部204は、式(4)に、算出された加速力Apを代入することにより、制御タイミングにおける電流値Ifaを算出する。すなわち、ゲイン補償部204は、加速力Apをトルク定数Ktで除算することにより、制御タイミングにおける電流値Ifaを算出する。 Also, the gain compensator 204 calculates the current value Ifa at the control timing by substituting the calculated acceleration force Ap into the equation (4). That is, the gain compensator 204 divides the acceleration force Ap by the torque constant Kt to calculate the current value Ifa at the control timing.
 ところで、加速度推定処理における、電流値Ifaの算出のための上記の処理が、継続的に、繰り返して行われた場合、異なる複数の制御タイミングにおける電流値Ifaが算出される。この場合、ノイズによる不具合、過度の速度変化等の発生を防ぐために、LPF205が設けられる。 By the way, when the above process for calculating the current value Ifa in the acceleration estimation process is continuously and repeatedly performed, the current value Ifa is calculated at a plurality of different control timings. In this case, the LPF 205 is provided to prevent problems caused by noise, excessive speed changes, and the like.
 LPF205は、例えば、1次フィルタである。連続する複数の電流値IfaがLPF205を通過することにより、電流値Ifaの急激な変化の発生を防ぐことができる。そのため、LPF205により、ノイズによる不具合、過度の速度変化等の発生を防ぐことができる。また、実際の用途に応じて、連続する複数の電流値Ifaの周波数成分が予め定められた周波数以下になるように、LPF205の時定数は設定される。 The LPF 205 is, for example, a primary filter. By passing a plurality of consecutive current values Ifa through the LPF 205, it is possible to prevent the occurrence of sudden changes in the current value Ifa. Therefore, the LPF 205 can prevent problems caused by noise, excessive speed changes, and the like. Further, the time constant of LPF 205 is set so that the frequency components of a plurality of continuous current values Ifa are equal to or less than a predetermined frequency, depending on the actual application.
 次に、速度制御処理Akにおいて、速度制御部101は、LPF205を通過した、制御タイミングにおける電流値Ifaを、電流指令に相当する、制御タイミングの電流値Ipに加算する。LPF205を通過した電流値Ifaは、ローパスフィルタであるLPF205が適用された当該電流値Ifaである。すなわち、速度制御部101は、LPF205が適用された電流値Ifaに基づいて、電流指令を補正する。 Next, in the speed control process Ak, the speed control unit 101 adds the current value Ifa at the control timing, which has passed through the LPF 205, to the current value Ip at the control timing, which corresponds to the current command. The current value Ifa that has passed through the LPF 205 is the current value Ifa to which the LPF 205, which is a low-pass filter, has been applied. That is, speed control unit 101 corrects the current command based on current value Ifa to which LPF 205 is applied.
 LPF205が適用された電流値Ifaは、連続する複数の電流値Ifaのいずれかの急激な変化の発生を防ぐために、当該電流値Ifaの補正が必要な場合における電流値、または、当該補正が不要な場合における電流値である。当該補正が必要な場合における電流値は、LPF205に基づいて補正された電流値Ifaである。当該補正が不要な場合における電流値は、補正されていない電流値Ifaである。 The current value Ifa to which the LPF 205 is applied is the current value in the case where the current value Ifa needs to be corrected in order to prevent a sudden change in any of the continuous current values Ifa, or the correction is unnecessary. is the current value in the case of The current value when the correction is necessary is the current value Ifa corrected based on the LPF 205 . The current value when the correction is unnecessary is the uncorrected current value Ifa.
 また、当該LPF205が適用された電流値Ifaは、前述の式(4)により、推定された加速度Acを用いて算出された値である。すなわち、電流値Ifaは、推定された加速度Acに基づいて算出された値である。そのため、速度制御部101は、推定された加速度Acに基づいて電流指令を補正する。 Also, the current value Ifa to which the LPF 205 is applied is a value calculated using the estimated acceleration Ac according to the above equation (4). That is, the current value Ifa is a value calculated based on the estimated acceleration Ac. Therefore, the speed control unit 101 corrects the current command based on the estimated acceleration Ac.
 上記の速度制御処理Awおよび速度制御処理Akにより、電流指令に相当する電流値Ipに、電流値Ifwおよび電流値Ifaが加算される。速度制御部101は、「電流値Ip+電流値Ifw+電流値Ifa」の演算により得られた電流値を、電流指令Irefとして生成する。当該電流指令Irefは、推定された風抵抗Wr、および、推定された加速度Acに基づいて、電流指令に相当する電流値Ipが補正された指令である。また、生成された当該電流指令Irefは、風抵抗Wrによる速度の低下の抑制、電動機の応答性向上等を実現するための指令である。 By the speed control processing Aw and the speed control processing Ak described above, the current value Ifw and the current value Ifa are added to the current value Ip corresponding to the current command. Speed control unit 101 generates a current value obtained by calculation of "current value Ip+current value Ifw+current value Ifa" as current command Iref. The current command Iref is a command obtained by correcting the current value Ip corresponding to the current command based on the estimated wind resistance Wr and the estimated acceleration Ac. Further, the generated current command Iref is a command for suppressing a decrease in speed due to wind resistance Wr, improving the responsiveness of the electric motor, and the like.
 速度制御部101は、電流指令に相当する電流値Ipが補正された指令である電流指令Irefを電流制御部102へ送信する。 The speed control unit 101 transmits to the current control unit 102 a current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command.
 そして、電流制御部102、推定部106、PWM制御部103および三相インバータIv1が、前述した処理を行う。これにより、電動機M1は、電流指令に相当する電流値Ipが補正された指令である電流指令Irefに基づいた回転速度で回転子X1b(すなわち、回転部材X1)を回転させる。したがって、前提Pm1における速度制御処理Aでは、速度制御部101は、補正された電流指令に基づいて、電動機M1を制御する。 Then, the current control unit 102, the estimation unit 106, the PWM control unit 103, and the three-phase inverter Iv1 perform the processing described above. As a result, the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotational speed based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in speed control processing A in premise Pm1, speed control unit 101 controls electric motor M1 based on the corrected current command.
 前提Pm1における速度制御処理Aの上記の各処理と、電流制御部102、推定部106、PWM制御部103および三相インバータIv1の処理とが、図6(a)の特性線Lsに対応する期間にわたって、継続的に、繰り返して行われる。速度制御処理Aの上記の各処理が繰り返して行われる毎に、制御タイミングは変更される。 A period corresponding to the characteristic line Ls of FIG. continuously and repeatedly over time. The control timing is changed each time the above processes of the speed control process A are repeated.
 速度制御処理Aの上記の各処理が継続的に行われる期間には、高速回転状況が発生している期間も含まれる。当該期間では、高速回転状況において、速度制御部101は、フィードバック制御Aおよびフィードフォワード制御Aを行う。以上のようにして、前提Pm1における速度制御処理Aが行われる。 The period during which the above processes of the speed control process A are continuously performed includes the period during which the high-speed rotation situation occurs. During this period, the speed control unit 101 performs feedback control A and feedforward control A in a high-speed rotation state. As described above, the speed control process A in the premise Pm1 is performed.
 また、前提Pm1における速度制御処理Aでは、高速回転状況において、フィードフォワード制御Aの風抵抗推定処理が行われることにより、高速回転状況における風抵抗Wrが推定される。この場合、高速回転状況における風抵抗Wrに基づいた電流値Ifwが、電流指令に相当する電流値Ipに加算される。 In addition, in the speed control process A in the premise Pm1, the wind resistance Wr in the high-speed rotation condition is estimated by performing the wind resistance estimation process of the feedforward control A in the high-speed rotation condition. In this case, the current value Ifw based on the wind resistance Wr in the high-speed rotation state is added to the current value Ip corresponding to the current command.
 以上の処理により、本実施の形態の速度制御処理Aにおける回転子X1bの回転速度の状態は、図6(a)の特性線L1が示す、回転速度としての速度の状態となる。速度指令Vrefに対応する特性線Lsと、特性線L1とによれば、タイミングとしての各時間において、実速度である回転速度が、速度指令Vrefの回転速度にほぼ追従していることがわかる。 Through the above processing, the state of the rotational speed of the rotor X1b in the speed control processing A of the present embodiment becomes the state of speed as the rotational speed indicated by the characteristic line L1 in FIG. 6(a). According to the characteristic line Ls corresponding to the speed command Vref and the characteristic line L1, it can be seen that the rotation speed, which is the actual speed, substantially follows the rotation speed of the speed command Vref at each time as timing.
 以下においては、前提Pm1のもとで速度制御処理Aを行う構成を、「構成A」ともいう。構成Aは、本実施の形態の構成である。 In the following, the configuration that performs the speed control process A under the premise Pm1 will also be referred to as "configuration A". Configuration A is the configuration of the present embodiment.
 また、図8には、シミュレーション結果としてのq軸電流およびd軸電流の特性が示される。図8(a)の特性線Lq1は、構成Aに対応するq軸電流の特性を示す。前述したように、特性線Lq0は、比較構成に対応するq軸電流の特性を示す。 Also, FIG. 8 shows the characteristics of the q-axis current and the d-axis current as simulation results. A characteristic line Lq1 in FIG. As described above, the characteristic line Lq0 indicates the q-axis current characteristic corresponding to the comparative configuration.
 図8(a)によれば、構成Aが、フィードフォワード制御Aを行わない比較構成よりも、早いタイミングで、大きいq軸電流を出力していることがわかる。 According to FIG. 8(a), it can be seen that the configuration A outputs a large q-axis current at an earlier timing than the comparative configuration in which the feedforward control A is not performed.
 図8(b)の特性線Ld1は、構成Aに対応するd軸電流の特性を示す。前述したように、特性線Ld0は、比較構成に対応するd軸電流の特性を示す。図8(b)によれば、構成Aが、フィードフォワード制御Aを行わない比較構成よりも、早いタイミングで、大きいd軸電流を出力していることがわかる。 A characteristic line Ld1 in FIG. 8(b) indicates the characteristic of the d-axis current corresponding to the configuration A. As described above, the characteristic line Ld0 indicates the characteristic of the d-axis current corresponding to the comparative configuration. According to FIG. 8B, it can be seen that the configuration A outputs a large d-axis current at an earlier timing than the comparative configuration in which the feedforward control A is not performed.
 また、図9は、試験結果の一例を示す。図9(b)は、構成Aの試験結果の一例を示す。図9(b)において、横軸は、時間を示す。特性Li1は、構成Aの電流特性を示す。特性Lcsは、速度指令Vrefの特性を示す。特性Lc1は、構成Aにおける回転子X1bの回転速度の特性を示す。図9(b)によれば、構成Aにおける回転子X1bの回転速度は、速度指令Vrefが示す速度に追従できていることが分かる。また、構成Aでは、速度偏差がほぼ生じていないことがわかる。 In addition, FIG. 9 shows an example of test results. FIG. 9B shows an example of test results for configuration A. FIG. In FIG. 9B, the horizontal axis indicates time. A characteristic Li1 indicates the current characteristic of the configuration A. A characteristic Lcs indicates a characteristic of the speed command Vref. A characteristic Lc1 indicates the characteristic of the rotation speed of the rotor X1b in the configuration A. According to FIG. 9B, it can be seen that the rotation speed of the rotor X1b in the configuration A can follow the speed indicated by the speed command Vref. Moreover, it can be seen that almost no speed deviation occurs in the configuration A.
 (まとめ)
 以上説明したように、本実施の形態によれば、速度制御部101は、電動機M1が駆動する駆動タイミングにおける回転子X1bの回転状態が、目標となる目標回転状態に近づくように、当該電動機M1を制御する速度制御処理Aを行う。速度制御処理Aは、フィードバック制御Aおよびフィードフォワード制御Aを含む。フィードフォワード制御Aは、駆動タイミングにおける回転子X1bの回転状態が目標回転状態に近づくように、速度制御部101が、推定された風抵抗Wr、および、推定された加速度Acに基づいて、電動機M1を制御する処理である。
(summary)
As described above, according to the present embodiment, the speed control unit 101 controls the rotation of the electric motor M1 so that the rotation state of the rotor X1b at the drive timing at which the electric motor M1 is driven approaches the target rotation state. A speed control process A for controlling is performed. Speed control processing A includes feedback control A and feedforward control A. In the feedforward control A, the speed control unit 101 controls the electric motor M1 based on the estimated wind resistance Wr and the estimated acceleration Ac so that the rotation state of the rotor X1b at the drive timing approaches the target rotation state. is a process for controlling
 すなわち、フィードフォワード制御では、風抵抗および加速度という、2つのパラメータが使用される。そのため、電動機の制御におけるフィードフォワード制御を高い精度で行うことができる。 That is, feedforward control uses two parameters: wind resistance and acceleration. Therefore, feedforward control in controlling the electric motor can be performed with high accuracy.
 また、本実施の形態によれば、フィードバック制御Aが行われることにより、外乱に伴う電流の急激な変化の抑制、速度偏差の低減等が実現される。また、フィードフォワード制御Aでは、回転子X1bの実速度に関わらず、速度制御に使用される電流指令Irefが迅速に得られる。そのため、電動機の応答性を向上させることができるという効果が得られる。 In addition, according to the present embodiment, feedback control A is performed to suppress abrupt changes in current due to disturbances, reduce speed deviation, and the like. Further, in the feedforward control A, the current command Iref used for speed control can be quickly obtained regardless of the actual speed of the rotor X1b. Therefore, it is possible to obtain an effect that the responsiveness of the electric motor can be improved.
 また、本実施の形態によれば、フィードフォワード制御Aおよびフィードバック制御Aが並列して行われる。そのため、フィードフォワード制御Aおよびフィードバック制御Aを組み合わせた2自由度制御系が構成される。 Also, according to the present embodiment, feedforward control A and feedback control A are performed in parallel. Therefore, a two-degree-of-freedom control system combining feedforward control A and feedback control A is configured.
 また、本実施の形態によれば、高速回転状況において、フィードバック制御Aおよびフィードフォワード制御Aが行われる。そのため、高速回転状況においても、回転子X1bの回転速度の高い応答性を実現することができる。したがって、高速回転状況において、速度指令に対し、正確に追従した速度Vsを発生可能な速度制御を提供することができる。また、フィードバック制御Aでは、例えば、外乱等に対応する電流値Ipが設定される。以上により、電動機M1において振動が発生することを抑制することができる。また、電動機M1の制御の安定性を向上させることができる。 Further, according to the present embodiment, feedback control A and feedforward control A are performed in high-speed rotation conditions. Therefore, even in a high-speed rotation state, high responsiveness of the rotation speed of the rotor X1b can be realized. Therefore, it is possible to provide speed control capable of generating a speed Vs that accurately follows the speed command in high-speed rotation conditions. Further, in feedback control A, for example, a current value Ip corresponding to disturbance or the like is set. As described above, it is possible to suppress the occurrence of vibration in the electric motor M1. Also, the stability of the control of the electric motor M1 can be improved.
 また、本実施の形態によれば、速度Vsを、電圧指令Vtrefと、フィードバック電流値(すなわち、電動機M1に供給される電流)とから推定している。前述した、電動機M1の制御の安定性の向上により、速度Vsを正確に推定することができる。 Further, according to the present embodiment, the speed Vs is estimated from the voltage command Vtref and the feedback current value (that is, the current supplied to the electric motor M1). The speed Vs can be accurately estimated by improving the stability of the control of the electric motor M1 as described above.
 以上のような効果が得られる電動機制御装置100を、例えば、換気扇等のファンモーターに適用した場合、ファンモーターの動作を高速化でき、風量不足の発生を防止できる。そのため、ファンモーターの小型化、当該ファンモーターの高出力化等を実現することができる。 When the electric motor control device 100 that provides the effects described above is applied to, for example, a fan motor such as a ventilation fan, the operation of the fan motor can be speeded up, and the occurrence of insufficient air volume can be prevented. As a result, it is possible to reduce the size of the fan motor, increase the output of the fan motor, and the like.
 また、当該電動機制御装置100を、巻線機に適用した場合、当該巻線機を高精度に制御することができる。そのため、コイル密度が高い電機子を巻線機で使用することができる。 Also, when the electric motor control device 100 is applied to a winding machine, the winding machine can be controlled with high accuracy. Therefore, an armature with a high coil density can be used in the winding machine.
 ところで、電動機の単位回転数の範囲が0krpm~80krpmのような広い範囲である構成において、PI制御のみが使用された場合、速度指令に対し偏差なく追従するために、PI制御のゲインを大きい値に設定する必要がある。 By the way, in a configuration where the range of the unit rotation speed of the electric motor is a wide range such as 0 krpm to 80 krpm, when only PI control is used, the gain of PI control is set to a large value in order to follow the speed command without deviation. must be set to
 しかしながら、PI制御のゲインを、過大な値に設定した場合、高速回転状況において、以下の不具合が発生するという問題がある。当該不具合は、例えば、電動機において振動が発生するという不具合である。また、当該不具合は、例えば、速度応答のオーバーシュートが大きくなり、速度の制御が不安定になるという不具合である。 However, if the PI control gain is set to an excessive value, there is a problem that the following problems occur in high-speed rotation conditions. The defect is, for example, a defect that vibration occurs in the electric motor. Further, the problem is, for example, a problem that the overshoot of the speed response becomes large and the speed control becomes unstable.
 そこで、本実施の形態の電動機制御装置100は、上記の効果を奏するための構成を有する。そのため、本実施の形態の電動機制御装置100により、上記の問題を解決することができる。 Therefore, the electric motor control device 100 of the present embodiment has a configuration for achieving the above effects. Therefore, the above problem can be solved by the electric motor control device 100 of the present embodiment.
 <実施の形態2>
 (構成)
 本実施の形態の構成は、電動機制御装置100を巻線機に適用した構成である。本実施の形態の巻線機は、図11の巻線機M10である。図11は、実施の形態2に係る巻線機M10の構成を示す斜視図である。図12は、実施の形態2に係る巻線機M10の制御系の構成を示すブロック図である。
<Embodiment 2>
(composition)
The configuration of the present embodiment is a configuration in which the motor control device 100 is applied to a winding machine. The winding machine of this embodiment is the winding machine M10 in FIG. FIG. 11 is a perspective view showing the configuration of a winding machine M10 according to the second embodiment. FIG. 12 is a block diagram showing the configuration of the control system of winding machine M10 according to the second embodiment.
 以下においては、電動機制御装置100を巻線機M10に適用した構成を、「構成Cm1」ともいう。本実施の形態の構成は、構成Cm1である。図12では、構成を簡略化するために、図1の三相インバータIv1を示していない。実際には、構成Cm1において、電動機制御装置100である後述のコントローラ11は、三相インバータIv1を含む。 In the following, the configuration in which the motor control device 100 is applied to the winding machine M10 is also referred to as "configuration Cm1". The configuration of this embodiment is configuration Cm1. FIG. 12 does not show the three-phase inverter Iv1 of FIG. 1 in order to simplify the configuration. Actually, in the configuration Cm1, the controller 11, which is the electric motor control device 100 and will be described later, includes a three-phase inverter Iv1.
 図11および図12を参照して、巻線機M10は、架台2、ワイヤボビン3、テンショナ4、剥離ユニット5、ワイヤ引き出しユニット6、スピンドル部7、カットユニット8、投入搬送装置9、排出搬送装置10およびコントローラ11を備える。構成Cm1において、コントローラ11は、電動機制御装置100である。すなわち、巻線機M10は、電動機制御装置100を備える。巻線機M10は、図2の電動機M1の固定子20に含まれる電機子コア22にワイヤ24を巻きつける機能を有する。 11 and 12, a winding machine M10 includes a frame 2, a wire bobbin 3, a tensioner 4, a peeling unit 5, a wire drawing unit 6, a spindle section 7, a cutting unit 8, an input conveying device 9, and an ejecting conveying device. 10 and controller 11 . In configuration Cm1, controller 11 is motor control device 100 . That is, the winding machine M10 includes a motor control device 100 . Winding machine M10 has the function of winding wire 24 around armature core 22 included in stator 20 of electric motor M1 in FIG.
 ここで、図3を用いて、固定子20の構成について説明する。前述したように、図3の固定子20の形状は、円筒状である。固定子20に含まれる9個の電機子21は、円状に配置される。 Here, the configuration of the stator 20 will be described using FIG. As mentioned above, the shape of the stator 20 in FIG. 3 is cylindrical. Nine armatures 21 included in the stator 20 are arranged in a circle.
 次に、図4を用いて、電機子21の構成について説明する。図4では、一例として、電機子21aとしての電機子21が示されている。図4(a)および図4(b)に示すように、電機子21aとしての電機子21は、電機子コア22と、インシュレータ23とを有する。図4(b)に示すように、電機子コア22の形状は、長尺状である。また、図4(b)に示すように、XZ面における、電機子コア22の形状は、略矩形状である。また、前述したように、図4(a)において、XY面に沿った、電機子コア22の断面の形状は、略T字状である。 Next, the configuration of the armature 21 will be described using FIG. FIG. 4 shows the armature 21 as an armature 21a as an example. As shown in FIGS. 4A and 4B, the armature 21 as the armature 21a has an armature core 22 and an insulator . As shown in FIG. 4B, the shape of the armature core 22 is elongated. Also, as shown in FIG. 4B, the shape of the armature core 22 on the XZ plane is substantially rectangular. Further, as described above, in FIG. 4A, the cross-sectional shape of the armature core 22 along the XY plane is substantially T-shaped.
 電機子コア22は、T字型の電磁鋼板が複数枚積層されて、構成される。以下においては、T字型の電磁鋼板が積層される方向を、「コア積層方向」ともいう。図4(b)における、電機子コア22のコア積層方向は、Z軸方向である。また、電機子コア22に対し、当該電機子コア22のコア積層方向の上下からインシュレータ23が挿入される。これにより、電機子コア22にはインシュレータ23が取り付けられる。 The armature core 22 is constructed by laminating a plurality of T-shaped magnetic steel sheets. Hereinafter, the direction in which the T-shaped magnetic steel sheets are laminated is also referred to as "core lamination direction". The core lamination direction of the armature core 22 in FIG. 4B is the Z-axis direction. Insulators 23 are inserted into the armature core 22 from above and below in the core stacking direction of the armature core 22 . Thereby, the insulator 23 is attached to the armature core 22 .
 電機子コア22には、ワイヤ24が巻きつけられる。具体的には、電機子コア22のインシュレータ23にはワイヤ24が巻きつけられる。本開示では、「電機子コア22のインシュレータ23にワイヤ24が巻きつけられる」ことを、簡略的に、「電機子コア22にワイヤ24が巻きつけられる」と表現する場合がある。 A wire 24 is wound around the armature core 22 . Specifically, a wire 24 is wound around the insulator 23 of the armature core 22 . In the present disclosure, "the wire 24 is wound around the insulator 23 of the armature core 22" may be simply expressed as "the wire 24 is wound around the armature core 22".
 電機子21aに含まれる電機子コア22のインシュレータ23には、図3の角部26aが存在する。 The insulator 23 of the armature core 22 included in the armature 21a has a corner portion 26a shown in FIG.
 ワイヤ24は、導電性を有する。ワイヤ24は、例えば、銅線、アルミ線等である。ワイヤ24の表面は絶縁被膜で覆われている。ワイヤ24は、巻始め部と巻終わり部とを有する。巻始め部は、ワイヤ24の巻きつけが始まる部分である。巻終わり部は、ワイヤ24の巻きつけが終わる部分である。電機子21aにおけるワイヤ24の巻始め部および巻終わり部の各々には、剥離部分25aが存在する。当該剥離部分25aは、絶縁被膜が剥離された部分である。 The wire 24 has conductivity. The wire 24 is, for example, a copper wire, an aluminum wire, or the like. The surface of the wire 24 is covered with an insulating coating. The wire 24 has a winding start portion and a winding end portion. The winding start portion is a portion where winding of the wire 24 starts. The winding end portion is a portion where the winding of the wire 24 ends. A stripped portion 25a exists at each of the winding start portion and the winding end portion of the wire 24 in the armature 21a. The stripped portion 25a is a portion from which the insulating coating is stripped.
 電機子21b,21c,21d,21e,21f,21g,21h,21iの各々の構成も、電機子21aの構成と同様である。例えば、電機子21bのインシュレータ23に巻きつけられたワイヤ24の巻終わり部には、剥離部分25bが存在する。電機子21bのインシュレータ23には、角部26bが存在する。 The configuration of each of the armatures 21b, 21c, 21d, 21e, 21f, 21g, 21h, and 21i is similar to that of the armature 21a. For example, the wire 24 wound around the insulator 23 of the armature 21b has a stripped portion 25b at the winding end. The insulator 23 of the armature 21b has a corner portion 26b.
 また、例えば、電機子21cのインシュレータ23に巻きつけられたワイヤ24の巻終わり部には、剥離部分25cが存在する。電機子21cのインシュレータ23には、角部26cが存在する。 Also, for example, a stripped portion 25c exists at the winding end of the wire 24 wound around the insulator 23 of the armature 21c. The insulator 23 of the armature 21c has a corner portion 26c.
 また、図3に示すように、例えば、電機子21aに巻きつけられたワイヤ24の巻終わり部は、当該電機子21aのインシュレータ23の角部26aに巻きつけられてから、隣の電機子21bのインシュレータ23の角部26bに巻きつけられる。さらに、当該ワイヤ24の巻終わり部は、電機子21bの隣の電機子21cのインシュレータ23の角部26cに巻きつけられる。 Further, as shown in FIG. 3, for example, the winding end portion of the wire 24 wound around the armature 21a is wound around the corner portion 26a of the insulator 23 of the armature 21a, and then wound around the adjacent armature 21b. is wound around the corner portion 26b of the insulator 23 of . Further, the winding end portion of the wire 24 is wound around the corner portion 26c of the insulator 23 of the armature 21c adjacent to the armature 21b.
 また、電機子21bに巻きつけられたワイヤ24の巻終わり部は、当該電機子21bのインシュレータ23の角部26bに巻きつけられてから、隣の電機子21cのインシュレータ23の角部26cに巻きつけられる。また、電機子21cに巻きつけられたワイヤ24の巻終わり部は、当該電機子21cのインシュレータ23の角部26cに巻きつけられる。 In addition, the winding end portion of the wire 24 wound around the armature 21b is wound around the corner portion 26b of the insulator 23 of the armature 21b and then wound around the corner portion 26c of the insulator 23 of the adjacent armature 21c. be put on. Further, the winding end portion of the wire 24 wound around the armature 21c is wound around the corner portion 26c of the insulator 23 of the armature 21c.
 そして、電機子21aの巻終わり部の剥離部分25a、電機子21bの巻終わり部の剥離部分25b、電機子21cの巻終わり部の剥離部分25cの各々に対し、位置合わせが行われ、図示しない端子が取付けられる。また、当該剥離部分25a,25b,25cの各々に取付けられた当該端子は、ロウ付けにより接合される。 Positioning is performed for each of the stripped portion 25a at the winding end portion of the armature 21a, the stripped portion 25b at the winding end portion of the armature 21b, and the stripped portion 25c at the winding end portion of the armature 21c, which is not shown. Terminals are attached. Also, the terminals attached to the peeled portions 25a, 25b, and 25c are joined by brazing.
 図3には示していないが、ワイヤ24の巻始め部、他の電機子のワイヤ24の巻始め部および巻終わり部についても、上述の方法と同様に、当該ワイヤ24の剥離部分の位置合わせ、端子の取付け、当該端子のロウ付け等が行われる。 Although not shown in FIG. 3, for the winding start portion of the wire 24 and the winding start portion and winding end portion of the wire 24 of the other armature, the alignment of the stripped portion of the wire 24 is performed in the same manner as described above. , attachment of terminals, brazing of the terminals, and the like are performed.
 以下においては、剥離部分25a,25b,25cの各々を、「剥離部分25」ともいう。また、以下においては、コア積層方向における、電機子コア22の厚さを、「電機子コア22の積層厚さ」または「コア積層厚さ」ともいう。 Each of the peeled portions 25a, 25b, and 25c is hereinafter also referred to as "the peeled portion 25". Further, hereinafter, the thickness of the armature core 22 in the core lamination direction is also referred to as "lamination thickness of the armature core 22" or "core lamination thickness".
 次に、巻線機M10の構成について説明する。図11および図12を参照して、巻線機M10のテンショナ4、剥離ユニット5、スピンドル部7およびカットユニット8は、当該巻線機M10の主要部である。テンショナ4、剥離ユニット5、スピンドル部7およびカットユニット8は、架台2に載置される。 Next, the configuration of the winding machine M10 will be described. 11 and 12, the tensioner 4, stripping unit 5, spindle section 7 and cutting unit 8 of the winding machine M10 are the main parts of the winding machine M10. The tensioner 4 , stripping unit 5 , spindle section 7 and cutting unit 8 are mounted on the base 2 .
 また、架台2の外側にワイヤボビン3が設置されている。ワイヤボビン3はワイヤ24を供給する構成要素である。ワイヤボビン3から引き出されたワイヤ24は、テンショナ4を通過する。当該ワイヤ24には、テンショナ4により、適正なテンションが付与される。 Also, a wire bobbin 3 is installed outside the pedestal 2 . The wire bobbin 3 is a component that supplies the wire 24 . A wire 24 pulled out from the wire bobbin 3 passes through the tensioner 4 . Appropriate tension is applied to the wire 24 by the tensioner 4 .
 テンショナ4に隣接して剥離ユニット5が設置されている。テンショナ4によりテンションが付与されたワイヤ24は、剥離ユニット5を通過する。 A stripping unit 5 is installed adjacent to the tensioner 4 . The wire 24 tensioned by the tensioner 4 passes through the stripping unit 5 .
 剥離ユニット5の上部にはレーザマーカ51が設置されている。レーザマーカ51は、レーザ光を射出する機能を有する。具体的には、レーザマーカ51は、レーザ光をワイヤ24の絶縁被膜に照射して、当該絶縁被膜を剥離する機能を有する。当該レーザマーカ51によってワイヤ24の絶縁被膜は剥離される。以下においては、レーザマーカ51が射出するレーザ光が照射される位置を、「照射位置」ともいう。 A laser marker 51 is installed on the top of the peeling unit 5 . The laser marker 51 has a function of emitting laser light. Specifically, the laser marker 51 has a function of exfoliating the insulating coating of the wire 24 by irradiating the insulating coating of the wire 24 with a laser beam. The insulating coating of the wire 24 is peeled off by the laser marker 51 . Hereinafter, the position irradiated with the laser beam emitted by the laser marker 51 is also referred to as "irradiation position".
 剥離ユニット5の出口側にはワイヤ引き出しユニット6が配置されている。ワイヤ引き出しユニット6はプーリ61とノズル62とを含む。プーリ61により、ワイヤ24の進行方向は、90度だけ変更される。そして、当該ワイヤ24は、ノズル62に供給される。ノズル62を通過したワイヤ24は、スピンドル部7に供給される。 A wire drawing unit 6 is arranged on the exit side of the stripping unit 5 . Wire drawing unit 6 includes pulley 61 and nozzle 62 . The pulley 61 changes the traveling direction of the wire 24 by 90 degrees. The wire 24 is then fed to the nozzle 62 . The wire 24 that has passed through the nozzle 62 is supplied to the spindle section 7 .
 以下においては、「巻きつけられる」を、「巻回される」と表現する場合がある。また、以下においては、「巻きつける」を、「巻回する」と表現する場合がある。また、以下においては、部材としての電機子コア22にワイヤ24を巻回する処理を、「巻線処理」ともいう。 In the following, "wound around" may be expressed as "wound around". Also, hereinafter, "to wind" may be expressed as "to wind". Further, hereinafter, the process of winding the wire 24 around the armature core 22 as a member is also referred to as "winding process".
 巻線機M10は、スピンドル部7を使用して、巻線処理を行う機能を有する。巻線処理は、ノズル62から供給されるワイヤ24を使用して、行われる。巻線処理により、ワイヤ24は、電機子コア22に巻回される。 The winding machine M10 has a function of performing winding processing using the spindle section 7. The winding process is performed using wire 24 fed from nozzle 62 . The wire 24 is wound around the armature core 22 by the winding process.
 スピンドル部7は、サーボモーター71と、エンコーダ72とを含む。構成Cm1において、サーボモーター71は、図2の電動機M1である。すなわち、巻線機M10は、電動機M1を備える。電動機M1であるサーボモーター71は、回転子X1bを含む。また、スピンドル部7は、図2のチャック75をさらに含む。チャック75は、電機子コア22を把持するための部材である。また、スピンドル部7のチャック75は、サーボモーター71の力が当該チャック75に伝達されることによって回転する。 The spindle section 7 includes a servomotor 71 and an encoder 72 . In configuration Cm1, the servo motor 71 is the electric motor M1 of FIG. That is, the winding machine M10 includes an electric motor M1. A servomotor 71, which is the electric motor M1, includes a rotor X1b. Moreover, the spindle part 7 further includes the chuck 75 of FIG. The chuck 75 is a member for holding the armature core 22 . Further, the chuck 75 of the spindle section 7 rotates when the force of the servomotor 71 is transmitted to the chuck 75 .
 以下においては、チャック75の回転速度を、「スピンドル部7の回転速度」ともいう。スピンドル部7の回転速度は、回転子X1bの回転速度である。また、以下においては、チャック75の回転角度を、「スピンドル部7の回転角度」ともいう。スピンドル部7の回転角度は、回転子X1bの回転角度である。スピンドル部7の回転速度および回転角度は、エンコーダ72の出力信号により精密に制御される。 In the following, the rotation speed of the chuck 75 is also referred to as "the rotation speed of the spindle section 7". The rotation speed of the spindle part 7 is the rotation speed of the rotor X1b. Further, hereinafter, the rotation angle of the chuck 75 is also referred to as "the rotation angle of the spindle portion 7". The rotation angle of the spindle portion 7 is the rotation angle of the rotor X1b. The rotation speed and rotation angle of the spindle section 7 are precisely controlled by the output signal of the encoder 72 .
 スピンドル部7の近辺にはカットユニット8が配置される。スピンドル部7によって電機子コア22にワイヤ24が巻回された後、カットユニット8によって当該ワイヤ24が切断される。 A cutting unit 8 is arranged near the spindle section 7 . After the wire 24 is wound around the armature core 22 by the spindle section 7 , the wire 24 is cut by the cutting unit 8 .
 以下においては、電機子コア22に対し巻線処理が行われた状況における、当該電機子コア22の状態を、「巻線状態」ともいう。巻線状態の電機子コア22は、スピンドル部7により巻線処理が行われた当該電機子コア22である。 In the following, the state of the armature core 22 when the winding process is performed on the armature core 22 is also referred to as "winding state". The armature core 22 in the wound state is the armature core 22 that has undergone winding processing by the spindle section 7 .
 投入搬送装置9および排出搬送装置10の間にスピンドル部7が存在するように、当該投入搬送装置9および当該排出搬送装置10は設けられている。また、架台2の上方には、図示されない搬送ハンドが設けられている。搬送ハンドは、投入搬送装置9からスピンドル部7へ電機子コア22を搬送する機能を有する。また、搬送ハンドは、スピンドル部7により巻線処理が行われた電機子コア22を排出搬送装置10へ搬送する機能を有する。 The input transport device 9 and the discharge transport device 10 are provided so that the spindle part 7 exists between the input transport device 9 and the discharge transport device 10 . Further, a transfer hand (not shown) is provided above the pedestal 2 . The transport hand has a function of transporting the armature core 22 from the input transport device 9 to the spindle section 7 . The transport hand also has a function of transporting the armature core 22 wound by the spindle unit 7 to the discharge transport device 10 .
 排出搬送装置10に隣接してコントローラ11が取り付けられている。コントローラ11は、制御部111と、メモリ112と、入力部113と、表示部114とを含む。構成Cm1において、制御部111は、電動機制御装置100の制御部Ct1である。制御部Ct1である制御部111は、図示されない三相インバータIv1を介して、電動機M1であるサーボモーター71を制御する。 A controller 11 is attached adjacent to the discharge transport device 10 . Controller 11 includes control unit 111 , memory 112 , input unit 113 , and display unit 114 . In the configuration Cm1, the control unit 111 is the control unit Ct1 of the electric motor control device 100. FIG. A control unit 111, which is the control unit Ct1, controls a servomotor 71, which is the electric motor M1, via a three-phase inverter Iv1 (not shown).
 入力部113は、オペレータが操作可能なインタフェースである。入力部113は、例えば、キーボードである。入力部113に対しては、例えば、オペレータにより、巻線機M10の動作の条件等が入力される。表示部114は、ディスプレイである。表示部114は、例えば、巻線機M10の動作の状況を表示する。 The input unit 113 is an interface that can be operated by the operator. The input unit 113 is, for example, a keyboard. For example, the operator inputs the operating conditions of the winding machine M10 to the input unit 113 . The display unit 114 is a display. The display unit 114 displays, for example, the operation status of the winding machine M10.
 次に、図13を用いて、テンショナ4の具体的な構成について説明する。図13は、テンショナ4の構成を示す図である。ワイヤボビン3から供給されたワイヤ24は、アイレットガイド40を通過した後、ガイドローラ41a,41b,41c,41dにより、進行方向が変更される。その後、当該ワイヤ24は、アイレットガイド46を通過して剥離ユニット5に供給される。 Next, a specific configuration of the tensioner 4 will be described using FIG. FIG. 13 is a diagram showing the configuration of the tensioner 4. As shown in FIG. After the wire 24 supplied from the wire bobbin 3 passes through the eyelet guide 40, the traveling direction is changed by the guide rollers 41a, 41b, 41c and 41d. After that, the wire 24 passes through the eyelet guide 46 and is supplied to the stripping unit 5 .
 ガイドローラ41aの上流側にはフェルトパッド47が設けられている。ワイヤ24は、フェルトパッド47によりクリーニングされる。 A felt pad 47 is provided on the upstream side of the guide roller 41a. Wire 24 is cleaned by felt pad 47 .
 ガイドローラ41bには、図示しないカップリングを介して、エンコーダ42が接続されている。エンコーダ42は、ガイドローラ41bの回転数を検出する。ガイドローラ41bの回転数は、当該ガイドローラ41bを通過するワイヤ24の長さに対応している。そのため、エンコーダ42により検出された、ガイドローラ41bの回転数によってワイヤ24の移動量を測定することができる。エンコーダ42により検出された、ガイドローラ41bの回転数(以下、「ローラ回転数」ともいう)のデータは、コントローラ11に通知される。 An encoder 42 is connected to the guide roller 41b via a coupling (not shown). The encoder 42 detects the number of rotations of the guide roller 41b. The number of rotations of the guide roller 41b corresponds to the length of the wire 24 passing through the guide roller 41b. Therefore, the amount of movement of the wire 24 can be measured from the number of revolutions of the guide roller 41b detected by the encoder 42. FIG. Data on the number of revolutions of the guide roller 41 b (hereinafter also referred to as “roller number of revolutions”) detected by the encoder 42 is notified to the controller 11 .
 ガイドローラ41cにはプーリ43aが固着されている。プーリ43aはタイミングベルト44を介してプーリ43bと連結されている。また、プーリ43bはパウダーブレーキ45の軸に固着されている。パウダーブレーキ45によりワイヤ24に適正なテンションが与えられる。 A pulley 43a is fixed to the guide roller 41c. The pulley 43a is connected via a timing belt 44 to the pulley 43b. Also, the pulley 43 b is fixed to the shaft of the powder brake 45 . Appropriate tension is applied to the wire 24 by the powder brake 45 .
 次に、図14を用いて、投入搬送装置9の具体的な構成について説明する。図14は、投入搬送装置9の構成を示す図である。図14に示すように、投入搬送装置9は、電機子コア22を搬送するベルト91を備える。投入搬送装置9は、ベルト91が移動可能なように、構成されている。ベルト91は回転軸92に取付けられている。 Next, using FIG. 14, a specific configuration of the input conveying device 9 will be described. 14A and 14B are diagrams showing the configuration of the input conveying device 9. FIG. As shown in FIG. 14 , the input conveying device 9 has a belt 91 that conveys the armature core 22 . The input conveying device 9 is configured such that the belt 91 is movable. Belt 91 is attached to rotating shaft 92 .
 また、ベース板93に支持されたモーター取付板94にモーター95が取り付けられている。モーター95は、ベルト91を移動させるために駆動するモーターである。ベルト91の回転軸92にはプーリ96が固着されている。また、モーター95の出力軸にはプーリ97が固着されている。プーリ96,97はタイミングベルト98を介して連結されている。 A motor 95 is attached to a motor mounting plate 94 supported by the base plate 93 . A motor 95 is a motor that drives the belt 91 to move. A pulley 96 is fixed to the rotating shaft 92 of the belt 91 . A pulley 97 is fixed to the output shaft of the motor 95 . Pulleys 96 and 97 are connected via a timing belt 98 .
 ベルト91の下流側には、電機子コア22の位置決めに使用される位置決め板99が取付けられている。また、位置決め板99と対向する位置に測長センサ12が取付けられている。以下においては、投入搬送装置9において、位置決め板99と測長センサ12との間の領域を、「測定領域」ともいう。測定領域は、電機子コア22の積層厚さを測定するための領域である。測定領域は、位置決め板99と対向する。 A positioning plate 99 used for positioning the armature core 22 is attached to the downstream side of the belt 91 . A length measuring sensor 12 is attached at a position facing the positioning plate 99 . In the following description, the area between the positioning plate 99 and the length measuring sensor 12 is also referred to as the "measurement area". The measurement area is an area for measuring the lamination thickness of the armature core 22 . The measurement area faces the positioning plate 99 .
 測長センサ12は、電機子コア22の積層厚さ(すなわち、コア積層厚さ)を測定する機能を有する。測長センサ12は、例えば、非接触のレーザ変位計である。なお、測長センサ12は、接触式の変位計であってもよい。当該接触式の変位計は、例えば、MR素子によって、シリンダのロッドの移動量を検出するセンサである。測長センサ12により測定された、電機子コア22の積層厚さのデータはコントローラ11に通知される。 The length measurement sensor 12 has a function of measuring the lamination thickness of the armature core 22 (that is, the core lamination thickness). The length measurement sensor 12 is, for example, a non-contact laser displacement meter. Note that the length measurement sensor 12 may be a contact-type displacement meter. The contact-type displacement gauge is, for example, a sensor that detects the amount of movement of the rod of the cylinder using an MR element. Data of the lamination thickness of the armature core 22 measured by the length measuring sensor 12 is notified to the controller 11 .
 次に、巻線機M10の制御系の構成について説明する。図12を参照して、コントローラ11は、巻線機M10の各構成要素を制御する。制御部111は、測長センサ12から電機子コア22の積層厚さのデータを受信する。また、制御部111は、テンショナ4のエンコーダ42から、回転数に関するデータを受信する。また、制御部111は、スピンドル部7に内蔵されたエンコーダ72からスピンドル部7の回転数および回転角度に関するデータを受信する。 Next, the configuration of the control system of the winding machine M10 will be described. Referring to FIG. 12, controller 11 controls each component of winding machine M10. The control unit 111 receives data on the lamination thickness of the armature core 22 from the length measurement sensor 12 . Further, the control unit 111 receives data regarding the number of revolutions from the encoder 42 of the tensioner 4 . Further, the control unit 111 receives data regarding the number of rotations and the rotation angle of the spindle unit 7 from the encoder 72 built in the spindle unit 7 .
 また、制御部111は、スピンドル部7のサーボモーター71の制御信号、レーザマーカ51の制御信号、カットユニット8の制御信号、および、投入搬送装置9のモーター95の制御信号を出力する。また、コントローラ11のメモリ112には、これらの制御信号を作成するために必要なデータがあらかじめ記憶されている。 The control unit 111 also outputs a control signal for the servomotor 71 of the spindle unit 7 , a control signal for the laser marker 51 , a control signal for the cutting unit 8 , and a control signal for the motor 95 of the input conveying device 9 . In addition, the memory 112 of the controller 11 stores in advance data necessary for creating these control signals.
 制御部111は、スピンドル部7のエンコーダ72の出力信号に基づいて、サーボモーター71の回転を制御することにより、スピンドル部7の回転速度および回転角度を調整する。 The control unit 111 adjusts the rotation speed and rotation angle of the spindle unit 7 by controlling the rotation of the servomotor 71 based on the output signal of the encoder 72 of the spindle unit 7 .
 次に、図11、図12、図13および図14を参照して、主に、電機子コア22の搬送、および、巻線処理について説明する。以下においては、電機子21に含まれる電機子コア22にワイヤ24が巻回されていない状況における、当該電機子コア22の状態を、「非巻線状態」ともいう。非巻線状態の電機子コア22は、例えば、図4の電機子コア22にワイヤ24が巻回されていない当該電機子コア22である。 Next, with reference to FIGS. 11, 12, 13 and 14, mainly the transport and winding process of the armature core 22 will be described. Hereinafter, the state of the armature core 22 included in the armature 21 in which the wire 24 is not wound around the armature core 22 is also referred to as a "non-wound state". The non-wound armature core 22 is, for example, the armature core 22 in which the wire 24 is not wound around the armature core 22 in FIG.
 非巻線状態の電機子コア22にはインシュレータ23が取り付けられている。また、非巻線状態の電機子コア22は、インシュレータ23に、ワイヤ24が巻回されていない当該電機子コア22である。 An insulator 23 is attached to the armature core 22 in a non-wound state. The non-wound armature core 22 is the armature core 22 in which the wire 24 is not wound around the insulator 23 .
 まず、図14の投入搬送装置9のベルト91上に、非巻線状態の電機子コア22が置かれる。図14に示すように、制御部111の制御信号によってモーター95が回転し、非巻線状態の電機子コア22は、ベルト91により、矢印が示す方向に搬送される。非巻線状態の電機子コア22が、位置決め板99と対向する測定領域に移動した時に、モーター95の回転が停止する。 First, the armature core 22 in a non-wound state is placed on the belt 91 of the input conveying device 9 in FIG. As shown in FIG. 14, the motor 95 is rotated by the control signal from the control section 111, and the armature core 22 in the non-wound state is conveyed by the belt 91 in the direction indicated by the arrow. When the non-wound armature core 22 moves to the measurement area facing the positioning plate 99, the rotation of the motor 95 stops.
 次に、非巻線状態の電機子コア22が測定領域に存在する状態で、測長センサ12により、当該電機子コア22の積層厚さ(すなわち、コア積層厚さ)が測定される。測長センサ12から出力された積層厚さのデータはコントローラ11の制御部111に通知される。制御部111は、測定されたコア積層厚さに応じた演算処理を行う。演算処理の詳細な内容は後述する。 Next, with the armature core 22 in the non-wound state existing in the measurement area, the length measurement sensor 12 measures the lamination thickness of the armature core 22 (that is, the core lamination thickness). The layer thickness data output from the length measurement sensor 12 is notified to the control section 111 of the controller 11 . The control unit 111 performs arithmetic processing according to the measured core lamination thickness. Detailed contents of the arithmetic processing will be described later.
 測長センサ12によりコア積層厚さが測定された後、非巻線状態の電機子コア22は、図示されない搬送ハンドによりスピンドル部7へ搬送される。非巻線状態の電機子コア22は、スピンドル部7のチャック75により把持される。以下においては、電機子コア22がチャック75により把持されている状態を、「把持状態」ともいう。 After the core lamination thickness is measured by the length measuring sensor 12, the non-wound armature core 22 is transported to the spindle section 7 by a transport hand (not shown). The non-wound armature core 22 is gripped by the chuck 75 of the spindle section 7 . Hereinafter, the state in which the armature core 22 is gripped by the chuck 75 is also referred to as a "gripped state."
 図2では、把持状態における、非巻線状態の電機子コア22が示されている。把持状態において、スピンドル部7により巻線処理が行われる。 FIG. 2 shows the armature core 22 in a non-wound state in a gripped state. The winding process is performed by the spindle portion 7 in the holding state.
 また、図13に示すように、ワイヤボビン3から供給されたワイヤ24は、テンショナ4のアイレットガイド40に案内されて、フェルトパッド47を通過する。そして、ワイヤ24は、ガイドローラ41a,41b,41c,41dに案内されながら、当該ワイヤ24に適正なテンションが付与された状態で、テンショナ4を通過し、剥離ユニット5へ移動する。 Also, as shown in FIG. 13 , the wire 24 supplied from the wire bobbin 3 is guided by the eyelet guide 40 of the tensioner 4 and passes through the felt pad 47 . Then, the wire 24 is guided by the guide rollers 41a, 41b, 41c, and 41d, and while being properly tensioned, passes through the tensioner 4 and moves to the stripping unit 5. As shown in FIG.
 図12に示すように、ワイヤ24が剥離ユニット5を通過する際、制御部111からの制御信号を受信するレーザマーカ51により、ワイヤ24の絶縁被膜が剥離される。これにより、ワイヤ24の巻終わり部、および、次の電機子21のワイヤ24の巻始め部に、剥離部分25が形成される。 As shown in FIG. 12 , when the wire 24 passes through the stripping unit 5 , the insulating coating of the wire 24 is stripped by the laser marker 51 that receives the control signal from the controller 111 . As a result, peeled portions 25 are formed at the winding end portion of the wire 24 and the winding start portion of the wire 24 of the next armature 21 .
 図11に示すように、剥離ユニット5を通過したワイヤ24の進行方向は、プーリ61により、変更される。そして、ワイヤ24は、ノズル62を通過して、スピンドル部7における、図示されない端末クリップに把持される。 As shown in FIG. 11, the traveling direction of the wire 24 that has passed through the stripping unit 5 is changed by the pulley 61 . The wire 24 then passes through the nozzle 62 and is gripped by a terminal clip (not shown) on the spindle portion 7 .
 前述したように、把持状態において、巻線処理が行われる。巻線処理では、非巻線状態の電機子コア22にワイヤ24が巻回されるように、サーボモーター71が、回転子X1bおよびチャック75を回転させる。チャック75の回転に伴い、電機子コア22が回転することにより、当該電機子コア22にワイヤ24が巻回される。 As described above, the winding process is performed in the holding state. In the winding process, the servomotor 71 rotates the rotor X1b and the chuck 75 so that the wire 24 is wound around the armature core 22 in the non-wound state. As the armature core 22 rotates as the chuck 75 rotates, the wire 24 is wound around the armature core 22 .
 巻線処理が終了した後、切断処理が行われる。切断処理では、電機子コア22に巻回されたワイヤ24の巻終わり部の剥離部分25が残るように、カットユニット8はワイヤ24を切断する。これにより、電機子21の製造が完了する。次に、図示されない搬送ハンドにより、電機子21は排出搬送装置10に搬送される。そして、当該電機子21は巻線機M10から排出される。 After the winding process is completed, the cutting process is performed. In the cutting process, the cutting unit 8 cuts the wire 24 wound around the armature core 22 so that the stripped portion 25 at the winding end of the wire 24 remains. Thus, the manufacture of the armature 21 is completed. Next, the armature 21 is transported to the discharge transport device 10 by a transport hand (not shown). Then, the armature 21 is ejected from the winding machine M10.
 以下においては、ワイヤ24において、当該ワイヤ24の絶縁被膜を剥離するための位置を、「膜剥離位置」ともいう。 In the following, the position of the wire 24 for stripping the insulating coating of the wire 24 is also referred to as "film stripping position".
 次に、ワイヤ24における膜剥離位置を決める際の処理について説明する。ここで、ワイヤ24の剥離部分25は、剥離ユニット5の上部に設けられたレーザマーカ51がワイヤ24の絶縁被膜にレーザ光を照射して、当該絶縁被膜が剥離されることにより、形成される。以下においては、剥離部分25の位置を、「剥離部位置」ともいう。 Next, the processing for determining the film peeling position on the wire 24 will be described. Here, the stripped portion 25 of the wire 24 is formed by irradiating the insulating coating of the wire 24 with a laser beam from the laser marker 51 provided on the upper portion of the stripping unit 5 and stripping the insulating coating. Hereinafter, the position of the peeled portion 25 is also referred to as the "peeled portion position".
 剥離部分25の剥離部位置が所望の位置からずれている状況では、カットユニット8によりワイヤ24の端部が切断される際に、以下の不具合が生じる。当該不具合は、例えば、剥離部分25の長さが極端に短いという不具合である。また、当該不具合は、例えば、剥離部分25が形成されないという不具合である。 In a situation where the peeled portion position of the peeled portion 25 is deviated from the desired position, the following problems occur when the end portion of the wire 24 is cut by the cutting unit 8. The problem is, for example, the problem that the length of the peeled portion 25 is extremely short. Further, the problem is, for example, the problem that the peeled portion 25 is not formed.
 上記の不具合が生じた場合、ある電機子のワイヤと、他の電機子のワイヤの巻始め部および巻終わり部との電気的な接合が行えなくなる状況(以下、「非接合状況」ともいう)が生じる。 When the above problem occurs, a situation in which the wires of a certain armature cannot be electrically connected to the winding start and winding end portions of the wires of another armature (hereinafter also referred to as "unbonded state"). occurs.
 非接合状況が発生する原因は、例えば、電機子コア22の積層厚さ(すなわち、コア積層厚さ)のバラツキである。また、非接合状況が発生する原因は、スピンドル部7の回転速度が高速である状況において、速度指令が示す速度と実速度との差が大きくなり、剥離部位置が所望の位置からずれていることである。 The cause of the occurrence of the unbonded state is, for example, variations in the lamination thickness of the armature core 22 (that is, the core lamination thickness). In addition, the reason why the non-bonding state occurs is that the difference between the speed indicated by the speed command and the actual speed increases when the rotational speed of the spindle unit 7 is high, and the position of the peeling portion deviates from the desired position. That is.
 本実施の形態では、以下の第1の処理方法により、電機子コア22の積層厚さのバラツキを起因とする不具合の発生を抑制する。当該不具合は、例えば、剥離部分25の位置が所望の位置からずれているという不具合である。以下においては、非巻線状態の電機子コア22にワイヤ24を所定の回数だけ巻回するために必要な、当該ワイヤ24の長さを、「所定巻回ワイヤ長さ」ともいう。 In this embodiment, the following first processing method is used to suppress the occurrence of defects caused by variations in the lamination thickness of the armature core 22 . The defect is, for example, the defect that the position of the peeled portion 25 is deviated from the desired position. Hereinafter, the length of the wire 24 required to wind the wire 24 around the armature core 22 in the non-wound state a predetermined number of times is also referred to as "predetermined winding wire length".
 また、以下においては、非巻線状態の電機子コア22にワイヤ24を予定の回数だけ巻回するために必要な、当該ワイヤ24の長さを、「予定巻回ワイヤ長さ」または「最終巻回長さ」ともいう。当該予定の回数は、電機子21を製造するために必要な、巻回の回数である。前述の所定巻回ワイヤ長さに対応する所定の回数は、当該予定の回数と異なる回数、または、当該予定の回数と同じ回数である。 Further, hereinafter, the length of the wire 24 necessary for winding the wire 24 around the armature core 22 in the non-wound state by the predetermined number of times is referred to as the "planned winding wire length" or the "final winding wire length". It is also called "winding length". The planned number of times is the number of windings required to manufacture the armature 21 . The predetermined number of times corresponding to the predetermined winding wire length is the number of times different from the predetermined number of times or the same number of times as the predetermined number of times.
 また、本実施の形態の構成Cm1では、以下の第2の処理方法によって、スピンドル部7の回転速度が高速である状況において、速度指令が示す速度と実速度との差が大きくなることを抑制する。また、速度指令が示す速度と実速度との差が大きくなることを起因とした、ワイヤの剥離部分の位置ずれの発生を抑制する。 In addition, in the configuration Cm1 of the present embodiment, the following second processing method suppresses an increase in the difference between the speed indicated by the speed command and the actual speed when the rotational speed of the spindle unit 7 is high. do. Also, the occurrence of positional displacement of the delaminated portion of the wire caused by an increase in the difference between the speed indicated by the speed command and the actual speed is suppressed.
 (第1の処理方法)
 まず、第1の処理方法について簡単に説明する。第1の処理方法では、事前に、電機子コア22の積層厚さと、所定巻回ワイヤ長さとの関係を示す演算式を求めておく。また、当該演算式のデータをコントローラ11のメモリ112に記憶しておく。
(First processing method)
First, the first processing method will be briefly described. In the first processing method, an arithmetic expression representing the relationship between the lamination thickness of the armature core 22 and the predetermined winding wire length is obtained in advance. Also, the data of the arithmetic expression is stored in the memory 112 of the controller 11 .
 そして、非巻線状態の電機子コア22に巻線処理を行うために、以下の処理が行われる。まず、測長センサ12が、電機子コア22の積層厚さを測定する。次に、上述の演算式を用いて、予定巻回ワイヤ長さを算出する。そして、巻線処理が行われた電機子コア22のワイヤ24の長さを測定し、算出した予定巻回ワイヤ長さに基づいて、ワイヤ24の膜剥離位置を決定する。 Then, in order to perform the winding process on the armature core 22 in the non-wound state, the following process is performed. First, the length measurement sensor 12 measures the lamination thickness of the armature core 22 . Next, the expected winding wire length is calculated using the above-described arithmetic expression. Then, the length of the wire 24 of the armature core 22 that has undergone the winding process is measured, and the film peeling position of the wire 24 is determined based on the calculated planned winding wire length.
 以下、第1の処理方法について具体的に説明する。第1の処理方法では、まず、電機子コア22の積層厚さを変数として示す演算式であって、かつ、当該電機子コア22に対応する所定巻回ワイヤ長さまたは予定巻回ワイヤ長さを算出する演算式を作成する。演算式は、例えば、係数を使用した式である。所定巻回ワイヤ長さに対応する所定の回数が、予定巻回ワイヤ長さに対応する予定の回数と同じである場合、所定巻回ワイヤ長さは、予定巻回ワイヤ長さと同じである。 The first processing method will be specifically described below. In the first processing method, first, an arithmetic expression showing the lamination thickness of the armature core 22 as a variable, and a predetermined winding wire length or planned winding wire length corresponding to the armature core 22 Create an equation to calculate The arithmetic expression is, for example, an expression using coefficients. If the predetermined number of turns corresponding to the predetermined wound wire length is the same as the predetermined number of turns corresponding to the predetermined wound wire length, then the predetermined wound wire length is the same as the scheduled wound wire length.
 演算式の作成のために、まず、ワイヤの積層により、一度の巻回に必要なワイヤの長さが、当該ワイヤの巻数が増えるに従って大きくなることを考慮して、仮の演算式を作成する。当該仮の演算式による算出結果と、当該仮の演算式を使用した実験の結果とを照合することにより、当該演算式の係数を求める。これにより、演算式が作成される。当該演算式のデータを、あらかじめコントローラ11のメモリ112に記憶しておく。 In order to create an arithmetic expression, first, a provisional arithmetic expression is created by considering that the length of the wire required for one winding increases as the number of turns of the wire increases due to the layering of the wire. . The coefficient of the arithmetic expression is obtained by collating the result of calculation by the temporary arithmetic expression with the result of the experiment using the temporary arithmetic expression. An arithmetic expression is thus created. The data of the arithmetic expression are stored in advance in the memory 112 of the controller 11 .
 非巻線状態の電機子コア22に巻線処理を行うために、まず、制御部111は、投入搬送装置9のベルト91により搬送される電機子コア22が、位置決め板99と対向する測定領域に到達した時にモーター95の動作を止める。測長センサ12は、電機子コア22の積層厚さを測定し、当該電機子コア22の積層厚さのデータは制御部111に通知される。 In order to perform the winding process on the armature core 22 in the non-wound state, first, the control unit 111 controls the measurement area where the armature core 22 conveyed by the belt 91 of the input conveying device 9 faces the positioning plate 99 . is reached, motor 95 is stopped. The length measurement sensor 12 measures the lamination thickness of the armature core 22 and notifies the controller 111 of the lamination thickness data of the armature core 22 .
 制御部111は、メモリ112から演算式を読み出し、当該演算式と、測定された積層厚さとに基づいて、予定巻回ワイヤ長さを算出する。 The control unit 111 reads the arithmetic expression from the memory 112, and calculates the expected winding wire length based on the arithmetic expression and the measured lamination thickness.
 巻線処理が行われた後、制御部111は、テンショナ4のエンコーダ42により検出されたローラ回転数に対応する、ワイヤ24の長さを、算出した予定巻回ワイヤ長さと比較しながら、ワイヤ24における膜剥離位置を決定する。 After the winding process is performed, the control unit 111 compares the length of the wire 24, which corresponds to the roller rotation speed detected by the encoder 42 of the tensioner 4, with the calculated expected winding wire length. Determine the film peel location at 24 .
 制御部111は、スピンドル部7のエンコーダ72の出力信号に基づいてサーボモーター71の回転速度および回転角度を調整することにより、ワイヤ24の移動を制御する。そして、制御部111は、図12に示すように、ワイヤ24の膜剥離位置が、レーザマーカ51が射出するレーザ光の照射位置に到達した場合、ワイヤ24の移動速度を遅くする制御と、剥離処理が行われるための制御とを行う。 The control unit 111 controls the movement of the wire 24 by adjusting the rotation speed and rotation angle of the servomotor 71 based on the output signal of the encoder 72 of the spindle unit 7. Then, as shown in FIG. 12, when the film peeling position of the wire 24 reaches the irradiation position of the laser beam emitted by the laser marker 51, the control unit 111 controls the moving speed of the wire 24 to be slowed down and performs the peeling process. to control and perform.
 当該剥離処理では、レーザマーカ51が、制御部111の制御に従って、レーザ光をワイヤ24の絶縁被膜に照射する。レーザ光が照射された絶縁被膜は、ワイヤ24から剥離される。 In the peeling process, the laser marker 51 irradiates the insulating coating of the wire 24 with laser light under the control of the control unit 111 . The insulating coating irradiated with the laser light is stripped from the wire 24 .
 上記の第1の処理方法によれば、電機子コア22の積層厚さに対応した予定巻回ワイヤ長さである最終巻回長さが演算式を用いて算出される。また、算出された予定巻回ワイヤ長さに基づいて、ワイヤ24の膜剥離位置が決定される。 According to the first processing method described above, the final winding length, which is the planned winding wire length corresponding to the lamination thickness of the armature core 22, is calculated using an arithmetic expression. Also, the film peeling position of the wire 24 is determined based on the calculated planned winding wire length.
 これにより、電機子コア22の積層厚さのバラツキに影響されることなく、ワイヤ24の剥離部分は、常に、ワイヤ24の巻終わり部の所定の位置に形成される。 As a result, the stripped portion of the wire 24 is always formed at a predetermined position at the winding end of the wire 24 without being affected by variations in the lamination thickness of the armature core 22 .
 なお、上記の第1の処理方法では、予定巻回ワイヤ長さを、メモリに記憶された演算式を用いて算出したが、これに限定されない。例えば、実験により、電機子コアの積層厚さを変更する毎に、予定巻回ワイヤ長さを測定して、当該予定巻回ワイヤ長さをグラフにプロットする。そして、グラフにプロットされた値に近似する特性線を作成する。特性線は、積層厚さと予定巻回ワイヤ長さとの関係を示す線である。特性性は、例えば、直線または曲線である。そして、特性線に基づいて、予定巻回ワイヤ長さが算出されてもよい。 In addition, in the first processing method described above, the planned winding wire length was calculated using the arithmetic expression stored in the memory, but it is not limited to this. For example, by experiment, each time the lamination thickness of the armature core is changed, the planned winding wire length is measured, and the planned winding wire length is plotted on a graph. Then, create a characteristic line that approximates the values plotted on the graph. The characteristic line is a line showing the relationship between the lamination thickness and the expected winding wire length. A characteristic is, for example, a straight line or a curve. Then, the planned winding wire length may be calculated based on the characteristic line.
 (第2の処理方法)
 次に、第2の処理方法について説明する。以下においては、構成Cm1における第2の処理方法の構成を、「構成Cm1-2」ともいう。
(Second processing method)
Next, the second processing method will be explained. Hereinafter, the configuration of the second processing method in configuration Cm1 is also referred to as “configuration Cm1-2”.
 前述の比較構成が適用された巻線機では、電動機の回転速度が、例えば、8krpm以上に相当する高速な速度になった場合、速度指令が示す速度と、実速度との差が生じる。当該差により、剥離部位置のずれが発生する。剥離部位置のずれの発生を抑制するための速度制御処理Aを、図15を使用して説明する。 In the winding machine to which the comparative configuration described above is applied, when the rotation speed of the electric motor reaches a high speed equivalent to, for example, 8 krpm or more, there is a difference between the speed indicated by the speed command and the actual speed. Due to this difference, the position of the peeled portion is shifted. Speed control processing A for suppressing the occurrence of displacement of the peeled portion position will be described with reference to FIG. 15 .
 構成Cm1-2では、電動機制御装置100であるコントローラ11は、制御部Ct1である制御部111と、三相インバータIv1とを含む。 In configuration Cm1-2, controller 11, which is motor control device 100, includes control unit 111, which is control unit Ct1, and three-phase inverter Iv1.
 以下の説明では、構成Cm1-2におけるコントローラ11を、電動機制御装置100と表現する。また、以下の説明では、構成Cm1-2におけるサーボモーター71を、電動機M1と表現する。また、以下の説明では、構成Cm1-2における制御部111を、制御部Ct1と表現する。 In the following description, the controller 11 in the configuration Cm1-2 is expressed as the motor control device 100. Further, in the following description, the servomotor 71 in the configuration Cm1-2 is expressed as the electric motor M1. Also, in the following description, the controller 111 in the configuration Cm1-2 is expressed as a controller Ct1.
 前述したように、巻線機M10は、巻線処理を行う機能を有する。以下においては、巻線機M10において、ワイヤ24が巻回されるための部材を、「巻線ワーク」ともいう。巻線ワークは、非巻線状態の電機子コア22である。以下においては、巻線ワークのイナーシャを、「巻線イナーシャJw」、「巻線イナーシャ」または「Jw」ともいう。 As described above, the winding machine M10 has the function of performing winding processing. In the following, the member for winding the wire 24 in the winding machine M10 is also referred to as a "winding work". The winding work is the armature core 22 in a non-wound state. In the following, the inertia of the winding work is also referred to as "winding inertia Jw", "winding inertia" or "Jw".
 巻線処理では、ワイヤ24が、部材としての巻線ワークに巻回される。構成Cm1-2における巻線機M10は、電動機M1が回転子X1bを回転させることによりワイヤ24を部材としての巻線ワークに巻回する構成を有する。 In the winding process, the wire 24 is wound around a winding work as a member. Winding machine M10 in configuration Cm1-2 has a configuration in which electric motor M1 rotates rotor X1b to wind wire 24 around a winding work as a member.
 以下においては、巻線処理を行うために経過する時間を、「巻線時間T」または「巻線時間」ともいう。巻線時間Tは、ワイヤ24を部材としての巻線ワークに巻回するために経過する時間である。以下においては、巻線時間Tを、「巻線時間TN」、「時間TN」または「TN」ともいう。「N」は0以上の整数である。構成Cm1-2では、巻線時間Tとして、T0,T1,T2,T3,T4を使用する。 In the following, the time that elapses to perform the winding process is also referred to as "winding time T" or "winding time". The winding time T is the time elapsed for winding the wire 24 around the winding work as a member. In the following, the winding time T is also referred to as "winding time TN", "time TN" or "TN". "N" is an integer of 0 or more. In configuration Cm1-2, winding times T are T0, T1, T2, T3, and T4.
 巻線処理において、巻線ワークにワイヤ24が巻回されている期間では、巻線重量により巻線イナーシャが増え続ける。巻線重量とは、巻線ワークに巻回されているワイヤ24の重さである。 In the winding process, while the wire 24 is wound around the winding work, the winding inertia continues to increase due to the weight of the winding. The winding weight is the weight of the wire 24 wound around the winding work.
 詳細は後述するが、構成Cm1-2では、巻線イナーシャと巻線時間Tとの関係を利用して、巻線時間Tに応じて、実際の巻線イナーシャを推定して、加速力を算出する。 Although the details will be described later, in the configuration Cm1-2, the relationship between the winding inertia and the winding time T is used to estimate the actual winding inertia according to the winding time T to calculate the acceleration force. do.
 図15は、構成Cm1-2において、制御部Ct1に含まれる速度制御部101の構成を示すブロック図である。図15を参照して、構成Cm1-2における速度制御部101は、図7の速度制御部101と比較して、T-JwテーブルTb1をさらに含む点が異なる。 FIG. 15 is a block diagram showing the configuration of the speed control section 101 included in the control section Ct1 in the configuration Cm1-2. Referring to FIG. 15, speed control unit 101 in configuration Cm1-2 differs from speed control unit 101 in FIG. 7 in that it further includes a T-Jw table Tb1.
 以下においては、把持状態において、ワイヤ24が巻線ワークに巻回される速度を、「巻線速度」ともいう。巻線速度は、回転子X1bの回転速度である。 In the following, the speed at which the wire 24 is wound around the winding work in the held state is also referred to as "winding speed". The winding speed is the rotational speed of the rotor X1b.
 図16は、T-JwテーブルTb1を説明するための図である。図16(a)は、巻線時間Tと、巻線速度との関係を示すグラフである。図16(a)において、縦軸は巻線速度であり、横軸は巻線時間Tである。T0からT4までの期間が1つのサイクルに相当する。当該1つのサイクルは、期間Pd1,Pd2,Pd3,Pd4を含む。期間Pd1は、巻線処理を行うための準備期間である。期間Pd2は、巻線速度が増加する加速期間である。期間Pd3は、巻線速度が一定である一定期間である。期間Pd4は、巻線速度が減少する減速期間である。 FIG. 16 is a diagram for explaining the T-Jw table Tb1. FIG. 16(a) is a graph showing the relationship between winding time T and winding speed. In FIG. 16(a), the vertical axis is the winding speed and the horizontal axis is the winding time T. As shown in FIG. A period from T0 to T4 corresponds to one cycle. The one cycle includes periods Pd1, Pd2, Pd3 and Pd4. A period Pd1 is a preparation period for performing the winding process. A period Pd2 is an acceleration period during which the winding speed increases. A period Pd3 is a constant period during which the winding speed is constant. A period Pd4 is a deceleration period during which the winding speed decreases.
 図16(a)には、特性線Lmが示される。特性線Lmは、巻線時間Tと巻線速度との関係を示す。特性線Lmは、例えば、図6(a)の特性線Lsが示す1次関数で表現される速度指令Vrefにより電動機M1を駆動させた状況における特性を示す。特性線Lmは、台形巻線パターンである。 FIG. 16(a) shows the characteristic line Lm. A characteristic line Lm indicates the relationship between winding time T and winding speed. A characteristic line Lm indicates a characteristic in a situation where the electric motor M1 is driven by a speed command Vref expressed by a linear function indicated by the characteristic line Ls of FIG. 6(a), for example. A characteristic line Lm is a trapezoidal winding pattern.
 以下においては、巻線時間Tとしての時間TNに対応する巻線重量を、「巻線重量MN」または「MN」ともいう。「N」は0以上の整数である。巻線重量とは、巻線ワークに巻回されているワイヤ24の重さである。巻線ワークにワイヤ24が巻回されていない場合、巻線重量は0である。構成Cm1-2では、巻線重量MNとして、M0,M1,M2,M3,M4が使用される。 In the following, the winding weight corresponding to the time TN as the winding time T is also referred to as "winding weight MN" or "MN". "N" is an integer of 0 or more. The winding weight is the weight of the wire 24 wound around the winding work. When the wire 24 is not wound around the winding work, the winding weight is zero. In configuration Cm1-2, M0, M1, M2, M3 and M4 are used as winding weights MN.
 以下においては、巻線時間Tとしての時間TNに対応する巻線イナーシャJwを、「巻線イナーシャJwN」または「JwN」ともいう。「N」は0以上の整数である。構成Cm1-2では、巻線イナーシャJwNとして、Jw0,Jw1,Jw2,Jw3,Jw4が使用される。 In the following, the winding inertia Jw corresponding to the time TN as the winding time T is also referred to as "winding inertia JwN" or "JwN". "N" is an integer of 0 or more. In the configuration Cm1-2, Jw0, Jw1, Jw2, Jw3 and Jw4 are used as the winding inertia JwN.
 また、構成Cm1-2では、イナーシャ増加率が使用される。イナーシャ増加率とは、巻線イナーシャJwの増加率である。以下においては、巻線時間Tとしての時間TNに対応するイナーシャ増加率を、「イナーシャ増加率KN」または「KN」ともいう。「N」は0以上の整数である。構成Cm1-2では、イナーシャ増加率KNとして、K0,K1,K2,K3が使用される。 Also, in configuration Cm1-2, the inertia increase rate is used. The inertia increase rate is the increase rate of the winding inertia Jw. Hereinafter, the inertia increase rate corresponding to the time TN as the winding time T is also referred to as "inertia increase rate KN" or "KN". "N" is an integer of 0 or more. In the configuration Cm1-2, K0, K1, K2 and K3 are used as the inertia increase rate KN.
 図16(b)は、T-JwテーブルTb1の一例を示す図である。T-JwテーブルTb1において、「時間」は、巻線時間Tである。T-JwテーブルTb1には、巻線時間Tに対応する、巻線重量、巻線イナーシャおよびイナーシャ増加率が示される。 FIG. 16(b) is a diagram showing an example of the T-Jw table Tb1. In the T-Jw table Tb1, "time" is the winding time T. The winding weight, winding inertia, and inertia increase rate corresponding to the winding time T are shown in the T-Jw table Tb1.
 T-JwテーブルTb1が示す各値は、事前に行われた実験Bにより得られた値である。実験Bでは、巻線機M10に巻線処理を行わせる。巻線処理では、例えば、図6(a)の特性線Lsが示す1次関数で表現される速度指令Vrefが使用される。巻線処理では、速度指令Vrefにより、電動機M1を駆動させる。巻線時間Tには、T0,T1,T2,T3,T4が存在する。 Each value shown in the T-Jw table Tb1 is a value obtained from Experiment B conducted in advance. In experiment B, the winding machine M10 is caused to perform the winding process. In the winding process, for example, a speed command Vref expressed by a linear function indicated by the characteristic line Ls in FIG. 6(a) is used. In the winding process, the motor M1 is driven by the speed command Vref. Winding time T includes T0, T1, T2, T3, and T4.
 次に、実験Bでは、T0,T1,T2,T3,T4の各々に対応する巻線重量MNおよび巻線イナーシャJwNが測定される。また、実験Bでは、期間Pd1,Pd2,Pd3,Pd4に対応するイナーシャ増加率KNが求められる。期間Pd1,Pd2,Pd3,Pd4は、それぞれ、T0,T1,T2,T3に対応する。そして、巻線重量MN、巻線イナーシャJwNおよびイナーシャ増加率KNを示すT-JwテーブルTb1が作成される。当該T-JwテーブルTb1は、巻線時間Tと、当該巻線時間Tにおける、部材としての巻線ワークのイナーシャ(すなわち、巻線イナーシャJw)とを関連付けて示すテーブルである。 Next, in Experiment B, the winding weight MN and the winding inertia JwN corresponding to each of T0, T1, T2, T3 and T4 are measured. Also, in Experiment B, the inertia increase rate KN corresponding to the periods Pd1, Pd2, Pd3, and Pd4 is obtained. Periods Pd1, Pd2, Pd3 and Pd4 correspond to T0, T1, T2 and T3, respectively. Then, a T-Jw table Tb1 showing the winding weight MN, the winding inertia JwN and the inertia increase rate KN is created. The T-Jw table Tb1 is a table showing the winding time T and the inertia of the winding work as a member at the winding time T (that is, the winding inertia Jw) in association with each other.
 部材としての巻線ワークのイナーシャとは、部材としての当該巻線ワークに巻回されたワイヤ24の巻線重量に応じたイナーシャである。また、当該T-JwテーブルTb1は、巻線時間Tと、当該巻線時間Tにおける、部材としての巻線ワークのイナーシャの増加率(すなわち、イナーシャ増加率KN)とを関連付けて示すテーブルでもある。 The inertia of the winding work as a member is the inertia corresponding to the winding weight of the wire 24 wound around the winding work as a member. The T-Jw table Tb1 is also a table showing the winding time T and the inertia increase rate of the winding work as a member (that is, the inertia increase rate KN) in the winding time T in association with each other. .
 次に、構成Cm1-2において、前述の前提Pm1のもとで行われる速度制御処理Aについて説明する。ここで、メモリの使用量を削減するために、T-JwテーブルTb1を、予め制御部Ct1に記憶させておく。すなわち、巻線時間TとしてのT0,T1,T2,T3,T4に対応する、巻線イナーシャJwNとしてのJw0,Jw1,Jw2,Jw3,Jw4を、予め制御部Ct1に記憶させておく。 Next, in the configuration Cm1-2, the speed control processing A performed under the above premise Pm1 will be described. Here, in order to reduce memory usage, the T-Jw table Tb1 is stored in advance in the control unit Ct1. That is, Jw0, Jw1, Jw2, Jw3, and Jw4 as winding inertias JwN corresponding to T0, T1, T2, T3, and T4 as winding times T are stored in the control unit Ct1 in advance.
 また、巻線時間TとしてのT0,T1,T2,T3に対応する、イナーシャ増加率KNとしてのK0,K1,K2,K3を、予め制御部Ct1に記憶させておく。「K0」は、期間Pd1に対応するイナーシャ増加率である。「K1」は、期間Pd2に対応するイナーシャ増加率である。「K2」は、期間Pd3に対応するイナーシャ増加率である。「K3」は、期間Pd4に対応するイナーシャ増加率である。 In addition, K0, K1, K2, and K3 as inertia increase rates KN corresponding to T0, T1, T2, and T3 as winding times T are stored in the control unit Ct1 in advance. "K0" is the inertia increase rate corresponding to period Pd1. "K1" is the inertia increase rate corresponding to the period Pd2. "K2" is the inertia increase rate corresponding to period Pd3. "K3" is the inertia increase rate corresponding to period Pd4.
 また、制御部Ct1は、速度制御処理Aの開始とともに、巻線時間算出処理を行う。巻線時間算出処理は、巻線時間Tを随時算出する処理である。巻線時間Tは、巻線時間算出処理が開始されてからの経過時間に相当する。そのため、制御部Ct1の速度制御部101は、常に、最新の巻線時間Tを把握している。 Also, the control unit Ct1 performs a winding time calculation process when the speed control process A is started. The winding time calculation process is a process of calculating the winding time T as needed. The winding time T corresponds to the elapsed time after the winding time calculation process is started. Therefore, the speed control section 101 of the control section Ct1 keeps track of the latest winding time T at all times.
 構成Cm1-2における速度制御処理Aでは、速度制御部101が、速度指令Vrefに基づいて、フィードバック制御Aおよびフィードフォワード制御Aを行う。構成Cm1-2におけるフィードバック制御Aは、実施の形態1のフィードバック制御Aと同様に行われる。これにより、電流指令に相当する電流値Ipが算出される。 In the speed control process A in configuration Cm1-2, the speed control unit 101 performs feedback control A and feedforward control A based on the speed command Vref. Feedback control A in configuration Cm1-2 is performed in the same manner as feedback control A in the first embodiment. Thereby, the current value Ip corresponding to the current command is calculated.
 構成Cm1-2におけるフィードフォワード制御Aは、要約すれば、速度制御部101が、推定された風抵抗Wr、推定された加速度Ac、および、推定された巻線イナーシャJwに基づいて、電動機M1を制御する処理である。 Feedforward control A in configuration Cm1-2 can be summarized as follows: speed control unit 101 controls electric motor M1 based on estimated wind resistance Wr, estimated acceleration Ac, and estimated winding inertia Jw. It is a process to control.
 構成Cm1-2におけるフィードフォワード制御Aでは、速度制御部101が、風抵抗推定処理、加速度推定処理、イナーシャ推定処理、速度制御処理Awおよび速度制御処理Akを行う。 In feedforward control A in configuration Cm1-2, speed control unit 101 performs wind resistance estimation processing, acceleration estimation processing, inertia estimation processing, speed control processing Aw, and speed control processing Ak.
 構成Cm1-2における風抵抗推定処理は、実施の形態1の風抵抗推定処理と同様に行われる。風抵抗推定処理により、風抵抗Wrが推定される。 The wind resistance estimation process in configuration Cm1-2 is performed in the same manner as the wind resistance estimation process in the first embodiment. Wind resistance Wr is estimated by the wind resistance estimation process.
 構成Cm1-2における加速度推定処理は、実施の形態1の加速度推定処理と同様に行われる。これにより、加速度Acが推定される。 The acceleration estimation process in configuration Cm1-2 is performed in the same manner as the acceleration estimation process in the first embodiment. Acceleration Ac is thereby estimated.
 構成Cm1-2におけるイナーシャ推定処理では、速度制御部101が、最新の巻線時間Tと、T-JwテーブルTb1とを使用して、制御タイミングに対応する巻線時間Tにおける巻線イナーシャJwを推定する。回転子回転状況では、当該制御タイミングは、駆動タイミングである。 In the inertia estimation process in the configuration Cm1-2, the speed control unit 101 uses the latest winding time T and the T-Jw table Tb1 to calculate the winding inertia Jw at the winding time T corresponding to the control timing. presume. In the rotor rotation situation, the control timing is the drive timing.
 例えば、制御タイミングに対応する、最新の巻線時間Tが「T2」である場合、速度制御部101は、T-JwテーブルTb1から、制御タイミングにおける巻線イナーシャJwを、「Jw2」として推定する。 For example, when the latest winding time T corresponding to the control timing is "T2", the speed control unit 101 estimates the winding inertia Jw at the control timing as "Jw2" from the T-Jw table Tb1. .
 T0,T1,T2,T3,T4以外の巻線時間Tの巻線イナーシャJwは、以下の式(5)から算出される。 The winding inertia Jw of the winding time T other than T0, T1, T2, T3, and T4 is calculated from the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)の「T」は、巻線時間Tである。式(5)の「JwN」、「KN」および「TN」の「N」は、1~4の範囲の整数である。式(5)のイナーシャ増加率KNには、期間Pd2,Pd3,Pd4の各々に対応するイナーシャ増加率が設定される。例えば、巻線時間Tが期間Pd2に含まれる場合、式(5)の「KN」には、期間Pd2に対応するイナーシャ増加率K1が設定される。 "T" in equation (5) is the winding time T. “N” in “JwN”, “KN” and “TN” in formula (5) is an integer in the range of 1-4. Inertia increase rate KN in equation (5) is set to an inertia increase rate corresponding to each of periods Pd2, Pd3, and Pd4. For example, when the winding time T is included in the period Pd2, the inertia increase rate K1 corresponding to the period Pd2 is set for "KN" in Equation (5).
 なお、T0,T1,T2,T3,T4以外の巻線時間Tの巻線イナーシャJwは、以下の式(6)から算出されてもよい。 The winding inertia Jw of the winding time T other than T0, T1, T2, T3, and T4 may be calculated from the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)の「J(T)」は、より正確にイナーシャを計算するための近似式である。近似式J(T)は、例えば、時間経過とイナーシャの増加との関係を示す式である。近似式J(T)は、例えば、時間経過とイナーシャの増加との関係を導くことが可能なCADデータから求めてもよい。近似式J(T)は、巻線時間Tの2次関数、または、巻線時間Tの3次関数である。 "J(T)" in formula (6) is an approximation formula for calculating the inertia more accurately. Approximation formula J(T) is, for example, a formula showing the relationship between the passage of time and the increase in inertia. The approximation J(T) may be obtained, for example, from CAD data capable of deriving the relationship between the passage of time and the increase in inertia. The approximate expression J(T) is a quadratic function of the winding time T or a cubic function of the winding time T.
 また、イナーシャ推定処理では、T0からT4までの期間における全ての巻線時間Tに対応する巻線イナーシャJwを示すテーブルを使用して、巻線イナーシャJwを推定してもよい。 Also, in the inertia estimation process, the winding inertia Jw may be estimated using a table showing the winding inertia Jw corresponding to all winding times T in the period from T0 to T4.
 以下においては、電動機M1のイナーシャである前述の電動機イナーシャJを、「モーターイナーシャJm」または「Jm」ともいう。モーターイナーシャJmは、電動機M1固有のイナーシャである。モーターイナーシャJmは、固定値である。以下においては、巻線処理を考慮したイナーシャを、「合計イナーシャJg」または「Jg」ともいう。モーターイナーシャJmおよびトルク定数Ktは、既知の値である。ゲイン補償部204は、予めモーターイナーシャJmおよびトルク定数Ktを保持している。 In the following, the motor inertia J, which is the inertia of the motor M1, is also referred to as "motor inertia Jm" or "Jm". A motor inertia Jm is an inertia unique to the electric motor M1. Motor inertia Jm is a fixed value. In the following, the inertia considering the winding process is also referred to as "total inertia Jg" or "Jg". Motor inertia Jm and torque constant Kt are known values. Gain compensator 204 holds motor inertia Jm and torque constant Kt in advance.
 次に、ゲイン補償部204は、以下の式(7)から、合計イナーシャJgを算出する。 Next, the gain compensation section 204 calculates the total inertia Jg from the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 具体的には、ゲイン補償部204は、モーターイナーシャJmに、推定された巻線イナーシャJwを加算することにより、合計イナーシャJgを算出する。 Specifically, the gain compensation unit 204 calculates the total inertia Jg by adding the estimated winding inertia Jw to the motor inertia Jm.
 次に、速度制御部101のゲイン補償部204は、推定された加速度Acに、合計イナーシャJgを乗算することにより、加速力Apを算出する。合計イナーシャJgは、推定された巻線イナーシャJwに基づいて算出されたイナーシャである。すなわち、速度制御部101は、推定された巻線イナーシャJwに基づいて、回転子X1bの加速力Apを算出する。 Next, the gain compensation section 204 of the speed control section 101 calculates the acceleration force Ap by multiplying the estimated acceleration Ac by the total inertia Jg. The total inertia Jg is the inertia calculated based on the estimated winding inertia Jw. That is, the speed control unit 101 calculates the acceleration force Ap of the rotor X1b based on the estimated winding inertia Jw.
 また、ゲイン補償部204は、「電流値Ifa=Ap/Kt」の式に、算出された加速力Ap、および、トルク定数Ktを代入することにより、制御タイミングにおける電流値Ifaを算出する。すなわち、ゲイン補償部204は、算出された加速力Apを、トルク定数Ktで除算することにより、制御タイミングにおける電流値Ifaを算出する。 Also, the gain compensator 204 calculates the current value Ifa at the control timing by substituting the calculated acceleration force Ap and the torque constant Kt into the equation "current value Ifa=Ap/Kt". That is, the gain compensator 204 divides the calculated acceleration force Ap by the torque constant Kt to calculate the current value Ifa at the control timing.
 次に、構成Cm1-2における速度制御処理Awが、実施の形態1と同様に行われる。これにより、速度制御部101は、算出された電流値Ifwを、電流指令に相当する、制御タイミングの電流値Ipに加算する。 Next, speed control processing Aw in configuration Cm1-2 is performed in the same manner as in the first embodiment. Thereby, the speed control unit 101 adds the calculated current value Ifw to the current value Ip at the control timing, which corresponds to the current command.
 また、構成Cm1-2における速度制御処理Akが行われる。構成Cm1-2における速度制御処理Akは、実施の形態1の速度制御処理Akと同様に行われる。速度制御部101は、LPF205を通過した、制御タイミングにおける電流値Ifaを、電流指令に相当する、制御タイミングの電流値Ipに加算する。すなわち、速度制御部101は、電流値Ifaに基づいて、電流指令を補正する。電流値Ifaは、算出された加速力Apに基づいて算出された値である。そのため、速度制御部101は、算出された加速力Apに基づいて電流指令を補正する。 Also, the speed control processing Ak in the configuration Cm1-2 is performed. The speed control processing Ak in configuration Cm1-2 is performed in the same manner as the speed control processing Ak of the first embodiment. The speed control unit 101 adds the current value Ifa at the control timing, which has passed through the LPF 205, to the current value Ip at the control timing, which corresponds to the current command. That is, the speed control unit 101 corrects the current command based on the current value Ifa. The current value Ifa is a value calculated based on the calculated acceleration force Ap. Therefore, the speed control unit 101 corrects the current command based on the calculated acceleration force Ap.
 速度制御部101は、「電流値Ip+電流値Ifw+電流値Ifa」の演算により得られた電流値を、電流指令Irefとして生成する。 The speed control unit 101 generates a current value obtained by calculating "current value Ip+current value Ifw+current value Ifa" as the current command Iref.
 速度制御部101は、電流指令に相当する電流値Ipが補正された指令である電流指令Irefを電流制御部102へ送信する。 The speed control unit 101 transmits to the current control unit 102 a current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command.
 そして、電流制御部102、推定部106、PWM制御部103および三相インバータIv1が、実施の形態1と同様に、前述した処理を行う。これにより、電動機M1は、電流指令に相当する電流値Ipが補正された指令である電流指令Irefに基づいた回転速度で回転子X1b(すなわち、回転部材X1)を回転させる。したがって、構成Cm1-2における速度制御処理Aでは、速度制御部101は、補正された電流指令に基づいて、電動機M1を制御する。 Then, current control unit 102, estimation unit 106, PWM control unit 103, and three-phase inverter Iv1 perform the above-described processing, as in the first embodiment. As a result, the electric motor M1 rotates the rotor X1b (that is, the rotating member X1) at a rotational speed based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in speed control processing A in configuration Cm1-2, speed control unit 101 controls electric motor M1 based on the corrected current command.
 前提Pm1における速度制御処理Aの上記の各処理と、電流制御部102、推定部106、PWM制御部103および三相インバータIv1の処理とが、図6(a)の特性線Lsに対応する期間にわたって、継続的に、繰り返して行われる。速度制御処理Aの上記の各処理が繰り返して行われる毎に、制御タイミングは変更される。以上のようにして、構成Cm1-2における速度制御処理Aが行われる。 A period corresponding to the characteristic line Ls of FIG. continuously and repeatedly over time. The control timing is changed each time the above processes of the speed control process A are repeated. As described above, the speed control process A in the configuration Cm1-2 is performed.
 ところで、巻線機M10のテンショナ4は、ワイヤ24の巻乱れを防止するために、常に、ワイヤ24に一定のテンションを加えている。以下においては、テンショナ4がワイヤ24に加えているテンションを、「テンションF」または「F」ともいう。テンションFは、ワイヤ24に加わるテンションである。テンションFの大きさは、例えば、ワイヤ24の形状、巻線ワークの形状等により、変化する。 By the way, the tensioner 4 of the winding machine M10 always applies a constant tension to the wire 24 in order to prevent the winding of the wire 24 from being disturbed. The tension applied to the wire 24 by the tensioner 4 is hereinafter also referred to as "tension F" or "F". A tension F is a tension applied to the wire 24 . The magnitude of the tension F changes depending on, for example, the shape of the wire 24, the shape of the winding work, and the like.
 そこで、構成Cm1-2において、テンションFを考慮した速度制御を行うことが考えられる。以下においては、テンションFに基づいた電流値を、「電流値Ite」または「Ite」ともいう。また、以下においては、構成Cm1-2において電流値Iteを使用する構成を、「構成Cm1-2A」ともいう。構成Cm1-2Aは、テンションFに基づいた電流値Iteを使用する構成である。電流値Iteは、フィードフォワード補償としての値である。 Therefore, in the configuration Cm1-2, it is conceivable to perform speed control in consideration of the tension F. Hereinafter, the current value based on the tension F is also referred to as "current value Ite" or "Ite". Further, hereinafter, the configuration using the current value Ite in the configuration Cm1-2 is also referred to as “configuration Cm1-2A”. Configuration Cm1-2A is a configuration that uses current value Ite based on tension F. FIG. The current value Ite is a value for feedforward compensation.
 構成Cm1-2Aにおける速度制御処理Aは、構成Cm1-2における速度制御処理Aと比較して、電流値Iteが、電流指令に相当する電流値Ipに加算される点のみが異なる。構成Cm1-2Aにおける速度制御処理Aのそれ以外の処理は、構成Cm1-2における速度制御処理Aと同様である。 The speed control process A in the configuration Cm1-2A differs from the speed control process A in the configuration Cm1-2 only in that the current value Ite is added to the current value Ip corresponding to the current command. Other processes of speed control processing A in configuration Cm1-2A are the same as speed control processing A in configuration Cm1-2.
 以下、構成Cm1-2Aにおける速度制御処理Aにおいて、構成Cm1-2における速度制御処理Aと異なる点のみを説明する。構成Cm1-2Aでは、実験により、事前に、テンションFが測定され、当該テンションFを速度制御部101に予め記憶させている。 Only the differences between the speed control processing A in the configuration Cm1-2A and the speed control processing A in the configuration Cm1-2 will be described below. In the configuration Cm1-2A, the tension F is measured in advance by experiments, and the tension F is stored in the speed control unit 101 in advance.
 構成Cm1-2Aにおける速度制御処理Aでは、速度制御部101が、テンションFに基づいて、「Tm=F×R」の式により、電動機M1のトルクであるモータートルクTmを算出する。「R」は、回転半径である。 In the speed control process A in the configuration Cm1-2A, the speed control unit 101 calculates the motor torque Tm, which is the torque of the electric motor M1, based on the tension F by the formula "Tm=F×R". "R" is the radius of gyration.
 回転半径Rは、巻線ワークに巻回されたワイヤ24で構成される巻線の回転半径である。回転半径Rは、巻線時間Tに応じて変化する。そのため、速度制御部101は、巻線時間Tと、当該巻線時間Tに対応する回転半径Rとを関連付けて示すテーブルTbrを保持している。当該テーブルTbrは、実験により作成されたものである。 The turning radius R is the turning radius of the winding composed of the wire 24 wound around the winding work. The turning radius R changes according to the winding time T. Therefore, the speed control unit 101 holds a table Tbr showing the winding time T and the rotation radius R corresponding to the winding time T in association with each other. The table Tbr is created by experiments.
 モータートルクTmの算出のために、速度制御部101は、まず、上記のテーブルTbrを使用して、前述の巻線時間算出処理により算出されている最新の巻線時間Tに対応する回転半径Rを特定する。そして、速度制御部101は、テンションFに、特定した回転半径Rを乗算することにより、モータートルクTmを算出する。 In order to calculate the motor torque Tm, the speed control unit 101 first uses the table Tbr to determine the rotation radius R corresponding to the latest winding time T calculated by the winding time calculation process described above. identify. Then, the speed control unit 101 multiplies the tension F by the specified rotation radius R to calculate the motor torque Tm.
 次に、速度制御部101は、「Ite=Tm/Kt」の式により、制御タイミングにおける電流値Iteを算出する。「Kt」は、電動機M1のトルク定数である。「Kt」は、既知の値である。具体的には、速度制御部101は、算出されたモータートルクTmをトルク定数Ktで除算することにより、電流値Iteを算出する。 Next, the speed control unit 101 calculates the current value Ite at the control timing according to the formula "Ite=Tm/Kt". "Kt" is the torque constant of the electric motor M1. "Kt" is a known value. Specifically, the speed control unit 101 calculates the current value Ite by dividing the calculated motor torque Tm by the torque constant Kt.
 次に、速度制御部101は、制御タイミングにおける電流値Iteを、電流指令に相当する、制御タイミングの電流値Ipに加算する。すなわち、速度制御部101は、電流値Iteに基づいて、電流指令を補正する。電流値Iteは、テンションFに基づいて算出された値である。そのため、速度制御部101は、ワイヤ24に加わるテンションFに基づいて電流指令を補正する。 Next, the speed control unit 101 adds the current value Ite at the control timing to the current value Ip at the control timing, which corresponds to the current command. That is, the speed control unit 101 corrects the current command based on the current value Ite. The current value Ite is a value calculated based on the tension F. Therefore, the speed control unit 101 corrects the current command based on the tension F applied to the wire 24 .
 速度制御部101は、「電流値Ip+電流値Ifw+電流値Ifa+電流値Ite」の演算により得られた電流値を、電流指令Irefとして生成する。 The speed control unit 101 generates a current value obtained by calculating "current value Ip+current value Ifw+current value Ifa+current value Ite" as the current command Iref.
 そして、電流指令に相当する電流値Ipが補正された指令である電流指令Irefに基づいて、電流制御部102、推定部106、PWM制御部103および三相インバータIv1が、前述した処理を行う。これにより、電流指令に相当する電流値Ipが補正された指令である電流指令Irefに基づいて、電動機M1が制御される。したがって、構成Cm1-2Aにおける速度制御処理Aでは、速度制御部101は、補正された電流指令に基づいて、電動機M1を制御する。 Based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command, the current control unit 102, the estimation unit 106, the PWM control unit 103, and the three-phase inverter Iv1 perform the above-described processing. As a result, the electric motor M1 is controlled based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in speed control processing A in configuration Cm1-2A, speed control unit 101 controls electric motor M1 based on the corrected current command.
 (まとめ)
 以上説明したように、本実施の形態によれば、電機子コア22の積層厚さのバラツキがある状況、巻線速度が高速である状況等において、剥離部位置のずれの発生を抑制することができる。積層厚さのバラツキは、例えば、ロットの違いにより発生する。また、剥離部位置のずれの発生を抑制することにより、ワイヤ24の剥離部分25を、常に、巻終わり部の所定の位置に形成できる。
(summary)
As described above, according to the present embodiment, it is possible to suppress the displacement of the peeled portion position in a situation where the lamination thickness of the armature core 22 varies, a situation where the winding speed is high, or the like. can be done. Variation in lamination thickness occurs, for example, due to lot differences. Also, by suppressing the occurrence of displacement of the peeled portion position, the peeled portion 25 of the wire 24 can always be formed at a predetermined position at the winding end portion.
 また、巻線機M10は、巻線処理が行われている状況において、ワイヤ24で構成されるコイルの位置を決める。そのため、スピンドル部7の回転角度に応じて、ノズル62を駆動させる必要がある。仮に、コイルの位置を正しく制御した場合、ワイヤ24を正確に配置することができる。つまり、限られたスペースにワイヤ24を高密度に巻回することができ、電動機M1の小型化、電動機M1の高効率化、電動機M1の高出力化等を実現することができる。 In addition, the winding machine M10 determines the position of the coil made up of the wire 24 while the winding process is being performed. Therefore, it is necessary to drive the nozzle 62 according to the rotation angle of the spindle portion 7 . If the position of the coil is properly controlled, the wire 24 can be precisely placed. In other words, the wire 24 can be wound in a limited space at high density, and the miniaturization of the electric motor M1, the high efficiency of the electric motor M1, the high output of the electric motor M1, and the like can be realized.
 ところで、スピンドル部7の回転速度が高速である状況では、速度指令が示す速度と実速度との差が大きくなり、ノズル62を駆動させるタイミングがずれてしまう。 By the way, when the rotational speed of the spindle section 7 is high, the difference between the speed indicated by the speed command and the actual speed becomes large, and the timing of driving the nozzle 62 is shifted.
 そこで、本実施の形態の速度制御処理Aを行うことにより、速度指令が示す速度と実速度との差を非常に小さくできる。そのため、ノズル62の駆動タイミングを、意図したタイミングに設定することが可能となる。これにより、限られたスペースにワイヤ24を高密度に巻回することができる。そのため、電動機M1の小型化、電動機M1の高効率化、電動機M1の高出力化等を実現することができる。 Therefore, by performing the speed control process A of the present embodiment, the difference between the speed indicated by the speed command and the actual speed can be made very small. Therefore, it is possible to set the driving timing of the nozzles 62 to the intended timing. Thereby, the wire 24 can be wound with high density in a limited space. Therefore, miniaturization of the electric motor M1, high efficiency of the electric motor M1, high output of the electric motor M1, and the like can be realized.
 (変形構成A)
 上記の構成Cm1-2および構成Cm1-2Aでは、電流値Ifaを、速度指令Vrefから推定された加速度から算出したが、これに限定されない。変形構成Aは、巻線機の駆動パターンである巻線パターンに基づいて加速度を推定し、当該加速度に基づいて電流値Ifaを算出する構成である。巻線パターンは、例えば、図16(a)の特性線Lmが示す波形である。
(Modified configuration A)
In the configurations Cm1-2 and Cm1-2A described above, the current value Ifa is calculated from the acceleration estimated from the speed command Vref, but the present invention is not limited to this. Modified configuration A is a configuration in which acceleration is estimated based on a winding pattern, which is a drive pattern of a winding machine, and current value Ifa is calculated based on the acceleration. The winding pattern is, for example, a waveform indicated by the characteristic line Lm in FIG. 16(a).
 以下においては、巻線時間Tと、巻線速度との関係を示す波形を「巻線速度波形」ともいう。巻線速度波形は、速度パターンである。巻線速度波形は、例えば、図16(a)の特性線Lmが示す波形である。速度パターンである巻線速度波形は、実験により、得られる。具体的には、当該実験において、巻線機M10を実際に駆動させることにより、速度パターンである巻線速度波形を得る。 In the following, the waveform showing the relationship between the winding time T and the winding speed is also referred to as "winding speed waveform". A winding speed waveform is a speed pattern. The winding speed waveform is, for example, the waveform indicated by the characteristic line Lm in FIG. 16(a). A winding speed waveform, which is a speed pattern, is obtained through experiments. Specifically, in the experiment, a winding speed waveform, which is a speed pattern, is obtained by actually driving the winding machine M10.
 以下においては、巻線パターンである巻線速度波形に基づいた加速度を使用して速度制御を行う構成を、「巻線パターン制御構成」ともいう。変形構成Aは、巻線パターン制御構成を構成Cm1-2に適用した構成である。 In the following, the configuration for speed control using the acceleration based on the winding speed waveform, which is the winding pattern, is also referred to as "winding pattern control configuration". Modified configuration A is a configuration in which the winding pattern control configuration is applied to configuration Cm1-2.
 変形構成Aは、構成Cm1-2と比較して、速度制御部101の構成のみが異なる。変形構成Aのそれ以外の構成は、構成Cm1-2と同様である。変形構成Aでは、巻線機M10は、電動機制御装置100(すなわち、コントローラ11)を備える。 The modified configuration A differs from configuration Cm1-2 only in the configuration of the speed control unit 101 . Other configurations of modified configuration A are similar to configuration Cm1-2. In variant A, the winding machine M10 comprises a motor control device 100 (ie a controller 11).
 変形構成Aにおける速度制御部101の構成は、図15が示す速度制御部101の構成を変形した構成である。 The configuration of the speed control unit 101 in the modified configuration A is a configuration obtained by modifying the configuration of the speed control unit 101 shown in FIG.
 図17は、変形構成Aにおける速度制御部101の構成を示すブロック図である。図17を参照して、変形構成Aにおける速度制御部101は、構成Cm1-2における図15の速度制御部101と比較して、電流値Ifaを算出するための構成が異なる点と、電流値Iteを使用するための構成が存在しない点とが異なる。 17 is a block diagram showing the configuration of the speed control unit 101 in the modified configuration A. FIG. Referring to FIG. 17, speed control unit 101 in modified configuration A differs from speed control unit 101 in FIG. 15 in configuration Cm1-2 in that the configuration for calculating current value Ifa is different. The difference is that there is no configuration for using Ite.
 次に、変形構成Aにおいて、前述の前提Pm1のもとで行われる速度制御処理Aについて説明する。変形構成Aでは、加速度パターンを、予め制御部Ct1に記憶させておく。当該加速度パターンは、例えば、図16(a)の特性線Lmが示す、速度パターンである巻線速度波形を微分することにより得られる加速度の波形である。速度パターンである巻線速度波形は、前述の実験により得られたものである。加速度パターンは、速度パターンである巻線速度波形を微分する演算を、事前に行うことにより得られる。得られた加速度パターンは予め制御部Ct1に記憶させておく。 Next, in the modified configuration A, the speed control processing A performed under the aforementioned premise Pm1 will be described. In the modified configuration A, the acceleration pattern is stored in advance in the controller Ct1. The acceleration pattern is, for example, a waveform of acceleration obtained by differentiating a winding speed waveform, which is a speed pattern, indicated by the characteristic line Lm in FIG. 16(a). A winding speed waveform, which is a speed pattern, was obtained by the above-described experiment. The acceleration pattern is obtained by previously performing a calculation of differentiating the winding speed waveform, which is the speed pattern. The obtained acceleration pattern is stored in advance in the controller Ct1.
 以下においては、加速度パターンを、「加速度波形」ともいう。加速度パターンである加速度波形は、時間経過に伴う、回転子X1bの回転の加速度の変化に相当する。すなわち、加速度パターンである加速度波形は、電動機M1の駆動パターンに相当する。つまり、加速度パターンである加速度波形は、巻線機M10の駆動パターンに相当する。 In the following, the acceleration pattern is also called "acceleration waveform". The acceleration waveform, which is the acceleration pattern, corresponds to changes in the rotational acceleration of the rotor X1b over time. That is, the acceleration waveform, which is the acceleration pattern, corresponds to the driving pattern of the electric motor M1. That is, the acceleration waveform, which is the acceleration pattern, corresponds to the drive pattern of the winding machine M10.
 また、以下においては、加速度指令を、「加速度指令Aref」または「Aref」ともいう。加速度指令Arefは、加速度Acを示す。以下においては、横軸が時間を示し、縦軸が加速度指令Arefを示すグラフを、「グラフGf」ともいう。加速度パターンである加速度波形は、グラフGfに示される波形である。 Also, hereinafter, the acceleration command is also referred to as "acceleration command Aref" or "Aref". Acceleration command Aref indicates acceleration Ac. Hereinafter, the graph in which the horizontal axis indicates time and the vertical axis indicates the acceleration command Aref is also referred to as "graph Gf". The acceleration waveform, which is the acceleration pattern, is the waveform shown in the graph Gf.
 加速度パターンである加速度波形は、時間と、加速度指令Arefとを関連付けて示す。加速度波形が示す加速度指令Arefの値は、時間によって異なる場合もある。 The acceleration waveform, which is the acceleration pattern, indicates time in association with the acceleration command Aref. The value of the acceleration command Aref indicated by the acceleration waveform may vary with time.
 また、制御部Ct1は、速度制御処理Aの開始とともに、前述の巻線時間算出処理を行う。巻線時間算出処理が行われることにより、制御部Ct1の速度制御部101は、常に、最新の巻線時間Tを把握している。巻線時間Tは、巻線機M10の運転時間に相当する。 Also, when the speed control process A starts, the control unit Ct1 performs the above-described winding time calculation process. The speed control unit 101 of the control unit Ct1 always grasps the latest winding time T by performing the winding time calculation process. The winding time T corresponds to the operating time of the winding machine M10.
 変形構成Aにおける速度制御処理Aでは、速度制御部101が、速度指令Vrefに基づいて、フィードバック制御Aおよびフィードフォワード制御Aを行う。変形構成Aにおけるフィードバック制御Aは、実施の形態1のフィードバック制御Aと同様に行われる。これにより、電流指令に相当する電流値Ipが算出される。 In the speed control process A in the modified configuration A, the speed control unit 101 performs feedback control A and feedforward control A based on the speed command Vref. Feedback control A in modified configuration A is performed in the same manner as feedback control A in the first embodiment. Thereby, the current value Ip corresponding to the current command is calculated.
 変形構成Aにおけるフィードフォワード制御Aでは、速度制御部101が、風抵抗推定処理、加速度推定処理A、速度制御処理Awおよび速度制御処理Akを行う。 In feedforward control A in modified configuration A, speed control unit 101 performs wind resistance estimation processing, acceleration estimation processing A, speed control processing Aw, and speed control processing Ak.
 変形構成Aにおける風抵抗推定処理は、実施の形態1の風抵抗推定処理と同様に行われる。風抵抗推定処理により、風抵抗Wrが推定される。また、推定された風抵抗Wrを使用して、制御タイミングにおける電流値Ifwが算出される。 The wind resistance estimation processing in modified configuration A is performed in the same manner as the wind resistance estimation processing in the first embodiment. Wind resistance Wr is estimated by the wind resistance estimation process. Also, the current value Ifw at the control timing is calculated using the estimated wind resistance Wr.
 次に、速度制御処理Awにおいて、速度制御部101は、算出された電流値Ifwを、電流指令に相当する、制御タイミングの電流値Ipに加算する。すなわち、速度制御部101は、電流指令を補正する。 Next, in the speed control process Aw, the speed control unit 101 adds the calculated current value Ifw to the current value Ip at the control timing, which corresponds to the current command. That is, speed control unit 101 corrects the current command.
 また、変形構成Aにおける加速度推定処理Aでは、要約すれば、速度制御部101が、電動機M1の駆動パターンである加速度パターンに基づいて、制御タイミングにおける、加速度Acを推定する。回転子回転状況では、当該制御タイミングは、駆動タイミングである。 In addition, in the acceleration estimation process A in the modified configuration A, to summarize, the speed control unit 101 estimates the acceleration Ac at the control timing based on the acceleration pattern, which is the drive pattern of the electric motor M1. In the rotor rotation situation, the control timing is the drive timing.
 変形構成Aにおける加速度推定処理Aでは、速度制御部101が、最新の巻線時間Tと、加速度パターンである加速度波形とを使用して、加速度指令Arefを特定する。具体的には、速度制御部101は、加速度パターンである加速度波形において、時間としての巻線時間Tに関連付けられている、制御タイミングにおける加速度指令Arefを特定する。すなわち、速度制御部101は、加速度Acとしての加速度指令Arefを推定する。 In the acceleration estimation process A in the modified configuration A, the speed control unit 101 uses the latest winding time T and the acceleration waveform, which is the acceleration pattern, to identify the acceleration command Aref. Specifically, the speed control unit 101 specifies the acceleration command Aref at the control timing, which is associated with the winding time T as time in the acceleration waveform, which is the acceleration pattern. That is, the speed control unit 101 estimates the acceleration command Aref as the acceleration Ac.
 次に、ゲイン補償部204は、「電流値Ifa=電動機イナーシャJ×Aref/Kt」の式を使用して、電流値Ifaを算出する。ゲイン補償部204は、電動機イナーシャJおよびトルク定数Ktを保持している。当該電動機イナーシャJおよびトルク定数Ktの値は、既知の値である。 Next, the gain compensator 204 calculates the current value Ifa using the formula "current value Ifa=motor inertia J×Aref/Kt". Gain compensator 204 holds motor inertia J and torque constant Kt. The values of the motor inertia J and the torque constant Kt are known values.
 具体的には、ゲイン補償部204は、「電流値Ifa=電動機イナーシャJ×Aref/Kt」の式に、加速度指令Arefを代入することにより、制御タイミングにおける電流値Ifaを算出する。 Specifically, the gain compensator 204 calculates the current value Ifa at the control timing by substituting the acceleration command Aref into the equation "current value Ifa=motor inertia J×Aref/Kt".
 次に、速度制御処理Akが行われる。速度制御処理Akにおいて、速度制御部101は、LPF205を通過した、制御タイミングにおける電流値Ifaを、電流指令に相当する、制御タイミングの電流値Ipに加算する。すなわち、速度制御部101は、電流値Ifaに基づいて、電流指令を補正する。電流値Ifaは、推定された加速度指令Arefに基づいて算出された値である。そのため、速度制御部101は、推定された加速度指令Arefに基づいて電流指令を補正する。 Next, speed control processing Ak is performed. In the speed control process Ak, the speed control unit 101 adds the current value Ifa at the control timing, which has passed through the LPF 205, to the current value Ip at the control timing, which corresponds to the current command. That is, the speed control unit 101 corrects the current command based on the current value Ifa. The current value Ifa is a value calculated based on the estimated acceleration command Aref. Therefore, the speed control unit 101 corrects the current command based on the estimated acceleration command Aref.
 速度制御部101は、「電流値Ip+電流値Ifw+電流値Ifa」の演算により得られた電流値を、電流指令Irefとして生成する。 The speed control unit 101 generates a current value obtained by calculating "current value Ip+current value Ifw+current value Ifa" as the current command Iref.
 そして、電流指令に相当する電流値Ipが補正された指令である電流指令Irefに基づいて、電流制御部102、推定部106、PWM制御部103および三相インバータIv1が、前述した処理を行う。これにより、電流指令に相当する電流値Ipが補正された指令である電流指令Irefに基づいて、電動機M1が制御される。したがって、変形構成Aにおける速度制御処理Aでは、速度制御部101は、補正された電流指令に基づいて、電動機M1を制御する。 Based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command, the current control unit 102, the estimation unit 106, the PWM control unit 103, and the three-phase inverter Iv1 perform the above-described processing. As a result, the electric motor M1 is controlled based on the current command Iref, which is a command obtained by correcting the current value Ip corresponding to the current command. Therefore, in the speed control process A in the modified configuration A, the speed control unit 101 controls the electric motor M1 based on the corrected current command.
 以上説明したように、変形構成Aにおける速度制御処理Aにおいても、実施の形態1、構成Cm1-2等と同様な効果が得られる。 As described above, even in the speed control process A in the modified configuration A, the same effect as in the first embodiment, configuration Cm1-2, etc. can be obtained.
 なお、時間の経過に伴い、加速度指令Arefが急激に変化しないように当該加速度指令Arefを設定してもよい。この場合、LPF205を設けなくてもよい。これにより、ソフトウェアにより、電流値Ifaを算出するための処理時間を短縮することができる。 The acceleration command Aref may be set so that the acceleration command Aref does not change abruptly with the passage of time. In this case, the LPF 205 may not be provided. Thereby, the processing time for calculating the current value Ifa can be shortened by software.
 (機能ブロック図)
 図18は、電動機制御装置100の特徴的な機能構成を示すブロック図である。つまり、図18は、電動機制御装置100が有する機能のうち、本技術に関わる主要な機能を示すブロック図である。図18では、説明のために、電動機M1が示されている。
(Functional block diagram)
FIG. 18 is a block diagram showing a characteristic functional configuration of the motor control device 100. As shown in FIG. In other words, FIG. 18 is a block diagram showing main functions related to the present technology among the functions of the electric motor control device 100. As shown in FIG. In FIG. 18, the electric motor M1 is shown for explanation.
 電動機制御装置100は、回転子を回転させる電動機M1を制御する。電動機制御装置100は、機能的には、速度制御部101を備える。速度制御部101は、電動機M1を制御する。 The electric motor control device 100 controls the electric motor M1 that rotates the rotor. The motor control device 100 functionally includes a speed control section 101 . A speed control unit 101 controls the electric motor M1.
 速度制御部101は、電動機M1が駆動する駆動タイミングにおける回転子の回転状態が、目標となる回転状態である目標回転状態に近づくように、当該電動機M1を制御する速度制御処理を行う。速度制御処理は、フィードバック制御およびフィードフォワード制御を含む。 The speed control unit 101 performs speed control processing for controlling the electric motor M1 so that the rotation state of the rotor at the drive timing when the electric motor M1 is driven approaches the target rotation state, which is the target rotation state. Speed control processing includes feedback control and feedforward control.
 フィードバック制御は、速度制御部101が、電動機M1の回転子の回転状態を制御する制御パラメータに基づいて、当該電動機M1を制御する処理である。速度制御部101は、風抵抗推定処理および加速度推定処理を行う。 Feedback control is a process in which the speed control unit 101 controls the electric motor M1 based on control parameters for controlling the rotation state of the rotor of the electric motor M1. The speed control unit 101 performs wind resistance estimation processing and acceleration estimation processing.
 風抵抗推定処理では、速度制御部101が、駆動タイミングにおける、回転子の回転に伴う風抵抗を推定する。加速度推定処理では、速度制御部101が、駆動タイミングにおける、回転子の回転の加速度を推定する。 In the wind resistance estimation process, the speed control unit 101 estimates the wind resistance accompanying the rotation of the rotor at the drive timing. In the acceleration estimation process, the speed control unit 101 estimates the rotational acceleration of the rotor at the drive timing.
 フィードフォワード制御は、駆動タイミングにおける回転子の回転状態が目標回転状態に近づくように、速度制御部101が、推定された風抵抗、および、推定された加速度に基づいて、電動機M1を制御する処理である。 Feedforward control is a process in which the speed control unit 101 controls the electric motor M1 based on the estimated wind resistance and the estimated acceleration so that the rotational state of the rotor at the drive timing approaches the target rotational state. is.
 (電動機制御装置のハードウェア構成例)
 図19および図20の各々は、電動機制御装置100のハードウェア構成の例を示す図である。図1に示した電動機制御装置100に含まれる、本技術に関わる主要な構成要素の機能は、例えば、図19に示す、処理回路80により実現される。すなわち、電動機制御装置100は、本技術に関わる主要な構成要素として、処理回路80を備える。
(Hardware configuration example of motor control device)
Each of FIGS. 19 and 20 is a diagram showing an example of the hardware configuration of electric motor control device 100. In FIG. Functions of main components related to the present technology included in the electric motor control device 100 shown in FIG. 1 are realized by, for example, a processing circuit 80 shown in FIG. That is, the electric motor control device 100 includes the processing circuit 80 as a main component related to the present technology.
 処理回路80は、速度制御処理を行う。速度制御処理は、フィードバック制御およびフィードフォワード制御を含む。風抵抗推定処理では、処理回路80が、駆動タイミングにおける、回転子の回転に伴う風抵抗を推定する。加速度推定処理では、処理回路80が、駆動タイミングにおける、回転子の回転の加速度を推定する。 The processing circuit 80 performs speed control processing. Speed control processing includes feedback control and feedforward control. In the wind resistance estimation process, the processing circuit 80 estimates the wind resistance accompanying the rotation of the rotor at the drive timing. In the acceleration estimation process, the processing circuit 80 estimates the rotational acceleration of the rotor at the drive timing.
 フィードフォワード制御は、駆動タイミングにおける回転子の回転状態が目標回転状態に近づくように、処理回路80が、推定された風抵抗、および、推定された加速度に基づいて、電動機M1を制御する処理である。 Feedforward control is a process in which the processing circuit 80 controls the electric motor M1 based on the estimated wind resistance and the estimated acceleration so that the rotational state of the rotor at the drive timing approaches the target rotational state. be.
 処理回路80は、専用のハードウェアであってよい。また、処理回路80は、メモリに格納されるプログラムを実行するプロセッサを用いて構成されていてもよい。当該プロセッサは、例えば、CPU(Central Processing Unit)、中央処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。 The processing circuit 80 may be dedicated hardware. Moreover, the processing circuit 80 may be configured using a processor that executes a program stored in a memory. The processor is, for example, a CPU (Central Processing Unit), a central processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
 以下においては、処理回路80が専用のハードウェアである状況を、「状況St1」ともいう。また、以下においては、処理回路80が、プロセッサを用いて構成される状況を、「状況St2」ともいう。 In the following, the situation in which the processing circuit 80 is dedicated hardware is also referred to as "situation St1". Further, hereinafter, a situation in which the processing circuit 80 is configured using a processor is also referred to as "situation St2".
 状況St1では、処理回路80は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。 In situation St1, the processing circuit 80 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or any of these A combination is applicable.
 図20は、処理回路80が、プロセッサを用いて構成される状況St2における、電動機制御装置100のハードウェア構成の例を示す図である。図20の構成は、図19の処理回路80を、プロセッサ81およびメモリ82で実現した構成である。 FIG. 20 is a diagram showing an example of the hardware configuration of the motor control device 100 in the situation St2 in which the processing circuit 80 is configured using a processor. The configuration of FIG. 20 is a configuration in which the processing circuit 80 of FIG. 19 is realized by a processor 81 and a memory 82.
 状況St2では、速度制御部101の機能は、ソフトウェアAにより実現される。ソフトウェアAは、ソフトウェアまたはファームウェアである。また、ソフトウェアAは、ソフトウェアとファームウェアとの組み合わせで構成されてもよい。ソフトウェアAはプログラムとして記述され、メモリ82に格納される。 In situation St2, the function of the speed control unit 101 is implemented by software A. Software A is software or firmware. Also, the software A may be composed of a combination of software and firmware. Software A is written as a program and stored in memory 82 .
 また、状況St2では、プロセッサ81が、メモリ82に記憶されたプログラムを読み出して、当該プログラムを実行することにより、速度制御部101の機能は実現される。すなわち、メモリ82は、以下のプログラムを格納する。 Also, in situation St2, the processor 81 reads out the program stored in the memory 82 and executes the program, thereby realizing the function of the speed control unit 101 . That is, the memory 82 stores the following programs.
 当該プログラムは、速度制御処理を行う処理を、プロセッサ81に実行させるためのプログラムである。速度制御処理は、フィードバック制御およびフィードフォワード制御を含む。フィードフォワード制御は、駆動タイミングにおける回転子の回転状態が目標回転状態に近づくように、推定された風抵抗、および、推定された加速度に基づいて、電動機M1を制御する処理である。 This program is a program for causing the processor 81 to execute the speed control process. Speed control processing includes feedback control and feedforward control. Feedforward control is a process of controlling the electric motor M1 based on the estimated wind resistance and the estimated acceleration so that the rotation state of the rotor at the drive timing approaches the target rotation state.
 また、当該プログラムは、速度制御部101が行う処理、当該処理を実行する方法等をコンピュータに実行させるものでもある。 The program also causes the computer to execute the processing performed by the speed control unit 101, the method of executing the processing, and the like.
 ここで、メモリ82は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。また、メモリ82は、例えば、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。また、メモリ82は、今後使用されるあらゆる記憶媒体であってもよい。 Here, the memory 82 is a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM, EEPROM, or the like. Also, the memory 82 is, for example, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like. Also, the memory 82 may be any storage medium that will be used in the future.
 以上のように、電動機制御装置100は、ハードウェアまたはソフトウェアAによって、上述の各機能を実現することができる。 As described above, the motor control device 100 can realize each function described above by means of hardware or software A.
 また、本技術は、電動機制御装置100が備える特徴的な構成部の動作をステップとする電動機制御方法として実現してもよい。また、本技術は、そのような電動機制御方法に含まれる各ステップをコンピュータに実行させるプログラムとして実現してもよい。 In addition, the present technology may be implemented as a motor control method in which operations of characteristic components included in the motor control device 100 are performed as steps. Also, the present technology may be implemented as a program that causes a computer to execute each step included in such a motor control method.
 また、本技術は、そのようなプログラムを格納するコンピュータ読み取り可能な記録媒体として実現されてもよい。また、当該プログラムは、インターネット等の伝送媒体を介して配信されてもよい。 Also, the present technology may be implemented as a computer-readable recording medium that stores such a program. Also, the program may be distributed via a transmission medium such as the Internet.
 (その他の変形例)
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
(Other modifications)
In addition, it is possible to freely combine each embodiment, and to modify or omit each embodiment as appropriate.
 例えば、図1に示す電動機制御装置100では、フィードバック電流値である電流値If1,If2と、電圧指令Vtrefとに基づいて、位置Pdを推定する構成としたがこれに限定されない。位置Pdを検出するセンサが設けられた電動機M1を使用する構成(以下、「構成Cn1」ともいう)としてもよい。当該センサは、例えば、ホールICである。 For example, the motor control device 100 shown in FIG. 1 is configured to estimate the position Pd based on the current values If1 and If2, which are feedback current values, and the voltage command Vtref, but the configuration is not limited to this. A configuration (hereinafter also referred to as “configuration Cn1”) that uses the electric motor M1 provided with a sensor for detecting the position Pd may be employed. The sensor is, for example, a Hall IC.
 構成Cn1では、センサが検出した位置Pdに基づいて速度Vsが算出される。構成Cn1におけるフィードバック制御Aは、推定された速度Vsの代わりに、算出された速度Vsが使用される制御である。 In the configuration Cn1, the velocity Vs is calculated based on the position Pd detected by the sensor. Feedback control A in configuration Cn1 is control in which the calculated speed Vs is used instead of the estimated speed Vs.
 また、構成Cn1では、電流制御部102が、電流指令Irefと、センサが検出した位置Pdと、フィードバック電流値である電流値If1,If2とに基づいて、電圧指令Vtrefを生成する。 In addition, in configuration Cn1, current control unit 102 generates voltage command Vtref based on current command Iref, position Pd detected by the sensor, and current values If1 and If2, which are feedback current values.
 また、例えば、速度Vsを検出するセンサを設ける構成としてもよい。当該構成では、検出された速度Vsを使用して、フィードバック制御Aが行われる。 Also, for example, a configuration may be adopted in which a sensor that detects the speed Vs is provided. In this configuration, feedback control A is performed using the detected speed Vs.
 また、例えば、速度制御部101はLPF205を含まない構成としてもよい。例えば、図7の速度制御部101はLPF205を含まない構成としてもよい。当該構成では、ゲイン補償部204が算出した電流値Ifaが、電流指令に相当する電流値Ipに加算される。 Also, for example, the speed control unit 101 may be configured without the LPF 205 . For example, the speed control unit 101 in FIG. 7 may be configured without the LPF 205 . In this configuration, the current value Ifa calculated by the gain compensator 204 is added to the current value Ip corresponding to the current command.
 また、例えば、実施の形態2では、絶縁被膜を剥離する手段として、レーザマーカ51を使用する構成としたが、これに限定されない。絶縁被膜を剥離する手段として、レーザマーカ51と異なる他の剥離手段を使用する構成としてもよい。当該他の剥離手段を使用する構成においても、レーザマーカ51を使用する構成と同様の効果が得られる。 Also, for example, in Embodiment 2, the configuration is such that the laser marker 51 is used as a means for peeling off the insulating coating, but the present invention is not limited to this. As a means for peeling off the insulating coating, a configuration may be adopted in which another peeling means different from the laser marker 51 is used. The same effect as the configuration using the laser marker 51 can be obtained in the configuration using the other peeling means.
 ただし、絶縁被膜を剥離する手段として、レーザマーカ51を使用する構成は、以下の効果が得られるため、巻線機M10には、当該レーザマーカ51を使用する構成を適用することが望ましい。具体的には、絶縁被膜を剥離する手段として、レーザマーカ51を使用する構成では、レーザマーカ51が固定され、ワイヤ24を移動させながら、レーザ光によって絶縁被膜の剥離を行う。そのため、剥離ユニット5を、ボールネジ、モーター等を使用して移動させる必要がない。その結果、巻線機の小型化が実現でき、当該巻線機を安価に製造することができるという効果が得られる。 However, since the configuration using the laser marker 51 as a means for stripping the insulating coating has the following effects, it is desirable to apply the configuration using the laser marker 51 to the winding machine M10. Specifically, in a configuration using a laser marker 51 as means for stripping the insulating coating, the laser marker 51 is fixed and the insulating coating is stripped by laser light while the wire 24 is moved. Therefore, it is not necessary to move the peeling unit 5 using a ball screw, a motor, or the like. As a result, the winding machine can be downsized, and the winding machine can be manufactured at low cost.
 また、例えば、前述の風抵抗推定処理において、前述の式(1)および式(2)の変数a,b,cは、前述の実験Aにより特定されるとしたがこれに限定されない。変数a,b,cは、電動機M1の速度を制御することにより、特定されてもよい。 Also, for example, in the above-described wind resistance estimation process, the variables a, b, and c of the above-described formulas (1) and (2) are specified by the above-described experiment A, but the present invention is not limited to this. The variables a, b, c may be specified by controlling the speed of motor M1.
 以下においては、電動機M1の速度を制御することにより、変数a,b,cを特定する構成を、「構成Cn2」ともいう。構成Cn2における以下の説明において、「測定」は、「特定」という意味も含む。例えば、「電流を測定する」は、「電流を特定する」という意味も含む。 In the following, the configuration that specifies variables a, b, and c by controlling the speed of electric motor M1 is also referred to as "configuration Cn2." In the following description of configuration Cn2, "measurement" also includes the meaning of "identification." For example, "measuring a current" also includes "identifying a current".
 構成Cn2における風抵抗推定処理では、変数a,b,cを特定するための変数特定制御処理が行われる。ここでは、一例として、図21に示される換気扇F10を使用した変数特定制御処理について説明する。なお、変数特定制御処理は、電動機M1を含む前述の巻線機M10を使用して、行われてもよい。 In the wind resistance estimation processing in configuration Cn2, variable identification control processing for identifying variables a, b, and c is performed. Here, as an example, variable identification control processing using the ventilation fan F10 shown in FIG. 21 will be described. Note that the variable identification control process may be performed using the aforementioned winding machine M10 including the electric motor M1.
 図21は、換気扇F10の構成を示す図である。図21が示す換気扇F10の上半分では、当該換気扇F10の外観が示される。図21が示す換気扇F10の下半分では、当該換気扇F10の内部の構成が示される。 FIG. 21 is a diagram showing the configuration of the ventilation fan F10. The upper half of the ventilation fan F10 shown in FIG. 21 shows the appearance of the ventilation fan F10. The lower half of the ventilation fan F10 shown in FIG. 21 shows the internal configuration of the ventilation fan F10.
 換気扇F10は、電動機M1と、羽根車f2と、グリル部f3とを含む。換気扇F10の電動機M1は、図2の電動機M1である。換気扇F10の電動機M1は、図1の電動機制御装置100により制御される。換気扇F10の電動機M1は、図2の回転部材X1を含む。回転部材X1は、シャフトX1aと、回転子X1bとを含む。換気扇F10の電動機M1のシャフトX1aには、羽根車f2が接続されている。すなわち、回転部材X1の端部には、羽根車f2が接続されている。 The ventilation fan F10 includes an electric motor M1, an impeller f2, and a grill part f3. The electric motor M1 of the ventilation fan F10 is the electric motor M1 in FIG. The electric motor M1 of the ventilation fan F10 is controlled by the electric motor control device 100 of FIG. The electric motor M1 of the ventilation fan F10 includes the rotating member X1 of FIG. The rotating member X1 includes a shaft X1a and a rotor X1b. An impeller f2 is connected to the shaft X1a of the electric motor M1 of the ventilation fan F10. That is, the impeller f2 is connected to the end of the rotating member X1.
 羽根車f2は、回転部材X1(すなわち、回転子X1b)の回転に伴い、回転する。回転部材X1が回転することにより、羽根車f2が回転する。グリル部f3は、当該グリル部f3が羽根車f2を覆うように、設けられている。 The impeller f2 rotates as the rotating member X1 (that is, the rotor X1b) rotates. The rotation of the rotating member X1 causes the impeller f2 to rotate. The grill portion f3 is provided so as to cover the impeller f2.
 図22は、変数特定制御処理のフローチャートである。構成Cn2における変数特定制御処理では、まず、風抵抗推定部202の無効化が行われる(ステップS110)。具体的には、風抵抗推定部202の動作が停止するように、速度制御部101による制御が行われる。 FIG. 22 is a flowchart of variable identification control processing. In the variable identification control process in configuration Cn2, first, the wind resistance estimator 202 is disabled (step S110). Specifically, control by the speed control unit 101 is performed so that the operation of the wind resistance estimation unit 202 is stopped.
 次に、電動機電流測定処理が行われる(ステップS120)。構成Cn2における電動機電流測定処理では、電動機駆動処理、および、電流測定処理が並列的に行われる。 Next, motor current measurement processing is performed (step S120). In the motor current measurement process in configuration Cn2, the motor drive process and the current measurement process are performed in parallel.
 構成Cn2における電動機駆動処理では、電動機M1を駆動させるために、複数の速度が使用される。ここで、処理を分かり易くするために、電動機駆動処理で使用される複数の速度は、一例として、3つの速度であるとして説明する。なお、電動機駆動処理で使用される複数の速度は、3つの速度に限定されず、4つ以上の速度であってもよい。 In the motor drive process in configuration Cn2, multiple speeds are used to drive the motor M1. Here, in order to make the processing easier to understand, the multiple speeds used in the motor drive processing are explained as three speeds as an example. Note that the multiple speeds used in the motor drive process are not limited to three speeds, and may be four or more speeds.
 以下においては、電動機駆動処理で使用される当該3つの速度を、それぞれ、速度Vt1、速度Vt2および速度Vt3ともいう。また、以下においては、速度Vt1、速度Vt2および速度Vt3の各々を、「対象速度」ともいう。 In the following, the three speeds used in the motor drive process are also referred to as speed Vt1, speed Vt2 and speed Vt3, respectively. Moreover, each of the speed Vt1, the speed Vt2, and the speed Vt3 is hereinafter also referred to as a "target speed".
 また、以下においては、速度Vt1を、「低速」または「Vt1」ともいう。また、以下においては、速度Vt2を、「中速」または「Vt2」ともいう。また、以下においては、速度Vt3を、「高速」または「Vt3」ともいう。 Also, hereinafter, the speed Vt1 is also referred to as "low speed" or "Vt1". In the following, the speed Vt2 is also referred to as "medium speed" or "Vt2". Moreover, the speed Vt3 is hereinafter also referred to as "high speed" or "Vt3".
 対象速度である速度Vt1、速度Vt2および速度Vt3の各々は、予め定められた速度である。速度Vt1、速度Vt2および速度Vt3は、「Vt1<Vt2<Vt3」の関係式が満たされる速度である。例えば、速度Vt1、速度Vt2および速度Vt3は、それぞれ、図10の「低速」、「中速」および「高速」である。「高速」である速度Vt3は、前述の高速速度に相当する。 Each of the target speeds Vt1, Vt2, and Vt3 is a predetermined speed. Velocity Vt1, velocity Vt2 and velocity Vt3 are velocities that satisfy the relational expression "Vt1<Vt2<Vt3". For example, velocity Vt1, velocity Vt2 and velocity Vt3 are respectively "low speed", "medium speed" and "high speed" in FIG. The "high" speed Vt3 corresponds to the above-described high speed.
 具体的には、電動機電流測定処理の電動機駆動処理では、電動機M1の速度が対象速度になるように、制御部Ct1が電動機M1を駆動させる制御を行う。電動機M1の速度は、回転子X1bの回転速度である。風抵抗推定部202が無効化されているため、電動機M1の速度の制御は、PI制御部201を使用して、前述の比較構成におけるフィードバック制御Aと同様に行われる。 Specifically, in the motor drive process of the motor current measurement process, the control unit Ct1 performs control to drive the motor M1 so that the speed of the motor M1 becomes the target speed. The speed of the electric motor M1 is the rotational speed of the rotor X1b. Since the wind resistance estimator 202 is disabled, the control of the speed of the electric motor M1 is performed using the PI controller 201 in the same manner as the feedback control A in the comparative configuration described above.
 また、回転子X1bの回転速度が対象速度である状況において、電動機制御装置100は、電動機M1の駆動電流を測定する。具体的には、回転子X1bの回転速度が対象速度である状況において、電流測定処理では、電動機制御装置100が、電流測定方法Aにより、一定時間における、電動機M1の駆動電流を測定する。すなわち、電流測定方法Aによる電動機M1の駆動電流の測定は、一定時間にわたって行われる。 Also, in a situation where the rotation speed of the rotor X1b is the target speed, the electric motor control device 100 measures the driving current of the electric motor M1. Specifically, in a situation where the rotational speed of the rotor X1b is the target speed, in the current measurement process, the motor control device 100 measures the drive current of the motor M1 for a certain period of time using the current measurement method A. That is, the measurement of the drive current of the electric motor M1 by the current measurement method A is performed over a certain period of time.
 電流測定方法Aは、ブラシレスモーターである電動機M1の駆動電流を測定する方法である。当該電流測定方法Aは、公知な方法であるので詳細な説明は省略する。 Current measurement method A is a method of measuring the drive current of electric motor M1, which is a brushless motor. Since the current measurement method A is a known method, detailed description thereof will be omitted.
 当該電流測定方法Aでは、例えば、電流検出部Dt1,Dt2により得られる電流値If1,If2に基づいて、電動機制御装置100の制御部Ct1により、電動機M1の駆動電流が測定される。電流値If1は、U相の電流値である。電流値If2は、W相の電流値である。V相の電流値は、U相の電流値およびW相の電流値から、特定される。制御部Ct1は、U相の電流値、W相の電流値およびV相の電流値の一部または全てに基づいて、電動機M1の駆動電流を測定する。 In the current measurement method A, for example, the drive current of the electric motor M1 is measured by the control unit Ct1 of the electric motor control device 100 based on the current values If1 and If2 obtained by the current detection units Dt1 and Dt2. A current value If1 is a U-phase current value. The current value If2 is the current value of the W phase. The V-phase current value is specified from the U-phase current value and the W-phase current value. Control unit Ct1 measures the drive current of electric motor M1 based on part or all of the U-phase current value, the W-phase current value, and the V-phase current value.
 以下においては、回転子X1bの回転速度が対象速度である状況において測定される電流を、「測定電流」ともいう。当該測定電流は、電流値である。当該測定電流は、一定時間において測定される、電動機M1の駆動電流の平均値である。電動機電流測定処理の電流測定処理では、測定電流が測定される。当該測定電流は、制御部Ct1により測定される。 In the following, the current measured when the rotational speed of the rotor X1b is the target speed is also referred to as "measured current". The measured current is a current value. The measured current is the average value of the driving current of the electric motor M1 measured over a certain period of time. In the current measurement process of the motor current measurement process, the measured current is measured. The measured current is measured by the controller Ct1.
 なお、測定電流は、一定時間において測定される、電動機M1の駆動電流の平均値でなくてもよい。測定電流は、例えば、特定のタイミングにおいて測定される、電動機M1の駆動電流であってもよい。 It should be noted that the measured current does not have to be the average value of the driving current of the electric motor M1 measured over a certain period of time. The measured current may be, for example, the driving current of the electric motor M1 measured at a specific timing.
 電動機電流測定処理の電流測定処理は、対象速度が、速度Vt1、速度Vt2および速度Vt3のいずれかである状況において、行われる。以下においては、対象速度が速度Vt1である状況において測定される測定電流を、「電流I1」または「I1」ともいう。また、以下においては、対象速度が速度Vt2である状況において測定される測定電流を、「電流I2」または「I2」ともいう。また、以下においては、対象速度が速度Vt3である状況において測定される測定電流を、「電流I3」または「I3」ともいう。電流I1,I2,I3の各々は、電動機M1の駆動電流である。また、電流I1,I2,I3の各々は、電流値である。 The current measurement process of the motor current measurement process is performed in a situation where the target speed is one of speed Vt1, speed Vt2, and speed Vt3. In the following, the measured current measured in the situation where the speed of interest is the speed Vt1 is also referred to as "current I1" or "I1". Also, hereinafter, the measured current measured when the target speed is the speed Vt2 is also referred to as "current I2" or "I2". Also, hereinafter, the measured current measured when the target speed is the speed Vt3 is also referred to as "current I3" or "I3". Each of currents I1, I2, and I3 is a drive current for electric motor M1. Also, each of the currents I1, I2, and I3 is a current value.
 以下、対象速度としての、速度Vt1、速度Vt2および速度Vt3を使用した電動機電流測定処理について説明する。電動機電流測定処理の電流測定処理の内容は、前述したため、当該電流測定処理については簡略的に説明する。 A motor current measurement process using speed Vt1, speed Vt2, and speed Vt3 as target speeds will be described below. Since the contents of the current measurement process of the motor current measurement process have been described above, the current measurement process will be briefly described.
 構成Cn2における電動機電流測定処理の電動機駆動処理では、まず、電動機M1の速度が速度Vt1になるように、制御部Ct1が電動機M1を駆動させる制御を行う。回転子X1bの回転速度が速度Vt1である状況において、電流測定処理では、電動機制御装置100の制御部Ct1が、測定電流としての電流I1を測定する。電流I1は、制御部Ct1の内部メモリに記憶される。 In the motor driving process of the motor current measurement process in the configuration Cn2, first, the control unit Ct1 performs control to drive the electric motor M1 so that the speed of the electric motor M1 becomes the speed Vt1. In the current measurement process, the control unit Ct1 of the motor control device 100 measures the current I1 as the measured current in the situation where the rotation speed of the rotor X1b is the speed Vt1. The current I1 is stored in the internal memory of the controller Ct1.
 次に、電動機駆動処理において、電動機M1の速度が速度Vt2になるように、制御部Ct1が電動機M1を駆動させる制御を行う。回転子X1bの回転速度が速度Vt2である状況において、電流測定処理では、電動機制御装置100の制御部Ct1が、測定電流としての電流I2を測定する。電流I2は、制御部Ct1の内部メモリに記憶される。 Next, in the motor driving process, the control unit Ct1 performs control to drive the motor M1 so that the speed of the motor M1 becomes the speed Vt2. In the current measurement process, the control unit Ct1 of the motor control device 100 measures the current I2 as the measurement current in the situation where the rotation speed of the rotor X1b is the speed Vt2. The current I2 is stored in the internal memory of the controller Ct1.
 次に、電動機駆動処理において、電動機M1の速度が速度Vt3になるように、制御部Ct1が電動機M1を駆動させる制御を行う。回転子X1bの回転速度が速度Vt3である状況において、電流測定処理では、電動機制御装置100の制御部Ct1が、測定電流としての電流I3を測定する。電流I3は、制御部Ct1の内部メモリに記憶される。 Next, in the motor driving process, the control unit Ct1 performs control to drive the motor M1 so that the speed of the motor M1 becomes the speed Vt3. In the current measurement process, the control unit Ct1 of the motor control device 100 measures the current I3 as the measured current in a situation where the rotation speed of the rotor X1b is the speed Vt3. The current I3 is stored in the internal memory of the controller Ct1.
 測定された電流I1,I2,I3は、それぞれ、速度Vt1,Vt2,Vt3に対応する。 The measured currents I1, I2, I3 correspond to the velocities Vt1, Vt2, Vt3, respectively.
 次に、変数特定処理が行われる(ステップS130)。変数特定処理では、前述の式(1)および式(2)の変数a,b,cが特定される。具体的には、変数特定処理では、電流測定処理により測定された電流I1,I2,I3が、図10のように、グラフにプロットされる。グラフに対する電流I1,I2,I3のプロットは、制御部Ct1により行われる。 Next, variable identification processing is performed (step S130). In the variable specifying process, the variables a, b, and c of the formulas (1) and (2) are specified. Specifically, in the variable identification process, the currents I1, I2, and I3 measured by the current measurement process are plotted on a graph as shown in FIG. Plotting of the currents I1, I2 and I3 on the graph is performed by the controller Ct1.
 そして、制御部Ct1が、グラフにプロットされた電流I1,I2,I3に近似する特性線Lciを生成する。当該特性線Lciは、式(1)の2次関数を表現する特性線である。制御部Ct1は、特性線Lciを表現する2次関数に基づいて、変数a,b,cを特定する。 Then, the control unit Ct1 generates a characteristic line Lci that approximates the currents I1, I2, and I3 plotted on the graph. The characteristic line Lci is a characteristic line expressing the quadratic function of Equation (1). Control unit Ct1 specifies variables a, b, and c based on a quadratic function expressing characteristic line Lci.
 生成された特性線Lciを表現する2次関数が、例えば、「I=2×Vs+3×Vs+4」である場合、変数a,b,cは、それぞれ、「2」、「3」および「4」として、特定される。 If the quadratic function expressing the generated characteristic line Lci is, for example, "I = 2 x Vs 2 + 3 x Vs + 4", variables a, b, and c are respectively "2", "3" and " 4”.
 特定された変数a,b,cは、電動機制御装置100の制御部Ct1の内部メモリに記憶される(ステップS140)。 The specified variables a, b, and c are stored in the internal memory of the control unit Ct1 of the motor control device 100 (step S140).
 以上により、変数特定制御処理は終了する。これに伴い、風抵抗推定部202の無効化は解除される。これにより、電動機制御装置100は、通常の動作を行うようになる。そのため、電動機M1は、通常のように、制御される。 With the above, the variable identification control process ends. Along with this, the invalidation of the wind resistance estimator 202 is cancelled. As a result, the motor control device 100 performs normal operation. Motor M1 is then controlled as usual.
 次に、構成Cn2における風抵抗推定処理では、速度制御部101の風抵抗推定部202が、速度指令Vrefが示す、制御タイミングにおける速度を、式(2)の「Vs」に代入する。また、風抵抗推定部202は、特定された変数a,b,cを、式(2)に代入する。 Next, in the wind resistance estimation process in configuration Cn2, the wind resistance estimation unit 202 of the speed control unit 101 substitutes the speed at the control timing indicated by the speed command Vref for "Vs" in equation (2). The wind resistance estimator 202 also substitutes the specified variables a, b, and c into equation (2).
 これにより、風抵抗推定部202は、変数a,b,cに基づいて、トルクTaに相当する風抵抗Wrを算出する。すなわち、風抵抗推定部202は、変数a,b,cに基づいて、制御タイミングにおける当該風抵抗Wrを推定する。変数a,b,cは、測定された、駆動電流である電流I1,I2,I3に基づいて特定される。すなわち、構成Cn2における風抵抗推定処理では、速度制御部101は、測定された駆動電流に基づいて、駆動タイミングにおける風抵抗Wrを推定する。 As a result, the wind resistance estimator 202 calculates the wind resistance Wr corresponding to the torque Ta based on the variables a, b, and c. That is, the wind resistance estimator 202 estimates the wind resistance Wr at the control timing based on the variables a, b, and c. The variables a, b, and c are specified based on the measured drive currents I1, I2, and I3. That is, in the wind resistance estimation process in the configuration Cn2, the speed control unit 101 estimates the wind resistance Wr at the drive timing based on the measured drive current.
 以上、換気扇F10を使用した変数特定制御処理について説明したが、前述したように、変数特定制御処理は、電動機M1を含む前述の巻線機M10を使用して、行われてもよい。 The variable identification control process using the ventilation fan F10 has been described above, but as described above, the variable identification control process may be performed using the winding machine M10 including the electric motor M1.
 本開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is, in all aspects, exemplary and non-limiting. It is understood that innumerable variations not illustrated can be envisaged.
 20 固定子、24 ワイヤ、80 処理回路、100 電動機制御装置、101 速度制御部、201 PI制御部、202 風抵抗推定部、203 加速度推定部、Ct1 制御部、F10 換気扇、Iv1 三相インバータ、M1 電動機、M10 巻線機、X1 回転部材、X1b 回転子。 20 Stator, 24 Wire, 80 Processing circuit, 100 Electric motor controller, 101 Speed control unit, 201 PI control unit, 202 Wind resistance estimation unit, 203 Acceleration estimation unit, Ct1 Control unit, F10 Ventilation fan, Iv1 Three-phase inverter, M1 Electric motor, M10 winding machine, X1 rotating member, X1b rotor.

Claims (14)

  1.  回転子を回転させる電動機を制御する電動機制御装置であって、
     前記電動機を制御する速度制御部を備え、
     前記速度制御部は、前記電動機が駆動する駆動タイミングにおける前記回転子の回転状態が、目標となる前記回転状態である目標回転状態に近づくように、当該電動機を制御する速度制御処理を行い、
     前記速度制御処理は、フィードバック制御およびフィードフォワード制御を含み、
     前記フィードバック制御は、前記速度制御部が、前記電動機の前記回転子の回転状態を制御する制御パラメータに基づいて、当該電動機を制御する処理であり、
     前記速度制御部は、風抵抗推定処理および加速度推定処理を行い、
     前記風抵抗推定処理では、前記速度制御部が、前記駆動タイミングにおける、前記回転子の回転に伴う風抵抗を推定し、
     前記加速度推定処理では、前記速度制御部が、前記駆動タイミングにおける、前記回転子の回転の加速度を推定し、
     前記フィードフォワード制御は、前記駆動タイミングにおける前記回転子の回転状態が前記目標回転状態に近づくように、前記速度制御部が、推定された前記風抵抗、および、推定された前記加速度に基づいて、前記電動機を制御する処理である、
     電動機制御装置。
    A motor control device for controlling a motor that rotates a rotor,
    A speed control unit that controls the electric motor,
    The speed control unit performs speed control processing for controlling the electric motor so that the rotation state of the rotor at the drive timing at which the electric motor is driven approaches a target rotation state, which is the target rotation state,
    The speed control process includes feedback control and feedforward control,
    The feedback control is a process in which the speed control unit controls the electric motor based on a control parameter for controlling the rotation state of the rotor of the electric motor,
    The speed control unit performs wind resistance estimation processing and acceleration estimation processing,
    In the wind resistance estimation process, the speed control unit estimates the wind resistance associated with the rotation of the rotor at the drive timing,
    In the acceleration estimation process, the speed control unit estimates the acceleration of rotation of the rotor at the drive timing,
    In the feedforward control, the speed control unit controls the speed based on the estimated wind resistance and the estimated acceleration so that the rotation state of the rotor at the drive timing approaches the target rotation state. A process for controlling the electric motor,
    motor controller.
  2.  前記風抵抗が前記回転子の回転速度の2乗に比例するように、前記電動機が当該回転子を回転させている状況である高速回転状況において、前記速度制御部は、前記フィードバック制御および前記フィードフォワード制御を行う、
     請求項1に記載の電動機制御装置。
    In a high-speed rotation state in which the electric motor rotates the rotor such that the wind resistance is proportional to the square of the rotational speed of the rotor, the speed control unit performs the feedback control and the feed perform forward control,
    The motor control device according to claim 1.
  3.  前記駆動タイミングにおける前記回転子の回転状態、および、前記目標回転状態の各々は、単位時間における当該回転子の回転数、または、当該回転子の回転速度である、
     請求項1または2に記載の電動機制御装置。
    Each of the rotation state of the rotor at the drive timing and the target rotation state is the number of rotations of the rotor per unit time or the rotation speed of the rotor.
    The motor control device according to claim 1 or 2.
  4.  前記速度制御部は、前記回転子の回転速度を制御するための速度指令に基づいて、前記フィードバック制御および前記フィードフォワード制御を行う、
     請求項1から3のいずれか1項に記載の電動機制御装置。
    The speed control unit performs the feedback control and the feedforward control based on a speed command for controlling the rotation speed of the rotor.
    The motor control device according to any one of claims 1 to 3.
  5.  前記回転子の回転速度が予め定められた速度である状況において、前記電動機制御装置は、前記電動機の駆動電流を測定し、
     前記速度制御部は、測定された前記駆動電流に基づいて、前記駆動タイミングにおける前記風抵抗を推定する、
     請求項1から4のいずれか1項に記載の電動機制御装置。
    In a situation where the rotation speed of the rotor is a predetermined speed, the motor control device measures the drive current of the motor,
    The speed control unit estimates the wind resistance at the drive timing based on the measured drive current.
    The electric motor control device according to any one of claims 1 to 4.
  6.  前記速度指令は、1次関数または2次関数で表現され、
     前記速度制御部は、前記速度指令を微分することにより、前記加速度を推定する、
     請求項4に記載の電動機制御装置。
    The speed command is expressed by a linear function or a quadratic function,
    The speed control unit estimates the acceleration by differentiating the speed command.
    The electric motor control device according to claim 4.
  7.  前記加速度推定処理では、前記速度制御部が、前記電動機の駆動パターンに基づいて、前記駆動タイミングにおける前記加速度を推定する、
     請求項4に記載の電動機制御装置。
    In the acceleration estimation process, the speed control unit estimates the acceleration at the drive timing based on the drive pattern of the electric motor.
    The electric motor control device according to claim 4.
  8.  前記速度制御処理は、電流指令を使用した処理であり、
     前記速度制御部は、推定された前記加速度を用いて算出された電流値にローパスフィルタが適用された当該電流値に基づいて前記電流指令を補正し、
     前記速度制御処理では、前記速度制御部は、補正された前記電流指令に基づいて、前記電動機を制御する、
     請求項1から6のいずれか1項に記載の電動機制御装置。
    The speed control process is a process using a current command,
    The speed control unit corrects the current command based on the current value obtained by applying a low-pass filter to the current value calculated using the estimated acceleration,
    In the speed control process, the speed control unit controls the electric motor based on the corrected current command.
    The motor control device according to any one of claims 1 to 6.
  9.  請求項1から4のいずれか1項に記載の電動機制御装置を備える巻線機であって、
     前記巻線機は、前記電動機が前記回転子を回転させることによりワイヤを部材に巻回する構成を有し、
     前記速度制御処理は、電流指令を使用した処理であり、
     前記加速度推定処理では、前記速度制御部が、前記電動機の駆動パターンに基づいて、前記駆動タイミングにおける前記加速度を推定し、
     前記速度制御部は、推定された前記加速度に基づいて前記電流指令を補正し、
     前記速度制御処理では、前記速度制御部は、補正された前記電流指令に基づいて、前記電動機を制御する、
     巻線機。
    A winding machine comprising the motor control device according to any one of claims 1 to 4,
    The winding machine has a configuration in which the electric motor rotates the rotor to wind a wire around a member,
    The speed control process is a process using a current command,
    In the acceleration estimation process, the speed control unit estimates the acceleration at the drive timing based on the drive pattern of the electric motor,
    The speed control unit corrects the current command based on the estimated acceleration,
    In the speed control process, the speed control unit controls the electric motor based on the corrected current command.
    winding machine.
  10.  請求項1から6のいずれか1項に記載の電動機制御装置を備える巻線機であって、
     前記巻線機は、前記電動機が前記回転子を回転させることによりワイヤを部材に巻回する構成を有し、
     前記速度制御部は、前記ワイヤを前記部材に巻回するために経過する巻線時間と、当該巻線時間における、前記部材に巻回された前記ワイヤの巻線重量に応じた前記部材のイナーシャとを関連付けて示すテーブルを使用して、前記駆動タイミングに対応する前記巻線時間における前記イナーシャを推定し、
     前記フィードフォワード制御は、前記速度制御部が、推定された前記風抵抗、推定された前記加速度、および、推定された前記イナーシャに基づいて、前記電動機を制御する処理である、
     巻線機。
    A winding machine comprising the motor control device according to any one of claims 1 to 6,
    The winding machine has a configuration in which the electric motor rotates the rotor to wind a wire around a member,
    The speed control unit controls a winding time elapsed for winding the wire around the member, and an inertia of the member corresponding to the winding weight of the wire wound around the member during the winding time. estimating the inertia at the winding time corresponding to the drive timing using a table showing the relationship between
    The feedforward control is a process in which the speed control unit controls the electric motor based on the estimated wind resistance, the estimated acceleration, and the estimated inertia.
    winding machine.
  11.  前記テーブルは、前記巻線時間と、当該巻線時間における、前記部材に巻回された前記ワイヤの巻線重量に応じた前記部材のイナーシャおよび前記部材のイナーシャの増加率とを関連付けて示すテーブルである、
     請求項10に記載の巻線機。
    The table shows the winding time, the inertia of the member according to the winding weight of the wire wound around the member, and the inertia increase rate of the member during the winding time. is
    Winding machine according to claim 10.
  12.  前記速度制御処理は、電流指令を使用した処理であり、
     前記速度制御部は、推定された前記イナーシャに基づいて、前記回転子の加速力を算出し、
     前記速度制御部は、算出された前記加速力に基づいて前記電流指令を補正し、
     前記速度制御処理では、前記速度制御部は、補正された前記電流指令に基づいて、前記電動機を制御する、
     請求項10または11に記載の巻線機。
    The speed control process is a process using a current command,
    The speed control unit calculates an acceleration force of the rotor based on the estimated inertia,
    The speed control unit corrects the current command based on the calculated acceleration force,
    In the speed control process, the speed control unit controls the electric motor based on the corrected current command.
    Winding machine according to claim 10 or 11.
  13.  前記速度制御部は、前記ワイヤに加わるテンションに基づいて前記電流指令を補正する、
     請求項12に記載の巻線機。
    The speed control unit corrects the current command based on the tension applied to the wire.
    Winding machine according to claim 12.
  14.  請求項1から8のいずれか1項に記載の電動機制御装置を備える巻線機であって、
     前記巻線機は、前記電動機が前記回転子を回転させることによりワイヤを部材に巻回する構成を有する、
     巻線機。
    A winding machine comprising the motor control device according to any one of claims 1 to 8,
    The winding machine has a configuration in which the electric motor rotates the rotor to wind a wire around a member,
    winding machine.
PCT/JP2022/037422 2021-11-09 2022-10-06 Electric motor control device and winding machine WO2023084956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023559477A JPWO2023084956A1 (en) 2021-11-09 2022-10-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182445 2021-11-09
JP2021-182445 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023084956A1 true WO2023084956A1 (en) 2023-05-19

Family

ID=86335607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037422 WO2023084956A1 (en) 2021-11-09 2022-10-06 Electric motor control device and winding machine

Country Status (2)

Country Link
JP (1) JPWO2023084956A1 (en)
WO (1) WO2023084956A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780188A (en) * 2014-01-23 2014-05-07 安徽大学 Permanent-magnet spherical motor rotor self-adapting control system based on dynamic friction compensation
JP2014080128A (en) * 2012-10-17 2014-05-08 Nissan Motor Co Ltd Vehicular travel support device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080128A (en) * 2012-10-17 2014-05-08 Nissan Motor Co Ltd Vehicular travel support device
CN103780188A (en) * 2014-01-23 2014-05-07 安徽大学 Permanent-magnet spherical motor rotor self-adapting control system based on dynamic friction compensation

Also Published As

Publication number Publication date
JPWO2023084956A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
Nakao et al. Suppressing pulsating torques: Torque ripple control for synchronous motors
JP4805329B2 (en) Control device for calculating power consumption of industrial machinery
KR101678323B1 (en) Motor drive control device
JP3697583B2 (en) Traverse control device
WO2009157272A1 (en) Wire winding device
JP6667076B2 (en) Motor control device and method of correcting torque constant in motor control device
JP2008054386A (en) Control device for synchronous motors
JPS6331492A (en) Controller for induction motor
JP2010098908A (en) Field winding synchronous machine
JP2016171741A (en) Method for detecting initial magnetic-pole position of rotor in permanent magnet synchronous motor
JP6313335B2 (en) Linear motor thrust constant deriving method and movement control method, linear motor thrust constant deriving apparatus and movement control apparatus
JP5727532B2 (en) Current vector controller for stepping motor
WO2023084956A1 (en) Electric motor control device and winding machine
CN1042184C (en) Method for controlling induction motor
JPS6129302B2 (en)
JP2010280464A (en) Tension device
CN110635737A (en) Motor drive device
JP5941103B2 (en) Induction motor vector control device
JPWO2007097183A1 (en) Electric motor control device
JP5376720B2 (en) Torque control device
KR100771914B1 (en) Apparatus for controlling vector inverter for winder
JP3696811B2 (en) Speed / torque control device for tension control motor
WO2018055691A1 (en) Motor control system and motor control method
JP2660073B2 (en) Winding equipment for rotating electric machines
JP2017055637A (en) Motor control apparatus for controlling motor on the basis of counter-electromotive voltage generated in winding of motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559477

Country of ref document: JP