WO2023084868A1 - Mass spectrometer - Google Patents

Mass spectrometer Download PDF

Info

Publication number
WO2023084868A1
WO2023084868A1 PCT/JP2022/032136 JP2022032136W WO2023084868A1 WO 2023084868 A1 WO2023084868 A1 WO 2023084868A1 JP 2022032136 W JP2022032136 W JP 2022032136W WO 2023084868 A1 WO2023084868 A1 WO 2023084868A1
Authority
WO
WIPO (PCT)
Prior art keywords
skimmer cone
mass spectrometer
cone
pressing member
skimmer
Prior art date
Application number
PCT/JP2022/032136
Other languages
French (fr)
Japanese (ja)
Inventor
知義 松下
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2023084868A1 publication Critical patent/WO2023084868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns

Definitions

  • the present invention relates to an ICP (Inductively Coupled Plasma) mass spectrometer.
  • ICP Inductively Coupled Plasma
  • ICP mass spectrometer There is a mass spectrometer called an ICP mass spectrometer.
  • An ICP mass spectrometer ionizes an element to be measured contained in a solution sample by plasma, draws the resulting ions into a vacuum through a sampling unit, and performs measurement with a mass spectrometer (for example, Patent Document 1 ).
  • the sampling section includes a conical sampling cone and a skimmer cone. Since the sampling cone and skimmer cone are directly blown with plasma reaching about 7000° C., they need to be made of materials that can withstand high temperatures.
  • the skimmer cone When metal is used as the material for the skimmer cone, the skimmer cone is machined from a lump of metal. For this reason, the processing cost for manufacturing the skimmer cone is high, which has been a factor in increasing the manufacturing cost of the mass spectrometer as a whole.
  • the present invention has been devised in view of such circumstances, and its purpose is to provide a technique for reducing the manufacturing cost of mass spectrometers.
  • a mass spectrometer includes a plasma ion source that ionizes a sample with plasma, a mass spectrometry unit that performs mass analysis on the ionized sample, and a mass spectrometer that is arranged between the plasma ion source and the mass spectrometer.
  • a sampling unit wherein the sampling unit includes a sampling cone and a skimmer cone arranged closer to the mass spectrometry unit than the sampling cone; a base for cooling the skimmer cone; a holding member for fixing at least a portion of the outer edge of the skimmer cone to the base.
  • the manufacturing cost of the mass spectrometer is reduced.
  • FIG. 4 is a perspective view of the unit 9;
  • FIG. 4 is a longitudinal sectional view of the unit 9;
  • FIG. 4 is an exploded perspective view of the unit 9;
  • FIG. 9 is a view showing a cross section near the projection 7X in a state where a pressing member 91 fixes the skimmer cone 7 to the cooling jacket base 92.
  • FIG. 8 is a diagram showing the positional relationship between the skimmer cone 7 and the lead-in electrode 8.
  • FIG. 1 is a diagram schematically showing the configuration of the mass spectrometer of this embodiment.
  • the mass spectrometer 100 shown in FIG. 1 is an ICP mass spectrometer.
  • the mass spectrometer 100 includes an ionization chamber 1, a first vacuum chamber 2, a second vacuum chamber 3, and a third vacuum chamber 4.
  • the ionization chamber 1 is at substantially atmospheric pressure and electrically grounded.
  • the first vacuum chamber 2 is configured such that the degree of vacuum increases in order from the ionization chamber 1 side.
  • the inside of the first vacuum chamber 2 is evacuated by a rotary pump.
  • the insides of the second vacuum chamber 3 and the third vacuum chamber 4 are evacuated by a rotary pump and a turbomolecular pump.
  • An ICP ion source 5 is arranged inside the ionization chamber 1 .
  • the configuration of the ICP ion source 5 shown in FIG. 1 is merely an example, and various modifications are possible.
  • the ICP ion source 5 includes a plasma torch 51.
  • the plasma torch 51 includes a sample tube through which the liquid sample atomized by the nebulizing gas flows, a plasma gas tube formed around the sample tube, and a cooling gas tube formed around the plasma gas tube.
  • An autosampler 52 for introducing a liquid sample into the plasma torch 51 is provided at the inlet end of the sample tube of the plasma torch 51 .
  • the sample tube is connected to a nebulizing gas supply source that supplies nebulizing gas
  • the plasma gas tube is connected to a plasma gas supply source that supplies plasma gas (for example, Ar gas)
  • the cooling gas tube is connected to A cooling gas supply is connected to supply a cooling gas.
  • the first vacuum chamber 2 is formed between a substantially conical sampling cone 6 and a substantially conical skimmer cone 7 . Both the sampling cone 6 and the skimmer cone 7 have ion passage openings at their tops.
  • the skimmer cone 7 is made of metal such as Cu or Ni, for example.
  • the first vacuum chamber 2 functions as an interface for sending ions supplied from the ICP ion source 5 to the subsequent stage and discharging solvent gas and the like.
  • the X axis represents the traveling direction of ions.
  • a drawing electrode 8 an ion lens 10 for converging ions, a collision cell 11, and an energy barrier forming electrode 15 are arranged in order from the skimmer cone 7 side (the side where ions are incident). It is The drawing electrode 8, the ion lens 10, and the energy barrier forming electrode 15 are all disc-shaped electrodes having a substantially circular opening for passing ions. The opening of the lead-in electrode 8 is shown as opening 81 in FIG.
  • An entrance electrode 12 having an ion passage aperture 121 is arranged on the entrance side of the collision cell 11 , and an exit electrode 13 similarly having an ion passage aperture 131 formed on the exit side of the collision cell 11 .
  • a multipole (for example, octapole) type ion guide 14 including a plurality of rod electrodes arranged parallel to an ion optical axis 18 is arranged.
  • a quadrupole mass filter 16 including a pre-rod electrode and a main rod electrode, and an ion detector 17 are arranged in the third vacuum chamber 4 .
  • the gas supply unit 19 supplies collision gas or reaction gas to the interior of the collision cell 11 through the gas supply pipe.
  • the collision gas is He (or another inert gas) and the reaction gas is a reactive gas such as hydrogen or ammonia.
  • the voltage generating section 20 generates a voltage to be applied to each section in the mass spectrometer 100. In FIG. 1, only some voltage supply lines are drawn to avoid complicating the drawing. ing.
  • the voltage generator 20 includes a plurality of DC voltage generators that generate a DC voltage of a predetermined voltage and a plurality of high frequency voltage generators that generate a high frequency voltage with a predetermined amplitude and a predetermined frequency.
  • the voltage control unit 21 controls the magnitude of the voltage applied from the voltage generation unit 20 to each unit and the timing of application.
  • the control unit 22 comprehensively controls each unit in the mass spectrometer 100 in order to perform analysis.
  • the control unit 22 also has a user interface function via the input unit 23, the display unit 24, and the like.
  • the data processing unit 25 includes an analog-to-digital (AD) converter that digitizes the detection signal obtained by the ion detector 17, and processes the collected data to create a mass spectrum.
  • AD analog-to-digital
  • control unit 22, the voltage control unit 21, and the data processing unit 25 are implemented by a personal computer including a CPU (Central Processing Unit), RAM (Random Access Memory), and an external storage device. .
  • Control in the mass spectrometer 100 can be realized by the CPU executing a predetermined program installed in advance.
  • FIG. 2 is an enlarged view of a part of the mass spectrometer 100.
  • An example of the analysis operation of the mass spectrometer 100 will be described below.
  • ions to be analyzed by the mass spectrometer 100 are assumed to be positive ions. It is obvious that even if the ions to be analyzed are negative ions, the same analysis as in the following description can be performed by appropriately changing the polarity of the voltage applied to each part.
  • the first vacuum chamber 2, the second vacuum chamber 3, and the third vacuum chamber 4 are each in a state of being evacuated.
  • the control unit 22 starts analysis preparatory work.
  • control unit 22 operates the gas supply unit 19 to start supplying a predetermined gas into the collision cell 11 continuously or intermittently.
  • the type of gas to be supplied differs depending on the analysis mode. For example, He gas is used in the collision mode, and H 2 gas is used in the reaction mode.
  • the voltage control unit 21 determines that the potential barrier between the skimmer cone 7 and the pull-in electrode 8 is higher than the initial energy of the unwanted ions generated by the ICP ion source 5 .
  • the voltage generator 20 is controlled so as to apply a positive DC voltage of a predetermined voltage value to the pull-in electrode 8 so as to form a gap between them.
  • "Undesired ions” are mainly ions derived from the plasma gas used in the ICP ion source 5, such as Ar + and Ar 2+ when the plasma gas is Ar. Since the initial energy of the "undesired ions" is not so large, the voltage applied to the pull-in electrode 8 is generally about +several volts.
  • the voltage control unit 21 also controls the voltage generation unit 20 under the instruction of the control unit 22 so as to apply a positive DC voltage of a predetermined voltage value to the entrance electrode 12 of the collision cell 11 .
  • the voltage applied to the entrance electrode 12 at this time is, for example, about +several tens to two hundred volts.
  • the voltage control unit 21 also controls the voltage generation unit 20 under the instruction of the control unit 22 so as to apply to the ion guide 14 in the collision cell 11 a high-frequency voltage with a larger amplitude value than during normal analysis. do.
  • the voltage control unit 21 further controls the voltage generation unit 20 to continuously or pulse-wise apply a negative DC voltage having a predetermined voltage value larger than that during normal analysis to the exit electrode 13 of the collision cell 11. do.
  • the amplitude value of the high-frequency voltage applied to the ion guide 14 is, for example, 50 V or more
  • the DC voltage applied to the exit electrode 13 is, for example, about -100 V (about -10 to -10 and several V during normal analysis).
  • a potential barrier is formed in the vicinity of the drawing electrode 8 by an electric field having the same polarity as the ions. Ions derived from the plasma gas or the like generated by the ICP ion source 5 and entered the second vacuum chamber 3 through the ion passage port (opening 61) of the sampling cone 6 and the ion passage port (opening 71) of the skimmer cone 7 are It is blocked by the potential barrier. Therefore, ions stay in the region 31 between the skimmer cone 7 and the drawing electrode 8, and the ion density increases.
  • the voltage applied to the entrance electrode 12 of the collision cell 11 forms an electric field having the same polarity as the ions originating from the plasma gas or the like in the region 32 between the ion lens 10 and the entrance electrode 12 . Therefore, ions introduced from the ICP ion source 5 into the second vacuum chamber 3 via the first vacuum chamber 2 and having passed through the region 32 are pushed back before the entrance electrode 12 . As a result, it is possible to further reduce the entry of unwanted ions originating from the plasma gas or the like into the collision cell 11 .
  • the reactive neutral particles and molecules do not have electric charges, they are not removed by the action of the electric field formed in the region 32. However, as described above, the reactive neutral particles and molecules do not pass through the region 31. Therefore, the amount of reactive neutral particles and gas molecules that enter the interior of the collision cell 11 can be reduced.
  • Some of the ions derived from the plasma gas or the like may pass through both the regions 31 and 32 and enter the collision cell 11 . Also, some of the reactive neutral particles and molecules originating from the plasma gas or the like pass through the above two regions and enter the collision cell 11, contact the gas within the collision cell 11, and become unwanted ions. Sometimes. Ions entering from the outside and ions generated within the collision cell 11 contact the gas present within the collision cell 11 to reduce their energy and are trapped in the high frequency electric field created by the ion guide 14 . Since the high-frequency electric field at this time is stronger than that during normal analysis, the ions are focused in a relatively narrow region 33 near the ion optical axis 18 .
  • the exit electrode 13 of the collision cell 11 is applied with a relatively high voltage having a polarity opposite to that of the ions to be captured. Therefore, the ions staying in the region 33 are attracted by the strong electric field generated by the voltage applied to the exit electrode 13 and are ejected from the collision cell 11 through the ion passage aperture 131 of the exit electrode 13 .
  • the control unit 22 waits until a predetermined waiting time elapses so that the collision cell 11 is sufficiently filled with the gas supplied from the gas supply unit 19 .
  • the gas introduced into the collision cell 11 leaks out through the openings 121, 131 of the entrance electrode 12 and the exit electrode 13, respectively.
  • the longer the waiting time the better, in order to fill the collision cell 11 with gas molecules with as uniform a density as possible.
  • the voltage control section 21 controls the voltage generating section 20 so as to apply to the drawing electrode 8 a negative DC voltage of a predetermined voltage value that attracts ions.
  • the voltage control unit 21 also controls the voltage generation unit 20 so as to apply a negative DC voltage having a predetermined voltage value to the entrance electrode 12 of the collision cell 11 as well.
  • the voltage control unit 21 controls the voltage generation unit 20 so as to apply to the ion guide 14 in the collision cell 11 a high-frequency voltage having a predetermined amplitude value corresponding to the component to be analyzed (target component). .
  • the voltage control section 21 controls the voltage generation section 20 so as to apply a predetermined voltage for potential barrier formation to the exit electrode 13 of the collision cell 11 .
  • the mass spectrometer 100 performs analysis.
  • the voltage controller 21 sets the voltage applied to the quadrupole mass filter 16 such that ions originating from the target component pass through. Then, in the mass spectrometer 100, the intensity of the ions of the target sample component is detected after the time (for example, several milliseconds) required for the voltage applied to each part to settle.
  • ions derived from sample components generated by the ICP ion source 5 are introduced into the collision cell 11 filled with collision gas together with unwanted ions derived from the plasma gas.
  • the introduced ions repeatedly collide with the collision gas, and their energy is attenuated. Ions with a larger collision cross-section have more opportunities to collide with the collision cell, and their energy is greatly attenuated.
  • the collision cross section of ions derived from the plasma gas is generally larger than that of ions derived from the target component, the ions derived from the plasma gas have smaller kinetic energy. Therefore, ions derived from the plasma gas are difficult to overcome the potential barrier formed at the exit of the collision cell 11 . Unnecessary ions derived from the plasma gas or the like are removed by the kinetic energy discrimination method, and ions mainly of sample components can be sent to the quadrupole mass filter 16 for analysis.
  • the collision cell 11 is kept in contact with the collision cell 11 for the entire analysis preparation period from the start of gas supply to the collision cell 11 until the gas sufficiently fills the collision cell 11 and the analysis is started.
  • the voltage applied to each part was set so that ions would not stay inside. However, it is not always necessary to continue such voltage setting throughout the analysis preparation period. Note that the basic operation can be the same as the above even in the reaction mode instead of the collision mode.
  • FIG. 3 is a perspective view of the unit 9.
  • FIG. Unit 9 includes skimmer cone 7 and pulling electrode 8 .
  • Unit 9 further includes plate 90 and pressing member 91 .
  • the pressing member 91 has a ring shape.
  • FIG. 4 is a longitudinal sectional view of the unit 9.
  • FIG. 5 is an exploded perspective view of the unit 9.
  • a cooling jacket base 92 is arranged between the plate 90 and the lead-in electrode 8 .
  • the skimmer cone 7 is fixed to the cooling jacket base 92 by pressing the outer edge of the skimmer cone 7 against the cooling jacket base 92 with a pressing member 91 . More specifically, the pressing member 91 fixes the skimmer cone 7 to the cooling jacket base 92 by fixing to the cooling jacket base 92 with screws 91A and 91B. This allows the skimmer cone 7 to be cooled by the cooling jacket base 92 while maintaining its ability to pass ions through the aperture 71 .
  • the outer diameter of the entire skimmer cone 7 can be made smaller than before. Thereby, the material constituting the skimmer cone 7 can be reduced, and the manufacturing cost of the skimmer cone 7 can be reduced. In addition, since the outer diameter of the skimmer cone 7 is reduced, the processing cost for cutting out the skimmer cone 7 can be suppressed, and the manufacturing cost of the skimmer cone 7 can also be reduced. By reducing the manufacturing cost of the skimmer cone 7, the manufacturing cost of the mass spectrometer 100 as a whole can also be reduced.
  • the pressing member 91 only needs to fix at least part of the outer edge of the skimmer cone 7 to the cooling jacket base 92 . 5, the skimmer cone 7 can be more reliably fixed to the cooling jacket base 92 by fixing the entire outer edge of the skimmer cone 7 to the cooling jacket base 92 with the pressing member 91. .
  • FIG. 5 is a cross-sectional view showing the vicinity of the convex portion 7X when the holding member 91 fixes the skimmer cone 7 to the cooling jacket base 92. As shown in FIG. 5, the surface of the skimmer cone 7 is formed with a convex portion 7X.
  • FIG. 6 is a cross-sectional view showing the vicinity of the convex portion 7X when the holding member 91 fixes the skimmer cone 7 to the cooling jacket base 92. As shown in FIG.
  • the pressing member 91 has recesses 91X at positions corresponding to the protrusions 7X.
  • the pressing member 91 fixes the skimmer cone 7 to the cooling jacket base 92 with the projection 7X fitted into the recess 91X.
  • a concave portion may be formed on the skimmer cone 7 side and a convex portion may be formed on the pressing member 91 side.
  • the pressing member 91 is in contact with the X-axis and Y-axis surfaces of the skimmer cone 7 . That is, the pressing member 91 is in contact with multiple surfaces of the skimmer cone 7 .
  • the pressing member 91 can contact the skimmer cone 7 over a larger area than the opening 71 of the skimmer cone 7 . Therefore, heat conduction from the skimmer cone 7 to the pressing member 91 is promoted.
  • the pressing member 91 is in contact with the surface along the X axis and the surface along the Y axis at the outer edge of the skimmer cone 7 as well. . That is, the outer edge of the skimmer cone 7 has steps, and the outer edge of the pressing member 91 also has steps corresponding to the steps of the skimmer cone 7 .
  • the pressing member 91 and the skimmer cone can be made of materials having different thermal conductivities. Thereby, the mode of heat transfer from the skimmer cone 7 to the pressing member 91 can be adjusted by selecting each material.
  • the pressing member 91 is made of a material with higher thermal conductivity than the skimmer cone 7.
  • the pressing member 91 is made of copper and the skimmer cone 7 is made of nickel.
  • heat transfer from the skimmer cone 7 to the pressing member 91 can be promoted, and the temperature at the tip (opening 71) of the skimmer cone 7 can be reduced. This allows the mass spectrometer 100 to measure a sample that is suitable for lowering the temperature of the opening 71 .
  • the pressing member 91 is made of a material with a lower thermal conductivity than the skimmer cone 7.
  • the pressing member 91 is made of SUS or brass, and the skimmer cone 7 is made of nickel. Thereby, heat transfer from the skimmer cone 7 to the pressing member 91 is suppressed, and the opening 71 of the skimmer cone 7 can be maintained at a high temperature. Thereby, the mass spectrometer 100 can measure a sample suitable for keeping the temperature of the opening 71 high.
  • FIG. 7 is a diagram showing the positional relationship between the skimmer cone 7 and the drawing electrode 8.
  • FIG. 7 shows the positional relationship between the skimmer cone 7 and the lead-in electrode 8 in the YZ plane.
  • the YZ plane is an example of a plane that intersects with the axial directions of the sampling cone 6, the skimmer cone 7, and the lead-in electrode 8.
  • the axial directions of the sampling cone 6, the skimmer cone 7, and the drawing electrode 8 mean the main traveling directions of ions.
  • the outer edge of the skimmer cone 7 is positioned outside the opening 81 of the lead-in electrode 8 on the YZ plane. That is, the outer edge of the skimmer cone 7 extends to a position covering the opening 81 of the lead-in electrode 8 . Thereby, discharge from the lead-in electrode 8 can be suppressed by the skimmer cone 7 .
  • a mass spectrometer comprises a plasma ion source that ionizes a sample with plasma, a mass spectrometry section that performs mass analysis on the ionized sample, and a space between the plasma ion source and the mass spectrometry section.
  • a sampling unit arranged in a base for cooling the skimmer cone, the sampling unit including a sampling cone and a skimmer cone arranged closer to the mass spectrometry unit than the sampling cone; and a pressing member for fixing at least part of the outer edge of the skimmer cone to the base.
  • the mass spectrometer according to Section 1 further includes a pull-in electrode installed closer to the mass spectrometry unit than the skimmer cone, and the pull-in electrode is for allowing the ionized sample to pass through.
  • An opening may be provided, and an outer edge of the skimmer cone may extend to a position covering the opening on a plane intersecting the axial direction of the sampling cone, the skimmer cone, and the lead-in electrode.
  • the skimmer cone can suppress discharge from the drawing electrode.
  • the pressing member may fix the skimmer cone to the base by contacting a plurality of surfaces of the outer edge of the skimmer cone. good.
  • a concave portion is formed on one side of the skimmer cone and the pressing member, and the other side of the skimmer cone and the pressing member
  • the skimmer cone may be fixed to the base by forming a convex portion on the side thereof, and fixing the pressing member to the base with the convex portion fitted in the concave portion.
  • the skimmer cone can be fixed by the pressing member without forming a screw hole.
  • the pressing member and the skimmer cone may be made of materials having different thermal conductivities.
  • the mode of heat transfer from the skimmer cone to the pressing member can be adjusted by selecting each material.
  • the pressing member may be made of a material having higher thermal conductivity than the skimmer cone.
  • the mass spectrometer can measure a sample suitable for lowering the temperature of the opening of the skimmer cone.
  • the pressing member may be made of a material having a lower thermal conductivity than the skimmer cone.
  • the mass spectrometer can measure a sample that is suitable for maintaining a high temperature at the opening of the skimmer cone.
  • the pressing member may fix the entire outer edge of the skimmer cone to the base.
  • the skimmer cone can be more reliably fixed by the pressing member.
  • 1 ionization chamber
  • 2 first vacuum chamber
  • 3 second vacuum chamber
  • 4 third vacuum chamber
  • 5 ICP ion source
  • 6 sampling cone
  • 7 skimmer cone
  • 7 convex part
  • 8 pulling electrode
  • 9 unit
  • 10 ion lens
  • 11 collision cell 12 entrance electrode, 13 exit electrode
  • 14 ion guide
  • 15 energy barrier forming electrode 16 mass filter
  • 17 ion detector 18 ion optical axis
  • 19 gas supply unit 20 voltage generation unit, 21 voltage control Part, 31, 32, 33 area, 51 plasma torch, 52 autosampler, 61, 71, 81 opening, 90 plate, 91 pressing member, 91A, 91B screw, 91X recess, 92 cooling jacket base, 100 mass spectrometer, 121, 131 Ion passage openings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

This mass spectrometer comprises: a plasma ion source that ionizes a sample with plasma; a mass spectrometry unit that performs mass spectrometry on the ionized sample; and a sampling cone. The mass spectrometer also comprises a skimmer cone (7) that is disposed further on the mass spectrometry unit side than the sampling cone. The mass spectrometer further comprises a base for cooling the skimmer cone (7), and a pressing member (91) for fixing at least a portion of the outer edge of the skimmer cone (7) to the base.

Description

質量分析装置Mass spectrometer
 本発明は、ICP(Inductively Coupled Plasma)質量分析装置に関する。 The present invention relates to an ICP (Inductively Coupled Plasma) mass spectrometer.
 質量分析装置には、ICP質量分析装置と呼ばれるものがある。ICP質量分析装置は、プラズマによって溶液サンプル中に含まれる測定対象元素をイオン化させ、その結果生じたイオンをサンプリング部を介して真空中に引き込み、質量分析計によって測定を行う(たとえば、特許文献1を参照)。サンプリング部は、円錐形をした、サンプリングコーンおよびスキマーコーンを含む。サンプリングコーンおよびスキマーコーンは、7000℃程度に達するプラズマを直接吹き付けられるため、高温に耐える材料で作成される必要がある。 There is a mass spectrometer called an ICP mass spectrometer. An ICP mass spectrometer ionizes an element to be measured contained in a solution sample by plasma, draws the resulting ions into a vacuum through a sampling unit, and performs measurement with a mass spectrometer (for example, Patent Document 1 ). The sampling section includes a conical sampling cone and a skimmer cone. Since the sampling cone and skimmer cone are directly blown with plasma reaching about 7000° C., they need to be made of materials that can withstand high temperatures.
特開平10-241625号公報JP-A-10-241625
 スキマーコーンの材料として金属が採用される場合、スキマーコーンは、金属の塊から削り出される。このことから、スキマーコーンの製造のために加工費がかさみ、これにより、質量分析装置全体としての製造コストを押し上げる要因となっていた。 When metal is used as the material for the skimmer cone, the skimmer cone is machined from a lump of metal. For this reason, the processing cost for manufacturing the skimmer cone is high, which has been a factor in increasing the manufacturing cost of the mass spectrometer as a whole.
 本発明は、係る実情に鑑み考え出されたものであり、その目的は、質量分析装置の製造コストを低減するための技術を提供することである。 The present invention has been devised in view of such circumstances, and its purpose is to provide a technique for reducing the manufacturing cost of mass spectrometers.
 本開示のある局面に従う質量分析装置は、試料をプラズマによりイオン化するプラズマイオン源と、イオン化された試料を質量分析する質量分析部と、前記プラズマイオン源と前記質量分析部との間に配置されたサンプリング部と、を備え、前記サンプリング部は、サンプリングコーンと、前記サンプリングコーンよりも前記質量分析部側に配置されたスキマーコーンと、を含み、前記スキマーコーンを冷却するためのベースと、前記スキマーコーンの外縁の少なくとも一部を前記ベースに固定するための押さえ部材と、をさらに備える。 A mass spectrometer according to an aspect of the present disclosure includes a plasma ion source that ionizes a sample with plasma, a mass spectrometry unit that performs mass analysis on the ionized sample, and a mass spectrometer that is arranged between the plasma ion source and the mass spectrometer. a sampling unit, wherein the sampling unit includes a sampling cone and a skimmer cone arranged closer to the mass spectrometry unit than the sampling cone; a base for cooling the skimmer cone; a holding member for fixing at least a portion of the outer edge of the skimmer cone to the base.
 本開示のある局面に従うと、質量分析装置の製造コストが低減される。 According to one aspect of the present disclosure, the manufacturing cost of the mass spectrometer is reduced.
本実施形態の質量分析装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the mass spectrometer of this embodiment. 質量分析装置100の一部を拡大して示す図である。2 is an enlarged view of part of the mass spectrometer 100. FIG. ユニット9の斜視図である。4 is a perspective view of the unit 9; FIG. ユニット9の縦断面図である。4 is a longitudinal sectional view of the unit 9; FIG. ユニット9の分解斜視図である。4 is an exploded perspective view of the unit 9; FIG. 押さえ部材91がスキマーコーン7を冷却ジャケットベース92に固定している状態での、凸部7X近傍の断面を示す図である。9 is a view showing a cross section near the projection 7X in a state where a pressing member 91 fixes the skimmer cone 7 to the cooling jacket base 92. FIG. スキマーコーン7と引込電極8との間の位置関係を示す図である。8 is a diagram showing the positional relationship between the skimmer cone 7 and the lead-in electrode 8. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 [質量分析装置の構成]
 図1は、本実施形態の質量分析装置の構成を概略的に示す図である。図1に示された質量分析装置100は、ICP質量分析装置である。
[Configuration of mass spectrometer]
FIG. 1 is a diagram schematically showing the configuration of the mass spectrometer of this embodiment. The mass spectrometer 100 shown in FIG. 1 is an ICP mass spectrometer.
 質量分析装置100は、イオン化室1、第1真空室2、第2真空室3、および第3真空室4を含む。イオン化室1は、略大気圧であり電気的に接地されている。第1真空室2は、イオン化室1側から順に真空度が高くなるように構成されている。第1真空室2内は、ロータリポンプにより真空排気される。第2真空室3および第3真空室4内は、ロータリポンプおよびターボ分子ポンプにより真空排気される。 The mass spectrometer 100 includes an ionization chamber 1, a first vacuum chamber 2, a second vacuum chamber 3, and a third vacuum chamber 4. The ionization chamber 1 is at substantially atmospheric pressure and electrically grounded. The first vacuum chamber 2 is configured such that the degree of vacuum increases in order from the ionization chamber 1 side. The inside of the first vacuum chamber 2 is evacuated by a rotary pump. The insides of the second vacuum chamber 3 and the third vacuum chamber 4 are evacuated by a rotary pump and a turbomolecular pump.
 イオン化室1の内部には、ICPイオン源5が配設されている。なお、図1に示されたICPイオン源5の構成は単なる一例であり、様々な変形が可能である。 An ICP ion source 5 is arranged inside the ionization chamber 1 . The configuration of the ICP ion source 5 shown in FIG. 1 is merely an example, and various modifications are possible.
 ICPイオン源5は、プラズマトーチ51を含む。プラズマトーチ51は、ネブライズガスにより霧化した液体試料が流通する試料管、該試料管の外周に形成されたプラズマガス管、および当該プラズマガス管の外周に形成された冷却ガス管を含む。 The ICP ion source 5 includes a plasma torch 51. The plasma torch 51 includes a sample tube through which the liquid sample atomized by the nebulizing gas flows, a plasma gas tube formed around the sample tube, and a cooling gas tube formed around the plasma gas tube.
 プラズマトーチ51の試料管の入口端には、液体試料をプラズマトーチ51に導入するオートサンプラ52が設けられている。そのほかに、図示しないものの、試料管にはネブライズガスを供給するネブライズガス供給源が接続され、プラズマガス管にはプラズマガス(例えばArガス)を供給するプラズマガス供給源が接続され、冷却ガス管には冷却ガスを供給する冷却ガス供給源が接続されている。 An autosampler 52 for introducing a liquid sample into the plasma torch 51 is provided at the inlet end of the sample tube of the plasma torch 51 . In addition, although not shown, the sample tube is connected to a nebulizing gas supply source that supplies nebulizing gas, the plasma gas tube is connected to a plasma gas supply source that supplies plasma gas (for example, Ar gas), and the cooling gas tube is connected to A cooling gas supply is connected to supply a cooling gas.
 第1真空室2は、略円錐形状であるサンプリングコーン6と、同じく略円錐形状であるスキマーコーン7との間に形成されている。サンプリングコーン6およびスキマーコーン7は、いずれもその頂部にイオン通過口を有する。スキマーコーン7は、たとえば、CuまたはNiなどの金属によって構成される。第1真空室2は、ICPイオン源5から供給されるイオンを後段へと送るとともに溶媒ガス等を排出するためのインターフェイスとして機能する。 The first vacuum chamber 2 is formed between a substantially conical sampling cone 6 and a substantially conical skimmer cone 7 . Both the sampling cone 6 and the skimmer cone 7 have ion passage openings at their tops. The skimmer cone 7 is made of metal such as Cu or Ni, for example. The first vacuum chamber 2 functions as an interface for sending ions supplied from the ICP ion source 5 to the subsequent stage and discharging solvent gas and the like.
 図1に示される3軸(X,Y,Z)のうち、X軸は、イオンの進行方向を表す。
 第2真空室3内には、スキマーコーン7側(イオンが入射する側)から順に、引込電極8、イオンを収束させるためのイオンレンズ10、コリジョンセル11、およびエネルギ障壁形成用電極15が配置されている。引込電極8、イオンレンズ10、および、エネルギ障壁形成用電極15は、いずれも、イオンを通過させるための略円形状の開口が形成された円盤状の電極である。引込電極8の開口は、図2において、開口81として示されている。
Of the three axes (X, Y, Z) shown in FIG. 1, the X axis represents the traveling direction of ions.
In the second vacuum chamber 3, a drawing electrode 8, an ion lens 10 for converging ions, a collision cell 11, and an energy barrier forming electrode 15 are arranged in order from the skimmer cone 7 side (the side where ions are incident). It is The drawing electrode 8, the ion lens 10, and the energy barrier forming electrode 15 are all disc-shaped electrodes having a substantially circular opening for passing ions. The opening of the lead-in electrode 8 is shown as opening 81 in FIG.
 コリジョンセル11の入口側には、イオン通過開口121が形成された入口電極12、コリジョンセル11の出口側には同様にイオン通過開口131が形成された出口電極13が配置されている。コリジョンセル11の内部には、イオン光軸18に平行に配置された複数本のロッド電極を含む、多重極(例えば八重極)型のイオンガイド14が配設されている。 An entrance electrode 12 having an ion passage aperture 121 is arranged on the entrance side of the collision cell 11 , and an exit electrode 13 similarly having an ion passage aperture 131 formed on the exit side of the collision cell 11 . Inside the collision cell 11, a multipole (for example, octapole) type ion guide 14 including a plurality of rod electrodes arranged parallel to an ion optical axis 18 is arranged.
 第3真空室4内には、プリロッド電極とメインロッド電極とを含む四重極マスフィルタ16と、イオン検出器17と、が配置されている。 A quadrupole mass filter 16 including a pre-rod electrode and a main rod electrode, and an ion detector 17 are arranged in the third vacuum chamber 4 .
 ガス供給部19は、ガス供給管を通してコリジョンセル11の内部にコリジョンガス又はリアクションガスを供給する。コリジョンガスはHe(または、別の不活性ガス)であり、リアクションガスは水素、アンモニア等の反応性ガスである。 The gas supply unit 19 supplies collision gas or reaction gas to the interior of the collision cell 11 through the gas supply pipe. The collision gas is He (or another inert gas) and the reaction gas is a reactive gas such as hydrogen or ammonia.
 電圧発生部20は、質量分析装置100内の各部に印加する電圧を発生するものであるが、図1では、図面が煩雑になるのを避けるために、一部の電圧供給線のみが描かれている。なお、電圧発生部20は、所定の電圧の直流電圧を発生する複数の直流電圧発生部と、所定振幅および所定周波数である高周波電圧を発生する複数の高周波電圧発生部と、を含む。 The voltage generating section 20 generates a voltage to be applied to each section in the mass spectrometer 100. In FIG. 1, only some voltage supply lines are drawn to avoid complicating the drawing. ing. The voltage generator 20 includes a plurality of DC voltage generators that generate a DC voltage of a predetermined voltage and a plurality of high frequency voltage generators that generate a high frequency voltage with a predetermined amplitude and a predetermined frequency.
 電圧制御部21は、制御部22の制御の下で、電圧発生部20から各部へ印加される電圧の大きさと、印加のタイミングとを制御する。 Under the control of the control unit 22, the voltage control unit 21 controls the magnitude of the voltage applied from the voltage generation unit 20 to each unit and the timing of application.
 制御部22は、分析の実行のために、質量分析装置100内の各部を統括的に制御する。制御部22は、入力部23や表示部24などを介したユーザインターフェイスの機能も有する。データ処理部25は、イオン検出器17で得られた検出信号をデジタル化するアナログデジタル(AD)変換器を含み、収集されたデータを処理してマススペクトルを作成する等の処理を実行する。 The control unit 22 comprehensively controls each unit in the mass spectrometer 100 in order to perform analysis. The control unit 22 also has a user interface function via the input unit 23, the display unit 24, and the like. The data processing unit 25 includes an analog-to-digital (AD) converter that digitizes the detection signal obtained by the ion detector 17, and processes the collected data to create a mass spectrum.
 一実現例では、制御部22、電圧制御部21、および、データ処理部25は、CPU(Central Processing Unit)、RAM(Random Access Memory)、および、外部記憶装置などを含むパーソナルコンピュータによって実現される。質量分析装置100における制御は、予めインストールされた所定のプログラムをCPUが実行することによって実現され得る。 In one implementation example, the control unit 22, the voltage control unit 21, and the data processing unit 25 are implemented by a personal computer including a CPU (Central Processing Unit), RAM (Random Access Memory), and an external storage device. . Control in the mass spectrometer 100 can be realized by the CPU executing a predetermined program installed in advance.
 [質量分析装置の分析動作の一例]
 図2は、質量分析装置100の一部を拡大して示す図である。以下に、質量分析装置100の分析動作の一例を説明する。以下の説明では、質量分析装置100の分析対象のイオンは正イオンであるとする。なお、分析対象のイオンが負イオンであっても、各部へ印加する電圧の極性等を適宜変更することで、以下の説明における分析と同様の分析が可能であることは明らかである。
[Example of analysis operation of mass spectrometer]
FIG. 2 is an enlarged view of a part of the mass spectrometer 100. As shown in FIG. An example of the analysis operation of the mass spectrometer 100 will be described below. In the following description, ions to be analyzed by the mass spectrometer 100 are assumed to be positive ions. It is obvious that even if the ions to be analyzed are negative ions, the same analysis as in the following description can be performed by appropriately changing the polarity of the voltage applied to each part.
 分析開始前の待機状態では、第1真空室2、第2真空室3、および第3真空室4はそれぞれ真空排気された状態である。入力部23を介してユーザから分析開始の指示がなされると、または、予め設定された自動分析プログラムに従って自動的に分析開始が指示されると、制御部22は分析準備作業を開始する。 In the standby state before starting the analysis, the first vacuum chamber 2, the second vacuum chamber 3, and the third vacuum chamber 4 are each in a state of being evacuated. When the user gives an instruction to start analysis via the input unit 23, or when an instruction to start analysis is automatically given according to a preset automatic analysis program, the control unit 22 starts analysis preparatory work.
 分析準備作業では、制御部22はガス供給部19を動作させ、所定のガスをコリジョンセル11内に連続的にまたは間欠的に供給し始める。供給されるガスの種類は分析モードにより異なり、コリジョンモードでは例えばHeガス、リアクションモードでは例えばHガスである。 In the analysis preparation work, the control unit 22 operates the gas supply unit 19 to start supplying a predetermined gas into the collision cell 11 continuously or intermittently. The type of gas to be supplied differs depending on the analysis mode. For example, He gas is used in the collision mode, and H 2 gas is used in the reaction mode.
 コリジョンセル11内にガスを供給し始めても、該ガスがコリジョンセル11内に充満されて安定するまでにはある程度の時間を要し、それまで実質的な分析を行うことはできない。この期間が分析準備期間である。 Even if the gas starts to be supplied into the collision cell 11, it takes a certain amount of time for the gas to fill the collision cell 11 and stabilize, and until then, substantial analysis cannot be performed. This period is the analysis preparation period.
 制御部22からの指示を受けて、電圧制御部21は、このとき、ICPイオン源5で生成される不所望のイオンが持つ初期エネルギよりも高い電位障壁がスキマーコーン7と引込電極8との間に形成されるべく、引込電極8に所定電圧値の正の直流電圧を印加するように電圧発生部20を制御する。「不所望のイオン」とは、主として、ICPイオン源5で使用されるプラズマガス由来のイオンであり、プラズマガスがArである場合、Ar、Ar2+などである。この「不所望のイオン」が持つ初期エネルギはそのほど大きくないので、一般に、引込電極8に印加される電圧は+数V程度である。 In response to the instruction from the control unit 22 , the voltage control unit 21 determines that the potential barrier between the skimmer cone 7 and the pull-in electrode 8 is higher than the initial energy of the unwanted ions generated by the ICP ion source 5 . The voltage generator 20 is controlled so as to apply a positive DC voltage of a predetermined voltage value to the pull-in electrode 8 so as to form a gap between them. "Undesired ions" are mainly ions derived from the plasma gas used in the ICP ion source 5, such as Ar + and Ar 2+ when the plasma gas is Ar. Since the initial energy of the "undesired ions" is not so large, the voltage applied to the pull-in electrode 8 is generally about +several volts.
 電圧制御部21は、また、制御部22の指示の下で、コリジョンセル11の入口電極12に所定電圧値の正の直流電圧を印加するように電圧発生部20を制御する。このときに入口電極12に印加される電圧は、例えば+数十V~二百V程度である。 The voltage control unit 21 also controls the voltage generation unit 20 under the instruction of the control unit 22 so as to apply a positive DC voltage of a predetermined voltage value to the entrance electrode 12 of the collision cell 11 . The voltage applied to the entrance electrode 12 at this time is, for example, about +several tens to two hundred volts.
 電圧制御部21は、また、制御部22の指示の下で、コリジョンセル11内のイオンガイド14に、通常の分析時に比べて大きな振幅値の高周波電圧を印加するように電圧発生部20を制御する。 The voltage control unit 21 also controls the voltage generation unit 20 under the instruction of the control unit 22 so as to apply to the ion guide 14 in the collision cell 11 a high-frequency voltage with a larger amplitude value than during normal analysis. do.
 電圧制御部21は、さらに、コリジョンセル11の出口電極13に、通常の分析時に比べて大きな所定電圧値の負の直流電圧を連続的に又はパルス的に印加するように電圧発生部20を制御する。このとき、イオンガイド14に印加される高周波電圧の振幅値は例えば50V以上、出口電極13に印加される直流電圧は例えば-100V程度(通常分析時には-10~-十数V程度)である。 The voltage control unit 21 further controls the voltage generation unit 20 to continuously or pulse-wise apply a negative DC voltage having a predetermined voltage value larger than that during normal analysis to the exit electrode 13 of the collision cell 11. do. At this time, the amplitude value of the high-frequency voltage applied to the ion guide 14 is, for example, 50 V or more, and the DC voltage applied to the exit electrode 13 is, for example, about -100 V (about -10 to -10 and several V during normal analysis).
 上述したように引込電極8に印加される直流電圧により、引込電極8の近傍には、イオンと同極性の電場による電位障壁が形成される。ICPイオン源5で生成され、サンプリングコーン6のイオン通過口(開口61)およびスキマーコーン7のイオン通過口(開口71)を経て第2真空室3に入ったプラズマガス等に由来するイオンは、上記電位障壁で堰き止められる。そのため、スキマーコーン7と引込電極8との間の領域31にはイオンが滞留し、イオンの密度が高くなる。 As described above, due to the DC voltage applied to the drawing electrode 8, a potential barrier is formed in the vicinity of the drawing electrode 8 by an electric field having the same polarity as the ions. Ions derived from the plasma gas or the like generated by the ICP ion source 5 and entered the second vacuum chamber 3 through the ion passage port (opening 61) of the sampling cone 6 and the ion passage port (opening 71) of the skimmer cone 7 are It is blocked by the potential barrier. Therefore, ions stay in the region 31 between the skimmer cone 7 and the drawing electrode 8, and the ion density increases.
 ICPイオン源5からは、上記のようなイオンのみならず、プラズマガス由来の反応性中性粒子やブラズマガス分子も真空領域中に侵入しようとする。ところが、領域31のイオン密度は高いため、スキマーコーン7の開口71を通過した反応性中性粒子やガス分子はイオンに接触し易い。イオンに接触した反応性中性粒子やガス分子は軌道を変え、周囲の電極等に衝突して消滅したり或いは第2真空室3内から外部へ排出されたりする。そのため、反応性中性粒子やガス分子がコリジョンセル11の入口にまで到達しにくくし、コリジョンセル11の内部に入り込む反応性中性粒子やガス分子の量を減らすことができる。 From the ICP ion source 5, not only the above ions but also reactive neutral particles derived from the plasma gas and plasma gas molecules try to enter the vacuum region. However, since the ion density in the region 31 is high, reactive neutral particles and gas molecules that have passed through the opening 71 of the skimmer cone 7 are likely to come into contact with ions. Reactive neutral particles and gas molecules that come into contact with the ions change their trajectories, collide with surrounding electrodes or the like and disappear or are discharged from the second vacuum chamber 3 to the outside. Therefore, it is difficult for reactive neutral particles and gas molecules to reach the entrance of the collision cell 11, and the amount of reactive neutral particles and gas molecules entering the interior of the collision cell 11 can be reduced.
 上述したようにコリジョンセル11の入口電極12に印加される電圧により、イオンレンズ10と入口電極12との間の領域32にはプラズマガス等に由来するイオンと同極性の電場が形成される。そのため、ICPイオン源5から第1真空室2を経て第2真空室3へと導入され、領域32を通過してしまったイオンは、入口電極12の手前で押し戻される。これにより、プラズマガス等に由来する不所望のイオンのコリジョンセル11内へ侵入を一層低減することができる。 As described above, the voltage applied to the entrance electrode 12 of the collision cell 11 forms an electric field having the same polarity as the ions originating from the plasma gas or the like in the region 32 between the ion lens 10 and the entrance electrode 12 . Therefore, ions introduced from the ICP ion source 5 into the second vacuum chamber 3 via the first vacuum chamber 2 and having passed through the region 32 are pushed back before the entrance electrode 12 . As a result, it is possible to further reduce the entry of unwanted ions originating from the plasma gas or the like into the collision cell 11 .
 なお、反応性中性粒子や分子は、電荷を有さないので、領域32に形成される電場の作用では除去されないが、上述したように、反応性中性粒子や分子は領域31を通過しにくいので、コリジョンセル11の内部に入り込む反応性中性粒子やガス分子の量は少なくて済む。 Since the reactive neutral particles and molecules do not have electric charges, they are not removed by the action of the electric field formed in the region 32. However, as described above, the reactive neutral particles and molecules do not pass through the region 31. Therefore, the amount of reactive neutral particles and gas molecules that enter the interior of the collision cell 11 can be reduced.
 プラズマガス等に由来するイオンの一部は、領域31および領域32のいずれをも通過してコリジョンセル11内に入り込むことがある。また、プラズマガス等に由来する反応性中性粒子や分子の一部が上記2つの領域を通過してコリジョンセル11内に入り、コリジョンセル11内でガスと接触して不所望のイオンになることがある。外部から入り込んだイオンおよびコリジョンセル11内で発生したイオンは、コリジョンセル11内に存在するガスに接触してエネルギを減じ、イオンガイド14により形成される高周波電場に捕捉される。このときの高周波電場は通常の分析時よりも強いため、イオンはイオン光軸18近傍の比較的狭い領域33に収束される。 Some of the ions derived from the plasma gas or the like may pass through both the regions 31 and 32 and enter the collision cell 11 . Also, some of the reactive neutral particles and molecules originating from the plasma gas or the like pass through the above two regions and enter the collision cell 11, contact the gas within the collision cell 11, and become unwanted ions. Sometimes. Ions entering from the outside and ions generated within the collision cell 11 contact the gas present within the collision cell 11 to reduce their energy and are trapped in the high frequency electric field created by the ion guide 14 . Since the high-frequency electric field at this time is stronger than that during normal analysis, the ions are focused in a relatively narrow region 33 near the ion optical axis 18 .
 上述したようにコリジョンセル11の出口電極13には、捕捉されるイオンと逆極性の比較的高い電圧が印加されている。そのため、領域33に滞留したイオンは、出口電極13への印加電圧による強い電場によって誘引され、出口電極13のイオン通過開口131を経てコリジョンセル11から排出される。 As described above, the exit electrode 13 of the collision cell 11 is applied with a relatively high voltage having a polarity opposite to that of the ions to be captured. Therefore, the ions staying in the region 33 are attracted by the strong electric field generated by the voltage applied to the exit electrode 13 and are ejected from the collision cell 11 through the ion passage aperture 131 of the exit electrode 13 .
 すなわち、分析実行前の分析準備期間中には、ICPイオン源5とコリジョンセル11との間で、該コリジョンセル11への不所望のイオンおよび不所望の反応性中性粒子の侵入が抑止される。一方、コリジョンセル11に入ってしまった不所望のイオン、およびコリジョンセル11内で生成された不所望のイオンは、コリジョンセル11の外部へ迅速に排出される。このようにして、質量分析装置100では、分析準備期間中に、コリジョンセル11内にイオンが滞留しにくくなっている。 That is, during the analysis preparation period before executing the analysis, between the ICP ion source 5 and the collision cell 11, unwanted ions and unwanted reactive neutral particles are prevented from entering the collision cell 11. be. On the other hand, unwanted ions that have entered the collision cell 11 and unwanted ions generated within the collision cell 11 are rapidly ejected to the outside of the collision cell 11 . Thus, in the mass spectrometer 100, ions are less likely to stay in the collision cell 11 during the analysis preparation period.
 制御部22は、ガス供給部19から供給されるガスがコリジョンセル11内に十分に充満するように予め定められた所定の待ち時間が経過するまで待つ。コリジョンセル11内に導入されたガスは、入口電極12および出口電極13のそれぞれの開口121,131から漏出する。このため、コリジョンセル11内にできるだけ均一な密度でガス分子が充満する状態にするには待ち時間は長いほうがよい。一例としては、ガス導入開始からの待ち時間を40秒以上とするとよい。 The control unit 22 waits until a predetermined waiting time elapses so that the collision cell 11 is sufficiently filled with the gas supplied from the gas supply unit 19 . The gas introduced into the collision cell 11 leaks out through the openings 121, 131 of the entrance electrode 12 and the exit electrode 13, respectively. For this reason, the longer the waiting time, the better, in order to fill the collision cell 11 with gas molecules with as uniform a density as possible. As an example, it is preferable to set the waiting time from the start of gas introduction to 40 seconds or longer.
 所定の待ち時間が経過すると、電圧制御部21は、イオンを引き込むような所定電圧値の負の直流電圧を引込電極8に印加するように、電圧発生部20を制御する。また、電圧制御部21は、コリジョンセル11の入口電極12にも所定の電圧値である負の直流電圧を印加するように、電圧発生部20を制御する。また、電圧制御部21は、コリジョンセル11内のイオンガイド14に、分析対象である成分(目的成分)に応じた所定の振幅値の高周波電圧を印加するように、電圧発生部20を制御する。また、電圧制御部21は、コリジョンセル11の出口電極13に電位障壁形成用の所定の電圧を印加するように、電圧発生部20を制御する。 After the predetermined waiting time has passed, the voltage control section 21 controls the voltage generating section 20 so as to apply to the drawing electrode 8 a negative DC voltage of a predetermined voltage value that attracts ions. The voltage control unit 21 also controls the voltage generation unit 20 so as to apply a negative DC voltage having a predetermined voltage value to the entrance electrode 12 of the collision cell 11 as well. Further, the voltage control unit 21 controls the voltage generation unit 20 so as to apply to the ion guide 14 in the collision cell 11 a high-frequency voltage having a predetermined amplitude value corresponding to the component to be analyzed (target component). . Further, the voltage control section 21 controls the voltage generation section 20 so as to apply a predetermined voltage for potential barrier formation to the exit electrode 13 of the collision cell 11 .
 その後、質量分析装置100では分析が実施される。一実現例では、電圧制御部21は、目的成分から由来するイオンが通過するように、四重極マスフィルタ16への印加電圧を設定する。そして、質量分析装置100では、各部へ印加された電圧が静定するのに必要な時間(例えば数msec程度)が経過したあと、目的とする試料成分のイオンの強度が検出される。 After that, the mass spectrometer 100 performs analysis. In one implementation, the voltage controller 21 sets the voltage applied to the quadrupole mass filter 16 such that ions originating from the target component pass through. Then, in the mass spectrometer 100, the intensity of the ions of the target sample component is detected after the time (for example, several milliseconds) required for the voltage applied to each part to settle.
 例えばコリジョンモードでは、ICPイオン源5で生成された試料成分由来のイオンは、プラズマガス由来の不所望のイオンとともに、コリジョンガスが充満されているコリジョンセル11内に導入される。導入されたイオンは、コリジョンガスと繰り返し衝突し、そのエネルギが減衰する。衝突断面積が大きなイオンほどコリジョンセルとの衝突の機会が多く、エネルギの減衰が大きい。通常、プラズマガス由来のイオンの衝突断面積は目的成分から由来するイオンの衝突断面積よりも大きいため、プラズマガス由来のイオンのほうが運動エネルギが小さくなる。そのため、プラズマガス由来のイオンはコリジョンセル11の出口に形成されている電位障壁を乗り越えにくい。こうして運動エネルギ弁別法によりプラズマガス等に由来する不要なイオンを除去して、主として試料成分のイオンを四重極マスフィルタ16に送り込んで分析することができる。 For example, in the collision mode, ions derived from sample components generated by the ICP ion source 5 are introduced into the collision cell 11 filled with collision gas together with unwanted ions derived from the plasma gas. The introduced ions repeatedly collide with the collision gas, and their energy is attenuated. Ions with a larger collision cross-section have more opportunities to collide with the collision cell, and their energy is greatly attenuated. Since the collision cross section of ions derived from the plasma gas is generally larger than that of ions derived from the target component, the ions derived from the plasma gas have smaller kinetic energy. Therefore, ions derived from the plasma gas are difficult to overcome the potential barrier formed at the exit of the collision cell 11 . Unnecessary ions derived from the plasma gas or the like are removed by the kinetic energy discrimination method, and ions mainly of sample components can be sent to the quadrupole mass filter 16 for analysis.
 上述したように、分析開始前である分析準備期間中に、コリジョンセル11内には殆どイオンが存在しない状態となっているため、目的成分から由来するイオンに対する分析を開始する時点で、コリジョンセル11の内部に滞留しているイオンの空間電荷効果は殆どない。そのため、分析の際に、目的成分から由来するイオン(コリジョンセル11内に導入される)の軌道が、上記空間電荷効果の影響を受けることがない。これにより、当該イオンは、正常な軌道に従ってコリジョンセル11を通過して四重極マスフィルタ16に導入される。これにより、最終的にイオン検出器17に到達する目的成分から由来するイオンの量が増加され、高い分析感度を実現することができる。また、試料成分由来のイオンの軌道が上記空間電荷効果の影響を受けないので、イオン強度のドリフトも軽減でき、さらには試料成分の種類によるドリフトのばらつきも軽減できる。 As described above, almost no ions exist in the collision cell 11 during the analysis preparation period before the start of analysis. There is little space charge effect for ions residing inside 11 . Therefore, during analysis, the trajectories of ions (introduced into the collision cell 11) originating from the target component are not affected by the space charge effect. As a result, the ions pass through the collision cell 11 following normal trajectories and are introduced into the quadrupole mass filter 16 . As a result, the amount of ions derived from the target component that finally reaches the ion detector 17 is increased, and high analytical sensitivity can be achieved. In addition, since the trajectory of ions originating from the sample component is not affected by the space charge effect, it is possible to reduce the drift of the ion intensity and further reduce the variation in the drift depending on the type of sample component.
 なお、上記説明では、コリジョンセル11内にガスの供給を開始してからガスがコリジョンセル11内に十分に充満して分析を開始するまでの分析準備期間中の全期間に亘り、コリジョンセル11内にイオンが滞留しないように各部への印加電圧を設定していた。しかしながら、必ずしも、分析準備期間中の全期間に亘り、そうした電圧設定を継続して行う必要はない。なお、コリジョンモードではなく、リアクションモードでも基本的な動作は上記と同様とされ得る。 Note that in the above description, the collision cell 11 is kept in contact with the collision cell 11 for the entire analysis preparation period from the start of gas supply to the collision cell 11 until the gas sufficiently fills the collision cell 11 and the analysis is started. The voltage applied to each part was set so that ions would not stay inside. However, it is not always necessary to continue such voltage setting throughout the analysis preparation period. Note that the basic operation can be the same as the above even in the reaction mode instead of the collision mode.
 [スキマーコーンおよびその近傍の構造]
 図3~図7を参照して、スキマーコーン7およびその近傍の要素の構造を説明する。図3~図7のそれぞれに示される3軸(X,Y,Z)は、図1に示された3軸に対応する。
[Skimmer cone and surrounding structure]
The structure of the skimmer cone 7 and its neighboring elements will be described with reference to FIGS. The three axes (X, Y, Z) shown in each of FIGS. 3-7 correspond to the three axes shown in FIG.
 図3は、ユニット9の斜視図である。ユニット9は、スキマーコーン7および引込電極8を含む。ユニット9は、さらに、板体90および押さえ部材91を含む。押さえ部材91は、リング形状を有する。 3 is a perspective view of the unit 9. FIG. Unit 9 includes skimmer cone 7 and pulling electrode 8 . Unit 9 further includes plate 90 and pressing member 91 . The pressing member 91 has a ring shape.
 図4は、ユニット9の縦断面図である。図5は、ユニット9の分解斜視図である。図4に主に示されるように、板体90と引込電極8との間には、冷却ジャケットベース92が配置されている。 4 is a longitudinal sectional view of the unit 9. FIG. 5 is an exploded perspective view of the unit 9. FIG. As mainly shown in FIG. 4 , a cooling jacket base 92 is arranged between the plate 90 and the lead-in electrode 8 .
 スキマーコーン7は、その外縁部を押さえ部材91によって冷却ジャケットベース92に押さえられることにより、冷却ジャケットベース92に固定されている。より具体的には、押さえ部材91は、ネジ91A,91Bによって冷却ジャケットベース92に固定されることにより、スキマーコーン7を冷却ジャケットベース92に固定させる。これにより、スキマーコーン7は、開口71を介してイオンを通過させるという機能を維持しつつ、冷却ジャケットベース92によって冷却され得る。 The skimmer cone 7 is fixed to the cooling jacket base 92 by pressing the outer edge of the skimmer cone 7 against the cooling jacket base 92 with a pressing member 91 . More specifically, the pressing member 91 fixes the skimmer cone 7 to the cooling jacket base 92 by fixing to the cooling jacket base 92 with screws 91A and 91B. This allows the skimmer cone 7 to be cooled by the cooling jacket base 92 while maintaining its ability to pass ions through the aperture 71 .
 スキマーコーン7の外縁が押さえ部材91によって冷却ジャケットベース92に固定されることにより、スキマーコーン7全体の外径が従来より小さくされ得る。これにより、スキマーコーン7を構成する材料を少なくすることができ、スキマーコーン7の製造コストが低減され得る。また、スキマーコーン7の外径が小さくなることにより、スキマーコーン7の切り出しのための加工費が抑えられ、これによっても、スキマーコーン7の製造コストが低減され得る。スキマーコーン7の製造コストの低減により、質量分析装置100全体の製造コストも低減され得る。 By fixing the outer edge of the skimmer cone 7 to the cooling jacket base 92 by the pressing member 91, the outer diameter of the entire skimmer cone 7 can be made smaller than before. Thereby, the material constituting the skimmer cone 7 can be reduced, and the manufacturing cost of the skimmer cone 7 can be reduced. In addition, since the outer diameter of the skimmer cone 7 is reduced, the processing cost for cutting out the skimmer cone 7 can be suppressed, and the manufacturing cost of the skimmer cone 7 can also be reduced. By reducing the manufacturing cost of the skimmer cone 7, the manufacturing cost of the mass spectrometer 100 as a whole can also be reduced.
 押さえ部材91は、スキマーコーン7の外縁の少なくとも一部を冷却ジャケットベース92に固定していればよい。なお、図5に主に示されるように、押さえ部材91がスキマーコーン7の外縁の全周を冷却ジャケットベース92に固定することにより、スキマーコーン7はより確実に冷却ジャケットベース92に固定され得る。 The pressing member 91 only needs to fix at least part of the outer edge of the skimmer cone 7 to the cooling jacket base 92 . 5, the skimmer cone 7 can be more reliably fixed to the cooling jacket base 92 by fixing the entire outer edge of the skimmer cone 7 to the cooling jacket base 92 with the pressing member 91. .
 図5に主に示されるように、スキマーコーン7の表面には凸部7Xが形成されている。
 図6は、押さえ部材91がスキマーコーン7を冷却ジャケットベース92に固定している状態での、凸部7X近傍の断面を示す図である。
As mainly shown in FIG. 5, the surface of the skimmer cone 7 is formed with a convex portion 7X.
FIG. 6 is a cross-sectional view showing the vicinity of the convex portion 7X when the holding member 91 fixes the skimmer cone 7 to the cooling jacket base 92. As shown in FIG.
 図6に示されるように、押さえ部材91は、凸部7Xに対応する位置に、凹部91Xを有する。押さえ部材91は、凸部7Xが凹部91Xにはめ込まれた状態で、スキマーコーン7を冷却ジャケットベース92に固定する。 As shown in FIG. 6, the pressing member 91 has recesses 91X at positions corresponding to the protrusions 7X. The pressing member 91 fixes the skimmer cone 7 to the cooling jacket base 92 with the projection 7X fitted into the recess 91X.
 これにより、スキマーコーン7の固定に、スキマーコーン7にネジ穴を形成する必要が無い。ネジ穴の形状は、洗浄が困難であり、また、洗浄時に利用される硝酸などの洗浄剤によって劣化し得る。ネジ穴が必要とされないことにより、スキマーコーン7の洗浄が容易になり、また、ネジ穴の劣化によるスキマーコーン7の固定の不安定化が回避され得る。なお、スキマーコーン7側に凹部が形成され、押さえ部材91側に凸部が形成されてもよい。 Therefore, it is not necessary to form a screw hole in the skimmer cone 7 for fixing the skimmer cone 7. The shape of the screw hole is difficult to clean and can be degraded by cleaning agents such as nitric acid used during cleaning. By not requiring a screw hole, cleaning of the skimmer cone 7 is facilitated, and destabilization of fixing of the skimmer cone 7 due to deterioration of the screw hole can be avoided. A concave portion may be formed on the skimmer cone 7 side and a convex portion may be formed on the pressing member 91 side.
 図5および図6(特に、枠F11,F12および枠F21,F22)に示されるように、押さえ部材91は、スキマーコーン7の、X軸に沿う面およびY軸に沿う面と接している。すなわち、押さえ部材91は、スキマーコーン7の複数の面と接している。 As shown in FIGS. 5 and 6 (particularly, frames F11 and F12 and frames F21 and F22), the pressing member 91 is in contact with the X-axis and Y-axis surfaces of the skimmer cone 7 . That is, the pressing member 91 is in contact with multiple surfaces of the skimmer cone 7 .
 これにより、押さえ部材91は、スキマーコーン7の開口71以外で、より多い面積で、スキマーコーン7と接することができる。したがって、スキマーコーン7から押さえ部材91への熱伝導が促進される。 Thereby, the pressing member 91 can contact the skimmer cone 7 over a larger area than the opening 71 of the skimmer cone 7 . Therefore, heat conduction from the skimmer cone 7 to the pressing member 91 is promoted.
 さらに、図5および図6(特に、枠F21,F22)に示されるように、押さえ部材91は、スキマーコーン7の外縁部においても、X軸に沿う面およびY軸に沿う面と接している。すなわち、スキマーコーン7の外縁部は段差を有し、押さえ部材91の外縁部も、スキマーコーン7の段差に対応するように段差を有している。 Furthermore, as shown in FIGS. 5 and 6 (especially frames F21 and F22), the pressing member 91 is in contact with the surface along the X axis and the surface along the Y axis at the outer edge of the skimmer cone 7 as well. . That is, the outer edge of the skimmer cone 7 has steps, and the outer edge of the pressing member 91 also has steps corresponding to the steps of the skimmer cone 7 .
 これにより、スキマーコーン7と押さえ部材91とが当接する面積がより多くなり、スキマーコーン7から押さえ部材91への熱伝導が促進される。 As a result, the contact area between the skimmer cone 7 and the pressing member 91 increases, and heat conduction from the skimmer cone 7 to the pressing member 91 is promoted.
 質量分析装置100では、押さえ部材91とスキマーコーンとは、互いに異なる熱伝導性を有する材料によって構成され得る。これにより、スキマーコーン7から押さえ部材91への熱の移動態様が、それぞれの材料の選択によって調整され得る。 In the mass spectrometer 100, the pressing member 91 and the skimmer cone can be made of materials having different thermal conductivities. Thereby, the mode of heat transfer from the skimmer cone 7 to the pressing member 91 can be adjusted by selecting each material.
 一実現例では、押さえ部材91は、スキマーコーン7よりも熱伝導性が高い材料によって構成される。たとえば、押さえ部材91は銅によって構成され、スキマーコーン7はニッケルによって構成される。これにより、スキマーコーン7から押さえ部材91への熱の移動が促進され、スキマーコーン7の先端部(開口71)の温度の低下が促進され得る。これにより、質量分析装置100は、開口71の温度が低くされることに適した試料を測定対象とし得る。 In one implementation, the pressing member 91 is made of a material with higher thermal conductivity than the skimmer cone 7. For example, the pressing member 91 is made of copper and the skimmer cone 7 is made of nickel. As a result, heat transfer from the skimmer cone 7 to the pressing member 91 can be promoted, and the temperature at the tip (opening 71) of the skimmer cone 7 can be reduced. This allows the mass spectrometer 100 to measure a sample that is suitable for lowering the temperature of the opening 71 .
 一実現例では、押さえ部材91は、スキマーコーン7よりも熱伝導性が低い材料によって構成される。たとえば、押さえ部材91はSUSまたは真鍮によって構成され、スキマーコーン7はニッケルによって構成される。これにより、スキマーコーン7から押さえ部材91への熱の移動が抑制され、スキマーコーン7の開口71が高温で維持され得る。これにより、質量分析装置100は、開口71の温度が高く維持されることに適した試料を測定対象とし得る。 In one implementation, the pressing member 91 is made of a material with a lower thermal conductivity than the skimmer cone 7. For example, the pressing member 91 is made of SUS or brass, and the skimmer cone 7 is made of nickel. Thereby, heat transfer from the skimmer cone 7 to the pressing member 91 is suppressed, and the opening 71 of the skimmer cone 7 can be maintained at a high temperature. Thereby, the mass spectrometer 100 can measure a sample suitable for keeping the temperature of the opening 71 high.
 図7は、スキマーコーン7と引込電極8との間の位置関係を示す図である。図7には、YZ平面でのスキマーコーン7と引込電極8との間の位置関係が示される。YZ平面は、サンプリングコーン6、スキマーコーン7、および引込電極8の軸方向と交わる面の一例である。サンプリングコーン6、スキマーコーン7、および引込電極8の軸方向とは、イオンの主な進行方向を意味する。 FIG. 7 is a diagram showing the positional relationship between the skimmer cone 7 and the drawing electrode 8. FIG. FIG. 7 shows the positional relationship between the skimmer cone 7 and the lead-in electrode 8 in the YZ plane. The YZ plane is an example of a plane that intersects with the axial directions of the sampling cone 6, the skimmer cone 7, and the lead-in electrode 8. As shown in FIG. The axial directions of the sampling cone 6, the skimmer cone 7, and the drawing electrode 8 mean the main traveling directions of ions.
 図7に示されるように、YZ平面において、スキマーコーン7の外縁は、引込電極8の開口81より外側に位置している。すなわち、スキマーコーン7の外縁は、引込電極8の開口81を覆う位置まで延伸している。これにより、スキマーコーン7によって、引込電極8からの放電が抑えられ得る。 As shown in FIG. 7, the outer edge of the skimmer cone 7 is positioned outside the opening 81 of the lead-in electrode 8 on the YZ plane. That is, the outer edge of the skimmer cone 7 extends to a position covering the opening 81 of the lead-in electrode 8 . Thereby, discharge from the lead-in electrode 8 can be suppressed by the skimmer cone 7 .
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be appreciated by those skilled in the art that the multiple exemplary embodiments described above are specific examples of the following aspects.
 (第1項) 一態様に係る質量分析装置は、試料をプラズマによりイオン化するプラズマイオン源と、イオン化された試料を質量分析する質量分析部と、前記プラズマイオン源と前記質量分析部との間に配置されたサンプリング部と、を備え、前記サンプリング部は、サンプリングコーンと、前記サンプリングコーンよりも前記質量分析部側に配置されたスキマーコーンと、を含み、前記スキマーコーンを冷却するためのベースと、前記スキマーコーンの外縁の少なくとも一部を前記ベースに固定するための押さえ部材と、をさらに備えていてもよい。 (Section 1) A mass spectrometer according to one aspect comprises a plasma ion source that ionizes a sample with plasma, a mass spectrometry section that performs mass analysis on the ionized sample, and a space between the plasma ion source and the mass spectrometry section. a sampling unit arranged in a base for cooling the skimmer cone, the sampling unit including a sampling cone and a skimmer cone arranged closer to the mass spectrometry unit than the sampling cone; and a pressing member for fixing at least part of the outer edge of the skimmer cone to the base.
 第1項に記載の質量分析装置によれば、質量分析装置の製造コストが低減される。
 (第2項) 第1項に記載の質量分析装置は、前記スキマーコーンよりも前記質量分析部側に設置された引込電極をさらに備え、前記引込電極は、イオン化された試料を通過させるための開口を有し、前記スキマーコーンの外縁は、前記サンプリングコーン、前記スキマーコーン、および前記引込電極の軸方向と交わる面において、前記開口を覆う位置まで延伸していてもよい。
According to the mass spectrometer according to item 1, the manufacturing cost of the mass spectrometer is reduced.
(Section 2) The mass spectrometer according to Section 1 further includes a pull-in electrode installed closer to the mass spectrometry unit than the skimmer cone, and the pull-in electrode is for allowing the ionized sample to pass through. An opening may be provided, and an outer edge of the skimmer cone may extend to a position covering the opening on a plane intersecting the axial direction of the sampling cone, the skimmer cone, and the lead-in electrode.
 第2項に記載の質量分析装置によれば、スキマーコーンによって、引込電極からの放電が抑制され得る。 According to the mass spectrometer described in item 2, the skimmer cone can suppress discharge from the drawing electrode.
 (第3項) 第1項または第2項に記載の質量分析装置において、前記押さえ部材は、前記スキマーコーンの外縁の複数の面と接することにより、前記スキマーコーンを前記ベースに固定してもよい。 (Section 3) In the mass spectrometer according to Section 1 or 2, the pressing member may fix the skimmer cone to the base by contacting a plurality of surfaces of the outer edge of the skimmer cone. good.
 第3項に記載の質量分析装置によれば、スキマーコーンからベースへの熱の移動が促進され得る。 According to the mass spectrometer described in paragraph 3, heat transfer from the skimmer cone to the base can be promoted.
 (第4項) 第1項~第3項のいずれか1項に記載の質量分析装置において、前記スキマーコーンおよび前記押さえ部材の一方側に凹部が形成され、前記スキマーコーンおよび前記押さえ部材の他方側に凸部が形成され、前記押さえ部材は、前記凹部に前記凸部がはめ込まれた状態で前記ベースに固定されることにより、前記スキマーコーンを前記ベースに固定してもよい。 (Item 4) In the mass spectrometer according to any one of items 1 to 3, a concave portion is formed on one side of the skimmer cone and the pressing member, and the other side of the skimmer cone and the pressing member The skimmer cone may be fixed to the base by forming a convex portion on the side thereof, and fixing the pressing member to the base with the convex portion fitted in the concave portion.
 第4項に記載の質量分析装置によれば、スキマーコーンは、ネジ穴を形成されることなく、押さえ部材によって固定され得る。 According to the mass spectrometer described in item 4, the skimmer cone can be fixed by the pressing member without forming a screw hole.
 (第5項) 第1項~第4項のいずれか1項に記載の質量分析装置において、前記押さえ部材と前記スキマーコーンとは、互いに異なる熱伝導性を有する材料によって構成されてもよい。 (Item 5) In the mass spectrometer according to any one of items 1 to 4, the pressing member and the skimmer cone may be made of materials having different thermal conductivities.
 第5項に記載の質量分析装置によれば、スキマーコーンから押さえ部材への熱の移動態様が、それぞれの材料の選択によって調整され得る。 According to the mass spectrometer described in item 5, the mode of heat transfer from the skimmer cone to the pressing member can be adjusted by selecting each material.
 (第6項) 第5項に記載の質量分析装置において、前記押さえ部材は、前記スキマーコーンよりも熱伝導性が高い材料によって構成されてもよい。 (Section 6) In the mass spectrometer according to Section 5, the pressing member may be made of a material having higher thermal conductivity than the skimmer cone.
 第6項に記載の質量分析装置によれば、質量分析装置は、スキマーコーンの開口の温度が低くされることに適した試料を測定対象とし得る。 According to the mass spectrometer described in item 6, the mass spectrometer can measure a sample suitable for lowering the temperature of the opening of the skimmer cone.
 (第7項) 第5項に記載の質量分析装置において、前記押さえ部材は、前記スキマーコーンよりも熱伝導性が低い材料によって構成されてもよい。 (Section 7) In the mass spectrometer according to Section 5, the pressing member may be made of a material having a lower thermal conductivity than the skimmer cone.
 第7項に記載の質量分析装置によれば、質量分析装置は、スキマーコーンの開口の温度が高く維持されることに適した試料を測定対象とし得る。 According to the mass spectrometer described in item 7, the mass spectrometer can measure a sample that is suitable for maintaining a high temperature at the opening of the skimmer cone.
 (第8項) 第1項~第7項のいずれか1項に記載の質量分析装置において、前記押さえ部材は、前記スキマーコーンの外縁の全周を前記ベースに固定してもよい。 (Item 8) In the mass spectrometer according to any one of items 1 to 7, the pressing member may fix the entire outer edge of the skimmer cone to the base.
 第8項に記載の質量分析装置によれば、スキマーコーンは、より確実に、押さえ部材によって固定され得る。 According to the mass spectrometer described in item 8, the skimmer cone can be more reliably fixed by the pressing member.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、実施の形態中の各技術は、単独でも、また、必要に応じて実施の形態中の他の技術と可能な限り組み合わされても、実施され得ることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. In addition, it is intended that each technique in the embodiment can be implemented independently or in combination with other techniques in the embodiment as much as possible.
 1 イオン化室、2 第1真空室、3 第2真空室、4 第3真空室、5 ICPイオン源、6 サンプリングコーン、7 スキマーコーン、7X 凸部、8 引込電極、9 ユニット、10 イオンレンズ、11 コリジョンセル、12 入口電極、13 出口電極、14 イオンガイド、15 エネルギ障壁形成用電極、16 マスフィルタ、17 イオン検出器、18 イオン光軸、19 ガス供給部、20 電圧発生部、21 電圧制御部、31,32,33 領域、51 プラズマトーチ、52 オートサンプラ、61,71,81 開口、90 板体、91 押さえ部材、91A,91B ネジ、91X 凹部、92 冷却ジャケットベース、100 質量分析装置、121,131 イオン通過開口。 1: ionization chamber, 2: first vacuum chamber, 3: second vacuum chamber, 4: third vacuum chamber, 5: ICP ion source, 6: sampling cone, 7: skimmer cone, 7: convex part, 8: pulling electrode, 9: unit, 10: ion lens, 11 collision cell, 12 entrance electrode, 13 exit electrode, 14 ion guide, 15 energy barrier forming electrode, 16 mass filter, 17 ion detector, 18 ion optical axis, 19 gas supply unit, 20 voltage generation unit, 21 voltage control Part, 31, 32, 33 area, 51 plasma torch, 52 autosampler, 61, 71, 81 opening, 90 plate, 91 pressing member, 91A, 91B screw, 91X recess, 92 cooling jacket base, 100 mass spectrometer, 121, 131 Ion passage openings.

Claims (8)

  1.  試料をプラズマによりイオン化するプラズマイオン源と、
     イオン化された試料を質量分析する質量分析部と、
     前記プラズマイオン源と前記質量分析部との間に配置されたサンプリング部と、を備え、
     前記サンプリング部は、
      サンプリングコーンと、
      前記サンプリングコーンよりも前記質量分析部側に配置されたスキマーコーンと、を含み、
     前記スキマーコーンを冷却するためのベースと、
     前記スキマーコーンの外縁の少なくとも一部を前記ベースに固定するための押さえ部材と、をさらに備える、質量分析装置。
    a plasma ion source that ionizes the sample with plasma;
    a mass spectrometer that performs mass spectrometry on the ionized sample;
    a sampling unit disposed between the plasma ion source and the mass analysis unit;
    The sampling unit
    a sampling cone;
    a skimmer cone arranged closer to the mass spectrometry unit than the sampling cone;
    a base for cooling the skimmer cone;
    and a pressing member for fixing at least part of the outer edge of the skimmer cone to the base.
  2.  前記スキマーコーンよりも前記質量分析部側に設置された引込電極をさらに備え、
     前記引込電極は、イオン化された試料を通過させるための開口を有し、
     前記スキマーコーンの外縁は、前記サンプリングコーン、前記スキマーコーン、および前記引込電極の軸方向と交わる面において、前記開口を覆う位置まで延伸している、請求項1に記載の質量分析装置。
    further comprising a pull-in electrode installed closer to the mass spectrometry unit than the skimmer cone;
    the drawing electrode has an aperture for passing the ionized sample;
    2. The mass spectrometer according to claim 1, wherein an outer edge of said skimmer cone extends to a position covering said opening on a plane intersecting with axial directions of said sampling cone, said skimmer cone, and said pull-in electrode.
  3.  前記押さえ部材は、前記スキマーコーンの外縁の複数の面と接することにより、前記スキマーコーンを前記ベースに固定する、請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the pressing member fixes the skimmer cone to the base by contacting a plurality of surfaces of the outer edge of the skimmer cone.
  4.  前記スキマーコーンおよび前記押さえ部材の一方側に凹部が形成され、
     前記スキマーコーンおよび前記押さえ部材の他方側に凸部が形成され、
     前記押さえ部材は、前記凹部に前記凸部がはめ込まれた状態で前記ベースに固定されることにより、前記スキマーコーンを前記ベースに固定する、請求項1に記載の質量分析装置。
    a concave portion is formed on one side of the skimmer cone and the holding member;
    A convex portion is formed on the other side of the skimmer cone and the pressing member,
    2. The mass spectrometer according to claim 1, wherein said pressing member is fixed to said base in a state in which said convex portion is fitted in said concave portion, thereby fixing said skimmer cone to said base.
  5.  前記押さえ部材と前記スキマーコーンとは、互いに異なる熱伝導性を有する材料によって構成される、請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the pressing member and the skimmer cone are made of materials having thermal conductivities different from each other.
  6.  前記押さえ部材は、前記スキマーコーンよりも熱伝導性が高い材料によって構成される、請求項5に記載の質量分析装置。 The mass spectrometer according to claim 5, wherein the pressing member is made of a material having higher thermal conductivity than the skimmer cone.
  7.  前記押さえ部材は、前記スキマーコーンよりも熱伝導性が低い材料によって構成される、請求項5に記載の質量分析装置。 The mass spectrometer according to claim 5, wherein the pressing member is made of a material having lower thermal conductivity than the skimmer cone.
  8.  前記押さえ部材は、前記スキマーコーンの外縁の全周を前記ベースに固定する、請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the pressing member fixes the entire outer edge of the skimmer cone to the base.
PCT/JP2022/032136 2021-11-10 2022-08-26 Mass spectrometer WO2023084868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183038 2021-11-10
JP2021183038 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023084868A1 true WO2023084868A1 (en) 2023-05-19

Family

ID=86335610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032136 WO2023084868A1 (en) 2021-11-10 2022-08-26 Mass spectrometer

Country Status (1)

Country Link
WO (1) WO2023084868A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236066A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Mass spectrometer, skimmer cone assembling body, skimmer cone and its manufacture
JP2002008584A (en) * 2000-06-27 2002-01-11 Hitachi Ltd Plasma ion mass spectrometry device and method thereof
WO2019202719A1 (en) * 2018-04-20 2019-10-24 株式会社島津製作所 Skimmer cone and inductively coupled plasma mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236066A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Mass spectrometer, skimmer cone assembling body, skimmer cone and its manufacture
JP2002008584A (en) * 2000-06-27 2002-01-11 Hitachi Ltd Plasma ion mass spectrometry device and method thereof
WO2019202719A1 (en) * 2018-04-20 2019-10-24 株式会社島津製作所 Skimmer cone and inductively coupled plasma mass spectrometer

Similar Documents

Publication Publication Date Title
JP7095579B2 (en) Mass spectrometer
JP7101195B2 (en) Fourier Transform Mass Spectrometer
US5051584A (en) Plasma mass spectrometer
JPH0785834A (en) Mass spectrometer and electrostatic lens
EP2808888B1 (en) Mass analysis device
JP2013007639A (en) Liquid chromatography mass spectrometer device
US20200144045A1 (en) Double bend ion guides and devices using them
JP6885510B2 (en) Skimmer cone and inductively coupled plasma mass spectrometer
CN106575598B (en) Plasma cleaning of mass spectrometer
JP2005259483A (en) Mass spectroscope
JP6620896B2 (en) Ionizer and mass spectrometer
US20220005682A1 (en) Mass spectrometer and method for analysing a gas by mass spectrometry
WO2023084868A1 (en) Mass spectrometer
WO2023089895A1 (en) Mass spectrometry device and control method for same
WO2023089852A1 (en) Inductively coupled plasma mass spectrometer
JP2000067806A (en) Atmospheric pressure ion source
US20240162029A1 (en) Bifurcated Mass Spectrometer
US20210242006A1 (en) Ion interfaces and systems and methods using them
JP7396508B2 (en) Radical generator and ion analyzer
JP7504085B2 (en) Mass spectrometer and method for analyzing gases by mass spectrometry - Patents.com
EP4276457A1 (en) Gas analysis device and control method
WO2021161381A1 (en) Mass spectrometry device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559435

Country of ref document: JP

Kind code of ref document: A