WO2023084720A1 - Terminal and radio communication method - Google Patents

Terminal and radio communication method Download PDF

Info

Publication number
WO2023084720A1
WO2023084720A1 PCT/JP2021/041639 JP2021041639W WO2023084720A1 WO 2023084720 A1 WO2023084720 A1 WO 2023084720A1 JP 2021041639 W JP2021041639 W JP 2021041639W WO 2023084720 A1 WO2023084720 A1 WO 2023084720A1
Authority
WO
WIPO (PCT)
Prior art keywords
msg3
repetition
terminal
gnb
information
Prior art date
Application number
PCT/JP2021/041639
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
大輔 栗田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/041639 priority Critical patent/WO2023084720A1/en
Publication of WO2023084720A1 publication Critical patent/WO2023084720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present disclosure relates to terminals and wireless communication methods.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 a work item on coverage enhancement (CE: Coverage Enhancement) in NR was agreed (Non-Patent Document 1).
  • PUSCH Physical Uplink Shared Channel.
  • a control unit holding capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure, and transmitting the capability information regarding whether to repeatedly transmit the uplink message to a base station A terminal having a transmitter for transmitting.
  • FIG. 1 is a schematic diagram illustrating a wireless communication system according to one embodiment of the disclosure
  • FIG. 1 is a diagram illustrating an example of frequency ranges used in a wireless communication system according to one embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in a radio communication system according to an embodiment of the present disclosure
  • FIG. 10 illustrates a case regarding the propriety of Msg3 repetition according to an embodiment of the present disclosure
  • FIG. 10 is a sequence diagram illustrating a random access procedure according to one embodiment of the present disclosure
  • FIG. 4 is a block diagram showing the functional configuration of a base station (gNB) according to one embodiment of the present disclosure
  • FIG. gNB base station
  • FIG. 2 is a block diagram showing a functional configuration of a terminal (UE) according to one embodiment of the present disclosure
  • FIG. FIG. 2 is a block diagram showing hardware configurations of a base station and a terminal according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a hardware configuration of a vehicle according to one embodiment of the present disclosure
  • FIG. 1 is a diagram showing an example of a wireless communication system 10 according to one embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20) and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system that conforms to a scheme called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a base station 100A (hereinafter gNB100A) and a base station 100B (hereinafter gNB100B).
  • gNB100A a base station 100A
  • gNB100B a base station 100B
  • gNB100A, gNB100B, etc. are collectively referred to as gNB100 when there is no need to distinguish between them.
  • the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • gNB100A and gNB100B are 5G-compliant base stations and perform 5G-compliant wireless communication with UE200.
  • the gNB100A, gNB100B and UE200 generate more highly directional beams BM by controlling radio signals transmitted from multiple antenna elements Massive Multiple-Input Multiple-Output (MIMO), multiple component carriers (CC ), and dual connectivity (DC) that performs communication between the UE and each of the two NG-RAN nodes.
  • MIMO Massive Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 is a diagram showing an example of frequency ranges used in the wireless communication system 10.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency band of each FR is as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25 GHz to 52.6 GHz
  • FR1 Sub-Carrier Spacing (SCS) of 15kHz, 30kHz or 60kHz may be used, and a bandwidth (BW) of 5-100MHz may be used.
  • SCS Sub-Carrier Spacing
  • FR2 is higher frequency than FR1 and may use an SCS of 60 kHz or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • Subcarrier Spacing may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 may support a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands above 52.6 GHz and up to 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x". Cyclic Prefix - Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) with larger SCS may be applied when using bands above 52.6 GHz .
  • CP-OFDM Cyclic Prefix - Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 3 As shown in FIG. 3, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and the slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used as the SCS.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • DMRS Demodulation Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • PUSCH PUSCH
  • DMRS may be used for channel estimation in devices (eg, UE 200) as part of coherent demodulation.
  • a DMRS may exist only in a resource block (RB: Resource Block) used for PDSCH transmission.
  • RB Resource Block
  • a DMRS may have multiple mapping types. Specifically, the DMRS may have mapping type A and mapping type B. For mapping type A, the first DMRS may be placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
  • DMRS may have multiple types (Type). Specifically, DMRS may have Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • the wireless communication system 10 may support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100.
  • Coverage extension may provide mechanisms to increase the success rate of reception of various physical channels, such as Msg3 repetition.
  • UE 200 receives information related to the RACH procedure from gNB 100 as a DL signal. Also, for example, the UE 200 receives information on Msg3 repetition from the gNB 100 as a DL signal. Information about Msg3 repetition may include, for example, information indicating resources used for repeated transmission of Msg3, number of repeated transmissions, frequency hopping pattern, specified offset used for frequency hopping, and the like.
  • the UE 200 transmits a special RACH occurrence (RO), preamble, etc. for requesting Msg3 repetition in the RACH procedure to the gNB 100 as UL signals. Also, for example, the UE 200 repeatedly transmits Msg3 to the gNB 100 as the UL signal based on the information regarding the Msg3 repetition received from the gNB 100 in response to the request for the Msg3 repetition.
  • RO RACH occurrence
  • the UL signals may include, for example, UL data signals and control information.
  • the UL signal may include information about the processing capability of UE 200 (eg, UE capability).
  • the UL signal may include a reference signal.
  • Channels used to transmit UL signals include, for example, data channels and control channels.
  • data channels may include PUSCH and control channels may include Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the UE 200 uses PUCCH to transmit control information, and uses PUSCH to transmit UL data signals.
  • PUSCH is an example of an uplink shared channel
  • PUCCH is an example of an uplink control channel.
  • a shared channel may also be referred to as a data channel.
  • Reference signals included in UL signals include, for example, DMRS, Phase Tracking Reference Signal (PTRS), Channel State Information - Reference Signal (CSI-RS), Sounding Reference Signal (SRS) and Positioning Reference Signal (PRS ) may be included.
  • DMRS Phase Tracking Reference Signal
  • CSI-RS Channel State Information - Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • reference signals such as DMRS and PTRS are used for demodulation of UL data signals and transmitted using PUSCH.
  • the UE 200 transmits a random access preamble (RA preamble) as the first message (Msg1) as the first step in the RACH procedure.
  • RA preamble a random access preamble
  • Msg1 a first message
  • Msg2 a second message
  • RAR Random Access Response
  • Msg3 a third message
  • Msg3 a third message
  • Msg4 a response message to Msg3 (3GPP TS38.321 V16.5.0 Section 5.1 "Random Access procedure”).
  • the RACH procedure consisting of the first to fourth steps above may also be called a type 1 RACH procedure, a 4-step RACH procedure, a type 1 RACH, a 4-step RACH, or the like.
  • Msg1 may be sent via Physical RACH (PRACH).
  • Msg1 may be called PRACH preamble or RA preamble.
  • Msg2 may be transmitted via PDSCH.
  • Msg2 may be called RAR.
  • Msg3 may be called RRC Connection Request.
  • Msg4 may be called RRC Connection Setup.
  • the UE 200 may control a RACH procedure consisting of a first step combining the first step and the third step and a second step combining the second step and the fourth step.
  • the RACH procedure may also be called a type 2 RACH procedure, a 2-step RACH procedure, a type 2 RACH, a 2-step RACH, or the like.
  • the combined message of Msg1 and Msg3 above in the first step of the RACH procedure may be called MsgA.
  • Msg3 may be called an uplink signal or a second uplink signal.
  • Msg1 may be called a first uplink signal.
  • the number of repeated transmissions may be read as the number of repetitions, the number of repeated transmissions, the number of repetitions, the number of repeated transmissions, the number of repetitions, the number of repetitions, or the like.
  • channels used for DL signal transmission and the channels used for UL signal transmission are not limited to the above examples.
  • channels used to transmit DL signals and channels used to transmit UL signals may include RACH and Physical Broadcast Channel (PBCH).
  • RACH may be used, for example, to transmit DCI including Random Access Radio Network Temporary Identifier (RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. In other words, PUSCH is 14 symbols or less, and is unlikely to be allocated across multiple slots (adjacent slots).
  • Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
  • the UE 200 may include multiple types of terminals that differ in function or performance, or that support different 3GPP releases.
  • the terminal (UE) may be called a type 1 terminal and a type 2 terminal.
  • the type may be replaced with other terms such as generation and release.
  • a type 1 terminal and a type 2 terminal may be called an enhanced UE and a legacy UE, respectively.
  • an enhanced UE may be interpreted as a UE that supports Msg3 repetition
  • a legacy UE may be interpreted as a UE that does not support Msg3 repetition.
  • step S102 If the UE 200 supports Msg3 repetition (S101: YES), it is determined in step S102 whether the UE 200 requests Msg3 repetition. On the other hand, if UE 200 does not support Msg3 repetition (S101: NO), UE 200 does not request Msg3 repetition and Msg3 repetition is not applied in step S103.
  • step S102 if the UE 200 requests Msg3 repetition (S102: YES), in step S104, the gNB 100 determines whether to instruct Msg3 repetition. Specifically, if UE 200 that supports Msg3 repetition sends Msg1 to gNB 100 with a preamble or RO associated with the request for Msg3 repetition, gNB 100 receives Msg1 preamble or RO, based on which UE 200 receives Msg3 It may be determined that repetition is required. On the other hand, if UE 200 does not request Msg3 repetition (S102: NO), UE 200 does not request Msg3 repetition in step S105, and gNB 100 does not apply Msg3 repetition.
  • gNB 100 determines whether UE 200 requests Msg3 repetition based on the received Msg1 preamble or RO. It may be determined that it is not.
  • step S104 if the gNB 100 instructs Msg3 repetition (S104: YES), in step S106, the UE 200 applies Msg3 repetition. Specifically, when gNB100 notifies an uplink grant by Msg3 repetition in Msg2, UE200 repeatedly transmits Msg3 to gNB100 according to the Msg3 repetition instruction of Msg2. On the other hand, if gNB 100 does not instruct Msg3 repetition (S104: NO), UE 200 does not apply Msg3 repetition in step S107. Specifically, when gNB100 notifies an uplink grant without Msg3 repetition instruction in Msg2, UE200 transmits Msg3 to gNB100 without repeating transmission according to the uplink grant of Msg2.
  • gNB 100 when UE 200 requests Msg3 repetition in step S102, gNB 100 can determine that UE 200 supports Msg3 repetition. On the other hand, if UE 200 does not request Msg3 repetition in step S102, gNB 100 cannot determine whether UE 200 supports Msg3 repetition. Therefore, after establishing a communication connection with gNB100 in a certain cell by initial connection, gNB100 determines whether Msg3 repetition can be applied to UE200 when connecting to another cell of gNB100 by handover, for example. handover to the transition destination cell may not be realized satisfactorily.
  • UE 200 transmits capability information regarding support for Msg3 repetition to gNB 200. That is, UE 200 holds capability information regarding whether or not to repeatedly transmit an uplink message such as Msg3 in response to a response message such as Random Access Response (RAR) in a random access procedure, and transmits the capability information to gNB 100.
  • RAR Random Access Response
  • UE 200 schedules with PUSCH (hereinafter referred to as Msg3 initial transmission) scheduled with RAR UL grant and DCI scrambled with DCI scrambled by TC-RNTI UE capability indicating whether or not repeated transmission with the received PUSCH (hereinafter referred to as Msg3 retransmission) is supported may be reported to gNB 100.
  • Msg3 initial transmission PUSCH
  • RAR UL grant PUSCH
  • Msg3 retransmission DCI scrambled with DCI scrambled by TC-RNTI UE capability indicating whether or not repeated transmission with the received PUSCH
  • UE200 may transmit UE capability indicating that Msg3 repetition is supported or not supported to gNB100.
  • the UE 200 transmits a Random Access Request (Msg1) to the gNB 100, as shown in FIG. Msg1 here does not include, without limitation, a request for Msg3 repetition, and may be, for example, a preamble for requesting Msg3 repetition or unrelated to the RO.
  • Msg1 Random Access Request
  • step S202 gNB100 transmits RAR (Msg2) including UL grant to UE200.
  • step S203 UE200 transmits PUSCH (Msg3) granted by UL grant to gNB100.
  • step S204 gNB100 transmits Contention Resolution (Msg4) to UE200.
  • RRC connection is established between the gNB 100 and the UE 200 in step S205.
  • step S206 UE200 transmits UE capability regarding support of Msg3 repetition to gNB100.
  • gNB100 can grasp whether UE200 supports Msg3 repetition after communication connection is established. That is, when receiving a request for Msg3 repetition from UE 200 in Msg1, gNB 100 can determine that UE 200 supports Msg3 repetition when receiving Msg1. On the other hand, if no request for Msg3 repetition is received from UE200 in Msg1, gNB100 can grasp whether or not UE200 supports Msg3 repetition when receiving UE capability after RRC connection establishment. Therefore, gNB 100 can more appropriately control handover to another cell by UE 200 after RRC connection establishment, based on whether UE 200 supports Msg3 repetition.
  • UE 200 may transmit UE capability regarding support for Msg3 repetition to gNB 100 only if UE 200 does not request Msg3 repetition during initial connection by the random access procedure. For example, as described above with reference to FIG. 4, in the case of step S105, even if UE 200 supports Msg3 repetition, gNB 100 cannot determine whether UE 200 supports Msg3 repetition. .
  • gNB 100 can implicitly know that UE 200 supports Msg3 repetition based on the request for Msg3 repetition from UE 200, and the UE capability for supporting Msg3 repetition does not require explicit notification by Therefore, only in the case of step S105 where the UE 200 does not request Msg3 repetition at the time of initial connection, the UE 200 may transmit the UE capability regarding support for Msg3 repetition to the gNB 100. This can reduce the signaling overhead required for UE capability.
  • the UE capability regarding support for Msg3 repetition may be reported for each UE 200, for each supported frequency band, or for each supported duplex scheme. That is, UE capability indicating whether or not UE200 supports Msg3 repetition as a mobile station may be reported to gNB100. In addition, UE capability indicating whether UE 200 supports Msg3 repetition for each frequency band such as FR1, FR2, FR1, FR2-1, FR2-2, and SCS may be reported to gNB 100. . Also, UE capability indicating whether UE 200 supports Msg3 repetition for each Time Division Duplex (TDD) and Frequency Division Duplex (FDD) may be reported to gNB 100.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • gNB 100 For Msg3 repetition, gNB 100 notifies UE 200 of the number of times of Msg3 repetition in any field of UL grant (for example, Modulation and Coding Scheme (MCS) field or Time Domain Resource Allocation (TDRA) field), and UE 200 receives Msg3 If repetition is applied, it is agreed that the value of this field determines the number of Msg3 repetitions.
  • MCS Modulation and Coding Scheme
  • TDRA Time Domain Resource Allocation
  • the value of a given field of the UL grant is used to specify the number of times of Msg3 repetition in addition to or instead of the original role of the field, and the UE 200, if Msg3 repetition is applied , interpret the value of this field as the number of Msg3 repetitions (hereinafter referred to as UL grant interpretation).
  • the upper 2 bits of the MCS field are used to specify the number of Msg3 repetitions, and the UE 200 uses the value of the upper 2 bits of the MCS field when Msg3 repetition is applied. You may decide the number of Msg3 repetitions.
  • a given column in the TDRA table is used to specify the number of times for Msg3 repetition, and UE200 interprets the specified TDRA table row if Msg3 repetition is applied. The number of Msg3 repetitions may be determined based on the index.
  • Such UL grant interpretation can be performed when UE200 sends a request for Msg3 repetition to gNB100, or when UE200 receives an instruction to apply Msg3 repetition from gNB100.
  • the application can be indicated based on the PDCCH, RAR, etc. that trigger the random access procedure with the UE 200 from the gNB 100.
  • CBRA is triggered when the Random Access Preamble index field of PDCCH is "0b000000”
  • Contention Free Random Access (CFRA) is triggered when the Random Access Preamble index field of PDCCH is not "0b000000”.
  • CFRA Contention Free Random Access
  • gNB 100 can further determine whether Msg3 repetition needs to be set to UE 200 in the CBRA.
  • UE200 If the UE capability indicating that UE200 supports Msg3 repetition has already been reported to gNB100, UE200, when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB100, for Msg3 repetition indication UL grant interpretation of That is, if the UE capability indicating that UE200 supports Msg3 repetition has been reported to gNB100, UE200 will use Msg3 repetition when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB100. and may determine the number of Msg3 repetitions based on the value of a given field in the UL grant.
  • the UE 200 may determine whether to apply the UL grant interpretation for the Msg3 repetition indication based on the PDCCH (DCI 1_0) that triggers the RA procedure. For example, the UE 200 may use part or all of the reserved bits of DCI 1_0 to determine whether to apply the UL grant interpretation for the Msg3 repetition indication. If the UE 200 determines to apply the UL grant interpretation based on some or all of the reserved bits of DCI 1_0, the UE 200 uses Msg3 repetition when starting the initial connection according to the PDCCH order (DCI 1_0) from the gNB 100. and may determine the number of Msg3 repetitions based on the value of a given field in the UL grant.
  • DCI 1_0 PDCCH
  • UE 200 when UE 200 starts initial connection based on the PDCCH order (DCI 1_0) from gNB 100, it may determine whether to apply the UL grant interpretation based on the bit corresponding to UL/SUL indicator. At this time, UE200 may select preamble or RO to send Msg1 regardless of whether the Msg3 repetition is based on the Msg3 repetition request from UE200. Since the RA procedure applies Msg3 repetition according to the instruction from gNB 100, the preamble or RO associated with Msg3 repetition need not be selected in Msg1. Also, the solution according to the present disclosure is not necessarily limited to the UL/SUL indicator, and other reserved bits of DCI 1_0 may be utilized.
  • UE 200 When RSRP measured based on the downlink reference signal is less than or equal to a predetermined threshold, UE 200 UL grant for Msg3 repetition instruction when starting initial connection based on PDCCH order (DCI 1_0) from gNB 100 Interpretation may apply. That is, when the RSRP for the downlink reference signal from gNB100 is less than or equal to a predetermined threshold, UE200 applies Msg3 repetition when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB100, and UL The number of Msg3 repetitions may be determined based on the value of a given field in grant.
  • the UE 200 When the number of Msg1 transmission attempts or the number of Msg3 transmission attempts exceeds a predetermined threshold, the UE 200, when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB 100, UL for Msg3 repetition indication grant interpretation may be applied. That is, when the number of transmission attempts of Msg1 or the number of transmission attempts of Msg3 is equal to or greater than a predetermined threshold, UE 200, when starting an initial connection based on the PDCCH order (DCI 1_0) from gNB 100, the predetermined UL grant The number of Msg3 repetitions may be determined based on the value of the field.
  • Option 1-4 (combination of Option 1-4) Although Options 1-4 have been described individually, any combination of two or more of Options 1-4 may be applied. Also, the gNB 100 may use any information such as System Information Block 1 (SIB 1), Radio Resource Control (RRC) parameters, etc. to notify the UE 200 which of Options 1-4 should be applied. Alternatively, UE 200 may determine which of Options 1-4 to apply based on the PDCCH that triggers the RA procedure.
  • SIB 1 System Information Block 1
  • RRC Radio Resource Control
  • UE 200 may send Msg1 with a preamble or RO requesting Msg3 repetition.
  • Msg3 PUSCH repetition is the downlink symbol indicated by tdd-UL-DL-ConfigurationDedicated. It was agreed that further consideration should be given as to whether cancellation by symbol is possible. It was also agreed that the application of the Rel-17 Msg3 PUSCH collision rule would be further considered.
  • UE 200 schedules with DCI scrambled with tdd-UL-DL-ConfigurationDedicated downlink symbols and RAR UL grant or TC-RNTI when any of the following conditions 1 to 5 is satisfied: Even if the PUSCH overlaps, the corresponding PUSCH may be transmitted.
  • UE 200 may transmit Msg3 even if it overlaps tdd-UL-DL-ConfigurationDedicated downlink symbols.
  • UE200 may transmit Msg3 even if the downlink symbol of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap.
  • UE 200 applies Msg3 repetition (for example, by PUSCH repetition type A) and transmits Msg3, UE 200 will send Msg3 even if the downlink symbols of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap. may be sent.
  • UE200 When UE200 applies the information included in SIB1 or RAR and transmits Msg3, UE200 transmits Msg3 even if the downlink symbol of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap.
  • the information may refer to or specify tdd-UL-DL-ConfigurationDedicated with 1 bit.
  • the information may be a bitmap to cancel or notify the PUSCH of each slot.
  • Conditions 1 to 5 have been described individually, any combination of two or more of Conditions 1 to 5 may be applied. Also, the gNB 100 may use any information such as SIB1 and RRC parameters to notify the UE 200 which of the conditions 1 to 5 should be applied.
  • the gNB 100 may determine whether or not to apply the collision handling rule depending on whether or not the UE 200 that has permitted the PUSCH scheduled with the RAR UL grant is in the RRC connected state. . For example, when UE200 transmits PRACH in CBRA, UE200 may transmit PUSCH by applying the collision handling rule. On the other hand, when UE 200 transmits PRACH in CFRA, UE 200 may not transmit PUSCH if downlink symbols of tdd-UL-DL-ConfigurationDedicated and PUSCH overlap.
  • TBoMS multi-slot PUSCH
  • TBoMS transport blocks
  • PUSCH transport blocks
  • the gNB 100 and UE 200 contain functionality that implements the embodiments described above. However, the gNB 100 and the UE 200 may each have only part of the functions in the example.
  • FIG. 6 is a diagram showing an example of the functional configuration of the gNB100.
  • gNB 100 has receiving section 101 , transmitting section 102 and control section 103 .
  • the functional configuration shown in FIG. 6 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary.
  • the receiving section 101 includes a function of receiving various signals transmitted from the UE 200 and acquiring, for example, higher layer information from the received signals.
  • the transmission unit 102 includes a function of generating a signal to be transmitted to the UE 200 and transmitting the signal by wire or wirelessly.
  • the control unit 103 stores preset setting information and various setting information to be transmitted to the UE 200 in a storage device, and reads them from the storage device as necessary. Also, the control unit 103 executes processing related to communication with the UE 200 .
  • a functional unit related to signal transmission in control unit 103 may be included in transmitting unit 102
  • a functional unit related to signal reception in control unit 103 may be included in receiving unit 101 .
  • FIG. 7 is a diagram showing an example of the functional configuration of the UE200.
  • the UE 200 has a transmission section 201, a reception section 202 and a control section 203.
  • the functional configuration shown in FIG. 7 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary.
  • the transmission unit 201 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 202 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal.
  • the receiving section 202 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, reference signals, etc. transmitted from the gNB 100 .
  • the control unit 203 stores various setting information received from the gNB 100 by the receiving unit 202 in the storage device, and reads them from the storage device as necessary. Also, the control unit 203 executes processing related to communication with the gNB 100 .
  • a functional unit related to signal transmission in control unit 203 may be included in transmitting unit 201
  • a functional unit related to signal reception in control unit 203 may be included in receiving unit 202 .
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, examining, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the gNB 100, UE 200, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram showing an example of hardware configurations of gNB 100 and UE 200 according to an embodiment of the present disclosure.
  • the gNB 100 and UE 200 described above may physically be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of gNB 100 and UE 200 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the gNB 100 and the UE 200 is performed by loading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002.
  • the processor 1001 performs calculations, controls communication by the communication device 1004, and by controlling at least one of reading and writing of data in the storage 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control units 103 and 203 described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control units 103 and 203 of the gNB 100 and the UE 200 may be stored in the memory 1002 and implemented by a control program running on the processor 1001, and other functional blocks may be similarly implemented.
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, antennas included in gNB 100 and UE 200 may be implemented by communication device 1004 .
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • Devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021 to 2029. , an information service unit 2012 and a communication module 2013 .
  • a communication device mounted on vehicle 2001 may be applied to communication module 2013, for example.
  • the driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 .
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • the signals from the various sensors 2021 to 2029 include the current signal from the current sensor 2021 that senses the current of the motor, the rotation speed signal of the front and rear wheels acquired by the rotation speed sensor 2022, and the front wheel acquired by the air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal obtained by vehicle speed sensor 2024, acceleration signal obtained by acceleration sensor 2025, accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, brake pedal sensor 2026 obtained by There are a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service unit 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more devices for controlling these devices. ECU.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
  • Driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), camera, positioning locator (e.g., GNSS, etc.), map information (e.g., high-definition (HD) map, automatic driving vehicle (AV) map, etc. ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, AI processors, etc., to prevent accidents and reduce the driver's driving load. and one or more ECUs for controlling these devices.
  • the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports.
  • the communication module 2013 communicates with the vehicle 2001 through the communication port 2033, the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the electronic Data is transmitted and received between the microprocessor 2031 and memory (ROM, RAM) 2032 in the control unit 2010 and the sensors 2021-29.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 2013 may be internal or external to electronic control unit 2010 .
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 receives the rotation speed signal of the front and rear wheels obtained by the rotation speed sensor 2022, the air pressure signal of the front and rear wheels obtained by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal obtained by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 2028 are also transmitted to an external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 .
  • Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 .
  • the microprocessor 2031 controls the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, and the axle 2009 provided in the vehicle 2001.
  • sensors 2021 to 2029 and the like may be controlled.
  • a control unit that holds capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure, and whether to repeatedly transmit the uplink message a transmitting unit for transmitting capability information regarding to the base station.
  • the base station can determine whether the terminal supports repeated transmission of an uplink message (eg, Msg3 repetition) for a response message in a random access procedure based on the capability information obtained from the terminal. .
  • the base station determines whether the terminal repeats the uplink message based on the terminal capability information acquired after the communication connection is established. It is possible to determine whether or not transmission is supported, and to notify the terminal of an appropriate connection request for subsequent handover or the like.
  • a wireless communication method performed by a terminal, comprising transmitting to a base station capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure.
  • the base station can determine whether the terminal supports repeated transmission of an uplink message (eg, Msg3 repetition) for a response message in a random access procedure based on the capability information obtained from the terminal. .
  • the base station determines whether the terminal repeats the uplink message based on the terminal capability information acquired after the communication connection is established. It is possible to determine whether or not transmission is supported, and to notify the terminal of an appropriate connection request for subsequent handover or the like.
  • a control unit that determines that an application condition regarding repeated transmission of an uplink message for a response message is satisfied; a transmitting unit for repeatedly transmitting said uplink message according to an interpretation of said response message corresponding to fulfillment.
  • the terminal for the random access procedure instructed by the base station, when it is determined that a predetermined application condition regarding repeated transmission of an uplink message for a response message (for example, Msg3 repetition) is satisfied, the response message corresponding to the satisfaction of the applicable condition, and based on the interpreted response message, repeated transmission of the uplink message can be performed.
  • a predetermined application condition regarding repeated transmission of an uplink message for a response message for example, Msg3 repetition
  • the terminal for the random access procedure instructed by the base station, when it is determined that a predetermined application condition regarding repeated transmission of an uplink message for a response message (for example, Msg3 repetition) is satisfied, the response message corresponding to the satisfaction of the applicable condition, and based on the interpreted response message, repeated transmission of the uplink message can be performed.
  • a predetermined application condition regarding repeated transmission of an uplink message for a response message for example, Msg3 repetition
  • a control unit that determines that the application condition regarding repeated transmission of an uplink message for a response message in a random access procedure is satisfied, and a radio designated for downlink transmission by configuration information a transmitting unit for repeatedly transmitting said uplink message on overlapping radio resources.
  • the terminal can appropriately handle collisions between the downlink transmission specified in the setting information and the repeated transmission of the uplink message in response to the response message in the random access procedure.
  • the terminal can appropriately handle collisions between the downlink transmission specified in the setting information and the repeated transmission of the uplink message in response to the response message in the random access procedure.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the wireless communication node 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor possessed by the wireless communication node 10 according to the embodiment of the present invention and the software operated by the processor possessed by the terminal 20 according to the embodiment of the present invention are respectively a random access memory (RAM), a flash memory, and a read-only memory. It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, other suitable systems, and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • Certain operations identified in this disclosure as being performed by an IAB node may also be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the IAB node and other network nodes other than the IAB node (e.g. MME or S-GW, etc. (including but not limited to).
  • MME or S-GW network nodes
  • the above example illustrates the case where there is one network node other than the IAB node, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • (input/output direction) Information and the like can be output from the upper layer (or lower layer) to the lower layer (or higher layer). It may be input and output via multiple network nodes.
  • Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signal Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system As used in this disclosure, the terms “system” and “network” are used interchangeably.
  • radio resources may be indexed.
  • an IAB node has the functionality of a base station.
  • Base Station (BS)", “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “access point”)”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,"cellgroup”,”carrier”
  • Terms such as “component carrier” may be used interchangeably.
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (e.g., an indoor small base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • RRH indoor small base station
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • terminal In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
  • a mobile station is defined by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • IAB node/mobile station IAB nodes and/or mobile stations may also be referred to as transmitters, receivers, communication devices, and/or the like.
  • At least one of the IAB node and the mobile station may be a device mounted on a mobile, the mobile itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the IAB node and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the IAB node and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the IAB node in the present disclosure may be read as a user terminal.
  • the communication between the IAB node and the user terminal communication between multiple user terminals (eg, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may also be called) replaced Regarding the configuration, each aspect/embodiment of the present disclosure may be applied.
  • the terminal 20 may have the functions of the IAB node 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as an IAB node.
  • the IAB node 10 may have the functions of the terminal 20 described above.
  • determining may encompass a wide variety of actions.
  • “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure);
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • radio frame configuration for example, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • an IAB node performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured in one carrier for a terminal.
  • At least one of the configured BWPs may be active, and the terminal may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be read as "BWP”.
  • radio frames, subframes, slots, minislots and symbols are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • wireless communication system 100 base station (gNB) 200 terminal (UE)
  • gNB base station
  • UE terminal

Abstract

An aspect of the present disclosure provides a terminal comprising a control unit that holds capability information about whether to repeatedly transmit an uplink message in response to a response message in the steps of random access, and a transmitting unit that transmits, to a base station, the capability information about whether to repeatedly transmit the uplink message.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 例えば、3GPP Release-17では、NRにおけるカバレッジ拡張(CE: Coverage Enhancement)に関するWork Itemが合意されている(非特許文献1)。 For example, in 3GPP Release-17, a work item on coverage enhancement (CE: Coverage Enhancement) in NR was agreed (Non-Patent Document 1).
 具体的には、RAR UL grant又はTC-RNTIでスクランブルされたDCI(DCI scrambled with TC-RNTI)に基づいてスケジューリングされたPUSCHの繰り返し送信の仕様について検討が進められている。なお、RARは、Random Access Responseの略である。DCIは、Downlink Control Informationの略である。TC-RNTIは、Temporary Cell Radio Network Temporary Identifierの略である。PUSCHは、Physical Uplink Shared Channelの略である。 Specifically, specifications for repeated transmission of PUSCH scheduled based on RAR UL grant or DCI scrambled with TC-RNTI (DCI scrambled with TC-RNTI) are being studied. RAR stands for Random Access Response. DCI stands for Downlink Control Information. TC-RNTI is an abbreviation for Temporary Cell Radio Network Temporary Identifier. PUSCH stands for Physical Uplink Shared Channel.
 ランダムアクセス手順のアップリンクメッセージ(Msg3など)の繰り返し送信(Msg3 repetitionとも呼ぶ)の実現については更なる検討の余地がある。  There is room for further study regarding the implementation of repeated transmission (also called Msg3 repetition) of uplink messages (Msg3, etc.) for random access procedures.
 本開示の一態様によると、ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信の可否に関する能力情報を保持する制御部と、前記アップリンクメッセージの繰り返し送信の可否に関する能力情報を基地局に送信する送信部と、を有する端末が提供される。 According to one aspect of the present disclosure, a control unit holding capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure, and transmitting the capability information regarding whether to repeatedly transmit the uplink message to a base station A terminal is provided having a transmitter for transmitting.
本開示の一実施例による無線通信システムを示す概略図である。1 is a schematic diagram illustrating a wireless communication system according to one embodiment of the disclosure; FIG. 本開示の一実施例による無線通信システムにおいて用いられる周波数レンジの一例を示す図である。1 is a diagram illustrating an example of frequency ranges used in a wireless communication system according to one embodiment of the present disclosure; FIG. 本開示の一実施例による無線通信システムにおいて用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in a radio communication system according to an embodiment of the present disclosure; 本開示の一実施例によるMsg3 repetitionの適否に関するケースを示す図である。FIG. 10 illustrates a case regarding the propriety of Msg3 repetition according to an embodiment of the present disclosure; 本開示の一実施例によるランダムアクセス手順を示すシーケンス図である。FIG. 10 is a sequence diagram illustrating a random access procedure according to one embodiment of the present disclosure; 本開示の一実施例による基地局(gNB)の機能構成を示すブロック図である。FIG. 4 is a block diagram showing the functional configuration of a base station (gNB) according to one embodiment of the present disclosure; 本開示の一実施例による端末(UE)の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a terminal (UE) according to one embodiment of the present disclosure; FIG. 本開示の一実施例による基地局及び端末のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing hardware configurations of a base station and a terminal according to an embodiment of the present disclosure; FIG. 本開示の一実施例による車両のハードウェア構成を示すブロック図である。1 is a block diagram showing a hardware configuration of a vehicle according to one embodiment of the present disclosure; FIG.
 以下、図面を参照して本開示の実施の形態を説明する。 Embodiments of the present disclosure will be described below with reference to the drawings.
<無線通信システム>
 図1は、一実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、5G New Radio (NR)に従った無線通信システムであり、Next Generation - Radio Access Network 20(以下、NG-RAN20)及び端末200(以下、UE200)を含む。
<Wireless communication system>
FIG. 1 is a diagram showing an example of a wireless communication system 10 according to one embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20) and a terminal 200 (hereinafter UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution又は6Gと呼ばれる方式に従った無線通信システムであってもよい。 Note that the wireless communication system 10 may be a wireless communication system that conforms to a scheme called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、基地局100A(以下、gNB100A)及び基地局100B(以下、gNB100B)を含む。なお、gNB100A、gNB100B等のそれぞれを区別する必要がない場合には、gNB100と総称される。また、gNB及びUEの数は、図1に示す例に限定されない。 NG-RAN 20 includes a base station 100A (hereinafter gNB100A) and a base station 100B (hereinafter gNB100B). Note that gNB100A, gNB100B, etc. are collectively referred to as gNB100 when there is no need to distinguish between them. Also, the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RANノード、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、図示せず)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network".
 gNB100A及びgNB100Bは、5Gに従った基地局であり、5Gに従った無線通信をUE200と実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive Multiple-Input Multiple-Output (MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び、UEと2つのNG-RANノードそれぞれとの間において通信を行うデュアルコネクティビティ(DC)等に対応してよい。 gNB100A and gNB100B are 5G-compliant base stations and perform 5G-compliant wireless communication with UE200. The gNB100A, gNB100B and UE200 generate more highly directional beams BM by controlling radio signals transmitted from multiple antenna elements Massive Multiple-Input Multiple-Output (MIMO), multiple component carriers (CC ), and dual connectivity (DC) that performs communication between the UE and each of the two NG-RAN nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。 Also, the wireless communication system 10 supports multiple frequency ranges (FR).
 図2は、無線通信システム10において用いられる周波数レンジの一例を示す図である。図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、例えば、以下のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
FIG. 2 is a diagram showing an example of frequency ranges used in the wireless communication system 10. As shown in FIG. As shown in FIG. 2, the wireless communication system 10 supports FR1 and FR2. For example, the frequency band of each FR is as follows.
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
 FR1では、15kHz、30kHz又は60kHzのSub-Carrier Spacing (SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60kHz又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 In FR1, Sub-Carrier Spacing (SCS) of 15kHz, 30kHz or 60kHz may be used, and a bandwidth (BW) of 5-100MHz may be used. FR2 is higher frequency than FR1 and may use an SCS of 60 kHz or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
 なお、Subcarrier Spacing (SCS)は、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける1つのサブキャリア間隔と対応する。  Subcarrier Spacing (SCS) may be interpreted as numerology. numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯に対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応してもよい。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。52.6GHzを超える帯域を用いる場合、より大きなSCSを有するCyclic Prefix - Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing (DFT-S-OFDM)を適用してもよい。 Furthermore, the wireless communication system 10 may support a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands above 52.6 GHz and up to 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x". Cyclic Prefix - Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) with larger SCS may be applied when using bands above 52.6 GHz .
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、SCSとして、480kHz、960kHz等が用いられてもよい。 FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10. FIG. As shown in FIG. 3, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and the slot period). The SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used as the SCS.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Also, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間等と呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)等と呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like. Also, the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
 Demodulation Reference Signal (DMRS)は、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、ダウンリンクデータチャネル(具体的には、Physical Downlink Shared Channel (PDSCH))用のDMRSを意味してよい。ただし、アップリンクデータチャネル(具体的には、PUSCH)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。  Demodulation Reference Signal (DMRS) is a type of reference signal and is prepared for various channels. Here, unless otherwise specified, it may mean DMRS for downlink data channels (specifically, Physical Downlink Shared Channel (PDSCH)). However, DMRS for uplink data channels (specifically, PUSCH) may be interpreted similarly to DMRS for PDSCH.
 DMRSは、コヒーレント復調の一部分として、デバイス(例えば、UE200)におけるチャネル推定に用いられてよい。DMRSは、PDSCH送信に使用されるリソースブロック(RB: Resource Block)のみに存在してよい。 DMRS may be used for channel estimation in devices (eg, UE 200) as part of coherent demodulation. A DMRS may exist only in a resource block (RB: Resource Block) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有してよい。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置されてよい。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET: control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 A DMRS may have multiple mapping types. Specifically, the DMRS may have mapping type A and mapping type B. For mapping type A, the first DMRS may be placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有してよい。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 In addition, DMRS may have multiple types (Type). Specifically, DMRS may have Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
 無線通信システム10は、gNB100が形成するセル(又は物理チャネルでもよい)のカバレッジを広げるカバレッジ拡張(CE: Coverage Enhancement)をサポートしてよい。カバレッジ拡張では、Msg3 repetitionなど各種の物理チャネルの受信成功率を高めるための仕組みが提供されてもよい。 The wireless communication system 10 may support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100. Coverage extension may provide mechanisms to increase the success rate of reception of various physical channels, such as Msg3 repetition.
 例えば、UE200は、DL信号として、gNB100からRACH手順に関連する情報を受信する。また、例えば、UE200は、DL信号として、gNB100からMsg3 repetitionに関する情報を受信する。Msg3 repetitionに関する情報には、例えば、Msg3の繰り返し送信に用いるリソース、繰り返し送信の回数、周波数ホッピングパターン、周波数ホッピングで用いる指定オフセット等を示す情報が含まれてよい。 For example, UE 200 receives information related to the RACH procedure from gNB 100 as a DL signal. Also, for example, the UE 200 receives information on Msg3 repetition from the gNB 100 as a DL signal. Information about Msg3 repetition may include, for example, information indicating resources used for repeated transmission of Msg3, number of repeated transmissions, frequency hopping pattern, specified offset used for frequency hopping, and the like.
 例えば、UE200は、UL信号として、RACH手順におけるMsg3 repetitionのリクエスト用の特別なRACH occasion (RO)やpreamble等をgNB100へ送信する。また、例えば、UE200は、UL信号として、Msg3 repetitionのリクエストに対してgNB100から受信したMsg3 repetitionに関する情報に基づいて、Msg3をgNB100へ繰り返し送信する。 For example, the UE 200 transmits a special RACH occurrence (RO), preamble, etc. for requesting Msg3 repetition in the RACH procedure to the gNB 100 as UL signals. Also, for example, the UE 200 repeatedly transmits Msg3 to the gNB 100 as the UL signal based on the information regarding the Msg3 repetition received from the gNB 100 in response to the request for the Msg3 repetition.
 UL信号には、例えば、ULのデータ信号及び制御情報が含まれてよい。例えば、UL信号には、UE200の処理能力に関する情報(例えば、UE capability)が含まれてよい。また、UL信号には、参照信号が含まれてよい。  UL signals may include, for example, UL data signals and control information. For example, the UL signal may include information about the processing capability of UE 200 (eg, UE capability). Also, the UL signal may include a reference signal.
 UL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、PUSCHが含まれてよく、制御チャネルには、Physical Uplink Control Channel (PUCCH)が含まれてよい。例えば、UE200は、PUCCHを用いて制御情報を送信し、PUSCHを用いてULのデータ信号を送信する。なお、PUSCHは上りリンク共有チャネルの一例であり、PUCCHは上りリンク制御チャネルの一例である。共有チャネルはデータチャネルと呼ばれてもよい。 Channels used to transmit UL signals include, for example, data channels and control channels. For example, data channels may include PUSCH and control channels may include Physical Uplink Control Channel (PUCCH). For example, the UE 200 uses PUCCH to transmit control information, and uses PUSCH to transmit UL data signals. PUSCH is an example of an uplink shared channel, and PUCCH is an example of an uplink control channel. A shared channel may also be referred to as a data channel.
 UL信号に含まれる参照信号には、例えば、DMRS、Phase Tracking Reference Signal (PTRS)、Channel State Information - Reference Signal (CSI-RS)、Sounding Reference Signal (SRS)及び位置情報用のPositioning Reference Signal (PRS)のうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、ULのデータ信号の復調に使用され、PUSCHを用いて送信される。 Reference signals included in UL signals include, for example, DMRS, Phase Tracking Reference Signal (PTRS), Channel State Information - Reference Signal (CSI-RS), Sounding Reference Signal (SRS) and Positioning Reference Signal (PRS ) may be included. For example, reference signals such as DMRS and PTRS are used for demodulation of UL data signals and transmitted using PUSCH.
 また、NRのRA手順では、UE200は、RACH手順における第1ステップとして、ランダムアクセスプリアンブル(RA preamble)を第1メッセージ(Msg1)として送信する。また、UE200は、RACH手順における第2ステップとして、Msg1に対する応答メッセージ(Random Access Response (RAR))として第2メッセージ(Msg2)を受信する。また、UE200は、RACH手順における第3ステップとして、Msg2の受信後において、PUSCHを介して第3メッセージ(Msg3)を送信する。また、UE200は、RACH手順における第4ステップとして、Msg3に対する応答メッセージとして第4メッセージ(Msg4)を受信する(3GPP TS38.321 V16.5.0 Section 5.1 “Random Access procedure”)。なお、上記の第1ステップ乃至第4ステップからなるRACH手順は、type 1 RACH手順、4-step RACH手順、type 1 RACH、4-step RACH等と呼ばれてもよい。 Also, in the NR RA procedure, the UE 200 transmits a random access preamble (RA preamble) as the first message (Msg1) as the first step in the RACH procedure. Also, as the second step in the RACH procedure, UE 200 receives a second message (Msg2) as a response message (Random Access Response (RAR)) to Msg1. Also, as the third step in the RACH procedure, UE 200 transmits a third message (Msg3) via PUSCH after receiving Msg2. Also, as the fourth step in the RACH procedure, the UE 200 receives the fourth message (Msg4) as a response message to Msg3 (3GPP TS38.321 V16.5.0 Section 5.1 "Random Access procedure"). The RACH procedure consisting of the first to fourth steps above may also be called a type 1 RACH procedure, a 4-step RACH procedure, a type 1 RACH, a 4-step RACH, or the like.
 例えば、Msg1は、Physical RACH (PRACH)を介して送信されてもよい。Msg1は、PRACH preamble又はRA preambleと呼ばれてもよい。Msg2は、PDSCHを介して送信されてもよい。Msg2は、RARと呼ばれてもよい。Msg3は、RRC Connection Requestと呼ばれてもよい。Msg4は、RRC Connection Setupと呼ばれてもよい。 For example, Msg1 may be sent via Physical RACH (PRACH). Msg1 may be called PRACH preamble or RA preamble. Msg2 may be transmitted via PDSCH. Msg2 may be called RAR. Msg3 may be called RRC Connection Request. Msg4 may be called RRC Connection Setup.
 また、例えば、UE200は、上記の第1ステップと第3ステップとを組み合わせた第1ステップ及び上記の第2ステップと第4ステップとを組み合わせた第2ステップからなるRACH手順を制御してもよい。なお、当該RACH手順は、type 2 RACH手順、2-step RACH手順、type 2 RACH、2-step RACH等と呼ばれてもよい。また、当該RACH手順の第1ステップにおける上記のMsg1とMsg3とを組み合わせたメッセージは、MsgAと呼ばれてもよい。 Also, for example, the UE 200 may control a RACH procedure consisting of a first step combining the first step and the third step and a second step combining the second step and the fourth step. . The RACH procedure may also be called a type 2 RACH procedure, a 2-step RACH procedure, a type 2 RACH, a 2-step RACH, or the like. Also, the combined message of Msg1 and Msg3 above in the first step of the RACH procedure may be called MsgA.
 なお、Msg3は、上りリンク信号又は第2の上りリンク信号と呼ばれてもよい。また、Msg1は、第1の上りリンク信号と呼ばれてもよい。また、繰り返し送信の回数は、繰り返し数、繰り返し送信数、繰り返し回数、繰り返し送信回数、repetition数、repetition回数等に読み替えられてもよい。 Note that Msg3 may be called an uplink signal or a second uplink signal. Also, Msg1 may be called a first uplink signal. Also, the number of repeated transmissions may be read as the number of repetitions, the number of repeated transmissions, the number of repetitions, the number of repeated transmissions, the number of repetitions, the number of repetitions, or the like.
 また、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルは、上述した例に限定されない。例えば、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルには、RACH及びPhysical Broadcast Channel (PBCH)が含まれてよい。RACHは、例えば、Random Access Radio Network Temporary Identifier (RA-RNTI)を含むDCIの送信に用いられてよい。 Also, the channels used for DL signal transmission and the channels used for UL signal transmission are not limited to the above examples. For example, channels used to transmit DL signals and channels used to transmit UL signals may include RACH and Physical Broadcast Channel (PBCH). RACH may be used, for example, to transmit DCI including Random Access Radio Network Temporary Identifier (RA-RNTI).
 また、PUSCHの繰り返し送信は、複数の種類が規定されてよい。具体的には、Repetition type A及びRepetition type Bが規定されてよい。Repetition type Aは、スロット内に割り当てられたPUSCHが繰り返し送信される形態と解釈されてよい。つまり、PUSCHは、14シンボル以下であり、複数スロット(隣接スロット)に跨がって割り当てられる可能性はない。 In addition, multiple types of repeated transmission of PUSCH may be defined. Specifically, Repetition type A and Repetition type B may be defined. Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. In other words, PUSCH is 14 symbols or less, and is unlikely to be allocated across multiple slots (adjacent slots).
 一方、Repetition type Bは、15シンボル以上のPUSCHが割り当てられる可能性があるPUSCHの繰り返し送信と解釈されてよい。本実施の形態では、このようなPUSCHを複数スロットに跨がって割り当てることが許容されてよい。 On the other hand, Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
 また、無線通信システム10では、複数の種類のUE200が用いられてもよい。例えば、UE200として、機能又は性能等が異なる、或いはサポートする3GPP Releaseが異なる複数の種類の端末が存在してもよい。当該端末(UE)は、第1種端末及び第2種端末と呼ばれてもよい。また、種類は、世代、Release等の他の用語に置き換えられてもよい。第1種端末及び第2種端末はそれぞれ、enhanced UE及びlegacy UEと呼ばれてもよい。例えば、enhanced UEは、Msg3 repetitionをサポートしているUEと解されてよく、legacy UE は、Msg3 repetitionをサポートしていないUEと解されてよい。 Also, in the radio communication system 10, multiple types of UE 200 may be used. For example, the UE 200 may include multiple types of terminals that differ in function or performance, or that support different 3GPP releases. The terminal (UE) may be called a type 1 terminal and a type 2 terminal. Also, the type may be replaced with other terms such as generation and release. A type 1 terminal and a type 2 terminal may be called an enhanced UE and a legacy UE, respectively. For example, an enhanced UE may be interpreted as a UE that supports Msg3 repetition, and a legacy UE may be interpreted as a UE that does not support Msg3 repetition.
[Proposal 1]
<検討>
 Msg3 repetitionについて、初期接続時のMsg3 repetitionの要否をgNB100が判断するため、UE200がMsg1でMsg3 repetitionを要求しているか否かが判定されることが合意されている。現状、UE200がダウンリンクリファレンス信号のReference Signal Received Power (RSRP)に基づいてMsg3 repetitionを要求するか否かを決定することが合意されている。UE200がMsg3 repetitionを要求しているか否かは、Msg1のプリアンブル又はRACH Occasion (RO)に基づいてgNB100によって判断されうる。
[Proposal 1]
<Consideration>
Regarding Msg3 repetition, since the gNB 100 determines whether Msg3 repetition is necessary at the time of initial connection, it is agreed that it is determined whether or not the UE 200 requests Msg3 repetition with Msg1. Currently, it is agreed that the UE 200 determines whether to request Msg3 repetition based on the Reference Signal Received Power (RSRP) of the downlink reference signal. Whether UE 200 requests Msg3 repetition can be determined by gNB 100 based on the preamble of Msg1 or RACH Occasion (RO).
 Msg3 repetitionの適否については、例えば、図4に示されるようなケースが想定される。UE200がMsg3 repetitionをサポートしている場合(S101:YES)、ステップS102において、UE200がMsg3 repetitionを要求しているか判定される。他方、UE200がMsg3 repetitionをサポートしていない場合(S101:NO)、ステップS103において、UE200はMsg3 repetitionを要求せず、Msg3 repetitionは適用されない。 Regarding the propriety of Msg3 repetition, for example, the case shown in Fig. 4 is assumed. If the UE 200 supports Msg3 repetition (S101: YES), it is determined in step S102 whether the UE 200 requests Msg3 repetition. On the other hand, if UE 200 does not support Msg3 repetition (S101: NO), UE 200 does not request Msg3 repetition and Msg3 repetition is not applied in step S103.
 ステップS102において、UE200がMsg3 repetitionを要求している場合(S102:YES)、ステップS104において、gNB100はMsg3 repetitionを指示するか判断する。具体的には、Msg3 repetitionをサポートするUE200が、Msg3 repetitionに対する要求に関連付けされたプリアンブル又はROによりMsg1をgNB100に送信した場合、gNB100は、受信したMsg1のプリアンブル又はROに基づいて、UE200がMsg3 repetitionを要求していると判定してもよい。他方、UE200がMsg3 repetitionを要求していない場合(S102:NO)、ステップS105において、UE200はMsg3 repetitionを要求しておらず、gNB100は、Msg3 repetitionを適用しない。具体的には、UE200が、Msg3 repetitionに対する要求に関連付けされていないプリアンブル又はROによりMsg1をgNB100に送信した場合、gNB100は、受信したMsg1のプリアンブル又はROに基づいて、UE200がMsg3 repetitionを要求していないと判定してもよい。 In step S102, if the UE 200 requests Msg3 repetition (S102: YES), in step S104, the gNB 100 determines whether to instruct Msg3 repetition. Specifically, if UE 200 that supports Msg3 repetition sends Msg1 to gNB 100 with a preamble or RO associated with the request for Msg3 repetition, gNB 100 receives Msg1 preamble or RO, based on which UE 200 receives Msg3 It may be determined that repetition is required. On the other hand, if UE 200 does not request Msg3 repetition (S102: NO), UE 200 does not request Msg3 repetition in step S105, and gNB 100 does not apply Msg3 repetition. Specifically, if UE 200 sends Msg1 to gNB 100 with a preamble or RO that is not associated with a request for Msg3 repetition, gNB 100 determines whether UE 200 requests Msg3 repetition based on the received Msg1 preamble or RO. It may be determined that it is not.
 ステップS104において、gNB100がMsg3 repetitionを指示した場合(S104:YES)、ステップS106において、UE200は、Msg3 repetitionを適用する。具体的には、gNB100が、Msg2においてMsg3 repetitionによるアップリンクグラントを通知する場合、UE200は、Msg2のMsg3 repetitionの指示に従ってMsg3をgNB100に繰り返し送信する。他方、gNB100がMsg3 repetitionを指示しない場合(S104:NO)、ステップS107において、UE200は、Msg3 repetitionを適用しない。具体的には、gNB100が、Msg2においてMsg3 repetition指示のないアップリンクグラントを通知する場合、UE200は、Msg2のアップリンクグラントに従って繰り返し送信することなくMsg3をgNB100に送信する。  In step S104, if the gNB 100 instructs Msg3 repetition (S104: YES), in step S106, the UE 200 applies Msg3 repetition. Specifically, when gNB100 notifies an uplink grant by Msg3 repetition in Msg2, UE200 repeatedly transmits Msg3 to gNB100 according to the Msg3 repetition instruction of Msg2. On the other hand, if gNB 100 does not instruct Msg3 repetition (S104: NO), UE 200 does not apply Msg3 repetition in step S107. Specifically, when gNB100 notifies an uplink grant without Msg3 repetition instruction in Msg2, UE200 transmits Msg3 to gNB100 without repeating transmission according to the uplink grant of Msg2.
 上述した説明から理解されるように、ステップS102においてUE200がMsg3 repetitionを要求した場合、gNB100は、UE200がMsg3 repetitionをサポートしていると判定できる。他方、ステップS102においてUE200がMsg3 repetitionを要求しない場合、gNB100は、UE200がMsg3 repetitionをサポートしているか判別できない。従って、初期接続によってUE200があるセルにおいてgNB100と通信接続を確立した後、例えば、ハンドオーバなどによってgNB100の他のセルに接続する場合、gNB100は、UE200にMsg3 repetitionを適用可能であるか判別することができず、遷移先のセルへのハンドオーバが良好に実現できない可能性がある。 As can be understood from the above description, when UE 200 requests Msg3 repetition in step S102, gNB 100 can determine that UE 200 supports Msg3 repetition. On the other hand, if UE 200 does not request Msg3 repetition in step S102, gNB 100 cannot determine whether UE 200 supports Msg3 repetition. Therefore, after establishing a communication connection with gNB100 in a certain cell by initial connection, gNB100 determines whether Msg3 repetition can be applied to UE200 when connecting to another cell of gNB100 by handover, for example. handover to the transition destination cell may not be realized satisfactorily.
<Msg3 repetitionのサポートに関するUE capabilityの報告>
 Proposal 1によると、UE200は、Msg3 repetitionのサポートに関する能力情報をgNB200に送信する。すなわち、UE200は、ランダムアクセス手順におけるRandom Access Response (RAR)などの応答メッセージに対するMsg3などのアップリンクメッセージの繰り返し送信の可否に関する能力情報を保持し、当該能力情報をgNB100に送信する。具体的には、NRのContention Based Random Access (CBRA)では、UE200は、RAR UL grantでスケジューリングされたPUSCH(以降、Msg3 initial transmissionと呼ぶ)と、DCI scrambled by TC-RNTIでスクランブルしたDCIでスケジューリングされたPUSCH(以降、Msg3 retransmissionと呼ぶ)との繰り返し送信がサポートされているか否かを示すUE capabilityをgNB100に報告してもよい。
<Reporting UE capability for support of Msg3 repetition>
According to Proposal 1, UE 200 transmits capability information regarding support for Msg3 repetition to gNB 200. That is, UE 200 holds capability information regarding whether or not to repeatedly transmit an uplink message such as Msg3 in response to a response message such as Random Access Response (RAR) in a random access procedure, and transmits the capability information to gNB 100. Specifically, in Contention Based Random Access (CBRA) of NR, UE 200 schedules with PUSCH (hereinafter referred to as Msg3 initial transmission) scheduled with RAR UL grant and DCI scrambled with DCI scrambled by TC-RNTI UE capability indicating whether or not repeated transmission with the received PUSCH (hereinafter referred to as Msg3 retransmission) is supported may be reported to gNB 100.
 例えば、UE200は、gNB100との通信接続が確立された後、Msg3 repetitionをサポートしていること又はサポートしないことを示すUE capabilityをgNB100に送信してもよい。NRのCBRA手順では、図5に示されるように、ステップS201において、UE200は、Random Access Request(Msg1)をgNB100に送信する。ここでのMsg1は、限定することなく、Msg3 repetitionに対するリクエストを含まず、例えば、Msg3 repetitionを要求するためのプリアンブル又はROに関連しないものであってもよい。 For example, after establishing a communication connection with gNB100, UE200 may transmit UE capability indicating that Msg3 repetition is supported or not supported to gNB100. In the NR CBRA procedure, in step S201, the UE 200 transmits a Random Access Request (Msg1) to the gNB 100, as shown in FIG. Msg1 here does not include, without limitation, a request for Msg3 repetition, and may be, for example, a preamble for requesting Msg3 repetition or unrelated to the RO.
 ステップS202において、gNB100は、UL grantを含むRAR(Msg2)をUE200に送信する。ステップS203において、UE200は、UL grantにより許可されたPUSCH(Msg3)をgNB100に送信する。ステップS204において、gNB100は、Contention Resolution(Msg4)をUE200に送信する。これにより、ステップS205において、gNB100とUE200との間でRRC connectionが確立される。その後、ステップS206において、UE200は、Msg3 repetitionのサポートに関するUE capabilityをgNB100に送信する。 In step S202, gNB100 transmits RAR (Msg2) including UL grant to UE200. In step S203, UE200 transmits PUSCH (Msg3) granted by UL grant to gNB100. In step S204, gNB100 transmits Contention Resolution (Msg4) to UE200. Thereby, an RRC connection is established between the gNB 100 and the UE 200 in step S205. Then, in step S206, UE200 transmits UE capability regarding support of Msg3 repetition to gNB100.
 上述したProposal 1の解決策によると、gNB100は、通信接続の確立後には、UE200がMsg3 repetitionをサポートしているか否かを把握することができる。すなわち、Msg1においてUE200からMsg3 repetitionに対する要求を受信した場合、gNB100は、当該Msg1の受信時にUE200がMsg3 repetitionをサポートしていると判断できる。他方、Msg1においてUE200からMsg3 repetitionに対する要求を受信しなかった場合、RRC connection確立後のUE capabilityの受信時に、gNB100は、UE200がMsg3 repetitionをサポートしているか否かを把握することができる。従って、gNB100は、UE200がMsg3 repetitionをサポートしているか否かに基づいて、RRC connection確立後のUE200による他のセルへのハンドオーバをより適切に制御することが可能になる。 According to the solution of Proposal 1 mentioned above, gNB100 can grasp whether UE200 supports Msg3 repetition after communication connection is established. That is, when receiving a request for Msg3 repetition from UE 200 in Msg1, gNB 100 can determine that UE 200 supports Msg3 repetition when receiving Msg1. On the other hand, if no request for Msg3 repetition is received from UE200 in Msg1, gNB100 can grasp whether or not UE200 supports Msg3 repetition when receiving UE capability after RRC connection establishment. Therefore, gNB 100 can more appropriately control handover to another cell by UE 200 after RRC connection establishment, based on whether UE 200 supports Msg3 repetition.
 一実施例では、UE200は、ランダムアクセス手順による初期接続時にUE200がMsg3 repetitionを要求していない場合に限って、Msg3 repetitionのサポートに関するUE capabilityをgNB100に送信してもよい。例えば、図4を参照して上述したように、ステップS105のケースでは、UE200がMsg3 repetitionをサポートしている場合であっても、gNB100は、UE200がMsg3 repetitionをサポートしているか否か判定できない。他方、ステップS106及びS107のケースでは、gNB100は、UE200からのMsg3 repetitionに対するリクエストに基づいて、UE200がMsg3 repetitionをサポートしていることを暗黙的に知ることができ、Msg3 repetitionのサポートに関するUE capabilityによる明示的な通知を必要としない。従って、初期接続時にUE200がMsg3 repetitionを要求しないステップS105のケースに限って、UE200は、Msg3 repetitionのサポートに関するUE capabilityをgNB100に送信するようにしてもよい。これにより、UE capabilityに要するシグナリングオーバヘッドを削減することができる。 In one embodiment, UE 200 may transmit UE capability regarding support for Msg3 repetition to gNB 100 only if UE 200 does not request Msg3 repetition during initial connection by the random access procedure. For example, as described above with reference to FIG. 4, in the case of step S105, even if UE 200 supports Msg3 repetition, gNB 100 cannot determine whether UE 200 supports Msg3 repetition. . On the other hand, in the case of steps S106 and S107, gNB 100 can implicitly know that UE 200 supports Msg3 repetition based on the request for Msg3 repetition from UE 200, and the UE capability for supporting Msg3 repetition does not require explicit notification by Therefore, only in the case of step S105 where the UE 200 does not request Msg3 repetition at the time of initial connection, the UE 200 may transmit the UE capability regarding support for Msg3 repetition to the gNB 100. This can reduce the signaling overhead required for UE capability.
 また、一実施例では、Msg3 repetitionのサポートに関するUE capabilityは、UE200毎、対応可能な周波数帯毎又は対応可能な複信方式毎に報告されてもよい。すなわち、UE200が移動局としてMsg3 repetitionをサポートしているか否かを示すUE capabilityが、gNB100に報告されてもよい。また、UE200がFR1, FR2毎、FR1, FR2-1, FR2-2毎、SCS毎などの周波数帯毎にMsg3 repetitionをサポートしているか否かを示すUE capabilityが、gNB100に報告されてもよい。また、UE200がTime Division Duplex (TDD), Frequency Division Duplex (FDD)毎にMsg3 repetitionをサポートしているか否かを示すUE capabilityが、gNB100に報告されてもよい。これにより、何れかの粒度によりMsg3 repetitionのサポートがUE200に備えられる場合であっても、当該粒度に対応したMsg3 repetitionのサポート状態をgNB100に適切に通知することが可能になる。 Also, in one embodiment, the UE capability regarding support for Msg3 repetition may be reported for each UE 200, for each supported frequency band, or for each supported duplex scheme. That is, UE capability indicating whether or not UE200 supports Msg3 repetition as a mobile station may be reported to gNB100. In addition, UE capability indicating whether UE 200 supports Msg3 repetition for each frequency band such as FR1, FR2, FR1, FR2-1, FR2-2, and SCS may be reported to gNB 100. . Also, UE capability indicating whether UE 200 supports Msg3 repetition for each Time Division Duplex (TDD) and Frequency Division Duplex (FDD) may be reported to gNB 100. As a result, even if the UE 200 is equipped with Msg3 repetition support for any granularity, it is possible to appropriately notify the gNB 100 of the Msg3 repetition support state corresponding to that granularity.
[Proposal 2]
<検討>
 Msg3 repetitionについて、gNB100は、Msg3 repetitionの回数をUL grantの何れかのフィールド(例えば、Modulation and Coding Scheme (MCS)フィールド又はTime Domain Resource Allocation (TDRA)フィールド)においてUE200に通知し、UE200は、Msg3 repetitionが適用される場合には、当該フィールドの値からMsg3 repetitionの回数を特定することが合意されている。すなわち、UL grantの所定のフィールドの値が、当該フィールドの本来の役割に追加して又は代わりに、Msg3 repetitionの回数を指定するのに利用され、UE200は、Msg3 repetitionが適用される場合には、当該フィールドの値をMsg3 repetitionの回数として解釈する(以降、UL grant解釈と呼ぶ)。
[Proposal 2]
<Consideration>
For Msg3 repetition, gNB 100 notifies UE 200 of the number of times of Msg3 repetition in any field of UL grant (for example, Modulation and Coding Scheme (MCS) field or Time Domain Resource Allocation (TDRA) field), and UE 200 receives Msg3 If repetition is applied, it is agreed that the value of this field determines the number of Msg3 repetitions. That is, the value of a given field of the UL grant is used to specify the number of times of Msg3 repetition in addition to or instead of the original role of the field, and the UE 200, if Msg3 repetition is applied , interpret the value of this field as the number of Msg3 repetitions (hereinafter referred to as UL grant interpretation).
 一例となるUL grant解釈方法では、MCSフィールドの上位2ビットがMsg3 repetitionの回数を指定するのに利用され、UE200は、Msg3 repetitionが適用される場合には、MCSフィールドの上位2ビットの値からMsg3 repetitionの回数を決定してもよい。他の例となるUL grant解釈方法では、TDRAテーブルの所定のカラムがMsg3 repetitionの回数を指定するのに利用され、UE200は、Msg3 repetitionが適用される場合には、指定されたTDRAテーブルのローインデックスに基づいてMsg3 repetitionの回数を決定してもよい。 In an example UL grant interpretation method, the upper 2 bits of the MCS field are used to specify the number of Msg3 repetitions, and the UE 200 uses the value of the upper 2 bits of the MCS field when Msg3 repetition is applied. You may decide the number of Msg3 repetitions. In another example UL grant interpretation method, a given column in the TDRA table is used to specify the number of times for Msg3 repetition, and UE200 interprets the specified TDRA table row if Msg3 repetition is applied. The number of Msg3 repetitions may be determined based on the index.
 このようなUL grant解釈を行うのは、UE200がMsg3 repetitionに対するリクエストをgNB100に送信した場合、又は、UE200がgNB100からMsg3 repetitionの適用指示を受信した場合に対応しうる。後者の場合、gNB100からのUE200とのランダムアクセス手順をトリガするPDCCH, RAR等に基づいて適用指示されうる。例えば、PDCCHのRandom Access Preamble index fieldが”0b000000”である場合にはCBRAがトリガされ、PDCCHのRandom Access Preamble index fieldが”0b000000”でない場合にはContention Free Random Access (CFRA)がトリガされることが規定されうる。このように、RRC connectionの確立後にUE200にPDCCH orderによりCBRAをトリガする場合、gNB100は更に、当該CBRAにおいてMsg3 repetitionがUE200に設定される必要があるか判断することができる。 Such UL grant interpretation can be performed when UE200 sends a request for Msg3 repetition to gNB100, or when UE200 receives an instruction to apply Msg3 repetition from gNB100. In the latter case, the application can be indicated based on the PDCCH, RAR, etc. that trigger the random access procedure with the UE 200 from the gNB 100. For example, CBRA is triggered when the Random Access Preamble index field of PDCCH is "0b000000", and Contention Free Random Access (CFRA) is triggered when the Random Access Preamble index field of PDCCH is not "0b000000". can be specified. In this way, when CBRA is triggered by PDCCH order to UE 200 after RRC connection establishment, gNB 100 can further determine whether Msg3 repetition needs to be set to UE 200 in the CBRA.
 このように、UL grantの所定のフィールドの値をMsg3 repetitionの回数を指示するのに利用されることが合意されている。しかしながら、どのような場合にMsg3 repetition指示によるUL grant解釈方法が適用されるか現状明確には規定されていない。 Thus, it is agreed that the value of a given field in UL grant will be used to indicate the number of Msg3 repetitions. However, at present, it is not clearly defined in what cases the UL grant interpretation method by Msg3 repetition instruction is applied.
<gNBからの指示により初期接続を開始した場合のMsg3 repetitionの適用>
 Proposal 2によると、UE200がgNB100からのPDCCH orderのDCIフォーマットが”1_0”であること(DCI 1_0)に基づいて初期接続を開始する際、UE200は、以下のOption 1-4に従って、上述したMsg3 repetition指示のためのUL grant解釈を適用してもよい。なお、本実施例は、UE200がgNB100からのPDCCH order (DCI 1_0)に基づく初期接続の開始に着目するが、本開示による解決策は、これに限定されず、gNB100からの何れかの指示に基づくUE200によるCBRAの開始に適用されてもよい。
<Application of Msg3 repetition when initial connection is started according to instructions from gNB>
According to Proposal 2, when UE200 starts initial connection based on the fact that the DCI format of PDCCH order from gNB100 is "1_0" (DCI 1_0), UE200 follows Msg3 mentioned above according to Option 1-4 below. A UL grant interpretation for the repetition indication may apply. Note that this embodiment focuses on the UE 200 starting an initial connection based on the PDCCH order (DCI 1_0) from the gNB 100, but the solution according to the present disclosure is not limited to this, and any instruction from the gNB 100 may be applied to the initiation of CBRA by the UE 200 based on
(Option 1)
 UE200がMsg3 repetitionをサポートしていることを示すUE capabilityがgNB100に報告済みである場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、Msg3 repetition指示のためのUL grant解釈を適用してもよい。すなわち、UE200がMsg3 repetitionをサポートしていることを示すUE capabilityをgNB100に報告済みである場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、Msg3 repetitionを適用し、UL grantの所定のフィールドの値に基づいてMsg3 repetitionの回数を判断してもよい。
(Option 1)
If the UE capability indicating that UE200 supports Msg3 repetition has already been reported to gNB100, UE200, when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB100, for Msg3 repetition indication UL grant interpretation of That is, if the UE capability indicating that UE200 supports Msg3 repetition has been reported to gNB100, UE200 will use Msg3 repetition when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB100. and may determine the number of Msg3 repetitions based on the value of a given field in the UL grant.
(Option 2)
 UE200は、RA手順をトリガするPDCCH(DCI 1_0)に基づいて、Msg3 repetition指示のためのUL grant解釈を適用するか判断してもよい。例えば、UE200は、DCI 1_0のreserved bitの一部又は全部を用いて、Msg3 repetition指示のためのUL grant解釈を適用するか判定してもよい。UE200がDCI 1_0のreserved bitの一部又は全部に基づいてUL grant解釈を適用すると判断した場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、Msg3 repetitionを適用し、UL grantの所定のフィールドの値に基づいてMsg3 repetitionの回数を判断してもよい。例えば、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、UL/SUL indicatorに該当するビットに基づいてUL grant解釈を適用するか判断してもよい。このとき、UE200は、当該Msg3 repetitionがUE200からのMsg3 repetitionのリクエストに基づくものであるか否かに関係なく、プリアンブル又はROを選択してMsg1を送信してもよい。当該RA手順ではgNB100からの指示によってMsg3 repetitionが適用されるため、Msg3 repetitionに関連付けされているプリアンブル又はROがMsg1において選択される必要はない。また、本開示による解決策は、必ずしもUL/SUL indicatorに限定されず、DCI 1_0の他のreserved bitが利用されてもよい。
(Option 2)
The UE 200 may determine whether to apply the UL grant interpretation for the Msg3 repetition indication based on the PDCCH (DCI 1_0) that triggers the RA procedure. For example, the UE 200 may use part or all of the reserved bits of DCI 1_0 to determine whether to apply the UL grant interpretation for the Msg3 repetition indication. If the UE 200 determines to apply the UL grant interpretation based on some or all of the reserved bits of DCI 1_0, the UE 200 uses Msg3 repetition when starting the initial connection according to the PDCCH order (DCI 1_0) from the gNB 100. and may determine the number of Msg3 repetitions based on the value of a given field in the UL grant. For example, when UE 200 starts initial connection based on the PDCCH order (DCI 1_0) from gNB 100, it may determine whether to apply the UL grant interpretation based on the bit corresponding to UL/SUL indicator. At this time, UE200 may select preamble or RO to send Msg1 regardless of whether the Msg3 repetition is based on the Msg3 repetition request from UE200. Since the RA procedure applies Msg3 repetition according to the instruction from gNB 100, the preamble or RO associated with Msg3 repetition need not be selected in Msg1. Also, the solution according to the present disclosure is not necessarily limited to the UL/SUL indicator, and other reserved bits of DCI 1_0 may be utilized.
(Option 3)
 ダウンリンクリファレンス信号に基づいて測定したRSRPが所定の閾値以下になった場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、Msg3 repetition指示のためのUL grant解釈を適用してもよい。すなわち、gNB100からのダウンリンクリファレンス信号に対するRSRPが所定の閾値以下になった場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、Msg3 repetitionを適用し、UL grantの所定のフィールドの値に基づいてMsg3 repetitionの回数を判断してもよい。
(Option 3)
When RSRP measured based on the downlink reference signal is less than or equal to a predetermined threshold, UE 200 UL grant for Msg3 repetition instruction when starting initial connection based on PDCCH order (DCI 1_0) from gNB 100 Interpretation may apply. That is, when the RSRP for the downlink reference signal from gNB100 is less than or equal to a predetermined threshold, UE200 applies Msg3 repetition when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB100, and UL The number of Msg3 repetitions may be determined based on the value of a given field in grant.
(Option 4)
 Msg1の送信試行回数又はMsg3の送信試行回数が所定の閾値以上になった場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、Msg3 repetition指示のためのUL grant解釈を適用してもよい。すなわち、Msg1の送信試行回数又はMsg3の送信試行回数が所定の閾値以上であった場合、UE200は、gNB100からのPDCCH order (DCI 1_0)に基づいて初期接続を開始する際、UL grantの所定のフィールドの値に基づいて、Msg3 repetitionの回数を判断してもよい。
(Option 4)
When the number of Msg1 transmission attempts or the number of Msg3 transmission attempts exceeds a predetermined threshold, the UE 200, when starting the initial connection based on the PDCCH order (DCI 1_0) from gNB 100, UL for Msg3 repetition indication grant interpretation may be applied. That is, when the number of transmission attempts of Msg1 or the number of transmission attempts of Msg3 is equal to or greater than a predetermined threshold, UE 200, when starting an initial connection based on the PDCCH order (DCI 1_0) from gNB 100, the predetermined UL grant The number of Msg3 repetitions may be determined based on the value of the field.
(Option 1-4の組み合わせ)
 なお、Option 1-4を個別に説明したが、Option 1-4の何れか2つ以上の組み合わせが適用されてもよい。また、gNB100は、System Information Block 1(SIB1)、Radio Resource Control (RRC)パラメータなどの何れかの情報を利用して、Option 1-4の何れを適用するべきかUE200に通知してもよい。あるいは、UE200は、RA手順をトリガするPDCCHに基づいてOption 1-4の何れを適用するか決定してもよい。
(combination of Option 1-4)
Although Options 1-4 have been described individually, any combination of two or more of Options 1-4 may be applied. Also, the gNB 100 may use any information such as System Information Block 1 (SIB 1), Radio Resource Control (RRC) parameters, etc. to notify the UE 200 which of Options 1-4 should be applied. Alternatively, UE 200 may determine which of Options 1-4 to apply based on the PDCCH that triggers the RA procedure.
 また、ここでの“Msg3 repetition指示のためのUL grant解釈の適用”という文言は、“Msg3 repetitionのリクエスト”と互換的に利用されてもよい。例えば、UE200は、Msg3 repetitionをリクエストするプリアンブル又はROによってMsg1を送信してもよい。 Also, the phrase "application of UL grant interpretation for Msg3 repetition indication" here may be used interchangeably with "request for Msg3 repetition". For example, UE 200 may send Msg1 with a preamble or RO requesting Msg3 repetition.
 Proposal 2の解決策によると、gNBからの指示により初期接続を開始した場合に適用されるMsg3 repetitionの回数などをUL grant解釈に従って設定することができる。 According to the solution of Proposal 2, it is possible to set the number of Msg3 repetitions that are applied when the initial connection is started according to the instructions from the gNB, etc., according to the UL grant interpretation.
[Proposal 3]
<検討>
 Rel-15/16では、Msg3のPUSCHがtdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルと重なる場合には送信されないことが規定されている(TS 38.213 Section 11.1)。CBRAにおけるMsg3をスケジューリングする段階では、gNB100は、UE200がRRC connected状態であるかわからず、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルを考慮してMsg3をスケジューリングしていないかもしれない。該当リソースでMsg3を送信されない可能性はあるが、仮にgNB100が該当リソースに他のチャネルをスケジューリングした場合にMsg3 PUSCHと衝突してしまう可能性が高いため、リソースの効率的な利用が難しい。特にrepetition type AがMsg3に適用される場合、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとMsg3のリソースとがオーバラップしないようにスケジューリングする(以降、collision handlingと呼ぶ)ことは困難である。このため、当該リソースでUE200がMsg3のPUSCHを送信するかgNB100が判別できないケースが頻繁に発生しうる。
[Proposal 3]
<Consideration>
Rel-15/16 specifies that the PUSCH of Msg3 is not transmitted if it overlaps the downlink symbol of tdd-UL-DL-ConfigurationDedicated (TS 38.213 Section 11.1). At the stage of scheduling Msg3 in CBRA, gNB 100 may not know that UE 200 is in RRC connected state and may not schedule Msg3 considering downlink symbols of tdd-UL-DL-ConfigurationDedicated. There is a possibility that Msg3 will not be transmitted on the relevant resource, but if the gNB 100 schedules another channel on the relevant resource, there is a high possibility of collision with Msg3 PUSCH, which makes efficient use of resources difficult. Especially when repetition type A is applied to Msg3, it is difficult to schedule so that the downlink symbol of tdd-UL-DL-ConfigurationDedicated and the resource of Msg3 do not overlap (hereinafter referred to as collision handling). Therefore, there may frequently occur cases where gNB 100 cannot determine whether UE 200 transmits PUSCH of Msg3 using this resource.
 Msg3 repetitionの適用時にtdd-UL-DL-ConfigurationDedicatedを考慮してcollision handlingを行うかに関して更なる検討がなされることが合意された。例えば、tdd-UL-DL-ConfigurationDedicatedによって示されるダウンリンクシンボルとMsg3 repetitionによるPUSCHとの衝突は例外的なケースであるか、すなわち、Msg3 PUSCH repetitionはtdd-UL-DL-ConfigurationDedicatedによって示されるダウンリンクシンボルによってキャンセルできないかに関して更に検討されることが合意された。また、Rel-17のMsg3 PUSCH衝突ルールが適用されることに関して更に検討されることが合意された。 It was agreed that further consideration would be made on whether to perform collision handling in consideration of tdd-UL-DL-ConfigurationDedicated when applying Msg3 repetition. For example, collision between the downlink symbol indicated by tdd-UL-DL-ConfigurationDedicated and PUSCH by Msg3 repetition is an exceptional case, i.e. Msg3 PUSCH repetition is the downlink symbol indicated by tdd-UL-DL-ConfigurationDedicated It was agreed that further consideration should be given as to whether cancellation by symbol is possible. It was also agreed that the application of the Rel-17 Msg3 PUSCH collision rule would be further considered.
<Msg3のcollision handling rule>
 Proposal 3によると、UE200は、以下の条件1~5の何れかを充足している場合、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとRAR UL grant又はTC-RNTIでスクランブルしたDCIでスケジューリングしたPUSCHとがオーバラップしていても、該当のPUSCHを送信してよい。
<collision handling rule of Msg3>
According to Proposal 3, UE 200 schedules with DCI scrambled with tdd-UL-DL-ConfigurationDedicated downlink symbols and RAR UL grant or TC-RNTI when any of the following conditions 1 to 5 is satisfied: Even if the PUSCH overlaps, the corresponding PUSCH may be transmitted.
(条件1)
 UE200がMsg3 repetitionをサポートしている場合、UE200は、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとオーバラップしていても、Msg3を送信してよい。
(Condition 1)
If UE 200 supports Msg3 repetition, UE 200 may transmit Msg3 even if it overlaps tdd-UL-DL-ConfigurationDedicated downlink symbols.
(条件2)
 UE200がPRACHの送信時にMsg3 repetitionをリクエストした場合、UE200は、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとMsg3とがオーバラップしていても、Msg3を送信してよい。
(Condition 2)
When UE200 requests Msg3 repetition when transmitting PRACH, UE200 may transmit Msg3 even if the downlink symbol of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap.
(条件3)
 UE200がMsg3 repetition(例えば、PUSCH repetition type Aによって)を適用してMsg3を送信する場合、UE200は、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとMsg3とがオーバラップしていても、Msg3を送信してよい。
(Condition 3)
If UE 200 applies Msg3 repetition (for example, by PUSCH repetition type A) and transmits Msg3, UE 200 will send Msg3 even if the downlink symbols of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap. may be sent.
(条件4)
 UE200がMsg3 repetition指示のためのUL grant解釈を適用してMsg3を送信する場合、UE200は、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとMsg3とがオーバラップしていても、Msg3を送信してよい。
(Condition 4)
When UE 200 applies the UL grant interpretation for Msg3 repetition indication and transmits Msg3, UE 200 transmits Msg3 even if the downlink symbol of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap. you can
(条件5)
 UE200がSIB1又はRARに含まれている情報を適用してMsg3を送信する場合、UE200は、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとMsg3とがオーバラップしていても、Msg3を送信してよい。例えば、当該情報は、1ビットでtdd-UL-DL-ConfigurationDedicatedを参照するか指定するものであってもよい。あるいは、当該情報は、ビットマップで各スロットのPUSCHをキャンセルするか通知するものであってもよい。
(Condition 5)
When UE200 applies the information included in SIB1 or RAR and transmits Msg3, UE200 transmits Msg3 even if the downlink symbol of tdd-UL-DL-ConfigurationDedicated and Msg3 overlap. you can For example, the information may refer to or specify tdd-UL-DL-ConfigurationDedicated with 1 bit. Alternatively, the information may be a bitmap to cancel or notify the PUSCH of each slot.
(条件1~5の組み合わせ)
 なお、条件1~5を個別に説明したが、条件1~5の何れか2つ以上の組み合わせが適用されてもよい。また、gNB100は、SIB1、 RRCパラメータなどの何れかの情報を利用して、条件1~5の何れを適用するべきかUE200に通知してもよい。
(Combination of conditions 1 to 5)
Although Conditions 1 to 5 have been described individually, any combination of two or more of Conditions 1 to 5 may be applied. Also, the gNB 100 may use any information such as SIB1 and RRC parameters to notify the UE 200 which of the conditions 1 to 5 should be applied.
 ここで、gNB100は、RAR UL grantでスケジューリングしたPUSCHを許可したUE200がRRC connected状態であるか判別できるケースと、判別できないケースとに応じてcollision handlingルールを適用するか否か判定してもよい。例えば、UE200がCBRAでPRACHを送信した場合、UE200は、collision handling ruleを適用してPUSCHを送信してもよい。他方、UE200がCFRAでPRACHを送信した場合、UE200は、tdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルとPUSCHとがオーバラップすると、PUSCHを送信しないようにしてもよい。 Here, the gNB 100 may determine whether or not to apply the collision handling rule depending on whether or not the UE 200 that has permitted the PUSCH scheduled with the RAR UL grant is in the RRC connected state. . For example, when UE200 transmits PRACH in CBRA, UE200 may transmit PUSCH by applying the collision handling rule. On the other hand, when UE 200 transmits PRACH in CFRA, UE 200 may not transmit PUSCH if downlink symbols of tdd-UL-DL-ConfigurationDedicated and PUSCH overlap.
 Proposal 3の解決策によると、Msg3のPUSCHがtdd-UL-DL-ConfigurationDedicatedのダウンリンクシンボルと重なる場合におけるMsg3 repetitionによるPUSCHに関する規則(collision handling rule)を規定することができる。 According to the solution of Proposal 3, it is possible to define a rule (collision handling rule) for PUSCH by Msg3 repetition when PUSCH of Msg3 overlaps the downlink symbol of tdd-UL-DL-ConfigurationDedicated.
[変形例]
 上述したProposal 1-3の解決策は、PUSCHを介してトランスポートブロック(TB)を処理するTB processing over multi-slot PUSCH(TBoMS)及び/又はTBoMSの繰り返し送信時に同様に適用されてもよい。TBoMSは、複数のスロットに基づいてTBSを計算した1つのトランスポートブロックを複数のスロットを用いて送信する技術であり、PUSCHが複数スロットで送信される。このPUSCH repetitionについて、Proposal 1-3の解決策が適用されてもよい。
[Modification]
The solutions of Proposals 1-3 above may be similarly applied during TB processing over multi-slot PUSCH (TBoMS) processing transport blocks (TB) over PUSCH and/or repeated transmission of TBoMS. TBoMS is a technique of transmitting one transport block, in which TBS is calculated based on multiple slots, using multiple slots, and PUSCH is transmitted using multiple slots. For this PUSCH repetition, solutions in Proposal 1-3 may be applied.
 (装置構成)
 次に、これまでに説明した処理及び動作を実施するgNB100及びUE200の機能構成例を説明する。gNB100及びUE200は上述した実施例を実施する機能を含む。ただし、gNB100及びUE200はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, functional configuration examples of the gNB 100 and the UE 200 that implement the processes and operations described so far will be described. The gNB 100 and UE 200 contain functionality that implements the embodiments described above. However, the gNB 100 and the UE 200 may each have only part of the functions in the example.
 <gNB100>
 図6は、gNB100の機能構成の一例を示す図である。図6に示されるように、gNB100は、受信部101、送信部102及び制御部103を有する。図6に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<gNB100>
FIG. 6 is a diagram showing an example of the functional configuration of the gNB100. As shown in FIG. 6, gNB 100 has receiving section 101 , transmitting section 102 and control section 103 . The functional configuration shown in FIG. 6 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary.
 受信部101は、UE200から送信された各種の信号を受信し、受信した信号から、例えば、より上位のレイヤの情報を取得する機能を含む。送信部102は、UE200に送信する信号を生成し、当該信号を有線又は無線で送信する機能を含む。 The receiving section 101 includes a function of receiving various signals transmitted from the UE 200 and acquiring, for example, higher layer information from the received signals. The transmission unit 102 includes a function of generating a signal to be transmitted to the UE 200 and transmitting the signal by wire or wirelessly.
 制御部103は、予め設定される設定情報、及び、UE200に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、制御部103は、UE200との通信に係る処理を実行する。制御部103における信号送信に関する機能部を送信部102に含め、制御部103における信号受信に関する機能部を受信部101に含めてもよい。 The control unit 103 stores preset setting information and various setting information to be transmitted to the UE 200 in a storage device, and reads them from the storage device as necessary. Also, the control unit 103 executes processing related to communication with the UE 200 . A functional unit related to signal transmission in control unit 103 may be included in transmitting unit 102 , and a functional unit related to signal reception in control unit 103 may be included in receiving unit 101 .
 <UE200>
 図7は、UE200の機能構成の一例を示す図である。図7に示されるように、UE200は、送信部201、受信部202及び制御部203を有する。図7に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<UE200>
FIG. 7 is a diagram showing an example of the functional configuration of the UE200. As shown in FIG. 7, the UE 200 has a transmission section 201, a reception section 202 and a control section 203. The functional configuration shown in FIG. 7 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary.
 送信部201は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部202は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部202は、gNB100から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号又は参照信号等を受信する機能を有する。 The transmission unit 201 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 202 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. The receiving section 202 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, reference signals, etc. transmitted from the gNB 100 .
 制御部203は、受信部202によりgNB100から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、制御部203は、gNB100との通信に係る処理を実行する。制御部203における信号送信に関する機能部を送信部201に含め、制御部203における信号受信に関する機能部を受信部202に含めてもよい。 The control unit 203 stores various setting information received from the gNB 100 by the receiving unit 202 in the storage device, and reads them from the storage device as necessary. Also, the control unit 203 executes processing related to communication with the gNB 100 . A functional unit related to signal transmission in control unit 203 may be included in transmitting unit 201 , and a functional unit related to signal reception in control unit 203 may be included in receiving unit 202 .
 (ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are implemented by any combination of at least one of hardware and software. Also, the method of realizing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, examining, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態におけるgNB100, UE200などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、本開示の一実施の形態に係るgNB100及びUE200のハードウェア構成の一例を示す図である。上述のgNB100及びUE200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the gNB 100, UE 200, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 8 is a diagram showing an example of hardware configurations of gNB 100 and UE 200 according to an embodiment of the present disclosure. The gNB 100 and UE 200 described above may physically be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。gNB100及びUE200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of gNB 100 and UE 200 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 gNB100及びUE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function of the gNB 100 and the UE 200 is performed by loading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002. The processor 1001 performs calculations, controls communication by the communication device 1004, and by controlling at least one of reading and writing of data in the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103、203などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the control units 103 and 203 described above may be implemented by the processor 1001 .
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、gNB100及びUE200の制御部103,203は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control units 103 and 203 of the gNB 100 and the UE 200 may be stored in the memory 1002 and implemented by a control program running on the processor 1001, and other functional blocks may be similarly implemented. Although it has been explained that the above-described various processes are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be called an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、gNB100及びUE200が備えるアンテナなどは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, antennas included in gNB 100 and UE 200 may be implemented by communication device 1004 .
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices. Devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 図9に車両2001の構成例を示す。図9に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 An example configuration of the vehicle 2001 is shown in FIG. As shown in FIG. 9, a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021 to 2029. , an information service unit 2012 and a communication module 2013 . Each aspect/embodiment described in the present disclosure may be applied to a communication device mounted on vehicle 2001, and may be applied to communication module 2013, for example.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor. The steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 . The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 The signals from the various sensors 2021 to 2029 include the current signal from the current sensor 2021 that senses the current of the motor, the rotation speed signal of the front and rear wheels acquired by the rotation speed sensor 2022, and the front wheel acquired by the air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal obtained by vehicle speed sensor 2024, acceleration signal obtained by acceleration sensor 2025, accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, brake pedal sensor 2026 obtained by There are a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more devices for controlling these devices. ECU. The information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 Driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), camera, positioning locator (e.g., GNSS, etc.), map information (e.g., high-definition (HD) map, automatic driving vehicle (AV) map, etc. ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, AI processors, etc., to prevent accidents and reduce the driver's driving load. and one or more ECUs for controlling these devices. In addition, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports. For example, the communication module 2013 communicates with the vehicle 2001 through the communication port 2033, the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the electronic Data is transmitted and received between the microprocessor 2031 and memory (ROM, RAM) 2032 in the control unit 2010 and the sensors 2021-29.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 2013 may be internal or external to electronic control unit 2010 . The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 receives the rotation speed signal of the front and rear wheels obtained by the rotation speed sensor 2022, the air pressure signal of the front and rear wheels obtained by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, and a shift lever. A shift lever operation signal obtained by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 2028 are also transmitted to an external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 . Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, and the axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029 and the like may be controlled.
 (実施形態のまとめ)
 以上、説明したように、本開示の一態様によれば、ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信の可否に関する能力情報を保持する制御部と、前記アップリンクメッセージの繰り返し送信の可否に関する能力情報を基地局に送信する送信部と、を有する端末が提供される。
(Summary of embodiment)
As described above, according to one aspect of the present disclosure, a control unit that holds capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure, and whether to repeatedly transmit the uplink message a transmitting unit for transmitting capability information regarding to the base station.
 上記構成によると、基地局は、端末から取得した能力情報に基づいて、端末がランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信(例えば、Msg3 repetition)をサポートしているか判断することができる。これにより、端末がランダムアクセスリクエストにおいてアップリンクメッセージの繰り返し送信をリクエストしない場合であっても、基地局は、通信接続確立後に取得する端末の能力情報に基づいて、当該端末がアップリンクメッセージの繰り返し送信をサポートしているか否かを判定することができ、以降のハンドオーバなどのための適切な接続要求を端末に通知することが可能になる。 According to the above configuration, the base station can determine whether the terminal supports repeated transmission of an uplink message (eg, Msg3 repetition) for a response message in a random access procedure based on the capability information obtained from the terminal. . As a result, even if the terminal does not request repeated transmission of the uplink message in the random access request, the base station determines whether the terminal repeats the uplink message based on the terminal capability information acquired after the communication connection is established. It is possible to determine whether or not transmission is supported, and to notify the terminal of an appropriate connection request for subsequent handover or the like.
 また、本開示の一態様によれば、ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信の可否に関する能力情報を基地局に送信することを有する、端末によって実行される無線通信方法が提供される。 Also, according to one aspect of the present disclosure, there is provided a wireless communication method performed by a terminal, comprising transmitting to a base station capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure. be.
 上記構成によると、基地局は、端末から取得した能力情報に基づいて、端末がランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信(例えば、Msg3 repetition)をサポートしているか判断することができる。これにより、端末がランダムアクセスリクエストにおいてアップリンクメッセージの繰り返し送信をリクエストしない場合であっても、基地局は、通信接続確立後に取得する端末の能力情報に基づいて、当該端末がアップリンクメッセージの繰り返し送信をサポートしているか否かを判定することができ、以降のハンドオーバなどのための適切な接続要求を端末に通知することが可能になる。 According to the above configuration, the base station can determine whether the terminal supports repeated transmission of an uplink message (eg, Msg3 repetition) for a response message in a random access procedure based on the capability information obtained from the terminal. . As a result, even if the terminal does not request repeated transmission of the uplink message in the random access request, the base station determines whether the terminal repeats the uplink message based on the terminal capability information acquired after the communication connection is established. It is possible to determine whether or not transmission is supported, and to notify the terminal of an appropriate connection request for subsequent handover or the like.
 また、本開示の一態様によれば、基地局から指示されたランダムアクセス手順に対して、応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定する制御部と、前記適用条件の充足に対応する前記応答メッセージの解釈に従って、前記アップリンクメッセージを繰り返し送信する送信部と、を有する端末が提供される。 Further, according to one aspect of the present disclosure, for a random access procedure instructed by a base station, a control unit that determines that an application condition regarding repeated transmission of an uplink message for a response message is satisfied; a transmitting unit for repeatedly transmitting said uplink message according to an interpretation of said response message corresponding to fulfillment.
 上記構成によると、端末は、基地局から指示されたランダムアクセス手順に対して、応答メッセージに対するアップリンクメッセージの繰り返し送信(例えば、Msg3 repetition)に関する所定の適用条件が充足したと判定すると、応答メッセージの解釈を適用条件の充足に対応して解釈し、解釈された応答メッセージに基づいて、アップリンクメッセージの繰り返し送信を実行することが可能になる。 According to the above configuration, the terminal, for the random access procedure instructed by the base station, when it is determined that a predetermined application condition regarding repeated transmission of an uplink message for a response message (for example, Msg3 repetition) is satisfied, the response message corresponding to the satisfaction of the applicable condition, and based on the interpreted response message, repeated transmission of the uplink message can be performed.
 また、本開示の一態様によれば、基地局から指示されたランダムアクセス手順に対して、応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定することと、前記適用条件の充足に対応する前記応答メッセージの解釈に従って、前記アップリンクメッセージを繰り返し送信することと、を有する、端末によって実行される無線通信方法が提供される。 Further, according to one aspect of the present disclosure, for a random access procedure instructed by a base station, determining that an application condition regarding repeated transmission of an uplink message for a response message is satisfied, and satisfying the application condition and repeatedly transmitting said uplink message according to an interpretation of said response message corresponding to a wireless communication method performed by a terminal.
 上記構成によると、端末は、基地局から指示されたランダムアクセス手順に対して、応答メッセージに対するアップリンクメッセージの繰り返し送信(例えば、Msg3 repetition)に関する所定の適用条件が充足したと判定すると、応答メッセージの解釈を適用条件の充足に対応して解釈し、解釈された応答メッセージに基づいて、アップリンクメッセージの繰り返し送信を実行することが可能になる。 According to the above configuration, the terminal, for the random access procedure instructed by the base station, when it is determined that a predetermined application condition regarding repeated transmission of an uplink message for a response message (for example, Msg3 repetition) is satisfied, the response message corresponding to the satisfaction of the applicable condition, and based on the interpreted response message, repeated transmission of the uplink message can be performed.
 また、本開示の一態様によれば、ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定する制御部と、設定情報によってダウンリンク送信のために指定された無線リソースと重複する無線リソースにおいて前記アップリンクメッセージを繰り返し送信する送信部と、を有する端末が提供される。 Further, according to one aspect of the present disclosure, a control unit that determines that the application condition regarding repeated transmission of an uplink message for a response message in a random access procedure is satisfied, and a radio designated for downlink transmission by configuration information a transmitting unit for repeatedly transmitting said uplink message on overlapping radio resources.
 上記構成によると、端末は、設定情報に指定されたダウンリンク送信とランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信との衝突を適切にハンドリングすることができる。 According to the above configuration, the terminal can appropriately handle collisions between the downlink transmission specified in the setting information and the repeated transmission of the uplink message in response to the response message in the random access procedure.
 また、本開示の一態様によれば、ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定することと、設定情報によってダウンリンク送信のために指定された無線リソースと重複する無線リソースにおいて前記アップリンクメッセージを繰り返し送信することと、を有する、端末によって実行される無線通信方法が提供される。 Further, according to one aspect of the present disclosure, determining that the application condition regarding repeated transmission of the uplink message for the response message in the random access procedure is satisfied, and the radio resource specified for downlink transmission by the configuration information and repeatedly transmitting said uplink message on radio resources overlapping with .
 上記構成によると、端末は、設定情報に指定されたダウンリンク送信とランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信との衝突を適切にハンドリングすることができる。 According to the above configuration, the terminal can appropriately handle collisions between the downlink transmission specified in the setting information and the repeated transmission of the uplink message in response to the response message in the random access procedure.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのよう な実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、無線通信ノード10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って無線通信ノード10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art can understand various modifications, modifications, alternatives, replacements, and the like. be. Although specific numerical examples have been used to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. may apply (unless inconsistent) to the matters set forth in Boundaries of functional or processing units in functional block diagrams do not necessarily correspond to boundaries of physical components. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. As for the processing procedures described in the embodiments, the processing order may be changed as long as there is no contradiction. Although the wireless communication node 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor possessed by the wireless communication node 10 according to the embodiment of the present invention and the software operated by the processor possessed by the terminal 20 according to the embodiment of the present invention are respectively a random access memory (RAM), a flash memory, and a read-only memory. It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 (情報の通知、シグナリング)
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(notification of information, signaling)
Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
 (適用システム)
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(New Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
(Applicable system)
Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, other suitable systems, and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
 (処理手順等)
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(Processing procedure, etc.)
The processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 (IABノードの動作)
 本開示においてIABノードによって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。IABノードを有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、IABノード及びIABノード以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記においてIABノード以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
(Operation of IAB node)
Certain operations identified in this disclosure as being performed by an IAB node may also be performed by its upper node in some cases. In a network consisting of one or more network nodes with an IAB node, various operations performed for communication with a terminal may be performed by the IAB node and other network nodes other than the IAB node (e.g. MME or S-GW, etc. (including but not limited to). Although the above example illustrates the case where there is one network node other than the IAB node, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 (入出力の方向)
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
(input/output direction)
Information and the like (*see the item “information, signal”) can be output from the upper layer (or lower layer) to the lower layer (or higher layer). It may be input and output via multiple network nodes.
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
(Handling of input/output information, etc.)
Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(Determination method)
The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
(software)
Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 (情報、信号)
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(information, signal)
Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 (「システム」、「ネットワーク」)
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
("system", "network")
As used in this disclosure, the terms "system" and "network" are used interchangeably.
 (パラメータ、チャネルの名称)
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
(parameter, channel name)
In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. isn't it.
 (基地局(無線基地局))
 本開示においては、IABノードは基地局の機能を有する。「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
(Base station (wireless base station))
In this disclosure, an IAB node has the functionality of a base station. "Base Station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point")","transmissionpoint","receptionpoint","transmission/receptionpoint","cell","sector","cellgroup","carrier"," Terms such as "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station serves multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (e.g., an indoor small base station (RRH: Communication services can also be provided by Remote Radio Head)). The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 (端末)
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
(terminal)
In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 (IABノード/移動局)
 IABノード及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、IABノード及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、IABノード及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、IABノード及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
(IAB node/mobile station)
IAB nodes and/or mobile stations may also be referred to as transmitters, receivers, communication devices, and/or the like. At least one of the IAB node and the mobile station may be a device mounted on a mobile, the mobile itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the IAB node and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the IAB node and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示におけるIABノードは、ユーザ端末で読み替えてもよい。例えば、IABノード及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述のIABノード10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the IAB node in the present disclosure may be read as a user terminal. For example, the communication between the IAB node and the user terminal, communication between multiple user terminals (eg, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may also be called) replaced Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions of the IAB node 10 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における端末は、IABノードで読み替えてもよい。この場合、上述の端末20が有する機能をIABノード10が有する構成としてもよい。 Similarly, a terminal in the present disclosure may be read as an IAB node. In this case, the IAB node 10 may have the functions of the terminal 20 described above.
 (用語の意味、解釈)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
(Term meaning and interpretation)
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Judgement", "determining" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure); Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 (参照信号)
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
(reference signal)
The reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
 (「に基づいて」の意味)
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
(meaning "based on")
As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly specified otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 (「第1の」、「第2の」)
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
("first", "second")
Any reference to elements using the "first,""second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
 (手段)
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
(means)
The "unit" in the configuration of each device described above may be replaced with "means", "circuit", "device", or the like.
 (オープン形式)
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
(open format)
Where "include,""including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 (TTI等の時間単位、RBなどの周波数単位、無線フレーム構成)
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
(Time unit such as TTI, frequency unit such as RB, radio frame configuration)
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. may That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、IABノードが各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, an IAB node performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (RE: Resource Element). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for a terminal.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above structures such as radio frames, subframes, slots, minislots and symbols are only examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc. can be varied.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 (態様のバリエーション等)
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
(Variation of mode, etc.)
Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching according to execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in this disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 100 基地局(gNB)
 200 端末(UE)
 
10 wireless communication system 100 base station (gNB)
200 terminal (UE)

Claims (6)

  1.  ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信の可否に関する能力情報を保持する制御部と、
     前記アップリンクメッセージの繰り返し送信の可否に関する能力情報を基地局に送信する送信部と、
     を有する端末。
    A control unit that holds capability information regarding whether to repeatedly transmit an uplink message for a response message in a random access procedure;
    a transmitting unit configured to transmit capability information regarding whether to repeatedly transmit the uplink message to a base station;
    terminal with
  2.  ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信の可否に関する能力情報を基地局に送信することを有する、端末によって実行される無線通信方法。 A wireless communication method performed by a terminal, comprising transmitting to a base station capability information regarding whether or not to repeatedly transmit an uplink message to a response message in a random access procedure.
  3.  基地局から指示されたランダムアクセス手順に対して、応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定する制御部と、
     前記適用条件の充足に対応する前記応答メッセージの解釈に従って、前記アップリンクメッセージを繰り返し送信する送信部と、
     を有する端末。
    A control unit that determines that an application condition regarding repeated transmission of an uplink message in response to a response message is satisfied for a random access procedure instructed by a base station;
    a transmitter for repeatedly transmitting the uplink message according to the interpretation of the response message corresponding to the satisfaction of the applicable condition;
    terminal with
  4.  基地局から指示されたランダムアクセス手順に対して、応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定することと、
     前記適用条件の充足に対応する前記応答メッセージの解釈に従って、前記アップリンクメッセージを繰り返し送信することと、
     を有する、端末によって実行される無線通信方法。
    Determining that an application condition regarding repeated transmission of an uplink message in response to a response message is satisfied for a random access procedure instructed by a base station;
    repeatedly sending the uplink message according to an interpretation of the response message corresponding to the satisfaction of the applicable condition;
    A wireless communication method performed by a terminal, comprising:
  5.  ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定する制御部と、
     設定情報によってダウンリンク送信のために指定された無線リソースと重複する無線リソースにおいて前記アップリンクメッセージを繰り返し送信する送信部と、
     を有する端末。
    A control unit that determines that an application condition regarding repeated transmission of an uplink message to a response message in a random access procedure is satisfied;
    a transmitter for repeatedly transmitting the uplink message on radio resources that overlap with radio resources designated for downlink transmission by configuration information;
    terminal with
  6.  ランダムアクセス手順における応答メッセージに対するアップリンクメッセージの繰り返し送信に関する適用条件が充足されたと判定することと、
     設定情報によってダウンリンク送信のために指定された無線リソースと重複する無線リソースにおいて前記アップリンクメッセージを繰り返し送信することと、
     を有する、端末によって実行される無線通信方法。
    Determining that an application condition for repeated transmission of uplink messages to response messages in a random access procedure is satisfied;
    repeatedly transmitting the uplink message on radio resources that overlap with radio resources designated for downlink transmission by configuration information;
    A wireless communication method performed by a terminal, comprising:
PCT/JP2021/041639 2021-11-11 2021-11-11 Terminal and radio communication method WO2023084720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041639 WO2023084720A1 (en) 2021-11-11 2021-11-11 Terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041639 WO2023084720A1 (en) 2021-11-11 2021-11-11 Terminal and radio communication method

Publications (1)

Publication Number Publication Date
WO2023084720A1 true WO2023084720A1 (en) 2023-05-19

Family

ID=86335377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041639 WO2023084720A1 (en) 2021-11-11 2021-11-11 Terminal and radio communication method

Country Status (1)

Country Link
WO (1) WO2023084720A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Type-A PUSCH repetition for Msg3", 3GPP TSG RAN WG1 #107-E, R1-2112234, 6 November 2021 (2021-11-06), XP052075340 *

Similar Documents

Publication Publication Date Title
WO2023084720A1 (en) Terminal and radio communication method
WO2023105795A1 (en) Terminal, base station, and wireless communication method
WO2023105797A1 (en) Terminal, base station, and wireless communication method
WO2023105798A1 (en) Terminal, base station, and radio communication method
WO2023073847A1 (en) Terminal and communication method
WO2023073846A1 (en) Terminal and communication method
WO2023047501A1 (en) Terminal and wireless communication method
WO2024095483A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023152928A1 (en) Terminal and communication method
WO2023079654A1 (en) Terminal, base station, and communication method
WO2023152988A1 (en) Base station and communication method
WO2023067750A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023105597A1 (en) Terminal and communication method
WO2023090079A1 (en) Terminal, and communication method
WO2023021966A1 (en) Base station and communication method
WO2023067778A1 (en) Terminal, base station, radio communication system, and radio communication method
WO2023132031A1 (en) Terminal and communication method
WO2024069899A1 (en) Repeater and communication method
WO2024095494A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023135756A1 (en) Terminal and communication method
WO2024069892A1 (en) Repeater and communication method
WO2024100746A1 (en) Terminal, base station, and communication method
WO2023135757A1 (en) Terminal and communication method
WO2023135763A1 (en) Terminal and communication method
WO2024095495A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964075

Country of ref document: EP

Kind code of ref document: A1