WO2023084234A1 - Anti-infective bicyclic peptide ligands - Google Patents
Anti-infective bicyclic peptide ligands Download PDFInfo
- Publication number
- WO2023084234A1 WO2023084234A1 PCT/GB2022/052865 GB2022052865W WO2023084234A1 WO 2023084234 A1 WO2023084234 A1 WO 2023084234A1 GB 2022052865 W GB2022052865 W GB 2022052865W WO 2023084234 A1 WO2023084234 A1 WO 2023084234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- referred
- peptide ligand
- amino acid
- acid sequence
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 174
- 239000003446 ligand Substances 0.000 title claims description 74
- 125000002619 bicyclic group Chemical group 0.000 title claims description 31
- 230000002924 anti-infective effect Effects 0.000 title description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 72
- 229920001184 polypeptide Polymers 0.000 claims abstract description 47
- 102000053723 Angiotensin-converting enzyme 2 Human genes 0.000 claims abstract description 22
- 108090000975 Angiotensin-converting enzyme 2 Proteins 0.000 claims abstract description 22
- 208000025721 COVID-19 Diseases 0.000 claims abstract description 20
- 208000015181 infectious disease Diseases 0.000 claims abstract description 17
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 12
- 230000001404 mediated effect Effects 0.000 claims abstract description 9
- 238000011321 prophylaxis Methods 0.000 claims abstract description 9
- 239000002062 molecular scaffold Substances 0.000 claims description 46
- 150000001413 amino acids Chemical group 0.000 claims description 38
- AYFVYJQAPQTCCC-UHFFFAOYSA-N THREONINE Chemical compound CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 19
- 238000007792 addition Methods 0.000 claims description 17
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 17
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- 210000004899 c-terminal region Anatomy 0.000 claims description 14
- ODKSFYDXXFIFQN-UHFFFAOYSA-N Arginine Chemical compound OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- JDFUJAMTCCQARF-UHFFFAOYSA-N tatb Chemical compound NC1=C([N+]([O-])=O)C(N)=C([N+]([O-])=O)C(N)=C1[N+]([O-])=O JDFUJAMTCCQARF-UHFFFAOYSA-N 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 241001678559 COVID-19 virus Species 0.000 claims description 9
- 208000023504 respiratory system disease Diseases 0.000 claims description 9
- 239000003814 drug Substances 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 241000315672 SARS coronavirus Species 0.000 claims description 6
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 claims description 6
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical group OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 claims description 5
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 claims description 5
- DQLHSFUMICQIMB-VIFPVBQESA-N (2s)-2-amino-3-(4-methylphenyl)propanoic acid Chemical compound CC1=CC=C(C[C@H](N)C(O)=O)C=C1 DQLHSFUMICQIMB-VIFPVBQESA-N 0.000 claims description 5
- GNVNKFUEUXUWDV-VIFPVBQESA-N (2s)-2-amino-3-[4-(aminomethyl)phenyl]propanoic acid Chemical compound NCC1=CC=C(C[C@H](N)C(O)=O)C=C1 GNVNKFUEUXUWDV-VIFPVBQESA-N 0.000 claims description 5
- IFPQOXNWLSRZKX-UHFFFAOYSA-N 2-amino-4-(diaminomethylideneamino)butanoic acid Chemical group OC(=O)C(N)CCN=C(N)N IFPQOXNWLSRZKX-UHFFFAOYSA-N 0.000 claims description 5
- XWHHYOYVRVGJJY-QMMMGPOBSA-N 4-fluoro-L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(F)C=C1 XWHHYOYVRVGJJY-QMMMGPOBSA-N 0.000 claims description 5
- NIGWMJHCCYYCSF-UHFFFAOYSA-N Fenclonine Chemical compound OC(=O)C(N)CC1=CC=C(Cl)C=C1 NIGWMJHCCYYCSF-UHFFFAOYSA-N 0.000 claims description 5
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 5
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 claims description 5
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 claims description 5
- 208000036142 Viral infection Diseases 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 claims description 5
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 claims description 5
- 229960002591 hydroxyproline Drugs 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 claims description 5
- 230000009385 viral infection Effects 0.000 claims description 5
- 208000001528 Coronaviridae Infections Diseases 0.000 claims description 4
- 241000342334 Human metapneumovirus Species 0.000 claims description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 4
- 208000025370 Middle East respiratory syndrome Diseases 0.000 claims description 4
- 206010064911 Pulmonary arterial hypertension Diseases 0.000 claims description 4
- 241000725643 Respiratory syncytial virus Species 0.000 claims description 4
- 241000008910 Severe acute respiratory syndrome-related coronavirus Species 0.000 claims description 4
- 206010069351 acute lung injury Diseases 0.000 claims description 4
- 229910052805 deuterium Inorganic materials 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 230000028709 inflammatory response Effects 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 2
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 2
- 241000494545 Cordyline virus 2 Species 0.000 claims description 2
- 241000709661 Enterovirus Species 0.000 claims description 2
- 241000127282 Middle East respiratory syndrome-related coronavirus Species 0.000 claims description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 2
- 206010009887 colitis Diseases 0.000 claims description 2
- 206010022000 influenza Diseases 0.000 claims description 2
- 229940124597 therapeutic agent Drugs 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 150000003863 ammonium salts Chemical class 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 15
- 201000010099 disease Diseases 0.000 abstract description 12
- 239000011230 binding agent Substances 0.000 abstract description 3
- 208000035475 disorder Diseases 0.000 abstract description 3
- 229940024606 amino acid Drugs 0.000 description 28
- 235000001014 amino acid Nutrition 0.000 description 27
- -1 hydrobromic Chemical class 0.000 description 26
- 125000000539 amino acid group Chemical group 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 125000003275 alpha amino acid group Chemical group 0.000 description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 13
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 238000011191 terminal modification Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 102000035195 Peptidases Human genes 0.000 description 8
- 108091005804 Peptidases Proteins 0.000 description 8
- 239000004365 Protease Substances 0.000 description 8
- 238000003556 assay Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 150000003573 thiols Chemical class 0.000 description 7
- 241000700605 Viruses Species 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 229960002433 cysteine Drugs 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- 150000008574 D-amino acids Chemical class 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 150000001540 azides Chemical group 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 235000018977 lysine Nutrition 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000010647 peptide synthesis reaction Methods 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 241000711573 Coronaviridae Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 150000008575 L-amino acids Chemical class 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001345 alkine derivatives Chemical group 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000002797 proteolythic effect Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101000929928 Homo sapiens Angiotensin-converting enzyme 2 Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 102000048657 human ACE2 Human genes 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- ULXTYUPMJXVUHQ-OVTFQNCVSA-N lipid II Chemical compound OC(=O)[C@@H](C)NC(=O)[C@@H](C)NC(=O)[C@H](CCCCN)NC(=O)CC[C@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@@H]1[C@@H](NC(C)=O)[C@@H](OP(O)(=O)OP(O)(=O)OC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 ULXTYUPMJXVUHQ-OVTFQNCVSA-N 0.000 description 2
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 238000012877 positron emission topography Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- WQGMKAOQIJBHRG-UHFFFAOYSA-N 1-[3,5-bis(2-bromoacetyl)-1,3,5-triazinan-1-yl]-2-bromoethanone Chemical compound BrCC(=O)N1CN(C(=O)CBr)CN(C(=O)CBr)C1 WQGMKAOQIJBHRG-UHFFFAOYSA-N 0.000 description 1
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- GXWKUAMWUOQTQI-UHFFFAOYSA-N 2-(2,5-dioxopyrrolidin-1-yl)-4-methyl-4-pyridin-2-ylsulfanylpentanoic acid Chemical compound CC(C)(CC(C(=O)O)N1C(=O)CCC1=O)SC2=CC=CC=N2 GXWKUAMWUOQTQI-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 206010002653 Anosmia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241001598984 Bromius obscurus Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000005367 Carboxypeptidases Human genes 0.000 description 1
- 108010006303 Carboxypeptidases Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical group NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 208000034486 Multi-organ failure Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 238000007126 N-alkylation reaction Methods 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 241000750002 Nestor Species 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 206010068319 Oropharyngeal pain Diseases 0.000 description 1
- 241000157426 Pernis Species 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010035737 Pneumonia viral Diseases 0.000 description 1
- RVQDZELMXZRSSI-IUCAKERBSA-N Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1 RVQDZELMXZRSSI-IUCAKERBSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 210000005058 airway cell Anatomy 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000002355 alkine group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- UGJQDKYTAYNNBH-UHFFFAOYSA-N amino cyclopropanecarboxylate Chemical compound NOC(=O)C1CC1 UGJQDKYTAYNNBH-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 125000003286 aryl halide group Chemical group 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009704 beneficial physiological effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 230000005577 local transmission Effects 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- GTWJETSWSUWSEJ-UHFFFAOYSA-N n-benzylaniline Chemical compound C=1C=CC=CC=1CNC1=CC=CC=C1 GTWJETSWSUWSEJ-UHFFFAOYSA-N 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N pentanoic acid group Chemical class C(CCCC)(=O)O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000863 peptide conjugate Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 150000003147 proline derivatives Chemical class 0.000 description 1
- LJPYJRMMPVFEKR-UHFFFAOYSA-N prop-2-ynylurea Chemical compound NC(=O)NCC#C LJPYJRMMPVFEKR-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 108010037022 subtiligase Proteins 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 125000002653 sulfanylmethyl group Chemical group [H]SC([H])([H])[*] 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 208000009421 viral pneumonia Diseases 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to polypeptides which are covalently bound to molecular scaffolds such that two or more peptide loops are subtended between attachment points to the scaffold.
- the invention describes peptides which are high affinity binders of ACE2.
- the invention also includes pharmaceutical compositions comprising said polypeptides and to the use of said polypeptides in suppressing or treating a disease or disorder mediated by ACE2, such as infection of COVID-19 or for providing prophylaxis to a subject at risk of infection of COVID-19.
- Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
- SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
- the disease was first identified in December 2019 in Wuhan, the capital of China's Hubei province, and spread globally, resulting in a pandemic.
- Common symptoms include fever, cough, and shortness of breath.
- Other symptoms may include fatigue, muscle pain, diarrhea, sore throat, loss of smell, and abdominal pain.
- the time from exposure to onset of symptoms is typically around five days but may range from two to fourteen days. While the majority of cases result in mild symptoms, some progress to viral pneumonia and multi-organ failure. As of 6 January 2021 , more than 86 million cases have been reported globally, resulting in more than 1.8 million deaths.
- the virus is primarily spread between people during close contact, often via droplets produced by coughing, sneezing, or talking. While these droplets are produced when breathing out, they usually fall to the ground or onto surfaces rather than being infectious over long distances. People may also become infected by touching a contaminated surface and then their face. The virus can survive on surfaces for up to 72 hours. It is most contagious during the first three days after the onset of symptoms, although spread may be possible before symptoms appear and in later stages of the disease.
- the World Health Organization declared the 2019-2020 coronavirus outbreak a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 and a pandemic on 11 March 2020. Local transmission of the disease has been recorded in many countries across all six WHO regions.
- a peptide ligand specific for ACE2 comprising a polypeptide comprising at least three reactive groups, separated by at least two loop sequences, and a molecular scaffold which forms covalent bonds with the reactive groups of the polypeptide such that at least two polypeptide loops are formed on the molecular scaffold and wherein the peptide ligand comprises an amino acid sequence which is selected from:
- CiSSIQGGWLCiiLLMSCiii SEQ ID NO: 4
- Xi represents L, V, tBuGly, AlloThr, T or G
- X2 represents P, L, R or Agb
- X3 represents D, P, S or Q
- X4 represents E, N, H, F, 4MePhe, 4FPhe, 4CIPhe or PheNH2Me;
- X5 represents V, C, S or H
- Xe represents S, T or D
- X7 represents T, A, L or tBuAla
- Xs represents S, Q, L or M
- Xg represents L, D, P, HyP or Cis-HyP
- X10 represents G, A, R or HArg
- Xu represents P, S, I or H
- X12 represents N, D, H or L
- Ci, Cii and Cm represent first, second and third cysteine residues, respectively; tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNH2Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine, with the proviso that when the amino acid sequence of SEQ ID NO: 23 is an amino acid sequence of SEQ ID NO: 22, said molecular scaffold is other than TATA.
- composition comprising the peptide ligand as defined herein in combination with one or more pharmaceutically acceptable excipients.
- the peptide ligand as defined herein for use in suppressing or treating a disease or disorder mediated by infection of COVI D- 19 or for providing prophylaxis to a subject at risk of infection of COVID-19.
- a peptide ligand specific for ACE2 comprising a polypeptide comprising at least three reactive groups, separated by at least two loop sequences, and a molecular scaffold which forms covalent bonds with the reactive groups of the polypeptide such that at least two polypeptide loops are formed on the molecular scaffold and wherein the peptide ligand comprises an amino acid sequence which is selected from:
- CiSSIQGGWLCiiLLMSCiii SEQ ID NO: 4
- Xi represents L, V, tBuGly, AlloThr, T or G
- X2 represents P, L, R or Agb
- X3 represents D, P, S or Q
- X4 represents E, N, H, F, 4MePhe, 4FPhe, 4CIPhe or PheNH2Me;
- X5 represents V, C, S or H
- Xe represents S, T or D
- X7 represents T, A, L or tBuAla
- Xs represents S, Q, L or M
- Xg represents L, D, P, HyP or Cis-HyP
- X10 represents G, A, R or HArg
- Xu represents P, S, I or H
- X12 represents N, D, H or L
- Ci, Cjj and Cm represent first, second and third cysteine residues, respectively; tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNH2Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine, with the proviso that when the amino acid sequence of SEQ ID NO: 23 is an amino acid sequence of SEQ ID NO: 22, said molecular scaffold is other than TATA.
- ACE2 angiotensin-converting enzyme 2 which is an enzyme attached to the outer surface (cell membranes) of cells in the lungs, arteries, heart, kidney, and intestines.
- ACE2 is known to serve as the entry point into cells for some coronaviruses, such as COVID-19. Without being bound by theory it is believed that the virus that has caused the COVID-19 pandemic (SARS-CoV-2) uses ACE2 (which is bound to the surface of lung airway cells) to enter tissue and cause disease. The same protein ACE2 seems to protect the lung from injury caused by excessive inflammation. It is believed that administration of a peptide ligand which binds to ACE2 could prevent the virus entering cells and prevent the damaging inflammation caused by the virus (which seems to be the major cause of death from this infection).
- the invention finds great utility in the treatment for severe COVID-19 and could even be used to protect people from the current pandemic and any future coronavirus outbreaks.
- the peptide ligand is an amino acid sequence which is SEQ ID NO: 23.
- X5 represents V, S or H.
- the peptide ligand is other than SEQ ID NO: 5.
- the peptide ligand of SEQ ID NO: 23 comprises an amino acid sequence which is selected from:
- CiLPDECi STSLGPNCiii SEQ ID NO: 1
- CiVRSHCiiCSLLPRIHCiii SEQ ID NO: 5
- C RSHCiiSSLLPRIHCiii (SEQ ID NO: 6; herein referred to as BCY20855); Ci[tBuGly]RSHCiiSSLLPRIHCiii (SEQ ID NO: 7); Ci[AlloThr]RSHCiiSSLLPRIHCiii (SEQ ID NO: 8); CiTRSHCiiSSLLPRIHCiii (SEQ ID NO: 9);
- CiV[Agb]SHCiiSSLLPRIHCiii SEQ ID NO: 10
- CiVRSFCiiSSLLPRIHCiii SEQ ID NO: 11
- CiVRS[4MePhe]CiiSSLLPRIHCiii SEQ ID NO: 12
- CiVRS[4FPhe]CiiSSLLPRIHCiii (SEQ ID NO: 13);
- CiVRS[4CIPhe]CiiSSLLPRIHCiii SEQ ID NO: 14;
- CiVRSHCiiSTLLPRIHCiii SEQ ID NO: 15
- CiVRSHCiiSDLLPRIHCiii (SEQ ID NO: 16);
- CiVRSHCiiSS[tBuAla]LPRIHCiii (SEQ ID NO: 17);
- CiVRSHCiiSSLL[HyP]RIHCiii (SEQ ID NO: 18);
- CiVRSHCiiSSLL[Cis-HyP]RIHCiii SEQ ID NO: 19
- CiVRSHCiiSSLLP[HArg]IHCiii SEQ ID NO: 20
- CiVRS[Phe(NH 2 Me)]CiiSSLLPRIHCiii SEQ ID NO: 21
- CiGRQFCiiHTLMPRHLCiii SEQ ID NO: 22
- Ci, CH and Cm represent first, second and third cysteine residues, respectively
- tBuGly represents t-butyl-glycine
- AlloThr represents allothreonine
- Agb represents 2-amino- 4-guanidinobutyric acid
- 4MePhe represents 4-methyl-phenylalanine
- 4FPhe represents 4- fluoro-phenylalanine
- 4CIPhe represents 4-chloro-phenylalanine
- PheNF ⁇ Me represents 4- (aminomethyl)phenylalanine
- tBuAla represents t
- said molecular scaffold is TATA and the bicyclic peptide ligand of SEQ ID NO: 23 optionally additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is selected from:
- A-(SEQ ID NO: 1)-A (herein referred to as BCY15518);
- A-(SEQ ID NO: 2)-A (herein referred to as BCY15519);
- A-(SEQ ID NO: 5)-A (herein referred to as BCY19845);
- BCY20854 Ac-A-(SEQ ID NO: 6)-A (herein referred to as BCY20854);
- BCY20856 Ac-(SEQ ID NO: 6) (herein referred to as BCY20856);
- A-(SEQ ID NO: 7)-A (herein referred to as BCY20857);
- A-(SEQ ID NO: 8)-A (herein referred to as BCY20858);
- A-(SEQ ID NO: 9)-A (herein referred to as BCY20859);
- A-(SEQ ID NO: 10)-A (herein referred to as BCY20860);
- BCY20861 A-(SEQ ID NO: 11)-A (herein referred to as BCY20862);
- BCY20863 A-(SEQ ID NO: 13)-A (herein referred to as BCY20863);
- A-(SEQ ID NO: 14)-A (herein referred to as BCY20864);
- BCY20865 A-(SEQ ID NO: 15)-A (herein referred to as BCY20865);
- A-(SEQ ID NO: 16)-A (herein referred to as BCY20866);
- A-(SEQ ID NO: 17)-A (herein referred to as BCY20867);
- A-(SEQ ID NO: 18)-A (herein referred to as BCY20868);
- A-(SEQ ID NO: 19)-A (herein referred to as BCY20869);
- BCY20870 A-(SEQ ID NO: 20)-A
- BCY20871 A-(SEQ ID NO: 21)-A
- the peptide ligand is other than BCY19845.
- said molecular scaffold is TATB and the bicyclic peptide ligand of SEQ ID NO: 23 optionally additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is selected from:
- A-(SEQ ID NO: 6)-A (herein referred to as BCY21084);
- BCY21085 A-(SEQ ID NO: 22)-A (herein referred to as BCY21085).
- the peptide ligand is an amino acid sequence which is SEQ ID NO: 3.
- said molecular scaffold is TATA and the bicyclic peptide ligand of SEQ ID NO: 3 additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is:
- A-(SEQ ID NO: 3)-A (herein referred to as BCY15520).
- the peptide ligand is an amino acid sequence which is SEQ ID NO: 4.
- said molecular scaffold is TATB and the bicyclic peptide ligand of SEQ ID NO: 4 additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is:
- the bicyclic peptide of the invention binds to the active site of ACE2. It is believed that all of the exemplified bicyclic peptides of the invention bind to the active site of ACE2. Without being bound by theory, it is believed that the bicyclic peptides of the invention which bind to the active site of ACE2 are likely to have beneficial physiological effects, such as blood pressure alteration (see Figure 2 of Verdecchia et al (2020) European Journal of Internal Medicine 76, 14-20).
- cysteine residues (Ci, CH and Cm) are omitted from the numbering as they are invariant, therefore, the numbering of amino acid residues within peptides of the invention is referred to as below:
- N- or C-terminal extensions to the bicycle core sequence are added to the left or right side of the sequence, separated by a hyphen.
- an N-terminal pAla-Sar10-Ala tail would be denoted as:
- a peptide ligand refers to a peptide covalently bound to a molecular scaffold.
- such peptides comprise two or more reactive groups (i.e. cysteine residues) which are capable of forming covalent bonds to the scaffold, and a sequence subtended between said reactive groups which is referred to as the loop sequence, since it forms a loop when the peptide is bound to the scaffold.
- the peptides comprise at least three cysteine residues (referred to herein as Ci, CH and Cm), and form at least two loops on the scaffold.
- Certain bicyclic peptides of the present invention have a number of advantageous properties which enable them to be considered as suitable drug-like molecules for injection, inhalation, nasal, ocular, oral or topical administration.
- Such advantageous properties include:
- Certain ligands demonstrate cross-reactivity across Lipid II from different bacterial species and hence are able to treat infections caused by multiple species of bacteria.
- Other ligands may be highly specific for the Lipid II of certain bacterial species which may be advantageous for treating an infection without collateral damage to the beneficial flora of the patient;
- Bicyclic peptide ligands should ideally demonstrate stability to plasma proteases, epithelial ("membrane-anchored") proteases, gastric and intestinal proteases, lung surface proteases, intracellular proteases and the like. Protease stability should be maintained between different species such that a bicycle lead candidate can be developed in animal models as well as administered with confidence to humans;
- Desirable solubility profile This is a function of the proportion of charged and hydrophilic versus hydrophobic residues and intra/inter-molecular H-bonding, which is important for formulation and absorption purposes;
- An optimal plasma half-life in the circulation Depending upon the clinical indication and treatment regimen, it may be required to develop a bicyclic peptide for short exposure in an acute illness management setting, or develop a bicyclic peptide with enhanced retention in the circulation, and is therefore optimal for the management of more chronic disease states.
- Other factors driving the desirable plasma half-life are requirements of sustained exposure for maximal therapeutic efficiency versus the accompanying toxicology due to sustained exposure of the agent;
- references to peptide ligands include the salt forms of said ligands.
- the salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods such as methods described in Pharmaceutical Salts: Properties, Selection, and Use, P. Heinrich Stahl (Editor), Camille G. Wermuth (Editor), ISBN: 3-90639-026-8, Hardcover, 388 pages, August 2002.
- such salts can be prepared by reacting the free acid or base forms of these compounds with the appropriate base or acid in water or in an organic solvent, or in a mixture of the two.
- Acid addition salts may be formed with a wide variety of acids, both inorganic and organic.
- acid addition salts include mono- or di-salts formed with an acid selected from the group consisting of acetic, 2,2-dichloroacetic, adipic, alginic, ascorbic (e.g.
- D-glucuronic D-glucuronic
- glutamic e.g. L-glutamic
- a-oxoglutaric glycolic, hippuric
- hydrohalic acids e.g. hydrobromic, hydrochloric, hydriodic
- isethionic lactic (e.g.
- salts consist of salts formed from acetic, hydrochloric, hydriodic, phosphoric, nitric, sulfuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulfonic, toluenesulfonic, sulfuric, methanesulfonic (mesylate), ethanesulfonic, naphthalenesulfonic, valeric, propanoic, butanoic, malonic, glucuronic and lactobionic acids.
- One particular salt is the hydrochloride salt.
- Another particular salt is the acetate salt.
- a salt may be formed with an organic or inorganic base, generating a suitable cation.
- suitable inorganic cations include, but are not limited to, alkali metal ions such as Li + , Na + and K + , alkaline earth metal cations such as Ca 2+ and Mg 2+ , and other cations such as Al 3+ or Zn + .
- Suitable organic cations include, but are not limited to, ammonium ion (i.e., NH 4 + ) and substituted ammonium ions (e.g., NHsR + , NH2R2 + , NHRs + , NR 4 + ).
- Examples of some suitable substituted ammonium ions are those derived from: methylamine, ethylamine, diethylamine, propylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine.
- An example of a common quaternary ammonium ion is N(CHs)4 + .
- peptides of the invention contain an amine function
- these may form quaternary ammonium salts, for example by reaction with an alkylating agent according to methods well known to the skilled person.
- Such quaternary ammonium compounds are within the scope of the peptides of the invention.
- modified derivatives of the peptide ligands as defined herein are within the scope of the present invention.
- suitable modified derivatives include one or more modifications selected from: N-terminal and/or C-terminal modifications; replacement of one or more amino acid residues with one or more non-natural amino acid residues (such as replacement of one or more polar amino acid residues with one or more isosteric or isoelectronic amino acids; replacement of one or more non-polar amino acid residues with other non-natural isosteric or isoelectronic amino acids); addition of a spacer group; replacement of one or more oxidation sensitive amino acid residues with one or more oxidation resistant amino acid residues; replacement of one or more amino acid residues with an alanine, replacement of one or more L-amino acid residues with one or more D-amino acid residues; N-alkylation of one or more amide bonds within the bicyclic peptide ligand; replacement of one or more peptide bonds with a surrog
- the modified derivative comprises an N-terminal and/or C-terminal modification.
- the modified derivative comprises an N- terminal modification using suitable amino-reactive chemistry, and/or C-terminal modification using suitable carboxy-reactive chemistry.
- said N-terminal or C- terminal modification comprises addition of an effector group, including but not limited to a cytotoxic agent, a radiochelator or a chromophore.
- the modified derivative comprises an N-terminal modification.
- the N-terminal modification comprises an N-terminal acetyl group.
- the N-terminal cysteine group (the group referred to herein as Ci) is capped with acetic anhydride or other appropriate reagents during peptide synthesis leading to a molecule which is N-terminally acetylated. This embodiment provides the advantage of removing a potential recognition point for aminopeptidases and avoids the potential for degradation of the bicyclic peptide.
- the N-terminal modification comprises the addition of a molecular spacer group which facilitates the conjugation of effector groups and retention of potency of the bicyclic peptide to its target.
- the modified derivative comprises a C-terminal modification.
- the C-terminal modification comprises an amide group.
- the C-terminal cysteine group (the group referred to herein as Cm) is synthesized as an amide during peptide synthesis leading to a molecule which is C-terminally amidated. This embodiment provides the advantage of removing a potential recognition point for carboxy peptidase and reduces the potential for proteolytic degradation of the bicyclic peptide.
- the modified derivative comprises replacement of one or more amino acid residues with one or more non-natural amino acid residues.
- non-natural amino acids may be selected having isosteric/isoelectronic side chains which are neither recognised by degradative proteases nor have any adverse effect upon target potency.
- non-natural amino acids may be used having constrained amino acid side chains, such that proteolytic hydrolysis of the nearby peptide bond is conformationally and sterically impeded.
- these concern proline analogues, bulky sidechains, Ca- disubstituted derivatives (for example, aminoisobutyric acid, Aib), and cyclo amino acids, a simple derivative being amino-cyclopropylcarboxylic acid.
- the modified derivative comprises the addition of a spacer group. In a further embodiment, the modified derivative comprises the addition of a spacer group to the N-terminal cysteine (Ci) and/or the C-terminal cysteine (Cm).
- the modified derivative comprises replacement of one or more oxidation sensitive amino acid residues with one or more oxidation resistant amino acid residues.
- the modified derivative comprises replacement of one or more charged amino acid residues with one or more hydrophobic amino acid residues. In an alternative embodiment, the modified derivative comprises replacement of one or more hydrophobic amino acid residues with one or more charged amino acid residues.
- the correct balance of charged versus hydrophobic amino acid residues is an important characteristic of the bicyclic peptide ligands. For example, hydrophobic amino acid residues influence the degree of plasma protein binding and thus the concentration of the free available fraction in plasma, while charged amino acid residues (in particular arginine) may influence the interaction of the peptide with the phospholipid membranes on cell surfaces. The two in combination may influence half-life, volume of distribution and exposure of the peptide drug, and can be tailored according to the clinical endpoint. In addition, the correct combination and number of charged versus hydrophobic amino acid residues may reduce irritation at the injection site (if the peptide drug has been administered subcutaneously).
- the modified derivative comprises replacement of one or more L-amino acid residues with one or more D-amino acid residues.
- This embodiment is believed to increase proteolytic stability by steric hindrance and by a propensity of D-amino acids to stabilise p-turn conformations (Tugyi et a/ (2005) PNAS, 102(2), 413-418).
- the modified derivative comprises removal of any amino acid residues and substitution with alanines. This embodiment provides the advantage of removing potential proteolytic attack site(s).
- the present invention includes all pharmaceutically acceptable (radio)isotope-labeled peptide ligands of the invention, wherein one or more atoms are replaced by atoms having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature, and peptide ligands of the invention, wherein metal chelating groups are attached (termed “effector”) that are capable of holding relevant (radio)isotopes, and peptide ligands of the invention, wherein certain functional groups are covalently replaced with relevant (radio)isotopes or isotopically labelled functional groups.
- isotopes suitable for inclusion in the peptide ligands of the invention comprise isotopes of hydrogen, such as 2 H (D) and 3 H (T), carbon, such as 11 C, 13 C and 14 C, chlorine, such as 36 CI, fluorine, such as 18 F, iodine, such as 123 l, 125 l and 131 l, nitrogen, such as 13 N and 15 N, oxygen, such as 15 O, 17 O and 18 O, phosphorus, such as 32 P, sulfur, such as 35 S, copper, such as 64 Cu, gallium, such as 67 Ga or 68 Ga, yttrium, such as 90 Y and lutetium, such as 177 Lu, and Bismuth, such as 213 Bi.
- hydrogen such as 2 H (D) and 3 H (T)
- carbon such as 11 C, 13 C and 14 C
- chlorine such as 36 CI
- fluorine such as 18 F
- iodine such as 123 l, 125 l and
- Certain isotopically-labelled peptide ligands of the invention are useful in drug and/or substrate tissue distribution studies.
- the peptide ligands of the invention can further have valuable diagnostic properties in that they can be used for detecting or identifying the formation of a complex between a labelled compound and other molecules, peptides, proteins, enzymes or receptors.
- the detecting or identifying methods can use compounds that are labelled with labelling agents such as radioisotopes, enzymes, fluorescent substances, luminous substances (for example, luminol, luminol derivatives, luciferin, aequorin and luciferase), etc.
- the radioactive isotopes tritium, i.e. 3 H (T), and carbon-14, i.e. 14 C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.
- Substitution with heavier isotopes such as deuterium, i.e. 2 H (D), may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.
- Isotopically-labeled compounds of peptide ligands of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
- the molecular scaffold comprises a non-aromatic molecular scaffold.
- references herein to “non-aromatic molecular scaffold” refers to any molecular scaffold as defined herein which does not contain an aromatic (i.e. unsaturated) carbocyclic or heterocyclic ring system.
- the molecular scaffold may be a small molecule, such as a small organic molecule.
- the molecular scaffold may be a macromolecule. In one embodiment the molecular scaffold is a macromolecule composed of amino acids, nucleotides or carbohydrates.
- the molecular scaffold comprises reactive groups that are capable of reacting with functional group(s) of the polypeptide to form covalent bonds.
- the molecular scaffold may comprise chemical groups which form the linkage with a peptide, such as amines, thiols, alcohols, ketones, aldehydes, nitriles, carboxylic acids, esters, alkenes, alkynes, azides, anhydrides, succinimides, maleimides, alkyl halides and acyl halides.
- chemical groups which form the linkage with a peptide such as amines, thiols, alcohols, ketones, aldehydes, nitriles, carboxylic acids, esters, alkenes, alkynes, azides, anhydrides, succinimides, maleimides, alkyl halides and acyl halides.
- the molecular scaffold is 1 ,T,1"-(1 ,3,5-triazinane-1 ,3,5-triyl)triprop-2-en- 1-one (also known as triacryloylhexahydro-s-triazine (TATA):
- the molecular scaffold forms a tri-substituted 1 ,1',1"-(1 ,3,5-triazinane-1 ,3,5- triyl)tripropan-1-one derivative of TATA having the following structure: wherein * denotes the point of attachment of the three cysteine residues.
- the molecular scaffold is 1 , 1 ', 1 "-(1 ,3,5-triazinane-1 ,3,5-triyl) tris(2-bromoethanone) (TATB).
- the molecular scaffold forms a tri-substituted derivative of TATB having the following structure:
- the molecular scaffold of the invention may be bonded to the polypeptide via functional or reactive groups on the polypeptide. These are typically formed from the side chains of particular amino acids found in the polypeptide polymer. Such reactive groups may be a cysteine side chain, a [Dap(Me)] group, a lysine side chain, or an N-terminal amine group or any other suitable reactive group. Details may be found in WO 2009/098450. In one embodiment, the reactive groups are all cysteine residues.
- reactive groups of natural amino acids are the thiol group of cysteine, the amino group of lysine, the carboxyl group of aspartate or glutamate, the guanidinium group of arginine, the phenolic group of tyrosine or the hydroxyl group of serine.
- Non-natural amino acids can provide a wide range of reactive groups including an azide, a keto-carbonyl, an alkyne, a vinyl, or an aryl halide group.
- the amino and carboxyl group of the termini of the polypeptide can also serve as reactive groups to form covalent bonds to a molecular scaffold/molecular core.
- polypeptides of the invention contain at least three reactive groups. Said polypeptides can also contain four or more reactive groups. The more reactive groups are used, the more loops can be formed in the molecular scaffold.
- polypeptides with three reactive groups are generated. Reaction of said polypeptides with a molecular scaffold/molecular core having a three-fold rotational symmetry generates a single product isomer.
- the generation of a single product isomer is favourable for several reasons.
- the nucleic acids of the compound libraries encode only the primary sequences of the polypeptide but not the isomeric state of the molecules that are formed upon reaction of the polypeptide with the molecular core. If only one product isomer can be formed, the assignment of the nucleic acid to the product isomer is clearly defined. If multiple product isomers are formed, the nucleic acid cannot give information about the nature of the product isomer that was isolated in a screening or selection process.
- a single product isomer is also advantageous if a specific member of a library of the invention is synthesized.
- the chemical reaction of the polypeptide with the molecular scaffold yields a single product isomer rather than a mixture of isomers.
- polypeptides with four reactive groups are generated. Reaction of said polypeptides with a molecular scaffold/molecular core having a tetrahedral symmetry generates two product isomers. Even though the two different product isomers are encoded by one and the same nucleic acid, the isomeric nature of the isolated isomer can be determined by chemically synthesizing both isomers, separating the two isomers and testing both isomers for binding to a target ligand.
- At least one of the reactive groups of the polypeptides is orthogonal to the remaining reactive groups.
- the use of orthogonal reactive groups allows the directing of said orthogonal reactive groups to specific sites of the molecular core.
- Linking strategies involving orthogonal reactive groups may be used to limit the number of product isomers formed. In other words, by choosing distinct or different reactive groups for one or more of the at least three bonds to those chosen for the remainder of the at least three bonds, a particular order of bonding or directing of specific reactive groups of the polypeptide to specific positions on the molecular scaffold may be usefully achieved.
- the reactive groups of the polypeptide of the invention are reacted with molecular linkers wherein said linkers are capable to react with a molecular scaffold so that the linker will intervene between the molecular scaffold and the polypeptide in the final bonded state.
- amino acids of the members of the libraries or sets of polypeptides can be replaced by any natural or non-natural amino acid.
- exchangeable amino acids are the ones harbouring functional groups for cross-linking the polypeptides to a molecular core, such that the loop sequences alone are exchangeable.
- the exchangeable polypeptide sequences have either random sequences, constant sequences or sequences with random and constant amino acids.
- the amino acids with reactive groups are either located in defined positions within the polypeptide, since the position of these amino acids determines loop size.
- an polypeptide with three reactive groups has the sequence (X)iY(X)mY(X) n Y(X)o, wherein Y represents an amino acid with a reactive group, X represents a random amino acid, m and n are numbers between 3 and 6 defining the length of intervening polypeptide segments, which may be the same or different, and I and o are numbers between 0 and 20 defining the length of flanking polypeptide segments.
- thiol-mediated conjugations can be used to attach the molecular scaffold to the peptide via covalent interactions.
- these techniques may be used in modification or attachment of further moieties (such as small molecules of interest which are distinct from the molecular scaffold) to the polypeptide after they have been selected or isolated according to the present invention - in this embodiment then clearly the attachment need not be covalent and may embrace non-covalent attachment.
- thiol mediated methods may be used instead of (or in combination with) the thiol mediated methods by producing phage that display proteins and peptides bearing unnatural amino acids with the requisite chemical reactive groups, in combination small molecules that bear the complementary reactive group, or by incorporating the unnatural amino acids into a chemically or recombinantly synthesised polypeptide when the molecule is being made after the selection/isolation phase. Further details can be found in WO 2009/098450 or Heinis, et al., Nat Chem Biol 2009, 5 (7), 502-7.
- the peptides of the present invention may be manufactured synthetically by standard techniques followed by reaction with a molecular scaffold in vitro. When this is performed, standard chemistry may be used. This enables the rapid large scale preparation of soluble material for further downstream experiments or validation. Such methods could be accomplished using conventional chemistry such as that disclosed in Timmerman et al. (supra).
- the invention also relates to manufacture of polypeptides selected as set out herein, wherein the manufacture comprises optional further steps as explained below. In one embodiment, these steps are carried out on the end product polypeptide made by chemical synthesis.
- Peptides can also be extended, to incorporate for example another loop and therefore introduce multiple specificities.
- lysines and analogues
- Standard (bio)conjugation techniques may be used to introduce an activated or activatable N- or C-terminus.
- additions may be made by fragment condensation or native chemical ligation e.g. as described in (Dawson et al. 1994. Synthesis of Proteins by Native Chemical Ligation. Science 266:776-779), or by enzymes, for example using subtiligase as described in (Chang et al. Proc Natl Acad Sci U S A. 1994 Dec 20; 91 (26): 12544-8 or in Hikari et al Bioorganic & Medicinal Chemistry Letters Volume 18, Issue 22, 15 November 2008, Pages 6000-6003).
- the peptides may be extended or modified by further conjugation through disulphide bonds.
- This has the additional advantage of allowing the first and second peptide to dissociate from each other once within the reducing environment of the cell.
- the molecular scaffold e.g. TATA or TATB
- a further cysteine or thiol could then be appended to the N or C-terminus of the first peptide, so that this cysteine or thiol only reacted with a free cysteine or thiol of the second peptide, forming a disulfide -linked bicyclic peptide-peptide conjugate.
- composition comprising a peptide ligand as defined herein in combination with one or more pharmaceutically acceptable excipients.
- the present peptide ligands will be utilised in purified form together with pharmacologically appropriate excipients or carriers.
- these excipients or carriers include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and/or buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride and lactated Ringer's.
- Suitable physiologically- acceptable adjuvants if necessary to keep a polypeptide complex in suspension, may be chosen from thickeners such as carboxymethylcellulose, polyvinylpyrrolidone, gelatin and alginates.
- Intravenous vehicles include fluid and nutrient replenishers and electrolyte replenishers, such as those based on Ringer's dextrose. Preservatives and other additives, such as antimicrobials, antioxidants, chelating agents and inert gases, may also be present (Mack (1982) Remington's Pharmaceutical Sciences, 16th Edition).
- the compounds of the invention can be used alone or in combination with another agent or agents.
- the compounds of the invention can also be used in combination with biological therapies such as nucleic acid based therapies, antibodies, bacteriophage or phage lysins.
- the route of administration of pharmaceutical compositions according to the invention may be any of those commonly known to those of ordinary skill in the art.
- the peptide ligands of the invention can be administered to any patient in accordance with standard techniques.
- Routes of administration include, but are not limited to, oral (e.g., by ingestion); buccal; sublingual; transdermal (including, e.g., by a patch, plaster, etc.); transmucosal (including, e.g., by a patch, plaster, etc.); intranasal (e.g., by nasal spray); ocular (e.g., by eyedrops); pulmonary (e.g., by inhalation or insufflation therapy using, e.g., via an aerosol, e.g., through the mouth or nose); rectal (e.g., by suppository or enema); vaginal (e.g., by pessary); parenteral, for example, by injection, including subcutaneous, intraderma
- the peptide ligands of this invention can be lyophilised for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective and art-known lyophilisation and reconstitution techniques can be employed. It will be appreciated by those skilled in the art that lyophilisation and reconstitution can lead to varying degrees of activity loss and that levels may have to be adjusted upward to compensate.
- compositions containing the present peptide ligands or a cocktail thereof can be administered for therapeutic treatments.
- an adequate amount to accomplish at least partial inhibition, suppression, modulation, killing, or some other measurable parameter, of a population of selected cells is defined as a "therapeutically- effective dose”. Amounts needed to achieve this dosage will depend upon the severity of the disease and the general state of the patient's own immune system, but generally range from 10 pg to 250 mg of selected peptide ligand per kilogram of body weight, with doses of between 100 pg to 25 mg/kg/dose being more commonly used.
- a composition containing a peptide ligand according to the present invention may be utilised in therapeutic settings to treat a microbial infection or to provide prophylaxis to a subject at risk of infection e.g. undergoing surgery, chemotherapy, artificial ventilation or other condition or planned intervention.
- the peptide ligands described herein may be used extracorporeal ly or in vitro selectively to kill, deplete or otherwise effectively remove a target cell population from a heterogeneous collection of cells.
- Blood from a mammal may be combined extracorporeally with the selected peptide ligands whereby the undesired cells are killed or otherwise removed from the blood for return to the mammal in accordance with standard techniques.
- bicyclic peptides of the invention have specific utility as ACE2 binding agents.
- the present invention may be useful as a prophylactic or therapeutic agent for the treatment of any suitable respiratory disorder.
- a peptide ligand as defined herein for use in the prophylaxis or treatment of a respiratory disorder.
- a method of suppressing or treating a respiratory disorder which comprises administering to a patient in need thereof the peptide ligand as defined herein.
- the invention finds particular utility in the prophylaxis or treatment of a respiratory disorder which is mediated by an inflammatory response within the lung. It will be appreciated that such inflammatory responses may be mediated by either a bacterial infection or a viral infection.
- the inflammatory response is mediated by a viral infection.
- the viral infection is an infection of: rhinovirus; respiratory syncytial virus (RSV); human metapneumovirus (hMPV); influenza; severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1); severe acute respiratory syndrome- related coronavirus (SARSr-CoV); severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2); or Middle East respiratory syndrome coronavirus (MERS-CoV).
- RSV respiratory syncytial virus
- hMPV human metapneumovirus
- influenza severe acute respiratory syndrome coronavirus
- SARS-CoV or SARS-CoV-1 severe acute respiratory syndrome- related coronavirus
- SARSr-CoV severe acute respiratory syndrome- related coronavirus
- SARS- CoV-2 severe acute respiratory syndrome coronavirus 2
- MERS-CoV Middle East respiratory syndrome coronavirus
- the viral infection is an infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
- SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
- the respiratory disorders intended to be alleviated or treated by the pharmaceutical composition of the invention includes those caused by the above mentioned viruses.
- the respiratory disorder is selected from: Coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and pulmonary arterial hypertension (PAH).
- the respiratory disorder is Coronavirus disease 2019 (COVID-19).
- IBD inflammatory bowel disease
- colitis in particular ulcerative colitis.
- ACE2 inhibitors may have therapeutic utility for inflammatory bowel disease.
- Polypeptide ligands selected according to the method of the present invention may be employed in in vivo therapeutic applications, in vitro and in vivo diagnostic applications, in vitro assay and reagent applications, and the like.
- in some applications, such as vaccine applications the ability to elicit an immune response to predetermined ranges of antigens can be exploited to tailor a vaccine to specific diseases and pathogens.
- Substantially pure peptide ligands of at least 90 to 95% homogeneity are preferred for administration to a mammal, and 98 to 99% or more homogeneity is most preferred for pharmaceutical uses, especially when the mammal is a human.
- the selected polypeptides may be used diagnostically or therapeutically (including extracorporeal ly) or in developing and performing assay procedures, immunofluorescent stainings and the like (Lefkovite and Pernis, (1979 and 1981) Immunological Methods, Volumes I and II, Academic Press, NY).
- references herein to the term “suppression” refers to administration of the composition after an inductive event, but prior to the clinical appearance of the disease. “Treatment” involves administration of the protective composition after disease symptoms become manifest.
- Peptide synthesis was based on Fmoc chemistry, using a Symphony peptide synthesiser manufactured by Peptide Instruments and a Syro II synthesiser by MultiSynTech. Standard Fmoc-amino acids were employed (Sigma, Merck), with appropriate side chain protecting groups: where applicable standard coupling conditions were used in each case, followed by deprotection using standard methodology.
- peptides were purified using HPLC and following isolation they were modified with the required molecular scaffold (namely, TATA or TATB).
- linear peptide was diluted with 50:50 MeC k W up to ⁇ 35 mL, -500 pL of 100 mM scaffold in acetonitrile was added, and the reaction was initiated with 5 mL of 1 M NH4HCO3 in H2O. The reaction was allowed to proceed for -30 -60 min at RT, and lyophilised once the reaction had completed (judged by MALDI). Once completed, 1ml of 1M L-cysteine hydrochloride monohydrate (Sigma) in H2O was added to the reaction for -60 min at RT to quench any excess TATA or TATB.
- 1M L-cysteine hydrochloride monohydrate Sigma
- the modified peptide was purified as above, while replacing the Luna C8 with a Gemini C18 column (Phenomenex), and changing the acid to 0.1% trifluoroacetic acid. Pure fractions containing the correct scaffold-modified material were pooled, lyophilised and kept at -20°C for storage.
- peptides are converted to activated disulfides prior to coupling with the free thiol group of a toxin using the following method; a solution of 4-methyl(succinimidyl 4-(2- pyridylthio)pentanoate) (100mM) in dry DMSO (1.25 mol equiv) was added to a solution of peptide (20mM) in dry DMSO (1 mol equiv). The reaction was well mixed and DIPEA (20 mol equiv) was added. The reaction was monitored by LC/MS until complete.
- Human ACE2 protein (AcroBiosystems - AC2-H52H8) was immobilized on a Series S Sensor Chip CM5 (Cytiva) using standard primary amine-coupling chemistry at 25°C with HBS-P+ (10 mM HEPES, 0.15 M NaCI, 0.05% v/v Surfactant P20), 1 pM ZnCI 2 , 1 % dimethylsulfoxide, pH 7.4 as the running buffer (used throughout).
- the carboxymethyl dextran surface was activated with a 7 min injection of a 1 :1 ratio of 0.4 M 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) / 0.1 M N-hydroxy succinimide (NHS) at a flow rate of 10 pl/min.
- EDC 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride
- NHS N-hydroxy succinimide
- ACE2 protein was diluted to 40 nM in 10 mM sodium acetate (pH 4.5) and captured by injecting 16 pl at a flow rate of 5 pl/min onto the activated chip surface in pulses. Residual activated groups were blocked with a 7 min injection of 1 M ethanolamine (pH 8.5) and ACE2 captured to a level of approximately 970 Rll.
- Dnp (2,4-dinitrophenyl) is no longer able to quench the fluorescence of Mca (7- methoxycoumarin-4-yl) which was observed via a 320 400 Fl optic module on a Pherastar FS/FSX (BMG Labtech).
- the initial rates of substrate cleavage were determined for each bicyclic peptide titration point over a 75 minute timecourse with 91 second cycle intervals. These were normalised to low (substrate only) and high (ACE2 with substrate) references and fit via non-linear regression analysis using the following model: log(inhibitor) vs. response -- Variable slope (four parameters) in GraphPad Prism v9.2.0 (332) to determine an IC50.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to polypeptides which are covalently bound to molecular 5 scaffolds such that two or more peptide loops are subtended between attachment points to the scaffold. In particular, the invention describes peptides which are high affinity binders of ACE2. The invention also includes pharmaceutical compositions comprising said polypeptides and to the use of said polypeptides in suppressing or treating a disease or disorder mediated by ACE2, such as infection of COVID-19 or for providing prophylaxis to a subject at risk of 10 infection of COVID-19.
Description
ANTI-INFECTIVE BICYCLIC PEPTIDE LIGANDS
FIELD OF THE INVENTION
The present invention relates to polypeptides which are covalently bound to molecular scaffolds such that two or more peptide loops are subtended between attachment points to the scaffold. In particular, the invention describes peptides which are high affinity binders of ACE2. The invention also includes pharmaceutical compositions comprising said polypeptides and to the use of said polypeptides in suppressing or treating a disease or disorder mediated by ACE2, such as infection of COVID-19 or for providing prophylaxis to a subject at risk of infection of COVID-19.
BACKGROUND OF THE INVENTION
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was first identified in December 2019 in Wuhan, the capital of China's Hubei province, and spread globally, resulting in a pandemic. Common symptoms include fever, cough, and shortness of breath. Other symptoms may include fatigue, muscle pain, diarrhea, sore throat, loss of smell, and abdominal pain. The time from exposure to onset of symptoms is typically around five days but may range from two to fourteen days. While the majority of cases result in mild symptoms, some progress to viral pneumonia and multi-organ failure. As of 6 January 2021 , more than 86 million cases have been reported globally, resulting in more than 1.8 million deaths.
The virus is primarily spread between people during close contact, often via droplets produced by coughing, sneezing, or talking. While these droplets are produced when breathing out, they usually fall to the ground or onto surfaces rather than being infectious over long distances. People may also become infected by touching a contaminated surface and then their face. The virus can survive on surfaces for up to 72 hours. It is most contagious during the first three days after the onset of symptoms, although spread may be possible before symptoms appear and in later stages of the disease.
Currently, there is no vaccine or specific antiviral treatment for COVID-19. Management involves treatment of symptoms, supportive care, isolation, and experimental measures.
The World Health Organization (WHO) declared the 2019-2020 coronavirus outbreak a Public Health Emergency of International Concern (PHEIC) on 30
January 2020 and a pandemic on 11 March 2020. Local transmission of the disease has been recorded in many countries across all six WHO regions.
There is therefore a great need to provide an effective prophylactic and/or therapeutic treatment intended to avoid or ameliorate the symptoms associated with COVID-19 infection.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, there is provided a peptide ligand specific for ACE2 comprising a polypeptide comprising at least three reactive groups, separated by at least two loop sequences, and a molecular scaffold which forms covalent bonds with the reactive groups of the polypeptide such that at least two polypeptide loops are formed on the molecular scaffold and wherein the peptide ligand comprises an amino acid sequence which is selected from:
CrXi-Xz-Xs^-Cii-Xs-Xe-Xy-Xs-Xg-Xio-Xn-Xiz-Ciii (SEQ ID NO: 23);
CjTTSLQCiiEFPKASCiii (SEQ ID NO: 3); and CiSSIQGGWLCiiLLMSCiii (SEQ ID NO: 4), or a pharmaceutically acceptable salt thereof, wherein: Xi represents L, V, tBuGly, AlloThr, T or G; X2 represents P, L, R or Agb;
X3 represents D, P, S or Q;
X4 represents E, N, H, F, 4MePhe, 4FPhe, 4CIPhe or PheNH2Me;
X5 represents V, C, S or H;
Xe represents S, T or D;
X7 represents T, A, L or tBuAla;
Xs represents S, Q, L or M;
Xg represents L, D, P, HyP or Cis-HyP;
X10 represents G, A, R or HArg;
Xu represents P, S, I or H;
X12 represents N, D, H or L;
Ci, Cii and Cm represent first, second and third cysteine residues, respectively; tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNH2Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine,
with the proviso that when the amino acid sequence of SEQ ID NO: 23 is an amino acid sequence of SEQ ID NO: 22, said molecular scaffold is other than TATA.
According to a further aspect of the invention, there is provided a pharmaceutical composition comprising the peptide ligand as defined herein in combination with one or more pharmaceutically acceptable excipients.
According to a further aspect of the invention, there is provided the peptide ligand as defined herein for use in suppressing or treating a disease or disorder mediated by infection of COVI D- 19 or for providing prophylaxis to a subject at risk of infection of COVID-19.
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the invention, there is provided a peptide ligand specific for ACE2 comprising a polypeptide comprising at least three reactive groups, separated by at least two loop sequences, and a molecular scaffold which forms covalent bonds with the reactive groups of the polypeptide such that at least two polypeptide loops are formed on the molecular scaffold and wherein the peptide ligand comprises an amino acid sequence which is selected from:
CrXi-Xz-Xs^-Cii-Xs-Xe-Xy-Xs-Xg-Xio-Xn-Xiz-Ciii (SEQ ID NO: 23);
CjTTSLQCiiEFPKASCiii (SEQ ID NO: 3); and CiSSIQGGWLCiiLLMSCiii (SEQ ID NO: 4), or a pharmaceutically acceptable salt thereof, wherein: Xi represents L, V, tBuGly, AlloThr, T or G; X2 represents P, L, R or Agb;
X3 represents D, P, S or Q;
X4 represents E, N, H, F, 4MePhe, 4FPhe, 4CIPhe or PheNH2Me;
X5 represents V, C, S or H;
Xe represents S, T or D;
X7 represents T, A, L or tBuAla;
Xs represents S, Q, L or M;
Xg represents L, D, P, HyP or Cis-HyP;
X10 represents G, A, R or HArg;
Xu represents P, S, I or H;
X12 represents N, D, H or L;
Ci, Cjj and Cm represent first, second and third cysteine residues, respectively;
tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNH2Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine, with the proviso that when the amino acid sequence of SEQ ID NO: 23 is an amino acid sequence of SEQ ID NO: 22, said molecular scaffold is other than TATA.
References herein to “ACE2” refer to angiotensin-converting enzyme 2 which is an enzyme attached to the outer surface (cell membranes) of cells in the lungs, arteries, heart, kidney, and intestines. ACE2 is known to serve as the entry point into cells for some coronaviruses, such as COVID-19. Without being bound by theory it is believed that the virus that has caused the COVID-19 pandemic (SARS-CoV-2) uses ACE2 (which is bound to the surface of lung airway cells) to enter tissue and cause disease. The same protein ACE2 seems to protect the lung from injury caused by excessive inflammation. It is believed that administration of a peptide ligand which binds to ACE2 could prevent the virus entering cells and prevent the damaging inflammation caused by the virus (which seems to be the major cause of death from this infection).
Thus, the invention finds great utility in the treatment for severe COVID-19 and could even be used to protect people from the current pandemic and any future coronavirus outbreaks.
In one embodiment, the peptide ligand is an amino acid sequence which is SEQ ID NO: 23.
In one embodiment, X5 represents V, S or H. Thus, in one embodiment, the peptide ligand is other than SEQ ID NO: 5.
In a further embodiment, the peptide ligand of SEQ ID NO: 23 comprises an amino acid sequence which is selected from:
CiLPDECi STSLGPNCiii (SEQ ID NO: 1);
C LPNCiiVSAQDASDCiii (SEQ ID NO: 2);
CiVRSHCiiCSLLPRIHCiii (SEQ ID NO: 5);
C RSHCiiSSLLPRIHCiii (SEQ ID NO: 6; herein referred to as BCY20855); Ci[tBuGly]RSHCiiSSLLPRIHCiii (SEQ ID NO: 7); Ci[AlloThr]RSHCiiSSLLPRIHCiii (SEQ ID NO: 8);
CiTRSHCiiSSLLPRIHCiii (SEQ ID NO: 9);
CiV[Agb]SHCiiSSLLPRIHCiii (SEQ ID NO: 10);
CiVRSFCiiSSLLPRIHCiii (SEQ ID NO: 11);
CiVRS[4MePhe]CiiSSLLPRIHCiii (SEQ ID NO: 12);
CiVRS[4FPhe]CiiSSLLPRIHCiii (SEQ ID NO: 13);
CiVRS[4CIPhe]CiiSSLLPRIHCiii (SEQ ID NO: 14);
CiVRSHCiiSTLLPRIHCiii (SEQ ID NO: 15);
CiVRSHCiiSDLLPRIHCiii (SEQ ID NO: 16);
CiVRSHCiiSS[tBuAla]LPRIHCiii (SEQ ID NO: 17);
CiVRSHCiiSSLL[HyP]RIHCiii (SEQ ID NO: 18);
CiVRSHCiiSSLL[Cis-HyP]RIHCiii (SEQ ID NO: 19); CiVRSHCiiSSLLP[HArg]IHCiii (SEQ ID NO: 20); CiVRS[Phe(NH2Me)]CiiSSLLPRIHCiii (SEQ ID NO: 21); CiGRQFCiiHTLMPRHLCiii (SEQ ID NO: 22); and wherein Ci, CH and Cm represent first, second and third cysteine residues, respectively; tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNF^Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine, or a pharmaceutically acceptable salt thereof.
In a yet further embodiment, said molecular scaffold is TATA and the bicyclic peptide ligand of SEQ ID NO: 23 optionally additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is selected from:
A-(SEQ ID NO: 1)-A (herein referred to as BCY15518);
A-(SEQ ID NO: 2)-A (herein referred to as BCY15519);
A-(SEQ ID NO: 5)-A (herein referred to as BCY19845);
Ac-A-(SEQ ID NO: 6)-A (herein referred to as BCY20854);
(SEQ ID NO: 6) (herein referred to as BCY20855);
Ac-(SEQ ID NO: 6) (herein referred to as BCY20856);
A-(SEQ ID NO: 7)-A (herein referred to as BCY20857);
A-(SEQ ID NO: 8)-A (herein referred to as BCY20858);
A-(SEQ ID NO: 9)-A (herein referred to as BCY20859);
A-(SEQ ID NO: 10)-A (herein referred to as BCY20860);
A-(SEQ ID NO: 11)-A (herein referred to as BCY20861);
A-(SEQ ID NO: 12)-A (herein referred to as BCY20862);
A-(SEQ ID NO: 13)-A (herein referred to as BCY20863);
A-(SEQ ID NO: 14)-A (herein referred to as BCY20864);
A-(SEQ ID NO: 15)-A (herein referred to as BCY20865);
A-(SEQ ID NO: 16)-A (herein referred to as BCY20866);
A-(SEQ ID NO: 17)-A (herein referred to as BCY20867);
A-(SEQ ID NO: 18)-A (herein referred to as BCY20868);
A-(SEQ ID NO: 19)-A (herein referred to as BCY20869);
A-(SEQ ID NO: 20)-A (herein referred to as BCY20870); and A-(SEQ ID NO: 21)-A (herein referred to as BCY20871).
In one embodiment, the peptide ligand is other than BCY19845.
In an alternative embodiment, said molecular scaffold is TATB and the bicyclic peptide ligand of SEQ ID NO: 23 optionally additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is selected from:
A-(SEQ ID NO: 6)-A (herein referred to as BCY21084); and
A-(SEQ ID NO: 22)-A (herein referred to as BCY21085).
In an alternative embodiment, the peptide ligand is an amino acid sequence which is SEQ ID NO: 3.
In a further embodiment, said molecular scaffold is TATA and the bicyclic peptide ligand of SEQ ID NO: 3 additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is:
A-(SEQ ID NO: 3)-A (herein referred to as BCY15520).
In an alternative embodiment, the peptide ligand is an amino acid sequence which is SEQ ID NO: 4.
In a further embodiment, said molecular scaffold is TATB and the bicyclic peptide ligand of SEQ ID NO: 4 additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is:
A-(SEQ ID NO: 4)-A (herein referred to as BCY15521).
In one embodiment, the bicyclic peptide of the invention binds to the active site of ACE2. It is believed that all of the exemplified bicyclic peptides of the invention bind to the active site of ACE2. Without being bound by theory, it is believed that the bicyclic peptides of the invention which bind to the active site of ACE2 are likely to have beneficial physiological effects, such as blood pressure alteration (see Figure 2 of Verdecchia et al (2020) European Journal of Internal Medicine 76, 14-20).
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art, such as in the arts of peptide chemistry, cell culture and phage display, nucleic acid chemistry and biochemistry. Standard techniques are used for molecular biology, genetic and biochemical methods (see Sam brook et a/., Molecular Cloning: A Laboratory Manual, 3rd ed., 2001 , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; Ausubel etal., Short Protocols in Molecular Biology (1999) 4th ed., John Wiley & Sons, Inc.), which are incorporated herein by reference.
Nomenclature
Numbering
When referring to amino acid residue positions within peptides of the invention, cysteine residues (Ci, CH and Cm) are omitted from the numbering as they are invariant, therefore, the numbering of amino acid residues within peptides of the invention is referred to as below:
Ci-Li-P2-D3-E4-Cii-V5-S6-T7-S8-L9-Gio-Pii-Ni2-Ciii (SEQ ID NO: 1).
For the purpose of this description, all bicyclic peptides are assumed to be cyclised with TATA or TATB and yielding a tri-substituted structure. Cyclisation with TATA or TATB occurs on the first, second and third reactive groups (i.e. Ci, CH, Cm).
Molecular Format
N- or C-terminal extensions to the bicycle core sequence are added to the left or right side of the sequence, separated by a hyphen. For example, an N-terminal pAla-Sar10-Ala tail would be denoted as:
PAIa-Sar10-A-(SEQ ID NO: X).
Inversed Peptide Sequences
In light of the disclosure in Nair etal (2003) J Immunol 170(3), 1362-1373, it is envisaged that the peptide sequences disclosed herein would also find utility in their retro-inverso form. For
example, the sequence is reversed (i.e. N-terminus becomes C-terminus and vice versa) and their stereochemistry is likewise also reversed (i.e. D-amino acids become L-amino acids and vice versa).
Peptide Ligands
A peptide ligand, as referred to herein, refers to a peptide covalently bound to a molecular scaffold. Typically, such peptides comprise two or more reactive groups (i.e. cysteine residues) which are capable of forming covalent bonds to the scaffold, and a sequence subtended between said reactive groups which is referred to as the loop sequence, since it forms a loop when the peptide is bound to the scaffold. In the present case, the peptides comprise at least three cysteine residues (referred to herein as Ci, CH and Cm), and form at least two loops on the scaffold.
Advantages of the Peptide Ligands
Certain bicyclic peptides of the present invention have a number of advantageous properties which enable them to be considered as suitable drug-like molecules for injection, inhalation, nasal, ocular, oral or topical administration. Such advantageous properties include:
Species cross-reactivity. Certain ligands demonstrate cross-reactivity across Lipid II from different bacterial species and hence are able to treat infections caused by multiple species of bacteria. Other ligands may be highly specific for the Lipid II of certain bacterial species which may be advantageous for treating an infection without collateral damage to the beneficial flora of the patient;
Protease stability. Bicyclic peptide ligands should ideally demonstrate stability to plasma proteases, epithelial ("membrane-anchored") proteases, gastric and intestinal proteases, lung surface proteases, intracellular proteases and the like. Protease stability should be maintained between different species such that a bicycle lead candidate can be developed in animal models as well as administered with confidence to humans;
Desirable solubility profile. This is a function of the proportion of charged and hydrophilic versus hydrophobic residues and intra/inter-molecular H-bonding, which is important for formulation and absorption purposes;
An optimal plasma half-life in the circulation. Depending upon the clinical indication and treatment regimen, it may be required to develop a bicyclic peptide for short exposure in
an acute illness management setting, or develop a bicyclic peptide with enhanced retention in the circulation, and is therefore optimal for the management of more chronic disease states. Other factors driving the desirable plasma half-life are requirements of sustained exposure for maximal therapeutic efficiency versus the accompanying toxicology due to sustained exposure of the agent; and
Selectivity.
Pharmaceutically Acceptable Salts
It will be appreciated that salt forms are within the scope of this invention, and references to peptide ligands include the salt forms of said ligands.
The salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods such as methods described in Pharmaceutical Salts: Properties, Selection, and Use, P. Heinrich Stahl (Editor), Camille G. Wermuth (Editor), ISBN: 3-90639-026-8, Hardcover, 388 pages, August 2002. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with the appropriate base or acid in water or in an organic solvent, or in a mixture of the two.
Acid addition salts (mono- or di-salts) may be formed with a wide variety of acids, both inorganic and organic. Examples of acid addition salts include mono- or di-salts formed with an acid selected from the group consisting of acetic, 2,2-dichloroacetic, adipic, alginic, ascorbic (e.g. L-ascorbic), L-aspartic, benzenesulfonic, benzoic, 4-acetamidobenzoic, butanoic, (+) camphoric, camphor-sulfonic, (+)-(1 S)-camphor-10-sulfonic, capric, caproic, caprylic, cinnamic, citric, cyclamic, dodecylsulfuric, ethane-1 ,2-disulfonic, ethanesulfonic, 2- hydroxyethanesulfonic, formic, fumaric, galactaric, gentisic, glucoheptonic, D-gluconic, glucuronic (e.g. D-glucuronic), glutamic (e.g. L-glutamic), a-oxoglutaric, glycolic, hippuric, hydrohalic acids (e.g. hydrobromic, hydrochloric, hydriodic), isethionic, lactic (e.g. (+)-L-lactic, (±)-DL-lactic), lactobionic, maleic, malic, (-)-L-malic, malonic, (±)-DL-mandelic, methanesulfonic, naphthalene-2-sulfonic, naphthalene-1 ,5-disulfonic, 1-hydroxy-2-naphthoic, nicotinic, nitric, oleic, orotic, oxalic, palmitic, pamoic, phosphoric, propionic, pyruvic, L- pyroglutamic, salicylic, 4-amino-salicylic, sebacic, stearic, succinic, sulfuric, tannic, (+)-L- tartaric, thiocyanic, p-toluenesulfonic, undecylenic and valeric acids, as well as acylated amino acids and cation exchange resins.
One particular group of salts consists of salts formed from acetic, hydrochloric, hydriodic, phosphoric, nitric, sulfuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulfonic, toluenesulfonic, sulfuric, methanesulfonic (mesylate), ethanesulfonic, naphthalenesulfonic, valeric, propanoic, butanoic, malonic, glucuronic and lactobionic acids. One particular salt is the hydrochloride salt. Another particular salt is the acetate salt.
If the compound is anionic, or has a functional group which may be anionic (e.g., -COOH may be -COO'), then a salt may be formed with an organic or inorganic base, generating a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Li+, Na+ and K+, alkaline earth metal cations such as Ca2+ and Mg2+, and other cations such as Al3+ or Zn+. Examples of suitable organic cations include, but are not limited to, ammonium ion (i.e., NH4 +) and substituted ammonium ions (e.g., NHsR+, NH2R2+, NHRs+, NR4 +). Examples of some suitable substituted ammonium ions are those derived from: methylamine, ethylamine, diethylamine, propylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is N(CHs)4+.
Where the peptides of the invention contain an amine function, these may form quaternary ammonium salts, for example by reaction with an alkylating agent according to methods well known to the skilled person. Such quaternary ammonium compounds are within the scope of the peptides of the invention.
Modified Derivatives
It will be appreciated that modified derivatives of the peptide ligands as defined herein are within the scope of the present invention. Examples of such suitable modified derivatives include one or more modifications selected from: N-terminal and/or C-terminal modifications; replacement of one or more amino acid residues with one or more non-natural amino acid residues (such as replacement of one or more polar amino acid residues with one or more isosteric or isoelectronic amino acids; replacement of one or more non-polar amino acid residues with other non-natural isosteric or isoelectronic amino acids); addition of a spacer group; replacement of one or more oxidation sensitive amino acid residues with one or more oxidation resistant amino acid residues; replacement of one or more amino acid residues with an alanine, replacement of one or more L-amino acid residues with one or more D-amino acid residues; N-alkylation of one or more amide bonds within the bicyclic peptide ligand; replacement of one or more peptide bonds with a surrogate bond; peptide backbone length
modification; substitution of the hydrogen on the alpha-carbon of one or more amino acid residues with another chemical group, modification of amino acids such as cysteine, lysine, glutamate/aspartate and tyrosine with suitable amine, thiol, carboxylic acid and phenolreactive reagents so as to functionalise said amino acids, and introduction or replacement of amino acids that introduce orthogonal reactivities that are suitable for functionalisation, for example azide or alkyne-group bearing amino acids that allow functionalisation with alkyne or azide-bearing moieties, respectively.
In one embodiment, the modified derivative comprises an N-terminal and/or C-terminal modification. In a further embodiment, wherein the modified derivative comprises an N- terminal modification using suitable amino-reactive chemistry, and/or C-terminal modification using suitable carboxy-reactive chemistry. In a further embodiment, said N-terminal or C- terminal modification comprises addition of an effector group, including but not limited to a cytotoxic agent, a radiochelator or a chromophore.
In a further embodiment, the modified derivative comprises an N-terminal modification. In a further embodiment, the N-terminal modification comprises an N-terminal acetyl group. In this embodiment, the N-terminal cysteine group (the group referred to herein as Ci) is capped with acetic anhydride or other appropriate reagents during peptide synthesis leading to a molecule which is N-terminally acetylated. This embodiment provides the advantage of removing a potential recognition point for aminopeptidases and avoids the potential for degradation of the bicyclic peptide.
In an alternative embodiment, the N-terminal modification comprises the addition of a molecular spacer group which facilitates the conjugation of effector groups and retention of potency of the bicyclic peptide to its target.
In a further embodiment, the modified derivative comprises a C-terminal modification. In a further embodiment, the C-terminal modification comprises an amide group. In this embodiment, the C-terminal cysteine group (the group referred to herein as Cm) is synthesized as an amide during peptide synthesis leading to a molecule which is C-terminally amidated. This embodiment provides the advantage of removing a potential recognition point for carboxy peptidase and reduces the potential for proteolytic degradation of the bicyclic peptide.
In one embodiment, the modified derivative comprises replacement of one or more amino acid residues with one or more non-natural amino acid residues. In this embodiment, non-natural
amino acids may be selected having isosteric/isoelectronic side chains which are neither recognised by degradative proteases nor have any adverse effect upon target potency.
Alternatively, non-natural amino acids may be used having constrained amino acid side chains, such that proteolytic hydrolysis of the nearby peptide bond is conformationally and sterically impeded. In particular, these concern proline analogues, bulky sidechains, Ca- disubstituted derivatives (for example, aminoisobutyric acid, Aib), and cyclo amino acids, a simple derivative being amino-cyclopropylcarboxylic acid.
In one embodiment, the modified derivative comprises the addition of a spacer group. In a further embodiment, the modified derivative comprises the addition of a spacer group to the N-terminal cysteine (Ci) and/or the C-terminal cysteine (Cm).
In one embodiment, the modified derivative comprises replacement of one or more oxidation sensitive amino acid residues with one or more oxidation resistant amino acid residues.
In one embodiment, the modified derivative comprises replacement of one or more charged amino acid residues with one or more hydrophobic amino acid residues. In an alternative embodiment, the modified derivative comprises replacement of one or more hydrophobic amino acid residues with one or more charged amino acid residues. The correct balance of charged versus hydrophobic amino acid residues is an important characteristic of the bicyclic peptide ligands. For example, hydrophobic amino acid residues influence the degree of plasma protein binding and thus the concentration of the free available fraction in plasma, while charged amino acid residues (in particular arginine) may influence the interaction of the peptide with the phospholipid membranes on cell surfaces. The two in combination may influence half-life, volume of distribution and exposure of the peptide drug, and can be tailored according to the clinical endpoint. In addition, the correct combination and number of charged versus hydrophobic amino acid residues may reduce irritation at the injection site (if the peptide drug has been administered subcutaneously).
In one embodiment, the modified derivative comprises replacement of one or more L-amino acid residues with one or more D-amino acid residues. This embodiment is believed to increase proteolytic stability by steric hindrance and by a propensity of D-amino acids to stabilise p-turn conformations (Tugyi et a/ (2005) PNAS, 102(2), 413-418).
In one embodiment, the modified derivative comprises removal of any amino acid residues
and substitution with alanines. This embodiment provides the advantage of removing potential proteolytic attack site(s).
It should be noted that each of the above mentioned modifications serve to deliberately improve the potency or stability of the peptide. Further potency improvements based on modifications may be achieved through the following mechanisms:
Incorporating hydrophobic moieties that exploit the hydrophobic effect and lead to lower off rates, such that higher affinities are achieved;
Incorporating charged groups that exploit long-range ionic interactions, leading to faster on rates and to higher affinities (see for example Schreiber et al, Rapid, electrostatically assisted association of proteins (1996), Nature Struct. Biol. 3, 427-31); and
Incorporating additional constraint into the peptide, by for example constraining side chains of amino acids correctly such that loss in entropy is minimal upon target binding, constraining the torsional angles of the backbone such that loss in entropy is minimal upon target binding and introducing additional cyclisations in the molecule for identical reasons.
(for reviews see Gentilucci et al, Curr. Pharmaceutical Design, (2010), 16, 3185-203, and Nestor et a/, Curr. Medicinal Chem (2009), 16, 4399-418).
Isotopic Variations
The present invention includes all pharmaceutically acceptable (radio)isotope-labeled peptide ligands of the invention, wherein one or more atoms are replaced by atoms having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature, and peptide ligands of the invention, wherein metal chelating groups are attached (termed “effector”) that are capable of holding relevant (radio)isotopes, and peptide ligands of the invention, wherein certain functional groups are covalently replaced with relevant (radio)isotopes or isotopically labelled functional groups.
Examples of isotopes suitable for inclusion in the peptide ligands of the invention comprise isotopes of hydrogen, such as 2H (D) and 3H (T), carbon, such as 11C, 13C and 14C, chlorine, such as 36CI, fluorine, such as 18F, iodine, such as 123l, 125l and 131l, nitrogen, such as 13N and 15N, oxygen, such as 15O, 17O and 18O, phosphorus, such as 32P, sulfur, such as 35S, copper,
such as 64Cu, gallium, such as 67Ga or 68Ga, yttrium, such as 90Y and lutetium, such as 177Lu, and Bismuth, such as 213Bi.
Certain isotopically-labelled peptide ligands of the invention, for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies. The peptide ligands of the invention can further have valuable diagnostic properties in that they can be used for detecting or identifying the formation of a complex between a labelled compound and other molecules, peptides, proteins, enzymes or receptors. The detecting or identifying methods can use compounds that are labelled with labelling agents such as radioisotopes, enzymes, fluorescent substances, luminous substances (for example, luminol, luminol derivatives, luciferin, aequorin and luciferase), etc. The radioactive isotopes tritium, i.e. 3H (T), and carbon-14, i.e. 14C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.
Substitution with heavier isotopes such as deuterium, i.e. 2H (D), may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.
Substitution with positron emitting isotopes, such as 11C, 18F, 15O and 13N, can be useful in Positron Emission Topography (PET) studies for examining target occupancy.
Isotopically-labeled compounds of peptide ligands of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
Molecular Scaffold
In one embodiment, the molecular scaffold comprises a non-aromatic molecular scaffold. References herein to “non-aromatic molecular scaffold” refers to any molecular scaffold as defined herein which does not contain an aromatic (i.e. unsaturated) carbocyclic or heterocyclic ring system.
Suitable examples of non-aromatic molecular scaffolds are described in Heinis et al. (2014) Angewandte Chemie, International Edition 53(6) 1602-1606.
As noted in the foregoing documents, the molecular scaffold may be a small molecule, such as a small organic molecule.
In one embodiment the molecular scaffold may be a macromolecule. In one embodiment the molecular scaffold is a macromolecule composed of amino acids, nucleotides or carbohydrates.
In one embodiment the molecular scaffold comprises reactive groups that are capable of reacting with functional group(s) of the polypeptide to form covalent bonds.
The molecular scaffold may comprise chemical groups which form the linkage with a peptide, such as amines, thiols, alcohols, ketones, aldehydes, nitriles, carboxylic acids, esters, alkenes, alkynes, azides, anhydrides, succinimides, maleimides, alkyl halides and acyl halides.
In one embodiment, the molecular scaffold is 1 ,T,1"-(1 ,3,5-triazinane-1 ,3,5-triyl)triprop-2-en- 1-one (also known as triacryloylhexahydro-s-triazine (TATA):
TATA.
Thus, following cyclisation with the bicyclic peptides of the invention on the Ci, CH, and Cui cysteine residues, the molecular scaffold forms a tri-substituted 1 ,1',1"-(1 ,3,5-triazinane-1 ,3,5- triyl)tripropan-1-one derivative of TATA having the following structure:
wherein * denotes the point of attachment of the three cysteine residues.
In an alternative embodiment, the molecular scaffold is 1 , 1 ', 1 "-(1 ,3,5-triazinane-1 ,3,5-triyl) tris(2-bromoethanone) (TATB).
Thus, following cyclisation with the bicyclic peptides of the invention on the Ci, CH, and Cui cysteine residues, the molecular scaffold forms a tri-substituted derivative of TATB having the following structure:
Reactive Groups
The molecular scaffold of the invention may be bonded to the polypeptide via functional or reactive groups on the polypeptide. These are typically formed from the side chains of particular amino acids found in the polypeptide polymer. Such reactive groups may be a cysteine side chain, a [Dap(Me)] group, a lysine side chain, or an N-terminal amine group or any other suitable reactive group. Details may be found in WO 2009/098450. In one embodiment, the reactive groups are all cysteine residues.
Examples of reactive groups of natural amino acids are the thiol group of cysteine, the amino group of lysine, the carboxyl group of aspartate or glutamate, the guanidinium group of arginine, the phenolic group of tyrosine or the hydroxyl group of serine. Non-natural amino acids can provide a wide range of reactive groups including an azide, a keto-carbonyl, an alkyne, a vinyl, or an aryl halide group. The amino and carboxyl group of the termini of the
polypeptide can also serve as reactive groups to form covalent bonds to a molecular scaffold/molecular core.
The polypeptides of the invention contain at least three reactive groups. Said polypeptides can also contain four or more reactive groups. The more reactive groups are used, the more loops can be formed in the molecular scaffold.
In a preferred embodiment, polypeptides with three reactive groups are generated. Reaction of said polypeptides with a molecular scaffold/molecular core having a three-fold rotational symmetry generates a single product isomer. The generation of a single product isomer is favourable for several reasons. The nucleic acids of the compound libraries encode only the primary sequences of the polypeptide but not the isomeric state of the molecules that are formed upon reaction of the polypeptide with the molecular core. If only one product isomer can be formed, the assignment of the nucleic acid to the product isomer is clearly defined. If multiple product isomers are formed, the nucleic acid cannot give information about the nature of the product isomer that was isolated in a screening or selection process. The formation of a single product isomer is also advantageous if a specific member of a library of the invention is synthesized. In this case, the chemical reaction of the polypeptide with the molecular scaffold yields a single product isomer rather than a mixture of isomers.
In another embodiment of the invention, polypeptides with four reactive groups are generated. Reaction of said polypeptides with a molecular scaffold/molecular core having a tetrahedral symmetry generates two product isomers. Even though the two different product isomers are encoded by one and the same nucleic acid, the isomeric nature of the isolated isomer can be determined by chemically synthesizing both isomers, separating the two isomers and testing both isomers for binding to a target ligand.
In one embodiment of the invention, at least one of the reactive groups of the polypeptides is orthogonal to the remaining reactive groups. The use of orthogonal reactive groups allows the directing of said orthogonal reactive groups to specific sites of the molecular core. Linking strategies involving orthogonal reactive groups may be used to limit the number of product isomers formed. In other words, by choosing distinct or different reactive groups for one or more of the at least three bonds to those chosen for the remainder of the at least three bonds, a particular order of bonding or directing of specific reactive groups of the polypeptide to specific positions on the molecular scaffold may be usefully achieved.
In another embodiment, the reactive groups of the polypeptide of the invention are reacted with molecular linkers wherein said linkers are capable to react with a molecular scaffold so that the linker will intervene between the molecular scaffold and the polypeptide in the final bonded state.
In some embodiments, amino acids of the members of the libraries or sets of polypeptides can be replaced by any natural or non-natural amino acid. Excluded from these exchangeable amino acids are the ones harbouring functional groups for cross-linking the polypeptides to a molecular core, such that the loop sequences alone are exchangeable. The exchangeable polypeptide sequences have either random sequences, constant sequences or sequences with random and constant amino acids. The amino acids with reactive groups are either located in defined positions within the polypeptide, since the position of these amino acids determines loop size.
In one embodiment, an polypeptide with three reactive groups has the sequence (X)iY(X)mY(X)nY(X)o, wherein Y represents an amino acid with a reactive group, X represents a random amino acid, m and n are numbers between 3 and 6 defining the length of intervening polypeptide segments, which may be the same or different, and I and o are numbers between 0 and 20 defining the length of flanking polypeptide segments.
Alternatives to thiol-mediated conjugations can be used to attach the molecular scaffold to the peptide via covalent interactions. Alternatively these techniques may be used in modification or attachment of further moieties (such as small molecules of interest which are distinct from the molecular scaffold) to the polypeptide after they have been selected or isolated according to the present invention - in this embodiment then clearly the attachment need not be covalent and may embrace non-covalent attachment. These methods may be used instead of (or in combination with) the thiol mediated methods by producing phage that display proteins and peptides bearing unnatural amino acids with the requisite chemical reactive groups, in combination small molecules that bear the complementary reactive group, or by incorporating the unnatural amino acids into a chemically or recombinantly synthesised polypeptide when the molecule is being made after the selection/isolation phase. Further details can be found in WO 2009/098450 or Heinis, et al., Nat Chem Biol 2009, 5 (7), 502-7.
Synthesis
The peptides of the present invention may be manufactured synthetically by standard techniques followed by reaction with a molecular scaffold in vitro. When this is performed,
standard chemistry may be used. This enables the rapid large scale preparation of soluble material for further downstream experiments or validation. Such methods could be accomplished using conventional chemistry such as that disclosed in Timmerman et al. (supra).
Thus, the invention also relates to manufacture of polypeptides selected as set out herein, wherein the manufacture comprises optional further steps as explained below. In one embodiment, these steps are carried out on the end product polypeptide made by chemical synthesis.
Peptides can also be extended, to incorporate for example another loop and therefore introduce multiple specificities.
To extend the peptide, it may simply be extended chemically at its N-terminus or C-terminus or within the loops using orthogonally protected lysines (and analogues) using standard solid phase or solution phase chemistry. Standard (bio)conjugation techniques may be used to introduce an activated or activatable N- or C-terminus. Alternatively, additions may be made by fragment condensation or native chemical ligation e.g. as described in (Dawson et al. 1994. Synthesis of Proteins by Native Chemical Ligation. Science 266:776-779), or by enzymes, for example using subtiligase as described in (Chang et al. Proc Natl Acad Sci U S A. 1994 Dec 20; 91 (26): 12544-8 or in Hikari et al Bioorganic & Medicinal Chemistry Letters Volume 18, Issue 22, 15 November 2008, Pages 6000-6003).
Alternatively, the peptides may be extended or modified by further conjugation through disulphide bonds. This has the additional advantage of allowing the first and second peptide to dissociate from each other once within the reducing environment of the cell. In this case, the molecular scaffold (e.g. TATA or TATB) could be added during the chemical synthesis of the first peptide so as to react with the three cysteine groups; a further cysteine or thiol could then be appended to the N or C-terminus of the first peptide, so that this cysteine or thiol only reacted with a free cysteine or thiol of the second peptide, forming a disulfide -linked bicyclic peptide-peptide conjugate.
Similar techniques apply equally to the synthesis/coupling of two bicyclic and bispecific macrocycles, potentially creating a tetraspecific molecule.
Furthermore, addition of other functional groups or effector groups may be accomplished in the same manner, using appropriate chemistry, coupling at the N- or C-termini or via side chains. In one embodiment, the coupling is conducted in such a manner that it does not block the activity of either entity.
Pharmaceutical Compositions
According to a further aspect of the invention, there is provided a pharmaceutical composition comprising a peptide ligand as defined herein in combination with one or more pharmaceutically acceptable excipients.
Generally, the present peptide ligands will be utilised in purified form together with pharmacologically appropriate excipients or carriers. Typically, these excipients or carriers include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and/or buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride and lactated Ringer's. Suitable physiologically- acceptable adjuvants, if necessary to keep a polypeptide complex in suspension, may be chosen from thickeners such as carboxymethylcellulose, polyvinylpyrrolidone, gelatin and alginates.
Intravenous vehicles include fluid and nutrient replenishers and electrolyte replenishers, such as those based on Ringer's dextrose. Preservatives and other additives, such as antimicrobials, antioxidants, chelating agents and inert gases, may also be present (Mack (1982) Remington's Pharmaceutical Sciences, 16th Edition).
The compounds of the invention can be used alone or in combination with another agent or agents.
The compounds of the invention can also be used in combination with biological therapies such as nucleic acid based therapies, antibodies, bacteriophage or phage lysins.
The route of administration of pharmaceutical compositions according to the invention may be any of those commonly known to those of ordinary skill in the art. For therapy, the peptide ligands of the invention can be administered to any patient in accordance with standard techniques. Routes of administration include, but are not limited to, oral (e.g., by ingestion); buccal; sublingual; transdermal (including, e.g., by a patch, plaster, etc.); transmucosal (including, e.g., by a patch, plaster, etc.); intranasal (e.g., by nasal spray); ocular (e.g., by
eyedrops); pulmonary (e.g., by inhalation or insufflation therapy using, e.g., via an aerosol, e.g., through the mouth or nose); rectal (e.g., by suppository or enema); vaginal (e.g., by pessary); parenteral, for example, by injection, including subcutaneous, intradermal, intramuscular, intravenous, intraarterial, intracardiac, intrathecal, intraspinal, intracapsular, subcapsular, intraorbital, intraperitoneal, intratracheal, subcuticular, intraarticular, subarachnoid, and intrasternal; by implant of a depot or reservoir, for example, subcutaneously or intramuscularly. Preferably, the pharmaceutical compositions according to the invention will be administered parenterally. The dosage and frequency of administration will depend on the age, sex and condition of the patient, concurrent administration of other drugs, counterindications and other parameters to be taken into account by the clinician.
The peptide ligands of this invention can be lyophilised for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective and art-known lyophilisation and reconstitution techniques can be employed. It will be appreciated by those skilled in the art that lyophilisation and reconstitution can lead to varying degrees of activity loss and that levels may have to be adjusted upward to compensate.
The compositions containing the present peptide ligands or a cocktail thereof can be administered for therapeutic treatments. In certain therapeutic applications, an adequate amount to accomplish at least partial inhibition, suppression, modulation, killing, or some other measurable parameter, of a population of selected cells is defined as a "therapeutically- effective dose". Amounts needed to achieve this dosage will depend upon the severity of the disease and the general state of the patient's own immune system, but generally range from 10 pg to 250 mg of selected peptide ligand per kilogram of body weight, with doses of between 100 pg to 25 mg/kg/dose being more commonly used.
A composition containing a peptide ligand according to the present invention may be utilised in therapeutic settings to treat a microbial infection or to provide prophylaxis to a subject at risk of infection e.g. undergoing surgery, chemotherapy, artificial ventilation or other condition or planned intervention. In addition, the peptide ligands described herein may be used extracorporeal ly or in vitro selectively to kill, deplete or otherwise effectively remove a target cell population from a heterogeneous collection of cells. Blood from a mammal may be combined extracorporeally with the selected peptide ligands whereby the undesired cells are killed or otherwise removed from the blood for return to the mammal in accordance with standard techniques.
Therapeutic Uses
The bicyclic peptides of the invention have specific utility as ACE2 binding agents.
It will be appreciated that the present invention may be useful as a prophylactic or therapeutic agent for the treatment of any suitable respiratory disorder.
Thus, according to a further aspect of the invention there is provided a peptide ligand as defined herein for use in the prophylaxis or treatment of a respiratory disorder.
According to a further aspect of the invention, there is provided a method of suppressing or treating a respiratory disorder, which comprises administering to a patient in need thereof the peptide ligand as defined herein.
The invention finds particular utility in the prophylaxis or treatment of a respiratory disorder which is mediated by an inflammatory response within the lung. It will be appreciated that such inflammatory responses may be mediated by either a bacterial infection or a viral infection.
In one embodiment, the inflammatory response is mediated by a viral infection.
In a further embodiment, the viral infection is an infection of: rhinovirus; respiratory syncytial virus (RSV); human metapneumovirus (hMPV); influenza; severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1); severe acute respiratory syndrome- related coronavirus (SARSr-CoV); severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2); or Middle East respiratory syndrome coronavirus (MERS-CoV).
In a yet further embodiment the viral infection is an infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
It will therefore be appreciated that the respiratory disorders intended to be alleviated or treated by the pharmaceutical composition of the invention includes those caused by the above mentioned viruses. Thus, in one embodiment, the respiratory disorder is selected from: Coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and pulmonary arterial hypertension (PAH).
In a further embodiment, the respiratory disorder is Coronavirus disease 2019 (COVID-19).
In an alternative aspect of the invention there is provided a peptide ligand as defined herein for use in the prophylaxis or treatment of an inflammatory bowel disease (IBD), such as colitis, in particular ulcerative colitis. Byrnes et a/ (2009) Inflamm. Res. 58(11), 819-27 demonstrated that ACE2 inhibitors may have therapeutic utility for inflammatory bowel disease.
Polypeptide ligands selected according to the method of the present invention may be employed in in vivo therapeutic applications, in vitro and in vivo diagnostic applications, in vitro assay and reagent applications, and the like. In some applications, such as vaccine applications, the ability to elicit an immune response to predetermined ranges of antigens can be exploited to tailor a vaccine to specific diseases and pathogens.
Substantially pure peptide ligands of at least 90 to 95% homogeneity are preferred for administration to a mammal, and 98 to 99% or more homogeneity is most preferred for pharmaceutical uses, especially when the mammal is a human. Once purified, partially or to homogeneity as desired, the selected polypeptides may be used diagnostically or therapeutically (including extracorporeal ly) or in developing and performing assay procedures, immunofluorescent stainings and the like (Lefkovite and Pernis, (1979 and 1981) Immunological Methods, Volumes I and II, Academic Press, NY).
References herein to the term "suppression" refers to administration of the composition after an inductive event, but prior to the clinical appearance of the disease. "Treatment" involves administration of the protective composition after disease symptoms become manifest.
Animal model systems which can be used to screen the effectiveness of the peptide ligands in protecting against or treating the disease are available.
The invention is further described below with reference to the following examples.
EXAMPLES
Materials and Methods
Peptide Synthesis
Peptide synthesis was based on Fmoc chemistry, using a Symphony peptide synthesiser manufactured by Peptide Instruments and a Syro II synthesiser by MultiSynTech. Standard
Fmoc-amino acids were employed (Sigma, Merck), with appropriate side chain protecting groups: where applicable standard coupling conditions were used in each case, followed by deprotection using standard methodology.
Alternatively, peptides were purified using HPLC and following isolation they were modified with the required molecular scaffold (namely, TATA or TATB). For this, linear peptide was diluted with 50:50 MeC k W up to ~35 mL, -500 pL of 100 mM scaffold in acetonitrile was added, and the reaction was initiated with 5 mL of 1 M NH4HCO3 in H2O. The reaction was allowed to proceed for -30 -60 min at RT, and lyophilised once the reaction had completed (judged by MALDI). Once completed, 1ml of 1M L-cysteine hydrochloride monohydrate (Sigma) in H2O was added to the reaction for -60 min at RT to quench any excess TATA or TATB.
Following lyophilisation, the modified peptide was purified as above, while replacing the Luna C8 with a Gemini C18 column (Phenomenex), and changing the acid to 0.1% trifluoroacetic acid. Pure fractions containing the correct scaffold-modified material were pooled, lyophilised and kept at -20°C for storage.
All amino acids, unless noted otherwise, were used in the L- configurations.
In some cases peptides are converted to activated disulfides prior to coupling with the free thiol group of a toxin using the following method; a solution of 4-methyl(succinimidyl 4-(2- pyridylthio)pentanoate) (100mM) in dry DMSO (1.25 mol equiv) was added to a solution of peptide (20mM) in dry DMSO (1 mol equiv). The reaction was well mixed and DIPEA (20 mol equiv) was added. The reaction was monitored by LC/MS until complete.
BIOLOGICAL DATA
1. Affinity Determination by Surface Plasmon Resonance (SPR)
Human ACE2 protein (AcroBiosystems - AC2-H52H8) was immobilized on a Series S Sensor Chip CM5 (Cytiva) using standard primary amine-coupling chemistry at 25°C with HBS-P+ (10 mM HEPES, 0.15 M NaCI, 0.05% v/v Surfactant P20), 1 pM ZnCI2, 1 % dimethylsulfoxide, pH 7.4 as the running buffer (used throughout). The carboxymethyl dextran surface was activated with a 7 min injection of a 1 :1 ratio of 0.4 M 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) / 0.1 M N-hydroxy succinimide (NHS) at a flow rate of 10 pl/min. ACE2 protein was diluted to 40 nM in 10 mM sodium
acetate (pH 4.5) and captured by injecting 16 pl at a flow rate of 5 pl/min onto the activated chip surface in pulses. Residual activated groups were blocked with a 7 min injection of 1 M ethanolamine (pH 8.5) and ACE2 captured to a level of approximately 970 Rll. To determine the affinity for ACE2, single cycle kinetic SPR analysis was run on a Biacore T200 instrument (Cytiva) at 25°C at a flow rate of 30 pl/min with association time of 60 seconds and dissociation time of between 120 and 7200 seconds depending upon the individual experiment. Data were solvent corrected for DMSO excluded volume effects. All data were double-referenced for buffer blank injections and reference surface using standard processing procedures and data processing and kinetic fitting were performed using Biacore T200 Evaluation Software v3.1 Data were fitted using simple 1:1 binding model where appropriate.
Selected peptides of the invention were tested in the above mentioned SPR assay and the results are shown in Table 1.
2. Enzymatic Activity Inhibition
Inhibition studies were performed using an assay buffer of 50 mM HEPES, 150 mM NaCI, 1 pM ZnCh, 0.015 % Triton X-100 and 2.5 % dimethylsulfoxide in a black walled 384-well assay plate (Corning - 3575). Human ACE2 protein (AcroBiosystems - AC2-H52H8) at 5 pM (final assay concentration), was incubated with a duplicate titration of bicyclic peptide from a maximum concentration of 40 uM (final assay concentration) for a period of 15 minutes. Subsequently, 40 pM (final assay concentration) of Mca-APK(Dnp) substrate was added to initiate the enzymatic reaction. Upon cleavage of substrate at the Pro-Lys peptide linkage, Dnp (2,4-dinitrophenyl) is no longer able to quench the fluorescence of Mca (7- methoxycoumarin-4-yl) which was observed via a 320 400 Fl optic module on a Pherastar FS/FSX (BMG Labtech). The initial rates of substrate cleavage were determined for each bicyclic peptide titration point over a 75 minute timecourse with 91 second cycle intervals. These were normalised to low (substrate only) and high (ACE2 with substrate) references and fit via non-linear regression analysis using the following model: log(inhibitor) vs. response -- Variable slope (four parameters) in GraphPad Prism v9.2.0 (332) to determine an IC50.
Claims
1. A peptide ligand specific for ACE2 comprising a polypeptide comprising at least three reactive groups, separated by at least two loop sequences, and a molecular scaffold which forms covalent bonds with the reactive groups of the polypeptide such that at least two polypeptide loops are formed on the molecular scaffold and wherein the peptide ligand comprises an amino acid sequence which is selected from:
CrXi-Xz-Xs^-Cii-Xs-Xe-Xy-Xs-Xg-Xio-Xn-Xiz-Ciii (SEQ ID NO: 23);
CjTTSLQCiiEFPKASCiii (SEQ ID NO: 3); and CiSSIQGGWLCiiLLMSCiii (SEQ ID NO: 4), or a pharmaceutically acceptable salt thereof, wherein: Xi represents L, V, tBuGly, AlloThr, T or G; X2 represents P, L, R or Agb;
X3 represents D, P, S or Q;
X4 represents E, N, H, F, 4MePhe, 4FPhe, 4CIPhe or PheNF^Me;
X5 represents V, C, S or H;
Xe represents S, T or D;
X7 represents T, A, L or tBuAla;
Xs represents S, Q, L or M;
Xg represents L, D, P, HyP or Cis-HyP;
X10 represents G, A, R or HArg;
Xu represents P, S, I or H;
X12 represents N, D, H or L;
Ci, Cii and Cm represent first, second and third cysteine residues, respectively; tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNF^Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine, with the proviso that when the amino acid sequence of SEQ ID NO: 23 is an amino acid sequence of SEQ ID NO: 22, said molecular scaffold is other than TATA.
2. The peptide ligand as defined in claim 1 , which comprises the amino acid sequence of SEQ ID NO: 23.
3. The peptide ligand as defined in claim 1 or claim 2, wherein the peptide ligand of SEQ ID NO: 23 comprises an amino acid sequence which is selected from:
CiLPDECiiVSTSLGPNCiii (SEQ ID NO: 1);
CjVLPNCiiVSAQDASDCiii (SEQ ID NO: 2);
CiVRSHCiiCSLLPRIHCiii (SEQ ID NO: 5);
CjVRSHCiiSSLLPRIHCiii (SEQ ID NO: 6; herein referred to as BCY20855); Ci[tBuGly]RSHCiiSSLLPRIHCiii (SEQ ID NO: 7); Ci[AlloThr]RSHCiiSSLLPRIHCiii (SEQ ID NO: 8);
CiTRSHCiiSSLLPRIHCiii (SEQ ID NO: 9);
CiV[Agb]SHCiiSSLLPRIHCiii (SEQ ID NO: 10);
CiVRSFCiiSSLLPRIHCiii (SEQ ID NO: 11);
CiVRS[4MePhe]CiiSSLLPRIHCiii (SEQ ID NO: 12);
CiVRS[4FPhe]CiiSSLLPRIHCiii (SEQ ID NO: 13);
CiVRS[4CIPhe]CiiSSLLPRIHCiii (SEQ ID NO: 14);
CiVRSHCiiSTLLPRIHCiii (SEQ ID NO: 15);
CiVRSHCiiSDLLPRIHCiii (SEQ ID NO: 16);
CiVRSHCiiSS[tBuAla]LPRIHCiii (SEQ ID NO: 17);
CiVRSHCiiSSLL[HyP]RIHCiii (SEQ ID NO: 18);
CiVRSHCiiSSLL[Cis-HyP]RIHCiii (SEQ ID NO: 19); CiVRSHCiiSSLLP[HArg]IHCiii (SEQ ID NO: 20); CiVRS[Phe(NH2Me)]CiiSSLLPRIHCiii (SEQ ID NO: 21); CiGRQFCiiHTLMPRHLCiii(SEQ ID NO: 22); and wherein Ci, CH and Cm represent first, second and third cysteine residues, respectively; tBuGly represents t-butyl-glycine, AlloThr represents allothreonine, Agb represents 2-amino- 4-guanidinobutyric acid, 4MePhe represents 4-methyl-phenylalanine, 4FPhe represents 4- fluoro-phenylalanine, 4CIPhe represents 4-chloro-phenylalanine, PheNF^Me represents 4- (aminomethyl)phenylalanine, tBuAla represents t-butyl-alanine, HyP represents hydroxyproline, Cis-HyP represents cis-L-4-hydroxyproline and HArg represents homoarginine, or a pharmaceutically acceptable salt thereof.
4. The peptide ligand as defined in any one of claims 1 to 3, wherein said molecular scaffold is TATA and the bicyclic peptide ligand of SEQ ID NO: 23 optionally additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is selected from:
A-(SEQ ID NO: 1)-A (herein referred to as BCY15518);
A-(SEQ ID NO: 2)-A (herein referred to as BCY15519);
A-(SEQ ID NO: 5)-A (herein referred to as BCY19845);
Ac-A-(SEQ ID NO: 6)-A (herein referred to as BCY20854);
(SEQ ID NO: 6) (herein referred to as BCY20855);
Ac-(SEQ ID NO: 6) (herein referred to as BCY20856);
A-(SEQ ID NO: 7)-A (herein referred to as BCY20857);
A-(SEQ ID NO: 8)-A (herein referred to as BCY20858);
A-(SEQ ID NO: 9)-A (herein referred to as BCY20859);
A-(SEQ ID NO: 10)-A (herein referred to as BCY20860);
A-(SEQ ID NO: 11)-A (herein referred to as BCY20861);
A-(SEQ ID NO: 12)-A (herein referred to as BCY20862);
A-(SEQ ID NO: 13)-A (herein referred to as BCY20863);
A-(SEQ ID NO: 14)-A (herein referred to as BCY20864);
A-(SEQ ID NO: 15)-A (herein referred to as BCY20865);
A-(SEQ ID NO: 16)-A (herein referred to as BCY20866);
A-(SEQ ID NO: 17)-A (herein referred to as BCY20867);
A-(SEQ ID NO: 18)-A (herein referred to as BCY20868);
A-(SEQ ID NO: 19)-A (herein referred to as BCY20869);
A-(SEQ ID NO: 20)-A (herein referred to as BCY20870); and
A-(SEQ ID NO: 21)-A (herein referred to as BCY20871).
5. The peptide ligand as defined in any one of claims 1 to 3, wherein said molecular scaffold is TATB and the bicyclic peptide ligand of SEQ ID NO: 23 optionally additionally comprises N- and/or C-terminal additions and comprises an amino acid sequence which is selected from:
A-(SEQ ID NO: 6)-A (herein referred to as BCY21084); and A-(SEQ ID NO: 22)-A (herein referred to as BCY21085).
6. The peptide ligand as defined in claim 1 , which comprises the amino acid sequence of SEQ ID NO: 3.
7. The peptide ligand as defined in claim 1 or claim 6, wherein said molecular scaffold is TATA and the bicyclic peptide ligand of SEQ ID NO: 3 additionally comprises N- and/or C- terminal additions and comprises an amino acid sequence which is:
A-(SEQ ID NO: 3)-A (herein referred to as BCY15520).
8. The peptide ligand as defined in claim 1, which comprises the amino acid sequence of SEQ ID NO: 4.
9. The peptide ligand as defined in claim 1 or claim 8, wherein said molecular scaffold is TATB and the bicyclic peptide ligand of SEQ ID NO: 4 additionally comprises N- and/or C- terminal additions and comprises an amino acid sequence which is:
A-(SEQ ID NO: 4)-A (herein referred to as BCY15521).
10. The peptide ligand according to any one of claims 1 to 9, wherein the pharmaceutically acceptable salt is selected from the free acid or the sodium, potassium, calcium and ammonium salt.
11. A pharmaceutical composition which comprises the peptide ligand of any one of claims 1 to 10, in combination with one or more pharmaceutically acceptable excipients.
12. The pharmaceutical composition according to claim 11 , which additionally comprises one or more therapeutic agents.
13. The peptide ligand according to any of claims 1 to 10, or the pharmaceutical composition as defined in claim 11 or claim 12, for use in the prophylaxis or treatment of a respiratory disorder.
14. The peptide ligand for use according to claim 13, wherein the inflammatory response is mediated by a viral infection, such as an infection of: rhinovirus; respiratory syncytial virus (RSV); human metapneumovirus (hMPV); influenza; severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1); severe acute respiratory syndrome- related coronavirus (SARSr-CoV); severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2); or Middle East respiratory syndrome coronavirus (MERS-CoV), in particular infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
15. The peptide ligand for use according to claim 13, wherein the respiratory disorder is selected from: Coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and pulmonary arterial hypertension (PAH), such as Coronavirus disease 2019 (COVID-19).
16. The peptide ligand according to any of claims 1 to 10, or the pharmaceutical composition as defined in claim 11 or claim 12, for use in the prophylaxis or treatment of an inflammatory bowel disease (IBD), such as colitis, in particular ulcerative colitis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2116263.1 | 2021-11-11 | ||
GBGB2116263.1A GB202116263D0 (en) | 2021-11-11 | 2021-11-11 | Anti-infective bicyclic peptide ligands |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023084234A1 true WO2023084234A1 (en) | 2023-05-19 |
Family
ID=79163542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2022/052865 WO2023084234A1 (en) | 2021-11-11 | 2022-11-11 | Anti-infective bicyclic peptide ligands |
Country Status (2)
Country | Link |
---|---|
GB (1) | GB202116263D0 (en) |
WO (1) | WO2023084234A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002098448A1 (en) * | 2001-06-04 | 2002-12-12 | Human Genome Sciences, Inc. | Methods and compositions for modulating ace-2 activity |
WO2009098450A2 (en) | 2008-02-05 | 2009-08-13 | Medical Research Council | Methods and compositions |
WO2021216845A1 (en) * | 2020-04-22 | 2021-10-28 | Dana-Farber Cancer Institute, Inc. | Antiviral structurally-stabilized ace2 helix 1 peptides and uses thereof |
WO2021229238A1 (en) * | 2020-05-15 | 2021-11-18 | Bicycletx Limited | Anti-infective bicyclic peptide ligands |
WO2022148970A1 (en) * | 2021-01-08 | 2022-07-14 | Bicycletx Limited | Anti-infective bicyclic peptide ligands |
-
2021
- 2021-11-11 GB GBGB2116263.1A patent/GB202116263D0/en not_active Ceased
-
2022
- 2022-11-11 WO PCT/GB2022/052865 patent/WO2023084234A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002098448A1 (en) * | 2001-06-04 | 2002-12-12 | Human Genome Sciences, Inc. | Methods and compositions for modulating ace-2 activity |
WO2009098450A2 (en) | 2008-02-05 | 2009-08-13 | Medical Research Council | Methods and compositions |
WO2021216845A1 (en) * | 2020-04-22 | 2021-10-28 | Dana-Farber Cancer Institute, Inc. | Antiviral structurally-stabilized ace2 helix 1 peptides and uses thereof |
WO2021229238A1 (en) * | 2020-05-15 | 2021-11-18 | Bicycletx Limited | Anti-infective bicyclic peptide ligands |
WO2022148970A1 (en) * | 2021-01-08 | 2022-07-14 | Bicycletx Limited | Anti-infective bicyclic peptide ligands |
Non-Patent Citations (21)
Title |
---|
"Pharmaceutical Salts: Properties, Selection, and Use", August 2002, pages: 388 |
ANONYMOUS: "Bicycle Therapeutics Announces Significant Progress Across Multiple Therapeutic Programs Beyond Oncology", 30 March 2021 (2021-03-30), XP055929245, Retrieved from the Internet <URL:https://investors.bicycletherapeutics.com/node/7746/pdf> [retrieved on 20220609] * |
AUSUBEL ET AL.: "Short Protocols in Molecular Biology", 1999, JOHN WILEY & SONS, INC. |
BASIT ABDUL ET AL: "Designing Short Peptides to Block the Interaction of SARS-CoV-2 and Human ACE2 for COVID-19 Therapeutics", FRONTIERS IN PHARMACOLOGY, vol. 12, 27 August 2021 (2021-08-27), CH, XP093016756, ISSN: 1663-9812, Retrieved from the Internet <URL:https://doi.org/10.3389/fphar.2021.731828?nosfx=y> DOI: 10.3389/fphar.2021.731828 * |
BYRNES ET AL., INFLAMM. RES., vol. 58, no. 11, 2009, pages 819 - 27 |
CHANG ET AL., PROC NATL ACAD SCI USA., vol. 91, no. 26, 20 December 1994 (1994-12-20), pages 12544 - 8 |
DAWSON ET AL.: "Synthesis of Proteins by Native Chemical Ligation", SCIENCE, vol. 266, pages 776 - 779, XP002064666, DOI: 10.1126/science.7973629 |
GENTILUCCI ET AL., CURR. PHARMACEUTICAL DESIGN, vol. 16, 2010, pages 3185 - 203 |
HEINIS ET AL., NAT CHEM BIOL, vol. 5, no. 7, 2009, pages 502 - 7 |
HEINIS ET AL.: "Angewandte Chemie", vol. 53, 2014, pages: 1602 - 1606 |
HIKARI ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, 15 November 2008 (2008-11-15), pages 6000 - 6003 |
JOHN J BYRNES ET AL: "Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice", INFLAMMATION RESEARCH ; OFFICIAL JOURNAL OF: THE INTERNATIONAL ASSOCIATION OF INFLAMMATION SOCIETIES THE EUROPEAN HISTAMINE RESEARCH SOCIETY, BIRKHÄUSER-VERLAG, BA, vol. 58, no. 11, 11 June 2009 (2009-06-11), pages 819 - 827, XP019751758, ISSN: 1420-908X, DOI: 10.1007/S00011-009-0053-3 * |
KAYCIE DEYLE ET AL: "Phage Selection of Cyclic Peptides for Application in Research and Drug Development", ACCOUNTS OF CHEMICAL RESEARCH, vol. 50, no. 8, 18 July 2017 (2017-07-18), US, pages 1866 - 1874, XP055562233, ISSN: 0001-4842, DOI: 10.1021/acs.accounts.7b00184 * |
LEFKOVITEPERNIS: "Immunological Methods", vol. 1, 2, 1979, ACADEMIC PRESS |
MACK: "Remington's Pharmaceutical Sciences", 1982 |
NAIR ET AL., J IMMUNOL, vol. 170, no. 3, 2003, pages 1362 - 1373 |
NESTOR ET AL., CURR. MEDICINAL CHEM, vol. 16, 2009, pages 4399 - 418 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SCHREIBER ET AL.: "Rapid, electrostatically assisted association of proteins", NATURE STRUCT. BIOL., vol. 3, 1996, pages 427 - 31 |
TUGYI ET AL., PNAS, vol. 102, no. 2, 2005, pages 413 - 418 |
VERDECCHIA ET AL., EUROPEAN JOURNAL OF INTERNAL MEDICINE, vol. 76, 2020, pages 14 - 20 |
Also Published As
Publication number | Publication date |
---|---|
GB202116263D0 (en) | 2021-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021229238A1 (en) | Anti-infective bicyclic peptide ligands | |
US20220227811A1 (en) | Heterotandem bicyclic peptide complexes | |
CA3154672A1 (en) | Bicyclic peptide ligand drug conjugates | |
WO2022148969A1 (en) | Anti-infective bicyclic peptide ligands | |
WO2021220011A1 (en) | Anti-infective bicyclic peptide conjugates | |
WO2022148970A1 (en) | Anti-infective bicyclic peptide ligands | |
EP4274839A1 (en) | Anti-infective bicyclic peptide ligands | |
WO2023084234A1 (en) | Anti-infective bicyclic peptide ligands | |
EP3911665A1 (en) | Bicyclic peptide ligands specific for caix | |
WO2023084236A1 (en) | Novel use | |
US20240083944A1 (en) | Anti-infective bicyclic peptide ligands | |
WO2024009108A1 (en) | Anti-infective bicyclic peptide ligands | |
US20240108737A1 (en) | Anti-infective bicyclic peptide ligands | |
CN117062826A (en) | Antiinfective bicyclic peptide ligands | |
WO2022195287A1 (en) | Bicyclic peptide ligands specific for trem2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22812714 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |