WO2023083755A1 - Détection perfectionnée de potentiels évoqués - Google Patents
Détection perfectionnée de potentiels évoqués Download PDFInfo
- Publication number
- WO2023083755A1 WO2023083755A1 PCT/EP2022/081001 EP2022081001W WO2023083755A1 WO 2023083755 A1 WO2023083755 A1 WO 2023083755A1 EP 2022081001 W EP2022081001 W EP 2022081001W WO 2023083755 A1 WO2023083755 A1 WO 2023083755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- sensory stimulation
- user
- signal
- frequencies
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 36
- 230000000763 evoking effect Effects 0.000 title claims abstract description 33
- 230000000638 stimulation Effects 0.000 claims abstract description 60
- 230000001953 sensory effect Effects 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- 230000004044 response Effects 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims description 11
- 238000004088 simulation Methods 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 3
- 230000036632 reaction speed Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 230000009471 action Effects 0.000 description 19
- 230000000007 visual effect Effects 0.000 description 8
- 230000004397 blinking Effects 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 4
- 230000002996 emotional effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
- A61B5/378—Visual stimuli
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
- A61B5/38—Acoustic or auditory stimuli
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
Definitions
- the invention relates to the detection of evoked potentials (visual, auditory or other), via direct neural interfaces.
- An evoked potential is a signal that appears in the electroencephalogram (or EEG hereafter) signals of a user when this user UT is subjected to sensory stimulation (visual, auditory, etc.).
- specific equipment includes a BCI headset (for "Brain-Computer Interface") to measure the EEG signals and to find in these signals the frequency of the stimulation (for example visual on the ).
- a man/machine interface such as an ECR screen can have a light source (flashing spot on the screen or an LED type diode in an alternative embodiment to a screen) which flashes at a frequency fn lower than the frequency of visual perception.
- An example of a widely used stimulus for an SSEVP application is an image (or an area of an image) flashing at a fixed rate.
- This stimulation (blinking) generates a visual evoked potential which consists of a signal of the same frequency as that of the blinking (plus any harmonics). It is possible to measure this frequency in the EEG signals of the person subjected to the blinking.
- the UT user must concentrate on this flashing for a long time (typically a few seconds and more particularly between 2 and 4 seconds for example) to guarantee that the detected signal does not correspond to an artifact.
- EEG signals are very variable from one person to another and vary widely depending on many parameters (fatigue, context, concentration, etc.).
- Some frequencies may therefore be more easily detectable in some people than others. It can also vary in the same person over time and according to certain conditions (emotional state, external disturbances, etc.).
- the present invention improves the situation.
- the detection method comprises a selection of frequencies according to a reaction speed of the user to the sensory simulation signals.
- the term "reproduce by a man-machine interface” means animating the aforementioned man-machine interface with a signal (visual, audio, or other) by producing, for example, periodic flashing on a screen (as an interface man-machine) or by playing on one or more loudspeakers a periodic audio signal.
- the implementation of the method makes it possible to modify a frequency of the stimulation signal if the latter does not cause, after a given latency threshold, a cerebral reaction of the user.
- the frequency is selected when a reaction latency of the user between a moment of generation of the signal and a moment of possible detection of the evoked potential is lower than a threshold.
- This reaction is generally expected after a period of about 2 to 4 seconds. If it does not occur (for example after 4 seconds), the frequency can be changed to stimulate the user with another frequency.
- the detection method may comprise: - an adjustment of the frequency of the signal to a first frequency, - then a measurement of a reaction latency of the user between a moment of generation of the signal and a moment of possible detection of the evoked potential, And : - if the latency is below a threshold, a selection of the first frequency comprising a storage of information according to which the first frequency is attributable to a sensory stimulation signal, - otherwise, a repetition of the evoked potential detection method with a second frequency replacing the first frequency, the second frequency being distinct from the first frequency.
- This second frequency can be lower to allow the user to concentrate more easily on the stimulation, or higher on the contrary to attract his attention.
- the aforementioned second frequency may be higher or lower than the first frequency, in general.
- the detection method comprises, if said latency is less than the threshold, a storage of information whereby this first frequency is assigned to this given signal of sensory stimulation.
- this frequency can be specifically assigned to this given signal.
- information is stored according to which the first frequency is assigned to this given sensory stimulation signal.
- the frequency of this signal is such that it causes a reaction whose latency is lower than the aforementioned threshold.
- This embodiment can be advantageous for example in the case of a display of flashing targets on a screen at respective distinct frequencies, and at respective distinct locations. In this case, if one of the targets caused a rapid detection at a given location, then if this target is to be displayed again in a later use, it can be displayed for example at the same location in the screen and flash at the same frequency.
- a plurality of given sensory stimulation signals can be assigned respective frequencies: - chosen from a set of candidate frequencies, and - whose generated sensory stimulation signal causes the detection of an evoked potential after a latency below said threshold.
- the aforementioned threshold can be fixed, for example 3 or 4 seconds. Alternatively, it may be relative, as explained in an embodiment below.
- this threshold can be relative, and the method can comprise for example: - a test of the frequencies of a set of N candidate frequencies to identify the K smallest reaction latencies to sensory stimulation signals generated respectively with the N candidate frequencies, with K ⁇ N, and - storage of information according to which the K frequencies having caused the K smallest reaction latencies are attributable to a sensory stimulation signal.
- these K frequencies are selected independently of a fixed threshold value.
- the last of the K frequencies selected can be such that their latencies are greater than 3 seconds, whereas the first of the K frequencies selected can be such that their latencies are less than 3 seconds.
- the aforementioned relative threshold can thus correspond to the maximum latency among the K smallest latencies, measured from N generations of sensory stimulation signals with the respective N frequencies of the set of candidate frequencies.
- the aforementioned method can be implemented during a calibration phase of a device for detecting evoked potential in the physiological signal of a given user, the device being intended for this given user.
- This may be a calibration of a device specific to the user.
- it may be a general calibration to a factory setting, with some frequencies being less efficient, overall, than others.
- the method can be implemented over the use, by a given user, of a device for detecting evoked potential in the physiological signal of this given user.
- the selections of the best frequencies are made as the device is used.
- this frequency can be excluded from the set of assignable frequencies, and replaced by a new frequency.
- Such an embodiment is advantageous in particular for varying the frequencies used according to different times of the day requiring different attention (in the morning, or after a meal, for example).
- the method can be implemented at different times of a day and provision is made for storing at least one frequency attributable to a sensory stimulation signal, in correspondence of a given moment of a day (time at which the latency below a threshold was measured).
- each moment can indeed be specific to a user. For example, some users are sensitive to certain frequencies in the evening, while others are more sensitive to them in the morning.
- the method can be implemented at different times of a day, for this given user, and provision can be made for storing at least one frequency attributable to a sensory stimulation signal intended for this given user, in correspondence of a given moment of a day.
- the stored frequency can also be stored in correspondence of a given user identifier if this user is not the only one using the device.
- frequency storage means above both the storage of a frequency index or a value of this frequency, of course.
- the present invention also relates to a computer program comprising instructions for the implementation of the method above, when these instructions are executed by a processor of a processing circuit.
- It also relates to a non-transitory computer medium storing instructions of a computer program of the above type, and readable by a processing circuit to execute the above method.
- the present invention also relates to a device for detecting evoked potential in a physiological signal of a user comprising: - a sensory stimulation signal generator, the sensory stimulation signal generator being connected to a man-machine interface capable of reproducing the sensory stimulation signal generated for the user, the sensory stimulation signal being periodic and adjustable in frequency , - a frequency selector depending on a reaction speed of the user to the sensory simulation signals.
- the evoked potential detection device may comprise at least: - a processing circuit configured to (select frequencies whose reaction latencies are below the aforementioned threshold and) generate (with a frequency thus selected) the sensory stimulation signal, - an output interface connected on the one hand to the processing circuit and on the other hand to a man-machine interface intended for the user, to reproduce the sensory stimulation signal, and - an input interface connected to the processing circuit to receive said physiological signal from the user.
- the processing circuit may comprise a memory storing at least identifiers (or values) of respective frequencies of sensory stimulation signals, and information specific to a part of said frequencies and according to which the frequencies of said part are currently attributable to sensory stimulation signals (depending on the current user, and/or depending on the current time of day, or others).
- the signal used consists of an image with a fixed blink rate. This image, when viewed by a human being, generates a visual evoked potential of a duration equivalent to the stimulation and which can be detected on the EEG signals recorded via a BCI headset.
- the user UT can view, for example, on the ECR screen of the several patterns flashing at different frequencies and each designating a different action (a logo to increase or decrease the volume of a television, a logo to change channels, etc.).
- the user UT concentrates his gaze on one of the flashing logos at a given frequency fn and the headset BCI identifies the frequency fn in the EEG signal.
- the action corresponding to this frequency can be executed.
- Such a method can allow the creation of a man/machine interface, for example for people with motor disabilities.
- N frequencies with N>K (strictly), and therefore thus more frequencies than possible actions.
- a calibration phase is implemented for each user in order to make the detection of his evoked potentials robust.
- This calibration can be performed before each use, which aims to improve the robustness of the detection.
- the calibration step can be performed with N frequencies instead of K usually. At the end of this calibration, it is then possible to have N frequencies to carry out K actions.
- frequencies that is to say those which allow the actions to be carried out with the fastest response from the user. This is because some frequencies are easier to detect in some people than in others. In addition, certain frequencies may also be better suited to certain times of the day or to certain conditions for the same user (concentration (noise or stresses around the user), emotional state, fatigue, or others).
- K frequencies are selected from the N available frequencies. This selection may or may not be random.
- the system is then used in the usual way by the user in order to be able to perform K possible actions.
- the system can remember the frequency fn which was recognized and how long (delay tn) it took to detect this frequency.
- the delay tn therefore represents the time difference between the start of sensory stimulation and the start of detection of the evoked potential in the user's EEG signal.
- the delay tn necessary to detect this frequency can be calculated a posteriori by analyzing the previously recorded EEG signal.
- the system can analyze the recorded sequence before the detection time. Knowing the frequency that has been recognized, it is therefore possible to analyze the energy in this frequency band and thus determine how long it had been present before the detection.
- this new frequency fm as well as its detection delay tm are recorded.
- a detection delay ti is obtained associated with each of the N available frequencies fi, at the end of step S2 of the .
- the N frequencies tested on the user can be chosen at step S1 of the according to different criteria.
- a first criterion is not to retain frequencies that are multiple of each other in the set of N frequencies. Indeed, the EEG signal collects the frequency fn and possibly harmonics of this frequency. It is therefore appropriate to exclude multiples of this frequency fn in the set of N frequencies. For example, frequencies such as 10.1 Hz and 10.2 Hz can be retained, it being demonstrated that an individual's brain can distinguish a frequency deviation as small as 0.1 Hz and deliver evoked potentials at these frequencies. respective. It is also possible to filter disturbing frequencies such as the frequencies of the electrical distribution network (50Hz in France), and its harmonics or its divisions for example by two (25Hz, 12.5Hz, etc.).
- step S3 After obtaining a delay tn measured by frequency fn, it is possible to classify these N frequencies in step S3. Indeed, the best frequency is the one allowing the fastest detection (ie the shortest delay tn). After classifying these N frequencies fn in order of increasing durations tn, it is possible to select in step S4 the K best frequencies (those whose respective K durations are the smallest) and assign them to the K actions used by the system. This allocation can be done randomly or not. The non-random case corresponds to that where a frequency is chosen for a specific action, for example the best detected frequency is that whose action is generally used the most (such as for example "cancel and go back").
- the K selected frequencies are denoted f'1, ..., f'K, the notation “f'” for these frequencies being justified because they are not necessarily identical to the first K frequencies of the set Sn of the N frequencies f1, ... , fK, ..., fN.
- a previously discarded frequency (among N frequencies) can henceforth be better than the K commonly used frequencies. It is therefore advantageous to provide the possibility of reintroducing the discarded frequencies by repeating steps S2 to S4, for a new selection of K frequencies. This can be carried out after a time delay (step S5 in dotted lines) fixed beforehand (for example after a few hours of use) or via a voluntary action by the user, for example.
- the invention combines the following advantages:
- the invention finds numerous applications, in particular all applications using the SSVEP (by improving this approach). It can allow, for example, the control of a connected house via a BCI headset (switch on the television, change the channel, switch on the light, switch off the heating, etc.)
- a calibration phase has been described as the first step of selecting the K frequencies from among N possible ones. Nevertheless, during the calibration, a certain number of elements can be stored, in particular the power in the frequency band of interest and the duration during which this power is observed. Then, when the user uses the system, the N frequencies are each used once and these frequencies are detected thanks to the elements (power, duration, etc.) recorded during the calibration phase. Then the detection delay tn, measured for each frequency fn, makes it possible to classify the frequencies from the best to the worst (according to the criterion of the detection delay).
- This classification of frequencies can be carried out during the calibration phase itself as described above, or simply during use, typically by detecting the reaction time at each frequency used for an action, for example.
- One or more speakers can play sounds (e.g. beeps) of different frequencies and a user concentrating on one of the sounds can thus select an action.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Theoretical Computer Science (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Surgery (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Neurology (AREA)
- General Physics & Mathematics (AREA)
- Neurosurgery (AREA)
- Human Computer Interaction (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
- un réglage de la fréquence du signal à une première fréquence,
- puis une mesure d’une latence de réaction de l’utilisateur entre un moment de génération du signal et un moment de détection éventuelle du potentiel évoqué,
et :
- si la latence est inférieure à un seuil, une sélection de la première fréquence comportant un stockage d’une information selon laquelle la première fréquence est attribuable à un signal de stimulation sensorielle,
- sinon, une répétition du procédé de détection de potentiel évoqué avec une deuxième fréquence en remplacement de la première fréquence, la deuxième fréquence étant distincte de la première fréquence.
- choisies dans un ensemble de fréquences candidates, et
- dont le signal de stimulation sensorielle généré provoque la détection d’un potentiel évoqué après une latence inférieure audit seuil.
- un test des fréquences d’un ensemble de N fréquences candidates pour identifier les K plus petites latences de réaction à des signaux de stimulation sensorielle générés respectivement avec les N fréquences candidates, avec K<N, et
- un stockage d’une information selon laquelle les K fréquences ayant provoqué les K latences de réaction les plus petites sont attribuables à un signal de stimulation sensorielle.
- un générateur de signaux de stimulation sensorielle, le générateur de signaux de stimulation sensorielle étant connecté à une interface homme machine apte à reproduire le signal de stimulation sensorielle généré à destination de l’utilisateur, le signal de stimulation sensorielle étant périodique et réglable en fréquence,
- un sélecteur de fréquences en fonction en fonction d’une vitesse de réaction de l’utilisateur aux signaux de simulation sensorielle.
- un circuit de traitement configuré pour (sélectionner des fréquences dont les latences de réaction sont inférieures au seuil précité et) générer (avec une fréquence ainsi sélectionnée) le signal de stimulation sensorielle,
- une interface de sortie reliée d’une part au circuit de traitement et d’autre part à une interface homme machine destinée à l’utilisateur, pour reproduire le signal de stimulation sensorielle, et
- une interface d’entrée reliée au circuit de traitement pour recevoir ledit signal physiologique de l’utilisateur.
Claims (14)
- Procédé de détection d’un potentiel évoqué dans un signal physiologique (EEG) d’un utilisateur (UT), en réaction à la génération d’un signal de stimulation sensorielle (SSS) reproduit par une interface homme machine (ECR) destinée à l’utilisateur (UT), le signal de stimulation sensorielle (SSS) étant périodique et réglable en fréquence, dans lequel, le procédé de détection comporte une sélection de fréquences en fonction d’une vitesse de réaction de l’utilisateur aux signaux de simulation sensorielle.
- Procédé de détection selon la revendication 1, dans lequel, pour un signal de stimulation sensorielle, la fréquence est sélectionnée lorsqu’une latence de réaction (tn) de l’utilisateur entre un moment de génération du signal et un moment de détection éventuelle du potentiel évoqué est inférieure à un seuil.
- Procédé de détection selon l’une quelconque des revendications 1 ou 2, dans lequel pour un signal de stimulation sensorielle, le procédé de détection comporte :
- un réglage de la fréquence du signal à une première fréquence (fn),
- puis une mesure d’une latence de réaction (tn) de l’utilisateur entre un moment de génération du signal et un moment de détection éventuelle du potentiel évoqué,
et :
- si la latence (tn) est inférieure à un seuil, une sélection de la première fréquence comportant un stockage d’une information selon laquelle la première fréquence est attribuable à un signal de stimulation sensorielle (SSS),
- sinon, une répétition du procédé de détection de potentiel évoqué avec une deuxième fréquence en remplacement de la première fréquence, la deuxième fréquence étant distincte de la première fréquence. - Procédé selon l’une des revendications 2 ou 3, dans lequel, le procédé de détection comporte, si ladite latence (tn) est inférieure au seuil, un stockage d’une information selon laquelle la première fréquence (fn) est attribuée audit signal donné de stimulation sensorielle (SSSn).
- Procédé selon l’une des revendications 2 à 4, dans lequel on attribue, à une pluralité de signaux donnés de stimulation sensorielle, des fréquences respectives (f’k) :
- choisies dans un ensemble de fréquences candidates (f1, …, fN), et
- dont le signal de stimulation sensorielle généré provoque la détection d’un potentiel évoqué après une latence inférieure audit seuil. - Procédé selon l’une des revendications 2 à 5, dans lequel ledit seuil est relatif, et le procédé comporte :
- un test des fréquences d’un ensemble de N fréquences candidates pour identifier les K plus petites latences de réaction à des signaux de stimulation sensorielle générés respectivement avec les N fréquences candidates, avec K<N, et
- un stockage d’une information selon laquelle les K fréquences ayant provoqué les K latences de réaction les plus petites sont attribuables à un signal de stimulation sensorielle (SSS). - Procédé selon l'une des revendications précédentes, mis en œuvre pendant une phase de calibration d’un dispositif (DIS) de détection de potentiel évoqué dans le signal physiologique d’un utilisateur donné, le dispositif étant destiné à cet utilisateur donné.
- Procédé selon l'une des revendications précédentes, mis en œuvre au fil d’une utilisation, par un utilisateur donné (UT), d’un dispositif (DIS) de détection de potentiel évoqué dans le signal physiologique de cet utilisateur donné.
- Procédé selon l’une des revendications précédentes, mis en œuvre à différents moments d’une journée et comportant un stockage d’au moins une fréquence attribuable à un signal de stimulation sensorielle (SSS), en correspondance d’un moment donné d’une journée.
- Procédé selon la revendication 8, mis en œuvre à différents moments d’une journée, pour un utilisateur donné, et comportant un stockage d’au moins une fréquence attribuable à un signal de stimulation sensorielle (SSS) destinée à cet utilisateur donné (UT), en correspondance d’un moment donné d’une journée.
- Programme informatique comportant des instructions pour la mise en œuvre du procédé selon l’une des revendications 1 à 10, lorsque lesdites instructions sont exécutées par un processeur d’un circuit de traitement.
- Dispositif de détection de potentiel évoqué dans un signal physiologique d’un utilisateur comportant :
- un générateur de signaux de stimulation sensorielle (SSS), le générateur de signaux de stimulation sensorielle étant connecté à une interface homme machine (ECR) apte à reproduire le signal de stimulation sensorielle généré à destination de l’utilisateur (UT), le signal de stimulation sensorielle (SSS) étant périodique et réglable en fréquence,
- un sélecteur de fréquences en fonction en fonction d’une vitesse de réaction de l’utilisateur aux signaux de simulation sensorielle. - Dispositif de détection de potentiel évoqué selon la revendication 12, dans lequel le dispositif de détection comporte au moins :
- un circuit de traitement (PROC, MEM) configuré pour générer le signal de stimulation sensorielle (SSS) et sélectionner au moins une fréquence,
- une interface de sortie (OUT) reliée d’une part au circuit de traitement et d’autre part à une interface homme machine (ECR) destinée à l’utilisateur (UT), pour reproduire le signal de stimulation sensorielle (SSS), et
- une interface d’entrée (IN) reliée au circuit de traitement pour recevoir ledit signal physiologique de l’utilisateur. - Dispositif selon la revendication 13, dans lequel le circuit de traitement comporte une mémoire (MEM) stockant au moins des identifiants de fréquences respectives de signaux de stimulation sensorielle (SSS), et des informations propres à une partie desdites fréquences et selon lesquelles les fréquences de ladite partie sont couramment attribuables à des signaux de stimulation sensorielle (SSS).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22814003.4A EP4429550A1 (fr) | 2021-11-09 | 2022-11-07 | Détection perfectionnée de potentiels évoqués |
CN202280071651.2A CN118201551A (zh) | 2021-11-09 | 2022-11-07 | 诱发电位的改进检测 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2111859 | 2021-11-09 | ||
FR2111859A FR3128869A1 (fr) | 2021-11-09 | 2021-11-09 | Détection perfectionnée de potentiels évoqués |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023083755A1 true WO2023083755A1 (fr) | 2023-05-19 |
Family
ID=80595475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2022/081001 WO2023083755A1 (fr) | 2021-11-09 | 2022-11-07 | Détection perfectionnée de potentiels évoqués |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4429550A1 (fr) |
CN (1) | CN118201551A (fr) |
FR (1) | FR3128869A1 (fr) |
WO (1) | WO2023083755A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118692694A (zh) * | 2024-08-27 | 2024-09-24 | 博睿康医疗科技(上海)有限公司 | 基于诱发电位的监测系统、术中监控方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105868562A (zh) * | 2016-03-31 | 2016-08-17 | 天津大学 | 基于稳态视觉诱发电位调制的神经工效增强方法和装置 |
KR101720766B1 (ko) * | 2015-12-01 | 2017-03-28 | 고려대학교 산학협력단 | 거리 변화를 고려한 안정 상태 시각 유발 전위 기반 뇌파 분석 장치 및 방법 |
US20190384392A1 (en) * | 2013-03-15 | 2019-12-19 | Interaxon Inc. | Wearable computing apparatus and method |
-
2021
- 2021-11-09 FR FR2111859A patent/FR3128869A1/fr not_active Withdrawn
-
2022
- 2022-11-07 CN CN202280071651.2A patent/CN118201551A/zh active Pending
- 2022-11-07 EP EP22814003.4A patent/EP4429550A1/fr active Pending
- 2022-11-07 WO PCT/EP2022/081001 patent/WO2023083755A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190384392A1 (en) * | 2013-03-15 | 2019-12-19 | Interaxon Inc. | Wearable computing apparatus and method |
KR101720766B1 (ko) * | 2015-12-01 | 2017-03-28 | 고려대학교 산학협력단 | 거리 변화를 고려한 안정 상태 시각 유발 전위 기반 뇌파 분석 장치 및 방법 |
CN105868562A (zh) * | 2016-03-31 | 2016-08-17 | 天津大学 | 基于稳态视觉诱发电位调制的神经工效增强方法和装置 |
Non-Patent Citations (4)
Title |
---|
HUBERT CECOTTI: "A Self-Paced and Calibration-Less SSVEP-Based Brain-Computer Interface Speller", IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, IEEE, USA, vol. 18, no. 2, 1 April 2010 (2010-04-01), pages 127 - 133, XP011328423, ISSN: 1534-4320, DOI: 10.1109/TNSRE.2009.2039594 * |
NICOLAE IRINA-EMILIA: "An improved stimuli system for Brain-Computer Interface applications", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE - ECAI-2013, IEEE, 27 June 2013 (2013-06-27), pages 1 - 4, XP032510552, ISBN: 978-1-4673-4935-2, [retrieved on 20131017], DOI: 10.1109/ECAI.2013.6636157 * |
SHIAM ABDULLAH AL ET AL: "Brain Computer Interface Implementation with Short-Time SSVEP", 2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CHEMICAL, MATERIAL AND ELECTRONIC ENGINEERING (IC4ME2), IEEE, 8 February 2018 (2018-02-08), pages 1 - 4, XP033404432, DOI: 10.1109/IC4ME2.2018.8465628 * |
VALBUENA D ET AL: "sBCI: Fast detection of steady-state visual evoked potentials", 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY : (EMBC 2010) ; BUENOS AIRES, ARGENTINA, 31 AUGUST - 4 SEPTEMBER 2010, IEEE, PISCATAWAY, NJ, USA, 31 August 2010 (2010-08-31), pages 3966 - 3969, XP032109644, ISBN: 978-1-4244-4123-5, DOI: 10.1109/IEMBS.2010.5627990 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118692694A (zh) * | 2024-08-27 | 2024-09-24 | 博睿康医疗科技(上海)有限公司 | 基于诱发电位的监测系统、术中监控方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118201551A (zh) | 2024-06-14 |
EP4429550A1 (fr) | 2024-09-18 |
FR3128869A1 (fr) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3506829A1 (fr) | Prédiction de l'attention d'un auditoire lors d'une présentation | |
FR2747346A1 (fr) | Appareil et procede d'estimation du niveau de somnolence du conducteur d'un vehicule | |
BE1004497A5 (fr) | Instrument de mesure de niveau de stress. | |
WO1997040745A1 (fr) | Systeme de collecte et de traitement d'informations biometriques | |
WO2017149047A1 (fr) | Dispositif et méthode de surveillance d'un conducteur d'un véhicule automobile | |
WO2023083755A1 (fr) | Détection perfectionnée de potentiels évoqués | |
EP0750920A1 (fr) | Dispositif médical implantable actif, notamment stimulateur cardiaque, asservi à au moins un paramètre physiologique | |
EP1381316A2 (fr) | Dispositif d'aide a l'analyse de bruits adventices | |
FR2805072A1 (fr) | Procede d'ajustement du volume sonore d'un enregistrement sonore numerique | |
CA2921476A1 (fr) | Procede d'assistance a l'exploration visuelle pour un individu atteint d'une pathologie retinienne se traduisant par un scotome | |
FR2857122A1 (fr) | Procede de navigation dans un ensemble de documents sonores a l'aide d'une interface graphique, et recepteur pour la navigation selon le procede | |
WO2017093439A1 (fr) | Dispositif de commande vocale d'un appareil de capture d'images | |
WO2004015652A1 (fr) | Procede de calibrage d'audio-intonation | |
Ramsay et al. | The intrinsic memorability of everyday sounds | |
EP1652180B1 (fr) | Procede de reproduction de documents audio a l'aide d'une interface presentant des groupes de documents, et appareil de reproduction associe | |
WO2017162980A1 (fr) | Procédé et dispositif de contrôle du réglage d'au moins un paramètre audio et/ou vidéo, terminal et programme d'ordinateur correspondants | |
CA2889577C (fr) | Procede d'identification | |
FR2985021A1 (fr) | Methode de cotation du bruit des freins d'un vehicule automobile | |
FR3054362A1 (fr) | Circuit et procede de reconnaissance de parole | |
EP3293988B1 (fr) | Procédé de contrôle de la détection en temps réel d'une scène par un appareil de communication sans fil, par exemple un téléphone mobile cellulaire, et appareil correspondant | |
EP1047044A1 (fr) | Dispositif d'acquisition et de traitement de signaux pour la commande d'un appareil ou d'un processus | |
EP3556102B1 (fr) | Procede d'enregistrement d'un programme telediffuse a venir | |
WO2022129104A1 (fr) | Procédé et système de synchronisation automatique d'un contenu vidéo et d'un contenu audio | |
WO2017121617A1 (fr) | Dispositif et procede de determination des mouvements oculaires par interface tactile | |
EP4378392A1 (fr) | Détermination de stimuli optimaux pour une interface à base de potentiels évoqués |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22814003 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280071651.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18708758 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022814003 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022814003 Country of ref document: EP Effective date: 20240610 |