WO2023083309A1 - 电池、电池模组、电池系统和电池热异常报警方法 - Google Patents

电池、电池模组、电池系统和电池热异常报警方法 Download PDF

Info

Publication number
WO2023083309A1
WO2023083309A1 PCT/CN2022/131416 CN2022131416W WO2023083309A1 WO 2023083309 A1 WO2023083309 A1 WO 2023083309A1 CN 2022131416 W CN2022131416 W CN 2022131416W WO 2023083309 A1 WO2023083309 A1 WO 2023083309A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensing magnet
hall sensor
battery
hall
Prior art date
Application number
PCT/CN2022/131416
Other languages
English (en)
French (fr)
Inventor
田雷雷
宋晓娜
洪达
盛勇
李军
李进科
谢封超
任雪斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023083309A1 publication Critical patent/WO2023083309A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery, a battery module, a battery system, and a battery thermal abnormality alarm method.
  • a temperature measuring module such as a thermistor with a negative temperature coefficient (NTC), or a thermocouple resistance
  • NTC negative temperature coefficient
  • thermocouple resistance a temperature measuring module
  • one probe of the temperature measurement module is electrically connected to the battery cell
  • the other probe of the temperature measurement module is electrically connected to the host unit (such as a battery management system (BMS)).
  • BMS battery management system
  • the temperature measurement module can transmit the measured temperature data to the host unit, so that the host unit can regulate the internal temperature of the battery cell based on the temperature data.
  • the probe of the temperature measurement module is attached to the shell surface of the battery cell, it is difficult for the temperature measurement module to measure the internal temperature of the battery cell, resulting in inaccurate temperature data, making it impossible for the host unit to accurately and timely control The internal temperature of the cell.
  • the temperature measurement module uses a lead-type probe to electrically connect to the cell, then the lead wire of the probe of the temperature measurement module needs to penetrate the shell of the cell, resulting in a complex structure of the shell of the cell, and it is easy to cause problems such as package leakage, which cannot be guaranteed.
  • the long-term use of batteries brings risks to the reliability and safety of batteries, and it is difficult to mass-produce and use batteries.
  • the present application provides a battery, a battery module, a battery system, and a battery thermal abnormality alarm method, so as to realize accurate and timely alarms for thermal abnormalities in the battery body, without destroying the complete structure of the battery shell, and can also identify Check whether the battery body has experienced overheating abnormality.
  • the present application provides a battery, including: a cell body, a cell casing, a first temperature-sensing magnet, and a first Hall sensor;
  • the cell housing is made of non-magnetic shielding material
  • the cell housing has a housing cavity
  • the battery core body is placed in the housing cavity
  • the first Hall sensor is placed outside the housing cavity
  • the first end of the first Hall sensor is used for For electrical connection with the power supply unit
  • the second end of the first Hall sensor is used for electrical connection with the first end of the host unit
  • the first temperature-sensing magnet is placed in the accommodation cavity or the first temperature-sensing magnet is placed outside the accommodation cavity
  • the first temperature-sensing magnet is used to sense the temperature inside the cell body; wherein, when the internal temperature of the cell body is equal to or higher than the Curie temperature of the first temperature-sensing magnet, the magnetism of the first temperature-sensing magnet is weakened or disappear; the Curie temperature of the first temperature-sensing magnet matches the thermal runaway critical temperature of the cell body;
  • the first Hall sensor is used to detect the magnetism of the first temperature-sensing magnet, and output the first alarm signal according to the magnetic change of the first temperature-sensing magnet, so that the host unit can determine that the first alarm signal has occurred on the cell body after detecting the first alarm signal.
  • Class 1 thermal anomaly is used to detect the magnetism of the first temperature-sensing magnet, and output the first alarm signal according to the magnetic change of the first temperature-sensing magnet, so that the host unit can determine that the first alarm signal has occurred on the cell body after detecting the first alarm signal.
  • the battery provided in the first aspect through the cooperation of the first temperature-sensitive magnet and the first Hall sensor, it is possible to accurately detect the internal temperature of the battery core body when thermal abnormalities occur, and accurately monitor the thermal abnormality of the battery core body. And the timely alarm solves the problem of lag or inaccuracy in the alarm response of the thermal abnormality of the battery cell body, improves the response speed of the alarm for the thermal abnormality of the battery cell body, and is conducive to improving the safety protection capability of the battery.
  • the layout of the first temperature-sensing magnet and the first Hall sensor there is no need to destroy the complete structure of the battery case, and it will not cause problems such as packaging leakage, which helps to extend the service life of the battery and ensure the reliability of the battery. Safety and security are conducive to mass production and use.
  • first temperature-sensing magnet has undergone a magnetic transition, and/or whether the Hall voltage output by the first Hall sensor has a change in amplitude, can be used as the basis for screening whether the battery core body has experienced an abnormal overheating, avoiding the The core body experiences a safety risk due to overheating abnormalities.
  • the battery further includes: a second temperature-sensing magnet and a second Hall sensor;
  • the second Hall sensor is placed outside the accommodating cavity, the first end of the second Hall sensor is used for electrical connection with the power supply unit, and the second end of the second Hall sensor is used for electrical connection with the second end of the host unit , the second end of the host unit is different from the first end of the host unit, the second temperature-sensing magnet is placed in the accommodation cavity or the second temperature-sensing magnet is placed outside the accommodation cavity;
  • the second temperature-sensing magnet is used to sense the temperature inside the cell body; wherein, when the internal temperature of the cell body is equal to or higher than the Curie temperature of the second temperature-sensing magnet, the magnetism of the second temperature-sensing magnet is weakened or disappear; the Curie temperature of the second temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, and the Curie temperature of the second temperature-sensing magnet is different from that of the first temperature-sensing magnet;
  • the second Hall sensor is used to detect the magnetism of the second temperature-sensing magnet, and output the second alarm signal according to the magnetic change of the second temperature-sensing magnet, so that the host unit can determine that the first alarm occurs on the cell body after detecting the second alarm signal.
  • the thermal anomaly of the second level, the first level is different from the second level.
  • the first temperature-sensing magnet and the second temperature-sensing magnet with different Curie temperatures can be arranged for the same cell body, and the first temperature-sensing magnet and the second temperature-sensing magnet are respectively connected with the host unit.
  • Different terminals are electrically connected, so that the host unit can know the degree and temperature of the thermal abnormality of the same battery body through different terminals, and realize the multi-level alarm for the thermal abnormality of the same battery body, which is beneficial for the host unit to accurately and timely Different levels of security are implemented on the battery.
  • the distance between the first temperature-sensing magnet and the second temperature-sensing magnet is greater than the first preset distance, and the distance between the first Hall sensor and the second Hall sensor is greater than the second preset distance.
  • a distance is set so that a magnetic shield is formed between the first temperature-sensing magnet and the first Hall sensor, and the second temperature-sensing magnet and the second Hall sensor.
  • the battery provided by this embodiment makes full use of the internal space of the cell body to lay out each set of temperature-sensing magnets and Hall sensors, so that the magnetic induction of the second Hall sensor has nothing to do with the magnetic transition of the first temperature-sensing magnet.
  • the magnetic induction of the Hall sensor has nothing to do with the magnetic transition of the second temperature-sensing magnet.
  • a magnetic shield is formed between the first temperature-sensing magnet and the first Hall sensor, and the second temperature-sensing magnet and the second Hall sensor.
  • the battery further includes: a first magnetic shield and a second magnetic shield each having an opening, for ensuring that the first temperature-sensing magnet and the first Hall sensor are connected with the second temperature-sensing magnet and the first Hall sensor.
  • a magnetic shield is formed between the second Hall sensors;
  • the first temperature-sensing magnet is placed in the first magnetic shield
  • the second temperature-sensing magnet is placed in the second magnetic shield
  • the opening direction of the first magnetic shield is the same as the opening direction of the second magnetic shield
  • the first temperature-sensitive magnet is placed in the first magnetic shield
  • the first Hall sensor is placed in the second magnetic shield
  • the opening of the first magnetic shield is opposite to the opening of the second magnetic shield
  • the second temperature-sensing magnet is placed in the first magnetic shield
  • the second Hall sensor is placed in the second magnetic shield
  • the opening of the first magnetic shield is opposite to the opening of the second magnetic shield.
  • the battery further includes: a third magnetic shield, a fourth magnetic shield, and a fifth magnetic shield each having an opening, for ensuring that the first temperature-sensing magnet and the first Hall sensor A magnetic shield is formed between the second temperature-sensing magnet and the second Hall sensor;
  • the first temperature-sensing magnet is placed in the third magnetic shield
  • the first Hall sensor is placed in the fourth magnetic shield
  • the second temperature-sensitive magnet is placed in the fifth magnetic shield
  • the third magnetic shield The opening direction is opposite to the opening of the fourth magnetic shield, and the opening of the third magnetic shield is in the same direction as the opening of the fifth magnetic shield;
  • the second temperature-sensing magnet is placed in the third magnetic shield
  • the second Hall sensor is placed in the fourth magnetic shield
  • the first temperature-sensitive magnet is placed in the fifth magnetic shield
  • the third magnetic shield The opening direction is opposite to the opening of the fourth magnetic shielding part, and the opening direction of the third magnetic shielding part is the same as that of the fifth magnetic shielding part.
  • the battery further includes: a sixth magnetic shield, a seventh magnetic shield, an eighth magnetic shield, and a ninth magnetic shield each having an opening, for ensuring that the first temperature-sensing magnet and the second magnetic shield A Hall sensor forms a magnetic shield with the second temperature-sensing magnet and the second Hall sensor;
  • the first temperature-sensitive magnet is placed in the sixth magnetic shield
  • the first Hall sensor is placed in the seventh magnetic shield
  • the opening of the sixth magnetic shield is opposite to the opening of the seventh magnetic shield
  • the second The temperature-sensing magnet is placed in the eighth magnetic shield
  • the second Hall sensor is placed in the ninth magnetic shield
  • the opening of the eighth magnetic shield is opposite to the opening of the ninth magnetic shield.
  • the battery provided by this embodiment based on the setting of the aforementioned magnetic shield, can adjust the direction of the magnetic field applied by the temperature-sensing magnet in each group on the corresponding Hall sensor, so that the magnetic induction of the second Hall sensor is the same as that of the first induction.
  • the magnetic transition of the temperature magnet is irrelevant, and the magnetic induction of the first Hall sensor is independent of the magnetic transition of the second temperature-sensing magnet.
  • a magnetic shield is formed between the first temperature-sensing magnet and the first Hall sensor, and the second temperature-sensing magnet and the second Hall sensor.
  • the battery further includes: a third temperature sensing magnet, a third Hall sensor and an AND gate circuit;
  • the third Hall sensor is placed outside the accommodating cavity, the first end of the third Hall sensor is used for electrical connection with the power supply unit, the second end of the first Hall sensor is electrically connected with the first end of the AND gate circuit, The second end of the third Hall sensor is electrically connected to the second end of the AND gate circuit, the third end of the AND gate circuit is used to electrically connect to the first end of the host unit, and the third temperature-sensitive magnet is placed in the accommodating cavity or The third temperature-sensing magnet is placed outside the containing chamber;
  • the first temperature-sensing magnet is specifically used to sense the temperature inside the cell body at the first detection position
  • the first Hall sensor is specifically used to detect the magnetism of the first temperature-sensing magnet, and transmits the first alarm signal to the AND gate circuit according to the magnetic change of the first temperature-sensing magnet;
  • the third temperature-sensing magnet is used to sense the temperature inside the electric core body at the second detection position; wherein, when the internal temperature of the electric core body is equal to or higher than the Curie temperature of the third temperature-sensing magnet, the third sensing The magnetism of the temperature magnet weakens or disappears; the Curie temperature of the third temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, and the second detection position is different from the first detection position;
  • the third Hall sensor is used to detect the magnetism of the third temperature-sensing magnet, and transmit the third alarm signal to the AND circuit according to the magnetic change of the third temperature-sensing magnet;
  • the AND gate circuit is used to transmit the first alarm signal to the host unit after receiving the first alarm signal, so that when the host unit detects a jump in the level of the first alarm signal, it determines that the cell body is at the A thermal abnormality of the first level occurs at a detection position; or, after receiving the third alarm signal, transmit the third alarm signal to the host unit, so that the host unit jumps when the level of the third alarm signal is detected , it is determined that the first level of thermal abnormality occurs at the second detection position of the cell body.
  • the first temperature-sensing magnet and the first Hall sensor, as well as the third temperature-sensing magnet and the third Hall sensor are laid out for different detection positions of the same cell body, and are connected with the host by means of an AND gate circuit.
  • the electrical connection of one terminal of the unit enables the host unit to monitor the temperature state of the cell body in parallel at multiple detection positions of the same cell body through one terminal, eliminating the need for a small number of detection positions or relatively biased positions.
  • the impact of the response speed of the alarm for thermal abnormalities in the core body solves the problem of the limited number of terminals in the host unit, realizes multi-point alarms for thermal abnormalities in the same battery body, and improves the monitoring of thermal abnormalities in the battery body.
  • the response speed of the alarm is conducive to improving the sensitivity and reliability of detection.
  • the AND circuit includes: a first diode, a second diode, a first resistor and a second resistor;
  • the cathode of the first diode is electrically connected to the second end of the first Hall sensor
  • the cathode of the second diode is electrically connected to the second end of the third Hall sensor
  • the anode of the first diode is used to electrically connect with the first end of the host unit
  • the second end of the first resistor is used to input a preset voltage
  • the second end of the second resistor is grounded.
  • the battery provided in this implementation manner provides a feasible implementation manner of the AND circuit.
  • the alarm signal is a digital signal whose level has jumped.
  • a digital signal alarm for thermal abnormality of the cell body can be realized.
  • the alarm signal may be various alarm signals mentioned in this application, for example: the first alarm signal, the second alarm signal or the third alarm signal, etc.
  • the Hall sensor includes: a Hall element, an amplifier and a comparator;
  • the first end of the Hall element is the first end of the Hall sensor, the first end of the Hall element is used to electrically connect with the power supply unit, the second end of the Hall element is electrically connected to the first end of the amplifier, and the amplifier
  • the second end of the comparator is electrically connected to the first end of the comparator, and the second end of the comparator is used to input the threshold voltage.
  • the threshold voltage is determined based on the Curie temperature of the temperature-sensing magnet and the amplification ratio of the amplifier.
  • the third end of the comparator The terminal is the second terminal of the Hall sensor, and the third terminal of the comparator is used to electrically connect with a terminal of the host unit;
  • the Hall element is used to detect the magnetism of the temperature-sensing magnet, and after the magnetism of the temperature-sensing magnet weakens or disappears, it transmits a voltage with a smaller amplitude to the amplifier, where the voltage can be understood as the Hall voltage mentioned in this application ;
  • the amplifier is used to amplify the voltage with a smaller amplitude according to the amplification ratio of the amplifier, obtain the amplification result, and transmit the amplification result to the comparator;
  • the comparator is used to convert the amplification result based on the threshold voltage, obtain an alarm signal, and output the alarm signal, so that the host unit can determine that the battery body has a thermal abnormality after detecting a jump in the level of the alarm signal.
  • the Hall sensor may be the first Hall sensor mentioned above, the second Hall sensor or the third Hall sensor and so on.
  • the alarm signal is an analog signal in which the amplitude of the voltage decreases to be smaller than the amplitude of the threshold voltage, and the amplitude of the threshold voltage is determined based on the Curie temperature of the temperature-sensing magnet.
  • the alarm signal may be each alarm signal mentioned in this application, for example: the first alarm signal or the second alarm signal.
  • the Hall sensor includes: an amplifier and multiple Hall elements, and each Hall element corresponds to a temperature-sensing magnet;
  • each Hall element is the first end of the Hall sensor, and the first end of each Hall element is used to electrically connect with the power supply unit, and a plurality of Hall elements are electrically connected in series.
  • the first and last terminals of each Hall element are respectively electrically connected to the first terminal and the second terminal of the amplifier, the third terminal of the amplifier is the second terminal of the Hall sensor, and the third terminal of the amplifier is used for connecting with the host unit.
  • a terminal is electrically connected;
  • Each Hall element is used to detect the magnetism of the temperature-sensing magnet corresponding to the Hall element, and after the magnetism of the temperature-sensing magnet corresponding to the Hall element weakens or disappears, transmits a voltage with a smaller amplitude to the amplifier, wherein , this voltage can be understood as the Hall voltage mentioned in this application;
  • the amplifier is used to amplify the amplitude and value of the voltage transmitted by each Hall element according to the amplification ratio of the amplifier to obtain an alarm signal, and transmit the alarm signal to the host unit, so that the host unit detects the voltage of the alarm signal
  • the amplitude of is reduced to less than the amplitude of the threshold voltage, it is determined that the cell body has a thermal abnormality.
  • the threshold voltage is determined based on the Curie temperature of the temperature-sensing magnet corresponding to each Hall element and the amplification ratio of the amplifier.
  • each temperature-sensing magnet corresponds to a plurality of Hall elements in the Hall sensor, and with the help of the Hall sensor
  • the electrical connection between the amplifier and one terminal of the host unit enables the host unit to monitor the temperature state of the cell body in parallel at multiple detection positions of the same cell body through one terminal, eliminating the need for a small number of detection positions or a relatively small number of detection positions.
  • the impact on the response speed of the alarm for thermal abnormalities in the battery body solves the problem of the limited number of terminals in the host unit, realizes multi-point alarms for thermal abnormalities in the same battery body, and improves the detection of thermal abnormalities in the battery body.
  • the response speed of the thermal abnormality alarm is conducive to improving the sensitivity and reliability of detection, and also reduces the number of amplifiers, saving the cost of device connection.
  • the Hall sensor may be the first Hall sensor or the second Hall sensor mentioned above.
  • the temperature-sensing magnet is fixed on the inner surface of the cell casing
  • the temperature-sensitive magnet is fixed in the electrolyte of the cell body
  • the temperature-sensitive magnet is clamped inside the bare cell of the cell body
  • the temperature-sensitive magnet is fixed on the outer surface of the cell casing
  • the temperature-sensitive magnet is fixed on the outside of the cell casing.
  • the layout of the temperature-sensing magnets can include multiple feasible implementations, which facilitates the flexible arrangement of the temperature-sensing magnets.
  • the battery when the temperature-sensitive magnet is fixed on the outside of the cell casing, the battery further includes: a heat-conducting element, which is fixed on the outer surface of the cell casing, and the heat-conducting element and the temperature-sensing magnet surface contact.
  • the heat generated by the cell body can be transferred to the temperature-sensing magnet through the heat-conducting element, which improves the effect of heat conduction and helps the temperature-sensing magnet to reflect the temperature of the cell body Variety.
  • the Hall sensor is fixed on the outer surface of the cell casing
  • the Hall sensor is fixed outside the cell casing.
  • the layout of the Hall sensor can include multiple feasible implementations, which facilitates flexible setting of the Hall sensor.
  • the present application provides a battery module, including: M batteries provided in the above-mentioned first aspect and each possible design of the above-mentioned first aspect, where M is a positive integer.
  • the present application provides a battery system, including: a power supply unit, a host unit, and the battery modules provided in the second aspect and possible designs of the second aspect;
  • the power supply unit is electrically connected to the host unit and the Hall sensor in the battery module respectively, and the Hall sensor in the battery module is also electrically connected to the host unit;
  • the power supply unit is used to supply power to the Hall sensor in the host unit and the battery module respectively;
  • the temperature-sensing magnet in the battery module is used to sense the temperature inside the cell body corresponding to the temperature-sensing magnet in the battery module; wherein, the temperature inside the cell body is equal to or higher than the Curie temperature of the temperature-sensing magnet When the temperature is high, the magnetism of the temperature-sensing magnet weakens or disappears; the Curie temperature of the temperature-sensing magnet matches the thermal runaway critical temperature of the cell body;
  • the Hall sensor in the battery module is used to detect the magnetism of the temperature-sensing magnet corresponding to the Hall sensor in the battery module, and output the first alarm signal according to the magnetic change of the temperature-sensing magnet;
  • the host unit is configured to determine that a first-level thermal abnormality occurs on the cell body when the first alarm signal is detected.
  • the present application provides a battery thermal abnormality alarm method, which is applied to a battery, and the battery includes: a battery cell body, a battery cell casing, a first temperature-sensitive magnet, and a first Hall sensor; wherein, the battery cell casing adopts Non-magnetic shielding material, the battery core housing has a housing cavity, the battery core body is placed in the housing cavity, the first Hall sensor is placed outside the housing cavity, and the first end of the first Hall sensor is used for electrical connection with the power supply unit. The second end of the first Hall sensor is used for electrical connection with the first end of the host unit, and the first temperature-sensing magnet is placed in the accommodation cavity or the first temperature-sensing magnet is placed outside the accommodation cavity;
  • the method includes:
  • the first temperature-sensing magnet senses the temperature inside the cell body; wherein, when the internal temperature of the cell body is equal to or higher than the Curie temperature of the first temperature-sensing magnet, the magnetism of the first temperature-sensing magnet weakens or disappears; the second The Curie temperature of a temperature-sensing magnet matches the thermal runaway critical temperature of the cell body;
  • the first Hall sensor detects the magnetism of the first temperature-sensing magnet, and outputs the first alarm signal according to the magnetic change of the first temperature-sensing magnet, so that the host unit can determine that the first level of the cell body has occurred after detecting the first alarm signal. Abnormal heat.
  • the battery further includes: a second temperature-sensing magnet and a second Hall sensor; wherein, the second Hall sensor is placed outside the accommodating chamber, and the first end of the second Hall sensor is used to communicate with the power supply The unit is electrically connected, the second end of the second Hall sensor is used to electrically connect with the second end of the host unit, the second end of the host unit is different from the first end of the host unit, and the second temperature-sensitive magnet is placed in the accommodation cavity Or the second temperature-sensing magnet is placed outside the containing chamber;
  • the method also includes:
  • the second temperature-sensing magnet senses the temperature inside the cell body; wherein, when the internal temperature of the cell body is equal to or higher than the Curie temperature of the second temperature-sensing magnet, the magnetism of the second temperature-sensing magnet weakens or disappears; the second temperature-sensing magnet weakens or disappears;
  • the Curie temperature of the second temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, and the Curie temperature of the second temperature-sensing magnet is different from that of the first temperature-sensing magnet;
  • the second Hall sensor detects the magnetism of the second temperature-sensing magnet, and outputs a second alarm signal according to the magnetic change of the second temperature-sensing magnet, so that the host unit can determine that the battery core body has a second-level fault after detecting the second alarm signal.
  • Thermal abnormality the first class is different from the second class.
  • the battery further includes: a third temperature-sensing magnet, a third Hall sensor, and an AND gate circuit; wherein, the third Hall sensor is placed outside the accommodating cavity, and the first end of the third Hall sensor For electrical connection with the power supply unit, the second end of the first Hall sensor is electrically connected to the first end of the AND gate circuit, the second end of the third Hall sensor is electrically connected to the second end of the AND gate circuit, and the AND gate
  • the third end of the circuit is used to electrically connect with the first end of the host unit, and the third temperature-sensing magnet is placed in the accommodation chamber or the third temperature-sensing magnet is placed outside the accommodation chamber;
  • the method also includes:
  • the first temperature-sensing magnet senses the temperature inside the cell body at the first detection position
  • the first Hall sensor detects the magnetism of the first temperature-sensing magnet, and transmits the first alarm signal to the AND circuit according to the magnetic change of the first temperature-sensing magnet;
  • the third temperature-sensing magnet senses the temperature inside the electric core body at the second detection position; wherein, when the internal temperature of the electric core body is equal to or higher than the Curie temperature of the third temperature-sensing magnet, the temperature of the third temperature-sensing magnet Magnetism weakens or disappears; the Curie temperature of the third temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, and the second detection position is different from the first detection position;
  • the third Hall sensor detects the magnetism of the third temperature-sensing magnet, and transmits a third alarm signal to the AND circuit according to the magnetic change of the third temperature-sensing magnet;
  • the AND gate circuit After receiving the first alarm signal, the AND gate circuit transmits the first alarm signal to the host unit, so that when the host unit detects a jump in the level of the first alarm signal, it determines that the cell body is in the first detection position Class 1 thermal anomaly occurs at ;
  • the AND gate circuit transmits the third alarm signal to the host unit, so that the host unit determines that the cell body is in the second A first-class thermal anomaly occurs at the detection location.
  • Fig. 1 is a kind of Semenov thermogram of Semenov provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the relationship between the magnetism and temperature of a temperature-sensing magnet provided by an embodiment of the present application;
  • 3A-3B are schematic diagrams of the working principle of a Hall sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a relationship curve between Hall voltage and Curie temperature of a temperature-sensing magnet provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a battery alarm strategy provided by an embodiment of the present application.
  • Fig. 6A is a schematic structural diagram of a battery system provided by an embodiment of the present application.
  • Fig. 6B is a partial structural schematic diagram of a battery system provided by an embodiment of the present application.
  • FIG. 6C is a schematic flowchart of a battery thermal abnormality alarm method provided by an embodiment of the present application.
  • FIG. 6D is a schematic diagram of the working principle of a first Hall sensor provided by an embodiment of the present application.
  • FIGS. 7A-7D are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • FIGS. 8A-8D are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • FIGS. 9A-9B are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • FIG. 10A is a schematic structural diagram of a first Hall sensor provided by an embodiment of the present application.
  • FIG. 10B is a schematic structural diagram of a first Hall sensor provided by an embodiment of the present application.
  • Fig. 11A is a partial structural schematic diagram of a battery system provided by an embodiment of the present application.
  • FIG. 11B is a schematic flowchart of a battery thermal abnormality alarm method provided by an embodiment of the present application.
  • Fig. 11C is a schematic diagram of the working principle of a first Hall sensor and a second Hall sensor provided by an embodiment of the present application;
  • 12A-12B are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • FIGS. 13A-13F are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • FIGS. 14A-14B are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • 15A-15B are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • Fig. 16A is a partial structural schematic diagram of a battery system provided by an embodiment of the present application.
  • FIG. 16B is a schematic flowchart of a battery thermal abnormality alarm method provided by an embodiment of the present application.
  • Fig. 16C is a schematic diagram of the working principle of a first Hall sensor and a third Hall sensor provided by an embodiment of the present application;
  • FIG. 16D is a schematic structural diagram of an AND circuit provided by an embodiment of the present application.
  • FIG. 17A is a schematic structural diagram of a first Hall sensor provided by an embodiment of the present application.
  • FIG. 17B is a schematic diagram of a working principle of a first Hall sensor provided by an embodiment of the present application.
  • 20 power supply unit
  • 30 main unit
  • 10 battery module
  • 101 cell body
  • 102 cell shell
  • 103 first temperature-sensing magnet
  • 104 first Hall sensor
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (unit) of a, b or c alone may mean: a alone, b alone, c alone, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of a, b and c, where a, b, c can be single or multiple.
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be directly connected or through an intermediate The medium is indirectly connected.
  • first and second are used for descriptive purposes only, and should not be understood as indicating or implying relative importance.
  • the temperature measurement module often has the following problems:
  • the pole group inside the battery is usually a stacked or wound structure. Therefore, the heat conduction of the electrode group inside the battery core in the direction of the lamination plane and the direction perpendicular to the lamination plane is quite different, so that the heat conduction inside the battery core has an obvious three-dimensional size effect.
  • the initial heat source is usually a point-like heat source, and the heat generated by the heat source is transferred to the shell surface of the battery cell through multiple components (such as the pole group/lug/pole of the battery cell) and different components.
  • the probe of the temperature measurement module when the probe of the temperature measurement module is in contact with the shell surface of the battery cell, the probe of the temperature measurement module cannot accurately detect the internal temperature of the battery cell, resulting in the problem of inaccurate temperature response to the alarm response of the thermal abnormality of the battery cell.
  • the heat generated by the heat source is transferred to the shell surface of the battery cell through multiple components and different contact surfaces, and there is an obvious time difference between the temperature rise from the heat source to the external temperature measurement point.
  • the temperature measuring device cannot be arranged at multiple detection positions of the battery cell, making it difficult to monitor the temperature state of the battery cell in real time and comprehensively, and it is impossible to generate spot heat in the battery cell. Quick alarm in case of abnormality.
  • this application provides a battery, a battery module, a battery system, and a battery thermal abnormality alarm method, which can be applied to mobile terminals, communication sites, data centers, energy storage power stations, and electric vehicles. Backup scenario.
  • the selection specifications of the Curie temperature of the temperature-sensing magnet in the battery are selected based on the internal temperature of the battery core body when thermal abnormalities occur (that is, the thermal runaway critical temperature of the battery core body), that is to say , the Curie temperature of the temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, so that the temperature change of the cell body can trigger the magnetic transition of the temperature-sensing magnet.
  • the temperature-sensing magnet can sense the internal temperature of the cell body.
  • the magnetic transition of the temperature-sensing magnet can cause the change of the magnetic induction intensity of the Hall sensor, so that the Hall sensor can output a Hall voltage with a changing amplitude.
  • the Hall sensor can detect the magnetic change of the temperature-sensing magnet. Therefore, based on the Hall voltage of the amplitude change, the Hall sensor can transmit an alarm signal to the host unit when the battery body is abnormally thermal, so that the host unit can determine the power output based on the level jump or amplitude change of the alarm signal. Whether the core body has thermal abnormality.
  • the internal temperature of the battery core body when thermal abnormalities occur can be accurately detected, and an accurate and timely alarm can be given to the thermal abnormality of the battery core body, which solves the problem of lagging or inaccurate alarm responses for thermal abnormalities in the battery core body.
  • the problem is to improve the response speed of the alarm for the thermal abnormality of the battery cell body, which is conducive to improving the safety protection ability of the battery.
  • the temperature-sensing magnet based on the layout of the temperature-sensing magnet and Hall sensor, it is convenient for the temperature-sensing magnet to detect the internal temperature of the cell body, and it is convenient for the Hall sensor to process and transmit signals, and neither the temperature-sensing magnet nor the Hall sensor needs to penetrate the cell case.
  • the magnetic transition of the temperature-sensing magnet is irreversible after being higher than the Curie temperature. Therefore, whether the temperature-sensing magnet has undergone a magnetic transition can be used as a characteristic record of whether the core body has experienced an abnormal overheating. And/or, the Hall voltage outputted due to the Hall sensor can be detected. Therefore, whether the Hall voltage output by the Hall sensor changes in amplitude can be used as a basis for screening whether the cell body experiences an abnormal overheating. Therefore, the safety risk due to abnormal overheating of the cell body is avoided.
  • the battery can also arrange multiple sets of temperature-sensing magnets and Hall sensors on the same cell body, and the Curie temperature of the temperature-sensing magnets in each group is different, so that the host unit can detect the same cell body in different degrees.
  • the internal temperature at the time of thermal abnormality can realize multi-level alarm for thermal abnormality of the same cell body.
  • the battery can also arrange multiple sets of temperature-sensitive magnets and Hall sensors on different detection positions of the same cell body, and the Hall sensors in each set are electrically connected to a terminal of the host unit, or the electronics can also be connected to the same electronics.
  • Multiple Hall elements are arranged at different detection positions of the body, and multiple Hall elements are electrically connected to a terminal of the host unit through an amplifier, so that the host unit can be connected to multiple terminals of the same cell body through one or a small number of terminals.
  • the temperature status of the cell body is monitored in parallel at each detection position, which is convenient for quick alarm when point-shaped thermal abnormalities occur on the same cell body, and can realize multi-point alarms for thermal abnormalities on the same cell body, which is helpful Real-time and comprehensive monitoring of the temperature state of the cell body is conducive to improving system-level safety performance, reducing the number of amplifiers, and saving the cost of device connection.
  • the thermal abnormalities mentioned in this application may include: when the internal temperature of the cell body may be too high, the cell body is about to experience thermal runaway or the cell body has already experienced thermal runaway.
  • the cell body mentioned in the present application may adopt lithium-ion cells or cells of other secondary batteries.
  • FIG. 1 is a Semenov thermal diagram provided by an embodiment of the present application.
  • the abscissa represents temperature (temperature) T
  • the unit is Celsius (°C)
  • the ordinate represents rate (rate) q, without unit.
  • the solid line 1 can represent the relationship between the heat generation rate q G of the cell body and the internal temperature T of the cell body
  • the dotted line 2 can represent the relationship between the heat dissipation rate q L of the cell body and the cell The relationship between the internal temperature T of the body.
  • the heat generation rate q G of the cell body is an exponential function of temperature, following the Arrhenius equation. Therefore, the relationship between the heat production rate q G of the cell body and the internal temperature T of the cell body can be expressed by formula 1:
  • the heat dissipation rate q L of the cell body is a linear function of temperature, which follows Newton's cooling law. Therefore, the relationship between the heat dissipation rate q L of the cell body and the internal temperature T of the cell body can be expressed by formula 2:
  • the internal temperature T of the cell body depends on the balance between the heat generation rate q G of the cell body and the heat dissipation rate q L of the cell body. It can be seen that when the heat generation rate q G of the cell body is greater than the heat dissipation rate q L of the cell body, the internal temperature T of the cell body is greater than the critical temperature of thermal runaway (or called no return temperature) T NR , and the cell body Heat buildup in the body can cause spontaneous combustion or explosion.
  • the battery needs to alarm the thermal abnormality of the cell body and start the cooling scheme of the cell body, which helps to protect the safe use of the battery.
  • the battery needs to start a safety response plan in time to help reduce personal injury and equipment damage caused by spontaneous combustion or explosion of the cell.
  • Temperature sensitive magnet also called temperature sensitive permanent magnet
  • the Curie temperature refers to the temperature at which the spontaneous magnetization in a magnetic material drops to zero, and it is also the critical point at which a magnetic material undergoes a magnetic transition (ie, from ferromagnetic or ferrimagnetic to paramagnetic).
  • FIG. 2 is a schematic diagram of the relationship between magnetism and temperature of a temperature-sensing magnet provided in an embodiment of the present application.
  • each irregular figure represents a magnetic domain in the temperature-sensitive magnet, and the direction of the arrow in each irregular figure represents the orientation of the magnetic moment of the magnetic domain.
  • the magnetism of the temperature-sensing magnet changes as the temperature rises.
  • the material of the temperature-sensing magnet mentioned in this application is not limited. In general, temperature-sensing magnets can be selected with characteristic chemical composition, crystal structure, doping element type and doping concentration, so as to have different Curie temperatures and realize temperature alarm function.
  • the temperature sensing magnet may be a neodymium magnet (NdFeB) system or a samarium cobalt (samarium cobalt, SmCo) system.
  • the temperature sensing magnet has strong permanent magnetism (such as ferromagnetism or ferrimagnetism).
  • the temperature-sensing magnet becomes paramagnetic, and the magnetism of the temperature-sensing magnet rapidly weakens or disappears, that is, the magnetism changes from strong to weak) or from presence to absence.
  • the selection specifications of the Curie temperature of the temperature-sensing magnet can be selected based on the internal temperature of the battery core body when thermal abnormalities occur (that is, the thermal runaway critical temperature T NR of the battery core body), so that the Curie temperature of the temperature-sensing magnet The temperature matches the thermal runaway critical temperature T NR of the cell body. It can be understood that the difference between the Curie temperature and the thermal runaway critical temperature T NR of the cell body is within the preset range, which means that the Curie temperature and the cell The thermal runaway critical temperature T NR of the body matches.
  • the temperature sensing magnet can be selected from magnets whose Curie temperature is within a range, for example, when the Curie temperature is greater than 80°C and less than 120°C Choose from a range of magnets.
  • the Curie temperature of the temperature-sensing magnet is positively correlated with the internal temperature of the cell body.
  • the temperature change of the battery core body can trigger the magnetic transition of the temperature-sensing magnet, so that the magnetic transition of the temperature-sensing magnet can accurately reflect the internal temperature of the battery core body when thermal abnormalities occur.
  • the magnetic transition of the temperature-sensing magnet can cause the change of the magnetic induction intensity of the Hall sensor, which can be understood as:
  • the magnetic induction intensity of the temperature-sensing magnet becomes smaller, the magnetic field applied by the temperature-sensing magnet to the Hall sensor becomes smaller, and the magnetic induction intensity of the Hall sensor becomes smaller, so that the output amplitude of the Hall sensor becomes smaller. small Hall voltage.
  • the magnetic induction intensity of the temperature-sensing magnet becomes larger, the magnetic field applied by the temperature-sensing magnet on the Hall sensor becomes larger, and the magnetic induction intensity of the Hall sensor becomes larger, so that the output amplitude of the Hall sensor becomes larger. large Hall voltage.
  • the Hall sensor can transmit an alarm signal of level jump or amplitude change to the host unit based on the Hall voltage of the amplitude change, so that the host unit detects that the alarm signal occurs
  • the level jumps or the amplitude changes it can be determined that the thermal abnormality of the cell body occurs.
  • FIG. 3A-FIG. 3B are schematic diagrams of the working principle of a Hall sensor provided by an embodiment of the present application.
  • the Hall element in the Hall sensor (respectively represented by the letter H in FIGS. 3A-3B ) is a semiconductor with a certain thickness.
  • the Hall element is placed in a magnetic field corresponding to the magnetic induction B, and the direction of the magnetic induction B is perpendicular to the upper surface of the Hall element.
  • a Hall element includes four terminals (indicated by numerals 1, 2, 3 and 4 in FIGS. 3A-3B , respectively). Wherein, terminals No. 1 and No. 2 are two input ends of the Hall element, and terminals No. 3 and No. 4 are two output ends of the Hall element. Therefore, the two input ends of the Hall element form an input loop, and the two output ends of the Hall element form an output loop.
  • the control current I can be fed into the input circuit, and the direction of the control current I is perpendicular to the side of the Hall element and perpendicular to the direction of the magnetic induction B.
  • the control current I can be generated and controlled by a power source such as a reference voltage source or a constant current source.
  • the Hall sensor When the externally applied magnetic field decreases, the Hall sensor can output a Hall voltage V H whose amplitude decreases synchronously; when the externally applied magnetic field disappears, the Hall sensor can output a reference Hall voltage with an amplitude of 0V or other fixed values V H0 .
  • the change of the Hall voltage V H can reflect the change of the magnetic induction B.
  • the magnetic induction B refers to the magnetic induction of the Hall sensor
  • the magnetic field corresponding to the magnetic induction B refers to the magnetic field applied by the temperature-sensitive magnet to the Hall sensor.
  • the magnetic induction intensity B is generated by the magnetic field applied by the temperature-sensing magnet on the Hall sensor, and when the magnetism of the temperature-sensing magnet increases, the magnetic induction intensity B becomes larger; when the magnetism of the temperature-sensing magnet decreases, the magnetic induction intensity B becomes smaller .
  • the magnetic transition of the temperature-sensing magnet can cause the change of the magnetic induction intensity of the Hall sensor.
  • the temperature change of the cell body can trigger the magnetic transition of the temperature-sensing magnet (ie, B ⁇ T, where B is the magnetic field strength, and T is the internal temperature of the cell body). Therefore, when a constant control current I is input into the Hall element of the Hall element, V H ⁇ B ⁇ T exists. Therefore, the Hall voltage V H is proportional to the internal temperature T of the cell body.
  • a constant control voltage U can also be input into the Hall element of the Hall element.
  • a constant control current I is an example for illustration.
  • FIG. 4 is a schematic diagram of a relationship curve between a Hall voltage and a Curie temperature of a temperature-sensing magnet according to an embodiment of the present application.
  • the abscissa represents temperature T1 in degrees Celsius (° C.)
  • the ordinate represents Hall voltage V H (voltage) in volts (V).
  • the threshold voltage V g refers to the voltage corresponding to the cell body when no thermal abnormality occurs and thermal abnormality occurs, and is used to determine whether the amplitude of the Hall voltage V H decreases.
  • the threshold voltage V g is determined based on the Curie temperature of the temperature-sensing magnet, the induction sensitivity of the Hall sensor and the response sensitivity of the host unit.
  • the magnitude of the Hall voltage V H changes little, or the magnitude of the Hall voltage V H is small. Therefore, an amplifier is often integrated inside the Hall sensor, and the amplifier is used to amplify the Hall voltage V H according to the amplification ratio of the amplifier, so as to facilitate the detection of the amplitude of the Hall voltage V H and improve the detection sensitivity and reliability. Therefore, the threshold voltage V g is determined based on the Curie temperature of the temperature-sensing magnet and the amplification ratio of the amplifier. Wherein, the present application does not limit the specific value of the amplification ratio of the amplifier.
  • FIG. 5 is a schematic diagram of a battery alarm strategy provided by an embodiment of the present application.
  • a temperature-sensing magnet is used to detect the internal temperature of the cell body, that is, the ambient temperature T1 where the temperature-sensing magnet is located is the internal temperature T of the cell body. Therefore, when a constant control current (or control voltage) is input into the Hall element in the Hall sensor, the temperature change of the battery core body can cause the magnetic transition of the temperature-sensing magnet, and the magnetic transition of the temperature-sensing magnet can trigger the Hall sensor.
  • the change of the magnetic induction intensity of the Hall sensor, the change of the magnetic induction intensity of the Hall sensor can cause the amplitude change of the Hall voltage.
  • the alarm signal changes or the amplitude changes, and transmits the alarm signal to the host unit, so that the host unit can determine that the thermal abnormality of the cell body occurs when it detects that the alarm signal has a level jump or an amplitude change.
  • the host unit can realize various input signal processing, management decision-making and control strategies, such as active management and cooling based on alarm signals of thermal abnormalities, system overheat protection or battery overheat alarm, etc.
  • FIG. 6A is a schematic structural diagram of a battery system provided by an embodiment of the present application.
  • the battery system 1 may include: a power supply unit 20 , a host unit 30 and a battery module 10 .
  • the power supply unit 20 is electrically connected to the host unit 30 and the Hall sensor in the battery module 10 respectively, and the host unit 30 is also electrically connected to the Hall sensor in the battery module 10 .
  • the power supply unit 20 can supply power to various modules involved in temperature detection, such as the host unit 30 and the Hall sensor in the battery module 10 , and the power supply unit 20 cannot charge the battery module 10 .
  • electrical isolation is provided between the power supply unit 20 and the charge-discharge circuit of the battery module 10 , which can reduce mutual interference between the power supply unit 20 and the battery module 10 .
  • the present application does not limit parameters such as type, quantity and size of the power supply unit 20 .
  • the power supply unit 20 can process the mains power such as rectification, filtering, voltage conversion, etc., or the power supply unit 20 can use an energy storage battery pack independent of the battery module 10 to be tested, or the power supply unit 20 can use a power supply to the battery module An electrically isolated branch drawn from the charging module of group 10.
  • the power supply unit 20 can supply power to the Hall sensors in the battery module 10 by means of a bus or an independent power supply.
  • the present application refers to the manner in which the power supply unit 20 supplies power to the Hall sensor in the battery module 10 by using a bus as an example.
  • the host unit 30 is used for receiving and processing signals, and determining whether the battery module 10 has a thermal abnormality.
  • the present application does not limit the parameters of the host unit 30 such as architecture, type, quantity and size.
  • the host unit 30 may employ a BMS.
  • the battery module 10 can transmit an alarm signal to the host unit 30 , so that the host unit 30 can determine whether the battery module 10 is thermally abnormal based on the level jump or amplitude change of the alarm signal.
  • the host unit 30 can detect whether the level of the alarm signal jumps. When a level transition of the alarm signal is detected, the host unit 30 may determine that the battery module 10 is thermally abnormal.
  • the level transition of the alarm signal can be understood as a transition from a high level to a low level, or a transition from a low level to a high level.
  • the host unit 30 can detect the amplitude change of the voltage of the alarm signal. When it is detected that the magnitude of the voltage of the alarm signal is lower than the magnitude of the threshold voltage V g , the host unit 30 may determine that the battery module 10 has a thermal abnormality.
  • the specific implementation manner of the threshold voltage V g may refer to the foregoing description, which will not be repeated here.
  • the battery module 10 may include: M batteries 100 , where M is a positive integer.
  • FIG. 6B is a partial structural schematic diagram of a battery system provided by an embodiment of the present application.
  • the number M of batteries 100 is 1 as an example.
  • the battery 100 may include: a cell body 101 , a cell casing 102 , a first temperature-sensing magnet 103 and a first Hall sensor 104 .
  • the material of the cell housing 102 is a non-magnetic shielding material. It can be seen that the battery case 102 does not undergo magnetic shielding, that is, the battery case 102 does not shield the electromagnetic induction effect. Thus, the magnetic field lines generated by the first temperature-sensing magnet 103 can pass through the cell casing 102, so that the first temperature-sensing magnet 103 can apply a magnetic field on the first Hall sensor 104, so as to generate the first Hall sensor 104
  • the specific implementation of the magnetic induction B1 can refer to the description of the magnetic induction B mentioned in FIGS. 3A-3B .
  • the present application does not limit the specific implementation manner of the cell housing 102 .
  • the cell housing 102 can be made of aluminum, aluminum plastic, glass, ceramics, plastic, non-magnetic steel and other materials.
  • the cell housing 102 has an accommodating cavity, the cell body 101 is placed in the accommodating cavity, and the first Hall sensor 104 is placed outside the accommodating cavity.
  • the present application does not limit parameters such as size, quantity and shape of the accommodation cavity.
  • the setting of the cell housing 102 can protect the cell body 101, and the first Hall sensor 104 can also be separated, so that the first Hall sensor 104 can be electrically connected to the host unit 30 and the power supply unit 20 respectively, There is no need for the first Hall sensor 104 to penetrate the battery case 102 , the structure of the battery case 102 will not be damaged, and the long-term use of the battery body 101 is ensured, which is conducive to improving the reliability and safety of the battery body 101 .
  • the first end VCC1 of the first Hall sensor 104 is electrically connected to the first end of the power supply unit 20 (the No. 1 terminal of the power supply unit 20 is used for illustration in FIG.
  • the first control current I1 or first control voltage
  • its specific implementation can refer to the constant control current I mentioned in Figure 3A- Figure 3B
  • the description of (or control voltage) enables the first Hall sensor 104 to generate the Hall effect.
  • the second end OUT1 of the first Hall sensor 104 is electrically connected to the first end of the host unit 30 (the No. 1 terminal of the host unit 30 is used for illustration in FIG.
  • the first end transmits a first alarm signal.
  • the first end of the host unit 30 may be a terminal of the host unit 30 .
  • the host unit 30 can be separated from or integrated with the first Hall sensor 104 .
  • the second end of the power supply unit 20 (in FIG. 6B , terminal No. 2 of the power supply unit 20 is used for illustration) is electrically connected to the power supply terminal VCC0 of the host unit 30 , so that the power supply unit 20 can supply power to the host unit 30 .
  • the first alarm signal can be determined based on the first Hall voltage V H1 and the first threshold voltage V g1 , the aforementioned first Hall voltage V H1 is when the power supply unit 20 supplies power to the first Hall sensor 104 , The output of the first Hall sensor 104 under the action of the magnetic induction B1 of the first Hall sensor 104 , the amplitude V g1 of the first threshold voltage is determined based on the Curie temperature of the first temperature-sensing magnet 103 .
  • the first Hall sensor 104 can be fixed in the battery 100 by means such as welding, inlaying or gluing, so as to ensure that the first Hall sensor 104 will not move with the shaking of the battery 100 .
  • the first Hall sensor 104 can also be fixedly arranged in the battery 100 by means of the host unit 30 and/or the power supply unit 20 .
  • the first temperature-sensing magnet 103 can be placed in the accommodating cavity, so that the first temperature-sensing magnet 103 can be closer to the cell body 101, so that the first temperature-sensing magnet 103 can more accurately detect the inside of the cell body 101 when thermal abnormalities occur.
  • the temperature also makes the battery case 102 separate the first temperature-sensing magnet 103 and the first Hall sensor 104 .
  • the first temperature-sensing magnet 103 can be placed outside the accommodating cavity, which can fully consider the limited internal space of the cell body 101 .
  • the present application does not limit the specific position of the first temperature-sensing magnet 103 .
  • the first temperature-sensing magnet 103 can be fixed in the battery 100 by means such as welding, inlaying or gluing, so as to ensure that the first temperature-sensing magnet 103 will not move with the shaking of the battery 100 .
  • FIG. 6C is a schematic flowchart of a battery thermal abnormality alarm method provided by an embodiment of the present application.
  • the method for alarming abnormal battery heat of the present application may include:
  • the first temperature-sensing magnet senses the temperature inside the cell body; wherein, when the internal temperature of the cell body is equal to or higher than the Curie temperature of the first temperature-sensing magnet, the magnetism of the first temperature-sensing magnet weakens or disappears ; The Curie temperature of the first temperature-sensing magnet matches the thermal runaway critical temperature of the cell body.
  • the first Hall sensor detects the magnetism of the first temperature-sensing magnet, and outputs the first alarm signal according to the magnetic change of the first temperature-sensing magnet, so that the host unit can determine that the first alarm signal has occurred on the cell body after detecting the first alarm signal.
  • Class thermal anomalies
  • the selection specification of the Curie temperature of the first temperature-sensing magnet 103 is selected based on the thermal runaway critical temperature T NR of the battery core body 101, so that the temperature change of the battery core body 101 can trigger the magnetic transition of the first temperature-sensing magnet 103 . That is to say, when there is no thermal abnormality in the cell body 101 , the first temperature-sensing magnet 103 has strong magnetism. When the battery core body 101 has a thermal abnormality, the magnetism of the first temperature-sensing magnet 103 can change from strong to weak or from present to non-existent.
  • FIG. 2 which will not be repeated here.
  • the present application can set a first preset temperature, which is related to the Curie temperature of the first temperature-sensing magnet 103, and can be used as the temperature at which the magnetism of the first temperature-sensing magnet 103 changes, so as to identify electrons in time.
  • the internal temperature of the body 101 is thermally abnormal.
  • the present application does not limit the specific value of the first preset temperature.
  • the first preset temperature may be equal to the Curie temperature of the first temperature-sensing magnet 103, which is conducive to accurately detecting the internal temperature of the cell body 101 when thermal abnormalities occur, or the first preset temperature It may be higher than the Curie temperature of the first temperature-sensing magnet 103 , fully considering that the cell body 101 has a certain bearing capacity.
  • the first temperature-sensing magnet 103 and the first Hall sensor 104 can be separately or integrated in the battery 100, and the first temperature-sensing magnet 103 can provide the first Hall sensor 104 with the magnetic induction intensity B1 of the first Hall sensor 104, This enables the first Hall sensor 104 to generate a Hall effect.
  • FIG. 6D is a schematic diagram of a working principle of a first Hall sensor provided by an embodiment of the present application.
  • the Hall elements in the first Hall sensor 104 include four terminals (indicated by numbers 1, 2, 3 and 4 in FIG. 6D ).
  • terminals No. 1 and No. 2 are the two input terminals of the Hall element in the first Hall sensor 104
  • terminals No. 3 and No. 4 are the two outputs of the Hall element in the first Hall sensor 104. end.
  • the two input ends of the Hall element in the first Hall sensor 104 form an input loop
  • the two output ends of the Hall element in the first Hall sensor 104 form an output loop.
  • the input loop of the Hall element in the first Hall sensor 104 can input a constant first control current I1
  • the output loop of the Hall element in the first Hall sensor 104 can output the first Hall voltage V H1 .
  • the Hall element in the first Hall sensor 104 fed with a constant first control current I1 is placed in the magnetic field corresponding to the magnetic induction B1 of the first Hall sensor 104, and the first Hall
  • the two output terminals of the Hall element in the sensor 104 generate a potential difference V H1 , that is, the output circuit can output the first Hall voltage V H1 .
  • the first Hall sensor 104 can output a first Hall voltage V H1 with a smaller amplitude, and the first Hall sensor 104 Based on the comparison result of the amplitude of the first Hall voltage V H1 and the first threshold voltage V g1 , the level of the first alarm signal can be level-jumped, and the first alarm can be output to the first terminal of the host unit 30 Signal.
  • the host unit 30 detects that the level of the first alarm signal jumps, it can determine that the battery cell body 101 has a thermal abnormality.
  • the first Hall sensor 104 can output a first Hall voltage V H1 with a smaller amplitude, and the first Hall sensor 104 can output a first Hall voltage V H1 with a smaller amplitude.
  • Hall sensor 104 can reduce the magnitude of the voltage of the first alarm signal to be smaller than the magnitude of the first threshold voltage V g1 based on the comparison result of the magnitude of the first Hall voltage V H1 and the first threshold voltage V g1 , and report to The first terminal of the host unit 30 outputs a first alarm signal.
  • the host unit 30 detects that the amplitude of the voltage of the first alarm signal is lower than the amplitude of the first threshold voltage V g1 , it can determine that the battery cell body 101 has a thermal abnormality.
  • the first end of the host unit 30 can determine that the internal temperature of the cell body 101 is equal to or higher than that of the first temperature-sensing magnet 103 by means of the first temperature-sensing magnet 103 and the first Hall sensor 104 .
  • the thermal anomaly of the Curie temperature can be determined that the internal temperature of the cell body 101 is equal to or higher than that of the first temperature-sensing magnet 103 by means of the first temperature-sensing magnet 103 and the first Hall sensor 104 .
  • the first temperature-sensing magnet 103 and the first Hall sensor 104 may have various layouts in the battery 100 .
  • FIG. 7A-FIG. 7D are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • the first temperature-sensing magnet 103 When the first temperature-sensing magnet 103 is placed in the containing chamber, as shown in FIG. 7A and FIG. 7B , the first temperature-sensing magnet 103 can be fixed on the inner surface of the battery case 102 . As shown in FIG. 7C and FIG. 7D , the first temperature-sensing magnet 103 can be fixed in the electrolyte of the cell body 101 , or the first temperature-sensing magnet 103 can be fixed inside the bare cell of the cell body 101 .
  • the first temperature-sensing magnet 103 can be fixed on the outer surface of the battery case 102 .
  • the first Hall sensor 104 can be fixed on the outside of the cell casing 102, that is, the first Hall sensor 104 can not be in contact with the surface of the cell casing 102, which is convenient for separating the first sensor. Warm magnet 103 and first Hall sensor 104.
  • the first temperature-sensing magnet 103 can be installed inside the cell body 101 or on the inner surface of the cell casing 102 , and then the first Hall sensor 104 can be installed. Therefore, the separate arrangement of the first temperature-sensing magnet 103 and the first Hall sensor 104 is realized without destroying the complete structure of the battery case 102 .
  • the cell body 101 is a lithium ion cell
  • the cell casing 102 is a square aluminum shell.
  • the first temperature-sensitive magnet 103 adopts NdFeB system (Curie temperature Tc is 102°C), and the first preset temperature is set to 110°C.
  • the first temperature-sensing magnet 103 is embedded into the plastic support on the inner surface of the cell casing 102 by injection molding, so that one magnetic pole of the first temperature-sensing magnet 103 is kept perpendicular to the outer surface of the cell casing 102 .
  • the first Hall sensor 104 is installed on the outer surface of the battery case 102 , and the first Hall sensor 104 is electrically connected to the host unit 30 (such as a BMS).
  • the first Hall sensor 104 can output a first Hall voltage V H1 with a smaller amplitude.
  • the sensor 104 can output a first alarm signal of level jump or amplitude change to the host unit 30 based on the comparison result of the amplitude of the first Hall voltage V H1 and the first threshold voltage V g1 .
  • the host unit 30 detects a level jump or amplitude change of the first alarm signal, it can determine that the battery cell body 101 is thermally abnormal, and can timely realize an abnormal temperature alarm.
  • FIG. 8A-FIG. 8D are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • the first temperature-sensing magnet 103 When the first temperature-sensing magnet 103 is placed outside the containing cavity, as shown in FIG. 8A and FIG. 8B , the first temperature-sensing magnet 103 can be fixed on the outer surface of the battery case 102 . As shown in FIG. 8C and FIG. 8D , the first temperature-sensing magnet 103 can be fixed outside the battery case 102 , that is, the first Hall sensor 104 can not be in contact with the surface of the battery case 102 .
  • the first Hall sensor 104 can be fixed on the outer surface of the battery case 102 .
  • the first Hall sensor 104 can be fixed outside the battery case 102 , that is, the first Hall sensor 104 can not be in contact with the surface of the battery case 102 .
  • the first temperature-sensing magnet 103 can be installed on the outside or the outer surface of the cell casing 102 , and then the first Hall sensor 104 can be installed. Therefore, the separate arrangement of the first temperature-sensing magnet 103 and the first Hall sensor 104 is realized without destroying the complete structure of the battery case 102 .
  • the first temperature-sensing magnet 103 and the first Hall sensor 104 can also be integrated, and the complete structure of the battery case 102 does not need to be destroyed.
  • the distance between the first temperature-sensing magnet 103 and the cell body 102 is small, which can ensure that the first temperature-sensing magnet 103 can sense the heat generated by the cell body 101 through the cell body 101, so that the second The magnetism of a temperature-sensing magnet 103 can reflect the temperature change of the cell body 101 .
  • the battery 100 may further include: a heat conducting member 105 .
  • the heat conduction member 105 may be made of heat conduction glue or heat conduction silicone grease, which is not limited in this application.
  • FIG. 9A-FIG. 9B are schematic cross-sectional views of a battery provided in an embodiment of the present application.
  • the heat conducting element 105 is fixed on the outer surface of the cell casing 102 , so that the heat conducting element 105 can concentrate the heat generated by the cell body 101 .
  • the heat-conducting member 105 is in contact with the surface of the first temperature-sensing magnet 103, so that the heat-conducting member 105 can complete heat conduction with the first temperature-sensing magnet 103, so that the first temperature-sensing magnet 103 can accurately detect the thermal abnormality of the cell body 101. internal temperature.
  • the first Hall sensor 104 can be fixed on the outer surface of the battery case 102 .
  • the first Hall sensor 104 can be fixed outside the battery case 102 , that is, the first Hall sensor 104 can not be in contact with the surface of the battery case 102 .
  • the arrangement of the heat conducting member 105 can help the first temperature-sensing magnet 103 reflect the temperature change of the cell body 101 .
  • the combination of the first temperature-sensing magnet 103 and the first Hall sensor 104 can realize the temperature alarm function of the battery 100 , and the specific working principle can be referred to the description shown in FIG. 5 , which will not be repeated here.
  • the cell body 101 When the internal temperature of the cell body 101 is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the cell body 101 is about to or has undergone a thermal anomaly, causing the magnetism of the first temperature-sensing magnet 103 to weaken or disappear, so that the second The magnetic field applied by a temperature-sensitive magnet 103 on the first Hall sensor 104 weakens or disappears. Therefore, the weakening or disappearance of the magnetism of the first temperature-sensing magnet 103 can reduce the magnetic induction B1 of the first Hall sensor 104 .
  • the first Hall sensor 104 can output the first Hall voltage V H1 with a smaller amplitude.
  • the first Hall sensor 104 can output a first alarm signal of level jump or amplitude change to the host unit 30 based on the magnitude comparison result of the first Hall voltage V H1 and the first threshold voltage V g1 .
  • the host unit 30 detects a level jump or amplitude change of the first alarm signal, it can determine that the battery cell body 101 is thermally abnormal, and can timely realize an abnormal temperature alarm.
  • each battery 100 can include the following operating conditions:
  • Normal working condition when the battery core body 101 is running at an operating condition where the internal temperature is lower than the Curie temperature of the first temperature-sensing magnet 103, the first temperature-sensing magnet 103 can cause the first Hall sensor 104 to output a high voltage first Hall sensor. Er voltage V H1 .
  • the first Hall sensor 104 can transmit a high-voltage first alarm signal to the host unit 30 based on the comparison result of the amplitude of the first Hall voltage V H1 and the first threshold voltage V g1 , so that the host unit 30 can determine that the battery 100 is in normal condition. Under working conditions. And under normal working conditions, the battery 100 continuously monitors the internal temperature of the cell body 101 , which has high system reliability.
  • Alarm working condition as the internal temperature rises due to the abnormal heating of the battery core body 101, when the battery core body 101 is running in a working condition where the internal temperature is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the first temperature-sensing magnet 103 The magnetism of 103 is greatly weakened or disappeared, which can cause the first Hall sensor 104 to output a low-voltage first Hall voltage V H1 .
  • the first temperature-sensing magnet 103 can transmit a low-voltage first alarm signal to the host unit 30 based on the comparison result of the amplitude of the first Hall voltage V H1 and the first threshold voltage V g1 , so that the host unit 30 can determine the cell body 101 In the case of alarm, it has high effectiveness and timeliness.
  • Overhaul working condition After the core body 101 is again in the working condition where the internal temperature is lower than the Curie temperature of the first temperature-sensing magnet 103, the permanent magnetism of the first temperature-sensing magnet 103 cannot be restored, and no magnetic field is generated to the outside, that is, temperature sensing
  • the magnetic recording of the magnet 103 can complete the recording of the abnormal thermal event of the cell body 101 , thereby causing the first Hall sensor 104 to maintain the first Hall voltage V H1 outputting a low voltage.
  • the first temperature-sensing magnet 103 can continue to output a low-voltage first alarm signal to the host unit 30 based on the comparison result of the magnitude of the first Hall voltage V H1 and the first threshold voltage V g1 , so that the host unit 30 determines that the battery 100 is in the under abnormal conditions.
  • the cell body 101 with thermal abnormality can be quickly identified, which is convenient for identification, recording and maintenance at the module level, and has a good System maintainability.
  • the magnitude change of the Hall voltage V H in the present application is illustrated by taking the magnitude change of the first Hall voltage V H1 in the above implementation manner as an example.
  • the first Hall voltage V H1 can also be a low voltage; correspondingly, under an alarm working condition, the first Hall voltage V H1 can be a high voltage; Next, the first Hall voltage V H1 may be a high voltage.
  • the first alarm signal can be at a high level; correspondingly, under alarming conditions, the level of the first alarm signal can jump from a high level is a low level; under maintenance conditions, the level of the first alarm signal can be kept at a low level.
  • the host unit 30 can also store the mapping relationship between the voltage amplitude of the alarm signal, the magnetic induction of the Hall sensor, and the internal temperature of the cell body 101 . Therefore, after receiving the first alarm signal, the host unit 30 can determine the internal temperature of the cell body 101 based on the magnitude of the voltage of the first alarm signal. Thus, the temperature detection function of the battery 100 is realized.
  • the battery, battery module and battery system including M batteries provided in this application can accurately detect the internal temperature of the battery cell body when thermal abnormalities occur through the cooperation of the first temperature-sensing magnet and the first Hall sensor , can accurately and timely alarm the thermal abnormality of the battery cell body, solve the problem of lagging or inaccurate alarm response to the thermal abnormality of the battery cell body, and improve the response speed of the alarm for the thermal abnormality of the battery cell body, It is beneficial to improve the safety protection capability of the battery.
  • the first temperature-sensing magnet and the first Hall sensor there is no need to destroy the complete structure of the battery case, and it will not cause problems such as packaging leakage, which helps to extend the service life of the battery and ensure the reliability of the battery. Safety and security are conducive to mass production and use.
  • first temperature-sensing magnet has undergone a magnetic transition, and/or whether the amplitude of the first Hall voltage V H1 output by the first Hall sensor has changed, can be used as a screening basis for whether the cell body has experienced an overheating abnormality, The safety risk due to the abnormal overheating of the cell body is avoided.
  • the first Hall sensor 104 can be implemented in various manners.
  • the first alarm signal may include multiple representations, such as digital signals or analog signals.
  • the first alarm signal is a digital signal
  • the specific implementation of the first Hall sensor 104 will be described in detail with reference to FIG. 10A .
  • FIG. 10A is a schematic structural diagram of a first Hall sensor provided by an embodiment of the present application.
  • the number M of batteries 100 is 1 as an example, and the electrical connection between the power supply unit 20 and the host unit 30 is not shown.
  • the first Hall sensor 104 may include: a Hall element 1041 , an amplifier 1042 and a comparator 1043 .
  • the Hall element 1041 and the amplifier 1042 may be represented by a linear Hall sensor, or the Hall element 1041, the amplifier 1042 and the comparator 1043 may be represented by a switch Hall sensor.
  • the first end of the Hall element 1041 (the No. 1 terminal of the Hall element 1041 is used for illustration in FIG. 10A ) is the first end VCC1 of the first Hall sensor 104.
  • the first end of the Hall element 1041 is electrically connected to the power supply unit 20 connected so that the Hall element 1041 can obtain the power supply required by the Hall element 1041 from the power supply unit 20 so as to provide a constant first control current I1 (or first control voltage).
  • the first temperature-sensing magnet 103 can provide the magnetic induction B1 of the first Hall sensor 104 to the Hall element 1041 .
  • the Hall element 1041 can generate a Hall effect, so that the Hall element 1041 can detect the magnetism of the first temperature-sensing magnet 103 .
  • the second end of the Hall element 1041 is electrically connected to the first end of the amplifier 1042, that is, the No. 3 terminal of the Hall element 1041 is electrically connected to the No. 1 terminal of the amplifier 1042 in FIG. It is electrically connected to the No. 1 terminal of the amplifier 1042 for illustration.
  • the power terminal of the amplifier 1042 is represented as the No. 3 terminal of the amplifier 1042
  • the ground terminal of the Hall element 1041 is represented as the No. terminals. It should be noted that the Hall element 1041 , the amplifier 1042 and the comparator 1043 share a common ground.
  • the second terminal of the amplifier 1042 (indicated by terminal No. 5 of the amplifier 1042 in FIG. 10A ) is electrically connected with the first terminal of the comparator 1043 (indicated by terminal No. 1 of the comparator 1043 in FIG. 10A ).
  • the second terminal of the comparator 1043 (the No. 2 terminal of the comparator 1043 is used for illustration in FIG. 10A ) is used to input the first threshold voltage V g1 .
  • the first threshold voltage V g1 is the voltage corresponding to the cell body 101 when no thermal abnormality occurs and the thermal abnormality occurs
  • the first threshold voltage V g1 is based on the Curie temperature of the first temperature-sensitive magnet 103 and the amplifier
  • the magnification ratio of 1042 is determined. For details, please refer to the previous description.
  • the third end of the comparator 1043 (the No. 3 terminal of the comparator 1043 is used for illustration in FIG. 10A ) is the second end OUT1 of the first Hall sensor 104, and the third end of the comparator 1043 is connected to the first end of the host unit 30. (In FIG. 10A, terminal No. 1 of the host unit 30 is used for illustration) Electrical connection.
  • the first temperature-sensing magnet 103 when the internal temperature of the core body 101 is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the first temperature-sensing magnet 103 can be weakened or disappeared by the magnetism of the first temperature-sensing magnet 103. The magnetic induction B1 of the Hall element 1041 is reduced.
  • the Hall element 1041 can output the first Hall voltage V H1 with a reduced amplitude to the amplifier 1042 .
  • the amplifier 1042 can amplify the first Hall voltage V H1 according to the amplification ratio of the amplifier 1042 to obtain an amplified result.
  • the present application does not limit the specific value of the amplification ratio of the amplifier 1042 .
  • the sensitivity and reliability of detecting the first Hall voltage V H1 are improved.
  • the amplifier 1042 can output the amplification result to the comparator 1043 . Moreover, based on the description of the embodiment in FIG. 4 , when the cell body 101 is thermally abnormal, the voltage amplitude of the amplified result is reduced to be smaller than the amplitude of the first threshold voltage V g1 .
  • the comparator 1043 can convert the amplification result based on the first threshold voltage V g1 , and obtain the first alarm signal with a level jump. That is to say, the comparator 1043 can output the first alarm signal with a preset level based on the amplitude comparison result between the first threshold voltage V g1 and the amplification result.
  • the preset level can be high level or low level.
  • the comparator 1043 can transmit the first alarm signal to the first end of the host unit 30, so that the host unit 30 can judge whether the preset level of the first alarm signal jumps, such as whether the first alarm signal jumps from a high level is low level, or whether the first alarm signal jumps from low level to high level.
  • the host unit 30 can determine that the battery body 101 has a thermal abnormality. Thus, a digital signal alarm is realized.
  • the first alarm signal is an analog signal
  • the specific implementation of the first Hall sensor 104 will be described in detail with reference to FIG. 10B .
  • FIG. 10B is a schematic structural diagram of a first Hall sensor provided by an embodiment of the present application.
  • the number M of the batteries 100 is 1 as an example, and the electrical connection between the power supply unit 20 and the host unit 30 is not shown.
  • the first Hall sensor 104 may include: a Hall element 1041 and an amplifier 1042 .
  • the Hall element 1041 and the amplifier 1042 can be represented by using, for example, a linear Hall sensor.
  • the first end of the Hall element 1041 (the No. 1 terminal of the Hall element 1041 is used for illustration in FIG. 10B ) is the first end VCC1 of the first Hall sensor 104. connected so that the Hall element 1041 can obtain the power supply required by the Hall element 1041 from the power supply unit 20 so as to provide a constant first control current I1 (or first control voltage). Moreover, the first temperature-sensing magnet 103 can provide the magnetic induction B1 of the first Hall sensor 104 to the Hall element 1041 . Thus, the Hall element 1041 can generate a Hall effect.
  • the second end of the Hall element 1041 is electrically connected to the first end of the amplifier 1042, that is, the No. 3 terminal of the Hall element 1041 is electrically connected to the No. 1 terminal of the amplifier 1042 in FIG. It is electrically connected to the No. 2 terminal of the amplifier 1042 for illustration.
  • the power terminal of amplifier 1042 is represented as terminal No. 3 of amplifier 1042
  • the ground terminal of Hall element 1041 is represented as terminal No. 2 of Hall element 1041
  • the ground terminal of amplifier 1042 is represented as No. 4 terminal of amplifier 1042. terminals. It should be noted that the Hall element 1041 and the amplifier 1042 share a common ground.
  • the second end of the amplifier 1042 (the No. 5 terminal of the amplifier 1042 is used for illustration in FIG. 10B ) is the second end OUT1 of the first Hall sensor 104, and the second end of the amplifier 1042 is connected to the first end of the host unit 30 (FIG. 10B 1 terminal of the host unit 30 is used for schematic) electrical connection.
  • the first temperature-sensing magnet 103 when the internal temperature of the core body 101 is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the first temperature-sensing magnet 103 can be weakened or disappeared by the magnetism of the first temperature-sensing magnet 103. The magnetic induction B1 of the Hall element 1041 is reduced.
  • the Hall element 1041 can output the first Hall voltage V H1 with a reduced amplitude to the amplifier 1042 .
  • the amplifier 1042 can amplify the first Hall voltage V H1 according to the amplification ratio of the amplifier 1042 to obtain the first alarm signal. Wherein, the present application does not limit the specific value of the amplification ratio of the amplifier 1042 . Thus, the sensitivity and reliability of detecting the first Hall voltage V H1 are improved.
  • the amplitude of the voltage of the first alarm signal is reduced to be less than the amplitude of the first threshold voltage V g1 .
  • the first threshold voltage V g1 is the voltage corresponding to the cell body 101 when no thermal abnormality occurs and the thermal abnormality occurs
  • the first threshold voltage V g1 is based on the Curie temperature of the first temperature-sensitive magnet 103 and the amplifier
  • the magnification ratio of 1042 is determined. For details, please refer to the previous description.
  • the amplifier 1042 can transmit the first alarm signal to the first terminal of the host unit 30 , so that the host unit 30 can compare the voltage amplitude of the first alarm signal with the amplitude of the first threshold voltage V g1 .
  • the host unit 30 may store the magnitude of the first threshold voltage V g1 .
  • the host unit 30 may receive the magnitude of the first threshold voltage V g1 from the amplifier 1042 or other components.
  • the host unit 30 may determine that the battery 100 is thermally abnormal. Thus, an analog signal alarm is realized.
  • the battery 100 can also implement multi-level alarms for abnormal thermal conditions of the cell body 101 .
  • FIG. 11A is a partial structural diagram of a battery system provided by an embodiment of the present application.
  • the number M of batteries 100 is equal to 1 for illustration.
  • the battery 100 in addition to the cell body 101, the cell casing 102, the first temperature-sensing magnet 103 and the first Hall sensor 104, the battery 100 can also include: a second temperature-sensing magnet 106 and a second Hall sensor Seoul sensor 107 .
  • the magnetic field lines generated by the second temperature-sensing magnet 106 can pass through the cell casing 102, so that the second temperature-sensing magnet 106 can apply a magnetic field on the second Hall sensor 107, so as to generate the magnetic induction of the second Hall sensor 107 B2, for a specific implementation, please refer to the description of the magnetic induction B mentioned in FIGS. 3A-3B .
  • the second Hall sensor 107 is placed outside the accommodating cavity, thus, the second Hall sensor 107 can be separated from the setting of the cell casing 102, so that the second Hall sensor 107 is electrically connected to the host unit 30 and the power supply unit 20 respectively, There is no need for the second Hall sensor 107 to penetrate the battery case 102 , the structure of the battery case 102 will not be damaged, and the long-term use of the battery body 101 is ensured, which is conducive to improving the reliability and safety of the battery body 101 .
  • the first end VCC2 of the second Hall sensor 107 is electrically connected to the power supply unit 20, so that the second Hall sensor 107 can obtain the power supply required by the second Hall sensor 107 from the power supply unit 20, so as to provide a constant second Control current I2 (or second control voltage), its specific implementation can refer to the description of the constant control current I (or control voltage) mentioned in Figure 3A- Figure 3B, so that the second Hall sensor 107 can generate Hall effect.
  • the magnitude of the second control current I2 depends on the equivalent resistance of the Hall element in the second Hall sensor 107 . It can be seen that when Hall elements with the same equivalent resistance are selected in the first Hall sensor 104 and the second Hall sensor 107 , the amplitude of the second control current I2 is equal to that of the first control current I1 . When Hall elements with different equivalent resistances are selected in the first Hall sensor 104 and the second Hall sensor 107 , the amplitudes of the second control current I2 and the first control current I1 are different. Moreover, the present application does not limit whether Hall elements with the same equivalent resistance are selected in the first Hall sensor 104 and the second Hall sensor 107, nor does the present application limit the magnitudes of the second control current I2 and the first control current I1 Are the sizes equal.
  • the second end OUT2 of the second Hall sensor 107 is electrically connected to the second end of the host unit 30 (the No. 2 terminal of the host unit 30 is used for illustration in FIG.
  • the second terminal in FIG. 11A, terminal No. 2 of the host unit 30 is used for illustration) transmits the second alarm signal.
  • the second terminal of the host unit 30 is different from the first terminal of the host unit 30 (terminal 1 of the host unit 30 is used for illustration in FIG.
  • the host unit 30 can be separated from or integrated with the second Hall sensor 107 .
  • the second terminal of the power supply unit 20 (in FIG. 11A is illustrated by terminal 2 of the power supply unit 20 ) is electrically connected to the power supply terminal VCC0 of the host unit 30 , so that the power supply unit 20 can supply power to the host unit 30 .
  • the second alarm signal can be determined based on the second Hall voltage V H2 and the second threshold voltage V g2 , the aforementioned second Hall voltage V H2 is when the power supply unit 20 supplies power to the second Hall sensor 107 , The output of the second Hall sensor 107 under the action of the magnetic induction B2 of the second Hall sensor 107 , the magnitude of the aforementioned second threshold voltage V g2 is determined based on the Curie temperature of the second temperature-sensing magnet 106 .
  • the meaning of the second alarm signal is different from that of the first alarm signal.
  • the second alarm signal is used by the host unit 30 to determine that a second-level thermal abnormality occurs in the cell body 101.
  • the second level mentioned in this application refers to the thermal abnormality of the cell body 101.
  • the internal temperature of the main body 101 is equal to or higher than the Curie temperature of the second temperature-sensing magnet 106
  • the first alarm signal is used by the host unit 30 to determine that a first-level thermal abnormality occurs in the main body 101 of the battery core, which is referred to in this application. It means that the internal temperature of the cell body 101 is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103 .
  • the second Hall sensor 107 can be fixed in the battery 100 by means such as welding, inlaying or gluing, so as to ensure that the second Hall sensor 107 will not move with the shaking of the battery 100 .
  • the second Hall sensor 107 can also be fixedly arranged in the battery 100 by means of the host unit 30 and/or the power supply unit 20 .
  • the specific implementation manner of the second Hall sensor 107 can refer to the description of the first Hall sensor 104 in FIGS. 10A-10B , which will not be repeated here.
  • the second temperature-sensing magnet 106 can be placed in the accommodating cavity, so that the second temperature-sensing magnet 106 can be closer to the cell body 101, so that the second temperature-sensing magnet 106 can more accurately detect the interior of the cell body 101 when thermal abnormalities occur.
  • the temperature also makes the battery case 102 separate the second temperature-sensing magnet 106 from the second Hall sensor 107 .
  • the second temperature-sensing magnet 106 can be placed outside the accommodating cavity, which can fully consider the limited internal space of the cell body 101 .
  • the present application does not limit the specific position of the second temperature-sensing magnet 106 , and reference may be made to the description of the first temperature-sensing magnet 103 mentioned above.
  • the second temperature-sensing magnet 106 can be fixed in the battery 100 by means such as welding, inlaying or gluing, so as to ensure that the second temperature-sensing magnet 106 will not move with the shaking of the battery 100 .
  • FIG. 11B is a schematic flowchart of a method for alarming abnormal battery heat provided by an embodiment of the present application.
  • the method for alarming abnormal battery heat of the present application may include:
  • the second temperature-sensing magnet senses the temperature inside the cell body; wherein, when the internal temperature of the cell body is equal to or higher than the Curie temperature of the second temperature-sensing magnet, the magnetism of the second temperature-sensing magnet weakens or disappears ;
  • the Curie temperature of the second temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, and the Curie temperature of the second temperature-sensing magnet is different from that of the first temperature-sensing magnet.
  • the second Hall sensor detects the magnetism of the second temperature-sensing magnet, and outputs a second alarm signal according to the magnetic change of the second temperature-sensing magnet, so that the host unit can determine that a second alarm occurs on the cell body after detecting the second alarm signal.
  • Class 1 thermal anomaly the first class differs from the second class.
  • the selection specifications of the Curie temperature of the second temperature-sensing magnet 106 are selected based on the thermal runaway critical temperature T NR of the cell body 101, so that the temperature change of the cell body 101 can cause the magnetic transition of the second temperature-sensing magnet 106 . That is to say, when there is no thermal abnormality in the cell body 101 , the second temperature-sensing magnet 106 has strong magnetism. When the battery core body 101 has a thermal abnormality, the magnetism of the second temperature-sensing magnet 106 can change from strong to weak or from present to non-existent. For the specific implementation, refer to the description in FIG. 2 , which will not be repeated here.
  • the present application can set a second preset temperature, the first preset temperature is different from the second preset temperature, and the second preset temperature is related to the Curie temperature of the second temperature-sensitive magnet 106, which can be used as the second temperature-sensitive magnet
  • the temperature at which the magnetic properties of the electronic body 106 undergoes a transition can be identified in time for thermal anomalies in the internal temperature of the electronic body 101 .
  • the present application does not limit the specific value of the second preset temperature.
  • the second preset temperature may be equal to the Curie temperature of the second temperature-sensing magnet 106, which is conducive to accurately detecting the internal temperature of the cell body 101 when thermal abnormalities occur, or the second preset temperature It may be higher than the Curie temperature of the second temperature-sensing magnet 106 , fully considering that the cell body 101 has a certain bearing capacity.
  • the Curie temperature of the second temperature-sensing magnet 106 is different from the Curie temperature of the first temperature-sensing magnet 103, so that the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 can respectively detect that the core body 101 is different.
  • the internal temperature at the time of thermal abnormality of a certain degree is beneficial to reflect the degree of thermal abnormality of the battery cell body 101 , and realize multi-level alarms for different degrees of thermal abnormality of the battery cell body 101 .
  • the present application does not limit the specific implementation manners of the Curie temperature of the second temperature-sensing magnet 106 and the Curie temperature of the first temperature-sensing magnet 103 .
  • the second temperature-sensing magnet 106 and the second Hall sensor 107 can be separately or integrated in the battery 100, and the second temperature-sensing magnet 106 can provide the second Hall sensor 107 with the magnetic induction B2 of the second Hall sensor 107, This enables the second Hall sensor 107 to generate a Hall effect.
  • the layout of the second temperature-sensing magnet 106 and the second Hall sensor 107 in the battery 100 can refer to the first temperature-sensing magnet 103 and the first temperature-sensing magnet 103 in FIGS.
  • the description of the layout of the Hall sensor 104 in the battery 100 will not be repeated here.
  • the magnetic induction B2 of the second Hall sensor 107 is independent of the magnetic transition of the first temperature-sensing magnet 103
  • the magnetic induction B1 of the first Hall sensor 104 is independent of the magnetic transition of the second temperature-sensing magnet 106 .
  • a magnetic shield is formed between the first temperature-sensing magnet 103 and the first Hall sensor 104, and the second temperature-sensing magnet 106 and the second Hall sensor 107, and the magnetism of the second temperature-sensing magnet 106 cannot cause the first
  • the change of the magnetic induction B1 of the Hall sensor 104 and the magnetism of the first temperature-sensing magnet 103 cannot cause the change of the magnetic induction B2 of the second Hall sensor 107 .
  • the combination of the second temperature-sensing magnet 106 and the second Hall sensor 107 can realize the temperature alarm function of the battery 100 , and the specific working principle can be referred to the description shown in FIG. 5 , which will not be repeated here.
  • FIG. 11C is a schematic diagram of a working principle of a first Hall sensor and a second Hall sensor provided by an embodiment of the present application.
  • the Hall elements in the first Hall sensor 104 include four terminals (indicated by numbers 1, 2, 3 and 4 in FIG. 11C ).
  • terminals No. 1 and No. 2 are the two input terminals of the Hall element in the first Hall sensor 104
  • terminals No. 3 and No. 4 are the two outputs of the Hall element in the first Hall sensor 104. end. Therefore, the two input ends of the Hall element in the first Hall sensor 104 form an input loop, and the two output ends of the Hall element in the first Hall sensor 104 form an output loop.
  • the Hall elements in the second Hall sensor 107 include four terminals (indicated by numerals 1, 2, 5 and 6 in FIG. 11C ).
  • terminals No. 1 and No. 2 are the two input terminals of the Hall element in the second Hall sensor 107
  • terminals No. 5 and No. 6 are the two outputs of the Hall element in the second Hall sensor 107. end. Therefore, the two input terminals of the Hall element in the second Hall sensor 107 form an input loop, and the two output terminals of the Hall element in the second Hall sensor 107 form an output loop.
  • the input terminals of the Hall element in the first Hall sensor 104 and the Hall element in the second Hall sensor 107 are electrically connected in parallel, and the Hall element in the first Hall sensor 104 and the second Hall sensor 107
  • the output terminals of the Hall elements in the sensor are independently electrically connected to different terminals of the host unit 30, and the output terminals of the Hall elements in the first Hall sensor 104 and the Hall elements in the second Hall sensor 107 are controlled by the host unit 30 unified management.
  • the input loop of the Hall element in the first Hall sensor 104 can input a constant first control current I1
  • the input loop of the Hall element in the second Hall sensor 107 can input a constant second control current I2
  • the output loop of the Hall element in the first Hall sensor 104 can output the first Hall voltage V H1
  • the output loop of the Hall element in the second Hall sensor 107 can output the second Hall voltage V H2 .
  • the Hall element in the first Hall sensor 104 fed with a constant first control current I1 is placed in the magnetic field corresponding to the magnetic induction B1 of the first Hall sensor 104, and the first Hall
  • the two output terminals of the Hall element in the sensor 104 generate a potential difference V H1 , that is, the output circuit can output the first Hall voltage V H1 .
  • the Hall element in the second Hall sensor 107 fed with a constant second control current I2 is placed in the magnetic field corresponding to the magnetic induction intensity B2 of the second Hall sensor 107, and the Hall element in the second Hall sensor 107
  • the two output terminals generate a potential difference V H2 , that is, the output circuit can output the second Hall voltage V H2 .
  • the first Hall sensor 104 can determine that the cell body 101 has a thermal anomaly in which the internal temperature of the cell body 101 is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103 .
  • the second end of the host unit 30 detects a level jump or a change in the amplitude of the first alarm signal by means of the first temperature-sensitive magnet 103 and the first Hall sensor 104, it can determine that the cell body 101 A thermal abnormality occurs in which the internal temperature of the cell body 101 is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103 .
  • the cell body 101 When the internal temperature of the cell body 101 is equal to or higher than the Curie temperature of the second temperature-sensing magnet 106, the cell body 101 is about to or has undergone a thermal anomaly, causing the magnetism of the second temperature-sensing magnet 106 to weaken or disappear, so that the second temperature-sensing magnet 106 will weaken or disappear.
  • the magnetic field applied by the second temperature-sensing magnet 106 on the second Hall sensor 107 weakens or disappears. Therefore, the weakening or disappearance of the magnetism of the second temperature-sensing magnet 106 can reduce the magnetic induction B2 of the second Hall sensor 107 .
  • the second Hall sensor 107 can output a second Hall voltage V H2 with a smaller amplitude.
  • the second Hall sensor 107 can perform a level jump on the level of the second alarm signal based on the comparison result of the amplitude of the second Hall voltage V H2 and the second threshold voltage V g2 , and can send a signal to the first alarm signal of the host unit 30.
  • the two terminals output the second alarm signal.
  • the host unit 30 detects that the level of the second alarm signal jumps, it can determine that the battery cell body 101 has a thermal abnormality.
  • the second Hall sensor 107 can reduce the voltage amplitude of the second alarm signal to be less than the second threshold voltage V g2 based on the comparison result of the amplitude of the second Hall voltage V H2 and the second threshold voltage V g2 amplitude, and output a second alarm signal to the second terminal of the host unit 30 . Therefore, when the host unit 30 detects that the amplitude of the voltage of the second alarm signal is lower than the amplitude of the second threshold voltage V g2 , it can determine that the battery body 101 has a thermal abnormality. Wherein, the host unit 30 may store the second threshold voltage V g2 . Alternatively, the host unit 30 may receive the second threshold voltage V g2 from the second Hall sensor 107 or other components.
  • the second end of the host unit 30 detects a level jump or amplitude change of the second alarm signal by means of the second temperature-sensing magnet 106 and the second Hall sensor 107, it can determine that the cell body 101 A thermal abnormality occurs in which the internal temperature of the cell body 101 is equal to or higher than the Curie temperature of the second temperature-sensing magnet 106 .
  • the host unit 30 can know the degree and degree of thermal abnormality of the same cell body 101 through different terminals. temperature, so that the host unit 30 can accurately and timely implement different levels of security protection for the battery 100 , and realize different levels of abnormal temperature alarms for the same battery cell body 101 .
  • the second preset temperature is greater than the first preset temperature
  • the second preset temperature is equal to the Curie temperature of the second temperature-sensing magnet 106
  • the first preset temperature is equal to the Curie temperature of the first temperature-sensing magnet 103
  • the Curie temperature of the first temperature-sensing magnet 103 is the internal temperature of the battery core body 101 when no thermal abnormality occurs
  • the Curie temperature of the second temperature-sensing magnet 106 is greater than that of the first temperature-sensing magnet 103. inside temperature.
  • the Curie temperature of the first temperature-sensing magnet 103 is reached at this time, triggering the temperature of the first temperature-sensing magnet 103
  • the magnetism is weakened, which in turn causes the magnetic induction intensity B1 of the first Hall sensor 104 to decrease, so that the first Hall sensor 104 outputs a low-voltage first Hall voltage V H1 , and the first Hall sensor 104 is based on the first Hall voltage V H1
  • the first alarm signal can be output to the first terminal of the host unit 30, so that the host unit 30 can determine that the internal temperature of the battery core body 101 is equal to the temperature of the first temperature-sensitive magnet 103. It is convenient to implement the first-level safety protection, such as alerting relevant personnel. Thus, a first-level alarm of the battery 100 is realized.
  • the Curie temperature of the second temperature-sensing magnet 106 is reached at this time, and the second temperature-sensing magnet 106 is triggered.
  • the magnetism disappears, and then causes the magnetic induction intensity B2 of the second Hall sensor 107 to decrease, so that the second Hall sensor 107 outputs a low-voltage second Hall voltage V H2 , and the second Hall sensor 107 is based on the low-level second Hall voltage V H2 .
  • a second alarm signal can be output to the second terminal of the host unit 30, so that the host unit 30 can determine that the internal temperature of the cell body 101 is equal to the second sensor.
  • the Curie temperature of the warm magnet 106 is convenient for performing secondary safety protection, such as stopping the operation of the battery 100 .
  • the secondary alarm of the battery 100 is realized.
  • the present application can adopt methods such as increasing the distance and/or forming a magnetic shield between each set to ensure that any set The temperature-sensing magnets in the group do not magnetically interfere with the Hall sensors in other groups.
  • the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 are placed in the electric core housing 102, and the first Hall sensor 104 and the second Hall sensor 107 are placed in the electric core.
  • the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 both include two magnetic poles, the south pole (S) and the north pole (N). hint.
  • FIG. 12A-FIG. 12B are schematic cross-sectional views of a battery provided in an embodiment of the present application.
  • the distance between the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 is greater than the first preset distance
  • the first Hall sensor 104 and the second Hall sensor The distance between the sensors 107 is greater than the second preset distance.
  • the present application does not limit the specific values of the first preset distance and the second preset distance.
  • the distance between the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 is greater than the first preset distance
  • the distance between the first Hall sensor 104 and the second Hall sensor 107 is greater than the second preset distance.
  • the magnetic induction B2 of the second Hall sensor 107 has nothing to do with the magnetic transition of the first temperature-sensing magnet 103
  • the magnetic induction B1 of the first Hall sensor 104 has nothing to do with the magnetic transition of the second temperature-sensing magnet 106 .
  • a magnetic shield is formed between the first temperature-sensing magnet 103 and the first Hall sensor 104 , and the second temperature-sensing magnet 106 and the second Hall sensor 107 .
  • the present application does not limit the direction of the magnetic induction B1 of the first Hall sensor 104 and the direction of the magnetic induction B2 of the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 may be parallel to the direction of the magnetic induction B2 of the second Hall sensor 107 . That is, the direction of the magnetic field applied by the first temperature-sensing magnet 103 on the first Hall sensor 104 is parallel to the direction of the magnetic field applied by the second temperature-sensing magnet 106 on the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 may be perpendicular to the direction of the magnetic induction B2 of the second Hall sensor 107 . That is, the direction of the magnetic field applied by the first temperature-sensing magnet 103 on the first Hall sensor 104 is perpendicular to the direction of the magnetic field applied by the second temperature-sensing magnet 106 on the second Hall sensor 107 .
  • this application can also adopt other layouts, as long as the distance between the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 and the distance between the first temperature-sensing magnet 106 and the second The distance between the first Hall sensor 104 and the second Hall sensor 107 is large enough.
  • the battery 100 can also be equipped with a magnetic shield to adjust the direction of the magnetic field applied by the temperature-sensing magnet in each group to the corresponding Hall sensor, so that the first sensor A magnetic shield is formed between the temperature magnet 103 and the first Hall sensor 104 , and the second temperature magnet 106 and the second Hall sensor 107 .
  • the present application does not limit parameters such as quantity, layout, and size of the magnetic shields.
  • FIGS. 13A-13F , 14A-14B and 15A-15B For the convenience of description, in Fig. 13A-Fig. 13F, Fig. 14A-Fig. 14B and Fig. 15A-Fig.
  • the sensor 104 and the second Hall sensor 107 are placed outside the cell casing 102, and the first temperature-sensing magnet 103 and the second temperature-sensing magnet 106 both include two magnetic poles, the south pole (S) and the north pole (N), and the dotted lines represent corresponding
  • the magnetic induction lines generated by the temperature-sensitive magnet are shown as an example.
  • FIG. 13A-FIG. 13F are schematic cross-sectional views of a battery provided by an embodiment of the present application.
  • the battery 100 may further include: a first magnetic shield 108 and a second magnetic shield 109 each having an opening, for ensuring that the first temperature-sensitive magnet 103 and the first Hall sensor 104 are in contact with the second temperature-sensitive magnet.
  • a magnetic shield is formed between the magnet 106 and the second Hall sensor 107 .
  • the present application does not limit the direction of the magnetic induction B1 of the first Hall sensor 104 and the direction of the magnetic induction B2 of the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 may be parallel to the direction of the magnetic induction B2 of the second Hall sensor 107 . That is, the direction of the magnetic field applied by the first temperature-sensing magnet 103 on the first Hall sensor 104 is parallel to the direction of the magnetic field applied by the second temperature-sensing magnet 106 on the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 may be perpendicular to the direction of the magnetic induction B2 of the second Hall sensor 107 . That is, the direction of the magnetic field applied by the first temperature-sensing magnet 103 on the first Hall sensor 104 is perpendicular to the direction of the magnetic field applied by the second temperature-sensing magnet 106 on the second Hall sensor 107 .
  • the magnetic induction B2 of the second Hall sensor 107 has nothing to do with the magnetic transition of the first temperature-sensing magnet 103
  • the magnetic induction B1 of the first Hall sensor 104 has nothing to do with the magnetic transition of the second temperature-sensing magnet 106 .
  • the magnetic shield is arranged for the first temperature-sensitive magnet 103 and the first Hall sensor 104, as shown in Figure 13C- Figure 13D, the first temperature-sensitive magnet 103 is placed in the first magnetic shield 108, and the first Hall sensor The sensor 104 is placed in the second magnetic shield 109 , and the opening of the first magnetic shield 108 is opposite to the opening of the second magnetic shield 109 .
  • the present application does not limit the direction of the magnetic induction B1 of the first Hall sensor 104 and the direction of the magnetic induction B2 of the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 in FIG. 13C is the same as the direction of the magnetic induction B1 of the first Hall sensor 104 in FIG. 13D
  • the direction can be different.
  • the first temperature-sensitive magnet 103 applies a directional magnetic field on the first Hall sensor 104, and the first Hall sensor 104 will not be affected by Due to the magnetic interference of the second temperature-sensing magnet 106 , the first temperature-sensing magnet 103 will not apply a magnetic field to the second Hall sensor 107 . Therefore, the magnetic induction B2 of the second Hall sensor 107 has nothing to do with the magnetic transition of the first temperature-sensing magnet 103 , and the magnetic induction B1 of the first Hall sensor 104 has nothing to do with the magnetic transition of the second temperature-sensing magnet 106 .
  • the second temperature-sensitive magnet 106 is placed in the first magnetic shield 108, and the second Hall sensor
  • the Er sensor 107 is placed in the second magnetic shield 109 , and the opening of the first magnetic shield 108 is opposite to the opening of the second magnetic shield 109 .
  • the present application does not limit the direction of the magnetic induction B1 of the first Hall sensor 104 and the direction of the magnetic induction B2 of the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 is constant, the direction of the magnetic induction B2 of the second Hall sensor 107 in FIG. 13E is different from the direction of the magnetic induction B2 of the second Hall sensor 107 in FIG. 13F The direction can be different.
  • the second temperature-sensitive magnet 106 applies a directional magnetic field on the second Hall sensor 107, and the second Hall sensor 107 will not be affected by With the magnetic interference of the first temperature-sensing magnet 103 , the second temperature-sensing magnet 106 will not apply a magnetic field to the first Hall sensor 104 . Therefore, the magnetic induction B2 of the second Hall sensor 107 has nothing to do with the magnetic transition of the first temperature-sensing magnet 103 , and the magnetic induction B1 of the first Hall sensor 104 has nothing to do with the magnetic transition of the second temperature-sensing magnet 106 .
  • FIG. 14A-FIG. 14B are schematic cross-sectional views of a battery provided in an embodiment of the present application.
  • the battery 100 may further include: a third magnetic shield 110, a fourth magnetic shield 111, and a fifth magnetic shield 112 each having an opening, for ensuring that the first temperature-sensitive magnet 103 and the first Hall sensor 104 , forming a magnetic shield with the second temperature-sensing magnet 106 and the second Hall sensor 107 .
  • the first temperature-sensing magnet 103 is placed in the third magnetic shield 110
  • the first Hall sensor 104 is placed in the fourth magnetic shield 111
  • the second temperature-sensing magnet 106 is placed in the fifth magnetic shield.
  • the opening direction of the third magnetic shielding member 110 is opposite to the opening direction of the fourth magnetic shielding member 111
  • the opening direction of the third magnetic shielding member 110 is the same as that of the fifth magnetic shielding member 112 .
  • the second temperature-sensing magnet 106 is placed in the third magnetic shield 110
  • the second Hall sensor 107 is placed in the fourth magnetic shield 111
  • the first temperature-sensing magnet 103 is placed in the fifth magnetic shield.
  • the opening direction of the third magnetic shielding member 110 is opposite to the opening direction of the fourth magnetic shielding member 111
  • the opening direction of the third magnetic shielding member 110 is the same as that of the fifth magnetic shielding member 112 .
  • the magnetic interference of the first temperature-sensitive magnet 103 to the second Hall sensor 107 and the second hall sensor 107 are further magnetically shielded. Magnetic interference of the temperature sensing magnet 106 on the first Hall sensor 104 .
  • FIG. 15A-FIG. 15B are schematic cross-sectional views of a battery provided in an embodiment of the present application.
  • the battery 100 may further include: a sixth magnetic shield 113 , a seventh magnetic shield 114 , an eighth magnetic shield 115 , and a ninth magnetic shield 116 each having an opening, for ensuring that the first temperature-sensitive magnet 103 and the first Hall sensor 104 form a magnetic shield with the second temperature-sensing magnet 106 and the second Hall sensor 107 .
  • the magnetic shield is arranged for the first temperature-sensing magnet 103, the first Hall sensor 104, the second temperature-sensing magnet 106 and the second Hall sensor 107, as shown in Figures 15A-15B, the first temperature-sensing magnet 103 is placed in the sixth magnetic shield 113, the first Hall sensor 104 is placed in the seventh magnetic shield 114, the opening of the sixth magnetic shield 113 is opposite to the opening of the seventh magnetic shield 114, the second sensor The warm magnet 106 is placed in the eighth magnetic shield 115 , the second Hall sensor 107 is placed in the ninth magnetic shield 116 , and the opening of the eighth magnetic shield 115 is opposite to the opening of the ninth magnetic shield 116 .
  • the present application does not limit the direction of the magnetic induction B1 of the first Hall sensor 104 and the direction of the magnetic induction B2 of the second Hall sensor 107 .
  • the direction of the magnetic induction B1 of the first Hall sensor 104 is constant, the direction of the magnetic induction B2 of the second Hall sensor 107 in FIG. 15A is different from the direction of the magnetic induction B2 of the second Hall sensor 107 in FIG. 15B The direction can be different.
  • the first temperature-sensitive magnet 103 and the first Hall sensor 104 are respectively used as A whole, and the second temperature-sensing magnet 106 and the second Hall sensor 107 are taken as a whole, so that magnetic shielding can be realized between the two wholes. Therefore, the magnetic induction B2 of the second Hall sensor 107 has nothing to do with the magnetic transition of the first temperature-sensing magnet 103 , and the magnetic induction B1 of the first Hall sensor 104 has nothing to do with the magnetic transition of the second temperature-sensing magnet 106 .
  • the battery 100 can also implement multi-point alarms for thermal abnormalities in the battery cell body 101 at different detection positions.
  • FIG. 16A is a partial structural diagram of a battery system provided by an embodiment of the present application.
  • the number M of batteries 100 is 1 as an example for illustration.
  • the magnetic fields generated by the first temperature-sensitive magnet 103 are different in different positions, and the number of terminals of the host unit 30 is limited. Response speed for alarming when thermal anomalies occur.
  • the battery 100 may further include: a third temperature-sensing magnet 117 , the third Hall sensor 118 and the AND gate circuit 119 .
  • the magnetic field lines generated by the third temperature-sensing magnet 117 can pass through the cell housing 102, so that the third temperature-sensing magnet 117 can apply a magnetic field on the third Hall sensor 118, so as to generate the magnetic induction intensity of the third Hall sensor 118 B3, for a specific implementation, please refer to the description of the magnetic induction B mentioned in FIG. 3A-FIG. 3B.
  • the third Hall sensor 118 is placed outside the accommodating cavity, thus, the setting of the cell casing 102 can separate the third Hall sensor 118, so that the third Hall sensor 118 is electrically connected to the host unit 30 and the power supply unit 20 respectively, There is no need for the third Hall sensor 118 to penetrate the battery case 102 , the structure of the battery case 102 will not be damaged, and the long-term use of the battery body 101 is ensured, which is conducive to improving the reliability and safety of the battery body 101 .
  • the first terminal VCC3 of the third Hall sensor 118 is electrically connected to the power supply unit 20, so that the third Hall sensor 118 can obtain the power supply required by the third Hall sensor 118 from the power supply unit 20, so as to provide a constant third Control current I3 (or third control voltage), its specific implementation can refer to the description of the constant control current I (or control voltage) mentioned in Figure 3A- Figure 3B, so that the third Hall sensor 118 can generate Hall effect.
  • the magnitude of the third control current I3 depends on the equivalent resistance of the Hall element in the third Hall sensor 118 . It can be seen that when Hall elements with the same equivalent resistance are selected in the first Hall sensor 104 and the third Hall sensor 118 , the magnitude of the third control current I3 is equal to that of the first control current I1 . When Hall elements with different equivalent resistances are selected in the first Hall sensor 104 and the third Hall sensor 118 , the magnitudes of the third control current I3 and the first control current I1 are different. Moreover, this application does not limit whether Hall elements with different equivalent resistances are used in the first Hall sensor 104 and the third Hall sensor 118, nor does this application limit the magnitudes of the third control current I3 and the first control current I1 Are the sizes equal.
  • the second terminal of the power supply unit 20 (in FIG. 16A is illustrated by terminal No. 2 of the power supply unit 20 ) is electrically connected to the power supply terminal VCC0 of the host unit 30 , so that the power supply unit 20 can supply power to the host unit 30 .
  • the second end OUT1 of the first Hall sensor 104 is electrically connected to the first end of the AND gate circuit 119 (the No. 1 terminal of the AND gate circuit 119 is used for illustration in FIG. And the second end of AND gate circuit 119 (adopt No. 2 terminals of AND gate circuit 119 to illustrate among Fig. 16A) electrically connect, the 3rd end of AND gate circuit 119 (Adopt No. 3 terminals of AND gate circuit 119 to carry out in Fig. 16A ) is electrically connected to the first terminal of the host unit 30 (in FIG. 16A, terminal 1 of the host unit 30 is used for illustration).
  • the third Hall sensor 118 and the first Hall sensor 104 can be electrically connected to the same terminal of the host unit 30 through the AND circuit 119, so that the first Hall sensor 104 can transmit the first Hall sensor 104 to the first end of the host unit 30.
  • An alarm signal at the same time, the third Hall sensor 118 can transmit a third alarm signal to the first terminal of the host unit 30 .
  • the third alarm signal can be determined based on the third Hall voltage V H2 and the third threshold voltage V g3 , the aforementioned third Hall voltage V H3 is when the power supply unit 20 supplies power to the third Hall sensor 118 , The output of the third Hall sensor 118 under the action of the magnetic induction B3 of the third Hall sensor 118 , the magnitude of the aforementioned third threshold voltage V g3 is determined based on the Curie temperature of the third temperature-sensing magnet 117 .
  • the meaning of the third alarm signal is different from that of the first alarm signal.
  • the third alarm signal is used by the host unit 30 to determine that a first-level thermal abnormality occurs at the second detection position of the cell body 101, and the first alarm signal is used by the host The unit 30 determines that the thermal abnormality of the first level occurs in the cell body 101 at the first detection position.
  • the third Hall sensor 118 can be fixed in the battery 100 by means such as welding, inlaying or gluing, so as to ensure that the third Hall sensor 118 will not move with the shaking of the battery 100 .
  • the third Hall sensor 118 can also be fixedly arranged in the battery 100 by means of the host unit 30 and/or the power supply unit 20 .
  • the specific implementation manner of the third Hall sensor 118 can refer to the description of the first Hall sensor 104 in FIG. 10A , which will not be repeated here.
  • the third temperature-sensing magnet 117 can be placed in the accommodating cavity, so that the third temperature-sensing magnet 117 can be closer to the cell body 101, so that the third temperature-sensing magnet 117 can more accurately detect the inside of the cell body 101 when thermal abnormalities occur.
  • the temperature also makes the battery case 102 separate the third temperature-sensing magnet 117 and the third Hall sensor 118 .
  • the third temperature-sensing magnet 117 can be placed outside the accommodating cavity, which can fully consider the limited internal space of the cell body 101 .
  • the present application does not limit the specific position of the third temperature-sensing magnet 117 , and reference may be made to the above-mentioned description of the first temperature-sensing magnet 103 .
  • the third temperature-sensing magnet 117 can be fixed in the battery 100 by means such as welding, inlaying or gluing, so as to ensure that the third temperature-sensing magnet 117 will not move with the shaking of the battery 100 .
  • FIG. 16B is a schematic flowchart of a battery thermal abnormality alarm method provided by an embodiment of the present application.
  • the method for alarming abnormal battery heat of the present application may include:
  • the first temperature-sensing magnet senses the temperature inside the cell body at the first detection position.
  • the first Hall sensor detects the magnetism of the first temperature-sensing magnet, and transmits a first alarm signal to the AND circuit according to the magnetic change of the first temperature-sensing magnet.
  • the third temperature-sensing magnet senses the temperature inside the battery core body at the second detection position; wherein, when the internal temperature of the battery core body is equal to or higher than the Curie temperature of the third temperature-sensing magnet, the third temperature-sensing magnet The magnetism of the magnet weakens or disappears; the Curie temperature of the third temperature-sensing magnet matches the thermal runaway critical temperature of the cell body, and the Curie temperature of the third temperature-sensing magnet is the same as that of the first temperature-sensing magnet.
  • the second detection position is different from the first detection position.
  • the third Hall sensor detects the magnetism of the third temperature-sensing magnet, and transmits a third alarm signal to the AND circuit according to the magnetic variation of the third temperature-sensing magnet.
  • the AND gate circuit After receiving the first alarm signal, the AND gate circuit transmits the first alarm signal to the host unit, so that when the host unit detects that the level of the first alarm signal jumps, it determines that the cell body is in the first A thermal abnormality of the first level occurs at the detection position; and/or, after receiving the third alarm signal, transmit the third alarm signal to the host unit, so that the host unit jumps when the level of the third alarm signal is detected When the time changes, it is determined that the first level of thermal abnormality occurs at the second detection position of the cell body.
  • the type selection specification of the Curie temperature of the third temperature-sensing magnet 117 is selected based on the thermal runaway critical temperature T NR of the cell body 101, so that the temperature change of the cell body 101 can trigger the magnetic transition of the third temperature-sensing magnet 117 . That is to say, when there is no thermal abnormality in the cell body 101 , the third temperature-sensing magnet 117 has strong magnetism. When a thermal abnormality occurs in the cell body 101 , the magnetism of the third temperature-sensing magnet 117 can change from strong to weak or from present to non-existent. For the specific implementation, please refer to the description in FIG. 2 , which will not be repeated here.
  • the aforementioned first preset temperature is related to the Curie temperature of the third temperature-sensing magnet 117, which can be used as the temperature at which the magnetism of the third temperature-sensing magnet 117 changes, so as to identify the occurrence of the internal temperature of the electronic body 101 in time. Abnormal heat.
  • the Curie temperature of the third temperature-sensing magnet 117 is the same as the Curie temperature of the first temperature-sensing magnet 103, the first temperature-sensing magnet 103 can sense the temperature at the first detection position inside the electric core body 101, and the third The temperature-sensing magnet 117 can sense the temperature inside the cell body 101 at the second detection position, and the first detection position is different from the second detection position.
  • the present application does not limit the first detection position and the second detection position.
  • the first temperature-sensing magnet 103 and the third temperature-sensing magnet 117 can represent the internal temperature of the cell body 101 at different detection positions, which is beneficial to eliminate the influence of different detection positions on the cell. Influenced by the alarm speed when the thermal abnormality occurs in the main body 101 , a quick alarm can also be realized when a point-shaped thermal abnormality occurs in the battery cell main body 101 .
  • the third temperature-sensing magnet 117 and the third Hall sensor 118 can be separately or integrated in the battery 100, and the third temperature-sensing magnet 117 can provide the third Hall sensor 118 with the magnetic induction intensity B3 of the third Hall sensor 118, This enables the third Hall sensor 118 to generate a Hall effect.
  • the layout of the third temperature-sensing magnet 117 and the third Hall sensor 118 in the battery 100 can refer to the first temperature-sensing magnet 103 and the first temperature-sensing magnet 103 in FIGS.
  • the description of the layout of the Hall sensor 104 in the battery 100 will not be repeated here.
  • the magnetic induction B3 of the third Hall sensor 118 has nothing to do with the magnetic transition of the first temperature-sensing magnet 103
  • the magnetic induction B1 of the first Hall sensor 104 has nothing to do with the magnetic transition of the third temperature-sensing magnet 117 .
  • a magnetic shield is formed between the first temperature-sensing magnet 103 and the first Hall sensor 104, and the third temperature-sensing magnet 117 and the third Hall sensor 118, and the magnetism of the third temperature-sensing magnet 117 cannot cause the first
  • the change of the magnetic induction B1 of the Hall sensor 104 and the magnetism of the first temperature-sensing magnet 103 cannot cause the change of the magnetic induction B2 of the third Hall sensor 118 .
  • the distance between the first detection position and the second detection position is relatively large.
  • the combination of the third temperature-sensing magnet 117 and the third Hall sensor 118 can realize the temperature alarm function of the battery 100 , and the specific working principle can be referred to the description shown in FIG. 5 , which will not be repeated here.
  • FIG. 16C is a schematic diagram of the working principle of a first Hall sensor and a third Hall sensor provided by an embodiment of the present application.
  • the Hall elements in the first Hall sensor 104 include four terminals (indicated by numerals 1, 2, 3 and 4 in FIG. 16C ).
  • terminals No. 1 and No. 2 are the two input terminals of the Hall element in the first Hall sensor 104
  • terminals No. 3 and No. 4 are the two outputs of the Hall element in the first Hall sensor 104. end. Therefore, the two input ends of the Hall element in the first Hall sensor 104 form an input loop, and the two output ends of the Hall element in the first Hall sensor 104 form an output loop.
  • the Hall elements in the third Hall sensor 118 include four terminals (indicated by numerals 1, 2, 7 and 8 in FIG. 16C ).
  • terminals No. 1 and No. 2 are the two input terminals of the Hall element in the third Hall sensor 118
  • terminals No. 7 and No. 8 are the two outputs of the Hall element in the third Hall sensor 118. end. Therefore, the two input ends of the Hall element in the third Hall sensor 118 form an input loop, and the two output ends of the Hall element in the third Hall sensor 118 form an output loop.
  • the input terminals of the Hall element in the first Hall sensor 104 and the Hall element in the third Hall sensor 118 are electrically connected in parallel, and the Hall element in the first Hall sensor 104 and the third Hall sensor 118
  • the output terminals of the Hall elements in the sensor are all electrically connected to the same terminal of the host unit 30, and the output terminals of the Hall elements in the first Hall sensor 104 and the Hall elements in the third Hall sensor 118 are unified by the host unit 30 manage.
  • the input loop of the Hall element in the first Hall sensor 104 can input a constant first control current I1
  • the input loop of the Hall element in the third Hall sensor 118 can input a constant third control current I3
  • the output loop of the Hall element in the first Hall sensor 104 can output the first Hall voltage V H1
  • the output loop of the Hall element in the third Hall sensor 118 can output the third Hall voltage V H3 .
  • the Hall element in the first Hall sensor 104 fed with a constant first control current I1 is placed in the magnetic field corresponding to the magnetic induction B1 of the first Hall sensor 104, and the first Hall
  • the two output terminals of the Hall element in the sensor 104 generate a potential difference V H1 , that is, the output circuit can output the first Hall voltage V H1 .
  • the Hall element in the third Hall sensor 118 fed with a constant third control current I3 is placed in the magnetic field corresponding to the magnetic induction intensity B3 of the third Hall sensor 118, and the Hall element in the third Hall sensor 118
  • the two output terminals generate a potential difference V H3 , that is, the output circuit can output the third Hall voltage V H3 .
  • the cell body 101 at the first detection position When the internal temperature of the cell body 101 at the first detection position is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the cell body 101 is about to or has undergone a thermal anomaly, resulting in the magnetic properties of the first temperature-sensing magnet 103. weaken or disappear, so that the magnetic field applied by the first temperature-sensing magnet 103 on the first Hall sensor 104 weakens or disappears. Therefore, the weakening or disappearance of the magnetism of the first temperature-sensing magnet 103 can reduce the magnetic induction B1 of the first Hall sensor 104 .
  • the first Hall sensor 104 can output the first Hall voltage V H1 with a smaller amplitude. Therefore, the first Hall sensor 104 can transmit the first alarm signal with a level jump to the AND circuit 119 based on the comparison result of the amplitude of the first Hall voltage V H1 and the first threshold voltage V g1 . After the AND gate circuit 119 detects the first alarm signal, it can transmit the first alarm signal to the first terminal of the host unit 30 .
  • the host unit 30 detects that the level of the first alarm signal jumps, it can determine that the thermal abnormality of the first level occurs in the cell body 101 at the first detection position.
  • the cell body 101 at the second detection position is equal to or higher than the Curie temperature of the third temperature-sensing magnet 117
  • the cell body 101 is about to or has undergone a thermal anomaly, resulting in the magnetic properties of the third temperature-sensing magnet 117. weaken or disappear, so that the magnetic field applied by the third temperature-sensing magnet 117 on the third Hall sensor 118 weakens or disappears. Therefore, the third temperature-sensing magnet 117 can reduce the magnetic induction B3 of the third Hall sensor 118 through the weakening or disappearance of the magnetism of the third temperature-sensing magnet 117 .
  • the third Hall sensor 118 can output a third Hall voltage V H3 with a smaller amplitude. Therefore, the third Hall sensor 118 can transmit the third alarm signal with a level jump to the AND circuit 119 based on the comparison result of the magnitude of the third Hall voltage V H3 and the third threshold voltage V g3 . After the AND gate circuit 119 detects the third alarm signal, it can transmit the third alarm signal to the first terminal of the host unit 30 .
  • the host unit 30 detects that the level of the third alarm signal jumps, it can determine that the thermal abnormality of the first level occurs in the battery cell body 101 at the second detection position.
  • this application can aim at multiple detection positions where thermal abnormalities are likely to occur in the cell body 101, based on the first temperature-sensing magnet 103, the first Hall sensor 104, the third temperature-sensing magnet 117, the third Hall sensor 118 and
  • the setting of the AND gate circuit 119 eliminates the influence of the small number of detection positions or the relatively biased position on the response speed of the alarm for the thermal abnormality of the battery core body 101, and solves the problem that the number of terminals of the host unit 30 is limited.
  • Multiple detection positions of the core body 101 monitor the temperature state of the battery core body 101 in parallel, and multi-point alarms can be issued for thermal abnormalities in the battery core body 101, which improves the response speed of the alarm for thermal abnormalities in the battery core body 101 , which is conducive to improving the sensitivity and reliability of detection.
  • the AND gate circuit 119 of the present application may include various implementations, such as using an integrated chip or a circuit composed of multiple components.
  • FIG. 16D is a schematic structural diagram of an AND gate circuit provided by an embodiment of the present application.
  • the number M of batteries 100 is equal to 1 as an example, the first Hall sensor 104 and the third Hall sensor 118 are both shown in the structure shown in FIG. The electrical connection to the host unit 30 is not shown.
  • the AND gate circuit 119 may include: a first diode VD1 , a second diode VD2 , a first resistor R1 and a second resistor R2 .
  • the cathode of the first diode VD1 is electrically connected to the second terminal OUT1 of the first Hall sensor 104
  • the cathode of the second diode VD2 is electrically connected to the second terminal OUT3 of the third Hall sensor 118
  • the first The anode of the diode VD1, the anode of the second diode VD2, the first end of the first resistor R1 and the first end of the second resistor R2 are all connected to the first end of the host unit 30 (the host unit 30 is used in FIG. 16D Terminal No. 1 of the first resistor R1 is electrically connected, the second end of the first resistor R1 is used to input the preset voltage VDD, and the second end of the second resistor R2 is grounded.
  • the Curie temperature of the first temperature-sensing magnet 103 is the internal temperature of the battery core body 101 when no thermal abnormality occurs and thermal abnormality occurs. temperature.
  • the Hall element in the first Hall sensor 104 can output a high-voltage first Hall voltage V H1 . Since the magnitude of the first Hall voltage V H1 is greater than the magnitude of the first threshold voltage V g1 . Therefore, the comparator 1043 can output the high-level first alarm signal Vo1, that is, the second terminal OUT1 of the first Hall sensor 104 can output the high-level first alarm signal Vo1, and the high-level first alarm signal Vo1 The first alarm signal is still at a high level through the first diode VD1.
  • the Hall element can output a high-voltage third Hall voltage V H3 . Because the magnitude of the third Hall voltage V H3 is greater than the magnitude of the third threshold voltage V g3 . Therefore, the comparator 1043 can output a high-level third alarm signal Vo2, that is, the second terminal OUT3 of the third Hall sensor 118 can output a high-level third alarm signal Vo2, and the high-level third alarm signal Vo2 The third alarm signal is still at high level through the second diode VD2.
  • the first diode VD1 can output a high-level first alarm signal
  • the second diode VD2 can output a high-level third alarm signal, so that the first terminal of the host unit 30 can receive the first alarm signal.
  • Both the alarm signal or the third alarm signal are at high level.
  • the Hall element in the first Hall sensor 104 can output a low-voltage first Hall voltage V H1 . Since the magnitude of the first Hall voltage V H1 decreases to be smaller than the magnitude of the first threshold voltage V g1 . Therefore, the comparator 1043 can output the low-level first alarm signal Vo1, that is, the second terminal OUT1 of the first Hall sensor 104 can output the low-level first alarm signal Vo1, and the low-level first alarm signal Vo1 The first alarm signal becomes low level through the first diode VD1.
  • the second terminal OUT3 of the third Hall sensor 118 will continue to output a high-level third alarm signal Vo2, and the high-level third alarm signal Vo2 is still a high-level third alarm signal through the second diode VD2. Alarm.
  • the first diode VD1 outputs a low-level first alarm signal
  • the second diode VD2 outputs a high-level third alarm signal, so that the first end of the host unit 30 can receive the low-level third alarm signal.
  • An alarm signal Thus, the host unit 30 can detect that the level of the first alarm signal jumps, so as to realize the temperature alarm function.
  • the AND gate circuit 119 may also adopt other implementation manners, which are not limited in this application.
  • a plurality of temperature-sensing magnets are arranged for different detection positions of the same cell body 101 , and the plurality of temperature-sensing magnets and the plurality of Hall elements in the first Hall sensor 104 Respectively corresponding, and by means of an amplifier in the Hall sensor and an electrical connection of a terminal of the host unit 30, the host unit 30 can realize multi-point alarms for thermal abnormalities in the same cell body 101 through the aforementioned one terminal, and also The number of amplifiers can be reduced and the cost of device connection can be saved.
  • each Hall element corresponds to a temperature-sensing magnet
  • the corresponding multiple temperature-sensing magnets are used to sense different detection positions of the same cell body 101.
  • the specific implementation method can refer to the description of the detection position mentioned above, which can be Eliminating the influence of the detection position on the alarm speed of the thermal abnormality of the battery core body 101 can also realize rapid alarming when the battery core body 101 has a point-like thermal abnormality.
  • each Hall element is the first end VCC1 of the first Hall sensor 104
  • the first end of each Hall element is used to be electrically connected with the power supply unit 20, and a plurality of Hall elements are electrically connected in series
  • the plurality of Hall elements connected in series are respectively electrically connected to the first terminal and the second terminal of the amplifier at the two terminals at the beginning and the end
  • the third terminal of the amplifier is the second terminal OUT1 of the first Hall sensor 104
  • the terminal of the amplifier is The third terminal is used for electrical connection with the first terminal of the host unit 30 .
  • the application does not limit parameters such as the quantity and material selection of the Hall elements in the first Hall sensor 104 .
  • FIGS. 17A-17B a specific implementation of the first Hall sensor 104 will be introduced in detail.
  • the first Hall sensor 104 is illustrated by taking two Hall elements as an example.
  • FIG. 17A is a schematic structural diagram of a first Hall sensor provided by an embodiment of the present application.
  • the first Hall sensor 104 may include: an amplifier 1045 , a Hall element 1041 and a Hall element 1044 .
  • the first end of the Hall element 1041 (the No. 1 terminal of the Hall element 1041 is used for illustration in FIG. 17A ) is the first end VCC1 of the first Hall sensor 104, and the first end of the Hall element 1041 is electrically connected to the power supply unit 20. connected so that the Hall element 1041 can obtain the power supply required by the Hall element 1041 from the power supply unit 20 so as to provide a constant first control current I1 (or first control voltage).
  • the first temperature-sensing magnet 103 corresponding to the Hall element 1041 can provide the Hall element 1041 with the magnetic induction B1 of the first Hall sensor 104 .
  • the Hall element 1041 can generate a Hall effect, so that the Hall element 1041 can detect the magnetism of the first temperature-sensing magnet 103 .
  • the first end of the Hall element 1044 (the No. 1 terminal of the Hall element 1044 is used for illustration in FIG. 17A ) is the first end VCC1 of the first Hall sensor 104, and the first end of the Hall element 1044 is connected to the power supply unit 20 connected so that the Hall element 1044 can obtain the power supply required by the Hall element 1044 from the power supply unit 20 so as to provide a constant first control current I4 (or a fourth control voltage).
  • the temperature-sensitive magnet corresponding to the Hall element 1044 can provide the Hall element 1044 with the magnetic induction B4 of the first Hall sensor 104 .
  • the Hall element 1044 can generate a Hall effect, so that the Hall element 1044 can detect the magnetism of the temperature-sensing magnet corresponding to the Hall element 1044 .
  • the second end of the Hall element 1041 (indicated by the No. 3 terminal of the Hall element 1041 in FIG. 17A ) is connected in series with the third end of the Hall element 1044 (indicated by the No. 10 terminal of the Hall element 1044 in FIG. 17A ) electrical connection.
  • the second end of the Hall element 1044 (in FIG. 17A, the No. 9 terminal of the Hall element 1044 is used for illustration) is electrically connected to the first end of the amplifier 1045 (in FIG. 17A, the No. 1 terminal of the amplifier 1045 is used for illustration), and the Hall
  • the third end of the element 1041 (indicated by terminal No. 4 of the Hall element 1041 in FIG. 17A ) is electrically connected to the second end of the amplifier 1045 (indicated by terminal No. 2 of the amplifier 1045 in FIG. 17A ).
  • the second end of the Hall element 1044 and the third end of the Hall element 1041 are respectively the first and last terminals of the Hall element 1044 and the Hall element 1041 after being connected in series.
  • the third terminal of the amplifier 1045 (the No. 5 terminal of the amplifier 1045 is used for illustration in FIG. 17A ) is the second terminal OUT1 of the first Hall sensor 104, and the third terminal of the amplifier 1045 is connected to the first terminal of the host unit 30 (FIG. 17A 1 terminal of the host unit 30 is used for schematic) electrical connection.
  • the power supply terminal of the amplifier 1045 is represented as the No. 3 terminal of the amplifier 1045
  • the ground terminal of the Hall element 1041 is represented as the No. 2 terminal of the Hall element 1041
  • the ground terminal of the Hall element 1044 is represented as the Hall element Terminal No. 2 of 1044 and the ground terminal of amplifier 1045 are represented as terminal No. 4 of amplifier 1045 . It should be noted that the amplifier 1045, the Hall element 1041 and the Hall element 1044 share a common ground.
  • the first temperature-sensing magnet 103 and the temperature-sensing magnet corresponding to the Hall element 1044 respectively sense the temperature at different detection positions inside the cell body 101 .
  • the present application uses the above-mentioned first detection position and second detection position as examples for illustration.
  • the Hall element 1041 and the Hall element 1044 can represent the internal temperature of the cell body 101 at different detection positions, which is beneficial to eliminate the heat generated by different detection positions on the cell body 101. Influenced by the alarm speed of the abnormality, it is also possible to realize a rapid alarm when a point-like thermal abnormality occurs in the cell body 101 .
  • FIG. 17B is a schematic diagram of the working principle of a first Hall sensor provided by an embodiment of the present application.
  • the Hall element 1041 (indicated by letters H1 in FIG. 17B ) includes four terminals (indicated by numerals 1, 2, 3 and 4 in FIG. 17B ).
  • Hall elements 1044 (respectively represented by letters H4 in FIG. 17B ) each include four terminals (respectively represented by numerals 1, 2, 9 and 10 in FIG. 17B ).
  • No. 1 terminal and No. 2 terminal are the two input ends of Hall element 1041 and Hall element 1044 respectively
  • No. 3 terminal and No. 4 terminal are two output ends of Hall element 1041
  • No. 9 terminal and No. 10 The terminals are the two output terminals of the Hall element 1044
  • the No. 3 terminal and the No. 10 terminal are electrically connected in series. Therefore, the two input terminals of the Hall element 1041 form an input loop, the two input terminals of the Hall element 1044 form an input loop, and the four output terminals of the Hall element 1041 and the Hall element 1044 form an output loop.
  • the input ends of the Hall element 1041 and the Hall element 1044 are electrically connected in parallel, one output end of the Hall element 1041 and the Hall element 1044 is electrically connected in series, and the other output ends of the Hall element 1041 and the Hall element 1044 are respectively terminal is electrically connected to the host unit 30 through the amplifier 1045. Therefore, the input loop of the Hall element 1041 can input a constant first control current I1, the input loop of the Hall element 1044 can input a constant third control current I4, and the output loops of the Hall element 1041 and the Hall element 1044 can be The amplitude and value of the first Hall voltage V H1 and the fourth Hall voltage V H4 are output.
  • the sum of the magnitudes of the first Hall voltage V H1 and the fourth Hall voltage V H4 is the sum of the magnitudes of the first Hall voltage V H1 and the fourth Hall voltage V H4 .
  • the Hall element 1041 fed with a constant first control current I1 is placed in the magnetic field corresponding to the magnetic induction intensity B1 of the first Hall sensor 104, and the two output terminals of the Hall element 1041 generate a potential difference V H1 .
  • the Hall element 1044 fed with a constant first control current I4 is placed in the magnetic field corresponding to the magnetic induction B4 of the first Hall sensor 104 , and the two output terminals of the Hall element 1044 generate a potential difference V H4 .
  • the output circuit of the Hall element 1041 and the Hall element 1044 can output the magnitude and value of the first Hall voltage V H1 and the fourth Hall voltage V H4 to the amplifier 1045 .
  • the cell body 101 at the first detection position When the internal temperature of the cell body 101 at the first detection position is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the cell body 101 is about to or has undergone a thermal anomaly, resulting in the magnetic properties of the first temperature-sensing magnet 103. weaken or disappear, so that the magnetic field applied by the first temperature-sensing magnet 103 on the Hall element 1041 weakens or disappears. Therefore, the weakening or disappearance of the magnetism of the first temperature-sensing magnet 103 can reduce the magnetic induction B1 of the first Hall sensor 104 . As the magnetic induction B1 of the first Hall sensor 104 decreases, the Hall element 1041 can output the first Hall voltage V H1 with a smaller amplitude.
  • the cell body 101 at the second detection position When the internal temperature of the cell body 101 at the second detection position is equal to or higher than the Curie temperature of the first temperature-sensing magnet 103, the cell body 101 is about to or has undergone thermal abnormality, resulting in a sensor corresponding to the Hall element 1044.
  • the magnetism of the temperature magnet weakens or disappears, so that the magnetic field applied to the Hall element 1044 by the temperature-sensing magnet corresponding to the Hall element 1044 weakens or disappears. Therefore, the magnetic induction B4 of the first Hall sensor 104 can be reduced by weakening or disappearing the magnetism of the temperature-sensing magnet corresponding to the Hall element 1044 .
  • the Hall element 1044 As the magnetic induction B1 of the first Hall sensor 104 decreases, the Hall element 1044 can output a fourth Hall voltage V H4 with a smaller amplitude.
  • the Hall element 1041 and the Hall element 1044 connected in series can output the amplitude and value of the first Hall voltage V H1 and the fourth Hall voltage V H4 to the amplifier 1045 .
  • the amplifier 1045 can amplify the amplitude and value of the first Hall voltage V H1 and the fourth Hall voltage V H4 according to the amplification ratio of the amplifier 1045 to obtain the first alarm signal.
  • the present application does not limit the specific value of the amplification ratio of the amplifier 1045 .
  • the sensitivity and reliability of detecting the first Hall voltage V H1 and/or the fourth Hall voltage V H4 are improved.
  • the difference between the first Hall voltage V H1 and the fourth Hall voltage V H4 Both amplitude and value are reduced. Therefore, when the cell body 101 is thermally abnormal, the amplitude of the voltage of the first alarm signal is reduced to be less than the sum of the amplitudes of the first threshold voltage V g1 and the fourth threshold voltage V g4 .
  • the first threshold voltage V g1 is the voltage corresponding to the cell body 101 when no thermal abnormality occurs and the thermal abnormality occurs, and the first threshold voltage V g1 is based on the Curie temperature of the first temperature-sensitive magnet 103 and the amplifier Determined by the amplification ratio of 1045
  • the fourth threshold voltage V g1 is the voltage corresponding to the cell body 101 when no thermal abnormality occurs and the thermal abnormality occurs
  • the first threshold voltage V g1 is based on the voltage corresponding to the Hall element 1044
  • the Curie temperature of the temperature-sensing magnet and the amplification ratio of the amplifier 1045 are determined.
  • the specific content of the first threshold voltage V g1 and the fourth threshold voltage V g4 can refer to the description of the threshold voltage V g above.
  • the amplifier 1045 can transmit the first alarm signal to the first terminal of the host unit 30, so that the host unit 30 can compare the amplitude of the voltage of the first alarm signal with the sum of the amplitudes of the first threshold voltage V g1 and the fourth threshold voltage V g4 The size between values.
  • the host unit 30 may store the amplitude and value of the first threshold voltage V g1 and the fourth threshold voltage V g4 .
  • the host unit 30 may receive the amplitude and value of the first threshold voltage V g1 and the fourth threshold voltage V g4 from the amplifier 1045 or other components.
  • the host unit 30 can determine that the battery 100 is thermally abnormal when it is detected that the voltage amplitude of the first alarm signal is lower than the sum of the amplitudes of the first threshold voltage V g1 and the fourth threshold voltage V g4 . Thus, based on the first alarm signals with different amplitudes, the host unit 30 can know whether multiple thermal abnormalities occur in the same cell body.
  • the total pressure method is adopted, which eliminates the problem of the response speed of the alarm for the thermal abnormality of the cell body 101 when the number of detection positions is small or the position is relatively biased. Influence, it solves the problem that the number of terminals of the host unit 30 is limited, the temperature state of the battery body 101 can be monitored in parallel at multiple detection positions of the same battery body 101, and the thermal abnormality of the battery body 101 can be monitored. Accurate and timely multi-point alarming improves the response speed of alarming the thermal abnormality of the cell body 101, which is beneficial to improving the sensitivity and reliability of detection, reduces the number of amplifiers and saves the cost of device connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种电池、电池模组、电池系统和电池热异常报警方法。该电池包括:电芯本体、电芯壳体、第一感温磁体和第一霍尔传感器。第一感温磁体,用于感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于第一感温磁体的居里温度时,第一感温磁体的磁性减弱或消失;第一感温磁体的居里温度与电芯本体的热失控临界温度相匹配;第一霍尔传感器,用于检测第一感温磁体的磁性,根据第一感温磁体的磁性变化输出第一报警信号,以使主机单元在检测到第一报警信号后确定电芯本体发生第一等级的热异常。从而,对电芯本体发生热异常进行准确且及时地报警,且无需破坏电芯壳体的完整结构,还可甄别出电芯本体是否经历过热异常。

Description

电池、电池模组、电池系统和电池热异常报警方法
本申请要求于2021年11月12日提交国家知识产权局、申请号为202111342919.5、申请名称为“电池、电池模组、电池系统和电池热异常报警方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池、电池模组、电池系统和电池热异常报警方法。
背景技术
随着电动汽车和电网储能等领域对电池不断的增长需求,电芯的能量密度和功率密度日趋提高,使得电芯需要应对更加严苛的安全挑战。目前,由于滥用、可靠性失效、设计缺陷和不良制造等各种诱因,常常会引发电芯的热异常,造成电芯的如自燃或爆炸等安全问题。
相关技术中,采用测温模块(如具有负温度系数(negative temperature coefficient,NTC)的热敏电阻,或,热电偶电阻),可测量电芯的内部温度。其中,测温模块的一个探头电连接电芯,测温模块的另一个探头电连接主机单元(如电池管理系统(battery management system,BMS))。这样,测温模块可将测量到的温度数据传递给主机单元,使得主机单元基于温度数据来调控电芯的内部温度。
然而,如果测温模块的探头贴附在电芯的壳体表面,那么测温模块很难测量到电芯的内部温度,导致测量到的温度数据不准确,使得主机单元无法精准且及时地调控电芯的内部温度。如果测温模块采用引线式的探头电连接电芯,那么测温模块的探头的引线需要穿透电芯的壳体,导致电芯的壳体结构复杂,且容易引发封装泄露等问题,无法保证电芯的长期使用,对电芯的可靠性和安全性均带来了风险,还很难大规模量产和使用电芯。
因此,如何准确检测电芯的内部温度是现亟需解决的问题。
发明内容
本申请提供一种电池、电池模组、电池系统和电池热异常报警方法,以实现对电芯本体发生热异常的准确且及时地报警,且无需破坏电芯壳体的完整结构,还可甄别出电芯本体是否经历过热异常。
第一方面,本申请提供一种电池,包括:电芯本体、电芯壳体、第一感温磁体和第一霍尔传感器;
其中,电芯壳体采用非磁屏蔽材质,电芯壳体具有容纳腔,电芯本体置于容纳腔内,第一霍尔传感器置于容纳腔外,第一霍尔传感器的第一端用于与供电单元电连接,第一霍 尔传感器的第二端用于与主机单元的第一端电连接,第一感温磁体置于容纳腔内或者第一感温磁体置于容纳腔外;
第一感温磁体,用于感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于第一感温磁体的居里温度时,第一感温磁体的磁性减弱或消失;第一感温磁体的居里温度与电芯本体的热失控临界温度相匹配;
第一霍尔传感器,用于检测第一感温磁体的磁性,根据第一感温磁体的磁性变化输出第一报警信号,以使主机单元在检测到第一报警信号后确定电芯本体发生第一等级的热异常。
通过第一方面提供的电池,通过第一感温磁体与第一霍尔传感器的配合,能够准确地检测出电芯本体在发生热异常时的内部温度,可对电芯本体发生热异常进行准确且及时地报警,解决了电芯本体发生热异常的报警响应存在滞后或不准确的问题,提高了对电芯本体发生热异常进行报警的响应速度,有利于提升电池的安全防护能力。与此同时,基于第一感温磁体和第一霍尔传感器的布局,无需破坏电芯壳体的完整结构,不会引发封装泄露等问题,有助于延长电池的使用寿命,保证电池的可靠性和安全性,有利于大规模量产和使用。
此外,第一感温磁体是否发生过磁性转变,和/或,第一霍尔传感器输出的霍尔电压是否发生幅值变化,可作为电芯本体是否经历过热异常的甄别依据,避免了由于电芯本体经历过热异常而存在的安全风险。
在一种可能的设计中,电池还包括:第二感温磁体和第二霍尔传感器;
其中,第二霍尔传感器置于容纳腔外,第二霍尔传感器的第一端用于与供电单元电连接,第二霍尔传感器的第二端用于与主机单元的第二端电连接,主机单元的第二端与主机单元的第一端不同,第二感温磁体置于容纳腔内或者第二感温磁体置于容纳腔外;
第二感温磁体,用于感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于第二感温磁体的居里温度时,第二感温磁体的磁性减弱或消失;第二感温磁体的居里温度与电芯本体的热失控临界温度相匹配,第二感温磁体的居里温度与第一感温磁体的居里温度不同;
第二霍尔传感器,用于检测第二感温磁体的磁性,根据第二感温磁体的磁性变化输出第二报警信号,以使主机单元在检测到第二报警信号后确定电芯本体发生第二等级的热异常,第一等级与第二等级不同。
通过该实施方式提供的电池,针对同一电芯本体可布局有居里温度不同的第一感温磁体和第二感温磁体,借助第一感温磁体和第二感温磁体分别与主机单元的不同端子电连接,使得主机单元通过不同端子,可获知同一电芯本体发生热异常的程度和温度,实现了对同一电芯本体发生热异常的多级报警,有利于主机单元能够准确且及时地对电池执行不同级别的安全防护。
在一种可能的设计中,第一感温磁体与第二感温磁体之间的距离大于第一预设距离,且第一霍尔传感器与第二霍尔传感器之间的距离大于第二预设距离,以使第一感温磁体和第一霍尔传感器,与第二感温磁体和第二霍尔传感器之间形成磁屏蔽。
通过该实施方式提供的电池,充分利用电芯本体的内部空间来布局每组感温磁体和霍尔传感器,使得第二霍尔传感器的磁感应强度与第一感温磁体的磁性转变无关,第一霍尔 传感器的磁感应强度与第二感温磁体的磁性转变无关。由此,确保了第一感温磁体和第一霍尔传感器,与第二感温磁体和第二霍尔传感器之间形成磁屏蔽。
在一种可能的设计中,电池还包括:均具有开口的第一磁屏蔽件和第二磁屏蔽件,用于确保第一感温磁体和第一霍尔传感器,与第二感温磁体和第二霍尔传感器之间形成磁屏蔽;
其中,第一感温磁体置于第一磁屏蔽件内,第二感温磁体置于第二磁屏蔽件内,第一磁屏蔽件的开口方向与第二磁屏蔽件的开口方向相同;
或者,第一感温磁体置于第一磁屏蔽件内,第一霍尔传感器置于第二磁屏蔽件内,第一磁屏蔽件的开口与第二磁屏蔽件的开口相对设置;
或者,第二感温磁体置于第一磁屏蔽件内,第二霍尔传感器置于第二磁屏蔽件内,第一磁屏蔽件的开口与第二磁屏蔽件的开口相对设置。
在一种可能的设计中,电池还包括:均具有开口的第三磁屏蔽件、第四磁屏蔽件和第五磁屏蔽件,用于确保第一感温磁体和第一霍尔传感器,与第二感温磁体和第二霍尔传感器之间形成磁屏蔽;
其中,第一感温磁体置于第三磁屏蔽件内,第一霍尔传感器置于第四磁屏蔽件内,第二感温磁体置于第五磁屏蔽件内,第三磁屏蔽件的开口方向与第四磁屏蔽件的开口相对设置,第三磁屏蔽件的开口与第五磁屏蔽件的开口方向相同;
或者,第二感温磁体置于第三磁屏蔽件内,第二霍尔传感器置于第四磁屏蔽件内,第一感温磁体置于第五磁屏蔽件内,第三磁屏蔽件的开口方向与第四磁屏蔽件的开口相对设置,第三磁屏蔽件的开口与第五磁屏蔽件的开口方向相同。
在一种可能的设计中,电池还包括:均具有开口的第六磁屏蔽件、第七磁屏蔽件、第八磁屏蔽件和第九磁屏蔽件,用于确保第一感温磁体和第一霍尔传感器,与第二感温磁体和第二霍尔传感器之间形成磁屏蔽;
其中,第一感温磁体置于第六磁屏蔽件内,第一霍尔传感器置于第七磁屏蔽件内,第六磁屏蔽件的开口与第七磁屏蔽件的开口相对设置,第二感温磁体置于第八磁屏蔽件内,第二霍尔传感器置于第九磁屏蔽件内,第八磁屏蔽件的开口与第九磁屏蔽件的开口相对设置。
通过该实施方式提供的电池,基于前述磁屏蔽件的设置,可调整每组中感温磁体在对应的霍尔传感器上施加的磁场的方向,使得第二霍尔传感器的磁感应强度与第一感温磁体的磁性转变无关,第一霍尔传感器的磁感应强度与第二感温磁体的磁性转变无关。由此,确保了第一感温磁体和第一霍尔传感器,与第二感温磁体和第二霍尔传感器之间形成磁屏蔽。
在一种可能的设计中,电池还包括:第三感温磁体、第三霍尔传感器和与门电路;
其中,第三霍尔传感器置于容纳腔外,第三霍尔传感器的第一端用于与供电单元电连接,第一霍尔传感器的第二端与与门电路的第一端电连接,第三霍尔传感器的第二端与与门电路的第二端电连接,与门电路的第三端用于与主机单元的第一端电连接,第三感温磁体置于容纳腔内或者第三感温磁体置于容纳腔外;
第一感温磁体,具体用于感测电芯本体内部在第一检测位置处的温度;
第一霍尔传感器,具体用于检测第一感温磁体的磁性,根据第一感温磁体的磁性变化 向与门电路传输第一报警信号;
第三感温磁体,用于感测电芯本体内部在第二检测位置处的温度;其中,在电芯本体的内部温度等于或高于第三感温磁体的居里温度时,第三感温磁体的磁性减弱或消失;第三感温磁体的居里温度与电芯本体的热失控临界温度相匹配,第二检测位置与第一检测位置不同;
第三霍尔传感器,用于检测第三感温磁体的磁性,根据第三感温磁体的磁性变化向与门电路传输第三报警信号;
与门电路,用于在接收到第一报警信号后,向主机单元传输第一报警信号,以使主机单元在检测到第一报警信号的电平发生了跳变时,确定电芯本体在第一检测位置处发生第一等级的热异常;或者,在接收到第三报警信号后,向主机单元传输第三报警信号,以使主机单元在检测到第三报警信号的电平发生了跳变时,确定电芯本体在第二检测位置处发生第一等级的热异常。
通过该实施方式提供的电池,针对同一电芯本体的不同检测位置布局第一感温磁体和第一霍尔传感器,以及第三感温磁体和第三霍尔传感器,并借助与门电路与主机单元的一个端子的电连接,使得主机单元通过一个端子,可在同一电芯本体的多个检测位置对该电芯本体的温度状态进行并行监控,消除了检测位置数量少或位置较偏对电芯本体发生热异常进行报警的响应速度的影响,解决了主机单元的端子数量受限的问题,实现了对同一电芯本体发生热异常的多点报警,提高了对电芯本体发生热异常进行报警的响应速度,有利于提升检测的灵敏度和可靠性。
在一种可能的设计中,与门电路包括:第一二极管、第二二极管、第一电阻和第二电阻;
其中,第一二极管的负极与第一霍尔传感器的第二端电连接,第二二极管的负极与第三霍尔传感器的第二端电连接,第一二极管的正极、第二二极管的正极、第一电阻的第一端和第二电阻的第一端均用于与主机单元的第一端电连接,第一电阻的第二端用于输入预设电压,第二电阻的第二端接地。
通过该实施方式提供的电池,提供了与门电路的一种可行的实现方式。
在一种可能的设计中,报警信号为电平发生了跳变的数字信号。由此,可实现对电芯本体发生热异常的数字信号报警。其中,该报警信号可以是本申请中提到的各个报警信号,例如:所述第一报警信号,所述第二报警信号或所述第三报警信号等。
在一种可能的设计中,霍尔传感器包括:霍尔元件、放大器和比较器;
其中,霍尔元件的第一端为霍尔传感器的第一端,霍尔元件的第一端用于与供电单元电连接,霍尔元件的第二端与放大器的第一端电连接,放大器的第二端与比较器的第一端电连接,比较器的第二端用于输入门限电压,门限电压是基于感温磁体的居里温度和放大器的放大比例确定的,比较器的第三端为霍尔传感器的第二端,比较器的第三端用于与主机单元的一个端子电连接;
霍尔元件,用于检测感温磁体的磁性,并在感温磁体的磁性减弱或消失后,向放大器传输幅值变小的电压,其中,该电压可理解为本申请提及的霍尔电压;
放大器,用于按照放大器的放大比例对幅值变小的电压进行放大处理,得到放大结果,并向比较器传输放大结果;
比较器,用于基于门限电压对放大结果进行转换处理,得到报警信号,并输出报警信号,以使主机单元在检测到报警信号的电平发生了跳变后确定电芯本体发生热异常。
通过该实施方式提供的电池,基于霍尔传感器的上述结构,实现了对电芯本体发生热异常的数字信号报警。其中,该霍尔传感器可以是上述提到的所述第一霍尔传感器,所述第二霍尔传感器或所述第三霍尔传感器等。
在一种可能的设计中,报警信号为电压的幅值降低为小于门限电压的幅值的模拟信号,门限电压的幅值是基于感温磁体的居里温度确定的。由此,可实现对电芯本体发生热异常的模拟信号报警。其中,该报警信号可以是本申请中提到的各个报警信号,例如:所述第一报警信号或所述第二报警信号等。
在一种可能的设计中,霍尔传感器包括:一个放大器和多个霍尔元件,每个霍尔元件对应一个感温磁体;
其中,每个霍尔元件的第一端为霍尔传感器的第一端,每个霍尔元件的第一端用于与供电单元电连接,多个霍尔元件串联电连接,串联后的多个霍尔元件分别在首尾的两个端子分别与放大器的第一端和第二端电连接,放大器的第三端为霍尔传感器的第二端,放大器的第三端用于与主机单元的一个端子电连接;
每个霍尔元件,用于检测与霍尔元件对应的感温磁体的磁性,并在与霍尔元件对应的感温磁体的磁性减弱或消失后,向放大器传输幅值变小的电压,其中,该电压可理解为本申请提及的霍尔电压;
放大器,用于按照放大器的放大比例对每个霍尔元件传输的电压的幅值和值进行放大处理,得到报警信号,并向主机单元传输报警信号,以使主机单元在检测到报警信号的电压的幅值降低为小于门限电压的幅值时确定电芯本体发生热异常,门限电压是基于与每个霍尔元件对应的感温磁体的居里温度以及放大器的放大比例确定的。通过该实施方式提供的电池,针对同一电芯本体的不同检测位置布局多个感温磁体,且每个感温磁体与霍尔传感器中的多个霍尔元件对应,并借助霍尔传感器中的放大器与主机单元的一个端子的电连接,使得主机单元通过一个端子,可在同一电芯本体的多个检测位置对该电芯本体的温度状态进行并行监控,消除了检测位置数量少或位置较偏对电芯本体发生热异常进行报警的响应速度的影响,解决了主机单元的端子数量受限的问题,实现了对同一电芯本体发生热异常的多点报警,提高了对电芯本体发生热异常进行报警的响应速度,有利于提升检测的灵敏度和可靠性,还减少了放大器的数量,节省了器件连接的成本。其中,该霍尔传感器可以是上述提到的所述第一霍尔传感器或所述第二霍尔传感器等。
在一种可能的设计中,感温磁体固设在电芯壳体的内表面上;
或者,感温磁体固设在电芯本体的电解液中;
或者,感温磁体固夹在电芯本体的裸电芯内部;
或者,感温磁体固设在电芯壳体的外表面上;
或者,感温磁体固设在电芯壳体的外部。
通过该实施方式提供的电池,感温磁体的布局可包括多种可行的实现方式,便于灵活设置感温磁体。
在一种可能的设计中,在感温磁体固设在电芯壳体的外部时,电池还包括:导热件,导热件固设在电芯壳体的外表面上,导热件与感温磁体表面接触。
通过该实施方式提供的电池,基于导热件的设置,电芯本体产生的热量可通过导热件集中传递给感温磁体,提升了热传导的效果,有助于感温磁体反映出电芯本体的温度变化。
在一种可能的设计中,霍尔传感器固设在电芯壳体的外表面上;
或者,霍尔传感器固设在电芯壳体的外部。
通过该实施方式提供的电池,霍尔传感器的布局可包括多种可行的实现方式,便于灵活设置霍尔传感器。
第二方面,本申请提供一种电池模组,包括:M个上述第一方面以及上述第一方面的各可能的设计中所提供的电池,M为正整数。
上述第二方面以及上述第二方面的各可能的设计中所提供的电池模组,其有益效果可以参见上述第一方面和第一方面的各可能的设计中所提供的电池所带来的有益效果,在此不再赘述。
第三方面,本申请提供一种电池系统,包括:供电单元、主机单元以及上述第二方面以及上述第二方面的各可能的设计中所提供的电池模组;
其中,供电单元分别与主机单元和电池模组中的霍尔传感器电连接,电池模组中的霍尔传感器还与主机单元电连接;
供电单元,用于分别向主机单元和电池模组中的霍尔传感器供电;
电池模组中的感温磁体,用于感测电池模组中的与感温磁体对应的电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于感温磁体的居里温度时,感温磁体的磁性减弱或消失;感温磁体的居里温度与电芯本体的热失控临界温度相匹配;
电池模组中的霍尔传感器,用于检测电池模组中的与霍尔传感器对应的感温磁体的磁性,根据感温磁体的磁性变化输出第一报警信号;
主机单元,用于在检测到第一报警信号时,确定电芯本体发生第一等级的热异常。
上述第三方面以及上述第三方面的各可能的设计中所提供的电池系统,其有益效果可以参见上述第二方面和第二方面的各可能的设计中所提供的电池模组所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种电池热异常报警方法,应用于电池,电池包括:电芯本体、电芯壳体、第一感温磁体和第一霍尔传感器;其中,电芯壳体采用非磁屏蔽材质,电芯壳体具有容纳腔,电芯本体置于容纳腔内,第一霍尔传感器置于容纳腔外,第一霍尔传感器的第一端用于与供电单元电连接,第一霍尔传感器的第二端用于与主机单元的第一端电连接,第一感温磁体置于容纳腔内或者第一感温磁体置于容纳腔外;
该方法包括:
第一感温磁体感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于第一感温磁体的居里温度时,第一感温磁体的磁性减弱或消失;第一感温磁体的居里温度与电芯本体的热失控临界温度相匹配;
第一霍尔传感器检测第一感温磁体的磁性,根据第一感温磁体的磁性变化输出第一报警信号,以使主机单元在检测到第一报警信号后确定电芯本体发生第一等级的热异常。
在一种可能的设计中,电池还包括:第二感温磁体和第二霍尔传感器;其中,第二霍尔传感器置于容纳腔外,第二霍尔传感器的第一端用于与供电单元电连接,第二霍尔传感器的第二端用于与主机单元的第二端电连接,主机单元的第二端与主机单元的第一端不同, 第二感温磁体置于容纳腔内或者第二感温磁体置于容纳腔外;
该方法还包括:
第二感温磁体感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于第二感温磁体的居里温度时,第二感温磁体的磁性减弱或消失;第二感温磁体的居里温度与电芯本体的热失控临界温度相匹配,第二感温磁体的居里温度与第一感温磁体的居里温度不同;
第二霍尔传感器检测第二感温磁体的磁性,根据第二感温磁体的磁性变化输出第二报警信号,以使主机单元在检测到第二报警信号后确定电芯本体发生第二等级的热异常,第一等级与第二等级不同。
在一种可能的设计中,电池还包括:第三感温磁体、第三霍尔传感器和与门电路;其中,第三霍尔传感器置于容纳腔外,第三霍尔传感器的第一端用于与供电单元电连接,第一霍尔传感器的第二端与与门电路的第一端电连接,第三霍尔传感器的第二端与与门电路的第二端电连接,与门电路的第三端用于与主机单元的第一端电连接,第三感温磁体置于容纳腔内或者第三感温磁体置于容纳腔外;
该方法还包括:
第一感温磁体感测电芯本体内部在第一检测位置处的温度;
第一霍尔传感器检测第一感温磁体的磁性,根据第一感温磁体的磁性变化向与门电路传输第一报警信号;
第三感温磁体感测电芯本体内部在第二检测位置处的温度;其中,在电芯本体的内部温度等于或高于第三感温磁体的居里温度时,第三感温磁体的磁性减弱或消失;第三感温磁体的居里温度与电芯本体的热失控临界温度相匹配,第二检测位置与第一检测位置不同;
第三霍尔传感器检测第三感温磁体的磁性,根据第三感温磁体的磁性变化向与门电路传输第三报警信号;
与门电路在接收到第一报警信号后,向主机单元传输第一报警信号,以使主机单元在检测到第一报警信号的电平发生了跳变时,确定电芯本体在第一检测位置处发生第一等级的热异常;
或者,与门电路在接收到第三报警信号后,向主机单元传输第三报警信号,以使主机单元在检测到第三报警信号的电平发生了跳变时,确定电芯本体在第二检测位置处发生第一等级的热异常。
上述第四方面以及上述第四方面的各可能的设计中所提供的电池热异常报警方法,其有益效果可以参见上述第一方面和第一方面的各可能的设计中所提供的电池所带来的有益效果,在此不再赘述。
附图说明
图1为本申请一实施例提供的一种谢苗诺夫Semenov热温图;
图2为本申请一实施例提供的一种感温磁体的磁性与温度的关系示意图;
图3A-图3B为本申请一实施例提供的一种霍尔传感器的工作原理的示意图;
图4为本申请一实施例提供的一种霍尔电压与感温磁体的居里温度的关系曲线示意图;
图5为本申请一实施例提供的一种电池的报警策略示意图;
图6A为本申请一实施例提供的一种电池系统的结构示意图;
图6B为本申请一实施例提供的一种电池系统的部分结构示意图;
图6C为本申请一实施例提供的一种电池热异常报警方法的流程示意图;
图6D为本申请一实施例提供的一种第一霍尔传感器的工作原理的示意图;
图7A-图7D为本申请一实施例提供的一种电池的剖面示意图;
图8A-图8D为本申请一实施例提供的一种电池的剖面示意图;
图9A-图9B为本申请一实施例提供的一种电池的剖面示意图;
图10A为本申请一实施例提供的一种第一霍尔传感器的结构示意图;
图10B为本申请一实施例提供的一种第一霍尔传感器的结构示意图;
图11A为本申请一实施例提供的一种电池系统的部分结构示意图;
图11B为本申请一实施例提供的一种电池热异常报警方法的流程示意图;
图11C为本申请一实施例提供的一种第一霍尔传感器和第二霍尔传感器的工作原理的示意图;
图12A-图12B为本申请一实施例提供的一种电池的剖面示意图;
图13A-图13F为本申请一实施例提供的一种电池的剖面示意图;
图14A-图14B为本申请一实施例提供的一种电池的剖面示意图;
图15A-图15B为本申请一实施例提供的一种电池的剖面示意图;
图16A为本申请一实施例提供的一种电池系统的部分结构示意图;
图16B为本申请一实施例提供的一种电池热异常报警方法的流程示意图;
图16C为本申请一实施例提供的一种第一霍尔传感器和第三霍尔传感器的工作原理的示意图;
图16D为本申请一实施例提供的一种与门电路的结构示意图;
图17A为本申请一实施例提供的一种第一霍尔传感器的结构示意图;
图17B为本申请一实施例提供的一种第一霍尔传感器的工作原理的示意图。
附图标记说明:
1—电池系统;
20—供电单元;30—主机单元;10—电池模组;
100—电池;
101—电芯本体;102—电芯壳体;103—第一感温磁体;104—第一霍尔传感器;
105—导热件;1041和1044—霍尔元件;1042和1045—放大器;1043—比较器;
106—第二感温磁体;107—第二霍尔传感器;
108—第一磁屏蔽件;109—第二磁屏蔽件;110—第三磁屏蔽件;
111—第四磁屏蔽件;112—第五磁屏蔽件;113—第六磁屏蔽件;114—第七磁屏蔽件;
115—第八磁屏蔽件;116—第九磁屏蔽件;
117—第三感温磁体;118—第三霍尔传感器;119—与门电路。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,单独a,单独b或单独c中的至少一项(个),可以表示:单独a,单独b,单独c,组合a和b,组合a和c,组合b和c,或组合a、b和c,其中a,b,c可以是单个,也可以是多个。
此外,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“中心”、“纵向”、“横向”、“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
相关技术中,测温模块常常存在如下问题:
1、无法准确测量电芯的内部温度
由于电芯内部的极组通常是层叠或卷绕的结构。因此,电芯内部的极组在叠层平面方向和垂直于叠层平面的方向上的热导相差较大,使得电芯内部的热传导具有明显的三维尺寸效应。在电芯发生热异常时,初始热源通常为点状发热源,热源产生的热量传递到电芯的壳体表面需要经过多个部件(如电芯的极组/极耳/极柱)以及不同的接触面,使得电芯内部和电芯的壳体表面之间存在明显的温差。例如,50Ah的方形铝壳电池,2C充电时电芯壳体内外温差大于10℃。
因此,在测温模块的探头与电芯的壳体表面接触时,测温模块的探头无法准确地检测电芯的内部温度,导致电芯发生热异常的报警响应温度不准确的问题。
2、电芯发生热异常的报警响应滞后
在电芯发生热异常时,热源产生的热量经过多个部件以及不同的接触面传递到电芯的壳体表面,从发热源到外部测温点的温度上升存在明显的时间差。
因此,在测温模块的探头与电芯的壳体表面接触时,测温模块的探头对电芯发生热异常的报警响应存在时间滞后的问题。
3、无法甄别电芯是否经历过热异常
在生产、运输、存储和使用中,经历过热异常的电芯,电芯内部的结构、隔膜、材料体系和电化学界面均会发生不可逆损伤,也就是说,即使电芯没有发生温度失控,也同样存在温度失控带来的安全风险,而现有的测温装置是很难甄别出电芯是否经历过热异常。
考虑到主机单元的端子数量的限制,测温装置无法在电芯的多个检测位置进行布设,导致很难实时且全面地监控到电芯的温度状态,且无法在电芯发生点状的热异常时快速报警。
为了解决相关技术所存在的问题,本申请提供一种电池、电池模组、电池系统和电池热异常报警方法,可应用于移动终端、通信站点、数据中心、储能电站和电动汽车等各种备电场景。
本申请中,电池中的感温磁体的居里温度的选型规格,是基于电芯本体在发生热异常 时的内部温度(即电芯本体的热失控临界温度)进行选择的,也就是说,感温磁体的居里温度与电芯本体的热失控临界温度相匹配,使得电芯本体的温度变化可引发感温磁体的磁性转变。由此,感温磁体可感测电芯本体的内部温度。
基于霍尔效应的工作原理,感温磁体的磁性转变可引发霍尔传感器的磁感应强度的变化,使得霍尔传感器能够输出幅值变化的霍尔电压。由此,霍尔传感器可检测感温磁体的磁性变化。从而,霍尔传感器基于幅值变化的霍尔电压,可在电芯本体发生热异常时向主机单元传输报警信号,使得主机单元基于报警信号的电平跳变或幅值变化,可确定出电芯本体是否发生热异常。
从而,准确地检测出电芯本体在发生热异常时的内部温度,可对电芯本体发生热异常进行准确且及时地报警,解决了电芯本体发生热异常的报警响应存在滞后或不准确的问题,提高了对电芯本体发生热异常进行报警的响应速度,有利于提升电池的安全防护能力。
与此同时,基于感温磁体和霍尔传感器的布局,便于感温磁体检测电芯本体的内部温度,便于霍尔传感器处理和传输信号,且感温磁体和霍尔传感器均无需穿透电芯壳体。
从而,无需破坏电芯壳体的完整结构,不会引发封装泄露等问题,有助于延长电池的使用寿命,保证电池的可靠性和安全性,有利于大规模量产和使用。
此外,由于高于居里温度后感温磁体的磁性转变是不可逆转的。因此,感温磁体是否发生过磁性转变,可作为电芯本体是否经历过热异常的特征记录。和/或,由于霍尔传感器输出的霍尔电压可被检测。因此,霍尔传感器输出的霍尔电压是否发生幅值变化可作为电芯本体是否经历过热异常的甄别依据。从而,避免了由于电芯本体经历过热异常而存在的安全风险。
另外,电池还可对同一电芯本体布设多组感温磁体和霍尔传感器,且每组中的感温磁体的居里温度不同,使得主机单元能够检测出同一电芯本体在发生不同程度的热异常时的内部温度,可实现对同一电芯本体发生热异常的多级报警。
另外,电池还可对同一电芯本体的不同检测位置布设多组感温磁体和霍尔传感器,且每组中霍尔传感器均与主机单元的一个端子电连接,或者,电子还可对同一电子本体的不同检测位置布设多个霍尔元件,且多个霍尔元件通过一个放大器与主机单元的一个端子电连接,使得主机单元通过一个或较少数量的端子,能够在同一电芯本体的多个检测位置对该电芯本体的温度状态进行并行监控,便于在同一电芯本体发生点状的热异常时能够快速报警,可实现对同一电芯本体发生热异常的多点报警,有助于实时且全面地监控到电芯本体的温度状态,有利于提升系统级的安全性能,还减少了放大器的数量,节省了器件连接的成本。
首先,下面对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1、热异常
本申请提及的热异常可包括:在电芯本体的内部温度可能过高的情况下,电芯本体即将发生热失控或者电芯本体已经发生热失控两种情况。其中,本申请提及的电芯本体可采用如锂离子电芯或其他二次电池的电芯等。
下面,结合图1,详细介绍电芯本体发生热异常的工作原理。
请参阅图1,图1为本申请一实施例提供的一种谢苗诺夫Semenov热温图。为了便于说明,图1中,横坐标代表温度(temperature)T,单位为摄氏度(℃),纵坐标代表速率 (rate)q,无单位。
如图1所示,实线1可表示电芯本体的产热速率q G与电芯本体的内部温度T之间的关系,虚线2可表示电芯本体的热耗散速率q L与电芯本体的内部温度T之间的关系。
其中,电芯本体的产热速率q G是温度的指数函数,遵循阿伦尼乌斯公式(Arrhenius equation)。因此,电芯本体的产热速率q G与电芯本体的内部温度T之间的关系可采用公式一进行表示:
Figure PCTCN2022131416-appb-000001
其中,电芯本体的热耗散速率q L是温度的线性函数,遵循牛顿冷却定律。因此,电芯本体的热耗散速率q L与电芯本体的内部温度T之间的关系可采用公式二进行表示:
q L=US(T-T 0)     公式二。
基于公式一和公式二,电芯本体的内部温度T取决于:电芯本体的产热速率q G与电芯本体的热耗散速率q L的平衡。可见,在电芯本体的产热速率q G大于电芯本体的热耗散速率q L时,电芯本体的内部温度T大于热失控临界温度(或称为不回归温度)T NR,电芯本体的热量积聚可引起自燃或爆炸。
综上,在电芯本体的内部温度T大于热失控临界温度T NR之前,电池需要对电芯本体发生热异常进行报警以及启动电芯本体的降温方案,有助于保护电池的安全使用。在电芯本体的内部温度T大于热失控临界温度T NR之后,电池需要及时启动安全应对方案,有助于降低由于电芯自燃或爆炸而带来的人员伤害和设备损害。
2、感温磁体(还可称为感温永磁体)
居里温度是指磁性材料中自发磁化强度降到零时的温度,也是磁性材料发生磁性转变(即从铁磁性或亚铁磁性转变成顺磁性)的临界点。
下面,结合图2,详细介绍感温磁体的磁性转变与感温磁体的居里温度之间的关系。
请参阅图2,图2为本申请一实施例提供的一种感温磁体的磁性与温度的关系示意图。图2中,每个不规则图形代表感温磁体中的磁畴,每个不规则图形中的箭头的方向代表磁畴的磁矩的取向。
如图2所示,在居里温度Tc附近,感温磁体的磁性是随着温度的上升而发生转变。其中,本申请提及的感温磁体的材质不做限定。一般情况下,感温磁体可选用具有特征化学组分、晶体结构、掺杂元素种类及掺杂浓度的感温磁体,便于具有不同的居里温度,实现温度的报警功能。
例如,感温磁体可采用钕铁硼磁铁(neodymium magnet,NdFeB)系或者钐钴(samarium cobalt,SmCo)系。另外,感温磁体还可采用铁氧体永磁探头(居里温度Tc=65℃)。
在感温磁体所在的环境温度T1低于感温磁体的居里温度Tc时,感温磁体中磁畴的磁矩的排列整齐有序,且磁畴的磁矩的取向平行,即图2所示的全部不规则图形中的箭头的方向均平行,可产生自发磁化。因此,感温磁体具有较强的永磁性(如铁磁性或亚铁磁性)。
随着感温磁体所在的环境温度不断升高,在感温磁体所在的环境温度T1大于感温磁体的居里温度Tc时,感温磁体中的磁畴发生剧烈热变动,导致磁矩的排列是混乱无序的,且磁畴的磁矩的取向杂乱无章,即图2所示的全部不规则图形中的箭头的方向杂乱无章, 可相互抵消磁性。因此,感温磁体变为顺磁性,并且感温磁体的磁性迅速减弱或消失,即磁性从强变弱)或从有变无。
综上,感温磁体的居里温度的选型规格可基于电芯本体在发生热异常时的内部温度(即电芯本体的热失控临界温度T NR)进行选择,使得感温磁体的居里温度与电芯本体的热失控临界温T NR相匹配,可以理解的是居里温度与电芯本体的热失控临界温T NR的差值处于预设范围内即可认为居里温度与电芯本体的热失控临界温T NR相匹配。例如,电芯本体的热失控临界温T NR为100℃,则感温磁体的选择可以在居里温度处于一个范围内的磁体中进行选择,例如可以在居里温度大于80℃且小于120摄氏度的范围内的磁体中进行选择。并且,感温磁体的居里温度与电芯本体的内部温度正相关。由此,电芯本体的温度变化可引发感温磁体的磁性转变,使得感温磁体的磁性转变能够准确地反映出电芯本体在发生热异常时的内部温度。
3、霍尔传感器
本申请中,感温磁体的磁性转变可引发霍尔传感器的磁感应强度的变化,可理解为:
在感温磁体的磁性降低后,感温磁体的磁感应强度变小,感温磁体施加在霍尔传感器上的磁场变小,霍尔传感器的磁感应强度变小,使得霍尔传感器能够输出幅值变小的霍尔电压。
在感温磁体的磁性提高后,感温磁体的磁感应强度变大,感温磁体施加在霍尔传感器上的磁场变大,霍尔传感器的磁感应强度变大,使得霍尔传感器能够输出幅值变大的霍尔电压。
综上,霍尔传感器在电芯本体发生热异常时,基于幅值变化的霍尔电压,可向主机单元传输电平跳变或幅值变化的报警信号,使得主机单元在检测到报警信号发生了电平跳变或幅值发生了变化时可确定出电芯本体发生热异常。
首先,结合图3A-图3B,详细介绍霍尔传感器的工作原理。
请参阅图3A-图3B,图3A-图3B为本申请一实施例提供的一种霍尔传感器的工作原理的示意图。
如图3A-图3B所示,霍尔传感器中的霍尔元件(图3A-图3B中分别采用字母H进行示意)为一定厚度的半导体。霍尔元件置于磁感应强度B对应的磁场中,磁感应强度B的方向与霍尔元件的上表面垂直。
一般情况下,一个霍尔元件包括四个端子(图3A-图3B中分别采用数字1、2、3和4进行示意)。其中,1号端子和2号端子是霍尔元件的两个输入端,3号端子和4号端子是霍尔元件的两个输出端。从而,霍尔元件的两个输入端构成输入回路,霍尔元件的两个输出端构成输出回路。
输入回路中可通入控制电流I,控制电流I的方向与霍尔元件的侧面垂直且与磁感应强度B的方向垂直。其中,控制电流I可通过如基准电压源或恒流源等电源产生和控制输入。
霍尔效应的工作原理:如果通入控制电流I的霍尔元件置于磁感应强度B对应的磁场中,那么,霍尔元件中的载流子将受洛伦兹力的作用而发生偏转,从而在霍尔元件的两个输出端产生电势差V H,即输出回路可输出霍尔电压V H(或称为偏置电压)。可见,在霍尔传感器通入控制电流I时,霍尔电压V H是霍尔传感器在磁感应强度B的作用下所输出的。
由于霍尔电压V H的大小,与磁感应强度B和控制电流I成正比。因此,在控制电流I恒定时,霍尔电压V H的大小只受磁感应强度B一个因素的影响。也就是说,霍尔电压V H与垂直施加到霍尔元件的磁感应强度B大小成正比(V H∝B,V H=KBj,其中V H是霍尔电压,K是霍尔系数,j是控制电流密度,B是磁场强度),并霍尔传感器根据磁场的方向可输出正电压和负电压。当外部施加磁场减小时,霍尔传感器可输出幅值同步减小的霍尔电压V H;当外部施加的磁场消失时,霍尔传感器可输出幅值为0V或者其他固定值的基准霍尔电压V H0
进而,霍尔电压V H的变化可以反映磁感应强度B的变化。
需要说明的是,磁感应强度B指的是霍尔传感器的磁感应强度,磁感应强度B对应的磁场指的是感温磁体施加在霍尔传感器上的磁场。
综上,磁感应强度B是感温磁体在霍尔传感器上施加的磁场产生的,且感温磁体的磁性升高时,磁感应强度B变大;感温磁体的磁性降低时,磁感应强度B变小。
可见,感温磁体的磁性转变可引发霍尔传感器的磁感应强度的变化。
基于前述描述,电芯本体的温度变化可引发感温磁体的磁性转变(即B∝T,其中B是磁场强度,T为电芯本体的内部温度)。因此,在霍尔元器件的霍尔元件中输入恒定的控制电流I时,存在V H∝B∝T。从而,霍尔电压V H与电芯本体的内部温度T成正比。
需要说明的是,除了霍尔元器件的霍尔元件中输入恒定的控制电流I之外,霍尔元器件的霍尔元件中也可输入恒定的控制电压U。为了便于说明,本申请皆以恒定的控制电流I为例进行示意。
下面,结合图4,详细介绍霍尔电压的幅值变化与电芯本体的温度变化之间的关系。
请参阅图4,图4为本申请一实施例提供的一种霍尔电压与感温磁体的居里温度的关系曲线示意图。为了便于说明,图4中,横坐标代表温度(temperature)T1,单位为摄氏度(℃),纵坐标代表霍尔电压V H(voltage),单位为伏特(V)。
如图4所示,在感温磁体所在的环境温度T1低于感温磁体的居里温度Tc时,感温磁体具有较强的磁性,霍尔传感器的磁感应强度较大,霍尔电压V H的幅值大于门限电压(threshold voltage)V g的幅值;在感温磁体所在的环境温度T1高于感温磁体的居里温度Tc时,感温磁体的磁性从强变弱或从有变无,霍尔传感器的磁感应强度降低,霍尔电压V H的幅值降低为小于门限电压V g的幅值。
其中,门限电压V g指的是:电芯本体在从未发生热异常变为发生热异常时对应的电压,用于判断霍尔电压V H的幅值是否减小。
可见,门限电压V g是基于感温磁体的居里温度、霍尔传感器的感应灵敏度及主机单元的响应灵敏度确定的。一般情况下,霍尔电压V H的幅值变化较小,或者,霍尔电压V H的幅值较小。因此,霍尔传感器的内部常常集成有放大器,放大器用于按照放大器的放大比例对霍尔电压V H进行放大处理,便于实现对霍尔电压V H的幅值进行检测,提升了检测的灵敏度和可靠性。从而,门限电压V g是基于感温磁体的居里温度和放大器的放大比例确定的。其中,本申请对放大器的放大比例的具体数值不做限定。
基于前述内容,请参阅图5,图5为本申请一实施例提供的一种电池的报警策略示意图。
如图5所示,采用感温磁体来检测电芯本体的内部温度,即感温磁体所在的环境温度 T1为电芯本体的内部温度T。从而,在霍尔传感器中的霍尔元件中输入恒定的控制电流(或控制电压)时,电芯本体的温度变化可引发感温磁体的磁性转变,感温磁体的磁性转变可引发霍尔传感器的磁感应强度的变化,霍尔传感器的磁感应强度的变化可引发霍尔电压的幅值变化,霍尔传感器基于幅值变化的霍尔电压,可在电芯本体发生热异常时,得到电平跳变或幅值变化的报警信号,并向主机单元传输报警信号,使得主机单元在检测到报警信号发生了电平跳变或幅值发生了变化时可确定出电芯本体发生热异常。
其中,主机单元中可实现多种输入的信号处理、管理决策和控制策略,如基于热异常的报警信号进行主动管理降温,进行系统过热保护或者电池过热报警等。
基于上述实施例的描述,下面,结合具体的实施例,分别对本申请的电池、电池模组和电池系统的具体实现方式进行详细说明。
请参阅图6A,图6A为本申请一实施例提供的一种电池系统的结构示意图。
如图6A所示,电池系统1可以包括:供电单元20、主机单元30以及电池模组10。
其中,供电单元20分别与主机单元30和电池模组10中的霍尔传感器电连接,主机单元30还与电池模组10中的霍尔传感器电连接。
基于上述连接关系,供电单元20可向如主机单元30和电池模组10中的霍尔传感器等涉及温度检测的各个模块进行供电,且供电单元20并不能向电池模组10进行充电。并且,一般情况下,供电单元20与电池模组10的充放电回路之间设置有电气隔离,可减少供电单元20与电池模组10之间的相互干扰。
其中,本申请对供电单元20的如类型、数量和尺寸等参数不做限定。例如,供电单元20可将市电电源经过如整流、滤波、电压转换等处理,或者供电单元20可使用独立于被检测电池模组10的储能电池组,或者供电单元20可使用向电池模组10进行充电的模块所引出来的一条进行电气隔离后的支路。
另外,供电单元20可采用总线或独立供电的方式向电池模组10中的霍尔传感器进行供电。为了便于说明,本申请涉及到供电单元20向电池模组10中的霍尔传感器供电的方式采用总线的方式进行举例示意。
主机单元30用于接收和处理信号,以及确定电池模组10是否发生热异常。其中,本申请对主机单元30的如架构结构、类型、数量和尺寸等参数不做限定。例如,主机单元30可采用BMS。
电池模组10可向主机单元30传输报警信号,使得主机单元30基于报警信号的电平跳变或幅值变化可确定电池模组10是否发生热异常。
其中,本申请对报警信号的具体实现方式不做限定。
在报警信号是数字信号时,主机单元30可检测报警信号的电平是否发生了跳变。在检测到报警信号发生了电平跳变时,主机单元30可确定电池模组10发生热异常。其中,报警信号的电平跳变可理解为:从高电平变为低电平的跳变,或者,从低电平变为高电平的跳变。
在报警信号是模拟信号时,主机单元30可检测报警信号的电压的幅值变化。在检测到报警信号的电压的幅值降低为小于门限电压V g的幅值时,主机单元30可确定电池模组10发生热异常。其中,门限电压V g的具体实现方式可参见前述描述,此处不做赘述。
继续结合图6A,电池模组10可以包括:M个电池100,M为正整数。
请参阅图6B,图6B为本申请一实施例提供的一种电池系统的部分结构示意图。为了便于说明,图6B中,电池100的数量M以等于1为例进行示意。
如图6B所示,电池100可以包括:电芯本体101、电芯壳体102、第一感温磁体103和第一霍尔传感器104。
电芯壳体102的材质为非磁屏蔽材质。可见,电芯壳体102不会发生磁屏蔽,即电芯壳体102不屏蔽电磁感应效应。由此,第一感温磁体103产生的磁感线能够穿过电芯壳体102,使得第一感温磁体103能够在第一霍尔传感器104上施加磁场,以便产生第一霍尔传感器104的磁感应强度B1,具体实现方式可参见图3A-图3B中提及的磁感应强度B的描述。
其中,本申请对电芯壳体102的具体实现方式不做限定。例如,电芯壳体102可采用铝、铝塑、玻璃、陶瓷、塑料、非磁性钢等材质。
电芯壳体102具有容纳腔,电芯本体101置于容纳腔内,第一霍尔传感器104置于容纳腔外。其中,本申请对容纳腔的如大小、数量和形状等参数不做限定。
由此,电芯壳体102的设置可起到保护电芯本体101的作用,还可分离出第一霍尔传感器104,便于第一霍尔传感器104分别电连接主机单元30和供电单元20,无需第一霍尔传感器104穿透电芯壳体102,不会破坏电芯壳体102的结构,确保电芯本体101的长期使用,有利于提升电芯本体101的可靠性和安全性。
第一霍尔传感器104的第一端VCC1与供电单元20的第一端(图6B中采用供电单元20的1号端子进行示意)电连接,使得第一霍尔传感器104能够从供电单元20获取到第一霍尔传感器104所需的供电电源,以便提供恒定的第一控制电流I1(或第一控制电压),其具体实现方式可参见图3A-图3B中提及的恒定的控制电流I(或控制电压)的描述,使得第一霍尔传感器104能够产生霍尔效应。
第一霍尔传感器104的第二端OUT1与主机单元30的第一端(图6B中采用主机单元30的1号端子进行示意)电连接,使得第一霍尔传感器104能够向主机单元30的第一端传输第一报警信号。
其中,主机单元30的第一端可为主机单元30的一个端子。主机单元30可与第一霍尔传感器104分离或集成设置。并且,供电单元20的第二端(图6B中采用供电单元20的2号端子进行示意)与主机单元30的电源端VCC0电连接,使得供电单元20能够向主机单元30供电。
其中,第一报警信号的具体实现方式可参见前文提及的报警信号的描述。并且,第一报警信号可基于第一霍尔电压V H1和第一门限电压V g1进行确定,前述第一霍尔电压V H1是在供电单元20向第一霍尔传感器104供电的情况下,第一霍尔传感器104在第一霍尔传感器104的磁感应强度B1的作用下所输出的,前述第一门限电压的幅值V g1是基于第一感温磁体103的居里温度确定的。另外,前述第一霍尔电压V H1的具体实现方式可参见前文提及的霍尔电压V H的描述,前述第一门限电压V g1的具体实现方式可参见前文提及的门限电压V g的描述。
其中,第一霍尔传感器104可采用如焊接、镶嵌或胶黏等方式固设在电池100中,可确保第一霍尔传感器104不会随着电池100的晃动而发生移动。另外,第一霍尔传感器104也可借助主机单元30和/或供电单元20在电池100中固定设置。
第一感温磁体103可置于容纳腔内,使得第一感温磁体103能够更靠近电芯本体101,便于第一感温磁体103更加准确地检测电芯本体101在发生热异常时的内部温度,也使得电芯壳体102将第一感温磁体103和第一霍尔传感器104分离开来。
或者,第一感温磁体103可置于容纳腔外,可充分考虑电芯本体101的内部空间有限的问题。
其中,本申请对第一感温磁体103的具体位置不做限定。另外,第一感温磁体103可采用如焊接、镶嵌或胶黏等方式固设在电池100中,可确保第一感温磁体103不会随着电池100的晃动而发生移动。
基于上述描述,结合图6C,详细介绍本申请的电池热异常报警方法的具体实现方式。
请参阅图6C,图6C为本申请一实施例提供的一种电池热异常报警方法的流程示意图。
如图6C所示,本申请的电池热异常报警方法可以包括:
S101、第一感温磁体感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或高于第一感温磁体的居里温度时,第一感温磁体的磁性减弱或消失;第一感温磁体的居里温度与电芯本体的热失控临界温度相匹配。
S102、第一霍尔传感器检测第一感温磁体的磁性,根据第一感温磁体的磁性变化输出第一报警信号,以使主机单元在检测到第一报警信号后确定电芯本体发生第一等级的热异常。
第一感温磁体103的居里温度的选型规格是基于电芯本体101的热失控临界温度T NR进行选择的,使得电芯本体101的温度变化可引发第一感温磁体103的磁性转变。也就是说,在电芯本体101未发生热异常时,第一感温磁体103具有较强的磁性。在电芯本体101发生热异常时,第一感温磁体103的磁性可从强变弱或从有变无,前述内容可参见图2中的描述,此处不做赘述。
另外,本申请可设置第一预设温度,第一预设温度与第一感温磁体103的居里温度相关,可作为第一感温磁体103的磁性发生转变的温度,以便及时识别出电子本体101的内部温度发生热异常。
其中,本申请对第一预设温度的具体数值不做限定。在一些实施例中,第一预设温度可等于第一感温磁体103的居里温度,有利于准确地检测到电芯本体101在发生热异常时的内部温度,或者,第一预设温度可高于第一感温磁体103的居里温度,充分考虑到电芯本体101具有一定的承受能力。第一感温磁体103和第一霍尔传感器104可分离或集成设置在电池100中,且第一感温磁体103可向第一霍尔传感器104提供第一霍尔传感器104的磁感应强度B1,使得第一霍尔传感器104能够产生霍尔效应。
基于图6A-图6C实施例的描述,结合图6D,详细介绍第一霍尔传感器104的工作原理。
请参阅图6D,图6D为本申请一实施例提供的一种第一霍尔传感器的工作原理的示意图。
如图6D所示,第一霍尔传感器104中的霍尔元件(图6D中分别采用字母H1进行示意)包括四个端子(图6D中分别采用数字1、2、3和4进行示意)。其中,1号端子和2号端子是第一霍尔传感器104中的霍尔元件的两个输入端,3号端子和4号端子是第一霍尔传感器104中的霍尔元件的两个输出端。
从而,第一霍尔传感器104中的霍尔元件的两个输入端构成输入回路,第一霍尔传感器104中的霍尔元件的两个输出端构成输出回路。其中,第一霍尔传感器104中的霍尔元件的输入回路中可输入恒定的第一控制电流I1,第一霍尔传感器104中的霍尔元件的输出回路可输出第一霍尔电压V H1
基于霍尔效应的工作原理,通入恒定的第一控制电流I1的第一霍尔传感器104中的霍尔元件置于第一霍尔传感器104的磁感应强度B1对应的磁场中,第一霍尔传感器104中的霍尔元件的两个输出端产生电势差V H1,即输出回路可输出第一霍尔电压V H1
在电芯本体101的内部温度等于或高于第一感温磁体103的居里温度时,第一霍尔传感器104可输出幅值变小的第一霍尔电压V H1,第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可将第一报警信号的电平进行电平跳变,并向主机单元30的第一端输出第一报警信号。由此,主机单元30在检测到第一报警信号的电平发生了跳变时,可确定电芯本体101发生热异常。
或者,在电芯本体101的内部温度等于或高于第一感温磁体103的居里温度时,第一霍尔传感器104可输出幅值变小的第一霍尔电压V H1,第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可将第一报警信号的电压的幅值降低为小于第一门限电压V g1的幅值,并向主机单元30的第一端输出第一报警信号。由此,主机单元30在检测到第一报警信号的电压的幅值降低为小于第一门限电压V g1的幅值时,可确定电芯本体101发生热异常。
综上,主机单元30的第一端借助第一感温磁体103和第一霍尔传感器104,可确定电芯本体101发生了电芯本体101的内部温度等于或高于第一感温磁体103的居里温度的热异常。
本申请中,第一感温磁体103和第一霍尔传感器104在电池100中可具有多种布局。
下面,结合图7A-图7D、图8A-图8D和图9A-图9B,详细介绍电芯本体101、电芯壳体102、第一感温磁体103和第一霍尔传感器104的布局。
请参阅图7A-图7D,图7A-图7D为本申请一实施例提供的一种电池的剖面示意图。
在第一感温磁体103置于容纳腔内时,如图7A和图7B所示,第一感温磁体103可固设在电芯壳体102的内表面上。如图7C和图7D所示,第一感温磁体103可固设在电芯本体101的电解液中,或者,第一感温磁体103可固夹在电芯本体101的裸电芯内部。
此外,如图7A和图7C所示,第一感温磁体103可固设在电芯壳体102的外表面上。如图7B和图7D所示,第一霍尔传感器104可固设在电芯壳体102的外部,即第一霍尔传感器104可与电芯壳体102表面不接触,便于分离第一感温磁体103和第一霍尔传感器104。
可见,充分利用电芯本体101的内部空间,第一感温磁体103可安装在电芯本体101的内部或电芯壳体102的内表面上,再安装第一霍尔传感器104。从而,实现了第一感温磁体103和第一霍尔传感器104的分离设置,无需破坏电芯壳体102的完整结构。
在一个具体实施例中,电芯本体101采用锂离子电芯,电芯壳体102采用方形铝壳。第一感温磁体103采用NdFeB系(居里温度Tc为102℃),第一预设温度设置为110℃。且第一感温磁体103通过注塑的方式嵌入到电芯壳体102的内表面的塑胶支架上,使得第一感温磁体103的一个磁极保持垂直朝向电芯壳体102的外表面。第一霍尔传感器104安装在电芯壳体102的外表面上,且第一霍尔传感器104电连接主机单元30(如BMS)。
从而,在电芯本体101的内部温度达到110℃时,第一感温磁体103的磁性消失,第一霍尔传感器104可输出幅值变小的第一霍尔电压V H1,第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可向主机单元30输出电平跳变或幅值变化的第一报警信号。由此,主机单元30在检测到第一报警信号发生了电平跳变或幅值变化时,可确定电芯本体101热异常,可及时实现温度异常报警。
请参阅图8A-图8D,图8A-图8D为本申请一实施例提供的一种电池的剖面示意图。
在第一感温磁体103置于容纳腔外时,如图8A和图8B所示,第一感温磁体103可固设在电芯壳体102的外表面上。如图8C和图8D所示,第一感温磁体103可固设在电芯壳体102的外部,即第一霍尔传感器104可与电芯壳体102表面不接触。
此外,如图8A和图8C所示,第一霍尔传感器104可固设在电芯壳体102的外表面上。如图8B和图8D所示,第一霍尔传感器104可固设在电芯壳体102的外部,即第一霍尔传感器104可与电芯壳体102表面不接触。
可见,针对内部空间受限的电芯本体101,第一感温磁体103可安装在电芯壳体102的外部或外表面上,再安装第一霍尔传感器104。从而,实现了第一感温磁体103和第一霍尔传感器104的分离设置,无需破坏电芯壳体102的完整结构。
需要说明的是,图8C和图8D中,第一感温磁体103和第一霍尔传感器104也可集成设置,也不需要破坏电芯壳体102的完整结构。
另外,第一感温磁体103与电芯壳体102之间的距离较小,可确保第一感温磁体103能够透过电芯本体101可感测到电芯本体101产生的热量,使得第一感温磁体103的磁性能够反映出电芯本体101的温度变化。
此外,在第一感温磁体103固设在电芯壳体102的外部时,电池100还可以包括:导热件105。其中,导热件105可采用导热胶或导热硅脂等材质,本申请对此不做限定。
下面,结合图9A-图9B,详细介绍导热件105的具体实现方式。
请参阅图9A-图9B,图9A-图9B为本申请一实施例提供的一种电池的剖面示意图。
如图9A-图9B所示,导热件105固设在电芯壳体102的外表面上,使得导热件105能够集中电芯本体101产生的热量。并且,导热件105与第一感温磁体103表面接触,使得导热件105能够与第一感温磁体103完成热传导,便于第一感温磁体103能够准确地检测电芯本体101在发生热异常时的内部温度。
此外,如图9A所示,第一霍尔传感器104可固设在电芯壳体102的外表面上。如图9B所示,第一霍尔传感器104可固设在电芯壳体102的外部,即第一霍尔传感器104可与电芯壳体102表面不接触。
综上,导热件105的设置可有助于第一感温磁体103反映出电芯本体101的温度变化。
基于上述描述,第一感温磁体103和第一霍尔传感器104的组合可实现电池100的温度报警功能,具体工作原理可参见图5所示的描述,此处不做赘述。
在电芯本体101的内部温度等于或高于第一感温磁体103的居里温度时,电芯本体101即将或已经发生热异常,导致第一感温磁体103的磁性减弱或消失,使得第一感温磁体103施加在第一霍尔传感器104上的磁场削弱或消失。因此,第一感温磁体103通过第一感温磁体103的磁性的减弱或消失,可降低第一霍尔传感器104的磁感应强度B1。
随着第一霍尔传感器104的磁感应强度B1的降低,第一霍尔传感器104能够输出幅 值变小的第一霍尔电压V H1。第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可向主机单元30输出电平跳变或幅值变化的第一报警信号。由此,主机单元30在检测到第一报警信号发生了电平跳变或幅值变化时,可确定电芯本体101热异常,可及时实现温度异常报警。
由此,每个电池100可以包括如下工况:
正常工况:在电芯本体101处于内部温度小于第一感温磁体103的居里温度的工况运行时,第一感温磁体103可引发第一霍尔传感器104输出高电压的第一霍尔电压V H1。第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可向主机单元30传输高电压的第一报警信号,使得主机单元30确定电池100处于正常工况下。且在正常工况下,电池100持续监测电芯本体101的内部温度,具有较高的系统可靠性。
报警工况:随着电芯本体101异常发热引起内部温度上升,在电芯本体101处于内部温度等于或高于第一感温磁体103的居里温度的工况运行时,第一感温磁体103的磁性大幅度减弱或消失,可引发第一霍尔传感器104输出低电压的第一霍尔电压V H1。第一感温磁体103基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可向主机单元30传输低电压的第一报警信号,使得主机单元30确定电芯本体101处于报警工况下,具有高度有效性和及时性。
检修工况:在电芯本体101再次处于内部温度小于第一感温磁体103的居里温度的工况后,第一感温磁体103的永磁性不可恢复,对外部不产生磁场,即感温磁体103的磁性记录可以完成对电芯本体101发生热异常事件的记录,从而可引发第一霍尔传感器104维持输出低电压的第一霍尔电压V H1。第一感温磁体103基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可继续向主机单元30输出低电压的第一报警信号,使得主机单元30确定电池100处于异常工况下。
可见,通过检测第一霍尔传感器104和/或第一感温磁体103的磁场特征,可以快速识别出发生热异常的电芯本体101,便于进行模块级别的识别、记录和维修,具有良好的系统维护性。
需要说明的是,为了便于说明,本申请中的霍尔电压V H的幅值变化均以上述实现方式中的第一霍尔电压V H1的幅值变化为例进行示意。另外,除了上述实现方式之外,正常工况下,第一霍尔电压V H1也可为低电压;对应地,报警工况下,第一霍尔电压V H1可为高电压;检修工况下,第一霍尔电压V H1可为高电压。
并且,除了上述幅值变化的实现方式之外,正常工况下,第一报警信号可为高电平;对应地,报警工况下,第一报警信号的电平可从高电平跳变为低电平;检修工况下,第一报警信号的电平可保持为低电平。
另外,主机单元30还可存储有报警信号的电压的幅值大小、霍尔传感器的磁感应强度与电芯本体101的内部温度三者之间的映射关系。从而,在接收到第一报警信号后,主机单元30可基于第一报警信号的电压的幅值大小,可确定电芯本体101的内部温度。由此,实现了电池100的温度检测功能。
本申请提供的电池、包含有M个电池的电池模组和电池系统,通过第一感温磁体与第一霍尔传感器的配合,能够准确地检测出电芯本体在发生热异常时的内部温度,可对电芯本体发生热异常进行准确且及时地报警,解决了电芯本体发生热异常的报警响应存在滞后 或不准确的问题,提高了对电芯本体发生热异常进行报警的响应速度,有利于提升电池的安全防护能力。与此同时,基于第一感温磁体和第一霍尔传感器的布局,无需破坏电芯壳体的完整结构,不会引发封装泄露等问题,有助于延长电池的使用寿命,保证电池的可靠性和安全性,有利于大规模量产和使用。
此外,第一感温磁体是否发生过磁性转变,和/或,第一霍尔传感器输出的第一霍尔电压V H1是否发生幅值变化,可作为电芯本体是否经历过热异常的甄别依据,避免了由于电芯本体经历过热异常而存在的安全风险。
基于上述描述,第一霍尔传感器104可采用多种实现方式。相应地,第一报警信号可包括多种表示方式,如数字信号或模拟信号。
在第一报警信号是数字信号时,结合图10A,详细介绍第一霍尔传感器104的具体实现方式。
请参阅图10A,图10A为本申请一实施例提供的一种第一霍尔传感器的结构示意图。为了便于说明,图10A中,电池100的数量M以等于1为例进行示意,且供电单元20与主机单元30之间的电连接未进行示意。
如图10A所示,第一霍尔传感器104可以包括:霍尔元件1041、放大器1042和比较器1043。其中,霍尔元件1041和放大器1042可采用如线型霍尔传感器进行表示,或者,霍尔元件1041、放大器1042和比较器1043可采用如开关型霍尔传感器进行表示。
霍尔元件1041的第一端(图10A中采用霍尔元件1041的1号端子进行示意)为第一霍尔传感器104的第一端VCC1,霍尔元件1041的第一端与供电单元20电连接,使得霍尔元件1041能够从供电单元20获取到霍尔元件1041所需的供电电源,以便提供恒定的第一控制电流I1(或第一控制电压)。并且,第一感温磁体103可向霍尔元件1041提供第一霍尔传感器104的磁感应强度B1。由此,霍尔元件1041可产生霍尔效应,使得霍尔元件1041能够检测第一感温磁体103的磁性。
霍尔元件1041的第二端与放大器1042的第一端电连接,即图10A中采用霍尔元件1041的3号端子与放大器1042的1号端子电连接,且霍尔元件1041的4号端子与放大器1042的1号端子电连接进行示意。
另外,图10A中,放大器1042的电源端表示为放大器1042的3号端子,霍尔元件1041的接地端表示为霍尔元件1041的2号端子,放大器1042的接地端表示为放大器1042的4号端子。需要说明的是,霍尔元件1041、放大器1042和比较器1043共地。
放大器1042的第二端(图10A中采用放大器1042的5号端子进行示意)与比较器1043的第一端(图10A中采用比较器1043的1号端子进行示意)电连接。
比较器1043的第二端(图10A中采用比较器1043的2号端子进行示意)用于输入第一门限电压V g1。其中,第一门限电压V g1是电芯本体101在从未发生热异常变为发生热异常时对应的电压,且第一门限电压V g1是基于第一感温磁体103的居里温度和放大器1042的放大比例确定的,具体内容可参见前文的描述。
比较器1043的第三端(图10A中采用比较器1043的3号端子进行示意)为第一霍尔传感器104的第二端OUT1,比较器1043的第三端与主机单元30的第一端(图10A中采用主机单元30的1号端子进行示意)电连接。
基于上述连接关系,在电芯本体101的内部温度等于或高于第一感温磁体103的居里 温度时,第一感温磁体103通过第一感温磁体103的磁性的减弱或消失,可降低霍尔元件1041的磁感应强度B1。
在霍尔元件1041的磁感应强度B1降低后,霍尔元件1041可向放大器1042输出幅值变小的第一霍尔电压V H1
放大器1042可按照放大器1042的放大比例对第一霍尔电压V H1进行放大处理,得到放大结果。其中,本申请对放大器1042的放大比例的具体数值不做限定。由此,提升了检测第一霍尔电压V H1的灵敏度和可靠性。
放大器1042可向比较器1043输出放大结果。并且,基于图4实施例的描述,在电芯本体101发生热异常时,放大结果的电压的幅值降低为小于第一门限电压V g1的幅值。
由此,比较器1043基于第一门限电压V g1,可对放大结果进行转换处理,得到电平发生跳变的第一报警信号。也就是说,比较器1043可基于第一门限电压V g1与放大结果的幅值比较结果,可输出预设电平的第一报警信号。其中,预设电平可为高电平或低电平。
比较器1043可向主机单元30的第一端传输第一报警信号,使得主机单元30可判断第一报警信号的预设电平是否发生跳变,如第一报警信号是否从高电平跳变为低电平,或者,第一报警信号是否低电平跳变为高电平。
从而,在检测到第一报警信号的电平发生跳变时,主机单元30可确定电芯本体101发生热异常。由此,实现了数字信号报警。
在第一报警信号是模拟信号时,结合图10B,详细介绍第一霍尔传感器104的具体实现方式。
请参阅图10B,图10B为本申请一实施例提供的一种第一霍尔传感器的结构示意图。为了便于说明,图10B中,电池100的数量M以等于1为例进行示意,且供电单元20与主机单元30之间的电连接未进行示意。
如图10B所示,第一霍尔传感器104可以包括:霍尔元件1041和放大器1042。其中,霍尔元件1041和放大器1042可采用如线型霍尔传感器进行表示。
霍尔元件1041的第一端(图10B中采用霍尔元件1041的1号端子进行示意)为第一霍尔传感器104的第一端VCC1,霍尔元件1041的第一端与供电单元20电连接,使得霍尔元件1041能够从供电单元20获取到霍尔元件1041所需的供电电源,以便提供恒定的第一控制电流I1(或第一控制电压)。并且,第一感温磁体103可向霍尔元件1041提供第一霍尔传感器104的磁感应强度B1。由此,霍尔元件1041可产生霍尔效应。
霍尔元件1041的第二端与放大器1042的第一端电连接,即图10B中采用霍尔元件1041的3号端子与放大器1042的1号端子电连接,且霍尔元件1041的4号端子与放大器1042的2号端子电连接进行示意。
另外,图10B中,放大器1042的电源端表示为放大器1042的3号端子,霍尔元件1041的接地端表示为霍尔元件1041的2号端子,放大器1042的接地端表示为放大器1042的4号端子。需要说明的是,霍尔元件1041和放大器1042共地。
放大器1042的第二端(图10B中采用放大器1042的5号端子进行示意)为第一霍尔传感器104的第二端OUT1,放大器1042的第二端与主机单元30的第一端(图10B中采用主机单元30的1号端子进行示意)电连接。
基于上述连接关系,在电芯本体101的内部温度等于或高于第一感温磁体103的居里 温度时,第一感温磁体103通过第一感温磁体103的磁性的减弱或消失,可降低霍尔元件1041的磁感应强度B1。
在霍尔元件1041的磁感应强度B1降低后,霍尔元件1041可向放大器1042输出幅值变小的第一霍尔电压V H1
放大器1042可按照放大器1042的放大比例对第一霍尔电压V H1进行放大处理,得到第一报警信号。其中,本申请对放大器1042的放大比例的具体数值不做限定。由此,提升了检测第一霍尔电压V H1的灵敏度和可靠性。
并且,基于图4实施例的描述,在电芯本体101发生热异常时,第一报警信号的电压的幅值降低为小于第一门限电压V g1的幅值。其中,第一门限电压V g1是电芯本体101在从未发生热异常变为发生热异常时对应的电压,且第一门限电压V g1是基于第一感温磁体103的居里温度和放大器1042的放大比例确定的,具体内容可参见前文的描述。
放大器1042可向主机单元30的第一端传输第一报警信号,使得主机单元30可比较第一报警信号的电压的幅值与第一门限电压V g1的幅值大小。其中,主机单元30中可存储有第一门限电压V g1的幅值大小。或者,主机单元30可从放大器1042或其他元器件接收第一门限电压V g1的幅值大小。
从而,在检测到第一报警信号的电压的幅值降低为小于第一门限电压V g1的幅值时,主机单元30可确定电池100发生热异常。由此,实现了模拟信号报警。
基于上述实施例的描述,电池100还可实现对电芯本体101发生热异常的多级报警。
请参阅图11A,图11A为本申请一实施例提供的一种电池系统的部分结构示意图。为了便于说明,图11A中,电池100的数量M以等于1为例进行示意。
如图11A所示,除了电芯本体101、电芯壳体102、第一感温磁体103和第一霍尔传感器104之外,电池100还可以包括:第二感温磁体106和第二霍尔传感器107。
第二感温磁体106产生的磁感线能够穿过电芯壳体102,使得第二感温磁体106能够在第二霍尔传感器107上施加磁场,以便产生第二霍尔传感器107的磁感应强度B2,具体实现方式可参见图3A-图3B中提及的磁感应强度B的描述。
第二霍尔传感器107置于容纳腔外,由此,电芯壳体102的设置可分离出第二霍尔传感器107,便于第二霍尔传感器107分别电连接主机单元30和供电单元20,无需第二霍尔传感器107穿透电芯壳体102,不会破坏电芯壳体102的结构,确保电芯本体101的长期使用,有利于提升电芯本体101的可靠性和安全性。
第二霍尔传感器107的第一端VCC2与供电单元20电连接,使得第二霍尔传感器107能够从供电单元20获取到第二霍尔传感器107所需的供电电源,以便提供恒定的第二控制电流I2(或第二控制电压),其具体实现方式可参见图3A-图3B中提及的恒定的控制电流I(或控制电压)的描述,使得第二霍尔传感器107能够产生霍尔效应。
另外,第二控制电流I2的幅值大小取决于第二霍尔传感器107中的霍尔元件的等效电阻。可见,在第一霍尔传感器104和第二霍尔传感器107中选用相同等效电阻的霍尔元件时,第二控制电流I2与第一控制电流I1的幅值大小相等。在第一霍尔传感器104和第二霍尔传感器107中选用不同等效电阻的霍尔元件时,第二控制电流I2与第一控制电流I1的幅值大小不等。并且,本申请不限定第一霍尔传感器104和第二霍尔传感器107中是否选用相同等效电阻的霍尔元件,本申请也不限定第二控制电流I2与第一控制电流I1的幅 值大小是否相等。
第二霍尔传感器107的第二端OUT2与主机单元30的第二端(图11A中采用主机单元30的2号端子进行示意)电连接,使得第二霍尔传感器107能够向主机单元30的第二端(图11A中采用主机单元30的2号端子进行示意)传输第二报警信号。
其中,主机单元30的第二端与主机单元30的第一端(图11A中采用主机单元30的1号端子进行示意)不同,主机单元30的第二端可为主机单元30的一个端子。主机单元30可与第二霍尔传感器107分离或集成设置。
并且,供电单元20的第二端(图11A中采用供电单元20的2号端子进行示意)与主机单元30的电源端VCC0电连接,使得供电单元20能够向主机单元30供电。
其中,第二报警信号的具体实现方式可参见前文提及的报警信号的描述。并且,第二报警信号可基于第二霍尔电压V H2和第二门限电压V g2进行确定,前述第二霍尔电压V H2是在供电单元20向第二霍尔传感器107供电的情况下,第二霍尔传感器107在第二霍尔传感器107的磁感应强度B2的作用下所输出的,前述第二门限电压V g2的幅值是基于第二感温磁体106的居里温度确定的。另外,前述第二霍尔电压V H2的具体实现方式可参见前文提及的霍尔电压V H的描述,前述第二门限电压V g2的具体实现方式可参见前文提及的门限电压V g的描述。
其中,第二报警信号与第一报警信号的含义不同,第二报警信号用于主机单元30确定电芯本体101发生第二等级的热异常,本申请提及的第二等级指的是电芯本体101的内部温度等于或高于第二感温磁体106的居里温度,第一报警信号用于主机单元30确定电芯本体101发生第一等级的热异常,本申请提及的第一等级指的是电芯本体101的内部温度等于或高于第一感温磁体103的居里温度。
其中,第二霍尔传感器107可采用如焊接、镶嵌或胶黏等方式固设在电池100中,可确保第二霍尔传感器107不会随着电池100的晃动而发生移动。另外,第二霍尔传感器107也可借助主机单元30和/或供电单元20在电池100中固定设置。
其中,第二霍尔传感器107的具体实现方式可参见图10A-图10B中的第一霍尔传感器104的描述,此处不做赘述。
第二感温磁体106可置于容纳腔内,使得第二感温磁体106能够更靠近电芯本体101,便于第二感温磁体106更加准确地检测电芯本体101在发生热异常时的内部温度,也使得电芯壳体102将第二感温磁体106和第二霍尔传感器107分离开来。
或者,第二感温磁体106可置于容纳腔外,可充分考虑电芯本体101的内部空间有限的问题。
其中,本申请对第二感温磁体106的具体位置不做限定,可参见前文提及的第一感温磁体103的描述。另外,第二感温磁体106可采用如焊接、镶嵌或胶黏等方式固设在电池100中,可确保第二感温磁体106不会随着电池100的晃动而发生移动。
基于上述描述,结合图11B,详细介绍本申请的电池热异常报警方法的具体实现方式。
请参阅图11B,图11B为本申请一实施例提供的一种电池热异常报警方法的流程示意图。
如图11B所示,本申请的电池热异常报警方法可以包括:
S201、第二感温磁体感测电芯本体内部的温度;其中,在电芯本体的内部温度等于或 高于第二感温磁体的居里温度时,第二感温磁体的磁性减弱或消失;第二感温磁体的居里温度与电芯本体的热失控临界温度相匹配,第二感温磁体的居里温度与第一感温磁体的居里温度不同。
S202、第二霍尔传感器检测第二感温磁体的磁性,根据第二感温磁体的磁性变化输出第二报警信号,以使主机单元在检测到第二报警信号后确定电芯本体发生第二等级的热异常,第一等级与第二等级不同。
第二感温磁体106的居里温度的选型规格是基于电芯本体101的热失控临界温度T NR进行选择的,使得电芯本体101的温度变化可引发第二感温磁体106的磁性转变。也就是说,在电芯本体101未发生热异常时,第二感温磁体106具有较强的磁性。在电芯本体101发生热异常时,第二感温磁体106的磁性可从强变弱或从有变无,具体实现方式参见图2中的描述,此处不做赘述。
另外,本申请可设置第二预设温度,第一预设温度与第二预设温度不同,第二预设温度与第二感温磁体106的居里温度相关,可作为第二感温磁体106的磁性发生转变的温度,以便及时识别出电子本体101的内部温度发生热异常。
其中,本申请对第二预设温度的具体数值不做限定。在一些实施例中,第二预设温度可等于第二感温磁体106的居里温度,有利于准确地检测到电芯本体101在发生热异常时的内部温度,或者,第二预设温度可高于第二感温磁体106的居里温度,充分考虑到电芯本体101具有一定的承受能力。
并且,第二感温磁体106的居里温度与第一感温磁体103的居里温度不同,使得第一感温磁体103和第二感温磁体106可分别检测到电芯本体101在发生不同程度的热异常时的内部温度,有利于反映出电芯本体101发生热异常的程度,实现对电芯本体101发生不同程度热异常的多级报警。
其中,本申请对第二感温磁体106的居里温度和第一感温磁体103的居里温度的具体实现方式不做限定。
第二感温磁体106和第二霍尔传感器107可分离或集成设置在电池100中,且第二感温磁体106可向第二霍尔传感器107提供第二霍尔传感器107的磁感应强度B2,使得第二霍尔传感器107能够产生霍尔效应。
其中,第二感温磁体106和第二霍尔传感器107在电池100中的布局可参见图7A-图7D、图8A-图8D和图9A-图9B中第一感温磁体103和第一霍尔传感器104在电池100中的布局的描述此处不做赘述。
并且,第二霍尔传感器107的磁感应强度B2与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第二感温磁体106的磁性转变无关。也就是说,第一感温磁体103和第一霍尔传感器104,与第二感温磁体106和第二霍尔传感器107之间形成磁屏蔽,第二感温磁体106的磁性不可引发第一霍尔传感器104的磁感应强度B1的变化,第一感温磁体103的磁性不可引发第二霍尔传感器107的磁感应强度B2的变化。
其中,第二感温磁体106和第二霍尔传感器107的组合可实现电池100的温度报警功能,具体工作原理可参见图5所示的描述,此处不做赘述。
基于图3A-图3B实施例以及图11A-图11B的描述,结合图11C,详细介绍第一霍尔传感器104和第二霍尔传感器107的工作原理。
请参阅图11C,图11C为本申请一实施例提供的一种第一霍尔传感器和第二霍尔传感器的工作原理的示意图。
如图11C所示,第一霍尔传感器104中的霍尔元件(图11C中分别采用字母H1进行示意)包括四个端子(图11C中分别采用数字1、2、3和4进行示意)。其中,1号端子和2号端子是第一霍尔传感器104中的霍尔元件的两个输入端,3号端子和4号端子是第一霍尔传感器104中的霍尔元件的两个输出端。从而,第一霍尔传感器104中的霍尔元件的两个输入端构成输入回路,第一霍尔传感器104中的霍尔元件的两个输出端构成输出回路。
第二霍尔传感器107中的霍尔元件(图11C中分别采用字母H2进行示意)包括四个端子(图11C中分别采用数字1、2、5和6进行示意)。其中,1号端子和2号端子是第二霍尔传感器107中的霍尔元件的两个输入端,5号端子和6号端子是第二霍尔传感器107中的霍尔元件的两个输出端。从而,第二霍尔传感器107中的霍尔元件的两个输入端构成输入回路,第二霍尔传感器107中的霍尔元件的两个输出端构成输出回路。
其中,第一霍尔传感器104中的霍尔元件和第二霍尔传感器107中的霍尔元件的输入端并联电连接,第一霍尔传感器104中的霍尔元件和第二霍尔传感器107中的霍尔元件的输出端分别独立电连接到主机单元30的不同端子,且第一霍尔传感器104中的霍尔元件和第二霍尔传感器107中的霍尔元件的输出端由主机单元30统一管理。故,第一霍尔传感器104中的霍尔元件的输入回路可输入恒定的第一控制电流I1,第二霍尔传感器107中的霍尔元件的输入回路中可输入恒定的第二控制电流I2,第一霍尔传感器104中的霍尔元件的输出回路可输出第一霍尔电压V H1,第二霍尔传感器107中的霍尔元件的输出回路可输出第二霍尔电V H2
基于霍尔效应的工作原理,通入恒定的第一控制电流I1的第一霍尔传感器104中的霍尔元件置于第一霍尔传感器104的磁感应强度B1对应的磁场中,第一霍尔传感器104中的霍尔元件的两个输出端产生电势差V H1,即输出回路可输出第一霍尔电压V H1
通入恒定的第二控制电流I2的第二霍尔传感器107中的霍尔元件置于第二霍尔传感器107的磁感应强度B2对应的磁场中,第二霍尔传感器107中的霍尔元件的两个输出端产生电势差V H2,即输出回路可输出第二霍尔电压V H2
在电芯本体101的内部温度等于或高于第一感温磁体103的居里温度时,基于图6B-图6D实施例的描述,主机单元30的第一端借助第一感温磁体103和第一霍尔传感器104,可确定电芯本体101发生了电芯本体101的内部温度等于或高于第一感温磁体103的居里温度的热异常。
由此,主机单元30的第二端借助第一感温磁体103和第一霍尔传感器104,在检测到第一报警信号发生了电平跳变或幅值变化时,可确定电芯本体101发生了电芯本体101的内部温度等于或高于第一感温磁体103的居里温度的热异常。
在电芯本体101的内部温度等于或高于第二感温磁体106的居里温度时,电芯本体101即将或已经发生热异常,导致第二感温磁体106的磁性减弱或消失,使得第二感温磁体106施加在第二霍尔传感器107上的磁场削弱或消失。因此,第二感温磁体106通过第二感温磁体106的磁性的减弱或消失,可降低第二霍尔传感器107的磁感应强度B2。
随着第二霍尔传感器107的磁感应强度B2的降低,第二霍尔传感器107能够输出幅 值变小的第二霍尔电压V H2
第二霍尔传感器107基于第二霍尔电压V H2与第二门限电压V g2的幅值比较结果,可将第二报警信号的电平进行电平跳变,并可向主机单元30的第二端输出第二报警信号。由此,主机单元30在检测到第二报警信号的电平发生了跳变时,可确定电芯本体101发生热异常。
或者,第二霍尔传感器107基于第二霍尔电压V H2与第二门限电压V g2的幅值比较结果,可将第二报警信号的电压的幅值降低为小于第二门限电压V g2的幅值,并向主机单元30的第二端输出第二报警信号。由此,主机单元30在检测到第二报警信号的电压的幅值降低为小于第二门限电压V g2的幅值时,可确定电芯本体101发生热异常。其中,主机单元30中可存储有第二门限电压V g2。或者,主机单元30可从第二霍尔传感器107或其他元器件接收第二门限电压V g2
由此,主机单元30的第二端借助第二感温磁体106和第二霍尔传感器107,在检测到第二报警信号发生了电平跳变或幅值变化时,可确定电芯本体101发生了电芯本体101的内部温度等于或高于第二感温磁体106的居里温度的热异常。
综上,在第一感温磁体103的居里温度与第二感温磁体106的居里温度不同的情况下,主机单元30通过不同端子,可获知同一电芯本体101发生热异常的程度和温度,使得主机单元30能够准确地及时地对电池100执行不同级别的安全防护,实现了同一电芯本体101的不同级别的温度异常报警。
举例而言,假设第二预设温度大于第一预设温度,第二预设温度等于第二感温磁体106的居里温度,第一预设温度等于第一感温磁体103的居里温度,第一感温磁体103的居里温度为电芯本体101从未发生热异常变为发生热异常时的内部温度,第二感温磁体106的居里温度大于第一感温磁体103的居里温度。
随着电芯本体101的内部温度不断上升,在电芯本体101的内部温度等于第一预设温度时,此时达到第一感温磁体103的居里温度,触发第一感温磁体103的磁性减弱,继而引发第一霍尔传感器104的磁感应强度B1降低,使得第一霍尔传感器104输出低电压的第一霍尔电压V H1,第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可向主机单元30的第一端输出第一报警信号,使得主机单元30能够确定电芯本体101的内部温度等于第一感温磁体103的居里温度,便于执行一级安全防护,如向相关人员预警。从而,实现了电池100的一级报警。
随着电芯本体101的内部温度继续不断上升,当电芯本体101的内部温度等于第二预设温度时,此时达到第二感温磁体106的居里温度,触发第二感温磁体106的磁性消失,继而引发第二霍尔传感器107的磁感应强度B2降低,使得第二霍尔传感器107输出低电压的第二霍尔电压V H2,第二霍尔传感器107基于低电平的第二霍尔电压V H2与第二门限电压V g2的幅值比较结果,可向主机单元30的第二端输出第二报警信号,使得主机单元30能够确定电芯本体101的内部温度等于第二感温磁体106的居里温度,便于执行二级安全防护,如停止电池100的运行。从而,实现了电池100的二级报警。
需要说明的是,针对同一电芯本体101而言,电池100中可布设但不限于布设两组感温磁体和霍尔传感器(如第一感温磁体103和第一霍尔传感器104,以及第二感温磁体106和第二霍尔传感器107),只需保证每组中的感温磁体的居里温度不同即可。
基于上述描述,在电池100对同一电芯本体101布设有多组感温磁体和霍尔传感器时,本申请可采用如增大距离和/或每组间形成磁屏蔽等方式,确保任意一组中的感温磁体不对其他组中的霍尔传感器产生磁干扰。
下面,结合图12A-图12B,详细介绍电池100的具体实现方式。为了便于说明,图12A-图12B中,以第一感温磁体103和第二感温磁体106置于电芯壳体102内,第一霍尔传感器104和第二霍尔传感器107置于电芯壳体102外,且第一感温磁体103和第二感温磁体106均包括南极(S)和北极(N)两个磁极,虚线代表相应的感温磁体产生的磁感线为例进行示意。
请参阅图12A-图12B,图12A-图12B为本申请一实施例提供的一种电池的剖面示意图。
在一些实施例中,如图12A-图12B所示,第一感温磁体103与第二感温磁体106之间的距离大于第一预设距离,且第一霍尔传感器104与第二霍尔传感器107之间的距离大于第二预设距离。其中,本申请对第一预设距离和第二预设距离的具体数值不做限定。
综上,在第一感温磁体103与第二感温磁体106之间的距离大于第一预设距离,且第一霍尔传感器104与第二霍尔传感器107之间的距离大于第二预设距离时,第二霍尔传感器107的磁感应强度B2与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第二感温磁体106的磁性转变无关。由此,确保了第一感温磁体103和第一霍尔传感器104,与第二感温磁体106和第二霍尔传感器107之间形成磁屏蔽。
其中,本申请对第一霍尔传感器104的磁感应强度B1的方向与第二霍尔传感器107的磁感应强度B2的方向不做限定。
例如,图12A中,第一霍尔传感器104的磁感应强度B1的方向,与第二霍尔传感器107的磁感应强度B2的方向可以平行。即,第一感温磁体103在第一霍尔传感器104上施加的磁场的方向,与第二感温磁体106在第二霍尔传感器107上施加的磁场的方向平行。
图12B中,第一霍尔传感器104的磁感应强度B1的方向,与第二霍尔传感器107的磁感应强度B2的方向可以垂直。即,第一感温磁体103在第一霍尔传感器104上施加的磁场的方向,与第二感温磁体106在第二霍尔传感器107上施加的磁场的方向垂直。
需要说明的是,除了图12A-图12B所示的布局之外,本申请也可采用其他布局,只需保证述第一感温磁体103与第二感温磁体106之间的距离,以及第一霍尔传感器104与第二霍尔传感器107之间的距离足够大即可。
在另一些实施例中,考虑到电池100的空间尺寸有限,电池100还可以布设磁屏蔽件,来调整每组中感温磁体在对应的霍尔传感器上施加的磁场的方向,使得第一感温磁体103和第一霍尔传感器104,与第二感温磁体106和第二霍尔传感器107之间形成磁屏蔽。
其中,本申请对磁屏蔽件的如数量、布局、尺寸等参数不做限定。
下面,结合图13A-图13F、图14A-图14B和图15A-图15B,详细介绍电池100的具体实现方式。为了便于说明,图13A-图13F、图14A-图14B和图15A-图15B中,以第一感温磁体103和第二感温磁体106置于电芯壳体102内,第一霍尔传感器104和第二霍尔传感器107置于电芯壳体102外,且第一感温磁体103和第二感温磁体106均包括南极(S)和北极(N)两个磁极,虚线代表相应的感温磁体产生的磁感线为例进行示意。
请参阅图13A-图13F,图13A-图13F为本申请一实施例提供的一种电池的剖面示意图。
本申请中,电池100还可以包括:均具有开口的第一磁屏蔽件108和第二磁屏蔽件109,用于确保第一感温磁体103和第一霍尔传感器104,与第二感温磁体106和第二霍尔传感器107之间形成磁屏蔽。
在磁屏蔽件针对第一感温磁体103和第二感温磁体106进行布设时,如图13A-图13B所示,第一感温磁体103置于第一磁屏蔽件108内,第二感温磁体106置于第二磁屏蔽件109内,第一磁屏蔽件108的开口方向与第二磁屏蔽件109的开口方向相同。
其中,本申请对第一霍尔传感器104的磁感应强度B1的方向与第二霍尔传感器107的磁感应强度B2的方向不做限定。
例如,图13A中,第一霍尔传感器104的磁感应强度B1的方向,与第二霍尔传感器107的磁感应强度B2的方向可以平行。即,第一感温磁体103在第一霍尔传感器104上施加的磁场的方向,与第二感温磁体106在第二霍尔传感器107上施加的磁场的方向平行。
图13B中,第一霍尔传感器104的磁感应强度B1的方向,与第二霍尔传感器107的磁感应强度B2的方向可以垂直。即,第一感温磁体103在第一霍尔传感器104上施加的磁场的方向,与第二感温磁体106在第二霍尔传感器107上施加的磁场的方向垂直。
综上,基于第一磁屏蔽件108和第二磁屏蔽件109的设置,确保了第一感温磁体103和第二感温磁体106均变为产生磁场的方向相同的定向磁体。从而,第二霍尔传感器107的磁感应强度B2与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第二感温磁体106的磁性转变无关。
在磁屏蔽件针对第一感温磁体103和第一霍尔传感器104进行布设时,如图13C-图13D所示,第一感温磁体103置于第一磁屏蔽件108内,第一霍尔传感器104置于第二磁屏蔽件109内,第一磁屏蔽件108的开口与第二磁屏蔽件109的开口相对设置。
其中,本申请对第一霍尔传感器104的磁感应强度B1的方向与第二霍尔传感器107的磁感应强度B2的方向不做限定。
例如,在第二霍尔传感器107的磁感应强度B2的方向不变时,图13C中第一霍尔传感器104的磁感应强度B1的方向,与图13D中第一霍尔传感器104的磁感应强度B1的方向可以不同。
综上,基于第一磁屏蔽件108和第二磁屏蔽件109的设置,确保了第一感温磁体103在第一霍尔传感器104上施加定向的磁场,第一霍尔传感器104不会受到第二感温磁体106的磁干扰,第一感温磁体103不会在第二霍尔传感器107上施加磁场。从而,第二霍尔传感器107的磁感应强度B2与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第二感温磁体106的磁性转变无关。
在磁屏蔽件针对第二感温磁体106和第二霍尔传感器107进行布设时,如图13E-图13F所示,第二感温磁体106置于第一磁屏蔽件108内,第二霍尔传感器107置于第二磁屏蔽件109内,第一磁屏蔽件108的开口与第二磁屏蔽件109的开口相对设置。
其中,本申请对第一霍尔传感器104的磁感应强度B1的方向与第二霍尔传感器107的磁感应强度B2的方向不做限定。
例如,在第一霍尔传感器104的磁感应强度B1的方向不变时,图13E中第二霍尔传感器107的磁感应强度B2的方向,与图13F中第二霍尔传感器107的磁感应强度B2的方向可以不同。
综上,基于第一磁屏蔽件108和第二磁屏蔽件109的设置,确保了第二感温磁体106在第二霍尔传感器107上施加定向的磁场,第二霍尔传感器107不会受到第一感温磁体103的磁干扰,第二感温磁体106不会在第一霍尔传感器104上施加磁场。从而,第二霍尔传感器107的磁感应强度B2与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第二感温磁体106的磁性转变无关。
请参阅图14A-图14B,图14A-图14B为本申请一实施例提供的一种电池的剖面示意图。
本申请中,电池100还可以包括:均具有开口的第三磁屏蔽件110、第四磁屏蔽件111和第五磁屏蔽件112,用于确保第一感温磁体103和第一霍尔传感器104,与第二感温磁体106和第二霍尔传感器107之间形成磁屏蔽。
如图14A所示,第一感温磁体103置于第三磁屏蔽件110内,第一霍尔传感器104置于第四磁屏蔽件111内,第二感温磁体106置于第五磁屏蔽件112内,第三磁屏蔽件110的开口方向与第四磁屏蔽件111的开口相对设置,第三磁屏蔽件110的开口与第五磁屏蔽件112的开口方向相同。
如图14B所示,第二感温磁体106置于第三磁屏蔽件110内,第二霍尔传感器107置于第四磁屏蔽件111内,第一感温磁体103置于第五磁屏蔽件112内,第三磁屏蔽件110的开口方向与第四磁屏蔽件111的开口相对设置,第三磁屏蔽件110的开口与第五磁屏蔽件112的开口方向相同。
综上,基于第三磁屏蔽件110、第四磁屏蔽件111和第五磁屏蔽件112的设置,进一步地磁屏蔽了第一感温磁体103对第二霍尔传感器107的磁干扰以及第二感温磁体106对第一霍尔传感器104的磁干扰。
请参阅图15A-图15B,图15A-图15B为本申请一实施例提供的一种电池的剖面示意图。
本申请中,电池100还可以包括:均具有开口的第六磁屏蔽件113、第七磁屏蔽件114、第八磁屏蔽件115和第九磁屏蔽件116,用于确保第一感温磁体103和第一霍尔传感器104,与第二感温磁体106和第二霍尔传感器107之间形成磁屏蔽。
在磁屏蔽件针对第一感温磁体103、第一霍尔传感器104、第二感温磁体106和第二霍尔传感器107进行布设时,如图15A-图15B所示,第一感温磁体103置于第六磁屏蔽件113内,第一霍尔传感器104置于第七磁屏蔽件114内,第六磁屏蔽件113的开口与第七磁屏蔽件114的开口相对设置,第二感温磁体106置于第八磁屏蔽件115内,第二霍尔传感器107置于第九磁屏蔽件116内,第八磁屏蔽件115的开口与第九磁屏蔽件116的开口相对设置。
其中,本申请对第一霍尔传感器104的磁感应强度B1的方向与第二霍尔传感器107的磁感应强度B2的方向不做限定。
例如,在第一霍尔传感器104的磁感应强度B1的方向不变时,图15A中第二霍尔传感器107的磁感应强度B2的方向,与图15B中第二霍尔传感器107的磁感应强度B2的方向可以不同。
综上,基于第六磁屏蔽件113、第七磁屏蔽件114、第八磁屏蔽件115和第九磁屏蔽件116的设置,分别将第一感温磁体103和第一霍尔传感器104作为一个整体,以及将第 二感温磁体106和第二霍尔传感器107作为一个整体,使得两个整体之间可实现磁屏蔽。从而,第二霍尔传感器107的磁感应强度B2与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第二感温磁体106的磁性转变无关。
基于上述实施例的描述,电池100还可在不同检测位置实现对电芯本体101发生热异常的多点报警。
请参阅图16A,图16A为本申请一实施例提供的一种电池系统的部分结构示意图。为了便于说明,图16A中,电池100的数量M以等于1为例进行示意。
本申请中,第一感温磁体103在不同位置上产生的磁场大小不同,以及主机单元30的端子数量受限,如果霍尔传感器的数量较少或者位置较偏,容易影响对电芯本体101发生热异常进行报警的响应速度。
基于上述描述,如图16A所示,除了电芯本体101、电芯壳体102、第一感温磁体103和第一霍尔传感器104之外,电池100还可以包括:第三感温磁体117、第三霍尔传感器118和与门电路119。
第三感温磁体117产生的磁感线能够穿过电芯壳体102,使得第三感温磁体117能够在第三霍尔传感器118上施加磁场,以便产生第三霍尔传感器118的磁感应强度B3,具体实现方式可参见图3A-图3B中提及的磁感应强度B的描述。
第三霍尔传感器118置于容纳腔外,由此,电芯壳体102的设置可分离出第三霍尔传感器118,便于第三霍尔传感器118分别电连接主机单元30和供电单元20,无需第三霍尔传感器118穿透电芯壳体102,不会破坏电芯壳体102的结构,确保电芯本体101的长期使用,有利于提升电芯本体101的可靠性和安全性。
第三霍尔传感器118的第一端VCC3与供电单元20电连接,使得第三霍尔传感器118能够从供电单元20获取到第三霍尔传感器118所需的供电电源,以便提供恒定的第三控制电流I3(或第三控制电压),其具体实现方式可参见图3A-图3B中提及的恒定的控制电流I(或控制电压)的描述,使得第三霍尔传感器118能够产生霍尔效应。
另外,第三控制电流I3的幅值大小取决于第三霍尔传感器118中的霍尔元件的等效电阻。可见,在第一霍尔传感器104和第三霍尔传感器118中选用相同等效电阻的霍尔元件时,第三控制电流I3与第一控制电流I1的幅值大小相等。在第一霍尔传感器104和第三霍尔传感器118中选用不同等效电阻的霍尔元件时,第三控制电流I3与第一控制电流I1的幅值大小不等。并且,本申请不限定第一霍尔传感器104和第三霍尔传感器118中是否选用不同等效电阻的霍尔元件,本申请也不限定第三控制电流I3与第一控制电流I1的幅值大小是否相等。
并且,供电单元20的第二端(图16A中采用供电单元20的2号端子进行示意)与主机单元30的电源端VCC0电连接,使得供电单元20能够向主机单元30供电。
第一霍尔传感器104的第二端OUT1与与门电路119的第一端(图16A中采用与门电路119的1号端子进行示意)电连接,第三霍尔传感器118的第二端OUT3与与门电路119的第二端(图16A中采用与门电路119的2号端子进行示意)电连接,与门电路119的第三端(图16A中采用与门电路119的3号端子进行示意)与主机单元30的第一端(图16A中采用主机单元30的1号端子进行示意)电连接。
可见,第三霍尔传感器118与第一霍尔传感器104通过与门电路119,能够与主机单 元30的同一端子电连接,使得第一霍尔传感器104可向主机单元30的第一端传输第一报警信号,与此同时,第三霍尔传感器118可向主机单元30的第一端传输第三报警信号。
其中,第一报警信号和第三报警信号的具体实现方式可参见前文提及的电平跳变的报警信号的描述。并且,第三报警信号可基于第三霍尔电压V H2和第三门限电压V g3进行确定,前述第三霍尔电压V H3是在供电单元20向第三霍尔传感器118供电的情况下,第三霍尔传感器118在第三霍尔传感器118的磁感应强度B3的作用下所输出的,前述第三门限电压V g3的幅值是基于第三感温磁体117的居里温度确定的。另外,前述第三霍尔电压V H3的具体实现方式可参见前文提及的霍尔电压V H的描述,前述第三门限电压V g3的具体实现方式可参见前文提及的门限电压V g的描述。
其中,第三报警信号与第一报警信号的含义不同,第三报警信号用于主机单元30确定电芯本体101在第二检测位置处发生第一等级的热异常,第一报警信号用于主机单元30确定电芯本体101在第一检测位置处发生第一等级的热异常。
其中,第三霍尔传感器118可采用如焊接、镶嵌或胶黏等方式固设在电池100中,可确保第三霍尔传感器118不会随着电池100的晃动而发生移动。另外,第三霍尔传感器118也可借助主机单元30和/或供电单元20在电池100中固定设置。
其中,第三霍尔传感器118的具体实现方式可参见图10A中的第一霍尔传感器104的描述,此处不做赘述。
第三感温磁体117可置于容纳腔内,使得第三感温磁体117能够更靠近电芯本体101,便于第三感温磁体117更加准确地检测电芯本体101在发生热异常时的内部温度,也使得电芯壳体102将第三感温磁体117和第三霍尔传感器118分离开来。
或者,第三感温磁体117可置于容纳腔外,可充分考虑电芯本体101的内部空间有限的问题。
其中,本申请对第三感温磁体117的具体位置不做限定,可参见前文提及的第一感温磁体103的描述。另外,第三感温磁体117可采用如焊接、镶嵌或胶黏等方式固设在电池100中,可确保第三感温磁体117不会随着电池100的晃动而发生移动。
基于上述描述,结合图16B,详细介绍本申请的电池热异常报警方法的具体实现方式。
请参阅图16B,图16B为本申请一实施例提供的一种电池热异常报警方法的流程示意图。
如图16B所示,本申请的电池热异常报警方法可以包括:
S301、第一感温磁体感测电芯本体内部在第一检测位置处的温度。
S302、第一霍尔传感器检测第一感温磁体的磁性,根据第一感温磁体的磁性变化向与门电路传输第一报警信号。
S303、第三感温磁体感测电芯本体内部在第二检测位置处的温度;其中,在电芯本体的内部温度等于或高于第三感温磁体的居里温度时,第三感温磁体的磁性减弱或消失;第三感温磁体的居里温度与电芯本体的热失控临界温度相匹配,第三感温磁体的居里温度与第一感温磁体的居里温度相同,第二检测位置与第一检测位置不同。
S304、第三霍尔传感器检测第三感温磁体的磁性,根据第三感温磁体的磁性变化向与门电路传输第三报警信号。
S305、与门电路在接收到第一报警信号后,向主机单元传输第一报警信号,以使主机 单元在检测到第一报警信号的电平发生了跳变时,确定电芯本体在第一检测位置处发生第一等级的热异常;和/或,在接收到第三报警信号后,向主机单元传输第三报警信号,以使主机单元在检测到第三报警信号的电平发生了跳变时,确定电芯本体在第二检测位置处发生第一等级的热异常。
第三感温磁体117的居里温度的选型规格是基于电芯本体101的热失控临界温度T NR进行选择的,使得电芯本体101的温度变化可引发第三感温磁体117的磁性转变。也就是说,在电芯本体101未发生热异常时,第三感温磁体117具有较强的磁性。在电芯本体101发生热异常时,第三感温磁体117的磁性可从强变弱或从有变无,具体实现方式参见图2中的描述,此处不做赘述。
另外,前述提及的第一预设温度与第三感温磁体117的居里温度相关,可作为第三感温磁体117的磁性发生转变的温度,以便及时识别出电子本体101的内部温度发生热异常。
并且,第三感温磁体117的居里温度与第一感温磁体103的居里温度相同,第一感温磁体103可感测电芯本体101内部在第一检测位置处的温度,第三感温磁体117可感测电芯本体101内部在第二检测位置处的温度,且第一检测位置与第二检测位置不同。其中,本申请对第一检测位置与第二检测位置不做限定。
从而,在电芯本体101发生热异常时,第一感温磁体103和第三感温磁体117可表征电芯本体101位于不同的检测位置处的内部温度,有利于消除不同检测位置对电芯本体101发生热异常进行报警速度的影响,还可在电芯本体101发生点状的热异常时实现快速报警。
第三感温磁体117和第三霍尔传感器118可分离或集成设置在电池100中,且第三感温磁体117可向第三霍尔传感器118提供第三霍尔传感器118的磁感应强度B3,使得第三霍尔传感器118能够产生霍尔效应。
其中,第三感温磁体117和第三霍尔传感器118在电池100中的布局可参见图7A-图7D、图8A-图8D和图9A-图9B中第一感温磁体103和第一霍尔传感器104在电池100中的布局的描述此处不做赘述。
并且,第三霍尔传感器118的磁感应强度B3与第一感温磁体103的磁性转变无关,且第一霍尔传感器104的磁感应强度B1与第三感温磁体117的磁性转变无关。也就是说,第一感温磁体103和第一霍尔传感器104,与第三感温磁体117和第三霍尔传感器118之间形成磁屏蔽,第三感温磁体117的磁性不可引发第一霍尔传感器104的磁感应强度B1的变化,第一感温磁体103的磁性不可引发第三霍尔传感器118的磁感应强度B2的变化。一般情况下,第一检测位置与第二检测位置之间的距离通常较大。
基于上述描述,第三感温磁体117和第三霍尔传感器118的组合可实现电池100的温度报警功能,具体工作原理可参见图5所示的描述,此处不做赘述。
基于图3A-图3B以及图16A-图16B实施例的描述,结合图16C,详细介绍第一霍尔传感器104和第三霍尔传感器118的工作原理。
请参阅图16C,图16C为本申请一实施例提供的一种第一霍尔传感器和第三霍尔传感器的工作原理的示意图。
如图16C所示,第一霍尔传感器104中的霍尔元件(图16C中分别采用字母H1进行示意)包括四个端子(图16C中分别采用数字1、2、3和4进行示意)。其中,1号端子和2号端子是第一霍尔传感器104中的霍尔元件的两个输入端,3号端子和4号端子是第 一霍尔传感器104中的霍尔元件的两个输出端。从而,第一霍尔传感器104中的霍尔元件的两个输入端构成输入回路,第一霍尔传感器104中的霍尔元件的两个输出端构成输出回路。
第三霍尔传感器118中的霍尔元件(图16C中分别采用字母H3进行示意)包括四个端子(图16C中分别采用数字1、2、7和8进行示意)。其中,1号端子和2号端子是第三霍尔传感器118中的霍尔元件的两个输入端,7号端子和8号端子是第三霍尔传感器118中的霍尔元件的两个输出端。从而,第三霍尔传感器118中的霍尔元件的两个输入端构成输入回路,第三霍尔传感器118中的霍尔元件的两个输出端构成输出回路。
其中,第一霍尔传感器104中的霍尔元件和第三霍尔传感器118中的霍尔元件的输入端并联电连接,第一霍尔传感器104中的霍尔元件和第三霍尔传感器118中的霍尔元件的输出端均电连接主机单元30的同一端子,且第一霍尔传感器104中的霍尔元件和第三霍尔传感器118中的霍尔元件的输出端由主机单元30统一管理。故,第一霍尔传感器104中的霍尔元件的输入回路可输入恒定的第一控制电流I1,第三霍尔传感器118中的霍尔元件的输入回路中可输入恒定的第三控制电流I3,第一霍尔传感器104中的霍尔元件的输出回路可输出第一霍尔电压V H1,第三霍尔传感器118中的霍尔元件的输出回路可输出第三霍尔电压V H3
基于霍尔效应的工作原理,通入恒定的第一控制电流I1的第一霍尔传感器104中的霍尔元件置于第一霍尔传感器104的磁感应强度B1对应的磁场中,第一霍尔传感器104中的霍尔元件的两个输出端产生电势差V H1,即输出回路可输出第一霍尔电压V H1
通入恒定的第三控制电流I3的第三霍尔传感器118中的霍尔元件置于第三霍尔传感器118的磁感应强度B3对应的磁场中,第三霍尔传感器118中的霍尔元件的两个输出端产生电势差V H3,即输出回路可输出第三霍尔电压V H3
在电芯本体101位于第一检测位置处的内部温度等于或高于第一感温磁体103的居里温度时,电芯本体101即将或已经发生热异常,导致第一感温磁体103的磁性减弱或消失,使得第一感温磁体103施加在第一霍尔传感器104上的磁场削弱或消失。因此,第一感温磁体103通过第一感温磁体103的磁性的减弱或消失,可降低第一霍尔传感器104的磁感应强度B1。
随着第一霍尔传感器104的磁感应强度B1的降低,第一霍尔传感器104能够输出幅值变小的第一霍尔电压V H1。从而,第一霍尔传感器104基于第一霍尔电压V H1与第一门限电压V g1的幅值比较结果,可向与门电路119传输电平跳变的第一报警信号。与门电路119在检测到第一报警信号后,可向主机单元30的第一端传输第一报警信号。
从而,主机单元30在检测到第一报警信号的电平发生了跳变时,可确定电芯本体101在第一检测位置处发生第一等级的热异常。
在电芯本体101位于第二检测位置处的内部温度等于或高于第三感温磁体117的居里温度时,电芯本体101即将或已经发生热异常,导致第三感温磁体117的磁性减弱或消失,使得第三感温磁体117施加在第三霍尔传感器118上的磁场削弱或消失。因此,第三感温磁体117通过第三感温磁体117的磁性的减弱或消失,可降低第三霍尔传感器118的磁感应强度B3。
随着第三霍尔传感器118的磁感应强度B3的降低,第三霍尔传感器118能够输出幅 值变小的第三霍尔电压V H3。从而,第三霍尔传感器118基于第三霍尔电压V H3与第三门限电压V g3的幅值比较结果,可向与门电路119传输电平跳变的第三报警信号。与门电路119在检测到第三报警信号后,可向主机单元30的第一端传输第三报警信号。
从而,主机单元30在检测到第三报警信号的电平发生了跳变时,可确定电芯本体101在第二检测位置处发生第一等级的热异常。
综上,本申请可针对电芯本体101容易发生热异常的多个检测位置,基于第一感温磁体103、第一霍尔传感器104、第三感温磁体117、第三霍尔传感器118和与门电路119的设置,消除了检测位置数量少或位置较偏对电芯本体101发生热异常进行报警的响应速度的影响,解决了主机单元30的端子数量受限的问题,能够在同一电芯本体101的多个检测位置对该电芯本体101的温度状态进行并行监控,可对电芯本体101发生热异常进行多点报警,提高了对电芯本体101发生热异常进行报警的响应速度,有利于提升检测的灵敏度和可靠性。
基于上述描述,本申请的与门电路119可包括多种实现方式,如采用集成芯片或者多个元器件组成的电路。
下面,结合图16D,详细介绍与门电路119的具体实现方式。
请参阅图16D,图16D为本申请一实施例提供的一种与门电路的结构示意图。为了便于说明,图16D中,电池100的数量M以等于1为例,第一霍尔传感器104和第三霍尔传感器118均以图10A中所示的结构为例进行示意,且供电单元20与主机单元30之间的电连接未进行示意。
如图16D所示,与门电路119可以包括:第一二极管VD1、第二二极管VD2、第一电阻R1和第二电阻R2。
其中,第一二极管VD1的负极与第一霍尔传感器104的第二端OUT1电连接,第二二极管VD2的负极与第三霍尔传感器118的第二端OUT3电连接,第一二极管VD1的正极、第二二极管VD2的正极、第一电阻R1的第一端和第二电阻R2的第一端均与主机单元30的第一端(图16D中采用主机单元30的1号端子进行示意)电连接,第一电阻R1的第二端用于输入预设电压VDD,第二电阻R2的第二端接地。
举例而言,假设第一预设温度等于第一感温磁体103的居里温度,第一感温磁体103的居里温度为电芯本体101从未发生热异常变为发生热异常时的内部温度。
在电芯本体101的内部温度小于第一预设温度时,第一霍尔传感器104中,霍尔元件可输出高电压的第一霍尔电压V H1。由于第一霍尔电压V H1的幅值大于第一门限电压V g1的幅值。因此,比较器1043可输出高电平的第一报警信号Vo1,即第一霍尔传感器104的第二端OUT1可输出高电平的第一报警信号Vo1,高电平的第一报警信号Vo1经过第一二极管VD1仍为高电平的第一报警信号。
并且,第三霍尔传感器118中,霍尔元件可输出高电压的第三霍尔电压V H3。由于第三霍尔电压V H3的幅值大于第三门限电压V g3的幅值。因此,比较器1043可输出高电平的第三报警信号Vo2,即第三霍尔传感器118的第二端OUT3可输出高电平的第三报警信号Vo2,高电平的第三报警信号Vo2经过第二二极管VD2仍为高电平的第三报警信号。
从而,第一二极管VD1可输出高电平的第一报警信号,第二二极管VD2可输出高电平的第三报警信号,使得主机单元30的第一端可接收到的第一报警信号或第三报警信号 均为高电平。
在电芯本体101的内部温度等于或高于第一预设温度时,第一霍尔传感器104中,霍尔元件可输出低电压的第一霍尔电压V H1。由于第一霍尔电压V H1的幅值降低为小于第一门限电压V g1的幅值。因此,比较器1043可输出低电平的第一报警信号Vo1,即第一霍尔传感器104的第二端OUT1可输出低电平的第一报警信号Vo1,低电平的第一报警信号Vo1经过第一二极管VD1变为低电平的第一报警信号。
并且,由于第三霍尔传感器118的检测位置与第一霍尔传感器104的检测位置不同。因此,第三霍尔传感器118的第二端OUT3会继续输出高电平的第三报警信号Vo2,高电平的第三报警信号Vo2经过第二二极管VD2仍为高电平的第三报警信号。
从而,第一二极管VD1输出低电平的第一报警信号,第二二极管VD2输出高电平的第三报警信号,使得主机单元30的第一端可接收到低电平的第一报警信号。由此,主机单元30可检测到第一报警信号的电平发生了跳变,便于实现温度报警功能。
需要说明的是,除了二极管和电阻元件搭建的与门电路119之外,与门电路119还可采用其他实现方式,本申请对此不做限定。
除了上述图16A-图16D的实现方式之外,针对同一电芯本体101的不同检测位置布局多个感温磁体,且多个感温磁体与第一霍尔传感器104中的多个霍尔元件分别对应,并借助霍尔传感器中的一个放大器与主机单元30的一个端子的电连接,使得主机单元30通过前述的一个端子,可实现对同一电芯本体101发生热异常的多点报警,还可减少放大器的数量以及节省器件连接的成本。
其中,每个霍尔元件对应一个感温磁体,对应的多个感温磁体用于感测同一电芯本体101不同的检测位置,其具体实现方式可参见前述提及的检测位置的描述,可消除检测位置对电芯本体101发生热异常进行报警速度的影响,还可在电芯本体101发生点状的热异常时实现快速报警。
其中,每个霍尔元件的第一端为第一霍尔传感器104的第一端VCC1,每个霍尔元件的第一端用于与供电单元20电连接,多个霍尔元件串联电连接,串联后的多个霍尔元件分别在首尾的两个端子分别与放大器的第一端和第二端电连接,放大器的第三端为第一霍尔传感器104的第二端OUT1,放大器的第三端用于与主机单元30的第一端电连接。
其中,本申请对第一霍尔传感器104中的霍尔元件的数量和选材等参数不做限定。
下面,结合图17A-图17B,详细介绍第一霍尔传感器104的具体实现方式。为了便于说明,图17A-图17B中,第一霍尔传感器104以两个霍尔元件为例进行示意。
请参阅图17A,图17A为本申请一实施例提供的一种第一霍尔传感器的结构示意图。
如图17A所示,第一霍尔传感器104中可包括:放大器1045、霍尔元件1041和霍尔元件1044。
霍尔元件1041的第一端(图17A中采用霍尔元件1041的1号端子进行示意)为第一霍尔传感器104的第一端VCC1,霍尔元件1041的第一端与供电单元20电连接,使得霍尔元件1041能够从供电单元20获取到霍尔元件1041所需的供电电源,以便提供恒定的第一控制电流I1(或第一控制电压)。并且,与霍尔元件1041对应的第一感温磁体103可向霍尔元件1041提供第一霍尔传感器104的磁感应强度B1。由此,霍尔元件1041可产生霍尔效应,使得霍尔元件1041能够检测第一感温磁体103的磁性。
霍尔元件1044的第一端(图17A中采用霍尔元件1044的1号端子进行示意)为第一霍尔传感器104的第一端VCC1,霍尔元件1044的第一端与供电单元20电连接,使得霍尔元件1044能够从供电单元20获取到霍尔元件1044所需的供电电源,以便提供恒定的第一控制电流I4(或第四控制电压)。并且,与霍尔元件1044对应的感温磁体可向霍尔元件1044提供第一霍尔传感器104的磁感应强度B4。由此,霍尔元件1044可产生霍尔效应,使得霍尔元件1044能够检测与霍尔元件1044对应的感温磁体的磁性。
霍尔元件1041的第二端(图17A中采用霍尔元件1041的3号端子进行示意)与霍尔元件1044的第三端(图17A中采用霍尔元件1044的10号端子进行示意)串联电连接。
霍尔元件1044的第二端(图17A中采用霍尔元件1044的9号端子进行示意)与放大器1045的第一端(图17A中采用放大器1045的1号端子进行示意)电连接,霍尔元件1041的第三端(图17A中采用霍尔元件1041的4号端子进行示意)与放大器1045的第二端(图17A中采用放大器1045的2号端子进行示意)电连接。
其中,霍尔元件1044的第二端和霍尔元件1041的第三端分别为串联后的霍尔元件1044和霍尔元件1041分别在首尾的两个端子。放大器1045的第三端(图17A中采用放大器1045的5号端子进行示意)为第一霍尔传感器104的第二端OUT1,放大器1045的第三端与主机单元30的第一端(图17A中采用主机单元30的1号端子进行示意)电连接。
另外,图17A中,放大器1045的电源端表示为放大器1045的3号端子,霍尔元件1041的接地端表示为霍尔元件1041的2号端子,霍尔元件1044的接地端表示为霍尔元件1044的2号端子,放大器1045的接地端表示为放大器1045的4号端子。需要说明的是,放大器1045、霍尔元件1041和霍尔元件1044共地。
其中,第一感温磁体103和与霍尔元件1044对应的感温磁体分别感测电芯本体101内部在不同的检测位置处的温度。为了便于说明,本申请采用前述提及的第一检测位置和第二检测位置进行举例说明。
从而,在电芯本体101发生热异常时,霍尔元件1041和霍尔元件1044可表征电芯本体101位于不同的检测位置处的内部温度,有利于消除不同检测位置对电芯本体101发生热异常进行报警速度的影响,还可在电芯本体101发生点状的热异常时实现快速报警。
基于上述描述,结合图17B,详细介绍第一霍尔传感器104中的霍尔元件1041和霍尔元件1044的工作原理。
请参阅图17B,图17B为本申请一实施例提供的一种第一霍尔传感器的工作原理的示意图。
如图17B所示,霍尔元件1041(图17B中分别采用字母H1进行示意)包括四个端子(图17B中分别采用数字1、2、3和4进行示意)。霍尔元件1044(图17B中分别采用字母H4进行示意)均包括四个端子(图17B中分别采用数字1、2、9和10进行示意)。
其中,1号端子和2号端子分别是霍尔元件1041和霍尔元件1044的两个输入端,3号端子和4号端子是霍尔元件1041的两个输出端,9号端子和10号端子是霍尔元件1044的两个输出端,3号端子和10号端子串联电连接。从而,霍尔元件1041的两个输入端构成输入回路,霍尔元件1044的两个输入端构成输入回路,霍尔元件1041和霍尔元件1044的四个输出端构成输出回路。
可见,霍尔元件1041和霍尔元件1044的输入端并联电连接,霍尔元件1041和霍尔 元件1044各自的一个输出端串联电连接,霍尔元件1041和霍尔元件1044各自的另一个输出端通过放大器1045电连接主机单元30。故,霍尔元件1041的输入回路可输入恒定的第一控制电流I1,霍尔元件1044的输入回路中可输入恒定的第三控制电流I4,霍尔元件1041和霍尔元件1044的输出回路可输出第一霍尔电压V H1与第四霍尔电压V H4的幅值和值。
其中,第一霍尔电压V H1与第四霍尔电压V H4的幅值和值,即为第一霍尔电压V H1的幅值与第四霍尔电压V H4的幅值之和。
基于霍尔效应的工作原理,通入恒定的第一控制电流I1的霍尔元件1041置于第一霍尔传感器104的磁感应强度B1对应的磁场中,霍尔元件1041的两个输出端产生电势差V H1
通入恒定的第一控制电流I4的霍尔元件1044置于第一霍尔传感器104的磁感应强度B4对应的磁场中,霍尔元件1044的两个输出端产生电势差V H4
从而,霍尔元件1041和霍尔元件1044的输出回路可向放大器1045输出第一霍尔电压V H1与第四霍尔电压V H4的幅值和值。
在电芯本体101位于第一检测位置处的内部温度等于或高于第一感温磁体103的居里温度时,电芯本体101即将或已经发生热异常,导致第一感温磁体103的磁性减弱或消失,使得第一感温磁体103施加在霍尔元件1041上的磁场削弱或消失。因此,第一感温磁体103通过第一感温磁体103的磁性的减弱或消失,可降低第一霍尔传感器104的磁感应强度B1。随着第一霍尔传感器104的磁感应强度B1的降低,霍尔元件1041能够输出幅值变小的第一霍尔电压V H1
在电芯本体101位于第二检测位置处的内部温度等于或高于第一感温磁体103的居里温度时,电芯本体101即将或已经发生热异常,导致与霍尔元件1044对应的感温磁体的磁性减弱或消失,使得与霍尔元件1044对应的感温磁体施加在霍尔元件1044上的磁场削弱或消失。因此,与霍尔元件1044对应的感温磁体通过第与霍尔元件1044对应的感温磁体的磁性的减弱或消失,可降低第一霍尔传感器104的磁感应强度B4。随着第一霍尔传感器104的磁感应强度B1的降低,霍尔元件1044能够输出幅值变小的第四霍尔电压V H4
可见,串联后的霍尔元件1041和霍尔元件1044可向放大器1045输出第一霍尔电压V H1与第四霍尔电压V H4的幅值和值。放大器1045可按照放大器1045的放大比例对第一霍尔电压V H1与第四霍尔电压V H4的幅值和值进行放大处理,得到第一报警信号。其中,本申请对放大器1045的放大比例的具体数值不做限定。由此,提升了检测第一霍尔电压V H1和/或第四霍尔电压V H4的灵敏度和可靠性。
并且,基于图4实施例的描述,以及无论电芯本体101内部在第一检测位置和/或第二检测位置处发生热异常,第一霍尔电压V H1与第四霍尔电压V H4的幅值和值均会减小。因此,在电芯本体101发生热异常时,第一报警信号的电压的幅值降低为小于第一门限电压V g1与第四门限电压V g4的幅值和值。
其中,第一门限电压V g1是电芯本体101在从未发生热异常变为发生热异常时对应的电压,且第一门限电压V g1是基于第一感温磁体103的居里温度和放大器1045的放大比例确定的,第四门限电压V g1是电芯本体101在从未发生热异常变为发生热异常时对应的电压,且第一门限电压V g1是基于与霍尔元件1044对应的感温磁体的居里温度和放大器1045 的放大比例确定的,第一门限电压V g1和第四门限电压V g4具体内容可参见前文的门限电压V g的描述。
放大器1045可向主机单元30的第一端传输第一报警信号,使得主机单元30可比较第一报警信号的电压的幅值与第一门限电压V g1与第四门限电压V g4的幅值和值之间的大小。其中,主机单元30中可存储有第一门限电压V g1与第四门限电压V g4的幅值和值。或者,主机单元30可从放大器1045或其他元器件接收第一门限电压V g1与第四门限电压V g4的幅值和值。
从而,在检测到第一报警信号的电压的幅值降低为小于第一门限电压V g1与第四门限电压V g4的幅值和值时,主机单元30可确定电池100发生热异常。由此,主机单元30基于不同幅值大小的第一报警信号,可获知同一电芯本体是否发生多点热异常。
综上,基于一个霍尔传感器中的多个霍尔元件和一个放大器的设置,采用总压方式,消除了检测位置数量少或位置较偏对电芯本体101发生热异常进行报警的响应速度的影响,解决了主机单元30的端子数量受限的问题,能够在同一电芯本体101的多个检测位置对该电芯本体101的温度状态进行并行监控,可对电芯本体101发生热异常进行准确且及时地多点报警,提高了对电芯本体101发生热异常进行报警的响应速度,有利于提升检测的灵敏度和可靠性,减少了放大器的数量以及节省了器件连接的成本。
最后应说明的是:以上实施例,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种电池,其特征在于,包括:电芯本体、电芯壳体、第一感温磁体和第一霍尔传感器;
    其中,所述电芯壳体采用非磁屏蔽材质,所述电芯壳体具有容纳腔,所述电芯本体置于所述容纳腔内,所述第一霍尔传感器置于所述容纳腔外,所述第一霍尔传感器的第一端用于与供电单元电连接,所述第一霍尔传感器的第二端用于与主机单元的第一端电连接,所述第一感温磁体置于所述容纳腔内或者所述第一感温磁体置于所述容纳腔外;
    所述第一感温磁体,用于感测所述电芯本体内部的温度;其中,在所述电芯本体的内部温度等于或高于所述第一感温磁体的居里温度时,所述第一感温磁体的磁性减弱或消失;所述第一感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配;
    所述第一霍尔传感器,用于检测所述第一感温磁体的磁性,根据所述第一感温磁体的磁性变化输出第一报警信号,以使所述主机单元在检测到所述第一报警信号后确定所述电芯本体发生第一等级的热异常。
  2. 根据权利要求1所述的电池,其特征在于,所述电池还包括:第二感温磁体和第二霍尔传感器;
    其中,所述第二霍尔传感器置于所述容纳腔外,所述第二霍尔传感器的第一端用于与所述供电单元电连接,所述第二霍尔传感器的第二端用于与所述主机单元的第二端电连接,所述主机单元的第二端与所述主机单元的第一端不同,所述第二感温磁体置于所述容纳腔内或者所述第二感温磁体置于所述容纳腔外;
    所述第二感温磁体,用于感测所述电芯本体内部的温度;其中,在所述电芯本体的内部温度等于或高于所述第二感温磁体的居里温度时,所述第二感温磁体的磁性减弱或消失;所述第二感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配,所述第二感温磁体的居里温度与所述第一感温磁体的居里温度不同;
    所述第二霍尔传感器,用于检测所述第二感温磁体的磁性,根据所述第二感温磁体的磁性变化输出第二报警信号,以使所述主机单元在检测到所述第二报警信号后确定所述电芯本体发生第二等级的热异常,所述第一等级与所述第二等级不同。
  3. 根据权利要求2所述的电池,其特征在于,所述第一感温磁体与所述第二感温磁体之间的距离大于第一预设距离,且所述第一霍尔传感器与所述第二霍尔传感器之间的距离大于第二预设距离,以使所述第一感温磁体和所述第一霍尔传感器,与所述第二感温磁体和所述第二霍尔传感器之间形成磁屏蔽。
  4. 根据权利要求2或3所述的电池,其特征在于,所述电池还包括:均具有开口的第一磁屏蔽件和第二磁屏蔽件,用于确保所述第一感温磁体和所述第一霍尔传感器,与所述第二感温磁体和所述第二霍尔传感器之间形成磁屏蔽;
    其中,所述第一感温磁体置于所述第一磁屏蔽件内,所述第二感温磁体置于所述第二磁屏蔽件内,所述第一磁屏蔽件的开口方向与所述第二磁屏蔽件的开口方向相同;
    或者,所述第一感温磁体置于所述第一磁屏蔽件内,所述第一霍尔传感器置于所述第二磁屏蔽件内,所述第一磁屏蔽件的开口与所述第二磁屏蔽件的开口相对设置;
    或者,所述第二感温磁体置于所述第一磁屏蔽件内,所述第二霍尔传感器置于所述第二磁屏蔽件内,所述第一磁屏蔽件的开口与所述第二磁屏蔽件的开口相对设置。
  5. 根据权利要求2或3所述的电池,其特征在于,所述电池还包括:均具有开口的第三磁屏蔽件、第四磁屏蔽件和第五磁屏蔽件,用于确保所述第一感温磁体和所述第一霍尔传感器,与所述第二感温磁体和所述第二霍尔传感器之间形成磁屏蔽;
    其中,所述第一感温磁体置于所述第三磁屏蔽件内,所述第一霍尔传感器置于所述第四磁屏蔽件内,所述第二感温磁体置于所述第五磁屏蔽件内,所述第三磁屏蔽件的开口方向与所述第四磁屏蔽件的开口相对设置,所述第三磁屏蔽件的开口与所述第五磁屏蔽件的开口方向相同;
    或者,所述第二感温磁体置于所述第三磁屏蔽件内,所述第二霍尔传感器置于所述第四磁屏蔽件内,所述第一感温磁体置于所述第五磁屏蔽件内,所述第三磁屏蔽件的开口方向与所述第四磁屏蔽件的开口相对设置,所述第三磁屏蔽件的开口与所述第五磁屏蔽件的开口方向相同。
  6. 根据权利要求2或3所述的电池,其特征在于,所述电池还包括:均具有开口的第六磁屏蔽件、第七磁屏蔽件、第八磁屏蔽件和第九磁屏蔽件,用于确保所述第一感温磁体和所述第一霍尔传感器,与所述第二感温磁体和所述第二霍尔传感器之间形成磁屏蔽;
    其中,所述第一感温磁体置于所述第六磁屏蔽件内,所述第一霍尔传感器置于所述第七磁屏蔽件内,所述第六磁屏蔽件的开口与所述第七磁屏蔽件的开口相对设置,所述第二感温磁体置于所述第八磁屏蔽件内,所述第二霍尔传感器置于所述第九磁屏蔽件内,所述第八磁屏蔽件的开口与所述第九磁屏蔽件的开口相对设置。
  7. 根据权利要求1-6任一项所述的电池,其特征在于,所述电池还包括:第三感温磁体、第三霍尔传感器和与门电路;
    其中,所述第三霍尔传感器置于所述容纳腔外,所述第三霍尔传感器的第一端用于与所述供电单元电连接,所述第一霍尔传感器的第二端与所述与门电路的第一端电连接,所述第三霍尔传感器的第二端与所述与门电路的第二端电连接,所述与门电路的第三端用于与所述主机单元的第一端电连接,所述第三感温磁体置于所述容纳腔内或者所述第三感温磁体置于所述容纳腔外;
    所述第一感温磁体,具体用于感测所述电芯本体内部在第一检测位置处的温度;
    所述第一霍尔传感器,具体用于检测所述第一感温磁体的磁性,根据所述第一感温磁体的磁性变化向所述与门电路传输所述第一报警信号;
    所述第三感温磁体,用于感测所述电芯本体内部在第二检测位置处的温度;其中,在所述电芯本体的内部温度等于或高于所述第三感温磁体的居里温度时,所述第三感温磁体的磁性减弱或消失;所述第三感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配,所述第二检测位置与所述第一检测位置不同;
    所述第三霍尔传感器,用于检测所述第三感温磁体的磁性,根据所述第三感温磁体的磁性变化向所述与门电路传输第三报警信号;
    所述与门电路,用于在接收到所述第一报警信号后,向所述主机单元传输所述第一报警信号,以使所述主机单元在检测到所述第一报警信号的电平发生了跳变时,确定所述电芯本体在所述第一检测位置处发生所述第一等级的热异常;或者,在接收到所述第三报警信号后,向所述主机单元传输所述第三报警信号,以使所述主机单元在检测到所述第三报警信号的电平发生了跳变时,确定所述电芯本体在所述第二检测位置处发生所述第一等级的热异常。
  8. 根据权利要求7所述的电池,其特征在于,所述与门电路包括:第一二极管、第二二极管、第一电阻和第二电阻;
    其中,所述第一二极管的负极与所述第一霍尔传感器的第二端电连接,所述第二二极管的负极与所述第三霍尔传感器的第二端电连接,所述第一二极管的正极、所述第二二极管的正极、所述第一电阻的第一端和所述第二电阻的第一端均用于与所述主机单元的第一端电连接,所述第一电阻的第二端用于输入预设电压,所述第二电阻的第二端接地。
  9. 根据权利要求1-8任一项所述的电池,其特征在于,所述第一报警信号为电平发生了跳变的数字信号。
  10. 根据权利要求9所述的电池,其特征在于,所述第一霍尔传感器包括:霍尔元件、放大器和比较器;
    其中,所述霍尔元件的第一端为所述第一霍尔传感器的第一端,所述霍尔元件的第一端用于与所述供电单元电连接,所述霍尔元件的第二端与所述放大器的第一端电连接,所述放大器的第二端与所述比较器的第一端电连接,所述比较器的第二端用于输入门限电压,所述门限电压是基于所述第一感温磁体的居里温度和所述放大器的放大比例确定的,所述比较器的第三端为所述第一霍尔传感器的第二端,所述比较器的第三端用于与所述主机单元的第一端电连接;
    所述霍尔元件,用于检测所述第一感温磁体的磁性,并在所述第一感温磁体的磁性减弱或消失后,向所述放大器传输幅值变小的电压;
    所述放大器,用于按照所述放大器的放大比例对所述电压进行放大处理,得到放大结果,并向所述比较器传输所述放大结果;
    所述比较器,用于基于所述门限电压对所述放大结果进行转换处理,得到所述第一报警信号,并输出所述第一报警信号,以使所述主机单元在检测到所述第一报警信号的电平发生了跳变后确定所述电芯本体发生所述第一等级的热异常。
  11. 根据权利要求1-6任一项所述的电池,其特征在于,所述第一报警信号为电压的幅值降低为小于门限电压的幅值的模拟信号,所述门限电压的幅值是基于所述第一感温磁体的居里温度确定的。
  12. 根据权利要求1-6、11任一项所述的电池,其特征在于,所述第一霍尔传感器包括:一个放大器和多个霍尔元件,每个霍尔元件对应一个感温磁体;
    其中,每个霍尔元件的第一端为所述第一霍尔传感器的第一端,每个霍尔元件的第一端用于与所述供电单元电连接,所述多个霍尔元件串联电连接,串联后的所述多个霍尔元 件分别在首尾的两个端子分别与所述放大器的第一端和第二端电连接,所述放大器的第三端为所述第一霍尔传感器的第二端,所述放大器的第三端用于与所述主机单元的第一端电连接;
    每个霍尔元件,用于检测与所述霍尔元件对应的感温磁体的磁性,并在与所述霍尔元件对应的感温磁体的磁性减弱或消失后,向所述放大器传输幅值变小的电压;
    所述放大器,用于按照所述放大器的放大比例对每个霍尔元件传输的所述电压的幅值和值进行放大处理,得到所述第一报警信号,并向所述主机单元传输所述第一报警信号,以使所述主机单元在检测到所述第一报警信号的电压的幅值降低为小于门限电压的幅值时确定所述电芯本体发生所述第一等级的热异常,所述门限电压是基于与每个霍尔元件对应的感温磁体的居里温度以及所述放大器的放大比例确定的。
  13. 根据权利要求1-12任一项所述的电池,其特征在于,
    感温磁体固设在所述电芯壳体的内表面上;
    或者,感温磁体固设在所述电芯本体的电解液中;
    或者,感温磁体固夹在所述电芯本体的裸电芯内部;
    或者,感温磁体固设在所述电芯壳体的外表面上;
    或者,感温磁体固设在所述电芯壳体的外部。
  14. 根据权利要求13所述的电池,其特征在于,在感温磁体固设在所述电芯壳体的外部时,所述电池还包括:导热件,所述导热件固设在所述电芯壳体的外表面上,所述导热件与所述感温磁体表面接触。
  15. 根据权利要求1-14任一项所述的电池,其特征在于,
    霍尔传感器固设在所述电芯壳体的外表面上;
    或者,霍尔传感器固设在所述电芯壳体的外部。
  16. 一种电池模组,其特征在于,包括:M个如权利要求1-15任一项所述的电池,M为正整数。
  17. 一种电池系统,其特征在于,包括:供电单元、主机单元以及如权利要求16所述的电池模组;
    其中,所述供电单元分别与所述主机单元和所述电池模组中的霍尔传感器电连接,所述电池模组中的霍尔传感器还与所述主机单元电连接;
    所述供电单元,用于分别向所述主机单元和所述电池模组中的霍尔传感器供电;
    所述电池模组中的感温磁体,用于感测所述电池模组中的与所述感温磁体对应的电芯本体内部的温度;其中,在所述电芯本体的内部温度等于或高于所述感温磁体的居里温度时,所述感温磁体的磁性减弱或消失;所述感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配;
    所述电池模组中的霍尔传感器,用于检测所述电池模组中的与所述霍尔传感器对应的感温磁体的磁性,根据所述感温磁体的磁性变化输出所述第一报警信号;
    所述主机单元,用于在检测到所述第一报警信号时,确定所述电芯本体发生所述第一等级的热异常。
  18. 一种电池热异常报警方法,其特征在于,应用于电池,所述电池包括:电芯本体、电芯壳体、第一感温磁体和第一霍尔传感器;其中,所述电芯壳体采用非磁屏蔽材质,所述电芯壳体具有容纳腔,所述电芯本体置于所述容纳腔内,所述第一霍尔传感器置于所述容纳腔外,所述第一霍尔传感器的第一端用于与供电单元电连接,所述第一霍尔传感器的第二端用于与主机单元的第一端电连接,所述第一感温磁体置于所述容纳腔内或者所述第一感温磁体置于所述容纳腔外;
    所述方法包括:
    所述第一感温磁体感测所述电芯本体内部的温度;其中,在所述电芯本体的内部温度等于或高于所述第一感温磁体的居里温度时,所述第一感温磁体的磁性减弱或消失;所述第一感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配;
    所述第一霍尔传感器检测所述第一感温磁体的磁性,根据所述第一感温磁体的磁性变化输出第一报警信号,以使所述主机单元在检测到所述第一报警信号后确定所述电芯本体发生第一等级的热异常。
  19. 根据权利要求18所述的方法,其特征在于,所述电池还包括:第二感温磁体和第二霍尔传感器;其中,所述第二霍尔传感器置于所述容纳腔外,所述第二霍尔传感器的第一端用于与所述供电单元电连接,所述第二霍尔传感器的第二端用于与所述主机单元的第二端电连接,所述主机单元的第二端与所述主机单元的第一端不同,所述第二感温磁体置于所述容纳腔内或者所述第二感温磁体置于所述容纳腔外;
    所述方法还包括:
    所述第二感温磁体感测所述电芯本体内部的温度;其中,在所述电芯本体的内部温度等于或高于所述第二感温磁体的居里温度时,所述第二感温磁体的磁性减弱或消失;所述第二感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配,所述第二感温磁体的居里温度与所述第一感温磁体的居里温度不同;
    所述第二霍尔传感器检测所述第二感温磁体的磁性,根据所述第二感温磁体的磁性变化输出第二报警信号,以使所述主机单元在检测到所述第二报警信号后确定所述电芯本体发生第二等级的热异常,所述第一等级与所述第二等级不同。
  20. 根据权利要求18或19所述的方法,其特征在于,所述电池还包括:第三感温磁体、第三霍尔传感器和与门电路;其中,所述第三霍尔传感器置于所述容纳腔外,所述第三霍尔传感器的第一端用于与所述供电单元电连接,所述第一霍尔传感器的第二端与所述与门电路的第一端电连接,所述第三霍尔传感器的第二端与所述与门电路的第二端电连接,所述与门电路的第三端用于与所述主机单元的第一端电连接,所述第三感温磁体置于所述容纳腔内或者所述第三感温磁体置于所述容纳腔外;
    所述方法还包括:
    所述第一感温磁体感测所述电芯本体内部在第一检测位置处的温度;
    所述第一霍尔传感器检测所述第一感温磁体的磁性,根据所述第一感温磁体的磁性变化向所述与门电路传输所述第一报警信号;
    所述第三感温磁体感测所述电芯本体内部在第二检测位置处的温度;其中,在所述电芯本体的内部温度等于或高于所述第三感温磁体的居里温度时,所述第三感温磁体的磁性 减弱或消失;所述第三感温磁体的居里温度与所述电芯本体的热失控临界温度相匹配,所述第二检测位置与所述第一检测位置不同;
    所述第三霍尔传感器检测所述第三感温磁体的磁性,根据所述第三感温磁体的磁性变化向所述与门电路传输第三报警信号;
    所述与门电路在接收到所述第一报警信号后,向所述主机单元传输所述第一报警信号,以使所述主机单元在检测到所述第一报警信号的电平发生了跳变时,确定所述电芯本体在所述第一检测位置处发生所述第一等级的热异常;
    或者,所述与门电路在接收到所述第三报警信号后,向所述主机单元传输所述第三报警信号,以使所述主机单元在检测到所述第三报警信号的电平发生了跳变时,确定所述电芯本体在所述第二检测位置处发生所述第一等级的热异常。
PCT/CN2022/131416 2021-11-12 2022-11-11 电池、电池模组、电池系统和电池热异常报警方法 WO2023083309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111342919.5A CN116130801A (zh) 2021-11-12 2021-11-12 电池、电池模组、电池系统和电池热异常报警方法
CN202111342919.5 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023083309A1 true WO2023083309A1 (zh) 2023-05-19

Family

ID=86303203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131416 WO2023083309A1 (zh) 2021-11-12 2022-11-11 电池、电池模组、电池系统和电池热异常报警方法

Country Status (2)

Country Link
CN (1) CN116130801A (zh)
WO (1) WO2023083309A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638235A (zh) * 2022-08-18 2024-03-01 华为技术有限公司 电芯、电池模组、电池、电子设备、移动装置和储能装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022159A1 (en) * 2012-01-09 2015-01-22 Commissariat à l'énergie atomique et aux énergies alternatives Detection of a malfunction in an electrochemical accumulator
CN104897944A (zh) * 2015-05-21 2015-09-09 浪潮电子信息产业股份有限公司 一种测量50a以上直流电流的方法
CN212006258U (zh) * 2020-01-15 2020-11-24 九阳股份有限公司 一种能够感温排污的电热水器
CN112103576A (zh) * 2020-09-21 2020-12-18 北京理工大学 一种智能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022159A1 (en) * 2012-01-09 2015-01-22 Commissariat à l'énergie atomique et aux énergies alternatives Detection of a malfunction in an electrochemical accumulator
CN104897944A (zh) * 2015-05-21 2015-09-09 浪潮电子信息产业股份有限公司 一种测量50a以上直流电流的方法
CN212006258U (zh) * 2020-01-15 2020-11-24 九阳股份有限公司 一种能够感温排污的电热水器
CN112103576A (zh) * 2020-09-21 2020-12-18 北京理工大学 一种智能电池

Also Published As

Publication number Publication date
CN116130801A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11879946B2 (en) Systems and methods for detecting abnormalities in electrical and electrochemical energy units
US10247783B2 (en) Sensor system for measuring battery internal state
US9874610B2 (en) Battery
US9970993B1 (en) Sensor system for measuring battery internal state
US9614257B2 (en) Secondary battery cell, battery pack, and power consumption device
US11870083B2 (en) Exterior body, abnormality detector, and abnormality detection system
EP2752922B1 (en) Switching board having novel structure and battery module including same
JP2019009133A (ja) 組電池、蓄電装置、蓄電システム、電子機器、電動車両および電力システム
WO2023083309A1 (zh) 电池、电池模组、电池系统和电池热异常报警方法
EP2811311B1 (en) Battery system and charge/discharge measuring apparatus
US20150022159A1 (en) Detection of a malfunction in an electrochemical accumulator
JP6033210B2 (ja) 異状態監視装置、異状態監視システム、異状態監視方法、及びプログラム
WO2024037372A1 (zh) 电芯、电池模组、电池、电子设备、移动装置和储能装置
CN108663140A (zh) 断路器温度采集装置安装结构
CN206947458U (zh) 一种高安全动力锂电池
Keerthana et al. Fault Acknowledgement System for Ups Using IoT
KR20090060023A (ko) 배터리 팩
Zandigohar et al. An Investigation of Temperature Measurement Granularity Towards Improving Li-Ion Battery Management System Design
CN108357391A (zh) 一种基于燃料电池的电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892102

Country of ref document: EP

Kind code of ref document: A1