WO2023083033A1 - 预编码矩阵指示信息的发送方法及设备 - Google Patents

预编码矩阵指示信息的发送方法及设备 Download PDF

Info

Publication number
WO2023083033A1
WO2023083033A1 PCT/CN2022/128554 CN2022128554W WO2023083033A1 WO 2023083033 A1 WO2023083033 A1 WO 2023083033A1 CN 2022128554 W CN2022128554 W CN 2022128554W WO 2023083033 A1 WO2023083033 A1 WO 2023083033A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
antennas
sparse
indication information
sparse array
Prior art date
Application number
PCT/CN2022/128554
Other languages
English (en)
French (fr)
Inventor
楼梦婷
吴丹
金婧
夏亮
王启星
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023083033A1 publication Critical patent/WO2023083033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular to a method and device for sending precoding matrix indication information.
  • antenna precoding schemes include two types: one is a precoding scheme based on channel reciprocity, and the other is a codebook-based precoding scheme.
  • FDD Frequency Division Duplex
  • UE User Equipment
  • the precoding scheme based on channel reciprocity is not ideal for data transmission, so it needs to be considered Codebook-based precoding scheme.
  • the precoding scheme discussed in this paper is a codebook-based precoding scheme to be applied to sparse arrays.
  • the mobile communication system When the mobile communication system adopts sparse arrays and considers the codebook-based precoding scheme, since the related technology only supports the uniform array (fixed array spacing) precoding codebook with a specific number of antennas (the power of 2), it does not Supports precoding codebooks corresponding to sparse arrays (the number of antennas is not necessarily a power of 2, and the array spacing is not fixed), so when the mobile communication system uses sparse arrays for data transmission, the terminal cannot feed back to the base station based on Precoding Matrix Indicator (PMI) information of the sparse array antenna number specification.
  • PMI Precoding Matrix Indicator
  • At least one embodiment of the present disclosure provides a method and device for sending precoding matrix indication information.
  • the base station interacts with the terminal and processes the antenna indication information of the sparse array, so that the sparse array can reuse the codebook in the related art Perform codebook-based transmission.
  • At least one embodiment provides a method for sending precoding matrix indication information, including:
  • the terminal receives the antenna indication information of the sparse array sent by the base station, where the antenna indication information is used to indicate the positions of the antennas in the sparse array relative to the reference uniform array;
  • the terminal performs preprocessing on the first codebook corresponding to the reference uniform array according to the antenna indication information of the sparse array to obtain a second codebook corresponding to the sparse array;
  • the terminal generates precoding matrix indication information according to the second codebook and sends it to the base station.
  • the first codebook corresponding to the reference uniform array is preprocessed to obtain the second codebook corresponding to the sparse array ,include:
  • the generating precoding matrix indication information according to the second codebook includes:
  • the antenna indication information is used to indicate the positions of all antennas in the sparse array relative to the reference uniform array, or to indicate a part of the sparse array The position of the antenna relative to the reference uniform array.
  • the sparse array Antenna indication information for determining the positions of the antennas in the sparse array relative to the reference uniform array including:
  • the terminal determines the total number of antennas in the reference uniform array according to the pre-acquired configuration information of the total number of antennas in the reference uniform array;
  • the pre-acquired antenna arrangement characteristics of the sparse array and the positions of some antennas in the sparse array relative to the reference uniform array determine the position of the remaining antennas in the sparse array relative to the reference
  • the positions of the uniform array are combined with the positions of some antennas in the sparse array relative to the reference uniform array to obtain the positions of all antennas in the sparse array relative to the reference uniform array.
  • the antenna indication information of the sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; each The value of each bit is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bit length of the bitmap is equal to the total number of antennas in the reference uniform array.
  • the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • At least one embodiment provides a method for acquiring precoding matrix indication information, including:
  • the base station determines the antenna indication information of the sparse array according to the positions of the antennas in the sparse array relative to the reference uniform array and sends it to the terminal;
  • the base station sends a reference signal by using the sparse array, and receives precoding matrix indication information sent by the terminal.
  • the method after receiving the precoding matrix indication information, the method further includes:
  • the base station selects a target precoding vector by using the precoding matrix indication information and the second codebook, wherein the second codebook is based on the antenna indication information of the sparsely distributed array, and the second codebook corresponding to the reference uniform array obtained after processing a codebook;
  • the base station uses the target precoding vector to precode the demodulation reference signal and/or data information of the terminal before sending it.
  • the antenna indication information is used to indicate the positions of all antennas in the sparse array relative to the reference uniform array, or to indicate a part of the sparse array The position of the antenna relative to the reference uniform array.
  • the antenna indication information when the antenna indication information is used to indicate the position of some antennas in the sparse array relative to the reference uniform array, according to the relative position of the antennas in the sparse array Based on the location of the reference uniform array, determine the antenna indication information of the sparse array, including:
  • the sparse array select some antennas from all the antennas in the sparse array, and generate the antenna of the sparse array according to the position of the partial antennas relative to the reference uniform array Antenna indication information.
  • the base station configures information about the total number of antennas in the reference uniform array to the terminal.
  • the antenna indication information of the sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; each The value of each bit is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bit length of the bitmap is equal to the total number of antennas in the reference uniform array.
  • the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • At least one embodiment provides a method for sending precoding matrix indication information, including:
  • the terminal receives the reference signal sent by the base station using the first sparse array and performs downlink channel estimation, and determines the first number of antennas in the first sparse array;
  • the terminal determines multiple candidate sparse arrays according to multiple candidate arrangements of the first number of antennas in the reference uniform array, and generates a candidate codebook corresponding to each candidate sparse array;
  • the terminal selects a second sparse array from the plurality of candidate sparse arrays according to the candidate codebook corresponding to the candidate sparse array, and encodes the antenna indication information and precoding information corresponding to the second sparse array Matrix indication information is sent to the base station, where the antenna indication information is used to indicate the positions of the antennas in the second sparse array relative to the reference uniform array.
  • the selecting a second sparse array from the plurality of candidate sparse arrays according to the candidate codebook corresponding to the candidate sparse array includes:
  • the terminal calculates and obtains the precoding vector and precoding matrix indication information corresponding to each candidate sparse array according to the candidate codebook corresponding to each candidate sparse array;
  • the terminal determines a second sparse array satisfying a preset condition from the plurality of candidate sparse arrays according to the precoding vector corresponding to each candidate sparse array.
  • the preset condition is maximizing channel capacity.
  • the generating a candidate codebook corresponding to each candidate sparse array includes:
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array ; The value of each bit is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the terminal receives the indication information of the total number of antennas in the reference uniform array sent by the base station, and determines the total number of antennas in the reference uniform array.
  • At least one embodiment provides a method for acquiring precoding matrix indication information, including:
  • the base station sends a reference signal to the terminal by using the first sparse array
  • the base station receives the antenna indication information and the precoding matrix indication information corresponding to the second sparse array sent by the terminal, where the second sparse array is determined by the terminal according to the reference signal.
  • the base station determines the positions of the antennas in the second candidate sparse array relative to the reference uniform array according to the antenna indication information corresponding to the second sparse array;
  • the base station selects a target precoding vector according to the precoding matrix indication information and the second codebook, precodes the demodulation reference signal and/or data information of the terminal, and then sends it.
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array ; The value of each bit is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the base station sends indication information of the total number of antennas in the reference uniform array to the terminal.
  • At least one embodiment provides a terminal, including a transceiver and a processor, wherein,
  • the transceiver is configured to receive the antenna indication information of the sparse array sent by the base station, and the antenna indication information is used to indicate the position of the antenna in the sparse array relative to the reference uniform array;
  • the processor is configured to preprocess the first codebook corresponding to the reference uniform array according to the antenna indication information of the sparse array to obtain a second codebook corresponding to the sparse array; according to the The second codebook generates precoding matrix indication information and sends it to the base station.
  • At least one embodiment provides a base station, including a transceiver and a processor, wherein,
  • the processor is configured to determine the antenna indication information of the sparse array and send it to the terminal according to the positions of the antennas in the sparse array relative to the reference uniform array;
  • the transceiver is configured to use the sparse array to send a reference signal, and receive precoding matrix indication information sent by the terminal.
  • At least one embodiment provides a terminal, including a transceiver and a processor, wherein,
  • the transceiver is configured to receive a reference signal sent by the base station using the first sparse array and perform downlink channel estimation, and determine a first number of antennas in the first sparse array;
  • the processor is configured to determine a plurality of candidate sparse arrays according to multiple candidate arrangements of the first number of antennas in the reference uniform array, and generate a candidate codebook corresponding to each candidate sparse array ; According to the candidate codebook corresponding to the candidate sparse array, select a second sparse array from the plurality of candidate sparse arrays, and indicate the antenna indication information and precoding matrix corresponding to the second sparse array The information is sent to the base station, and the antenna indication information is used to indicate the positions of the antennas in the second sparse array relative to the reference uniform array.
  • At least one embodiment provides a base station, including a transceiver and a processor, wherein,
  • the transceiver is configured to use the first sparse array to send a reference signal to the terminal;
  • the processor is configured to receive antenna indication information and precoding matrix indication information corresponding to the second sparse array sent by the terminal, where the second sparse array is determined by the terminal according to the reference signal
  • At least one embodiment provides a terminal, including: a processor, a memory, and a program stored in the memory and operable on the processor, the program being executed by the processor
  • the controller When the controller is executed, the steps of the above-mentioned method are realized, or the steps of the above-mentioned method are realized.
  • At least one embodiment provides a base station, including: a processor, a memory, and a program stored in the memory and operable on the processor, the program being processed by the When the controller is executed, the steps of the above-mentioned method are realized, or the steps of the above-mentioned method are realized.
  • At least one embodiment provides a computer-readable storage medium, where a program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above method is implemented. step.
  • the embodiments of the present disclosure provide a method and device for sending precoding matrix indication information.
  • the antenna indication information of the sparse array is exchanged between the base station and the terminal, so that the sparse array can be repeated.
  • the uniform array codebook defined by relevant standards can achieve the same beam pointing as the uniform array pattern when transmitting based on the codebook, effectively improving the performance of ultra-large-scale Multiple Input Multiple Output (MIMO) applications with sparse arrays. system performance.
  • MIMO Multiple Input Multiple Output
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for sending precoding matrix indication information according to an embodiment of the present disclosure
  • FIG. 3 is an example diagram of generating a bitmap and determining a first codebook in an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for obtaining precoding matrix indication information according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for sending precoding matrix indication information according to another embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for obtaining precoding matrix indication information according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • Fig. 16 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • the technology described in this paper is not limited to the New Radio (NR) system and the Long Time Evolution (LTE)/LTE evolution (LTE-Advanced, LTE-A) system, and can also be used in various wireless communications Systems, such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access, OFDMA), Single-carrier Frequency-Division Multiple Access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) and other systems.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple
  • UTRA includes Wideband CDMA (Wideband Code Division Multiple Access, WCDMA) and other CDMA variants.
  • a TDMA system implements a radio technology such as Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • the OFDMA system can realize radios such as UltraMobile Broadband (UltraMobile Broadband, UMB), Evolution-UTRA (Evolution-UTRA, E-UTRA), IEEE 802.21 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. technology.
  • UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS). LTE and LTE-Advanced (like LTE-A) are new UMTS releases that use E-UTRA.
  • UMTS Universal Mobile Telecommunications System
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes NR systems for example purposes, and NR terminology is used in much of the following description, although the techniques are applicable to applications other than NR system applications as well.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present disclosure is applicable.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 can also be called a user terminal or user equipment (UE, User Equipment), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted equipment and other terminal-side devices.
  • UE User Equipment
  • PDA Personal Digital Assistant
  • mobile Internet device Mobile Internet Device
  • MID wearable device
  • Vehicle-mounted equipment other terminal-side devices.
  • the specific type of terminal 11 is not limited in the embodiments of the present disclosure. .
  • the network device 12 may be a base station and/or a core network element, wherein the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, or other access point, etc.), wherein a base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node or Any other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. The specific type of the base station is not limited.
  • the base stations may communicate with terminals 11 under the control of a base station controller, which may be part of a core network or certain base stations in various examples. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may communicate with each other directly or indirectly via a backhaul link, which may be a wired or wireless communication link.
  • a wireless communication system may support operation on multiple carriers (waveform signals of different frequencies).
  • a multi-carrier transmitter is capable of transmitting modulated signals on the multiple carriers simultaneously. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal may be sent on a different carrier and may carry control information (eg, reference signal, control channel, etc.), overhead information, data, etc.
  • a base station may communicate wirelessly with terminals 11 via one or more access point antennas. Each base station may provide communication coverage for a respective respective coverage area. The coverage area of an access point may be divided into sectors that constitute only a portion of the coverage area.
  • a wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base stations may also utilize different radio technologies, such as cellular or WLAN radio access technologies. Base stations may be associated with the same or different access networks or operator deployments. Coverage areas of different base stations (including coverage areas of base stations of the same or different types, coverage areas utilizing the same or different radio technologies, or coverage areas belonging to the same or different access networks) may overlap.
  • a communication link in a wireless communication system may include an uplink for carrying an uplink (Uplink, UL) transmission (for example, from a terminal 11 to a network device 12), or for carrying a downlink (Downlink, DL) transmission.
  • Downlink of transmission eg, from network device 12 to terminal 11
  • UL transmissions can also be called reverse link transmissions
  • DL transmissions can also be called forward link transmissions.
  • Downlink transmissions may be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions may be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • an array antenna refers to an antenna system composed of multiple individual antennas arranged according to certain rules, also called an antenna array.
  • a uniform array refers to an array antenna in which the array spacing between antennas is fixed, and the total number of antennas is usually a power of 2.
  • the sparse array refers to the array antenna in which the array spacing between antennas is not fixed, and the total number of antennas is not necessarily a power of 2.
  • An embodiment of the present disclosure provides a method for sending precoding matrix indication information.
  • the sparse array can reuse the codebook in the relevant standard for codebook-based transmission.
  • the embodiments of the present disclosure may be divided into determining the antenna indication information by the base station and determining the antenna indication information by the terminal. The two implementations are described below respectively.
  • the base station determines the antenna indication information, that is, the base station configures the antenna indication information in a sparse array to the terminal.
  • the method for sending precoding matrix indication information provided by the embodiment of the present disclosure, when applied to the terminal side, includes:
  • Step 21 the terminal receives antenna indication information of the sparse array sent by the base station, where the antenna indication information is used to indicate the positions of the antennas in the sparse array relative to the reference uniform array.
  • the embodiments of the present disclosure use a uniform array (reference uniform array) as a reference antenna array to indicate the antenna positions in the sparse array, thereby generating the above sparse Instructions for the array antennas.
  • the sparse array only includes some antennas in the reference uniform array, so it can be regarded as a subset of the reference uniform array. That is to say, in the embodiment of the present disclosure, the antenna indication information is used to indicate the antennas existing in the sparse array (that is, activate the antennas) by using the antenna positions of the reference uniform array as a reference. Alternatively, the antenna indication information is used to indicate the antennas existing in the sparse array by referring to the positions of the antennas in the uniform array.
  • One form of the antenna indication information of the sparse array is a bitmap (bitmap), and each bit in the bitmap corresponds to an antenna in the uniform array, for example, a corresponding way can be according to From left to right and from top to bottom, each bit is in one-to-one correspondence with each antenna in the uniform array, which is not specifically limited in this embodiment of the present disclosure.
  • bitmap bitmap
  • each bit in the bitmap corresponds to an antenna in the uniform array, for example, a corresponding way can be according to From left to right and from top to bottom, each bit is in one-to-one correspondence with each antenna in the uniform array, which is not specifically limited in this embodiment of the present disclosure.
  • the value of each bit in the bit map can be used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • a certain bit when a certain bit takes a value of 1, it means that the antenna corresponding to the bit is activated, that is, there is an antenna corresponding to the bit in the sparse array; otherwise, when the bit takes a value of 0, it means The antenna corresponding to the bit is inactive, that is, the antenna corresponding to the bit does not exist in the sparse array.
  • the uniform array has a total of N antennas, which are: antenna 0, antenna 1, . . . , antenna N ⁇ 1.
  • a bitmap of N bits is used, which are respectively: bit 0, bit 1, . . . , bit N ⁇ 1.
  • each bit corresponds to an antenna, for example, bit 0 corresponds to antenna 0 in the uniform array, bit 1 corresponds to antenna 1 in the uniform array, and so on.
  • the antenna position of the sparse array is based on the antenna position in the reference uniform array.
  • the The value of the bit in the bitmap corresponding to the antenna position is 1.
  • the value of the bit in the bitmap corresponding to the antenna position is 0, so that Obtain the antenna indication information of the sparse array, expressed in the form of bitmap.
  • the definitions of the above values can also be interchanged. For example, when the value is 0, it means activation; otherwise, when the value is 1, it means inactivation. Embodiments of the present disclosure do not specifically limit this.
  • Step 22 The terminal performs preprocessing on the first codebook corresponding to the uniform array according to the antenna indication information of the sparse array to obtain a second codebook corresponding to the sparse array.
  • the positions of the antennas in the sparse array relative to the reference uniform array can be determined according to the antenna indication information of the sparse array. For example, when a certain bit in the bitmap takes a value of 1, it means There is an antenna corresponding to the bit in the array, and the position of the antenna can be indicated by the position of the antenna relative to the reference uniform array. For example, still taking FIG. 3 as an example, when the value of bit 0 in btimap is 1, it means that there is an active antenna in this bit, and the position of the antenna is: the position of antenna 0 in the uniform array.
  • FIG. 3 shows the first codebook corresponding to the reference uniform array, where each column corresponds to an antenna in the reference uniform array. Since the value of bit 0 is 1, the codeword of the antenna corresponding to this bit is reserved, that is, the first column in the first codebook is reserved, as shown by the solid line box in FIG. 3 . Since the value of bit 1 is 0, the codeword of the antenna corresponding to this bit is deleted, that is, the second column in the first codebook is deleted, as shown by the dashed box in FIG. 3 .
  • the embodiment of the present disclosure performs dimensionality reduction on the first codebook, thereby multiplexing the codebook (first codebook C) in the relevant standard, and obtaining the codebook (second codebook C) corresponding to the sparse array Cs ).
  • Step 23 the terminal generates precoding matrix indication information according to the second codebook and sends it to the base station.
  • the terminal may receive the reference signal sent by the base station and perform downlink channel estimation to obtain downlink channel matrix observations. Then, a precoding vector is obtained by calculating according to the second codebook and the observed amount of the downlink channel matrix, and further, according to the precoding vector, precoding matrix indication information is determined.
  • the terminal receives the channel state information reference signal (Channel State Information Reference Signal, CSI-RS) sent by the base station, performs downlink channel estimation according to the CSI-RS, and calculates the downlink channel matrix observation quantity Then, according to the preset criterion, the precoding vector Q j is calculated based on the second codebook C s .
  • the precoding vector Q j that maximizes the channel capacity is calculated, and the specific calculation method can refer to formula 1:
  • PI is the interference power
  • N noise is the noise power
  • precoding matrix indicator Precoding matrix indicator, PMI
  • the embodiment of the present disclosure can generate the precoding matrix indication information of the sparse array based on the first codebook of the uniform array in the related art.
  • the base station can refer to the precoding matrix indication information sent by the terminal, and based on the second
  • the codebook C s selects a precoding vector, so as to precode demodulation reference signals (such as dedicated demodulation reference signals (Dedicated demodulation reference signals, DM-RS)) and data information of the terminal before sending.
  • demodulation reference signals such as dedicated demodulation reference signals (Dedicated demodulation reference signals, DM-RS)
  • the antenna indication information is used to indicate the position of all antennas in the sparse array relative to the uniform array, or to indicate the position of some antennas in the sparse array relative to the uniform array. array position.
  • the antenna indication information is represented by a bitmap
  • the bit length of the bitmap may be equal to the total number of antennas in the reference uniform array, or may be smaller than the total number of antennas in the reference uniform array. Only indicating the location information of some antennas can reduce the overhead of antenna indication information and reduce the consumption of transmission resources.
  • the position of all antennas in the sparse array relative to the uniform array can be determined directly according to the antenna indication information. The location of the uniform array.
  • the embodiments of the present disclosure may pre-configure information about the total number of antennas of the reference uniform array to the terminal in an explicit or implicit manner.
  • the total number of antennas of the reference uniform array is also configured in the antenna indication information, or the base station configures the total number of antennas of the reference uniform array through another configuration message, or the terminal configures the total number of antennas of the reference uniform array locally in advance. total number of antennas.
  • the terminal may determine the total number of antennas in the uniform array according to the pre-acquired configuration information of the total number of antennas in the uniform array; then, the terminal may determine the total number of antennas in the uniform array according to the pre-acquired
  • the antenna arrangement characteristics of the array and the positions of some antennas in the sparse array relative to the reference uniform array are determined to determine the positions of the remaining antennas in the sparse array relative to the reference uniform array, and The positions of some antennas in the sparse array relative to the reference uniform array are combined to obtain the positions of all antennas in the sparse array relative to the reference uniform array.
  • the antenna indication information may only indicate the positions of the antennas in the first half or the second half of the sparse array relative to the uniform array .
  • the antenna indication information is represented by a bitmap, assuming that the length of the received bitmap is 8 bits, and the total number of antennas is 16, at this time, the received bitmap can be mirrored to obtain a mirrored bitmap, Then, the two bitmaps are spliced together to obtain a new 16-bit bitmap, which is suitable for sparse arrays with central symmetry in the antenna arrangement.
  • the above mirroring process refers to reverse processing of each bit in the received bitmap, that is, the first bit in the original bitmap is used as the last bit of the mirrored bitmap, and the second bit in the original bitmap is used as the mirrored bitmap The penultimate bit of , and so on, until the last bit in the original bitmap is used as the first bit of the mirror bitmap to obtain the mirror bitmap.
  • the original bitmap is 10110101
  • the mirror bitmap is 10101101
  • the final spliced new bitmap is 1011010110101101.
  • the method for obtaining the precoding matrix indication information in the embodiment of the present disclosure, when applied to the base station includes:
  • Step 41 the base station determines the antenna indication information of the sparse array according to the positions of the antennas in the sparse array relative to the reference uniform array, and sends it to the terminal.
  • Step 42 the base station uses the sparse array to send a reference signal, and receives precoding matrix indication information sent by the terminal.
  • the base station in the embodiment of the present disclosure configures the antenna indication information of the sparsely distributed array to the terminal, and the indication information is generated based on the antenna position of the reference uniform array, so that the codebook of the uniform array in the related art can be reused, and the codebook based on the uniform array can be reused. Codebook transmission.
  • the base station can also use the precoding matrix indication information and the second codebook to select a target precoding vector, wherein the second codebook is based on the antenna indication information of the sparse array , which is obtained after processing the first codebook corresponding to the reference uniform matrix, and the method for generating the second codebook can refer to the introduction above. To save space, details are not repeated here. Then, the base station uses the target precoding vector to precode the demodulation reference signal and/or data information of the terminal before sending it.
  • the antenna indication information may indicate the positions of all antennas in the sparse array relative to the reference uniform array, or indicate the positions of some antennas in the sparse array relative to the reference uniform array.
  • the base station may According to the distribution feature, some antennas are selected from all the antennas in the sparse array, and the antenna indication information of the sparse array is generated according to the positions of the partial antennas relative to the reference uniform array.
  • the selected part of the antennas needs to meet the following condition: based on the positions of the part of the antennas, the positions of the remaining antennas in the sparse array can be determined.
  • the antenna indication information may only indicate the positions of the antennas in the first half or the second half of the sparse array relative to the uniform array.
  • the remaining positions of the other half of the antennas can be generated by the receiving end on the basis of the obtained antenna positions according to the center-symmetrical arrangement feature.
  • the antenna indication information of the sparsely distributed array may be a bitmap (bitmap), and each bit in the bitmap corresponds to an antenna in the reference uniform array; each bit The value of the bit is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the bit length of the bitmap may be equal to the total number of antennas in the reference uniform array; or, the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • the base station may also configure information about the total number of antennas in the reference uniform array to the terminal. Specifically, the configuration may be performed in the antenna indication information, or may be configured through another configuration message. For this, the present disclosure does not specifically limit it.
  • the terminal determines the antenna indication information, that is, the terminal sends the sparse array antenna indication information to the base station.
  • the method for sending precoding matrix indication information provided by the embodiment of the present disclosure, when applied to the terminal side, includes:
  • Step 51 the terminal receives the reference signal sent by the base station using the first sparse array, performs downlink channel estimation, and determines the first number of antennas in the first sparse array.
  • the base station uses the first sparse array to send reference signals, and the terminal receives the reference signals and performs downlink channel estimation to obtain downlink channel matrix observations Furthermore, according to the downlink channel matrix observation A first number of antennas in the first sparse array is determined.
  • the reference signal may be a CSI-RS.
  • Step 52 the terminal determines multiple candidate sparse arrays according to multiple candidate arrangements of the first number of antennas in the reference uniform array, and generates a candidate codebook corresponding to each candidate sparse array.
  • the terminal may obtain multiple candidate sparse arrays according to various candidate arrangements of the first number of antennas in the reference uniform array.
  • the first sparse array only includes some antennas in the reference uniform array, so it can be regarded as a subset of the reference uniform array.
  • the terminal may delete inactive antennas in the candidate sparse array from the first codebook C corresponding to the reference uniform array according to the positions of the antennas in the candidate sparse array relative to the reference uniform array
  • the corresponding codeword is used to obtain the candidate codebook C s corresponding to the candidate sparse matrix.
  • Step 53 the terminal selects a second sparse array from the plurality of candidate sparse arrays, and sends antenna indication information and precoding matrix indication information corresponding to the second sparse array to the base station, and the antenna
  • the indication information is used to indicate the positions of the antennas in the second sparse array relative to the reference uniform array.
  • the terminal may calculate the precoding vector and precoding matrix indication information corresponding to each candidate sparse array according to the candidate codebook corresponding to each candidate sparse array; then, according to the corresponding The precoding vector is to determine a second sparse array satisfying a preset condition from the plurality of candidate sparse arrays.
  • One of the preconditions is maximization of channel capacity.
  • the precoding vector Q i,j is calculated. For example, according to the channel capacity maximization criterion, based on the candidate codebook, the precoding vector Q i,j that maximizes the channel capacity and the corresponding channel capacity are calculated.
  • the specific calculation method can refer to formula 2:
  • PI is the interference power
  • N noise is the noise power
  • the precoding vector Q i,j corresponding to each candidate sparse matrix and the corresponding channel capacity select the precoding vector Q i,j corresponding to the maximum channel capacity, and select the precoding vector Q i,j corresponding to the precoding vector Q i,j
  • the candidate sparse array is used as the second sparse array, the antenna indication information corresponding to the second sparse array is generated, and the precoding matrix indication information corresponding to the precoding vector Q i, j is obtained (that is, the second sparse array Corresponding precoding matrix indication information).
  • the antenna indication information of the second sparse array can be represented by a bitmap (bitmap), and each bit in the bitmap corresponds to an antenna in the reference uniform array ; The value of each bit is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bitmap bitmap
  • the terminal determines the antenna indication information corresponding to the sparse array and sends it to the base station. Since the antenna indication information uses the reference uniform array to indicate the antenna position, the base station can reuse the uniform array in the related art.
  • the codebook is to determine the codebook of the sparsely distributed array and perform codebook-based transmission.
  • the embodiment of the present disclosure may pre-configure the information about the total number of antennas of the reference uniform array to the terminal in an explicit or implicit manner.
  • the terminal receives indication information of the total number of antennas in the reference uniform array sent by the base station, and determines the total number of antennas in the reference uniform array.
  • the total number of antennas of the reference uniform array may also be locally configured in advance by the terminal.
  • the method for sending precoding matrix indication information provided by the embodiment of the present disclosure, when applied to the base station side, includes:
  • Step 61 the base station sends a reference signal to the terminal by using the first sparse array.
  • the base station uses the first sparse array to send the reference signal
  • the reference signal may be a CSI-RS.
  • Step 62 the base station receives antenna indication information and precoding matrix indication information corresponding to the second sparse array sent by the terminal, where the second sparse array is determined by the terminal according to the reference signal
  • the first number of antennas in the first sparse array, and the sparse array corresponding to an arrangement selected from multiple candidate arrangements of the first number of antennas in the reference uniform array the antenna indication information is used to indicate the positions of the antennas in the second sparse array relative to the reference uniform array.
  • the terminal in the embodiment of the present disclosure feeds back the antenna indication information of the second sparse array to the base station, and the indication information is generated based on the antenna positions of the reference uniform array, so that the codebook of the uniform array in the related art can be reused, Perform codebook-based transmission.
  • the base station may also determine the positions of the antennas in the second candidate sparse array relative to the reference uniform array according to the antenna indication information corresponding to the second sparse array. Then, according to the positions of the antennas in the second candidate sparse array relative to the reference uniform array, delete the The codeword of the second sparse matrix is obtained to obtain the second codebook corresponding to the second sparse matrix. Then, the base station selects a target precoding vector according to the precoding matrix indication information and the second codebook, precodes the demodulation reference signal and/or data information of the terminal, and then sends it.
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; the value of each bit , used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the base station sends indication information of the total number of antennas in the reference uniform array to the terminal.
  • the antenna indication information of the sparse array is exchanged between the base station and the terminal, so that the sparse array can reuse the codebook of the uniform array defined by the relevant standard, and the codebook based on the codebook During transmission, the beam pointing equivalent to that of the uniform array pattern can be achieved, effectively improving the system performance of the sparse array for ultra-large-scale MIMO applications.
  • the above describes the first implementation manner in which the base station determines the antenna indication information and the second implementation manner in which the terminal determines the antenna indication information from the terminal and the base station side respectively.
  • several examples are used to further illustrate the above implementation manner by taking the bitmap as an example for the antenna indication information.
  • Example 1 The base station determines the bitmap, referring to the total number of 16 antennas in the uniform array, and the length of the bitmap is the same as the total number of antennas in the uniform array. This example includes the following steps:
  • the base station determines the bitmap information according to the arrangement of antennas in the sparse array, and the length of the bitmap is 16: 1011010110101101 (the number of active antennas in the sparse array is 10).
  • the base station sends the bitmap information through related signaling (for example, RRC signaling).
  • related signaling for example, RRC signaling
  • the terminal obtains the bitmap information, and preprocesses the first codebook corresponding to the reference uniform array. According to the bitmap information, the terminal obtains the original uniform array antenna total number information 16 and the activated antenna position information. For the bit with a value of 0 The corresponding codeword information is eliminated, and the codebook after elimination constitutes a codebook C s with a dimension of 64*10 (assuming that O1 is 4).
  • the terminal obtains the PMI information based on the codebook C s . Assume that the calculated PMI is 16 according to the above formula 1.
  • the terminal reports the PMI information to the base station.
  • the base station refers to the fed back PMI information, selects a precoding vector based on C s , and precodes the DM-RS and/or data information before sending.
  • Example 2 the base station determines the bitmap, assuming that the total number of antennas in the reference uniform array is 16, and the length of the bitmap is 1/2 of the total number of antennas in the reference uniform array.
  • the base station determines the bitmap information according to the antenna arrangement of the sparse array.
  • the bitmap length can be configured as 8: 10110101 (in addition, the current The bitmap length is one-half of the total number of reference uniform array antennas).
  • the base station sends the bitmap information and the information referring to the total number of uniform array antennas through related signaling (for example, RRC signaling).
  • related signaling for example, RRC signaling
  • the terminal obtains the bitmap information, and preprocesses the first codebook of the reference uniform array. According to the bitmap information, the terminal obtains the reference uniform array antenna total number information 16 and the activated antenna position information, and corresponds to the bit with a value of 0
  • the codeword information of the codebook is eliminated, and the codebook after elimination constitutes a C s with a dimension of 64*10 (assuming that O1 is 4).
  • the terminal obtains the PMI information based on the codebook C s . Calculated according to formula 1, the PMI is 16.
  • the terminal reports the PMI information to the base station.
  • the base station refers to the fed back PMI information, selects a precoding vector based on C s , and precodes the DM-RS and/or data information before sending.
  • the base station sends CSI-RS information through a limited number of antennas (for example, 12).
  • the terminal performs downlink channel estimation according to the CSI-RS information, and calculates the downlink channel matrix observations
  • the terminal is based on The number of detected base station antennas, construct several candidate bitmaps, assuming as shown in Table 1:
  • Index bitmap 1 1011010110101101 2 1011001111001101 3 1101010110101011 4 1010110110110101
  • a codebook C s is constructed, and a precoding vector corresponding to each bitmap is calculated respectively, wherein the precoding vector corresponding to the i-th bitmap is Q i,j .
  • the terminal obtains the PMI information corresponding to each bitmap according to Q i,j , as shown in Table 2:
  • the second bitmap can maximize the channel capacity (22.4598).
  • the terminal reports the second bitmap information and the information that the PMI is 48 to the base station.
  • the base station refers to the fed back bitmap information and PMI information, selects a precoding vector based on the corresponding C s codebook, and precodes the DM-RS and/or data information before sending.
  • the embodiment of the present disclosure also provides a terminal 70, including:
  • the first receiving module 71 is configured to receive the antenna indication information of the sparse array sent by the base station, where the antenna indication information is used to indicate the positions of the antennas in the sparse array relative to the reference uniform array;
  • the codebook processing module 72 is used to preprocess the first codebook corresponding to the reference uniform array according to the antenna indication information of the sparse array, to obtain the second codebook corresponding to the sparse array;
  • the first sending module 73 is configured to generate precoding matrix indication information according to the second codebook and send it to the base station.
  • the preprocessing module is further configured to: determine the positions of the antennas in the sparse array relative to the reference uniform array according to the antenna indication information of the sparse array; The positions of the antennas relative to the reference uniform array are deleted from the first codebook corresponding to the unactivated antennas in the sparse array to obtain the second codebook.
  • the first sending module is further configured to: receive a reference signal sent by the base station and perform downlink channel estimation to obtain a downlink channel matrix observation; according to the second codebook and the downlink channel matrix observation quantity, calculate a precoding vector, and determine precoding matrix indication information according to the precoding vector.
  • the antenna indication information is used to indicate the positions of all the antennas in the sparse array relative to the reference uniform array, or to indicate that part of the antennas in the sparse array are uniform relative to the reference array position.
  • the preprocessing module is further configured to: when the antenna indication information is used to indicate the positions of some antennas in the sparse array relative to the reference uniform array, according to the pre-obtained According to the configuration information of the total number of antennas in the reference uniform array, determine the total number of antennas in the reference uniform array; according to the antenna arrangement characteristics of the sparse array obtained in advance and the relative ratio of some antennas in the sparse array to the The position of the reference uniform array, determining the positions of the remaining antennas in the sparse array relative to the reference uniform array, and merging with the positions of some antennas in the sparse array relative to the reference uniform array, The positions of all antennas in the sparse array relative to the reference uniform array are obtained.
  • the antenna indication information of the sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; the value of each bit is, It is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bit length of the bitmap is equal to the total number of antennas in the reference uniform array; or, the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • an embodiment of the present disclosure also provides a terminal 80, including: a transceiver 81 and a processor 82;
  • the transceiver 81 is configured to receive the antenna indication information of the sparse array sent by the base station, and the antenna indication information is used to indicate the position of the antenna in the sparse array relative to the reference uniform array;
  • the processor 82 is configured to perform preprocessing on the first codebook corresponding to the reference uniform array according to the antenna indication information of the sparse array to obtain a second codebook corresponding to the sparse array; according to the The second codebook generates precoding matrix indication information and sends it to the base station.
  • the processor is further configured to: determine the positions of the antennas in the sparse array relative to a reference uniform array according to the antenna indication information of the sparse array; With respect to the position of the reference uniform array, delete the codewords corresponding to the unactivated antennas in the sparse array from the first codebook to obtain the second codebook.
  • the transceiver is further configured to receive a reference signal sent by the base station and perform downlink channel estimation to obtain a downlink channel matrix observation;
  • the downlink channel matrix observations are calculated to obtain a precoding vector, and the precoding matrix indication information is determined according to the precoding vector.
  • the antenna indication information is used to indicate the positions of all the antennas in the sparse array relative to the reference uniform array, or to indicate that part of the antennas in the sparse array are uniform relative to the reference array position.
  • the processor is further configured to: when the antenna indication information is used to indicate the positions of some antennas in the sparse array relative to the reference uniform array, according to the pre-obtained Referring to the configuration information of the total number of antennas in the uniform array, determine the total number of antennas in the reference uniform array; according to the pre-acquired antenna arrangement characteristics of the sparse array and the relative Referring to the position of the uniform array, the positions of the remaining antennas in the sparse array relative to the reference uniform array are determined, and combined with the positions of some antennas in the sparse array relative to the reference uniform array, to obtain The positions of all antennas in the sparse array relative to the reference uniform array.
  • the antenna indication information of the sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; the value of each bit is, It is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bit length of the bitmap is equal to the total number of antennas in the reference uniform array; or, the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • an embodiment of the present disclosure also provides a base station 90, including:
  • the first determination module 91 is configured to determine the antenna indication information of the sparse array and send it to the terminal according to the positions of the antennas in the sparse array relative to the reference uniform array;
  • the first transceiver module 92 is configured to use the sparse array to send a reference signal, and receive the precoding matrix indication information sent by the terminal.
  • the base station also includes:
  • a precoding determination module configured to select a target precoding vector by using the precoding matrix indication information and a second codebook, wherein the second codebook is based on the antenna indication information of the sparse array and is uniform to the reference obtained after processing the first codebook corresponding to the matrix;
  • the first sending module is configured to use the target precoding vector to precode the demodulation reference signal and/or data information of the terminal before sending.
  • the antenna indication information is used to indicate the positions of all the antennas in the sparse array relative to the reference uniform array, or to indicate that part of the antennas in the sparse array are uniform relative to the reference array position.
  • the first determination module is further configured to, when the antenna indication information is used to indicate the positions of some antennas in the sparse array relative to the reference uniform array, according to the sparse array Antenna arrangement characteristics of the sparse array, select some antennas from all antennas in the sparse array, and generate antenna indication information for the sparse array according to the position of the partial antennas relative to the reference uniform array.
  • the base station also includes:
  • the second sending module is configured to configure the information about the total number of antennas in the reference uniform array to the terminal.
  • the antenna indication information of the sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; the value of each bit is, It is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bit length of the bitmap is equal to the total number of antennas in the reference uniform array; or, the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • an embodiment of the present disclosure further provides a base station 100, including: a transceiver 101 and a processor 102;
  • the processor 102 is configured to determine the antenna indication information of the sparse array and send it to the terminal according to the positions of the antennas in the sparse array relative to the reference uniform array;
  • the transceiver 101 is configured to use the sparse array to send a reference signal, and receive the precoding matrix indication information sent by the terminal.
  • the processor 102 is further configured to use precoding matrix indication information and a second codebook to select a target precoding vector, wherein the second codebook is based on the antenna indication information of the sparse array , obtained after processing the first codebook corresponding to the reference uniform matrix;
  • the transceiver 101 is further configured to use the target precoding vector to precode the demodulation reference signal and/or data information of the terminal before sending.
  • the antenna indication information is used to indicate the positions of all the antennas in the sparse array relative to the reference uniform array, or to indicate that part of the antennas in the sparse array are uniform relative to the reference array position.
  • the processor is further configured to, when the antenna indication information is used to indicate the positions of some antennas in the sparse array relative to the reference uniform array, according to the position of the sparse array Antenna arrangement feature, select some antennas from all the antennas in the sparse array, and generate antenna indication information of the sparse array according to the position of the partial antennas relative to the reference uniform array.
  • the transceiver 101 is further configured to configure information about the total number of antennas in the reference uniform array to the terminal.
  • the antenna indication information of the sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; the value of each bit is, It is used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • bit length of the bitmap is equal to the total number of antennas in the reference uniform array; or, the bit length of the bitmap is smaller than the total number of antennas in the reference uniform array.
  • an embodiment of the present disclosure also provides a terminal 110, including:
  • the first receiving module 111 is configured to receive a reference signal sent by the base station using the first sparse array and perform downlink channel estimation, and determine a first number of antennas in the first sparse array;
  • the first generating module 112 is configured to determine a plurality of candidate sparse arrays according to multiple candidate arrangements of the first number of antennas in the reference uniform array, and generate a candidate code corresponding to each candidate sparse array Book;
  • the first sending module 113 is configured to select a second sparse array from the plurality of candidate sparse arrays according to the candidate codebook corresponding to the candidate sparse array, and send the antenna corresponding to the second sparse array to
  • the indication information and the precoding matrix indication information are sent to the base station, where the antenna indication information is used to indicate the positions of the antennas in the second sparse array relative to the reference uniform array.
  • the first sending module 113 is further configured to calculate the precoding vector and precoding matrix indication information corresponding to each candidate sparse array according to the candidate codebook corresponding to each candidate sparse array; the precoding vectors corresponding to the candidate sparse arrays, and determine the second sparse array satisfying the preset condition from the plurality of candidate sparse arrays.
  • the preset condition is maximizing channel capacity.
  • the first generation module 112 is further configured to delete the candidate sparse array from the first codebook corresponding to the reference uniform array according to the positions of the antennas in the candidate sparse array relative to the reference uniform array
  • the codewords corresponding to the unactivated antennas in the array are used to obtain the candidate codebook corresponding to the candidate sparse array.
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; value, used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the terminal also includes:
  • the first determining module is configured to receive indication information of the total number of antennas in the reference uniform array sent by the base station, and determine the total number of antennas in the reference uniform array.
  • the embodiment of the present disclosure also provides a terminal 120, including: a transceiver 121 and a processor 122;
  • the transceiver 121 is configured to receive a reference signal sent by the base station using the first sparse array and perform downlink channel estimation, and determine a first number of antennas in the first sparse array;
  • the processor 122 is configured to determine a plurality of candidate sparse arrays according to multiple candidate arrangements of the first number of antennas in the reference uniform array, and generate a candidate code corresponding to each candidate sparse array This; according to the candidate codebook corresponding to the candidate sparse array, select a second sparse array from the plurality of candidate sparse arrays, and use the antenna indication information and precoding matrix corresponding to the second sparse array
  • the indication information is sent to the base station, where the antenna indication information is used to indicate the positions of the antennas in the second sparse array relative to the reference uniform array.
  • the transceiver 121 is further configured to calculate the precoding vector and precoding matrix indication information corresponding to each candidate sparse array according to the candidate codebook corresponding to each candidate sparse array;
  • the precoding vector corresponding to the sparse array is used to determine a second sparse array satisfying a preset condition from the plurality of candidate sparse arrays.
  • the preset condition is maximizing channel capacity.
  • the processor is further configured to delete the candidate sparse array from the first codebook corresponding to the reference uniform array according to the positions of the antennas in the candidate sparse array relative to the reference uniform array
  • the codewords corresponding to the antennas that are not activated in the array are used to obtain the candidate codebook corresponding to the candidate sparse array.
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; value, used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the transceiver is further configured to receive indication information of the total number of antennas in the reference uniform array sent by the base station, and determine the total number of antennas in the reference uniform array.
  • the embodiment of the present disclosure also provides a base station 130, including:
  • the first sending module 131 is configured to use the first sparse array to send a reference signal to the terminal;
  • the first receiving module 132 is configured to receive antenna indication information and precoding matrix indication information corresponding to the second sparse array sent by the terminal, wherein the second sparse array is determined by the terminal according to the reference signal Find the first number of antennas in the first sparse array, and select a sparse array corresponding to one of the multiple candidate arrangements of the first number of antennas in the reference uniform array. Arrangement, the antenna indication information is used to indicate the position of the antennas in the second sparse array relative to the reference uniform array.
  • the base station also includes:
  • the first determination module is configured to determine the positions of the antennas in the second candidate sparse array relative to the reference uniform array according to the antenna indication information corresponding to the second sparse array;
  • the first generation module is configured to delete the antennas in the second candidate sparse array from the first codebook corresponding to the reference uniform array according to the positions of the antennas in the second candidate sparse array relative to the reference uniform array.
  • a codeword corresponding to the activated antenna to obtain a second codebook corresponding to the second sparse array;
  • the second sending module is configured to select a target precoding vector according to the precoding matrix indication information and the second codebook, and send the demodulation reference signal and/or data information of the terminal after precoding.
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; value, used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the base station also includes:
  • the third sending module is configured to send indication information of the total number of antennas in the reference uniform array to the terminal.
  • an embodiment of the present disclosure further provides a base station 140, including: a transceiver 141 and a processor 142;
  • the transceiver 141 is configured to use the first sparse array to send a reference signal to the terminal;
  • the processor 142 is configured to receive antenna indication information and precoding matrix indication information corresponding to the second sparse array sent by the terminal, where the second sparse array is determined by the terminal according to the reference signal Find the first number of antennas in the first sparse array, and select a sparse array corresponding to one of the multiple candidate arrangements of the first number of antennas in the reference uniform array. Arrangement, the antenna indication information is used to indicate the position of the antennas in the second sparse array relative to the reference uniform array.
  • the processor is further configured to determine the positions of the antennas in the second candidate sparse array relative to the reference uniform array according to the antenna indication information corresponding to the second sparse array; according to the first The positions of the antennas in the two candidate sparse arrays relative to the reference uniform array are deleted from the first codebook corresponding to the reference uniform array, and the codewords corresponding to the inactive antennas in the second sparse array are deleted to obtain the The second codebook corresponding to the second sparse array;
  • the transceiver is further configured to select a target precoding vector according to the precoding matrix indication information and the second codebook, and precode the demodulation reference signal and/or data information of the terminal before sending it.
  • the antenna indication information of the second sparse array is a bitmap bitmap, and each bit in the bitmap corresponds to an antenna in the reference uniform array; value, used to indicate whether the antenna corresponding to the bit is activated in the sparse array.
  • the transceiver is further configured to send indication information of the total number of antennas in the reference uniform array to the terminal.
  • an embodiment of the present disclosure also provides a terminal 150, including a processor 151, a memory 152, and a computer program stored in the memory 152 and operable on the processor 151.
  • the computer program is executed by the processor 151.
  • each process of the above embodiment of the method for transmitting precoding matrix indication information performed by the terminal can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • an embodiment of the present disclosure also provides a network device 160, including a processor 161, a memory 162, and a computer program stored in the memory 162 and operable on the processor 161.
  • the computer program is executed by the processor.
  • 161 implements the various processes of the above embodiment of the method for obtaining precoding matrix indication information performed by the base station when executed, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present disclosure also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above embodiment of the method for sending or obtaining the precoding matrix indication information is implemented.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk, etc.) ) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in various embodiments of the present disclosure.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, for In other electronic units or combinations thereof that perform the functions described in this disclosure.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种预编码矩阵指示信息的发送方法及设备,该方法包括:终端接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;所述终端根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;所述终端根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。

Description

预编码矩阵指示信息的发送方法及设备
相关申请的交叉引用
本申请主张在2021年11月12日在中国提交的中国专利申请No.202111340500.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,具体涉及一种预编码矩阵指示信息的发送方法及设备。
背景技术
大规模天线设计需要考虑迎风面、体积、重量和功耗等方面商用部署的限制。特别是在高频段,由于高频段天线间距小,同等部署规格下可支持的天线阵子数更多。面向未来超大规模天线的发展,无论是低频还是高频,考虑阵子的优化设计,采用稀布阵以降低整机成本并提高系统性能成为超大规模天线演进的研究方向之一。稀布阵(也可称为稀疏阵)是一种非规则阵列,旨在通过优化阵元的位置、激励幅度等,以较少的阵元数实现原均匀阵的性能。
为实现稀布阵在移动通信系统中的良好应用,需要考虑稀布阵如何进行预编码操作。相关技术中移动通信系统中,天线的预编码方案包括两类:一是基于信道互易性的预编码方案,二是基于码本的预编码方案。当系统采用频分复用(Frequency Division Duplex,FDD)制式或用户终端(User Equipment,UE)处于高速移动时,基于信道互易性的预编码方案用于数据传输效果并不理想,因而需要考虑基于码本的预编码方案。本文讨论的预编码方案是拟应用于稀布阵的基于码本的预编码方案。
当移动通信系统采用稀布阵,并考虑基于码本的预编码方案时,由于相关技术仅支持特定天线数(2的幂次方)的均匀阵(阵间距固定)预编码码本,并不支持稀布阵(天线数量不一定是2的幂次方,以及阵间距并不固定)对应的预编码码本,因此在移动通信系统采用稀布阵进行数据传输时,终端 无法向基站反馈基于稀布阵天线数规格的预编码矩阵指示(Precoding Matrix Indicator,PMI)信息。此外,由于稀布阵的天线数量、天线间距与应用场景、稀布综合算法有关,因此未来稀布阵的阵列形式一定是多样化的,对稀布阵预编码码本进行标准化难度较大。
发明内容
本公开的至少一个实施例提供了一种预编码矩阵指示信息的发送方法及设备,通过基站与终端交互并处理稀布阵的天线指示信息,使得稀布阵可复用相关技术中的码本进行基于码本的传输。
根据本公开的一个方面,至少一个实施例提供了一种预编码矩阵指示信息的发送方法,包括:
终端接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;
所述终端根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;
所述终端根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
此外,根据本公开的至少一个实施例,根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本,包括:
根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置;
根据所述稀布阵中的天线相对于参考均匀阵的位置,从所述第一码本中删除所述稀布阵中未激活的天线所对应的码字,得到所述第二码本。
此外,根据本公开的至少一个实施例,所述根据所述第二码本生成预编码矩阵指示信息,包括:
接收所述基站发送的参考信号并进行下行信道估计,得到下行信道矩阵观测量;
根据所述第二码本和所述下行信道矩阵观测量,计算得到预编码向量,并根据所述预编码向量,确定预编码矩阵指示信息。
此外,根据本公开的至少一个实施例,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
此外,根据本公开的至少一个实施例,在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,所述根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置,包括:
所述终端根据预先获得的所述参考均匀阵中的天线总数的配置信息,确定所述参考均匀阵中的天线总数;
根据预先获得的所述稀布阵的天线排布特征和所述稀布阵中的部分天线相对于所述参考均匀阵的位置,确定出所述稀布阵中的剩余天线相对于所述参考均匀阵的位置,并与所述稀布阵中的部分天线相对于所述参考均匀阵的位置合并,得到所述稀布阵中的全部天线相对于所述参考均匀阵的位置。
此外,根据本公开的至少一个实施例,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
此外,根据本公开的至少一个实施例,所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,
所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
根据本公开的另一方面,至少一个实施例提供了一种预编码矩阵指示信息的获取方法,包括:
基站根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息并发送给终端;
所述基站利用所述稀布阵发送参考信号,以及,接收所述终端发送的预编码矩阵指示信息。
此外,根据本公开的至少一个实施例,在接收所述预编码矩阵指示信息之后,所述方法还包括:
所述基站利用预编码矩阵指示信息和第二码本,选取目标预编码向量, 其中,所述第二码本是根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本处理后得到的;
所述基站利用目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
此外,根据本公开的至少一个实施例,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
此外,根据本公开的至少一个实施例,在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息,包括:
根据所述稀布阵的天线排布特征,从所述稀布阵中的全部天线中选择出部分天线,根据所述部分天线相对于所述参考均匀阵的位置,生成所述稀布阵的天线指示信息。
此外,根据本公开的至少一个实施例,还包括:
所述基站将所述参考均匀阵中的天线总数的信息配置给所述终端。
此外,根据本公开的至少一个实施例,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
此外,根据本公开的至少一个实施例,所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,
所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
根据本公开的另一方面,至少一个实施例提供了一种预编码矩阵指示信息的发送方法,包括:
终端接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量;
所述终端根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本;
所述终端根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵 中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
此外,根据本公开的至少一个实施例,所述根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,包括:
所述终端根据每个候选稀布阵对应的候选码本,计算得到每个候选稀布阵对应的预编码向量及预编码矩阵指示信息;
所述终端根据每个候选稀布阵对应的预编码向量,从所述多个候选稀布阵中确定出满足预设条件的第二稀布阵。
此外,根据本公开的至少一个实施例,所述预设条件为信道容量最大化。
此外,根据本公开的至少一个实施例,所述生成每个候选稀布阵对应的候选码本,包括:
根据所述候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述候选稀布阵中未激活的天线所对应的码字,得到所述候选稀布阵对应的候选码本。
此外,根据本公开的至少一个实施例,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
此外,根据本公开的至少一个实施例,还包括:
所述终端接收基站发送的所述参考均匀阵中的天线总数的指示信息,确定所述参考均匀阵中的天线总数。
根据本公开的另一方面,至少一个实施例提供了一种预编码矩阵指示信息的获取方法,包括:
基站利用第一稀布阵向终端发送参考信号;
所述基站接收所述终端发送的第二稀布阵对应的天线指示信息和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天 线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
此外,根据本公开的至少一个实施例,还包括:
所述基站根据所述第二稀布阵对应的天线指示信息,确定所述第二候选稀布阵中的天线相对于参考均匀阵的位置;
根据所述第二候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述第二稀布阵中未激活的天线所对应的码字,得到所述第二稀布阵对应的第二码本;
所述基站根据所述预编码矩阵指示信息和所述第二码本,选取目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
此外,根据本公开的至少一个实施例,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
此外,根据本公开的至少一个实施例,还包括:
所述基站向终端发送所述参考均匀阵中的天线总数的指示信息。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括收发机和处理器,其中,
所述收发机,用于接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;
所述处理器,用于根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
根据本公开的另一方面,至少一个实施例提供了一种基站,包括收发机和处理器,其中,
所述处理器,用于根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息并发送给终端;
所述收发机,用于利用所述稀布阵发送参考信号,以及,接收所述终端发送的预编码矩阵指示信息。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括收发机 和处理器,其中,
所述收发机,用于接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量;
所述处理器,用于根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本;根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
根据本公开的另一方面,至少一个实施例提供了一种基站,包括收发机和处理器,其中,
所述收发机,用于利用第一稀布阵向终端发送参考信号;
所述处理器,用于接收所述终端发送的第二稀布阵对应的天线指示信息和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的方法的步骤,或者实现如上所述的方法的步骤。
根据本公开的另一方面,至少一个实施例提供了一种基站,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的方法的步骤,或者实现如上所述的方法的步骤。
根据本公开的另一方面,至少一个实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时,实现如上所述的方法的步骤。
与相关技术相比,本公开实施例提供的预编码矩阵指示信息的发送方法及设备,本公开实施例通过基站与终端之间交互所述稀布阵的天线指示信息,使得稀布阵可复用相关标准定义的均匀阵的码本,在基于码本传输时可达到与均匀阵方向图相当的波束指向,有效提升超大规模多进多出(Multiple Input Multiple Output,MIMO)应用稀布阵的系统性能。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例的一种应用场景示意图;
图2为本公开一实施例的预编码矩阵指示信息的发送方法的流程图;
图3为本公开一实施例中生成bitmap以及确定第一码本的示例图;
图4为本公开一实施例的预编码矩阵指示信息的获取方法的流程图;
图5为本公开另一实施例的预编码矩阵指示信息的发送方法的流程图;
图6为本公开另一实施例的预编码矩阵指示信息的获取方法的流程图;
图7为本公开一实施例的终端的结构示意图;
图8为本公开另一实施例的终端的结构示意图;
图9为本公开一实施例的基站的结构示意图;
图10为本公开另一实施例的基站的结构示意图;
图11为本公开又实施例的终端的结构示意图;
图12为本公开又一实施例的终端的结构示意图;
图13为本公开又一实施例的基站的结构示意图;
图14为本公开又一实施例的基站的结构示意图;
图15为本公开又一实施例的终端的结构示意图;
图16为本公开又一实施例的基站的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于新空口(New Radio,NR)系统以及长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.21(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System, UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作用户终端或用户设备(UE,User Equipment),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站和/或核心网网元,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本文中,阵列天线是指由多个单个天线按一定规律排列组成的天线系统,也称天线阵。均匀阵是指各个天线之间阵间距固定,且通常天线总数为2的幂次方的阵列天线。稀布阵是指各个天线之间阵间距并不固定,且天线总数不一定是2的幂次方的阵列天线。
本公开实施例提供了一种预编码矩阵指示信息的发送方法,通过基站与终端间交互和处理稀布阵的天线指示信息,使得稀布阵可复用相关标准中的码本进行基于码本的传输。具体的,根据天线指示信息的配置方式的不同, 本公开实施例可以分为由基站确定天线指示信息和由终端确定天线指示信息。下面发分别对这两种实现方式进行说明。
首先介绍由基站确定天线指示信息,即,基站将稀布阵的天线指示信息配置给终端。
请参照图2,本公开实施例提供的预编码矩阵指示信息的发送方法,在应用于终端侧时,包括:
步骤21,终端接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵中的位置。
这里,为了复用相关技术中均匀阵的基于码本的传输,本公开实施例以一个均匀阵(参考均匀阵)为参考天线阵列,对稀布阵中的天线位置进行指示,从而生成上述稀布阵的天线指示信息。所述稀布阵仅包括有所述参考均匀阵中的部分天线,因此,可以看作是所述参考均匀阵的一个子集。也就是说,本公开实施例,所述天线指示信息用于以参考均匀阵的天线位置为参考,指示所述稀布阵中存在的天线(即激活天线)。又或者是,所述天线指示信息用于通过参考均匀阵中的天线位置,指示所述稀布阵中存在的天线。
所述稀布阵的天线指示信息的一种形式为比特位图(bitmap),比特位图中的每个比特位分别对应于均匀阵中的一个天线,例如,一种对应方式可以是按照从左到右,从上到下的先后顺序,将各个比特位与均匀阵中的各个天线一一对应,对此本公开实施例不做具体限定。这样,可以通过所述比特位图中的每个比特位的取值,来指示该比特位对应的天线在所述稀布阵中是否激活。例如,当某个比特位取值为1时,表示该比特位对应的天线是激活的,即稀布阵中存在该比特位对应的天线,反之,当该比特位取值为0时,表示该比特位对应的天线是未激活的,即稀布阵中不存在该比特位对应的天线。
如图3所示,假设均匀阵一共有N根天线,分别为:天线0、天线1、…、天线N-1。此时,采用N个比特位的bitmap,分别为:比特位0、比特位1、…、比特位N-1。这样,每个比特位分别对应一个天线,例如,比特位0对应于均匀阵中的天线0,比特位1对应于均匀阵中的天线1,以此类推。稀布阵的天线位置是以参考均匀阵中的天线位置为参考,当参考均匀阵中的某个天线位置存在稀布阵的天线(如图3中的黑色圆圈位置)时,此时,该天线位置 对应的bitmap中的比特位的取值为1。当参考均匀阵中的某个天线位置不存在稀布阵的天线(如图3中的白色圆圈位置)时,此时,该天线位置对应的bitmap中的比特位的取值为0,从而可以得到稀布阵的天线指示信息,以bitmap的形式来表示。当然,上述取值的定义也可以互换,例如,取值为0时表示激活,反之,取值为1时表示未激活。本公开实施例对此不做具体限定。
步骤22,所述终端根据所述稀布阵的天线指示信息,对所述均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本。
这里,可以根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置,例如,当bitmap中的某个比特位取值为1时,表示稀布阵中存在该比特位对应的天线,该天线的位置可以通过该天线相对于参考均匀阵的位置进行指示。例如,仍以图3为例,当btimap中比特位0的取值为1时,表示该比特位存在有激活天线,且该天线的位置为:均匀阵中天线0的位置。
然后,根据所述稀布阵中的天线相对于参考均匀阵的位置,从所述第一码本中删除所述稀布阵中未激活的天线所对应的码字,得到所述第二码本。仍以图3为例,示出了参考均匀阵对应的第一码本,其中每一列分别对应于参考均匀阵中的一个天线。由于比特位0的取值为1,因此保留该比特位对应的天线的码字,即保留第一码本中的第一列,如图3中的实线方框所示。由于比特位1的取值为0,因此删除该比特位对应的天线的码字,即删除第一码本中的第2列,如图3中的虚线方框所示。这样,通过以上处理,本公开实施例对第一码本进行维度缩减,从而复用了相关标准中的码本(第一码本C),获得稀布阵对应的码本(第二码本C s)。
步骤23,所述终端根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
这里,终端可以接收基站发送的参考信号并进行下行信道估计,得到下行信道矩阵观测量。然后,根据所述第二码本和所述下行信道矩阵观测量,计算得到预编码向量,进而根据所述预编码向量,确定预编码矩阵指示信息。
具体的,终端接收基站发送的信道状态信息参考信号(Channel State  Information Reference Signal,CSI-RS),根据CSI-RS进行下行信道估计,计算得到下行信道矩阵观测量
Figure PCTCN2022128554-appb-000001
然后,按照预设准则,基于第二码本C s,计算预编码向量Q j。例如,按照信道容量最大化准则,基于第二码本C s,计算得到使信道容量最大化的预编码向量Q j,具体计算方式可以参考公式1:
Figure PCTCN2022128554-appb-000002
公式1中,P I为干扰功率,N noise为噪声功率。
然后根据Q j获得预编码矩阵指示(Precoding matrix indicator,PMI)信息。
通过以上步骤,本公开实施例能够基于相关技术中均匀阵的第一码本,生成稀布阵的预编码矩阵指示信息,这样,基站可以参考终端发送的预编码矩阵指示信息,并基于第二码本C s选取预编码向量,从而对所述终端的解调参考信号(如专用解调参考信号(Dedicated demodulation reference signals,DM-RS))和数据信息进行预编码后发送。
本公开实施例中,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述均匀阵的位置。例如,在所述天线指示信息采用比特位图表示时,所述比特位图的比特长度可以等于所述参考均匀阵中的天线总数,也可以小于所述参考均匀阵中的天线总数。在仅指示部分天线的位置信息,可以减少天线指示信息的开销,降低传输资源的消耗。
在所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述均匀阵的位置,可以直接根据所述天线指示信息,确定出所述稀布阵中的全部天线相对于所述均匀阵的位置。
在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述均匀阵的位置的情况下,例如,在所述比特位图的比特长度小于所述均匀阵中的天线总数的情况下,本公开实施例可以预先通过显式或隐式的方式将参考均匀阵的天线总数的信息配置给终端。例如,在所述天线指示信息中还同时配置参考均匀阵的天线总数,或者基站通过另外的配置消息,配置所述参考均 匀阵的天线总数,又或者是预先终端本地配置所述参考均匀阵的天线总数。然后,在上述步骤22中,所述终端可以根据预先获得的所述均匀阵中的天线总数的配置信息,确定所述均匀阵中的天线总数;然后,所述终端根据预先获得的所述稀布阵的天线排布特征和所述稀布阵中的部分天线相对于所述参考均匀阵的位置,确定出所述稀布阵中的剩余天线相对于所述参考均匀阵的位置,并与所述稀布阵中的部分天线相对于所述参考均匀阵的位置合并,得到所述稀布阵中的全部天线相对于所述参考均匀阵的位置。
举例来说,对于天线排布特征具有中心对称性的稀布阵,可以在所述天线指示信息仅指示所述稀布阵中的前半部分或后半部分的天线相对于所述均匀阵的位置。例如,在所述天线指示信息采用bitmap表示时,假设接收到的bitmap的长度为8比特,而所述天线总数为16,此时,可以将接收到的bitmap进行镜像处理,得到一个镜像bitmap,然后,将这两个bitmap拼接,可以得到16位的新bitmap,该方式适用于天线排布特征具有中心对称性的稀布阵。上述镜像处理是指将接收到的bitmap中各个比特位进行倒序处理,即将原bitmap中的第一个比特位作为镜像bitmap的最后一个比特位,将原bitmap中的第二个比特位作为镜像bitmap的倒数第二个比特位,以此类推,直至将原bitmap中的最后一个比特位作为镜像bitmap的第一个比特位,得到镜像bitmap。例如,原bitmap为10110101,镜像bitmap则为10101101,最终拼接得到的新bitmap为1011010110101101。
请参照图4,本公开实施例的预编码矩阵指示信息的获取方法,在应用于基站时,包括:
步骤41,基站根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息并发送给终端。
步骤42,所述基站利用所述稀布阵发送参考信号,以及,接收所述终端发送的预编码矩阵指示信息。
通过以上步骤,本公开实施例的基站向终端配置了稀布阵的天线指示信息,且该指示信息基于参考均匀阵的天线位置生成,从而可以复用相关技术中均匀阵的码本,进行基于码本的传输。
在上述步骤42之后,所述基站还可以利用所述预编码矩阵指示信息和第 二码本,选取目标预编码向量,其中,所述第二码本是根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本处理后得到的,生成第二码本的方式可参考上文中的介绍,为节约篇幅,此处不再赘述。然后,所述基站利用目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
类似的,所述天线指示信息可以指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,在上述步骤41中,所述基站可以根据所述稀布阵的天线排布特征,从所述稀布阵中的全部天线中选择出部分天线,根据所述部分天线相对于所述参考均匀阵的位置,生成所述稀布阵的天线指示信息。这里,所选择出的部分天线,需要满足以下条件:基于该部分天线的位置,能够确定出稀布阵中剩余天线的位置。
例如,对于天线排布特征具有中心对称性的稀布阵,可以在所述天线指示信息仅指示所述稀布阵中的前半部分或后半部分的天线相对于所述均匀阵的位置。剩余的另一半天线的位置,则可以由接收端按照中心对称的排布特征,在已获得的天线位置基础上生成。
作为一种实现方式,所述稀布阵的天线指示信息可以是比特位图(bitmap),所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。所述比特位图的比特长度可以等于所述参考均匀阵中的天线总数;或者,所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
另外,在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置时,基站还可以将所述参考均匀阵中的天线总数的信息配置给所述终端。具体的,可以在所述天线指示信息中进行配置,也可以通过另外的配置消息进行配置。对此,本公开不做具体限定。
接下来介绍由终端确定天线指示信息,即终端将稀布阵的天线指示信息 发送给基站。
请参照图5,本公开实施例提供的预编码矩阵指示信息的发送方法,在应用于终端侧时,包括:
步骤51,终端接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量。
这里,基站利用第一稀布阵发送参考信号,终端接收所述参考信号并进行下行信道估计,得到下行信道矩阵观测量
Figure PCTCN2022128554-appb-000003
进而可以根据下行信道矩阵观测量
Figure PCTCN2022128554-appb-000004
确定所述第一稀布阵中天线的第一数量。所述参考信号可以是CSI-RS。
步骤52,所述终端根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本。
这里,终端根据第一数量的天线在参考均匀阵中的各种候选排布方式,可以得到多个候选稀布阵。所述第一稀布阵仅包括有所述参考均匀阵中的部分天线,因此,可以看作是所述参考均匀阵的一个子集。然后,所述终端可以根据所述候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本C中删除所述候选稀布阵中未激活的天线所对应的码字,得到所述候选稀布阵对应的候选码本C s
步骤53,所述终端从所述多个候选稀布阵中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
这里,所述终端可以根据每个候选稀布阵对应的候选码本,计算得到每个候选稀布阵对应的预编码向量及预编码矩阵指示信息;然后,根据每个候选稀布阵对应的预编码向量,从所述多个候选稀布阵中确定出满足预设条件的第二稀布阵。其中一种预先条件是信道容量最大化。
例如,基于第i个候选稀布阵对应的候选码本,计算预编码向量Q i,j。例如,按照信道容量最大化准则,基于候选码本,计算得到使信道容量最大化的预编码向量Q i,j及对应的信道容量。具体计算方式可以参考公式2:
Figure PCTCN2022128554-appb-000005
公式2中,P I为干扰功率,N noise为噪声功率。
然后,根据各个候选稀布阵对应的预编码向量Q i,j及对应的信道容量,选择出最大信道容量所对应的预编码向量Q i,j,将该预编码向量Q i,j对应的候选稀布阵作为所述第二稀布阵,生成所述第二稀布阵对应的天线指示信息,获得该预编码向量Q i,j对应的预编码矩阵指示信息(即第二稀布阵对应的预编码矩阵指示信息)。
作为一种表示形式,所述第二稀布阵的天线指示信息可以通过比特位图(bitmap)来表示,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
通过以上步骤,本公开实施例由终端确定稀布阵对应的天线指示信息并发送给基站,由于所述天线指示信息采用参考均匀阵来指示天线位置,使得基站可以复用相关技术中均匀阵的码本,确定稀布阵的码本并进行基于码本的传输。
另外,本公开实施例可以预先通过显式或隐式的方式将参考均匀阵的天线总数的信息配置给终端。例如,所述终端接收基站发送的所述参考均匀阵中的天线总数的指示信息,确定所述参考均匀阵中的天线总数。当然,也可以预先终端本地配置所述参考均匀阵的天线总数。
请参照图6,本公开实施例提供的预编码矩阵指示信息的发送方法,在应用于基站侧时,包括:
步骤61,基站利用第一稀布阵向终端发送参考信号。
这里,基站利用第一稀布阵发送参考信号,所述参考信号可以是CSI-RS。
步骤62,所述基站接收所述终端发送的第二稀布阵对应的天线指示信息和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
通过以上步骤,本公开实施例的终端向基站反馈了第二稀布阵的天线指示信息,且该指示信息基于参考均匀阵的天线位置生成,从而可以复用相关技术中均匀阵的码本,进行基于码本的传输。
在上述步骤62之后,所述基站还可以根据所述第二稀布阵对应的天线指示信息,确定所述第二候选稀布阵中的天线相对于参考均匀阵的位置。然后,根据所述第二候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述第二稀布阵中未激活的天线所对应的码字,得到所述第二稀布阵对应的第二码本。然后,所述基站根据所述预编码矩阵指示信息和所述第二码本,选取目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
具体的,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
另外,所述基站向终端发送所述参考均匀阵中的天线总数的指示信息。
从以上所述可以看出,本公开实施例通过基站与终端之间交互所述稀布阵的天线指示信息,使得稀布阵可复用相关标准定义的均匀阵的码本,在基于码本传输时可达到与均匀阵方向图相当的波束指向,有效提升超大规模MIMO应用稀布阵的系统性能。
以上分别从终端和基站侧,对由基站确定天线指示信息的第一种实现方式和由终端确定天线指示信息的第二种实现方式分别进行了说明。下面通过若干示例,以天线指示信息采用bitmap为例,对以上实现方式做进一步的说明。
示例1:基站确定bitmap,参考均匀阵的天线总数16,且bitmap长度与均匀阵天线总数相同。该示例包括以下步骤:
a、基站根据稀布阵的天线排布方式确定bitmap信息,bitmap长度16:1011010110101101(其中,稀布阵的激活天线数为10)。
b、基站通过相关信令(例如RRC信令)发送bitmap信息。
c、终端获取bitmap信息,并对参考均匀阵对应的第一码本进行预处理, 根据bitmap信息,终端获取原均匀阵天线总数信息16和激活的天线位置信息,对于取值为0的比特位对应的码字信息进行剔除,剔除完成后的码本构成维度为64*10的码本C s(假设O1为4)。
d、终端基于码本C s获取PMI信息。假设根据上述公式1,计算得到PMI为16。
e、终端向基站上报PMI信息。
f、基站参考反馈的PMI信息,基于C s选取预编码向量,并对DM-RS和/或数据信息进行预编码后发送。
示例2:基站确定bitmap,假设参考均匀阵天线总数16,bitmap长度为参考均匀阵的天线总数的1/2。
a、基站根据稀布阵的天线排布方式确定bitmap信息,根据稀布阵天线排布的中心对称特性,可配置bitmap长度为8:10110101(另外,可以通过显式/隐式方式,配置当前bitmap长度是参考均匀阵天线总数的二分之一)。
b、基站通过相关信令(例如RRC信令)发送bitmap信息和参考均匀的阵天线总数的信息。
c、终端获取bitmap信息,并对参考均匀阵的第一码本进行预处理,根据bitmap信息,终端获取参考均匀阵天线总数信息16和激活的天线位置信息,对于取值为0的比特位对应的码字信息进行剔除,剔除完成后的码本构成维度为64*10的C s(假设O1为4)。
d、终端基于码本C s获取PMI信息。根据公式1计算得到PMI为16。
e、终端向基站上报PMI信息。
f、基站参考反馈的PMI信息,基于C s选取预编码向量,并对DM-RS和/或数据信息进行预编码后发送。
示例3:终端确定bitmap
a、基站通过有限的天线数(例如12)发送CSI-RS信息。
b、终端根据CSI-RS信息,进行下行信道估计,计算下行信道矩阵观测量
Figure PCTCN2022128554-appb-000006
c、终端根据
Figure PCTCN2022128554-appb-000007
探测到的基站天线数,构建若干个候选的bitmap,假设如表1所示:
索引(Index) bitmap
1 1011010110101101
2 1011001111001101
3 1101010110101011
4 1010110110110101
表1
对于每一个bitmap,构建码本C s,分别计算每个bitmap对应的预编码向量,其中,第i个bitmap对应的预编码向量为Q i,j
d、终端根据Q i,j获得每个bitmap对应PMI信息,如表2所示:
Figure PCTCN2022128554-appb-000008
表2
可以看出,第2个bitmap可使信道容量最大化(22.4598)。
e、终端向基站上报第2个bitmap信息和PMI为48的信息。
f、基站参考反馈的bitmap信息和PMI信息,基于对应的C s码本选取预编码向量,并对DM-RS和/或数据信息进行预编码后发送。
以上介绍了本公开实施例的各种方法。下面将进一步提供实施上述方法的装置。
请参考图7,本公开实施例还提供一种终端70,包括:
第一接收模块71,用于接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;
码本处理模块72,用于根据所述稀布阵的天线指示信息,对所述参考均 匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;
第一发送模块73,用于根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
可选地,所述预处理模块,还用于:根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置;根据所述稀布阵中的天线相对于参考均匀阵的位置,从所述第一码本中删除所述稀布阵中未激活的天线所对应的码字,得到所述第二码本。
可选地,所述第一发送模块,还用于:接收所述基站发送的参考信号并进行下行信道估计,得到下行信道矩阵观测量;根据所述第二码本和所述下行信道矩阵观测量,计算得到预编码向量,并根据所述预编码向量,确定预编码矩阵指示信息。
可选地,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
可选地,所述预处理模块,还用于:在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,根据预先获得的所述参考均匀阵中的天线总数的配置信息,确定所述参考均匀阵中的天线总数;根据预先获得的所述稀布阵的天线排布特征和所述稀布阵中的部分天线相对于所述参考均匀阵的位置,确定出所述稀布阵中的剩余天线相对于所述参考均匀阵的位置,并与所述稀布阵中的部分天线相对于所述参考均匀阵的位置合并,得到所述稀布阵中的全部天线相对于所述参考均匀阵的位置。
可选地,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
请参考图8,本公开实施例还提供一种终端80,包括:收发机81和处理器82;
所述收发机81,用于接收基站发送的稀布阵的天线指示信息,所述天线 指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;
所述处理器82,用于根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
可选地,所述处理器,还用于:根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置;根据所述稀布阵中的天线相对于参考均匀阵的位置,从所述第一码本中删除所述稀布阵中未激活的天线所对应的码字,得到所述第二码本。
可选地,所述收发机,还用于接收所述基站发送的参考信号并进行下行信道估计,得到下行信道矩阵观测量;所述处理器,还用于根据所述第二码本和所述下行信道矩阵观测量,计算得到预编码向量,并根据所述预编码向量,确定预编码矩阵指示信息。
可选地,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
可选地,所述处理器,还用于:在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,根据预先获得的所述参考均匀阵中的天线总数的配置信息,确定所述参考均匀阵中的天线总数;根据预先获得的所述稀布阵的天线排布特征和所述稀布阵中的部分天线相对于所述参考均匀阵的位置,确定出所述稀布阵中的剩余天线相对于所述参考均匀阵的位置,并与所述稀布阵中的部分天线相对于所述参考均匀阵的位置合并,得到所述稀布阵中的全部天线相对于所述参考均匀阵的位置。
可选地,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
请参考图9,本公开实施例还提供一种基站90,包括:
第一确定模块91,用于根据稀布阵中的天线相对于参考均匀阵的位置, 确定所述稀布阵的天线指示信息并发送给终端;
第一收发模块92,用于利用所述稀布阵发送参考信号,以及,接收所述终端发送的预编码矩阵指示信息。
可选地,所述基站还包括:
预编码确定模块,用于利用预编码矩阵指示信息和第二码本,选取目标预编码向量,其中,所述第二码本是根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本处理后得到的;
第一发送模块,用于利用目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
可选地,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
可选地,所述第一确定模块,还用于在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,根据所述稀布阵的天线排布特征,从所述稀布阵中的全部天线中选择出部分天线,根据所述部分天线相对于所述参考均匀阵的位置,生成所述稀布阵的天线指示信息。
可选地,所述基站还包括:
第二发送模块,用于将所述参考均匀阵中的天线总数的信息配置给所述终端。
可选地,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
请参考图10,本公开实施例还提供一种基站100,包括:收发机101和处理器102;
所述处理器102,用于根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息并发送给终端;
所述收发机101,用于利用所述稀布阵发送参考信号,以及,接收所述 终端发送的预编码矩阵指示信息。
可选地,所述处理器102,还用于利用预编码矩阵指示信息和第二码本,选取目标预编码向量,其中,所述第二码本是根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本处理后得到的;
所述收发机101,还用于利用目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
可选地,所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
可选地,所述处理器,还用于在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,根据所述稀布阵的天线排布特征,从所述稀布阵中的全部天线中选择出部分天线,根据所述部分天线相对于所述参考均匀阵的位置,生成所述稀布阵的天线指示信息。
可选地,所述收发机101,还用于将所述参考均匀阵中的天线总数的信息配置给所述终端。
可选地,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
请参考图11,本公开实施例还提供一种终端110,包括:
第一接收模块111,用于接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量;
第一生成模块112,用于根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本;
第一发送模块113,用于根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信 息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
可选地,所述第一发送模块113,还用于根据每个候选稀布阵对应的候选码本,计算得到每个候选稀布阵对应的预编码向量及预编码矩阵指示信息;根据每个候选稀布阵对应的预编码向量,从所述多个候选稀布阵中确定出满足预设条件的第二稀布阵。
可选地,所述预设条件为信道容量最大化。
可选地,第一生成模块112,还用于根据所述候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述候选稀布阵中未激活的天线所对应的码字,得到所述候选稀布阵对应的候选码本。
可选地,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述终端还包括:
第一确定模块,用于接收基站发送的所述参考均匀阵中的天线总数的指示信息,确定所述参考均匀阵中的天线总数。
请参考图12,本公开实施例还提供一种终端120,包括:收发机121和处理器122;
所述收发机121,用于接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量;
所述处理器122,用于根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本;根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
可选地,所述收发机121,还用于根据每个候选稀布阵对应的候选码本,计算得到每个候选稀布阵对应的预编码向量及预编码矩阵指示信息;根据每 个候选稀布阵对应的预编码向量,从所述多个候选稀布阵中确定出满足预设条件的第二稀布阵。
可选地,所述预设条件为信道容量最大化。
可选地,所述处理器,还用于根据所述候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述候选稀布阵中未激活的天线所对应的码字,得到所述候选稀布阵对应的候选码本。
可选地,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述收发机,还用于接收基站发送的所述参考均匀阵中的天线总数的指示信息,确定所述参考均匀阵中的天线总数。
请参考图13,本公开实施例还提供一种基站130,包括:
第一发送模块131,用于利用第一稀布阵向终端发送参考信号;
第一接收模块132,用于接收所述终端发送的第二稀布阵对应的天线指示信息和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
可选地,所述基站还包括:
第一确定模块,用于根据所述第二稀布阵对应的天线指示信息,确定所述第二候选稀布阵中的天线相对于参考均匀阵的位置;
第一生成模块,用于根据所述第二候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述第二稀布阵中未激活的天线所对应的码字,得到所述第二稀布阵对应的第二码本;
第二发送模块,用于根据所述预编码矩阵指示信息和所述第二码本,选取目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
可选地,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特 位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述基站还包括:
第三发送模块,用于向终端发送所述参考均匀阵中的天线总数的指示信息。
请参考图14,本公开实施例还提供一种基站140,包括:收发机141和处理器142;
所述收发机141,用于利用第一稀布阵向终端发送参考信号;
所述处理器142,用于接收所述终端发送的第二稀布阵对应的天线指示信息和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
可选地,所述处理器,还用于根据所述第二稀布阵对应的天线指示信息,确定所述第二候选稀布阵中的天线相对于参考均匀阵的位置;根据所述第二候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述第二稀布阵中未激活的天线所对应的码字,得到所述第二稀布阵对应的第二码本;
所述收发机,还用于根据所述预编码矩阵指示信息和所述第二码本,选取目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
可选地,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
可选地,所述收发机,还用于向终端发送所述参考均匀阵中的天线总数的指示信息。
请参考图15,本公开实施例还提供一种终端150,包括处理器151,存 储器152,存储在存储器152上并可在所述处理器151上运行的计算机程序,该计算机程序被处理器151执行时实现上述由终端执行的预编码矩阵指示信息的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
请参考图16,本公开实施例还提供一种网络设备160,包括处理器161,存储器162,存储在存储器162上并可在所述处理器161上运行的计算机程序,该计算机程序被处理器161执行时实现上述由基站执行的预编码矩阵指示信息的获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述预编码矩阵指示信息的发送方法或获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“中包含”或者其任何其他变体意在涵盖非排他性的中包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固 件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (31)

  1. 一种预编码矩阵指示信息的发送方法,包括:
    终端接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;
    所述终端根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;
    所述终端根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
  2. 如权利要求1所述的方法,其中,根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本,包括:
    根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置;
    根据所述稀布阵中的天线相对于参考均匀阵的位置,从所述第一码本中删除所述稀布阵中未激活的天线所对应的码字,得到所述第二码本。
  3. 如权利要求1所述的方法,其中,所述根据所述第二码本生成预编码矩阵指示信息,包括:
    接收所述基站发送的参考信号并进行下行信道估计,得到下行信道矩阵观测量;
    根据所述第二码本和所述下行信道矩阵观测量,计算得到预编码向量,并根据所述预编码向量,确定预编码矩阵指示信息。
  4. 如权利要求1所述的方法,其中,
    所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
  5. 如权利要求4所述的方法,其中,在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,所述根据所述稀布阵的天线指示信息,确定所述稀布阵中的天线相对于参考均匀阵的位置,包括:
    所述终端根据预先获得的所述参考均匀阵中的天线总数的配置信息,确定所述参考均匀阵中的天线总数;
    根据预先获得的所述稀布阵的天线排布特征和所述稀布阵中的部分天线相对于所述参考均匀阵的位置,确定出所述稀布阵中的剩余天线相对于所述参考均匀阵的位置,并与所述稀布阵中的部分天线相对于所述参考均匀阵的位置合并,得到所述稀布阵中的全部天线相对于所述参考均匀阵的位置。
  6. 如权利要求4所述的方法,其中,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
  7. 如权利要求6所述的方法,其中,
    所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,
    所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
  8. 一种预编码矩阵指示信息的获取方法,包括:
    基站根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息并发送给终端;
    所述基站利用所述稀布阵发送参考信号,以及,接收所述终端发送的预编码矩阵指示信息。
  9. 如权利要求8所述的方法,其中,在接收所述预编码矩阵指示信息之后,所述方法还包括:
    所述基站利用预编码矩阵指示信息和第二码本,选取目标预编码向量,其中,所述第二码本是根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本处理后得到的;
    所述基站利用目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
  10. 如权利要求8所述的方法,其中,
    所述天线指示信息用于指示所述稀布阵中的全部天线相对于所述参考均匀阵的位置,或者用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置。
  11. 如权利要求10所述的方法,其中,在所述天线指示信息用于指示所述稀布阵中的部分天线相对于所述参考均匀阵的位置的情况下,根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息,包括:
    根据所述稀布阵的天线排布特征,从所述稀布阵中的全部天线中选择出部分天线,根据所述部分天线相对于所述参考均匀阵的位置,生成所述稀布阵的天线指示信息。
  12. 如权利要求11所述的方法,其中,还包括:
    所述基站将所述参考均匀阵中的天线总数的信息配置给所述终端。
  13. 如权利要求10所述的方法,其中,所述稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
  14. 如权利要求13所述的方法,其中,
    所述比特位图的比特长度等于所述参考均匀阵中的天线总数;或者,
    所述比特位图的比特长度小于所述参考均匀阵中的天线总数。
  15. 一种预编码矩阵指示信息的发送方法,包括:
    终端接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量;
    所述终端根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本;
    所述终端根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
  16. 如权利要求15所述的方法,其中,所述根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,包括:
    所述终端根据每个候选稀布阵对应的候选码本,计算得到每个候选稀布阵对应的预编码向量及预编码矩阵指示信息;
    所述终端根据每个候选稀布阵对应的预编码向量,从所述多个候选稀布 阵中确定出满足预设条件的第二稀布阵。
  17. 如权利要求16所述的方法,其中,所述预设条件为信道容量最大化。
  18. 如权利要求15所述的方法,其中,所述生成每个候选稀布阵对应的候选码本,包括:
    根据所述候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述候选稀布阵中未激活的天线所对应的码字,得到所述候选稀布阵对应的候选码本。
  19. 如权利要求15所述的方法,其中,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
  20. 如权利要求15所述的方法,其中,还包括:
    所述终端接收基站发送的所述参考均匀阵中的天线总数的指示信息,确定所述参考均匀阵中的天线总数。
  21. 一种预编码矩阵指示信息的获取方法,包括:
    基站利用第一稀布阵向终端发送参考信号;
    所述基站接收所述终端发送的第二稀布阵对应的天线指示信息和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
  22. 如权利要求21所述的方法,其中,还包括:
    所述基站根据所述第二稀布阵对应的天线指示信息,确定所述第二候选稀布阵中的天线相对于参考均匀阵的位置;
    根据所述第二候选稀布阵中的天线相对于参考均匀阵的位置,从所述参考均匀阵对应的第一码本中删除所述第二稀布阵中未激活的天线所对应的码字,得到所述第二稀布阵对应的第二码本;
    所述基站根据所述预编码矩阵指示信息和所述第二码本,选取目标预编码向量,对所述终端的解调参考信号和/或数据信息进行预编码后发送。
  23. 如权利要求21所述的方法,其中,所述第二稀布阵的天线指示信息为比特位图bitmap,所述比特位图中的每个比特位分别对应所述参考均匀阵中的一个天线;每个比特位的取值,用于指示该比特位对应的天线在所述稀布阵中是否激活。
  24. 如权利要求12所述的方法,其中,还包括:
    所述基站向终端发送所述参考均匀阵中的天线总数的指示信息。
  25. 一种终端,包括收发机和处理器,其中,
    所述收发机,用于接收基站发送的稀布阵的天线指示信息,所述天线指示信息用于指示所述稀布阵中的天线相对于参考均匀阵的位置;
    所述处理器,用于根据所述稀布阵的天线指示信息,对所述参考均匀阵对应的第一码本进行预处理,得到所述稀布阵对应的第二码本;根据所述第二码本生成预编码矩阵指示信息并发送给所述基站。
  26. 一种基站,包括收发机和处理器,其中,
    所述处理器,用于根据稀布阵中的天线相对于参考均匀阵的位置,确定所述稀布阵的天线指示信息并发送给终端;
    所述收发机,用于利用所述稀布阵发送参考信号,以及,接收所述终端发送的预编码矩阵指示信息。
  27. 一种终端,包括收发机和处理器,其中,
    所述收发机,用于接收基站利用第一稀布阵发送的参考信号并进行下行信道估计,确定所述第一稀布阵中天线的第一数量;
    所述处理器,用于根据所述第一数量的天线在参考均匀阵中的多种候选排布方式,确定出多个候选稀布阵,并生成每个候选稀布阵对应的候选码本;根据所述候选稀布阵对应的候选码本,从所述多个候选稀布阵中选择出第二稀布阵,将所述第二稀布阵对应的天线指示信息和预编码矩阵指示信息发送给基站,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
  28. 一种基站,包括收发机和处理器,其中,
    所述收发机,用于利用第一稀布阵向终端发送参考信号;
    所述处理器,用于接收所述终端发送的第二稀布阵对应的天线指示信息 和预编码矩阵指示信息,其中,所述第二稀布阵是所述终端根据所述参考信号确定出所述第一稀布阵中天线的第一数量,并从所述第一数量的天线在所述参考均匀阵中的多种候选排布方式中选择出的一种排布方式对应的稀布阵,所述天线指示信息用于指示第二稀布阵中的天线相对于所述参考均匀阵中的位置。
  29. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至7任一项所述的方法的步骤,或者实现如权利要求15至20任一项所述的方法的步骤。
  30. 一种基站,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求8至14任一项所述的方法的步骤,或者实现如权利要求21至24任一项所述的方法的步骤。
  31. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至24任一项所述的方法的步骤。
PCT/CN2022/128554 2021-11-12 2022-10-31 预编码矩阵指示信息的发送方法及设备 WO2023083033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111340500.6 2021-11-12
CN202111340500.6A CN116131889A (zh) 2021-11-12 2021-11-12 预编码矩阵指示信息的发送方法及设备

Publications (1)

Publication Number Publication Date
WO2023083033A1 true WO2023083033A1 (zh) 2023-05-19

Family

ID=86294289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128554 WO2023083033A1 (zh) 2021-11-12 2022-10-31 预编码矩阵指示信息的发送方法及设备

Country Status (2)

Country Link
CN (1) CN116131889A (zh)
WO (1) WO2023083033A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299775A (zh) * 2010-06-24 2011-12-28 上海贝尔股份有限公司 一种预编码矩阵的选择方法和装置
GB2492564A (en) * 2011-07-05 2013-01-09 Renesas Mobile Corp Cooperative MIMO with double codebook precoding and transmission of antenna grouping information
CN107113037A (zh) * 2014-11-14 2017-08-29 交互数字专利控股公司 二维天线阵列中的天线虚拟化
CN109075851A (zh) * 2016-03-24 2018-12-21 华为技术有限公司 大规模多输入多输出(mimo)中的下行信道估计系统和方法
CN113595944A (zh) * 2021-07-30 2021-11-02 电子科技大学 一种用于毫米波mimo混合预编码系统的信道估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299775A (zh) * 2010-06-24 2011-12-28 上海贝尔股份有限公司 一种预编码矩阵的选择方法和装置
GB2492564A (en) * 2011-07-05 2013-01-09 Renesas Mobile Corp Cooperative MIMO with double codebook precoding and transmission of antenna grouping information
CN107113037A (zh) * 2014-11-14 2017-08-29 交互数字专利控股公司 二维天线阵列中的天线虚拟化
CN109075851A (zh) * 2016-03-24 2018-12-21 华为技术有限公司 大规模多输入多输出(mimo)中的下行信道估计系统和方法
CN113595944A (zh) * 2021-07-30 2021-11-02 电子科技大学 一种用于毫米波mimo混合预编码系统的信道估计方法

Also Published As

Publication number Publication date
CN116131889A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11991682B2 (en) Method and apparatus for fast beam management
US10498507B2 (en) Method and apparatus for channel state information reference signal (CSI-RS)
EP2880898B1 (en) Method and apparatus for controlling ri report
JP6285609B2 (ja) 無線接続システムにおいて多重ランク支援のためのハイブリッドビームフォーミング方法及び装置
US10985829B2 (en) Beam management systems and methods
US10454560B2 (en) Beam management systems and methods
WO2022002201A1 (zh) 波束指示方法、装置、终端及网络侧设备
WO2020098631A1 (zh) 上行功率控制的方法和设备
WO2018095305A1 (zh) 一种波束训练方法及装置
US11736155B2 (en) Method and device for transmitting signal
CN110168956B (zh) 宽发送扇区级扫描(sls)扇区
US20210399783A1 (en) Method and apparatus for uplink transmit beam selection
US20200059903A1 (en) Signal transmission method, terminal device, and network device
US20180269943A1 (en) Wideband sector sweep using wideband training (trn) field
US9872306B2 (en) Efficient optimal group id management scheme for MU-MIMO systems
WO2023083033A1 (zh) 预编码矩阵指示信息的发送方法及设备
EP4320743A1 (en) Methods of csi reporting for 5g nr rel. 17 type ii port selection codebook
US11956034B2 (en) Coefficient solution for low peak-to-average power ratio (PAPR) precoders
JP7261223B2 (ja) 基地局及び送信方法
TWI764918B (zh) 傳輸信號的方法、終端設備和網絡設備
US9288009B2 (en) Modulation coding scheme selection for response frames in case of transmit power imbalance
US11799522B2 (en) Signal transmission method, network device, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE