WO2023082799A1 - 一种基于正交三角函数双激励的编码器及其运行方法 - Google Patents

一种基于正交三角函数双激励的编码器及其运行方法 Download PDF

Info

Publication number
WO2023082799A1
WO2023082799A1 PCT/CN2022/117094 CN2022117094W WO2023082799A1 WO 2023082799 A1 WO2023082799 A1 WO 2023082799A1 CN 2022117094 W CN2022117094 W CN 2022117094W WO 2023082799 A1 WO2023082799 A1 WO 2023082799A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
stator
rotor
inner ring
scale area
Prior art date
Application number
PCT/CN2022/117094
Other languages
English (en)
French (fr)
Inventor
许钊华
李泽彪
肖坤
Original Assignee
德普数控(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德普数控(深圳)有限公司 filed Critical 德普数控(深圳)有限公司
Priority to EP22891604.5A priority Critical patent/EP4273508A1/en
Publication of WO2023082799A1 publication Critical patent/WO2023082799A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the application belongs to the technical field of precision measurement, and in particular relates to an encoder with double excitation based on orthogonal trigonometric functions and an operating method thereof.
  • encoders are often required as precision position and angle feedback devices for displacement feedback and high-precision processing and measurement of some mechanical structures.
  • gratings, magnetic gratings, and capacitive gratings are mainly used as grating encoders on the market.
  • the grating lines that are evenly distributed along the space are formed by using the regular and periodic changes of a certain physical quantity during its movement.
  • a displacement pulse signal sent out every time a grid pitch is accumulated to obtain the displacement.
  • Grating is currently the most widely used grating encoder with high precision and mature technology. It is widely used in digital high-precision mechanical measuring instruments and equipment such as high-end CNC machine tools, coordinate measuring machines, and gear measurement centers. It can be seen that grating sensor technology is the guarantee of mechanical Fundamental and critical components for system performance.
  • the grating encoder has high requirements for the working environment, especially sensitive to dusty environment, oily environment, etc., has poor shock resistance, low cost performance, and is easily affected by foreign supply channels, etc., making its application range narrow and difficult to large-scale equipment.
  • the country has invested a lot of manpower and material resources, but it still does not have the ability to manufacture high-end grating encoders, and the equipment can only rely on imports.
  • the current time grating displacement encoders basically use single excitation, that is, a single-channel single-frequency sine wave excitation, which is realized by (0, ⁇ /2, ⁇ , 3 ⁇ /2) phase shifting.
  • a single-channel excitation can only To achieve a single calculation of the reference phase, the internal and external reference signals can only be divided by taking the 2 ⁇ periodic signal as the calculation parameter. When the rotor rotates at high speed and low speed, the calculation error is large. When the signal source is interfered, the interference signal will be directly superimposed on the source signal. When the frequency of the interference source is close to the source frequency, it is difficult to deal with and the anti-interference ability is low.
  • the embodiment of the present application provides an encoder based on orthogonal trigonometric function dual excitation, including a stator and a rotor, the stator and the rotor are coaxial and arranged in parallel, and the stator includes a secondary scale area, a main scale area, an inner scale area, and an inner scale area arranged in sequence from outside to inside.
  • the ring DA area and the inner ring DB area, the rotor includes the auxiliary scale area, the main scale area, the inner ring ZA area and the inner ring ZB area arranged in sequence from the outside to the inside, and the stator auxiliary scale area is evenly divided into several first emitters in a ring , every four first emitters is a group, every two groups of first emitters are used for a period of signal, the main scale area of the stator is evenly divided into several second emitters in a ring, and every two second emitters are one Group, every two groups of second emitting pieces are used for a period of signal, the sub-scale area of the rotor is divided into several first induction pieces in a ring, one first induction piece covers two continuous first emission pieces, the main scale area of the rotor It is divided into a plurality of second induction sheets in a ring shape, one second induction sheet covers two continuous second emission sheets, and the rotation arc length of the second induction sheet is twice the rotation arc length of the second
  • two groups of first emitting sheets are arranged radially symmetrically between groups, and two second emitting sheets of each group are arranged radially symmetrically.
  • each group of first radiation pieces together form a closed arc that protrudes toward the rotor axis
  • the inner ends of the second radiation pieces form a closed arc that protrudes toward the rotor axis. arc.
  • the outer end of the first sensing strip is inclined counterclockwise, and the inner end is inclined clockwise.
  • the first sensing strip is a closed symmetrical figure formed by hyperbola division, and the closed area of the first sensing strip is small, and the closed area of the first sensing strip gradually increases toward its center point.
  • the curvature of the edges at both ends of the first induction piece of the rotor coincides with the curvature of the inner ring of the rotor.
  • annular areas of the DA area and the inner ring DB area of the stator inner ring are equal, and the annular areas of the rotor inner ring ZA area and the inner ring ZB area are equal.
  • the embodiment of the present application also provides a method for operating an encoder based on orthogonal trigonometric functions with double excitation, including the following steps:
  • Step 1 the digital signal source generates two excitation signals, including sine wave signal and cosine wave signal;
  • Step 2 the two excitation signals are shifted digitally to obtain two sets of signals with a phase difference of ⁇ /4;
  • Step 3 synthesize two sets of signals
  • Step 4 digital-to-analog conversion to obtain two sets of synthetic signals with a phase difference of ⁇ /4;
  • Step 5 amplifying the composite signal
  • Step 6 the induction signal of the stator and the rotor, and the induction signal of the main scale area of the rotor are fed back to the inner ring DA area and DB area of the stator through the inner ring ZA area and ZB area;
  • Step 7 synthesizing the signals sensed by the DA area and DB area of the inner ring of the stator
  • Step 8 signal amplification
  • Step 10 digital processing, calculating the current angle areas of the stator main scale area, auxiliary scale area and rotor main scale area and auxiliary scale area, and calculating the current angle according to the readings of the main scale area and auxiliary scale area.
  • the synthesized signal is also applied to the eight first emitters in the sub-scale area of the stator; the synthesized signal is applied to the four second emitters in the main scale area of the stator.
  • the embodiment of the present application uses the double excitation method of orthogonal trigonometric function, that is to say, through (0, ⁇ /4, ⁇ /2, 3 ⁇ /4), ( ⁇ , 5 ⁇ /4 ,3 ⁇ /2,7 ⁇ /4) phase shift to obtain a composite signal. Since it is synthesized by two excitations, it can simultaneously detect the synchronous phase difference of the source signal y 0 , y 1 and the synthesized signal Y and F(t), and calculate the absolute angle value by comparing the phase difference between them.
  • the internal reference signal can be based on ⁇ or 2 ⁇ as the reference period, that is, (outer ⁇ , inner ⁇ ), (outer ⁇ , inner ⁇ )
  • This combination can effectively rotate at high and low speeds Reduce calculation errors. Even if the phase and frequency of the source signal are disturbed, it will only appear as low-frequency interference or DC interference on the composite signal, because the center frequency of the composite signal is twice higher than the center frequency of the source signal, so it is easy to pass through the band-pass filter. , the interference signal can be eliminated, a relatively clean signal can be obtained, and the phase comparison can be performed, thereby reducing the system error.
  • Fig. 1 is the stator structure schematic diagram of the embodiment of the present application
  • Fig. 2 is the structural schematic diagram of the rotor of the embodiment of the present application.
  • Fig. 3 is the working principle diagram of the encoder of the embodiment of the present application.
  • FIG. 4 is a flow chart of the encoder software in the embodiment of the present application.
  • FIG. 1 and FIG. 2 it is an orthogonal trigonometric function dual-excitation encoder according to an embodiment of the present application, including a stator 10 and a rotor 20 arranged coaxially and in parallel.
  • the stator 10 is provided with an auxiliary scale area 12 , a main scale area 14 , an inner ring DA area 16 and an inner ring DB area 18 sequentially from outside to inside.
  • the sub-scale area 12 is in the outer ring, with the center of the stator 10 as the center, it is evenly divided into a plurality of first emission pieces 120 in a ring, and every four first emission pieces 120 are a group, and every two groups of first emission pieces 120 are used as one 2 ⁇ phase shift period, the inner end of each group of first emitting pieces 120 forms a closed sector protruding inward, and each group of first emitting pieces 120 is radially symmetrical between groups.
  • the sub-scale area 12 of the stator as the emission area verifies the zero point of the critical point of the sub-scale area 22 of the rotor 20 as the induction area, and performs boundary compensation.
  • the main scale area 14 is located inside the auxiliary scale area 12, with the center of the stator 10 as the center, uniformly distributed in a ring, and divided into a number of second emission pieces 140, every 2 second emission pieces 140 are a group, two groups of second emission pieces 140
  • the slices 140 serve as a 2 ⁇ phase shift period, and each group of second emitting slices 140 jointly forms an arc-shaped protrusion toward the center of the circle, and the two sets of second emitting slices 140 are radially symmetrical between groups.
  • the stator main scale area 14 as the emission area verifies the critical point zero point of the main scale area 24 of the rotor 20 as the induction area, and performs boundary compensation.
  • the inner ring DA area 16 and the inner ring DB area 18 are signal receiving rings, and the ring areas of the inner ring DA area 16 and the inner ring DB area 18 are equal to ensure that the electric field signal of the rotor 20 can be evenly induced and received during operation.
  • the rotor 20 is provided with an auxiliary scale area 22 , a main scale area 24 , an inner ring ZA area 26 , and an inner ring ZB area 28 sequentially from outside to inside.
  • the sub-scale area 22 is located in the outer ring centered on the center of the rotor 20, and includes a plurality of first induction sheets 220 distributed in a ring, each first induction sheet 220 is a closed symmetrical figure formed by hyperbola division, and its two ends
  • the closed area is small, and the closed area gradually increases toward the center of itself, forming an approximately elliptical shape with small ends and a large middle.
  • the arc lengths of both ends of the first sensing piece 220 are equal, and the arc coincides with the arc of the inner ring of the rotor 20 , and one first sensing piece 220 covers two first emitting pieces 120 in a circumferential span.
  • the first sensing piece 220 is inclined at a certain angle, that is, the distal end is inclined counterclockwise, and the proximal end is inclined clockwise.
  • Such graphic design can ensure that the rotor 20 can evenly induce the electric field signal from the stator 10 when rotating, and will induce an error compensation signal when covering the sub-scale area 12 of the stator 10, which is convenient for calculation.
  • the main scale area 24 of the rotor 20 is located inside the auxiliary scale area 22 and axially corresponds to the main scale area 14 of the stator 10 .
  • the main scale area 24 is centered on the center of the rotor 20 , is uniformly distributed in a ring shape, and is divided into several second induction plates 240 . Every two second sensing strips 240 form a group, as a 2 ⁇ phase shift period.
  • a second sensing sheet 240 covers two second emitting sheets 140 in a circumferential span in size, and the rotational arc length of the second sensing sheet 240 is twice that of the second emitting sheet 140 of the stator 10 .
  • the ring areas of the inner ring ZA area 26 and the inner ring ZB area 28 are equal to ensure that the electric field signal of the rotor 20 can be evenly sensed and received during operation and transmitted to the inner ring DA area 16 and the inner ring DB area 18 of the stator 10 .
  • the system generates dual stimulus sources:
  • a 0 and A 1 are signal amplitudes, f is frequency, and t is time.
  • the synthetic signal source is phase shifted by (0, ⁇ /4, ⁇ /2,3 ⁇ /4), ( ⁇ ,5 ⁇ /4,3 ⁇ /2,7 ⁇ /4), ( ⁇ ,5 ⁇ /4,3 ⁇ /2,7 ⁇ /4)
  • the calculation method is consistent with (0, ⁇ /4, ⁇ /2,3 ⁇ /4), so only (0, ⁇ /4, ⁇ /2,3 ⁇ /4) is discussed.
  • B 1/R
  • R is the radius of the rotor
  • is the angular velocity of the rotor
  • E is the amplitude of the signal
  • k is the constant coefficient
  • Deg(t) is the rotation angle of the rotor after time t
  • f c is the frequency of the synthesized signal.
  • the system can obtain a sine wave based on the phase change of the relative angle between the rotor and the stator.
  • the current relative angle change value of the rotor and stator can be obtained, and the absolute angle value of the rotor and stator can be calculated according to the system signals y 0 , y 1 , and Y zero point.
  • the digital signal source In the first step, the digital signal source generates two excitation signals, sine and cosine signals, and the function is expressed as formula (1, 2).
  • the two excitation signals are digitally phase-shifted to obtain two sets of signals with a phase difference of ⁇ /4.
  • the third step is to digitally synthesize the product of the two signals, and the function is expressed as formula (3).
  • the fourth step is to output and amplify through digital-to-analog conversion to obtain 4 sets of synthesized signals with a phase difference of ⁇ /4, and the function is expressed as formula (4, 5, 6, 7).
  • the synthesized signal (Y(0), Y( ⁇ /2), Y( ⁇ ), Y(3 ⁇ /2)) is respectively applied to the stator main scale area N 1 second emitter area, and ( Y(0), Y( ⁇ /2), Y( ⁇ ), Y(3 ⁇ /2)) cycle clockwise, as shown in Figure 1.
  • N 1 is a multiple of 4.
  • the induction signal of the rotor main scale area (Zm 0 , Zm 1 ) is fed back to the stator inner ring DA area and DB area through the inner ring ZA area and ZB area, as shown in Figure 2.
  • the induction signals of the DA area and the DB area of the inner ring of the stator are synthesized, amplified, filtered, and digital phase identification is performed to calculate the current angle area of the main scale area.
  • the synthesized signal is respectively applied to N 2 independent first emitters (Y(0), Y( ⁇ /4), Y( ⁇ /2), Y(3 ⁇ /4)) in the sub-scale area of the stator (Y( ⁇ ), Y(5 ⁇ /4), Y(3 ⁇ /2), Y(7 ⁇ /4), cycle in turn, as shown in Figure 2.
  • the induction signal on the first induction piece (Z 0 , Z 1 , Z 2 , Z 3 ) of the rotor is represented by formula (10, 11, 12, 13) .
  • the induction signal of the first induction piece of the rotor ((Z 0 , Z 1 , Z 2 , Z 3 ) is fed back to the DA and DB areas of the inner ring of the stator through the ZA area and the ZB area of the inner ring, as shown in Figure 2.
  • the thirteenth step the stator inner ring DA area, DB area induction signal, through signal synthesis, signal amplification, filtering, digital phase detection, and calculate the current angle area where the sub-scale is located.
  • the fourteenth step calculate the current angle according to the readings of the main scale area and the auxiliary scale area.
  • Step 15 repeat steps 9 to 14 to calculate the angle variable.
  • Phase comparison the input signal is compared with the internal high-precision phase comparator to obtain the phase difference between the external signal and the internal signal source;
  • the processor continuously reads the current phase of the sub-scale, compares and calculates it with the current phase of the system, updates the current angle value, and performs cyclic accumulation according to the current angle value.
  • the embodiment of the present application uses the dual excitation method of orthogonal trigonometric functions, that is, the synthesizing mode of one sine wave and one cosine wave, through (0, ⁇ /4, ⁇ /2, 3 ⁇ /4), ( ⁇ , 5 ⁇ /4 ,3 ⁇ /2,7 ⁇ /4) phase shift to obtain a composite signal. Since it is synthesized by two excitations, it can simultaneously detect the synchronous phase difference of the source signal y 0 , y 1 and the synthesized signal Y and F(t), and calculate the absolute angle value by comparing the phase difference between them. Using ⁇ /4 phase shift, the internal reference signal can be based on ⁇ or 2 ⁇ , that is, (outer ⁇ , inner ⁇ ), (outer ⁇ , inner 2 ⁇ ).
  • This combination can effectively reduce calculation errors when rotating at high and low speeds . Even if the phase and frequency of the source signal are disturbed, it will only appear as low-frequency interference or DC interference on the composite signal, because the center frequency of the composite signal is twice higher than the center frequency of the source signal, so it is easy to pass through the band-pass filter. , the interference signal can be eliminated, a relatively clean signal can be obtained, and the phase comparison can be performed, thereby reducing the system error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种基于正交三角函数双激励的编码器,其定子(10)包括从外到内依次设置的副尺区(12)、主尺区(14)、内环DA区(16)和内环DB区(18),转子(20)包括从外到内依次设置的副尺区(22)、主尺区(24)、内环ZA区(26)和内环ZB区(28),定子副尺区(12)成环形均匀分割成若干第一发射片(120),每四个第一发射片(120)为一组,每两组第一发射片(120)用于一个周期的信号,定子主尺区(14)成环形均匀分割成若干第二发射片(140),每两个第二发射片(140)为一组,每两组第二发射片(140)用于一个周期的信号,转子副尺区(22)成环形分割成若干第一感应片(220),一个第一感应片(220)覆盖连续的两个第一发射片(120),转子的主尺区(24)成环形分割成若干第二感应片(240),一个第二感应片(240)覆盖连续的两个第二发射片(140),第二感应片(240)的旋转弧长为定子的第二发射片(140)旋转弧长的两倍。

Description

一种基于正交三角函数双激励的编码器及其运行方法
相关申请
本申请要求于2021年11月12号申请的、申请号为202111340588.1的中国专利申请的优先权。
技术领域
本申请属于精密测量技术领域,尤其涉及一种基于正交三角函数双激励的编码器及其运行方法。
背景技术
在工业机械自动化领域和数控加工领域,对一些机械结构做位移反馈和高精度加工及测量时,往往需要编码器做精密位置和角度反馈器件。
目前,市场上主要采用光栅、磁栅以及容栅等量尺或刻度做栅式编码器,利用其运动过程中某种物理量有规律的周期性变化而形成沿着空间均匀分布的栅线,对每经过一个栅距发出的一个位移脉冲信号进行累加,得到位移。光栅是目前应用最为广泛的栅式编码器,精度高、技术成熟,在高档数控机床、坐标测量机、齿轮测量中心等数字化高精密机械测量仪器和装备中广泛采用,可见光栅传感器技术是保证机械系统性能的基础和关键部件。但是,光栅式编码器对于工作环境要求高,尤其是对粉尘环境、油污环境等敏感,抗震能力差,性价比低,易受国外供货渠道影响等等,使得其应用范围较窄,难以大规模装备。几十年来,国内投入了大量的人力物力,迄今仍然不具备制造高端光栅编码器的能力,装备只能依赖进口。
近年来,由于国内科研水平技术的提高,诞生出由高精度时间计时换取在空间物理变化量的一种编码器思路,利用当前高指数时间计量等级的优势 (即时间的计量准确度高于物理量的准确度),得到高精度角度位移变化量,从而设计出高精度编码器。由于此种编码器使用时间作为“刻度”,省去了在光栅盘片上面的实体刻度,避免了使用脆弱的光栅片,从而在高精度、抗震性、经济性、能在恶劣环境下工作等方面都具备优势,最主要的是解决了供应链和知识产权的问题,让国内编码器行业看到了希望。
然而,目前的时栅位移编码器基本都是采用单激励,即单路单一频率正弦波激励,通过(0,π/2,π,3π/2)相移方式实现的,单路激励只能实现单一的计算参考相位,内外参考信号只能通过以2π的周期信号作为计算参数的分割,在转子高速和低速旋转时,计算误差较大。在信号源受到干扰的时候,干扰信号会直接叠加在源信号上,当干扰源频率与源频率相近时,比较难处理,抗干扰能力较低。
申请内容
有鉴于此,有必要提供一种精度较高、抗干扰能力较强的基于正交三角函数双激励的编码器及其运行方法。
本申请实施例提供一种基于正交三角函数双激励的编码器,包括定子和转子,定子和转子同轴并且平行设置,定子包括从外到内依次设置的副尺区、主尺区、内环DA区和内环DB区,转子包括从外到内依次设置的副尺区、主尺区、内环ZA区和内环ZB区,定子副尺区成环形均匀分割成若干第一发射片,每四个第一发射片为一组,每两组第一发射片用于一个周期的信号,定子主尺区成环形均匀分割成若干第二发射片,每两个第二发射片为一组,每两组第二发射片用于一个周期的信号,转子副尺区成环形分割成若干第一感应片,一个第一感应片覆盖连续的两个第一发射片,转子的主尺区成环形分割成若干第二感应片,一个第二感应片覆盖连续的两个第二发射片,第二感应片的旋转弧长为定子的第二发射片旋转弧长的两倍。
在一实施方式中,两组第一发射片的组与组之间径向对称设置,每组的 两个第二发射片径向对称设置。
在一实施方式中,每组第一发射片的内侧端共同形成一段封闭的向转子轴心方向凸出的弧形,第二发射片的内侧端形成一段封闭的向转子轴心方向凸出的弧形。
在一实施方式中,第一感应片外侧端向逆时针方向倾斜,内端向顺时针方向倾斜。
在一实施方式中,第一感应片是以双曲线分割而成的封闭对称图形,并且第一感应片封闭面积小,往自身中心点封闭面积逐渐增加。
在一实施方式中,转子的第一感应片的两端边缘弧度与转子内环弧度吻合。
在一实施方式中,定子内环DA区和内环DB区的环形面积相等,转子内环ZA区和内环ZB区的环形面积相等。
本申请实施例还提供了一种基于正交三角函数双激励的编码器的运行方法,包括以下步骤:
步骤1,数字信号源产生两路激励信号,包括正弦波信号和余弦波信号;
步骤2,两路激励信号通过数字移相,得到相位相差π/4的两组信号;
步骤3,合成两组信号;
步骤4,数模转换得到相位相差π/4的两组合成信号;
步骤5,放大合成信号;
步骤6,定子、转子感应信号,转子主尺区感应信号通过内环ZA区、ZB区反馈给定子的内环DA区、DB区;
步骤7,合成定子的内环DA区、DB区感应到的信号;
步骤8,信号放大;
步骤9,数字鉴相;以及
步骤10,数字处理,计算所述定子主尺区、副尺区和转子主尺区、副尺区当前的所在的角度区域,根据主尺区和副尺区的读数,计算当前的角度。
在一实施方式中,合成信号也分别施加于定子副尺区的八个第一发射片;所述合成信号分别施加于定子主尺区四个第二发射片。
本申请的实施例运用正交三角函数双激励的方式,即以一路正弦波和一路余弦波合成方式,通过(0,π/4,π/2,3π/4),(π,5π/4,3π/2,7π/4)相移得到合成信号。由于是由两路激励合成的,所以可以同时检测源信号y 0,y 1以及合成信号Y和F(t)的同步相位差,通过比较它们之间的相位差,计算出绝对角度值。使用π/4相移,内部参考信号可以依据π或者2π作为参考周期,即(外π,内π),(外π,内π)这种组合方式,在高速和低速旋转时,可以有效地减少计算误差。即使源信号相位和频率都受到干扰,那么在合成信号上也只是表现为低频干扰,或者直流干扰,因为合成信号的中心频率两倍高于源信号的中心频率,这样很容易通过带通滤波器,就可以消除干扰信号,得到一个相对比较干净的信号,进行相位比较,从而降低系统误差。
附图说明
图1为本申请实施例的定子结构示意图;
图2为本申请实施例的转子结构示意图;
图3为本申请实施例的编码器工作原理图;
图4为本申请实施例的编码器软件工作流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1和图2所示,其为本申请一实施例的一种正交三角函数双激励的编码器,包括同轴且平行设置定子10和转子20。
定子10由外而内依次设置副尺区12、主尺区14、内环DA区16、内环DB 区18。副尺区12处于外环,以定子10的圆心为中心,成环形均匀分割成若干第一发射片120,每4个第一发射片120为一组,每两组第一发射片120作为一个2π相移周期,每组第一发射片120的内侧端形成向内凸出的封闭扇形,每两组第一发射片120组与组之间径向对称。当转子20旋转时,作为发射区域的定子副尺区12对作为感应区的转子20的副尺区22的临界点零点校验,进行边界补偿。主尺区14位于副尺区12内侧,以定子10的圆心为中心,成环形均匀分布,分割成若干第二发射片140,每2个第二发射片140为一组,两组第二发射片140作为一个2π相移周期,每组第二发射片140朝向圆心方向共同形成弧形凸出,两组第二发射片140组与组之间径向对称。当转子20旋转时,作为发射区域的定子主尺区14对作为感应区的转子20的主尺区24的临界点零点校验,进行边界补偿。内环DA区16和内环DB区18为信号接收环,内环DA区16和内环DB区18的环形面积相等,以保证运行时能够均匀地感应接收转子20的电场信号。
转子20由外而内依次设置副尺区22、主尺区24、内环ZA区26、内环ZB区28。副尺区22处于以转子20的圆心为中心的外环,包括成环形分布的若干第一感应片220,每一第一感应片220是以双曲线分割而成的封闭对称图形,其两端封闭面积小,往自身中心点封闭面积逐渐增加,形成两头小中间大的近似椭圆的形状。第一感应片220的两端边缘弧长相等,弧度与转子20内环弧度吻合,并且一个第一感应片220在尺寸上周向跨度覆盖两个第一发射片120。本实施例中,第一感应片220倾斜一定角度,即远端向逆时针方向倾斜,近端向顺时针方向倾斜。如此图形设计可以确保转子20在旋转时,能够比较均匀地感应来自于定子10的电场信号,并将在覆盖定子10的副尺区12的时候,感应误差补偿信号,方便计算。转子20的主尺区24处于副尺区22内侧,与定子10的主尺区14轴向对应。主尺区24以转子20圆心为中心,成环形均匀分布,分割成若干第二感应片240。每两个第二感应片240为一组,作为一个2π相移周期。一个第二感应片240在尺寸上周向跨度覆盖两个第二发射片140,并且第 二感应片240旋转弧长为定子10的第二发射片140的两倍。内环ZA区26和内环ZB区28的环形面积相等,以保证运行时能够均匀地感应接收转子20的电场信号并向定子10的内环DA区16、内环DB区18传递电场信号。
现对本申请实施例的工作原理作详细说明:
首先,系统产生双激励信号源:
y 0=A 0sin(2πft)                                              式(1)
y 1=A 1cos(2πft)                                               式(2)
其中A 0、A 1为信号振幅,f为频率,t为时间。
合成信号源:
Y=y 0*y 1=Asin(2πft)cos(2πft)                                 式(3)
其中A=A 0*A 1
合成信号源通过(0,π/4,π/2,3π/4),(π,5π/4,3π/2,7π/4)相移,(π,5π/4,3π/2,7π/4)计算方式和(0,π/4,π/2,3π/4)一致,故只讨论(0,π/4,π/2,3π/4)。
因此相移得到以下信号:
Y(0)=Asin(2πft)cos(2πft)                                   式(4)
Y(π/4)=Asin(2πft+π/4)cos(2πft+π/4)                      式(5)
Y(π/2)=Asin(2πft+π/2)cos(2πft+π/2)                      式(6)
Y(3π/4)=Asin(2πft+3π/4)cos(2πft+3π/4)                   式(7)
同理Y(0)=Y(π),Y(π/4)=Y(π/4+π),Y(π/2)=Y(π/2+π)=,Y(3π/4)=Y(3π/4+π)。
假设转子某个时间t的速度为V,那么转子所转过的角度可以表示为:
Figure PCTCN2022117094-appb-000001
其中B=1/R,R为转子半径,ω为转子的角速度。
那么作用感应在转子上的电场应表示为:
Figure PCTCN2022117094-appb-000002
所以,作用在感应片的电场信号分别表示为:
Figure PCTCN2022117094-appb-000003
Figure PCTCN2022117094-appb-000004
Figure PCTCN2022117094-appb-000005
Figure PCTCN2022117094-appb-000006
最后通过时空转换得到一个角度空间与时间关系的公式:
F=f(0)+f(π/4)+f(π/2)+f(3π/4)                             式(14)
根据感应片的排列顺序总共有4种组合,最终化简为:
F(t)=Esin(2kπf ct+Deg(t))                                  式(15)
其中E是信号的振幅,k为常量系数,Deg(t)为转子经过时间t后转动的角度,f c为合成信号频率。
令θ=Deg(t),并且转子初始角度为θ 0,那么可以得到:
F(t)=Esin(2kπf ct+θ 0+θ)                                    式(16)
如果转子从零刻度开始转动,θ 0=0,那么可以得到:
F(t)=Esin(2kπf ct +θ)                                        式(17)
当转子静止时,初始角度为θ=0,得到:
F(t)=Esin(2kπf ct+θ 0)                                       式(18)
这样不管转子是静止还是运动,系统都可以获取到一个基于转子和定子相对角度的相位变化的正弦波。
通过计算θ,就可以得到当前转子和定子的相对角度变化值,并根据系统信号y 0,y 1,Y零点,计算出转子和定子的绝对角度值。
结合图3,上述工作原理的实现步骤:
第一步,数字信号源产生两路激励信号,正弦和余弦信号,函数表示为式(1,2)。
第二步,两路激励信号通过数字移相,得到相位相差π/4的两组信号。
第三步,通过数字合成两路信号乘积,函数表示为式(3)。
第四步,通过数模转化输出并且放大,得到4组相位相差π/4的合成信号,函数表示为式(4,5,6,7)。
第五步,合成信号(Y(0),Y(π/2),Y(π),Y(3π/2))分别施加于定子主尺区N 1个第二发射片区域,并以(Y(0),Y(π/2),Y(π),Y(3π/2))次序顺时针循环,如图1。其中,N 1为4的倍数。
第六步,转子主尺区(Zm 0,Zm 1)依次循环,转子主尺区的每一个第二感应片覆盖定子主尺区的两个第二发射片,即Zm 0=(Y(0),Y(π/2)),Zm 1=(Y(π),Y(3π/2)),依次循环。
第七步,转子主尺区(Zm 0,Zm 1)感应信号通过内环ZA区、ZB区反馈给定子内环DA区、DB区,如图2。
第八步,定子内环DA区、DB区感应信号,通过信号合成,信号放大,滤波,进行数字鉴相,计算主尺区当前的所在的角度区域。
以下进一步说明副尺区的实现步骤:
第九步,合成信号分别施加于定子副尺区的N 2个独立的第一发射片(Y(0),Y(π/4),Y(π/2),Y(3π/4))(Y(π),Y(5π/4),Y(3π/2),Y(7π/4),依次循环,如图2。定子副尺区每组包括2*N 2个第一发射片,每个第一发射片对应的角度为x=180°/N 2。其中N 2是4的倍数。
第十步,当转子20转动时,根据电场的相对运动,转子第一感应片(Z 0,Z 1,Z 2,Z 3)上的感应信号由式(10,11,12,13)体现。
第十一步,转子第一感应片((Z 0,Z 1,Z 2,Z 3)依次循环,一个转子第一感应片覆盖定子的两个第一发射片,即Z 0=(Y(0),Y(π/2)),Z 1=(Y(π/4),Y(3π/4)),依次类推。
第十二步,转子第一感应片((Z 0,Z 1,Z 2,Z 3)感应信号通过内环ZA区,ZB区反馈给定子内环DA区,DB区,如图2。
第十三步,定子内环DA区,DB区感应信号,通过信号合成,信号放大,滤波,数字鉴相,并计算副尺当前的所在的角度区域。
第十四步,根据主尺区和副尺区的读数,计算当前的角度。
第十五步,重复第九到第十四步,计算角度变量。
如图4所示,说明软件工作内容、流程如下:
一、校验和初始化(S200)
主要包括以下几点:
1)零点初始化检验,零点偏置补偿;
2)感应区域临界点零点校验,边界补偿;
3)温湿度零点校验补偿,环境误差补偿;
4)温湿度相位补偿;
5)零点相位校验;
6)刻度盘相对位置校验
二、信号处理(S202)
主要包括:
1)信号滤波,对输入信号进行滤波,剔除不符合要求的信号分量;
2)相位比较,输入信号与内部高精度相位比较器,进行比较,获取外部信号与内部信号源的相位差;
3)错误处理,以上过程出错处理。
三、角度初始化读数
1)主尺读数校验(S204)
主尺刻盘相位读取,根据主尺刻度盘当前相位值,由式(18)计算出主尺目前所在刻度区域;
2)副尺读数校验(S206)
副尺刻盘相位读取,由式(18)计算出副尺目前所在刻度。
根据主尺所在刻度区域读数,加上副尺读数,进行刻度计算,得到当前的角度值,并以当前的角度值作为编码器初始角度值θ 0(S208)。
四、重同步检测(S210)
根据当前的初始角度值,进行重同步计算,完成由式(18)到式(16)的转换,以方便后续循环检测。
六、循环检测(S212~S214)
副尺读数及计算角度;
根据式(16),处理器不断的读取副尺当前的相位,与系统当前相位进行对比计算,更新当前的角度值,根据当前的角度值进行循环累加。
本申请的实施例运用正交三角函数双激励的方式,即以一路正弦波和一路余弦波合成方式,通过(0,π/4,π/2,3π/4),(π,5π/4,3π/2,7π/4)相移得到合成信号。由于是由两路激励合成的,所以可以同时检测源信号y 0,y 1以及合成信号Y和F(t)的同步相位差,通过比较它们之间的相位差,计算出绝对角度值。使用π/4相移,内部参考信号可以依据π或者2π,即(外π,内π),(外π,内2π)这种组合方式,在高速和低速旋转时,可以有效地减少计算误差。即使源信号相位和频率都受到干扰,那么在合成信号上也只是表现为低频干扰,或者直流干扰,因为合成信号的中心频率两倍高于源信号的中心频率,这样很容易通过带通滤波器,就可以消除干扰信号,得到一个相对比较干净的信号,进行相位比较,从而降低系统误差。
以上所述仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种基于正交三角函数双激励的编码器,包括定子和转子,所述定子和转子同轴并且平行设置,其中:所述定子包括从外到内依次设置的副尺区、主尺区、内环DA区和内环DB区,所述转子包括从外到内依次设置的副尺区、主尺区、内环ZA区和内环ZB区,所述定子副尺区成环形均匀分割成若干第一发射片,每四个第一发射片为一组,每两组第一发射片用于一个周期的信号,所述定子主尺区成环形均匀分割成若干第二发射片,每两个第二发射片为一组,每两组第二发射片用于一个周期的信号,所述转子副尺区成环形分割成若干第一感应片,一个所述第一感应片覆盖连续的两个所述第一发射片,所述转子的主尺区成环形分割成若干第二感应片,一个所述第二感应片覆盖连续的两个所述第二发射片,所述第二感应片的旋转弧长为所述定子的第二发射片旋转弧长的两倍。
  2. 如权利要求1所述的基于正交三角函数双激励的编码器,其中:所述两组第一发射片的组与组之间径向对称设置,所述每组的两个第二发射片径向对称设置。
  3. 如权利要求2所述的基于正交三角函数双激励的编码器,其中:所述每组第一发射片的内侧端共同形成一段封闭的向转子轴心方向凸出的弧形,所述第二发射片的内侧端形成一段封闭的向转子轴心方向凸出的弧形。
  4. 如权利要求1所述的基于正交三角函数双激励的编码器,其中:所述第一感应片外侧端向逆时针方向倾斜,内端向顺时针方向倾斜。
  5. 如权利要求4所述的基于正交三角函数双激励的编码器,其中:所述第一感应片是以双曲线分割而成的封闭对称图形,并且所述第一感应片两端封闭面积小,往自身中心点封闭面积逐渐增加。
  6. 如权利要求5所述的基于正交三角函数双激励的编码器,其中:所述转子的第一感应片的两端边缘弧长相等。
  7. 如权利要求1所述的基于正交三角函数双激励的编码器,其中:所述定子内环DA区和内环DB区的环形面积相等,所述转子内环ZA区和内环ZB区的环形面积相等。
  8. 一种如权利要求1至7其中任一项所述的基于正交三角函数双激励的 编码器的运行方法,包括以下步骤:
    步骤1,数字信号源产生两路激励信号,包括正弦波信号和余弦波信号;
    步骤2,两路激励信号通过数字移相,得到相位相差π/4的两组信号;
    步骤3,合成两组信号;
    步骤4,数模转换得到相位相差π/4的两组合成信号;
    步骤5,放大合成信号;
    步骤6,定子、转子感应信号,所述转子主尺区感应信号通过内环ZA区、ZB区反馈给所述定子的内环DA区、DB区;
    步骤7,合成所述定子的内环DA区、DB区感应到的信号;
    步骤8,信号放大;
    步骤9,数字鉴相;以及
    步骤10,数字处理,计算所述定子主尺区、副尺区和所述转子主尺区、副尺区当前的所在的角度区域,根据主尺区和副尺区的读数,计算当前的角度。
  9. 如权利要求8所述的基于正交三角函数双激励的编码器的运行方法,其中:所述合成信号也分别施加于定子副尺区的八个第一发射片;所述合成信号分别施加于定子主尺区四个第二发射片。
PCT/CN2022/117094 2021-11-12 2022-09-05 一种基于正交三角函数双激励的编码器及其运行方法 WO2023082799A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22891604.5A EP4273508A1 (en) 2021-11-12 2022-09-05 Encoder based on dual excitation of orthogonal trigonometric function, and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111340588.1 2021-11-12
CN202111340588.1A CN114018300B (zh) 2021-11-12 2021-11-12 一种基于正交三角函数双激励的编码器及其运行方法

Publications (1)

Publication Number Publication Date
WO2023082799A1 true WO2023082799A1 (zh) 2023-05-19

Family

ID=80063884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117094 WO2023082799A1 (zh) 2021-11-12 2022-09-05 一种基于正交三角函数双激励的编码器及其运行方法

Country Status (3)

Country Link
EP (1) EP4273508A1 (zh)
CN (1) CN114018300B (zh)
WO (1) WO2023082799A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018300B (zh) * 2021-11-12 2024-05-03 德普数控(深圳)有限公司 一种基于正交三角函数双激励的编码器及其运行方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178064A (en) * 1978-04-27 1979-12-11 Xerox Corporation Real time grating clock for galvanometer scanners in laser scanning systems
CN102288100A (zh) * 2011-06-01 2011-12-21 重庆理工大学 一种基于交变电场的时栅直线位移传感器
CN108627183A (zh) * 2018-05-15 2018-10-09 重庆中电天时精密装备技术有限公司 差分反射式时栅角度位移编码器
CN108627184A (zh) * 2018-05-15 2018-10-09 重庆中电天时精密装备技术有限公司 反射式时栅角度位移编码器
CN109211096A (zh) * 2018-07-05 2019-01-15 重庆理工大学 基于交变电场的反射型绝对式时栅角位移传感器
CN109341517A (zh) * 2018-12-05 2019-02-15 连云港杰瑞电子有限公司 一种绝对式容栅位移旋转编码器
CN111220186A (zh) * 2020-02-10 2020-06-02 重庆中电天时精密装备技术有限公司 一种双通道差分绝对式时栅角度位移编码器
CN114018300A (zh) * 2021-11-12 2022-02-08 德普数控(深圳)有限公司 一种基于正交三角函数双激励的编码器及其运行方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486222B (zh) * 2015-12-29 2019-04-19 崔星 一种电容式角位移传感器
CN109211092B (zh) * 2017-12-15 2019-06-21 重庆理工大学 一种基于交变电场的绝对式时栅角位移传感器
CN113405575B (zh) * 2021-07-21 2023-06-13 重庆理工大学 一种机械多圈绝对式时栅编码器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178064A (en) * 1978-04-27 1979-12-11 Xerox Corporation Real time grating clock for galvanometer scanners in laser scanning systems
CN102288100A (zh) * 2011-06-01 2011-12-21 重庆理工大学 一种基于交变电场的时栅直线位移传感器
CN108627183A (zh) * 2018-05-15 2018-10-09 重庆中电天时精密装备技术有限公司 差分反射式时栅角度位移编码器
CN108627184A (zh) * 2018-05-15 2018-10-09 重庆中电天时精密装备技术有限公司 反射式时栅角度位移编码器
CN109211096A (zh) * 2018-07-05 2019-01-15 重庆理工大学 基于交变电场的反射型绝对式时栅角位移传感器
CN109341517A (zh) * 2018-12-05 2019-02-15 连云港杰瑞电子有限公司 一种绝对式容栅位移旋转编码器
CN111220186A (zh) * 2020-02-10 2020-06-02 重庆中电天时精密装备技术有限公司 一种双通道差分绝对式时栅角度位移编码器
CN114018300A (zh) * 2021-11-12 2022-02-08 德普数控(深圳)有限公司 一种基于正交三角函数双激励的编码器及其运行方法

Also Published As

Publication number Publication date
CN114018300B (zh) 2024-05-03
CN114018300A (zh) 2022-02-08
EP4273508A1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
US10359299B2 (en) Electric field type time-grating angular displacement sensors
WO2023082799A1 (zh) 一种基于正交三角函数双激励的编码器及其运行方法
KR20020010607A (ko) 용량식 변위 엔코더
CN109211095B (zh) 一种基于交变电场的绝对式时栅角位移传感器
JP2023103436A (ja) 誘導センサを用いるマルチレベル回転リゾルバー
CN102930966B (zh) 一种无刷线性旋转变压器
CN110470323A (zh) 一种涡流式增量编码器及其工作方法
CN109341517A (zh) 一种绝对式容栅位移旋转编码器
CN208075883U (zh) 通用型差分反射式时栅角度位移编码器
CN111366177A (zh) 一种游标绝对式光电编码器单圈绝对位置读取装置及方法
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
CN106017517A (zh) 一种非接触式磁性编码传感器
CN208206026U (zh) 一种基于交变电场的差极型绝对式时栅角位移传感器
CN109211097B (zh) 一种基于交变电场的差极反射型绝对式时栅角位移传感器
CN109211094B (zh) 一种基于交变电场的反射型绝对式时栅角位移传感器
TW202006323A (zh) 角度檢測器
CN206132084U (zh) 一种精确测量转速和旋转绝对角度位置的传感器
JP6507347B2 (ja) 静電容量式角度検出装置
CN116418176B (zh) 基于薄膜材料的绝对式角位移传感器装置及角度解算方法
CN117007086B (zh) 高精度磁电编码器及磁电编码器绝对角度的检测方法
CN114061426B (zh) 离散型绝对式时栅角位移传感器
CN110986752B (zh) 基于多频式励磁的角度自修正方法及系统
CN112556734B (zh) 光电编码器莫尔条纹细分方法
JP7281778B1 (ja) 絶対位置エンコーダ
WO2010124573A1 (zh) 导磁环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022891604

Country of ref document: EP

Effective date: 20230804