WO2023082347A1 - 信号处理方法、装置、存储介质和电子终端 - Google Patents

信号处理方法、装置、存储介质和电子终端 Download PDF

Info

Publication number
WO2023082347A1
WO2023082347A1 PCT/CN2021/133213 CN2021133213W WO2023082347A1 WO 2023082347 A1 WO2023082347 A1 WO 2023082347A1 CN 2021133213 W CN2021133213 W CN 2021133213W WO 2023082347 A1 WO2023082347 A1 WO 2023082347A1
Authority
WO
WIPO (PCT)
Prior art keywords
processed
target
targets
cluster
num1
Prior art date
Application number
PCT/CN2021/133213
Other languages
English (en)
French (fr)
Inventor
盛九朝
钟琼华
Original Assignee
苏州苏试试验集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏试试验集团股份有限公司 filed Critical 苏州苏试试验集团股份有限公司
Publication of WO2023082347A1 publication Critical patent/WO2023082347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals

Definitions

  • the invention relates to the technical field of radar, in particular to a signal processing method, device, storage medium and electronic terminal.
  • Radar is an electronic device that uses electromagnetic waves to detect the initial target. By emitting electromagnetic waves to irradiate the initial target and receive its echo, the distance, speed, azimuth and other information from the initial target to the electromagnetic wave emission point are obtained.
  • the main purpose of the present invention is to provide a signal processing method, device, storage medium and electronic terminal.
  • a signal processing method for a radar system comprising the following steps:
  • the set of scanned targets includes Num1 initial targets and one-to-one corresponding Num1 attribute values, control the radar system to perform a scan operation, and obtain Num2 initial targets and one based on the radar echo signal A corresponding Num2 attribute values, wherein the attribute values at least include: the azimuth AZ of the initial target, the time of appearance of the initial target, the amplitude of the radar echo signal and the signal-to-noise ratio value S_N of the radar echo signal, Num1 and Num2 are natural numbers;
  • the following processing is performed on each of the plurality of clusters: if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, then delete the second cluster;
  • the first processing is performed on each of the plurality of clusters: in the first cluster, the absolute value of the difference between the statistical appearance time and the current time is less than the first preset time threshold ⁇ Time1 M objects to be processed; when M>the first preset quantity threshold, the M objects to be processed are divided into N clusters, and in each cluster, the difference between the amplitudes of any two objects to be processed is The absolute values are all less than the preset magnitude threshold; for any cluster, when the number of targets to be processed contained therein>the second preset number threshold, the cluster is deleted; for each of the remaining clusters, Carry out the second processing: when
  • the second target to be processed is any one of the Num1 initial targets, M and N are both natural numbers, and N ⁇ M. Afterwards, when there are still clusters that have not been processed for the second process, proceed to the next second process. processing; afterward, when there is still the first cluster that has not undergone the first processing, the next first processing is performed.
  • the "dividing the Num1+Num2 targets to be processed into multiple clusters based on the clustering algorithm and the orientation AZ of the Num1+Num2 targets to be processed” specifically includes:
  • the Num1+Num2 objects to be processed are processed as follows until the Num1+Num2 objects to be processed are all processed, and the processing specifically includes: selecting an unprocessed third object to be processed from the Num1+Num2 objects to be processed Target, create a cluster containing only the third target to be processed, mark the third target to be processed as processed, and then perform the following judgment on each of the fourth targets to be processed in Num1+Num2 targets to be processed,
  • the fourth initial target is unprocessed, and
  • the "if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, then delete the second cluster" specifically includes: obtaining the second cluster The number of the fifth object to be processed, Counter1, and the number of the sixth object to be processed, Counter2, wherein,
  • the preset percentage value 0.9.
  • the "if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, then delete the second cluster" specifically includes: if the second cluster If the signal-to-noise ratio value S_N of the target to be processed does not meet the preset condition, the second cluster is deleted, and the rotational speed and transmission frequency of the radar system are adjusted.
  • ⁇ the azimuth difference threshold ⁇ AZ, then the first and second objects to be processed are the same" It specifically includes: when
  • ⁇ the azimuth difference threshold ⁇ AZ, then the first target to be processed is a new target” specifically includes: when When the azimuth AZ of the first target to be processed-the azimuth AZ of any one of the Num1 initial targets
  • the following step is also included: performing the following processing on each initial target in the scanned target set: when
  • An embodiment of the present invention provides a signal processing device for a radar system, including the following modules:
  • the data acquisition module is used to obtain a set of scanned targets, the set of scanned targets includes Num1 initial targets and one-to-one corresponding Num1 attribute values, controls the radar system to perform a scanning operation, and obtains based on the radar echo signal Num2 initial targets and one-to-one corresponding Num2 attribute values, wherein the attribute values at least include: the azimuth AZ of the initial target, the time of appearance of the initial target, the amplitude of the radar echo signal and the signal-to-noise ratio of the radar echo signal.
  • the values S_N, Num1 and Num2 are all natural numbers;
  • a clustering module for copying the Num1 initial targets into one-to-one corresponding Num1 targets to be processed, and copying the Num2 initial targets into one-to-one corresponding Num2 targets to be processed; based on the clustering algorithm and Num1 Azimuth AZ of +Num2 targets to be processed, dividing Num1+Num2 targets to be processed into multiple clusters;
  • a noise processing module configured to perform the following processing on each second cluster in the plurality of clusters: if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, delete second cluster;
  • a processing module configured to perform a first process on each of the first clusters in the plurality of clusters: in the first cluster, the absolute value of the difference between the statistical appearance time and the current time is smaller than the first preset M objects to be processed at the time threshold ⁇ Time1; when M>the first preset quantity threshold, the M objects to be processed are divided into N clusters, and in each cluster, any two objects to be processed The absolute values of the difference between the amplitudes are less than the preset amplitude threshold; for any cluster, when the number of targets to be processed contained in it>the second preset number threshold, then delete the cluster; for the remaining Each cluster performs the second processing: when
  • An embodiment of the present invention provides a storage medium storing program instructions, wherein the above signal processing method is implemented when the program instructions are executed.
  • An embodiment of the present invention provides an electronic terminal, including a processor and a memory, and the memory stores program instructions, wherein the processor executes the program instructions to implement the above signal processing method.
  • the signal processing method, device, storage medium and electronic terminal provided by the embodiments of the present invention have the following advantages:
  • the embodiment of the present invention discloses a signal processing method, device, storage medium and electronic terminal.
  • the signal processing method includes: obtaining the Scan the target set and multiple initial targets, and divide them into multiple clusters; perform statistical analysis of signal-to-noise ratio and statistical analysis of false targets for each first cluster in multiple clusters, so as to remove unqualified signal-to-noise ratio The initial target and false target; the signal processing method can identify and eliminate the initial target and false target whose signal-to-noise ratio is unqualified.
  • FIG. 1 is a structural diagram of a radar provided by an embodiment of the present invention
  • FIG. 2 is a structural diagram of a signal processing method provided by an embodiment of the present invention.
  • FIG. 3 , FIG. 4 and FIG. 5 are schematic diagrams of a signal processing method according to an embodiment of the present invention.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to cover a non-exclusive inclusion such that a structure, means or apparatus comprising a series of elements includes not only those elements but also other elements not expressly listed elements, or also elements inherent in the structure, device or equipment. Without further limitations, an element defined by the phrase “comprising a” does not preclude the presence of additional identical elements in the structure, device or equipment comprising said element.
  • Various embodiments herein are described in a progressive manner, each embodiment focuses on the differences from other embodiments, and the same and similar parts of the various embodiments may be referred to each other.
  • connection should be interpreted in a broad sense, for example, it can be a mechanical connection or an electrical connection, and it can also be the internal communication of two components, It may be directly connected or indirectly connected through an intermediary, and those skilled in the art can understand the specific meanings of the above terms according to specific situations.
  • the radar system is mainly composed of a main processor unit, a signal generation unit, a signal amplification unit, a transceiver control unit, an antenna, and a servo control unit.
  • the power is Pt
  • the antenna gain is G
  • the transmit power per unit solid angle of the radar is Assuming that the target reflection area is ⁇ , and the center distance from the radar antenna is R
  • the power received by the target is:
  • the power is less than the sensitivity of the radar receiver (each radar is different), the radar cannot identify the target, and the signal-to-noise ratio of the signal received by the radar is When the signal-to-noise ratio value is lower than the minimum acceptable signal-to-
  • the external interference to the radar is mainly composed of noise and deception.
  • the noise mainly acts on the receiver unit of the radar, which reduces the signal-to-noise ratio and makes the radar unable to identify the target.
  • the deception mainly acts on the radar signal processing unit. The target, so that the radar cannot distinguish which is the real target, so as to achieve the purpose of protecting itself.
  • Embodiment 1 of the present invention provides a signal processing method for a radar system.
  • the radar system can execute the signal processing method every preset time.
  • the radar system can be controlled by the main Processor to execute the signal processing method; as shown in Figure 2, comprising the following steps:
  • Step 201 Obtain a set of scanned targets, the set of scanned targets includes Num1 initial targets and Num1 attribute values corresponding to each other, control the radar system to perform a scanning operation, and obtain Num2 initial targets based on the radar echo signal
  • Both Num1 and Num2 are natural numbers; here, when performing the scanning operation, firstly, the track information of the initial target is obtained based on the radar echo signal, and then the initial target and the corresponding attribute value are obtained.
  • each initial target at least obtain the following attribute values: (1) in this scanning operation, relative to the radar system, the azimuth AZ of the initial target; (2) in this scanning operation, the radar system and the initial The current distance distance between targets; (3) In this scanning operation, the amplitude pa of the initial target echo; (4) In this scanning operation, the velocity velocity of the initial target; (5) The time when the initial target appeared appearTime, it is understandable that the same initial target may be scanned multiple times, therefore, an array can be used to save appearTime, which stores all the appearTime between the initial target being discovered and this scan;( 6) disappearTime when the initial target disappears. It is understandable that the same initial target may be scanned multiple times, and may also disappear multiple times.
  • an array can be used to save disappearTime, which stores the initial target since All disappearTimes between being found and this scan; (7) SNR value S_N, it is understandable that the same initial target may be scanned multiple times, and the initial target can be obtained each time it is scanned. The signal-to-noise ratio value of the returned signal of the target, therefore, an array can be used to save S_N, and the array saves all S_N between the initial target being discovered and the current scan.
  • int appearTimeCnt //appearTimeCnt is the number of times the same initial target has been scanned
  • Num1 initial targets were obtained, and during this scanning operation, Num2 initial targets were found altogether, so: (1) Num1 initial targets and Num2 initial targets Some of the initial targets are overlapping. It is understandable that since the initial targets (for example, aircraft, etc.) are usually moving, the attribute values of the same initial target in the last scan and this scan are usually not exactly the same ( For example, the azimuth AZ, the current distance, etc. will be different), only a very small probability is exactly the same; (2) Some of the initial targets in the Num2 initial targets are new, that is, not in the Num1 initial targets, in this part of the new Some of the initial targets of are false initial targets.
  • Step 202 Copy the Num1 initial targets into one-to-one corresponding Num1 targets to be processed, and copy the Num2 initial targets into one-to-one corresponding Num2 targets to be processed; based on the clustering algorithm and Num1+Num2
  • the azimuth AZ of the target to be processed divides Num1+Num2 targets to be processed into multiple clusters; here, the initial target and the target to be processed are in a one-to-one correspondence, and the contents of the corresponding initial target and the target to be processed are Consistent, but two separate values, that modify the content of the original target without affecting the content of the pending target; likewise, modify the content of the pending target without affecting the content of the original target.
  • the Num1+Num2 objects to be processed are formed by merging the Num1 objects to be processed and the Num2 objects to be processed.
  • the clustering algorithm will classify the targets to be processed with similar orientations AZ into the same cluster. It is understandable that some of the multiple initial targets with similar orientations AZ are false targets.
  • Step 203 Perform the following processing on each second cluster among the plurality of clusters: if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, delete the second cluster clusters; if the signal-to-noise ratio value of a cluster does not meet the requirements, the cluster can be deleted.
  • the preset condition can be: the signal-to-noise ratio value S_N of any target to be processed in the second cluster does not meet the requirements, then the preset condition is not met; or the signal-to-noise ratio of all targets to be processed in the second cluster If none of the ratios S_N meets the requirements, the preset condition is not met.
  • the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, it can be considered that the signal-to-noise ratio of the radar system has deteriorated, and the collected signal has a large error.
  • Step 204 Perform a first process on each first cluster among the plurality of clusters: in the first cluster, the absolute value of the difference between the statistical appearance time and the current time is less than the first preset time threshold M objects to be processed with a value of ⁇ Time1; when M>the first preset quantity threshold, the M objects to be processed are divided into N clusters, and in each cluster, the magnitude of any two objects to be processed The absolute values of the difference are less than the preset amplitude threshold; for any cluster, when the number of targets to be processed contained in it>the second preset number threshold, then delete the cluster; here, it appears through statistics
  • the absolute value of the difference between the time and the current time is less than the number M of targets to be processed (it can be understood that the target to be processed that meets this condition is a new target) that is less than the first preset time threshold ⁇ Time1.
  • these newly added targets may be false targets, so it is necessary to perform statistical analysis on the amplitude of the newly added targets, when the number of targets to be processed in a cluster>th 2.
  • the number threshold is preset, it can be considered that the targets to be processed in the cluster are related in the time domain, space domain and amplitude, and are sent by the same transmitter. They are false targets and need to be set with a deletion flag.
  • the first and second objects to be processed are the same;
  • the first preset quantity threshold may be 10
  • the second preset quantity threshold may be 10.
  • spoofing jamming is divided into active jamming and passive jamming.
  • Active jamming is to delay the radar signal and forward it to the radar, so as to create a large number of false targets, so that the radar can track the false targets, while the real target is protected.
  • the target saturates the data processing system of the radar until it cannot work normally; passive interference is to throw metal chaff strips in front of the target, launch tracer bombs, etc., so that the radar cannot detect the real target, thus playing a protective role.
  • Figure 3 is a radar antenna pattern, in which the direction of strong signal is the main lobe direction, and the direction of weak signal is the side lobe direction. The main and side lobes receive signals at the same time.
  • the other party implements In the case of interference, it is manifested that many target signals are intercepted in a certain azimuth domain, as shown in Figure 4.
  • Statistical analysis from the time domain shows that many new targets appear at the same time, new targets and old targets exist at the same time, and new targets appear at sensitive moments, such as confrontation exercises, confrontation, wartime conditions, etc.; statistical analysis from the airspace, The performance is that the new target and the old target coexist in the same azimuth domain.
  • the false target Since the false target is sent from the same transmitter, they are almost the same in amplitude, that is, the amplitude is related. According to actual combat experience, if a large number of targets are suddenly added at the same azimuth and sensitive time , and the amplitude is related, which is obviously contrary to the actual situation on the battlefield. Based on this, we can judge that the appearance of a large number of new targets should be to cover the old targets, so it can be judged as false targets.
  • the jammer throws metal chaff or tracer bombs in front of the target, so that the radar only detects the chaff but not itself, so as to protect itself.
  • the jamming effect is shown in Figure 5, from the time domain Statistical analysis shows that the new target appears at the same time and the old target disappears, and there is correlation in the time domain; from the statistical analysis in the air domain, it shows that the new target and the old target are in the same direction, the new target is closer to the radar, and the old target is farther away. Radar is far away.
  • the real radar target should be continuous in the time domain and the air domain, and this kind of jump and alternate appearance in the time domain is impossible. , can only show that the appearance of the new target is to cover the old target, and the new target should be a false target.
  • the "dividing Num1+Num2 targets to be processed into multiple clusters based on the clustering algorithm and the azimuths AZ of Num1+Num2 targets to be processed" specifically includes:
  • the processing specifically includes: selecting an unprocessed third object to be processed from Num1+Num2 objects to be processed, creating a cluster containing only the third object to be processed, marking the third object to be processed as processed, Afterwards, the following judgment is performed on each fourth target to be processed in the Num1+Num2 targets to be processed, when the fourth initial target is unprocessed, and
  • the fourth target to be processed is added to the cluster, and the fourth target to be processed is marked as processed.
  • a first initial object that does not join any existing cluster is selected from Num1+Num2 initial objects, and then a new cluster is created (this cluster only contains the first initial object ), then select a second initial target that has not joined the existing cluster and the newly created cluster from the Num1+Num2 initial targets (that is, the second initial target is unprocessed), after that, calculate all The average value m_azAverage of the azimuth AZ of the initial target, if
  • Num1 initial targets are specifically StatAnalyzeStruts[1,...,Num1]
  • Num2 initial targets are specifically StatAnalyzeStruts[Num1+1,...,Num1+Num2] in StatAnalyzeStruts[Num2 ] fill the scan time into appearTime[0], and assign 1 to appearTimeCnt.
  • m_arraypAnaFlag[j] the sequence number j that meets the following conditions,
  • the "if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, delete the second cluster" specifically includes: acquiring the fifth target to be processed in the second cluster The number of objects to be processed, Counter1, and the number of objects to be processed, Counter2, wherein,
  • Counter2/Ccounter1>preset percentage value it can be considered that the signal-to-noise ratio of the radar system has deteriorated, and the collected signal has a large error.
  • the preset percentage value 0.9.
  • the "if the SNR value S_N of the target to be processed in the second cluster does not meet the preset condition, then delete the second cluster" specifically includes: if the target to be processed in the second cluster If the signal-to-noise ratio value S_N does not meet the preset condition, the second cluster is deleted, and the rotation speed and transmission frequency of the radar system are adjusted.
  • adjusting the speed and transmission frequency of the radar system can specifically include: obtaining the current speed cycle size m_rotateVelocity of the radar system and adjusting the start time m_rotateTime of the speed cycle, if
  • the noise interference suffered by the radar system can be divided into same-frequency noise interference, frequency-sweeping noise interference, and frequency-hopping noise interference.
  • Frequency-sweeping interference and FM interference are also called intermittent interference. If the interference exists all the time, you can judge whether it is continuous interference or intermittent interference at the same frequency by changing the radar antenna rotation speed. Interference, at this time, can be avoided by adjusting the antenna speed to avoid the same frequency or frequency multiplication, without changing the radar transmission parameters, and the radar can perform "concealed" work in this direction; if the same frequency continues to interfere, it can be eliminated by changing the radar transmission frequency.
  • ⁇ the azimuth difference threshold ⁇ AZ, then the first and second objects to be processed are the same" specifically includes: when When the azimuth AZ of the first target to be processed-the second target to be processed
  • ⁇ the azimuth difference threshold ⁇ AZ, then the first target to be processed is a new target” specifically includes: when When the azimuth AZ of the first target to be processed-the azimuth AZ of any one of the Num1 initial targets
  • Embodiment 2 of the present invention provides a signal processing device for a radar system, including the following modules:
  • the data acquisition module is used to obtain a set of scanned targets, the set of scanned targets includes Num1 initial targets and one-to-one corresponding Num1 attribute values, controls the radar system to perform a scanning operation, and obtains based on the radar echo signal Num2 initial targets and one-to-one corresponding Num2 attribute values, wherein the attribute values at least include: the azimuth AZ of the initial target, the time of appearance of the initial target, the amplitude of the radar echo signal and the signal-to-noise ratio of the radar echo signal.
  • the values S_N, Num1 and Num2 are all natural numbers;
  • a clustering module for copying the Num1 initial targets into one-to-one corresponding Num1 targets to be processed, and copying the Num2 initial targets into one-to-one corresponding Num2 targets to be processed; based on the clustering algorithm and Num1 Azimuth AZ of +Num2 targets to be processed, dividing Num1+Num2 targets to be processed into multiple clusters;
  • a noise processing module configured to perform the following processing on each second cluster in the plurality of clusters: if the signal-to-noise ratio value S_N of the target to be processed in the second cluster does not meet the preset condition, delete second cluster;
  • a processing module configured to perform a first process on each of the first clusters in the plurality of clusters: in the first cluster, the absolute value of the difference between the statistical appearance time and the current time is smaller than the first preset M objects to be processed at the time threshold ⁇ Time1; when M>the first preset quantity threshold, the M objects to be processed are divided into N clusters, and in each cluster, any two objects to be processed The absolute values of the difference between the amplitudes are less than the preset amplitude threshold; for any cluster, when the number of targets to be processed contained in it>the second preset number threshold, then delete the cluster; for the remaining Each cluster performs the second processing: when
  • Embodiment 3 of the present invention provides a storage medium storing program instructions, wherein the signal processing method in Embodiment 1 is implemented when the program instructions are executed.
  • Embodiment 3 of the present invention provides an electronic terminal, which includes a processor and a memory, and the memory stores program instructions, wherein the processor executes the program instructions to implement the signal processing method in Embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种信号处理方法、装置、存储介质和电子终端,该信号处理方法包括:获取已扫描目标集合和多个初始目标,并划分为多个聚簇;对多个聚簇中的每个第一聚簇均进行信噪比统计分析和假目标统计分析,从而去除信噪比不合格的初始目标、以及假目标;该信号处理方法能够识别并剔除除信噪比不合格的初始目标以及假目标。

Description

信号处理方法、装置、存储介质和电子终端 技术领域
本发明涉及雷达技术领域,尤其涉及信号处理方法、装置、存储介质和电子终端。
背景技术
雷达是利用电磁波探测初始目标的电子设备,通过发射电磁波对初始目标进行照射并接收其回波,由此获得初始目标至电磁波发射点的距离、速度、方位等信息。
在现代的雷达对抗系统中,根据干扰能量来源的不同,可分为有源干扰和无源干扰两种;可以理解的是,当雷达受到干扰时,其所识别的初始目标中既包含有真初始目标也包含有假初始目标。
因此,当雷达受到干扰时,如何识别真假初始目标,就成为一个亟待解决的问题。
发明内容
有鉴于此,本发明的主要目的在于提供一种信号处理方法、装置、存储介质和电子终端。
为达到上述目的,本发明的技术方案是这样实现的:一种用于雷达系统的信号处理方法,包括以下步骤:
获取已扫描目标集合,所述已扫描目标集合包括Num1个初始目标及一一对应的Num1个属性值,控制所述雷达系统执行一次扫描操作,并基于雷达回波信号得到Num2个初始目标及一一对应的Num2个属性值,其中,所述属性值至少包括:初始目标的方位AZ、初始目标的出现时间、雷达回波信号的幅度和雷达回波信号的信噪比值S_N,Num1和Num2均为 自然数;
将所述Num1个初始目标复制为一一对应的Num1个待处理目标,将所述Num2个初始目标复制为一一对应的Num2个待处理目标;基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇;
对所述多个聚簇中的每个第二聚簇均进行以下处理:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇;
对所述多个聚簇中的每个第一聚簇均进行第一处理:在第一聚簇中,统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的M个待处理目标;当M>第一预设数量阀值时,将M个待处理目标划分为N个聚类,在每个聚类中,任意两个待处理目标中的幅度之差的绝对值均小于预设幅度阀值;对于任意的聚类,当其中所包含的待处理目标的数量>第二预设数量阀值,则删除所述聚类;对剩余的每个聚类都进行第二处理:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同;当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标;其中,第一待处理目标为所述聚类中的任一,第二待处理目标为所述Num1个初始目标中的任一,M和N均为自然数,N≤M,之后,当还有聚类没进行第二处理时,再进行下一个第二处理;之后,当还有第一聚簇没有进行第一处理时,再进行下一个第一处理。
作为本发明实施例的一种改进,所述“基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇”具体包括:对所述Num1+Num2个待处理目标进行以下处理,直至所述Num1+Num2个待处理目标均为已处理,所述处理具体包括:从Num1+Num2个待处理目标中选择一个未处理的第三待处理目标,创建一个仅包含第三待处理目标的聚簇,将第三待处理目标标注为已处理,之后,对 Num1+Num2个待处理目标中的每个第四待处理目标均进行以下判断,当第四初始目标为未处理、且|第三待处理目标的方位AZ-所述聚簇中的所有待处理目标的方位AZ的平均值|<所述方位差阀值ΔAZ时,将第四待处理目标添加到所述聚簇中,并将第四待处理目标标注为已处理。
作为本发明实施例的一种改进,所述“如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇”具体包括:获取第二聚簇中的第五待处理目标的数量Counter1和第六待处理目标的数量Counter2,其中,|第五待处理目标的出现时间-当前时间|≤第一预设时间阀值ΔTime1,|第六待处理目标的信噪比值S_N-预设信噪比值|≤预设信噪比阀值ΔS_N,若Counter2/Ccounter1>预设百分比值,则删除第二聚簇。
作为本发明实施例的一种改进,预设百分比值=0.9.
作为本发明实施例的一种改进,所述“如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇”具体包括:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇,并调整所述雷达系统的转速和发射频率。
作为本发明实施例的一种改进,所述“当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同”具体包括:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同,并在所述已扫描目标集合中,以第一待处理目标的属性值,第七待处理目标的属性值进行更新,其中,第二待处理目标与第七待处理目标的内容相同;
所述“当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标”具体包括:当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标,并将第一待处理目标添加到所述已扫描目标集合。
作为本发明实施例的一种改进,还包括以下步骤:对所述已扫描目标集合中的每个初始目标均进行以下处理:当|所述初始目标的最近的出现时间-当前时间|<第二预设时间阀值ΔTime2,从所述已扫描目标集合中删除所述初始目标。
本发明实施例提供了一种用于雷达系统的信号处理装置,包括以下模块:
数据获取模块,用于获取已扫描目标集合,所述已扫描目标集合包括Num1个初始目标及一一对应的Num1个属性值,控制所述雷达系统执行一次扫描操作,并基于雷达回波信号得到Num2个初始目标及一一对应的Num2个属性值,其中,所述属性值至少包括:初始目标的方位AZ、初始目标的出现时间、雷达回波信号的幅度和雷达回波信号的信噪比值S_N,Num1和Num2均为自然数;
聚类模块,用于将所述Num1个初始目标复制为一一对应的Num1个待处理目标,将所述Num2个初始目标复制为一一对应的Num2个待处理目标;基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇;
噪声处理模块,用于对所述多个聚簇中的每个第二聚簇均进行以下处理:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇;
处理模块,用于对所述多个聚簇中的每个第一聚簇均进行第一处理:在第一聚簇中,统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的M个待处理目标;当M>第一预设数量阀值时,将M个待处理目标划分为N个聚类,在每个聚类中,任意两个待处理目标中的幅度之差的绝对值均小于预设幅度阀值;对于任意的聚类,当其中所包含的待处理目标的数量>第二预设数量阀值,则删除所述聚类;对剩余的每个聚类都进行第二处理:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同;当|第一 待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标;其中,第一待处理目标为所述聚类中的任一,第二待处理目标为所述Num1个初始目标中的任一,M和N均为自然数,N≤M,之后,当还有聚类没进行第二处理时,再进行下一个第二处理;之后,当还有第一聚簇没有进行第一处理时,再进行下一个第一处理。
本发明实施例提供了一种存储介质,存储有程序指令,其特征在于,所述程序指令被执行时实现上述的信号处理方法。
本发明实施例提供了一种电子终端,包括处理器和存储器,所述存储器存储有程序指令,其特征在于,所述处理器运行程序指令实现上述的信号处理方法。
本发明实施例所提供的信号处理方法、装置、存储介质和电子终端具有以下优点:本发明实施例公开了一种信号处理方法、装置、存储介质和电子终端,该信号处理方法包括:获取已扫描目标集合和多个初始目标,并划分为多个聚簇;对多个聚簇中的每个第一聚簇均进行信噪比统计分析和假目标统计分析,从而去除信噪比不合格的初始目标、以及假目标;该信号处理方法能够识别并剔除除信噪比不合格的初始目标以及假目标。
附图说明
图1为本发明实施例提供的雷达的结构图;
图2为本发明实施例提供的信号处理方法的结构图;
图3、图4和图5为本发明实施例的信号处理方法的原理图。
具体实施方式
以下将结合附图所示的实施方式对本发明进行详细描述。但该实施 方式并不限制本发明,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理 解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1所示,该雷达系统主要由主处理机单元、信号产生单元、信号放大单元、收发控制单元、天线和伺服控制单元等单元组成,该雷达系统的处理过程为:假设雷达发射机发射功率为Pt,天线增益为G,则雷达的单位立体角度发射功率为
Figure PCTCN2021133213-appb-000001
设目标反射面积为σ,中心距离雷达天线为R,则目标(例如,飞机等)收到的功率为:
Figure PCTCN2021133213-appb-000002
被探测目标收到后再向整个空间进行反射,则单位立体角内辐射功率为
Figure PCTCN2021133213-appb-000003
设雷达天线的张角为A,则雷达天线接收到的功率为
Figure PCTCN2021133213-appb-000004
而G=2πA/λ 2,则雷达接收到的功率为
Figure PCTCN2021133213-appb-000005
当功率小于雷达接收机的灵敏度(各雷达都不相同),则雷达不能识别出目标,雷达接收到的信号的信噪比值为
Figure PCTCN2021133213-appb-000006
当信噪比值低于雷达最小可接收信噪比值(各雷达都不相同)时,同样不能识别出目标。
外界对雷达的干扰主要由噪声和欺骗两种类型,噪声主要作用在雷达的接收机单元,降低信噪比值,使雷达不能识别出目标,而欺骗主要作用在雷达信号处理单元,通过制造假目标,使雷达不能分辨出哪个是真实目标,从而达到保护自身的目的。
本发明实施例一提供了一种用于雷达系统的信号处理方法,这里,该雷达系统可以每隔一段预设时间,就执行一次该信号处理方法,可选的,可以由该雷达系统的主处理机来执行该信号处理方法;如图2所示, 包括以下步骤:
步骤201:获取已扫描目标集合,所述已扫描目标集合包括Num1个初始目标及一一对应的Num1个属性值,控制所述雷达系统执行一次扫描操作,并基于雷达回波信号得到Num2个初始目标及一一对应的Num2个属性值,其中,所述属性值至少包括:初始目标的方位AZ、初始目标的出现时间、雷达回波信号的幅度和雷达回波信号的信噪比值S_N,Num1和Num2均为自然数;这里,在执行扫描操作时,首先会基于雷达回波信号得到初始目标的点迹信息,然后再得到初始目标及对应的属性值。对于每个初始目标至少获取以下属性值:(1)在此次扫描操作中,相对于雷达系统而言,初始目标所处的方位AZ;(2)在此次扫描操作中,雷达系统与初始目标之间的当前距离distance;(3)在此次扫描操作中,初始目标回波的幅度pa;(4)在此次扫描操作中,初始目标的速度velocity;(5)初始目标出现的时间appearTime,可以理解的是,同一个初始目标有可能被多次扫描到,因此,可以使用一个数组来保存appearTime,该数组保存了该初始目标自从被发现到本次扫描之间所有的appearTime;(6)初始目标消失的时间disappearTime,可以理解的是,同一个初始目标有可能多次被扫描到,也有可能多次消失,因此,可以使用一个数组来保存disappearTime,该数组保存了该初始目标自从被发现到本次扫描之间所有的disappearTime;(7)信噪比值S_N,可以理解的是,同一个初始目标有可能被多次扫描到,在每次被扫描到时,可以获取该初始目标的返回信号的信噪比值,因此,可以使用一个数组来保存S_N,该数组保存了该初始目标自从被发现到本次扫描之间所有的S_N。
这里,实际编程中,可以使用一个结构体来存储初始目标对应的属性值,
Typedef struct StatAnalyzeStru
{
int AZ;
int distance;
int pa;
int velocity;
int appearTimeCnt;//appearTimeCnt为同一个初始目标有被扫描到的次数
int appearTime[1024];
int disappearTimeCnt;//disappearTimeCnt为同一个初始目标消失的次数
int disappearTime[1024];
int S_N[1024];
}
这里,在上次执行完该信号处理方法之后,得到了Num1个初始目标,在本次扫描操作时,一共发现了Num2个初始目标,于是:(1)Num1个初始目标和Num2个初始目标中有部分初始目标是重合的,可以理解的是,由于初始目标(例如,飞机等)通常是运动的,因此,相同的初始目标在上次扫描和本次扫描中的属性值通常不会一模一样(例如,方位AZ,当前距离distance等会不一样),仅极小概率是一模一样的;(2)Num2 个初始目标中有部分初始目标是新的,即不在Num1个初始目标中,在这部分新的初始目标中有些是假初始目标。
步骤202:将所述Num1个初始目标复制为一一对应的Num1个待处理目标,将所述Num2个初始目标复制为一一对应的Num2个待处理目标;基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇;这里,初始目标和待处理目标是一一对应的关系,且相互对应的初始目标和待处理目标的内容是一致的,但是两个独立的值,即修改了初始目标的内容,不影响待处理目标的内容;同样,修改待处理目标的内容,不影响初始目标的内容。
这里,该Num1+Num2个待处理目标是由上述Num1个待处理目标和Num2个待处理目标合并而成。这里,该聚类算法会将方位AZ相似的待处理目标划入到同一个聚簇中,可以理解的是,方位AZ相似的多个初始目标中,有些是假目标。
步骤203:对所述多个聚簇中的每个第二聚簇均进行以下处理:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇;如果某个聚簇的信噪比值不符合要求,则可以删除该聚簇。可以预设条件可以为:第二聚簇中的任一的待处理目标的信噪比值S_N不符合要求,则不符合预设条件;或者第二聚簇中的所有待处理目标的信噪比值S_N都不符合要求,则不符合预设条件。当第二聚簇中的待处理目标的信噪比值S_N不符合预设条件时,可以认为雷达系统的信噪比已经恶化,所采集的信号有较大的的误差。
步骤204:对所述多个聚簇中的每个第一聚簇均进行第一处理:在 第一聚簇中,统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的M个待处理目标;当M>第一预设数量阀值时,将M个待处理目标划分为N个聚类,在每个聚类中,任意两个待处理目标中的幅度之差的绝对值均小于预设幅度阀值;对于任意的聚类,当其中所包含的待处理目标的数量>第二预设数量阀值,则删除所述聚类;这里,通过统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的待处理目标(可以理解的是,符合该条件的待处理目标为新增目标)的数量M,可以理解的是,当M>第一预设数量阀值时,则这些新增目标中可能是假目标,于是,需要对新增目标进行幅度上统计分析,当一个聚类中的待处理处目标的数量>第二预设数量阀值时,可以认为该聚类中的待处理目标,在时域、空域和幅度都相关,为同一发射机所发,是假目标,需要置删除标志。
对剩余的每个聚类都进行第二处理:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同;当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标;其中,第一待处理目标为所述聚类中的任一,第二待处理目标为所述Num1个初始目标中的任一,M和N均为自然数,N≤M,之后,当还有聚类没进行第二处理时,再进行下一个第二处理;之后,当还有第一聚簇没有进行第一处理时,再进行下一个第一处理。这里,第一预设数量阀值可以为10,第二预设数量阀值可以为10。
这里,欺骗干扰分为有源干扰和无源干扰。有源干扰就是将雷达的 信号经过延迟处理,再转发给雷达,从而制造大量的假目标,使雷达跟踪到假目标上,而真实的目标就得到了保护,另外,还可通过制造大批的假目标,使雷达的数据处理系统工作饱和,直至不能正常工作;无源干扰就是在目标前方投撒金属箔条、发射曳光弹等,使雷达探测不到真实的目标,从而起到了保护作用。
对于有源干扰,先分析一下效果模型,图3为一个雷达天线方向图,其中,信号强的方向为主瓣方向,信号弱的方向为副瓣方向,主副瓣同时接收信号,当对方实施干扰时,表现为某个方位域截获到许多目标信号,如图4所示。从时域上统计分析,表现为同一时刻出现许多新的目标,新目标和老目标同时存在,且新目标出现在敏感时刻,如对抗演习,对峙,战时状态等;从空域上统计分析,表现为新目标与老目标共存于同一方位域,由于假目标从同一发射机发出,故它们在幅度上几乎一致,即幅度相关,根据实战经验,如果在同一方位和敏感时刻突然新增大量目标,且幅度相关,明显与战场实际情况相悖,据此,我们可以判断,大量新目标的出现应该是为了掩护老目标,故可判断为假目标。
对于无源干扰,干扰者在目标前方投撒金属箔条或曳光弹,使雷达只探测到箔条而探测不到本身,从而起到自身保护作用,干扰效果如图5所示,从时域上统计分析,表现为同一时刻新目标出现,老目标消失,在时域上具有相关性;从空域上统计分析,表现为新目标和老目标处于同一方位,新目标距离雷达较近,老目标距离雷达较远。我们知道,真实的雷达目标在时域和空域上应该是连续的,而这种在时域上的跳变及交替出现是不可能的,况且在空域上处于同一方位,距离上一前一后, 只能说明新目标的出现是为了掩护老目标,新目标应该为假目标。
本实施例中,所述“基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇”具体包括:
对所述Num1+Num2个待处理目标进行以下处理,直至所述Num1+Num2个待处理目标均为已处理;这里,在该所有处理执行之前,将所述Num1+Num2个初始目标默认为未处理,在每次进行该处理之后,都有若干个初始目标被加入到一个新的聚簇中,该新的聚簇中的所有初始目标均被标注为已处理。
所述处理具体包括:从Num1+Num2个待处理目标中选择一个未处理的第三待处理目标,创建一个仅包含第三待处理目标的聚簇,将第三待处理目标标注为已处理,之后,对Num1+Num2个待处理目标中的每个第四待处理目标均进行以下判断,当第四初始目标为未处理、且|第三待处理目标的方位AZ-所述聚簇中的所有待处理目标的方位AZ的平均值|<所述方位差阀值ΔAZ时,将第四待处理目标添加到所述聚簇中,并将第四待处理目标标注为已处理。
这里,在每次执行该处理时,从Num1+Num2个初始目标选择一个未加入任何已有的聚簇的第一初始目标,然后创建一个新的聚簇(该聚簇仅包含第一初始目标),之后从Num1+Num2个初始目标选择未加入已有聚簇和新建的聚簇的一个第二初始目标(即第二初始目标为未处理),之后,计算该新建的聚簇中的所有初始目标的方位AZ的平均值m_azAverage,如果|第二初始目标的方位AZ-m_azAverage|<所述方位差阀值ΔAZ时,则标明第二初始目标与聚簇中所有初始目标均位于同一方位阈,之后将 第二初始目标添加到所述聚簇中,并将第二初始目标标注为已处理,如果所述Num1个初始目标和Num2个初始目标中有一模一样的初始目标,则也会被划分到同一个聚簇中。
可以理解的,循环执行该处理,则Num1+Num2个初始目标中的所有初始目标都会处于唯一的一个聚簇中。此外,唯一同一聚簇中的所有初始目标的方位都是相近的。
这里,在实际编程时,假设Num1个初始目标具体为StatAnalyzeStruts[1,...,Num1],Num2个初始目标具体为StatAnalyzeStruts[Num1+1,...,Num1+Num2],在StatAnalyzeStruts[Num2]中将扫描时间填到appearTime[0]内,appearTimeCnt赋值为1。
之后,定义一个整形数组m_arrayCluster[Num1+Num2],再定义一个计数器m_iCounter,初值为0,定义分析标记数组m_arraypAnaFlag[Num1+Num2],并全部设为0,即未处理,再定义一个整形变量m_azAverage。
之后,寻找标记数组m_arraypAnaFlag值为0的序号,并将该序号i填入m_arrayCluster[m_iCounter],然后m_iCounter++,将m_azAverage=StatAnalyzeStruts[i].AZ,m_arraypAnaFlag[i]=1。
之后,以m_azAverage为基准,寻找到符合以下条件的序号j,|m_arraypAnaFlag[j].AZ-m_azAverage|<ΔAZ,然后将序号j填入m_arrayCluster[m_iCounter],然后m_iCounter++,将m_azAverage=(m_azAverage*m_iCounter+m_arraypAnaFlag[j].AZ)/(m_iCounter+1), m_arraypAnaFlag[j]=1。
上述步骤循环往复,直到m_arraypAnaFlag[1,...,Num1+Num2]均为1。
本实施例中,所述“如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇”具体包括:获取第二聚簇中的第五待处理目标的数量Counter1和第六待处理目标的数量Counter2,其中,|第五待处理目标的出现时间-当前时间|≤第一预设时间阀值ΔTime1,|第六待处理目标的信噪比值S_N-预设信噪比值|≤预设信噪比阀值ΔS_N,若Counter2/Ccounter1>预设百分比值,则删除第二聚簇。这里,当Counter2/Ccounter1>预设百分比值时,可以认为雷达系统的信噪比已经恶化,所采集的信号有较大的的误差。
本实施例中,预设百分比值=0.9。
本实施例中,所述“如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇”具体包括:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇,并调整所述雷达系统的转速和发射频率。
这里,调整雷达系统的转速和发射频率可以具体包括:获取雷达系统的当前转速周期大小m_rotateVelocity及调整转速周期的开始时刻m_rotateTime,若|m_rotateTime-当前时间|<3*m_rotateVelocity,说明刚刚调整了转速,待进一步观察,不动作,返回;若3*m_rotateVelocity≤|m_rotateTime-当前时间|<100*m_rotateVelocity,说明已调整了转速,但效果不理想,需要更换雷达发射频率到下个频点;否则循环调整 到下一转速,返回。
这里,雷达系统所受到的噪声干扰可以分为同频噪声干扰、扫频噪声干扰、跳频噪声干扰,扫频干扰和调频干扰又称为间歇性干扰。若干扰一直存在,此时可通过改变雷达天线转速判断是同频持续干扰还是间歇性干扰,若是间歇性干扰,当雷达转速与该方向的干扰周期同频或倍频时,表现为受到持续的干扰,此时可通过调整天线转速来避免同频或倍频,无须改变雷达发射参数,雷达在该方向可进行“隐蔽”工作;若是同频持续干扰,可通过更换雷达发射频率消除。
本发明实施例中,所述“当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同”具体包括:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同,并在所述已扫描目标集合中,以第一待处理目标的属性值,第七待处理目标的属性值进行更新,其中,第二待处理目标与第七待处理目标的内容相同;
所述“当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标”具体包括:当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标,并将第一待处理目标添加到所述已扫描目标集合。
本发明实施例中,还包括以下步骤:
对所述已扫描目标集合中的每个初始目标均进行以下处理:当|所述初始目标的最近的出现时间-当前时间|<第二预设时间阀值ΔTime2,从 所述已扫描目标集合中删除所述初始目标。
本发明实施例二提供了一种用于雷达系统的信号处理装置,包括以下模块:
数据获取模块,用于获取已扫描目标集合,所述已扫描目标集合包括Num1个初始目标及一一对应的Num1个属性值,控制所述雷达系统执行一次扫描操作,并基于雷达回波信号得到Num2个初始目标及一一对应的Num2个属性值,其中,所述属性值至少包括:初始目标的方位AZ、初始目标的出现时间、雷达回波信号的幅度和雷达回波信号的信噪比值S_N,Num1和Num2均为自然数;
聚类模块,用于将所述Num1个初始目标复制为一一对应的Num1个待处理目标,将所述Num2个初始目标复制为一一对应的Num2个待处理目标;基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇;
噪声处理模块,用于对所述多个聚簇中的每个第二聚簇均进行以下处理:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇;
处理模块,用于对所述多个聚簇中的每个第一聚簇均进行第一处理:在第一聚簇中,统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的M个待处理目标;当M>第一预设数量阀值时,将M个待处理目标划分为N个聚类,在每个聚类中,任意两个待处理目标中的幅度之差的绝对值均小于预设幅度阀值;对于任意的聚类,当其中所包含的待处理目标的数量>第二预设数量阀值,则删除所述聚类;对剩余 的每个聚类都进行第二处理:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同;当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标;其中,第一待处理目标为所述聚类中的任一,第二待处理目标为所述Num1个初始目标中的任一,M和N均为自然数,N≤M,之后,当还有聚类没进行第二处理时,再进行下一个第二处理;之后,当还有第一聚簇没有进行第一处理时,再进行下一个第一处理。
本发明实施例三提供了一种存储介质,存储有程序指令,其特征在于,所述程序指令被执行时实现如实施例一中的信号处理方法。
本发明实施例三提供了一种电子终端,包括处理器和存储器,所述存储器存储有程序指令,其特征在于,所述处理器运行程序指令实现如实施例一中的信号处理方法。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于雷达系统的信号处理方法,其特征在于,包括以下步骤:
    获取已扫描目标集合,所述已扫描目标集合包括Num1个初始目标及一一对应的Num1个属性值,控制所述雷达系统执行一次扫描操作,并基于雷达回波信号得到Num2个初始目标及一一对应的Num2个属性值,其中,所述属性值至少包括:初始目标的方位AZ、初始目标的出现时间、雷达回波信号的幅度和雷达回波信号的信噪比值S_N,Num1和Num2均为自然数;
    将所述Num1个初始目标复制为一一对应的Num1个待处理目标,将所述Num2个初始目标复制为一一对应的Num2个待处理目标;基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇;
    对所述多个聚簇中的每个第二聚簇均进行以下处理:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇;
    对所述多个聚簇中的每个第一聚簇均进行第一处理:在第一聚簇中,统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的M个待处理目标;当M>第一预设数量阀值时,将M个待处理目标划分为N个聚类,在每个聚类中,任意两个待处理目标中的幅度之差的绝对值均小于预设幅度阀值;对于任意的聚类,当其中所包含的待处理目标的数量>第二预设数量阀值,则删除所述聚类;对剩余的每个聚类都进行第二处理:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同;当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标;其中,第一待处理目标为所述聚类中的任一,第二待处理目标为所述Num1个初始目标中的任一,M和N均为自然数,N≤M,之后,当还有聚类没进行第二处理时,再进行下一个第 二处理;之后,当还有第一聚簇没有进行第一处理时,再进行下一个第一处理。
  2. 根据权利要求1所述的信号处理方法,其特征在于,所述“基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇”具体包括:
    对所述Num1+Num2个待处理目标进行以下处理,直至所述Num1+Num2个待处理目标均为已处理,所述处理具体包括:从Num1+Num2个待处理目标中选择一个未处理的第三待处理目标,创建一个仅包含第三待处理目标的聚簇,将第三待处理目标标注为已处理,之后,对Num1+Num2个待处理目标中的每个第四待处理目标均进行以下判断,当第四初始目标为未处理、且|第三待处理目标的方位AZ-所述聚簇中的所有待处理目标的方位AZ的平均值|<所述方位差阀值ΔAZ时,将第四待处理目标添加到所述聚簇中,并将第四待处理目标标注为已处理。
  3. 根据权利要求1所述的信号处理方法,其特征在于,所述“如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇”具体包括:
    获取第二聚簇中的第五待处理目标的数量Counter1和第六待处理目标的数量Counter2,其中,|第五待处理目标的出现时间-当前时间|≤第一预设时间阀值ΔTime1,|第六待处理目标的信噪比值S_N-预设信噪比值|≤预设信噪比阀值ΔS_N,若Counter2/Ccounter1>预设百分比值,则删除第二聚簇。
  4. 根据权利要求3所述的信号处理方法,其特征在于,
    预设百分比值=0.9.
  5. 根据权利要求3所述的信号处理方法,其特征在于,所述“如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇”具体包括:
    如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则 删除第二聚簇,并调整所述雷达系统的转速和发射频率。
  6. 根据权利要求1所述的信号处理方法,其特征在于,
    所述“当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同”具体包括:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同,并在所述已扫描目标集合中,以第一待处理目标的属性值,第七待处理目标的属性值进行更新,其中,第二待处理目标与第七待处理目标的内容相同;
    所述“当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标”具体包括:当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标,并将第一待处理目标添加到所述已扫描目标集合。
  7. 根据权利要求6所述的信号处理方法,其特征在于,还包括以下步骤:
    对所述已扫描目标集合中的每个初始目标均进行以下处理:当|所述初始目标的最近的出现时间-当前时间|<第二预设时间阀值ΔTime2,从所述已扫描目标集合中删除所述初始目标。
  8. 一种用于雷达系统的信号处理装置,其特征在于,包括以下模块:
    数据获取模块,用于获取已扫描目标集合,所述已扫描目标集合包括Num1个初始目标及一一对应的Num1个属性值,控制所述雷达系统执行一次扫描操作,并基于雷达回波信号得到Num2个初始目标及一一对应的Num2个属性值,其中,所述属性值至少包括:初始目标的方位AZ、初始目标的出现时间、雷达回波信号的幅度和雷达回波信号的信噪比值S_N,Num1和Num2均为自然数;
    聚类模块,用于将所述Num1个初始目标复制为一一对应的Num1个待处理目标,将所述Num2个初始目标复制为一一对应的Num2个待处理 目标;基于聚类算法和Num1+Num2个待处理目标的方位AZ、将Num1+Num2个待处理目标划分为多个聚簇;
    噪声处理模块,用于对所述多个聚簇中的每个第二聚簇均进行以下处理:如果第二聚簇中的待处理目标的信噪比值S_N不符合预设条件,则删除第二聚簇;
    处理模块,用于对所述多个聚簇中的每个第一聚簇均进行第一处理:在第一聚簇中,统计出现时间与当前时间的差值的绝对值小于第一预设时间阀值ΔTime1的M个待处理目标;当M>第一预设数量阀值时,将M个待处理目标划分为N个聚类,在每个聚类中,任意两个待处理目标中的幅度之差的绝对值均小于预设幅度阀值;对于任意的聚类,当其中所包含的待处理目标的数量>第二预设数量阀值,则删除所述聚类;对剩余的每个聚类都进行第二处理:当|第一待处理目标-第二待处理目标的方位AZ|<方位差阀值ΔAZ时,则该第一、第二待处理目标相同;当|第一待处理目标的方位AZ-所述Num1个初始目标中的任一的方位AZ|≥方位差阀值ΔAZ时,则第一待处理目标为新目标;其中,第一待处理目标为所述聚类中的任一,第二待处理目标为所述Num1个初始目标中的任一,M和N均为自然数,N≤M,之后,当还有聚类没进行第二处理时,再进行下一个第二处理;之后,当还有第一聚簇没有进行第一处理时,再进行下一个第一处理。
  9. 一种存储介质,存储有程序指令,其特征在于,所述程序指令被执行时实现如权利要求1至权利要求7任一项所述的信号处理方法。
  10. 一种电子终端,包括处理器和存储器,所述存储器存储有程序指令,其特征在于,所述处理器运行程序指令实现如权利要求1至权利要求7任一项所述的信号处理方法。
PCT/CN2021/133213 2021-11-12 2021-11-25 信号处理方法、装置、存储介质和电子终端 WO2023082347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111341205.2A CN114063022A (zh) 2021-11-12 2021-11-12 信号处理方法、装置、存储介质和电子终端
CN202111341205.2 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023082347A1 true WO2023082347A1 (zh) 2023-05-19

Family

ID=80271651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133213 WO2023082347A1 (zh) 2021-11-12 2021-11-25 信号处理方法、装置、存储介质和电子终端

Country Status (2)

Country Link
CN (1) CN114063022A (zh)
WO (1) WO2023082347A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204186A (ja) * 1990-11-30 1992-07-24 Nec Corp 信号処理方式
CN105259540A (zh) * 2015-11-26 2016-01-20 西安电子科技大学 一种多站雷达抗有源欺骗式干扰的优化方法
CN109581312A (zh) * 2018-11-22 2019-04-05 西安电子科技大学昆山创新研究院 一种高分辨毫米波雷达多目标聚类方法
CN111208484A (zh) * 2020-01-15 2020-05-29 西安电子科技大学 一种基于角度信息的主瓣密集假目标剔除方法
CN112285698A (zh) * 2020-12-25 2021-01-29 四川写正智能科技有限公司 一种基于雷达传感器的多目标跟踪装置及方法
CN113484838A (zh) * 2021-06-30 2021-10-08 南京邮电大学 一种多基地雷达有源假目标鉴别方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204186A (ja) * 1990-11-30 1992-07-24 Nec Corp 信号処理方式
CN105259540A (zh) * 2015-11-26 2016-01-20 西安电子科技大学 一种多站雷达抗有源欺骗式干扰的优化方法
CN109581312A (zh) * 2018-11-22 2019-04-05 西安电子科技大学昆山创新研究院 一种高分辨毫米波雷达多目标聚类方法
CN111208484A (zh) * 2020-01-15 2020-05-29 西安电子科技大学 一种基于角度信息的主瓣密集假目标剔除方法
CN112285698A (zh) * 2020-12-25 2021-01-29 四川写正智能科技有限公司 一种基于雷达传感器的多目标跟踪装置及方法
CN113484838A (zh) * 2021-06-30 2021-10-08 南京邮电大学 一种多基地雷达有源假目标鉴别方法及系统

Also Published As

Publication number Publication date
CN114063022A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN104777468B (zh) 利用雷达天线和差通道抑制雷达旁瓣截获的方法
Butt et al. An overview of electronic warfare in radar systems
Farina et al. Electronic counter-countermeasures
CN111624567B (zh) 一种恒虚警检测方法及装置
CN109444820A (zh) 杂波和干扰共存时多通道雷达先干扰抑制后目标检测方法
CN113219417B (zh) 一种基于支持向量机的机载雷达干扰类型识别方法
CN109031232B (zh) 一种自适应匿影系数高度线杂波抑制方法
CN104535972A (zh) 一种机载雷达相干转发式干扰抑制方法
CN110068806A (zh) 一种无人值守场站周界安防的近距离无盲区雷达监控系统
WO2010039299A1 (en) Counter target acquisition radar and acoustic adjunct for classification
Park et al. Modeling and simulation for the investigation of radar responses to electronic attacks in electronic warfare environments
KR100852934B1 (ko) 부엽제거기를 개선한 잡음 재밍신호 탐지 시스템 및 방법
CN111580099A (zh) 基于联合熵值的穿墙成像雷达墙体杂波抑制方法
CN115480222A (zh) 一种基于频控阵干扰机的雷达干扰技术方法
CN113567934B (zh) 一种基于协同的雷达探测方法
CN113884995A (zh) 基于空时联合调制的stap雷达干扰信号产生方法
WO2023082347A1 (zh) 信号处理方法、装置、存储介质和电子终端
CN111007471B (zh) 一种判定有源压制干扰在仿真环境中干扰效果的方法
CN112180331A (zh) 一种自适应射频掩护脉冲频点策略调度方法
CN111077515B (zh) 一种基于模拟电视外辐射源雷达的目标检测方法
CN114609597A (zh) 针对无人机集群侦探融合的干侵一体化雷达波形设计方法
CN112630744B (zh) 一种多相参积累方法融合的海上小目标检测方法及系统
CN108896970A (zh) 一种基于多元矢量合成技术的雷达干扰方法
Chen et al. Networked FDA-MIMO radar positioning to suppress dense false target jamming
CN113030878A (zh) 对空时自适应处理的非均匀间歇采样随机转发干扰方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963790

Country of ref document: EP

Kind code of ref document: A1