WO2023082333A1 - 一种基于自控闸门和测流装置的渠系水资源调度方法 - Google Patents

一种基于自控闸门和测流装置的渠系水资源调度方法 Download PDF

Info

Publication number
WO2023082333A1
WO2023082333A1 PCT/CN2021/132737 CN2021132737W WO2023082333A1 WO 2023082333 A1 WO2023082333 A1 WO 2023082333A1 CN 2021132737 W CN2021132737 W CN 2021132737W WO 2023082333 A1 WO2023082333 A1 WO 2023082333A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
irrigation
canal system
channel
canal
Prior art date
Application number
PCT/CN2021/132737
Other languages
English (en)
French (fr)
Inventor
马道坤
应昌衫
张云轩
边新洋
李迁
Original Assignee
扬州智水物联网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州智水物联网有限公司 filed Critical 扬州智水物联网有限公司
Publication of WO2023082333A1 publication Critical patent/WO2023082333A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the invention belongs to the technical field of irrigation and energy saving, and in particular relates to a method for scheduling water resources in a canal system based on an automatic control gate and a flow measuring device.
  • agricultural irrigation mainly uses surface water resources, which is not conducive to energy conservation and environmental protection of national water resources. Then agricultural irrigation is related to people's death, which largely determines the increase of grain income and production, so surface water resources play an important role in the process of agricultural irrigation.
  • the present invention provides a method for dispatching water resources in a canal system based on an automatic control gate and a flow measuring device.
  • the technical problem to be solved in the present invention is realized through the following technical solutions:
  • the present invention provides a canal water resource scheduling method based on an automatic control gate and a flow measuring device, which is applied to a cloud platform.
  • the canal water resource scheduling method includes:
  • the present invention provides a canal water resource scheduling method based on an automatic control gate and a flow measuring device, which is applied to a cloud platform.
  • the canal water resource scheduling method includes:
  • Step 1 Obtain the water transfer demand of the canal system in the area to be irrigated
  • the water diversion demand of the canal system includes the irrigation area, the area of the irrigation area, the instantaneous flow rate of irrigation corresponding to the irrigation area, and the irrigation duration;
  • Step 2 According to the water diversion demand of the canal system, according to the order of water transmission and distribution levels from the water intake of the canal system to the final channel, adjust the self-control gates to meet the water diversion demand of the canal system in order to make the water flow from the water outlet to the final channel.
  • the instantaneous flow rate from the first-level channel to the last-level channel meets the corresponding irrigation instantaneous flow rate of the irrigation area in the water transfer demand of the canal system, and the irrigation area is irrigated;
  • Step 3 Obtain the water level detected by the water level gauge of each channel and the instantaneous flow detected by the open channel flow meter;
  • Step 4 If a new canal system water transfer demand is received during the irrigation process of the irrigation area, for each level of channel currently irrigated, the instantaneous flow detected by the channel open channel flowmeter and the newly added canal system water transfer demand are carried The instantaneous flow of irrigation is added to determine whether there is a risk of flow overrun in each section of the channel on the water delivery route. If so, the water transfer demand for the newly added canal system will not be responded temporarily, and the water transfer demand for the newly added canal system will be stored in in the queue;
  • Step 5 If the irrigation duration of the irrigated area is reached or the canal system water transfer demand of the irrigated area is changed to stop irrigation, then read the canal system water transfer demand ranked first from the queue to respond, so as to follow the read canal system water transfer demand
  • the water diversion demand adjusts the self-control gate from the water intake of the canal system to the end channel to meet the instantaneous flow of irrigation in the water diversion demand of the canal system to complete the irrigation.
  • the method for dispatching canal water resources also includes:
  • step 2 :
  • the step 4 includes:
  • the upper limit of the water level of the channel is lower than the upper limit of the water level when the summer irrigation is about to end, so as to ensure that the stored water in the channel during the winter irrigation is lower than that in summer, and effectively avoid the freezing situation of the channel.
  • the method for dispatching canal water resources also includes:
  • the instantaneous flow rate of the end-stage channel of the irrigation area being irrigated is 0, it is determined that the irrigation of the irrigation area has been terminated, and then it is determined that the canal system water transfer demand of the irrigation area is changed to the termination of irrigation.
  • the present invention provides a canal system water resources control method based on self-control gates and flow measuring devices, by obtaining the canal system water transfer demand in the area to be irrigated; , adjust the self-control gates in turn to meet the water transfer demand of the canal system to irrigate the irrigation area; determine whether there is a risk of flooding in each canal section according to the water transfer demand of the newly added canal system, and if so, delay the response to the water transfer demand of the newly added canal system , and store its demand in the queue and trigger according to the order of the conditional season; if the irrigation time is reached or the canal water transfer demand is changed to terminate irrigation, then the canal water transfer demand sorted in front will be read from the queue to respond.
  • the present invention can dynamically implement water resource scheduling in real time, avoiding the waste of water resources caused by overflowing canals, and can also realize different water levels and instantaneous flow upper limit control according to different seasons, reducing the flow rate of canals. Possibility of damage, high practicability for agricultural irrigation, and low cost, easy to implement and popularize.
  • Fig. 1 is a schematic flow chart of a method for dispatching water resources in a canal system based on an automatic control gate and a flow measuring device provided by the present invention
  • Fig. 2 is a schematic diagram of installation of a gate and an open channel flowmeter provided by an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the installation of the ultrasonic water level gauge provided by the embodiment of the present invention.
  • a method for scheduling water resources in a canal system based on an automatic control gate and a flow measuring device provided by the present invention is applied to a cloud platform.
  • the method for scheduling water resources in a canal system includes:
  • Step 1 Obtain the water transfer demand of the canal system in the area to be irrigated
  • the water diversion demand of the canal system includes the irrigation area, the area of the irrigation area, the instantaneous flow rate of irrigation corresponding to the irrigation area, and the irrigation duration;
  • the cloud platform used in the present invention needs to establish communication with the field system equipment, so as to ensure the feasibility of the measurement.
  • the process is as follows:
  • Step 2 According to the water diversion demand of the canal system, according to the order of water transmission and distribution levels from the water intake of the canal system to the final channel, adjust the self-control gates to meet the water diversion demand of the canal system in order to make the water flow from the water outlet to the final channel.
  • the instantaneous flow rate from the first-level channel to the last-level channel meets the corresponding irrigation instantaneous flow rate of the irrigation area in the water transfer demand of the canal system, and the irrigation area is irrigated;
  • the end-stage channels are different, and the water flow from the water outlet to the end-stage channel may be different in the order of water transmission and distribution levels, so it is necessary to Open some gates and close some gates to form a water delivery path from the water outlet to the final channel.
  • the process of automatic control gate and water transfer is specifically step 2, and the step 2:
  • Step a According to the canal system water transfer demand in the area to be irrigated, open the self-control gates of each level of channels according to the order of canal water transmission and distribution levels from the canal system water intake to the last level of channels, and adjust the opening of the self-control gates;
  • Step b continuously adjust the opening of the automatic gate until the water flow reaches the instantaneous flow of the final channel, so as to meet the instantaneous flow of irrigation corresponding to the irrigation area in the water diversion demand of the canal system;
  • Step c maintain the current state of each automatic gate, and irrigate the area to be irrigated.
  • Step 3 Obtain the water level detected by the water level gauge of each channel and the instantaneous flow detected by the open channel flowmeter during the irrigation process of the area to be irrigated;
  • Step 4 If a new canal system water transfer demand is received during the irrigation process of the irrigation area, for each level of channel currently irrigated, the instantaneous flow detected by the channel open channel flowmeter and the newly added canal system water transfer demand are carried The instantaneous flow of irrigation is added to determine whether there is a risk of flow overrun in each section of the channel on the water delivery route. If so, the water transfer demand for the newly added canal system will not be responded temporarily, and the water transfer demand for the newly added canal system will be stored in in the queue;
  • the upper limit of the water level of the channel at the end of the winter irrigation is lower than the upper limit of the water level at the end of the summer irrigation, so as to ensure that the stored water in the channel is lower than that in the summer during the winter irrigation process, and effectively avoid the freezing of the channel.
  • the cumulative upper limit of winter irrigation irrigation statistics on the cloud platform is used as the control line.
  • the channel flow will be automatically reduced, and the water level in the channel will be lowered according to the measurement value of the water level gauge, so as to make full use of the channel memory. Water, to ensure that during the wintering process, the water level in the channel is low and there is less water stored, which can effectively avoid the damage of the channel due to freezing and swelling.
  • Step 4 includes:
  • Step a If a new canal system water transfer demand is received during the irrigation process of the irrigated area, for each level of channel used in the irrigated area, the instantaneous flow detected by the channel open channel flowmeter is compared with the newly added canal system water transfer demand Add the instantaneous flow of irrigation carried to obtain the result of the addition of instantaneous flow;
  • Step b If the result of the sum of the instantaneous flow exceeds the upper limit of the instantaneous flow of the channel, it is determined that the channel has a risk of flooding;
  • Step c If there is a risk of flooding in a channel during the irrigation process of the area to be irrigated, it does not respond to the water transfer demand of the newly added canal system, and stores the water transfer demand of the newly added canal system into the queue.
  • the water diversion demand of the canal system is generated by the request of irrigation users on the cloud platform, that is, when there is a water demand at the end-level channel, the system cloud platform issues an instruction to designate the opening of the head gate of the end-level channel To release water, upload demand data step by step corresponding to its superior channel, accumulate water flow demand, and adjust gate opening step by step to release water downstream. If there is a risk of overflow in any channel, the water diversion demand of the newly added canal system cannot be responded to avoid the occurrence of overflow.
  • the irrigation in the process of irrigating the irrigation area in the process of irrigating the irrigation area, once the irrigation is started for the area to be irrigated, it will be changed to the irrigation area; if the instantaneous flow rate of the final channel of the irrigation area being irrigated is 0, then the irrigation If the irrigation in the area has been terminated, it is determined that the water transfer demand of the canal system in the irrigated area is changed to the termination of irrigation. This saves time for the subsequent response to the water diversion demand of the new canal system. If the current canal system water diversion demand is terminated, it will directly respond to the new canal system water diversion demand.
  • Step 5 If the irrigation duration of the irrigated area is reached or the canal system water transfer demand of the irrigated area is changed to stop irrigation, then read the canal system water transfer demand ranked first from the queue to respond, so as to follow the read canal system water transfer demand
  • the water diversion demand adjusts the self-control gate from the water intake of the canal system to the end channel to meet the instantaneous flow of irrigation in the water diversion demand of the canal system to complete the irrigation.
  • the water level in the canal is measured by the ultrasonic water level gauge 3 installed at the head and tail of the canal. Increase the excess flow, and the newly generated water diversion demand of the canal system will be suspended, and will be restarted when other flow demands of the same canal section are terminated.
  • the present invention provides a canal system water resources control method based on self-control gates and flow measuring devices, by obtaining the canal system water transfer demand in the area to be irrigated; , adjust the self-control gates in turn to meet the water transfer demand of the canal system to irrigate the irrigation area; determine whether there is a risk of flooding in each canal section according to the water transfer demand of the newly added canal system, and if so, delay the response to the water transfer demand of the newly added canal system , and store its demand in the queue and trigger according to the order of the conditional season; if the irrigation time is reached or the canal water transfer demand is changed to terminate irrigation, then the canal water transfer demand sorted in front will be read from the queue to respond.
  • the present invention can dynamically implement water resource scheduling in real time, avoiding the waste of water resources caused by overflowing canals, and can also realize different water levels and instantaneous flow upper limit control according to different seasons, reducing the flow rate of canals. Possibility of damage, high practicability for agricultural irrigation, and low cost, easy to implement and popularize.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Husbandry (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Flow Control (AREA)

Abstract

本发明提供的一种基于自控闸门和测流装置的渠系水资源调控方法,通过获取待灌溉区域的渠系调水需求;依据从渠系取水口至末级渠道的渠道输配水层级顺序,依次调整自控闸门;根据新增渠系调水需求确定各渠段是否存在漫渠风险,如果存在,则对新增渠系调水需求延后响应,并将其需求存储至队列中依条件顺序触发;如果灌溉时长达到或渠系调水需求变更为终止灌溉,则从队列中读取排序在前的渠系调水需求进行响应。因此本发明可以根据灌溉需求及渠系各段渠道输水能力,实时机动实施水资源调度,避免漫渠造成的水资源浪费,还可根据季节不同实现不同的水位以及瞬时流量上限控制,降低渠道损坏的可能性,对于农业灌溉具有较高的实用性。

Description

一种基于自控闸门和测流装置的渠系水资源调度方法 技术领域
本发明属于灌溉节能技术领域,具体涉及一种基于自控闸门和测流装置的渠系水资源调度方法。
背景技术
我国是贫水农业大国,而农业灌溉主要用到地表水资源,这对于国家水资源的节能环保不太有利。然后农业灌溉关乎民生,其很大程度上决定了粮食的增收增产,因此地表水资源在农业灌溉过程中具有重要作用。
如何在农业灌溉中提高渠系水资源供水及时性以及水资源利用效率,这是一个需要解决的技术问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提供一种基于自控闸门和测流装置的渠系水资源调度方法。本发明要解决的技术问题通过以下技术方案实现:
本发明提供的一种基于自控闸门和测流装置的渠系水资源调度方法,应用于云平台,所述渠系水资源调度方法包括:
本发明提供的一种基于自控闸门和测流装置的渠系水资源调度方法,应用于云平台,所述渠系水资源调度方法包括:
步骤1:获取待灌溉区域的渠系调水需求;
其中,所述渠系调水需求包括灌溉区域、灌溉区域的面积、灌溉区域对应的灌溉瞬时流量以及灌溉时长;从所述灌溉区域的末级渠道至渠系取水口存在多级渠道,每级渠道的入口位置安装有自控闸门以及明渠流量计, 每条渠道首尾均安装有水位计;
步骤2:根据所述渠系调水需求,依据从渠系取水口至末级渠道的渠道输配水层级顺序,依次调整自控闸门满足渠系调水需求,以使水流从出水口流经末级渠道直至末级渠道的瞬时流量满足所述渠系调水需求中灌溉区域对应的灌溉瞬时流量,对灌溉区域进行灌溉;
步骤3:获取每级渠道的水位计检测的水位以及明渠流量计检测的瞬时流量;
步骤4:如果在对灌溉区域灌溉过程中接收到新增渠系调水需求,则针对当前灌溉的每级渠道,将该渠道明渠流量计检测的瞬时流量与新增渠系调水需求中携带的灌溉瞬时流量相加,从而确定输水路径上的各段渠道是否存在流量超限风险,如果存在,则对新增渠系调水需求暂不响应,将新增渠系调水需求存储至队列中;
步骤5:如果灌溉区域的灌溉时长达到或对灌溉区域的渠系调水需求变更为终止灌溉,则从队列中读取排序在前的渠系调水需求进行响应,以按照读取的渠系调水需求调整从渠系取水口至末级渠道的自控闸门,以满足该渠系调水需求中的灌溉瞬时流量完成灌溉。
可选的,在步骤1之前,所述渠系水资源调度方法还包括:
建立与灌溉区域内各级渠道安装的自控闸门以及明渠流量计的通信。
可选的,所述步骤2:
根据待灌溉区域的渠系调水需求,依据渠系取水口至末级渠道的渠道输配水层级顺序打开每级渠道的自控闸门,并调整自控闸门的开度;
持续调整自动闸门开度直至水流到达末级渠道的瞬时流量,以满足所述渠系调水需求中灌溉区域对应的灌溉瞬时流量;
维持每个自动闸门的当前状态,对待灌溉区域进行灌溉。
可选的,所述步骤4包括:
如果在灌溉区域灌溉过程中接收到新增渠系调水需求,则针对灌溉区域所使用的每级渠道,将该渠道明渠流量计检测的瞬时流量与新增渠系调水需求中携带的灌溉瞬时流量相加,获得瞬时流量相加结果;
如果瞬时流量相加结果超过渠道的瞬时流量上限,则判定该渠道存在漫渠风险;
如果在对待灌溉区域灌溉过程中有一个渠道存在漫渠风险,则对新增渠系调水需求不响应,并将新增渠系调水需求存储至队列中。
可选的,在冬季灌溉即将结束时渠道的水位上限低于夏季灌溉即将结束时的水位上限,以保证在冬季灌溉过程中渠道内存水低于夏季,有效规避渠道冻涨情况。
可选的,在步骤5之前,所述渠系水资源调度方法还包括:
当对所述待灌溉区域开启灌溉,则其变更为灌溉区域;
如果正在灌溉的灌溉区域的末级渠道的瞬时流量为0,则确定所述灌溉区域已经终止灌溉,则判定灌溉区域的渠系调水需求变更为终止灌溉。
本发明提供的一种基于自控闸门和测流装置的渠系水资源调控方法,通过获取待灌溉区域的渠系调水需求;依据从渠系取水口至末级渠道的渠道输配水层级顺序,依次调整自控闸门满足渠系调水需求对灌溉区域进行灌溉;根据新增渠系调水需求确定各渠段是否存在漫渠风险,如果存在,则对新增渠系调水需求延后响应,并将其需求存储至队列中依条件季顺序触发;如果灌溉时长达到或渠系调水需求变更为终止灌溉,则从队列中读取排序在前的渠系调水需求进行响应。因此本发明可以根据灌溉需求及渠 系各段渠道输水能力,实时机动实施水资源调度,避免漫渠造成的水资源浪费,还可根据季节不同实现不同的水位以及瞬时流量上限控制,降低渠道损坏的可能性,对于农业灌溉具有较高的实用性,且成本较低易于实现推广。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明提供的一种基于自控闸门和测流装置的渠系水资源调度方法的流程示意图;
图2是本发明实施例提供的闸门以及明渠流量计的安装示意图;
图3本发明实施例提供的超声波水位计的安装示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,本发明提供的一种基于自控闸门和测流装置的渠系水资源调度方法,应用于云平台,渠系水资源调度方法包括:
步骤1:获取待灌溉区域的渠系调水需求;
其中,所述渠系调水需求包括灌溉区域、灌溉区域的面积、灌溉区域对应的灌溉瞬时流量以及灌溉时长;从所述灌溉区域的末级渠道至渠系取水口存在多级渠道,每级渠道的入口位置安装有自控闸门以及明渠流量计,每条渠道首尾均安装有水位计;
值得说明是:不同灌溉区域的灌溉面积不同,其所需的水资源流量不同,在灌溉时长内的末级渠道的灌溉瞬时流量会不同,但是不会超过末级渠道的瞬时流量上限,水位也不会超过灌溉水位。不同的渠系调水需求会 有不同的标识,以区分灌溉区域。这样在渠系调水需求发送来的同时,对渠系调水需求进行解析,就可以知道从具体那个末级渠道开启自动闸门。
值得说明的是,在本发明测量之前,本发明应用的云平台需要与现场系统设备建立通信,这样才能保证测量的可实施性,其过程为:
建立与灌溉区域内各级渠道安装的自控闸门以及明渠流量计的通信。
参考图2以及图3,本发明云平台通信之前,首先需要在渠系各级渠道入口处安装远程自控闸门1、明渠流量计2,在干、支渠道首尾同时安装超声波水位计3,渠系系统上所有设备均与云平台管理软件联通,统一上传信息至云平台,统一接受云平台指令。
步骤2:根据所述渠系调水需求,依据从渠系取水口至末级渠道的渠道输配水层级顺序,依次调整自控闸门满足渠系调水需求,以使水流从出水口流经末级渠道直至末级渠道的瞬时流量满足所述渠系调水需求中灌溉区域对应的灌溉瞬时流量,对灌溉区域进行灌溉;
本发明在对灌溉区域灌溉开启时,由于不同灌溉区域对应的渠系调水需求不同,其末级渠道不同,水流从出水口流经至末级渠道的输配水层级顺序可能不同,因此需要开启一些闸门以及关闭一些闸门,形成从出水口至末级渠道的输水路径,在沿着该输水路径进行灌溉时,需要满足灌溉的水资源流量则需要调整自控闸门的开启程度,调整打开自控闸门以及输水过程具体为步骤2,所述步骤2:
步骤a:根据待灌溉区域的渠系调水需求,依据渠系取水口至末级渠道的渠道输配水层级顺序打开每级渠道的自控闸门,并调整自控闸门的开度;
步骤b:持续调整自动闸门开度直至水流到达末级渠道的瞬时流量,以满足所述渠系调水需求中灌溉区域对应的灌溉瞬时流量;
步骤c:维持每个自动闸门的当前状态,对待灌溉区域进行灌溉。
步骤3:获取对待灌溉区域灌溉过程中,每级渠道的水位计检测的水位以及明渠流量计检测的瞬时流量;
步骤4:如果在对灌溉区域灌溉过程中接收到新增渠系调水需求,则针对当前灌溉的每级渠道,将该渠道明渠流量计检测的瞬时流量与新增渠系调水需求中携带的灌溉瞬时流量相加,从而确定输水路径上的各段渠道是否存在流量超限风险,如果存在,则对新增渠系调水需求暂不响应,将新增渠系调水需求存储至队列中;
其中,在冬季灌溉即将结束时渠道的水位上限低于夏季灌溉即将结束时的水位上限,以保证在冬季灌溉过程中渠道内存水低于夏季,有效规避渠道冻涨情况。
可以理解,当灌区冬季进行最后一次冬灌时,以云平台统计冬灌灌水累计上限为控制线,在冬灌末期,将自动调小渠道过流量,配合水位计测量值降低渠道内水位,充分利用渠道内存水,确保冬季越冬过程中,渠道内水位较低,存水较少,有效规避渠道冻涨破坏。
本发明在灌溉过程中,可能有新增渠系调水需求,因此需要预计当前灌溉过程中满足新渠系调水需要是否会发生漫渠风险,步骤4包括:
步骤a:如果在灌溉区域灌溉过程中接收到新增渠系调水需求,则针对灌溉区域所使用的每级渠道,将该渠道明渠流量计检测的瞬时流量与新增渠系调水需求中携带的灌溉瞬时流量相加,获得瞬时流量相加结果;
步骤b:如果瞬时流量相加结果超过渠道的瞬时流量上限,则判定该渠道存在漫渠风险;
步骤c:如果在对待灌溉区域灌溉过程中有一个渠道存在漫渠风险,则 对新增渠系调水需求不响应,并将新增渠系调水需求存储至队列中。
值得说明的是:如果水位过高,则表示渠道也可能发生漫渠风险。
值得说明的是:渠系调水需求由有需求的灌溉用户在云平台请求从而产生,即当末级渠道处有用水需求时,由系统云平台发布指令,指定末级渠道渠首闸门开闸放水,对应其上级渠道逐级上传需求数据,累加过水流量需求,逐级调整闸门开度为下游放水。如果有任一渠道存在漫渠风险,则新增渠系调水需求不能被响应,以避免发生漫渠情况发生。
本发明在对灌溉区域进行灌溉过程中,一旦当对所述待灌溉区域开启灌溉,则其变更为灌溉区域;如果正在灌溉的灌溉区域的末级渠道的瞬时流量为0,则确定所述灌溉区域已经终止灌溉,则判定灌溉区域的渠系调水需求变更为终止灌溉。这样为后续响应新增渠系调水需求节省时间。如果当前渠系调水需求终止,则直接响应新增渠系调水需求。
值得说明的是:正在灌水的时灌溉区域,检查其末级渠道的瞬时流量变化,如果正在灌溉的某个末级闸口流量变为0,则系统判断为该处已经终止灌溉,其流量需求已结束,对应的瞬时流量需求可供待灌溉区域使用。
步骤5:如果灌溉区域的灌溉时长达到或对灌溉区域的渠系调水需求变更为终止灌溉,则从队列中读取排序在前的渠系调水需求进行响应,以按照读取的渠系调水需求调整从渠系取水口至末级渠道的自控闸门,以满足该渠系调水需求中的灌溉瞬时流量完成灌溉。
值得说明的是:参考图3,由安装于渠首和渠尾的超声波水位计3测量渠道内水位,当渠道水位过高,渠尾有漫渠产生弃水的危险时,对应渠段不能继续提高过流量,新产生的渠系调水需求将被暂停,待同渠段其他流量需求终止时再行启动。
值得说明的是:如果达到灌溉时长或者当前渠系调水需求被终止,则可以进行新增渠系调水需求的响应,相应执行调整自控闸门以及末级渠道的过程,以灌溉新待灌溉区域。
本发明提供的一种基于自控闸门和测流装置的渠系水资源调控方法,通过获取待灌溉区域的渠系调水需求;依据从渠系取水口至末级渠道的渠道输配水层级顺序,依次调整自控闸门满足渠系调水需求对灌溉区域进行灌溉;根据新增渠系调水需求确定各渠段是否存在漫渠风险,如果存在,则对新增渠系调水需求延后响应,并将其需求存储至队列中依条件季顺序触发;如果灌溉时长达到或渠系调水需求变更为终止灌溉,则从队列中读取排序在前的渠系调水需求进行响应。因此本发明可以根据灌溉需求及渠系各段渠道输水能力,实时机动实施水资源调度,避免漫渠造成的水资源浪费,还可根据季节不同实现不同的水位以及瞬时流量上限控制,降低渠道损坏的可能性,对于农业灌溉具有较高的实用性,且成本较低易于实现推广。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

  1. 一种基于自控闸门和测流装置的渠系水资源调度方法,应用于云平台,其特征在于,所述渠系水资源调度方法包括:
    步骤1:获取待灌溉区域的渠系调水需求;
    其中,所述渠系调水需求包括灌溉区域、灌溉区域的面积、灌溉区域对应的灌溉瞬时流量以及灌溉时长;从所述灌溉区域的末级渠道至渠系取水口存在多级渠道,每级渠道的入口位置安装有自控闸门以及明渠流量计,每条渠道首尾均安装有水位计;
    步骤2:根据所述渠系调水需求,依据从渠系取水口至末级渠道的渠道输配水层级顺序,依次调整自控闸门满足渠系调水需求,以使水流从出水口流经末级渠道直至末级渠道的瞬时流量满足所述渠系调水需求中灌溉区域对应的灌溉瞬时流量,对灌溉区域进行灌溉;
    步骤3:获取每级渠道的水位计检测的水位以及明渠流量计检测的瞬时流量;
    步骤4:如果在对灌溉区域灌溉过程中接收到新增渠系调水需求,则针对当前灌溉的每级渠道,将该渠道明渠流量计检测的瞬时流量与新增渠系调水需求中携带的灌溉瞬时流量相加,从而确定输水路径上的各段渠道是否存在流量超限风险,如果存在,则对新增渠系调水需求暂不响应,将新增渠系调水需求存储至队列中;
    步骤5:如果灌溉区域的灌溉时长达到或对灌溉区域的渠系调水需求变更为终止灌溉,则从队列中读取排序在前的渠系调水需求进行响应,以按照读取的渠系调水需求调整从渠系取水口至末级渠道的自控闸门,以满足该渠系调水需求中的灌溉瞬时流量完成灌溉。
  2. 根据权利要求1所述的渠系水资源调度方法,其特征在于,在步骤 1之前,所述渠系水资源调度方法还包括:
    建立与灌溉区域内各级渠道安装的自控闸门以及明渠流量计的通信。
  3. 根据权利要求1所述的渠系水资源调度方法,其特征在于,所述步骤2:
    根据待灌溉区域的渠系调水需求,依据渠系取水口至末级渠道的渠道输配水层级顺序打开每级渠道的自控闸门,并调整自控闸门的开度;
    持续调整自动闸门开度直至水流到达末级渠道的瞬时流量,以满足所述渠系调水需求中灌溉区域对应的灌溉瞬时流量;
    维持每个自动闸门的当前状态,对待灌溉区域进行灌溉。
  4. 根据权利要求1所述的渠系水资源调度方法,其特征在于,所述步骤4包括:
    如果在灌溉区域灌溉过程中接收到新增渠系调水需求,则针对灌溉区域所使用的每级渠道,将该渠道明渠流量计检测的瞬时流量与新增渠系调水需求中携带的灌溉瞬时流量相加,获得瞬时流量相加结果;
    如果瞬时流量相加结果超过渠道的瞬时流量上限,则判定该渠道存在漫渠风险;
    如果在对待灌溉区域灌溉过程中有一个渠道存在漫渠风险,则对新增渠系调水需求不响应,并将新增渠系调水需求存储至队列中。
  5. 根据权利要求4所述的渠系水资源调度方法,其特征在于,在冬季灌溉即将结束时渠道的水位上限低于夏季灌溉即将结束时的水位上限,以保证在冬季灌溉过程中渠道内存水低于夏季,有效规避渠道冻涨情况。
  6. 根据权利要求1所述的渠系水资源调度方法,其特征在于,在步骤5之前,所述渠系水资源调度方法还包括:
    当对所述待灌溉区域开启灌溉,则其变更为灌溉区域;
    如果正在灌溉的灌溉区域的末级渠道的瞬时流量为0,则确定所述灌溉区域已经终止灌溉,则判定灌溉区域的渠系调水需求变更为终止灌溉。
PCT/CN2021/132737 2021-11-12 2021-11-24 一种基于自控闸门和测流装置的渠系水资源调度方法 WO2023082333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111340071.2A CN116128189A (zh) 2021-11-12 2021-11-12 一种基于自控闸门和测流装置的渠系水资源调度方法
CN202111340071.2 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023082333A1 true WO2023082333A1 (zh) 2023-05-19

Family

ID=86304996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132737 WO2023082333A1 (zh) 2021-11-12 2021-11-24 一种基于自控闸门和测流装置的渠系水资源调度方法

Country Status (2)

Country Link
CN (1) CN116128189A (zh)
WO (1) WO2023082333A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107223544A (zh) * 2017-05-18 2017-10-03 中苏科技股份有限公司 一种基于明渠的灌溉控制系统和灌溉控制方法
JP2017218856A (ja) * 2016-06-10 2017-12-14 三菱電機株式会社 用水路監視装置
CN109637023A (zh) * 2018-08-30 2019-04-16 中国灌溉排水发展中心 一种明渠智能配水系统及使用方法
CN111626892A (zh) * 2020-04-02 2020-09-04 珠海智信佰达科技有限公司 一种灌区需水量计量监测方法及系统
CN111837879A (zh) * 2020-08-14 2020-10-30 青海中水数易信息科技有限责任公司 一种测控管一体的灌区计量设备及计量方法
CN112819332A (zh) * 2021-02-02 2021-05-18 中国水利水电科学研究院 一种基于全渠道输配的水量分配方法、装置及计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218856A (ja) * 2016-06-10 2017-12-14 三菱電機株式会社 用水路監視装置
CN107223544A (zh) * 2017-05-18 2017-10-03 中苏科技股份有限公司 一种基于明渠的灌溉控制系统和灌溉控制方法
CN109637023A (zh) * 2018-08-30 2019-04-16 中国灌溉排水发展中心 一种明渠智能配水系统及使用方法
CN111626892A (zh) * 2020-04-02 2020-09-04 珠海智信佰达科技有限公司 一种灌区需水量计量监测方法及系统
CN111837879A (zh) * 2020-08-14 2020-10-30 青海中水数易信息科技有限责任公司 一种测控管一体的灌区计量设备及计量方法
CN112819332A (zh) * 2021-02-02 2021-05-18 中国水利水电科学研究院 一种基于全渠道输配的水量分配方法、装置及计算机设备

Also Published As

Publication number Publication date
CN116128189A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN105706860A (zh) 基于云的节水灌溉自动控制和信息化管理系统
CN110644587B (zh) 一种城市排水全流程管控系统
CN112819332A (zh) 一种基于全渠道输配的水量分配方法、装置及计算机设备
CN109983949A (zh) 一种天桥绿化实时监测与远程灌溉操控系统及其工作方法
AU2020100749A4 (en) Intelligent supplementary grassland irrigation management system
CN207969361U (zh) 一种农业用智能灌溉系统
WO2023082333A1 (zh) 一种基于自控闸门和测流装置的渠系水资源调度方法
CN106888941A (zh) 一种基于云计算的城市绿化带节水自动灌溉系统及方法
CN107896951A (zh) 基于云计算的故障浇灌补偿系统
CN111648323B (zh) 一种水田进水口量控一体化闸门
CN108180951B (zh) 一种用于灌区渠系水量计量的测控一体化装置及控制方法
CN108427459B (zh) 多水源环状供水管网的活塞式调流阀自动控制方法
CN207869944U (zh) 一种草坪的节水型灌溉装置
CN109637023A (zh) 一种明渠智能配水系统及使用方法
CN113191748A (zh) 一种智慧排水系统
CN113091814A (zh) 一种基于灌区的数据监测和处理系统
CN116402282A (zh) 一种基于水量平衡的水库水位调控方法及系统
CN116114579A (zh) 一种灌区渠系的灌溉调度系统
CN105178422A (zh) 一种城市雨水错峰调蓄控制装置及其控制方法
CN111338270B (zh) 一种基于坡面来水的小区域农业灌溉用水量监控系统
CN106134937A (zh) 农田节水灌溉系统
CN115443890A (zh) 一种园林景观的智慧灌溉管理系统
CN205902549U (zh) 一种新型园林智能灌溉装置
CN205623620U (zh) 一种节能灌溉系统
CN114303905A (zh) 一种节水远程监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963777

Country of ref document: EP

Kind code of ref document: A1