WO2023082167A1 - Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio - Google Patents

Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio Download PDF

Info

Publication number
WO2023082167A1
WO2023082167A1 PCT/CN2021/130241 CN2021130241W WO2023082167A1 WO 2023082167 A1 WO2023082167 A1 WO 2023082167A1 CN 2021130241 W CN2021130241 W CN 2021130241W WO 2023082167 A1 WO2023082167 A1 WO 2023082167A1
Authority
WO
WIPO (PCT)
Prior art keywords
carriers
radio frequency
carrier
subset
frequency bands
Prior art date
Application number
PCT/CN2021/130241
Other languages
English (en)
Inventor
Yiqing Cao
Peter Gaal
Wanshi Chen
Juan Montojo
Timo Ville VINTOLA
Bin Han
Alberto Rico Alvarino
Yi Huang
Yan Li
Zhimin Du
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/130241 priority Critical patent/WO2023082167A1/fr
Priority to PCT/CN2022/127645 priority patent/WO2023082998A1/fr
Publication of WO2023082167A1 publication Critical patent/WO2023082167A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the following relates to wireless communication, including carrier aggregation switching for switching multiple radio frequency bands.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • DFT-S-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • Some communication devices may support wireless communication over one or multiple carriers.
  • a carrier may be associated with a radio frequency band of a radio frequency spectrum.
  • Some communication devices may support carrier aggregation for wireless communication. In some cases, these communication devices may support wireless communication over one or multiple radio frequency bands according to the carrier aggregation.
  • a communication device e.g., a UE
  • scheduling ambiguity may impact the wireless communication between the communication device and a network (e.g., a base station) .
  • the scheduling ambiguity may be a result of the communication device being scheduled to switch the wireless communication between subsets of the multiple radio frequency bands. As such, it may be ambiguous as to which radio frequency bands the communication device is to switch to if the network schedules the communication device to switch to multiple radio frequency bands.
  • the communication device may be configured by the network with a data structure, which may indicate radio frequency bands or radio frequency band combinations for the wireless communication.
  • the data structure may be a table indicating a radio frequency band or radio frequency bands the communication is to switch to when scheduled to change radio frequency bands.
  • the data structure may be based on a capability reported by the communication device to support or not support simultaneous (e.g., at the same time) wireless communication over multiple radio frequency bands.
  • the communication device may be configured by the network with one or multiple data structures (e.g., tables) indicating the band combinations for the wireless communication for switching radio frequency bands. By configuring the communication device with the data structure indicating the band combinations for the wireless communication for switching the radio frequency bands, the communication device may remove the scheduling ambiguity, and, in some examples, may promote high reliability and low latency wireless communication.
  • a method for wireless communication at a UE may include transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, receive, from the base station and in response to the first control signaling, second control signaling that includes an indication for the apparatus to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and transmit the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the apparatus may include means for transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, means for receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the apparatus to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and means for transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to transmit, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, receive, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and transmit the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • transmitting the UE capability may include operations, features, means, or instructions for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers may be supported by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes one or both of the first carrier or the second carrier for transmission of the uplink message to the base station.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least one carrier of the subset of carriers, and where the at least one of the subset of carriers corresponds to at least one antenna port.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least two carriers of the subset of carriers, and where the at least two carriers of the subset of carriers correspond to at least two antenna ports.
  • transmitting the UE capability may include operations, features, means, or instructions for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers may be not supported by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from a third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the first carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the second radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • a method for wireless communication at a base station may include receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and receiving the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, transmit, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and receive the uplink message to the apparatus on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the apparatus may include means for receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, means for transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and means for receiving the uplink message to the apparatus on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to receive, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands, transmit, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands, and receive the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • receiving the UE capability may include operations, features, means, or instructions for receiving the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers may be supported by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes one or both of the first carrier or the second carrier for transmission of the uplink message to the base station.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least one carrier of the subset of carriers, and where the at least one of the subset of carriers corresponds to at least one antenna port.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least two carriers of the subset of carriers, and where the at least two carriers of the subset of carriers correspond to at least two antenna ports.
  • receiving the UE capability may include operations, features, means, or instructions for receiving the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers may be not supported by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from a third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the first carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and where the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the second radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • FIGs. 1 and 2 illustrate examples of wireless communications systems that support carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 3A and 3B illustrate examples of mappings that support carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 13 through 16 show flowcharts illustrating methods that support carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • a wireless communications system may include communication devices, such as a UE or a base station (e.g., an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB, any of which may be referred to as a gNB, or some other base station) , that may support multiple radio access technologies.
  • Examples of radio access technologies include 4G systems, such as LTE systems, and 5G systems, which may be referred to as NR systems.
  • a communication device may support wireless communication over one or multiple radio frequency bands and one or multiple carriers.
  • the communication device may be configured with a single carrier, or multiple carriers in the form of carrier aggregation or dual connectivity.
  • a network may schedule the communication device with the one or multiple carriers to support the wireless communication.
  • the communication device may also be configured to support carrier aggregation over a single or multiple radio frequency bands (e.g. inter-band carrier aggregation) .
  • the communication device may aggregate two or more carriers in the same radio frequency band or separate radio frequency bands.
  • the communication device may be unable to support simultaneous wireless communications (e.g., uplink transmissions) over multiple radio frequency bands.
  • the communication device may be able to support simultaneous wireless communications over multiple radio frequency bands.
  • the communication device if the communication device supports communicating over three or more radio frequency bands there may be scheduling ambiguity for the wireless communications between the communication device and the network when the communication device is scheduled to switch operating between subsets of the three or more radio frequency bands.
  • the communication device may be ambiguous as to which one or more radio frequency bands the communication device is to switch if the network schedules the communication device to switch to multiple radio frequency bands (e.g., from a single radio frequency band, from a different combination of the three or more radio frequency bands) .
  • Various aspects of the present disclosure relate to configuring the communication device with a data structure, which may indicate radio frequency bands or radio frequency band combinations for the wireless communication, to eliminate any scheduling ambiguity.
  • the communication device may transmit, to the network, control signaling that may indicate a capability for switching between one or more carriers of a group of carriers during uplink communications using carrier aggregation.
  • the group of carriers may include three or more carriers that are each associated with different radio frequency bands.
  • the capability may indicate the communication device supporting or not supporting wireless communication over multiple carriers or radio frequency bands.
  • the data structure may thus be based on the capability reported by the communication device of whether the communication devices supports simultaneous wireless communication over multiple radio frequency bands.
  • the data structure may be a mapping table indicating a radio frequency band or radio frequency bands that the communication device is to switch to when scheduled to change radio frequency bands.
  • the mapping table may be pre-configured at the communication device.
  • the network may configure or indicate the mapping table to the communication device via control signaling. Examples of the control signaling include a radio resource control (RRC) message, a medium access control-control element (MAC-CE) , or downlink control information (DCI) .
  • RRC radio resource control
  • MAC-CE medium access control-control element
  • DCI downlink control information
  • the communication device may be pre-configured with or configured by the network with one or multiple data structures (e.g., mapping tables) indicating the band combinations for the wireless communication for switching radio frequency bands.
  • the communication device may be pre-configured or configured with one mapping table if the communication device does not support simultaneous wireless communication, and a different mapping table if the communication device does support such simultaneous wireless communication.
  • the network and the communication device may then communicate in accordance with at least one of the mapping tables based on the reported capability by the communication device.
  • the communication device may remove the scheduling ambiguity, and, in some examples, may promote high reliability and low latency wireless communication.
  • the communication device may also manage resource utilization by managing wireless communication over multiple carriers when switching radio frequency bands. Additionally, the communication device may reduce power consumption by managing the wireless communication over multiple carriers when switching radio frequency bands.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to carrier aggregation switching for switching multiple radio frequency bands.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be an LTE network, an LTE-A network, an LTE-A Pro network, or an NR network.
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may support carrier aggregation, in which the UE 115 may transmit or receive wireless communications (e.g., uplink signals, downlink signals) on two or more aggregated carriers. Each aggregated carrier be of different bandwidths.
  • the carrier may have a bandwidth of 1.4, 3, 5, 10, 15 or 20 MHz and, in some cases, a maximum number of carriers may be aggregated. For example, the maximum number of carriers for carrier aggregation may be five carriers, and thus the maximum aggregated bandwidth may be 100 MHz.
  • the UE 115 may be configured or allocated contiguous carriers within the same radio frequency band, also referred to as intra-band contiguous, for carrier aggregation. In some cases, intra-band contiguous carrier aggregation may not be possible.
  • non-contiguous carrier aggregation allocation it could either be intra-band (e.g., the carriers belong to the same radio frequency band, but have a gap, or gaps, in between) , or it could be inter-band, in which case the carriers belong to different radio frequency bands.
  • a base station 105 may schedule the UE 115 with one or multiple carriers for wireless communication.
  • the UE 115 may also be configured to support carrier aggregation over a single or multiple radio frequency bands (e.g., inter-band carrier aggregation) .
  • the UE 115 may be unable to support simultaneous wireless communication (e.g., uplink transmission) over multiple radio frequency bands.
  • the UE 115 may be able to support simultaneous wireless communications over multiple radio frequency bands.
  • the UE 115 may be scheduled to switch uplink transmissions on one or more radio frequency bands.
  • multiple radio frequency bands e.g., three or more radio frequency bands
  • a base station 105 and a UE 115 may implement a table, which may indicate a mapping between radio frequency band combinations and carrier usage for wireless communication, to eliminate any scheduling ambiguity.
  • a UE 115 may be enabled to support techniques for carrier aggregation switching for switching multiple radio frequency bands.
  • a base station 105 may be enabled to support techniques for carrier aggregation switching for switching multiple radio frequency bands.
  • a UE 115 may transmit, and the base station 105 may receive, first control signaling (e.g., a radio resource control (RRC) message, in a system information message, or the like) indicating a UE capability for switching between one or more carriers of a group of carriers for uplink communications.
  • the group of carriers may include three or more carriers that are each associated with different radio frequency bands.
  • the base station 105 may transmit, and the UE 115 may receive, second control signaling such as an RRC message, or a DCI, or a MAC-CE that includes an indication for the UE 115 to switch to a subset of carriers of the group of carriers associated with a combination of radio frequency bands for transmission of an uplink message.
  • the UE 115 may transmit, and the base station 105 may receive, the uplink message on at least one of the subset of carriers in accordance with the mapping (e.g., indicated by the table) .
  • the mapping e.g., indicated by the table
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement or be implemented by one or more aspects of the wireless communications system 100.
  • the wireless communications system 200 may include a base station 105-a and a UE 115-a, which may be examples of a base station 105 and a UE 115 as described with reference to FIG. 1.
  • the base station 105-a and the UE 115-a may communicate over a communication link 205 and a communication link 210, which may be examples of communication links 125 as described with reference to FIG. 1.
  • One or both of the base station 105-a or the UE 115-a may be configured with multiple antennas.
  • the antennas of one or both of the base station 105-a or the UE 115-a may be located within one or more antenna arrays or antenna panels, which may support transmit or receive wireless communication.
  • the base station 105-a may have one or more antenna arrays with a number of rows and columns of antenna ports that the base station 105-a may use to support wireless communication with the UE 115-a.
  • the UE 115-a may have one or more antenna arrays with a number of rows and columns of antenna ports that the UE 115-a may use to support wireless communication with the base station 105-a.
  • One or both of the base station 105-a or the UE 115-a may thus be configured to support wireless communication using one or multiple antennas. In some examples, one or both of the base station 105-a or the UE 115-a may be configured to support operations to manage or improve wireless communication between the base station 105-a and the UE 115-a.
  • one or both of the base station 105-a or the UE 115-a may support carrier aggregation, in which one or both of the base station 105-a or the UE 115-a may transmit or receive wireless communications (e.g., uplink signals, downlink signals) on two or more aggregated carriers.
  • one or both of the base station 105-a or the UE 115-a may aggregate at least two carriers 235.
  • the UE 115-a may be configured or allocated contiguous carriers within the same radio frequency band 240, also referred to as intra-band contiguous.
  • one or both of the base station 105-a or the UE 115-a may aggregate at least two carriers 235 within a radio frequency band 240-a.
  • intra-band contiguous carrier aggregation may not be possible.
  • it could either be intra-band (e.g., the carriers belong to the same radio frequency band, but have a gap, or gaps, in between) , or it could be inter-band, in which case the carriers belong to different radio frequency bands 240.
  • one or both of the base station 105-a or the UE 115-a may aggregate one or more carriers 235 within the radio frequency band 240-a and one or more carriers 235 with the radio frequency band 240-b.
  • the UE 115-a may be unable to support simultaneous wireless communications (e.g., uplink transmissions) over multiple radio frequency bands 240. In some other cases, the UE 115-a may be able to support simultaneous wireless communications over multiple radio frequency bands 240. In some cases, if the UE 115-a supports communicating over three or more radio frequency bands 240, such as the radio frequency band 240-a, the radio frequency band 240-b, and a radio frequency band 240-c, there may be scheduling ambiguity for the wireless communications between the base station 105-a and the UE 115-a when the UE 115-a is scheduled to switch operating between subsets of the three or more radio frequency bands 240. For example, it may be ambiguous as to which one or more radio frequency bands 240 the UE 115-a is to switch if the base station 105-a schedules the UE 115-a to switch to multiple radio frequency bands 240.
  • the UE 115-a may transmit, and the base station 105-a may receive, a capability message 215 that may indicate a capability of the UE 115-a for switching between one or more carriers 235 of a group of carriers during uplink communications using carrier aggregation.
  • the group of carriers may include three or more carriers that are each associated with different radio frequency bands 240.
  • the capability message 215 may indicate whether the UE 115-a supports or does not support simultaneous wireless communication over multiple carriers 235 or radio frequency bands 240.
  • the base station 105-a and the UE 115-a may implement a data structure. In some examples, the data structure may be pre-configured at the base station 105-a and the UE 115-a.
  • the base station 105-a may transmit, and the UE 115-a may receive, a mapping indication 220, which may include the data structure that is based on whether the UE 115-a supports or does not support the simultaneous wireless communication.
  • the base station 105-a may transmit the mapping indication 220 in control signaling, such as an RRC message, a MAC-CE, or DCI.
  • the data structure may be a mapping table indicating a radio frequency band 240 or radio frequency bands 240 that the UE 115-a is to switch to when scheduled to change radio frequency bands 240 for transmission of an uplink message 225.
  • the base station 105-a may transmit, and the UE 115-a may receive, a switch indication 230 for the UE 115-a to switch to a subset of carriers 235 of the group of carriers associated with a combination of radio frequency bands 240 for transmission of the uplink message 225.
  • the UE 115-a may then transmit the uplink message 225 to the base station 105-a on at least one of the subset of carriers 235 in accordance with a mapping between the combination of radio frequency bands 240 and the at least one of the subset of carriers 235 included in the mapping table.
  • the UE 115-a and the base station 105-a may eliminate any scheduling ambiguity between the base station 105-a and the UE 115-a. Examples of mapping tables will be discussed in further detail with reference to FIGs. 3A and 3B. Additionally, by implementing the data structure to indicate radio frequency bands 240 or combinations of radio frequency bands 240 for wireless communication, the UE 115-a and the base station 105-a may mitigate any conflict scheduling for any radio frequency band combinations.
  • the mapping table e.g., the mapping table
  • FIG. 3A illustrates an example of a mapping 300-a that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the mapping 300-a may implement or be implemented by aspects of the wireless communications systems 100 and 200 as described with reference to FIGs. 1 and 2, respectively.
  • the mapping 300-a may be implemented by a base station 105 and a UE 115 to decrease or mitigate scheduling ambiguity associated with switching between radio frequency bands and carriers during uplink communications, among other benefits.
  • the mapping 300-a may be an example of a data structure, such as a mapping between radio frequency band combinations and carriers, that may be implemented by a UE 115 that does not support the simultaneous transmission of uplink messages on two or more carriers across two or more associated radio frequency bands (e.g., that supports the transmission of uplink messages over a single radio frequency band at a time) . Additionally, the mapping 300-a may be implemented by a base station 105 that communicates with the UE 115 that does not support the simultaneous transmission of uplink messages on two or more carriers (e.g., as reported by the UE 115 via a capability message 215 described with reference to FIG. 2) .
  • the mapping 300-a may enable the UE 115 and the base station 105 to determine on which carriers to communicate uplink messages when the UE 115 supports communicating with the base station 105 on three or more radio frequency bands.
  • the mapping 300-a may include entries 305 corresponding to various combinations of three radio frequency bands, band A, band B, and band C, with which the UE 115 and the base station 105 may be configured for communicating uplink messages. It is noted that the techniques described herein may be adapted and applied to mappings 300-a associated with combinations of more than three radio frequency bands.
  • Each entry 305 may correspond to a different combination of radio frequency bands A, B, or C to which the base station 105 may schedule the UE 115 to switch to transmit an uplink message.
  • the entry 305-a may correspond to a combination of bands A and B
  • the entry 305-b may correspond to band B
  • the entry 305-c may correspond to band A
  • the entry 305-d may correspond to a combination of bands A and C
  • the entry 305-e may correspond to a combination of bands B and C
  • the entry 305-f may correspond to band C.
  • the entries 305 may indicate a quantity of carriers or antenna ports associated with a given radio frequency band combination. In the example of FIG.
  • the entry 305-a may correspond to a scheduled switch to a carrier on band A and a carrier on band B; the entry 305-b may correspond to a scheduled switch to one or two carriers on band B; the entry 305-c may correspond to a scheduled switch to one or two carriers on band A; the entry 305-d may correspond to a scheduled switch to a carrier on band A and a carrier on band C; the entry 305-e may correspond to a scheduled switch to a carrier on band B and a carrier on band C; and the entry 305-f may correspond to a scheduled switch to one or two carriers on band C.
  • the mapping 300-a may map each entry 305 to an entry 310 that indicates on which carrier (s) the UE 115 is to transmit the uplink message (e.g., and using which antenna ports) .
  • the entry 305-a may map to an entry 310-a indicating for the UE 115 to transmit the uplink message on the carrier on band B and using a corresponding antenna port.
  • the entry 305-a may also map to an entry 310-b indicating for the UE 115 to transmit the uplink message on the carrier on band A and using a corresponding antenna port.
  • the entry 305-b may map to an entry 310-c indicating for the UE 115 to transmit the uplink message on the one or two carriers on band B using one or two corresponding antenna ports.
  • the entry 305-c may map to an entry 310-d indicating for the UE 115 to transmit the uplink message on the one or two carriers on band A using one or two corresponding antenna ports.
  • the entry 305-d may map to an entry 310-e indicating for the UE 115 to transmit the uplink message on the L carrier on band C and using a corresponding antenna port.
  • the entry 305-d may also map to an entry 310-f indicating for the UE 115 to transmit the uplink message on the carrier on band A and using a corresponding antenna port.
  • the entry 305-e may map to an entry 310-g indicating for the UE 115 to transmit the uplink message on the carrier on band B and using a corresponding antenna port.
  • the entry 305-e may also map to an entry 310-h indicating for the UE 115 to transmit the uplink message on the carrier on band C and using a corresponding antenna port.
  • the entry 305-f may map to an entry 310-i indicating for the UE 115 to transmit the uplink message on the one or two carriers on band C using one or two corresponding antenna ports.
  • the entries 310 may indicate one radio frequency band of the combination of radio frequency bands associated with a corresponding entry 305 on which to transmit the uplink message.
  • the mapping from an entry 305 to an entry 310 may be based on a previous radio frequency band combination or set of carriers from which the UE 115 is scheduled to switch. In some examples, the mapping from an entry 305 to an entry 310 may be based on a next radio frequency band combination or set of carriers to which the UE 115 is scheduled to switch.
  • the mapping 300-a may map the entry 305-a to the entry 310-a if the UE 115 is scheduled to switch from band A corresponding to the entry 305-c or switch to band A after the switch to bands A and B.
  • the UE 115 may apply the mapping 300-a to select the carrier on band B to transmit the uplink message
  • the base station 105 may apply the mapping 300-a to determine to receive the uplink message on the carrier on band B.
  • the mapping 300-a may map the entry 305-a to the entry 310-b if the UE 115 is scheduled to switch from band C corresponding to the entry 305-f or switch to band C after the switch to bands A and B.
  • the UE 115 may apply the mapping 300-a to select the carrier on band A to transmit the uplink message
  • the base station 105 may apply the mapping 300-a to determine to receive the uplink message on the carrier on band A.
  • the mapping 300-a may map the entry 305-d to the entry 310-e if the UE 115 is scheduled to switch from band A corresponding to the entry 305-c or switch to band C after the switch to bands A and C.
  • the UE 115 may apply the mapping 300-a to select the carrier on band C to transmit the uplink message
  • the base station 105 may apply the mapping 300-a to determine to receive the uplink message on the carrier on band C.
  • the mapping 300-a may map the entry 305-d to the entry 310-f if the UE 115 is scheduled to switch from band C corresponding to the entry 305-f or switch to band C after the switch to bands A and C.
  • the UE 115 may apply the mapping 300-a to select the carrier on band A to transmit the uplink message
  • the base station 105 may apply the mapping 300-a to determine to receive the uplink message on the carrier on band A.
  • the mapping 300-a may map the entry 305-e to the entry 310-g if the UE 115 is scheduled to switch from band C corresponding to the entry 305-f or switch to band C after the switch to bands B and C.
  • the UE 115 may apply the mapping 300-a to select the carrier on band B to transmit the uplink message
  • the base station 105 may apply the mapping 300-a to determine to receive the uplink message on the carrier on band B.
  • the mapping 300-a may map the entry 305-e to the entry 310-h if the UE 115 is scheduled to switch from band B corresponding to the entry 305-b or switch to band B after the switch to bands B and C.
  • the UE 115 may apply the mapping 300-a to select the carrier on band C to transmit the uplink message
  • the base station 105 may apply the mapping 300-a to determine to receive the uplink message on the carrier on band C.
  • mapping 300-a may map the entry 305-a to the entry 310-b if the UE 115 is scheduled to switch from band B corresponding to the entry 305-b or switch to band B after the switch to bands A and B.
  • the UE 115 may select one or more carriers and one or more antenna ports indicated by an entry 310 for transmitting the uplink message based on a quantity of antenna ports that the UE 115 is scheduled to use. For example, if the UE 115 is scheduled to switch to band B corresponding to the entry 305-b, the UE 115 may apply the mapping 300-a to determine the entry 310-c. The UE 115 may select to transmit the uplink message on one carrier on band B using one antenna port if the UE 115 is scheduled to use the one antenna port, or the UE 115 may select to transmit the uplink message on two carriers on band B using two antenna ports if the UE 115 is scheduled to use the two antenna ports. Similarly, the base station 105 may apply the mapping 300-a to determine whether to receive the uplink message on the one carrier on band B or the two carriers on band B.
  • the UE 115 may apply the mapping 300-a to determine the entry 310-d.
  • the UE 115 may select to transmit the uplink message on one carrier on band A using one antenna port if the UE 115 is scheduled to use the one antenna port, or the UE 115 may select to transmit the uplink message on two carriers on band A using two antenna ports if the UE 115 is scheduled to use the two antenna ports.
  • the base station 105 may apply the mapping 300-a to determine whether to receive the uplink message on the one carrier on band A or the two carriers on band A.
  • the UE 115 may apply the mapping 300-a to determine the entry 310-i.
  • the UE 115 may select to transmit the uplink message on one carrier on band C using one antenna port if the UE 115 is scheduled to use the one antenna port, or the UE 115 may select to transmit the uplink message on two carriers on band C using two antenna ports if the UE 115 is scheduled to use the two antenna ports.
  • the base station 105 may apply the mapping 300-a to determine whether to receive the uplink message on the one carrier on band C or the two carriers on band C.
  • the UE 115 and the base station 105 may implement the mapping 300-a (e.g., if the UE 115 indicates that it does not support simultaneous transmissions on multiple radio frequency bands) to remove scheduling ambiguity between the UE 115 and the base station 105.
  • FIG. 3B illustrates an example of a mapping 300-b that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the mapping 300-b may implement or be implemented by aspects of the wireless communications systems 100 and 200 as described with reference to FIGs. 1 and 2, respectively.
  • the mapping 300-b may be implemented by a UE 115 and a base station 105 to reduce or eliminate scheduling ambiguity associated with switching between radio frequency bands and carriers during uplink communications, among other benefits.
  • the mapping 300-b may be an example of a data structure, such as a mapping between radio frequency band combinations and carriers, that may be implemented by a UE 115 that supports the simultaneous transmission of uplink messages on two or more carriers across two or more associated radio frequency bands. Additionally, the mapping 300-b may be implemented by a base station 105 that communicates with the UE 115 that supports the simultaneous transmission of uplink messages on two or more carriers (e.g., as reported by the UE 115 via a capability message 215 described with reference to FIG. 2) .
  • the mapping 300-b may enable the UE 115 and the base station 105 to determine on which carriers to communicate uplink messages when the UE 115 supports communicating with the base station 105 on three or more radio frequency bands.
  • the mapping 300-b may include entries 315 corresponding to different combinations of radio frequency bands over which the base station 105 may schedule the UE 115 to transmit an uplink message.
  • the mapping 300-b may include entries 315 corresponding to various combinations of three radio frequency bands, band A, band B, and band C, with which the UE 115 and the base station 105 may be configured for communicating uplink messages. It is noted that the techniques described herein may be adapted and applied to mappings 300-b associated with combinations of more than three radio frequency bands.
  • Each entry 315 may correspond to a different combination of radio frequency bands A, B, or C to which the base station 105 may schedule the UE 115 to switch to transmit an uplink message.
  • the entry 315-a may correspond to a combination of bands A and B
  • the entry 315-b may correspond to band B
  • the entry 315-c may correspond to band A
  • the entry 315-d may correspond to a combination of bands A and C
  • the entry 315-e may correspond to a combination of bands B and C
  • the entry 315-f may correspond to band C.
  • the entries 315 may indicate a quantity of carriers or antenna ports associated with a given radio frequency band combination. In the example of FIG.
  • the entry 315-a may correspond to a scheduled switch to a carrier on band A and a carrier on band B; the entry 315-b may correspond to a scheduled switch to one or two carriers on band B; the entry 315-c may correspond to a scheduled switch to one or two carriers on band A; the entry 315-d may correspond to a scheduled switch to a carrier on band A and a carrier on band C; the entry 315-e may correspond to a scheduled switch to a carrier on band B and a carrier on band C; and the entry 315-f may correspond to a scheduled switch to one or two carriers on band C.
  • the mapping 300-b may map each entry 315 to an entry 320 that indicates on which carrier (s) the UE 115 is to transmit the uplink message (e.g., and using which antenna ports) .
  • the entry 315-a may map to an entry 320-a indicating for the UE 115 to transmit the uplink message on the carriers on band A and band B and using corresponding antenna ports.
  • the entry 315-a may map to the entry 320-a indicating for the UE 115 to transmit the uplink message on the carrier on band A and using a corresponding antenna port.
  • the entry 315-a may map to the entry 320-a indicating for the UE 115 to transmit the uplink message on the carrier on band B and using a corresponding antenna port.
  • the entry 315-b may map to an entry 320-b indicating for the UE 115 to transmit the uplink message on the one or two carriers on band B using one or two corresponding antenna ports.
  • the entry 315-c may map to an entry 320-c indicating for the UE 115 to transmit the uplink message on the one or two carriers on band A using one or two corresponding antenna ports.
  • the entry 315-d may map to an entry 320-d indicating for the UE 115 to transmit the uplink message on the carrier on band C and using a corresponding antenna port.
  • the entry 315-d may map to an entry 320-d indicating for the UE 115 to transmit the uplink message on the carrier on band A and using a corresponding antenna port.
  • the entry 315-d may map to an entry 320-d indicating for the UE 115 to transmit the uplink message on the carrier on band A and the carrier on band C and using corresponding antenna ports.
  • the entry 315-e may map to an entry 320-e indicating for the UE 115 to transmit the uplink message on the carrier on band B and using a corresponding antenna port, the carrier on band C using a corresponding antenna port, or both.
  • the entry 315-f may map to an entry 320-f indicating for the UE 115 to transmit the uplink message on the one or two carriers on band C using one or two corresponding antenna ports.
  • the entries 320 may indicate one or more radio frequency bands of the combination of radio frequency bands associated with a corresponding entry 315 on which to transmit the uplink message. It is noted that any other mapping based on previous or next radio frequency band combinations is possible.
  • the UE 115 may select one or more carriers and one or more antenna ports indicated by an entry 320 for transmitting the uplink message based on a quantity of antenna ports that the UE 115 is scheduled to use. For example, if the UE 115 is scheduled to switch to band A and band B corresponding to entry 315-a, the UE 115 may apply the mapping 300-b to determine the entry 320-a. The UE 115 may select to transmit the uplink message on one carrier on band A using a first antenna port or one carrier on band B using a second antenna port, or both. Similarly, the base station 105 may apply the mapping 300-b to determine whether to receive the uplink message on the one carrier on band A or band B, or both.
  • the UE 115 may apply the mapping 300-b to determine the entry 320-b.
  • the UE 115 may select to transmit the uplink message on one carrier on band B using one antenna port or on two carriers on band B using two antenna ports based on whether the UE 115 is scheduled to use the one antenna port or the two antenna ports, respectively.
  • the base station 105 may apply the mapping 300-b to determine whether to receive the uplink message on the one carrier on band B or the two carriers on band B.
  • the UE 115 may apply the mapping 300-b to determine the entry 320-c.
  • the UE 115 may select to transmit the uplink message on one carrier on band A using one antenna port or on two carriers on band A using two antenna ports based on whether the UE is scheduled to use the one antenna port or the two antenna ports, respectively.
  • the base station 105 may apply the mapping 300-b to determine whether to receive the uplink message on the one carrier on band A or the two carriers on band A.
  • the UE 115 may apply the mapping 300-b to determine the entry 320-d.
  • the UE 115 may select to transmit the uplink message on one carrier on band A using a first antenna port or one carrier on band c using a second antenna port, or both.
  • the base station 105 may apply the mapping 300-b to determine whether to receive the uplink message on the one carrier on band A or band C, or both.
  • the UE 115 may apply the mapping 300-b to determine the entry 320-e.
  • the UE 115 may select to transmit the uplink message on one carrier on band B using a first antenna port, one carrier on band C using a second antenna port, or both, based on whether the UE 115 is scheduled to use the first antenna port, the second antenna port, or both.
  • the base station 105 may apply the mapping 300-b to determine whether to receive the uplink message on the one carrier on band B, the one carrier on band C, or both.
  • the UE 115 may apply the mapping 300-b to determine the entry 320-f.
  • the UE 115 may select to transmit the uplink message on one carrier on band C using one antenna port or on two carriers on band C using two antenna ports based on whether the UE 115 is scheduled to use the one antenna port or the two antenna ports.
  • the base station 105 may apply the mapping 300-b to determine whether to receive the uplink message on the one carrier on band C or the two carriers on band C.
  • the UE 115 and the base station 105 may implement the mapping 300-b (e.g., if the UE 115 indicates that it supports simultaneous transmissions on multiple radio frequency bands) to remove scheduling ambiguity between the UE 115 and the base station 105.
  • FIG. 4 illustrates an example of a process flow 400 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the process flow 400 may implement or be implemented by one or more aspects of the wireless communications system 100 or the wireless communications system 200.
  • the process flow 400 may correspond to communications between a base station 105-b and a UE 115-b, which may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2.
  • operations between the base station 105-b and the UE 115-b may occur in a different order or at different times than as shown. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400.
  • the UE 115-b may transmit, and the base station 105-b may receive, a capability message.
  • the UE 115-b may transmit a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation.
  • the group of carriers may include three or more carriers that are each associated with different radio frequency bands as described with reference to FIG. 2.
  • the capability message may indicate that simultaneous transmission of uplink messages on two or more carriers is supported by the UE 115-b.
  • the capability message may indicate that simultaneous transmission of uplink messages on two or more carriers is not supported by the UE 115-b.
  • the base station 105-b may transmit, and the UE 115-b may receive, a switch indication.
  • the base station 105-b may transmit, and the UE 115-b may receive, an indication for the UE 115-b to switch to a subset of carriers of the group of carriers for transmission of an uplink message.
  • the subset of carriers may be associated with a combination of radio frequency bands as described with reference to FIG. 2.
  • the UE 115-b may select one or more carriers in accordance with a mapping.
  • the UE 115-b may select at least one of the subset of carriers.
  • the UE 115-b may apply a mapping between the combination of radio frequency bands and the at least one of the subset of carriers as described with reference to FIGs. 3A and 3B.
  • the UE 115-b may transmit, and the base station 105-b may receive, an uplink message.
  • the UE 115-b may transmit, and the base station 105-b may receive, an uplink message on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers.
  • the UE 115-b and the base station 105-b may eliminate any scheduling ambiguity between the base station 105-b and the UE 115-b.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting
  • the communications manager 520 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communication at the device 505 (e.g., a UE) in accordance with examples as disclosed herein.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the communications manager 520 may be configured as or otherwise support a means for receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the device 505 to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the device 505 e.g., a processor controlling or otherwise coupled to the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof
  • the device 505 may support techniques for reduced power consumption.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505 or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a transmitter 615, and a communications manager 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) . Information may be passed on to other components of the device 605.
  • the receiver 610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 615 may provide a means for transmitting signals generated by other components of the device 605.
  • the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) .
  • the transmitter 615 may be co-located with a receiver 610 in a transceiver module.
  • the transmitter 615 may utilize a single antenna or a set of multiple antennas.
  • the device 605, or various components thereof may be an example of means for performing various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein.
  • the communications manager 620 may include a capability component 625, a carrier component 630, a message component 635, or any combination thereof.
  • the communications manager 620 may be an example of aspects of a communications manager 520 as described herein.
  • the communications manager 620, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both.
  • the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 620 may support wireless communication at the device 605 (e.g., a UE) in accordance with examples as disclosed herein.
  • the capability component 625 may be configured as or otherwise support a means for transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the carrier component 630 may be configured as or otherwise support a means for receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the device 605 to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the message component 635 may be configured as or otherwise support a means for transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • FIG. 7 shows a block diagram 700 of a communications manager 720 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein.
  • the communications manager 720, or various components thereof, may be an example of means for performing various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein.
  • the communications manager 720 may include a capability component 725, a carrier component 730, a message component 735, a mapping component 740, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the capability component 725 may be configured as or otherwise support a means for transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the carrier component 730 may be configured as or otherwise support a means for receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the message component 735 may be configured as or otherwise support a means for transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the capability component 725 may be configured as or otherwise support a means for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is supported by the UE.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes one or both of the first carrier or the second carrier for transmission of the uplink message to the base station.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least one carrier of the subset of carriers, and where the at least one of the subset of carriers corresponds to at least one antenna port. In some examples, the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least two carriers of the subset of carriers, and where the at least two carriers of the subset of carriers correspond to at least two antenna ports.
  • the capability component 725 may be configured as or otherwise support a means for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is not supported by the UE.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers.
  • the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers.
  • the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers.
  • the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from a third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers.
  • the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers.
  • the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the first carrier for transmission of the uplink message.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers.
  • the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • the mapping component 740 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers.
  • the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the second radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein.
  • the device 805 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
  • the I/O controller 810 may manage input and output signals for the device 805.
  • the I/O controller 810 may also manage peripherals not integrated into the device 805.
  • the I/O controller 810 may represent a physical connection or port to an external peripheral.
  • the I/O controller 810 may utilize an operating system such as or another known operating system.
  • the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 810 may be implemented as part of a processor, such as the processor 840.
  • a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
  • the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein.
  • the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825.
  • the transceiver 815 may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
  • the memory 830 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting carrier aggregation switching for switching multiple radio frequency bands) .
  • the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
  • the communications manager 820 may support wireless communication at the device 805 (e.g., a UE) in accordance with examples as disclosed herein.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the communications manager 820 may be configured as or otherwise support a means for receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the device 805 to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the device 805 may support techniques for improved communication reliability and reduced latency.
  • the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof.
  • the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof.
  • the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a transmitter 915, and a communications manager 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) . Information may be passed on to other components of the device 905.
  • the receiver 910 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 915 may provide a means for transmitting signals generated by other components of the device 905.
  • the transmitter 915 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) .
  • the transmitter 915 may be co-located with a receiver 910 in a transceiver module.
  • the transmitter 915 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations thereof or various components thereof may be examples of means for performing various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure)
  • the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both.
  • the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 920 may support wireless communication at the device 905 (e.g., a base station) in accordance with examples as disclosed herein.
  • the communications manager 920 may be configured as or otherwise support a means for receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the communications manager 920 may be configured as or otherwise support a means for transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the communications manager 920 may be configured as or otherwise support a means for receiving the uplink message to the device 905 on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the device 905 e.g., a processor controlling or otherwise coupled to the receiver 910, the transmitter 915, the communications manager 920, or a combination thereof
  • the device 905 may support techniques for reduced power consumption.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905 or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a transmitter 1015, and a communications manager 1020.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1015 may provide a means for transmitting signals generated by other components of the device 1005.
  • the transmitter 1015 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to carrier aggregation switching for switching multiple radio frequency bands) .
  • the transmitter 1015 may be co-located with a receiver 1010 in a transceiver module.
  • the transmitter 1015 may utilize a single antenna or a set of multiple antennas.
  • the device 1005, or various components thereof may be an example of means for performing various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein.
  • the communications manager 1020 may include a capability component 1025, a carrier component 1030, a message component 1035, or any combination thereof.
  • the communications manager 1020 may be an example of aspects of a communications manager 920 as described herein.
  • the communications manager 1020, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1010, the transmitter 1015, or both.
  • the communications manager 1020 may receive information from the receiver 1010, send information to the transmitter 1015, or be integrated in combination with the receiver 1010, the transmitter 1015, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1020 may support wireless communication at the device 1005 (e.g., a base station) in accordance with examples as disclosed herein.
  • the capability component 1025 may be configured as or otherwise support a means for receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the carrier component 1030 may be configured as or otherwise support a means for transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the message component 1035 may be configured as or otherwise support a means for receiving the uplink message to the device 1005 on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1120 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the communications manager 1120 may be an example of aspects of a communications manager 920, a communications manager 1020, or both, as described herein.
  • the communications manager 1120, or various components thereof may be an example of means for performing various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein.
  • the communications manager 1120 may include a capability component 1125, a carrier component 1130, a message component 1135, a mapping component 1140, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1120 may support wireless communication at a base station in accordance with examples as disclosed herein.
  • the capability component 1125 may be configured as or otherwise support a means for receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the carrier component 1130 may be configured as or otherwise support a means for transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the message component 1135 may be configured as or otherwise support a means for receiving the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the capability component 1125 may be configured as or otherwise support a means for receiving the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is supported by the UE.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers.
  • the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes one or both of the first carrier or the second carrier for transmission of the uplink message to the base station.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least one carrier of the subset of carriers, and where the at least one of the subset of carriers corresponds to at least one antenna port. In some examples, the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least two carriers of the subset of carriers, and where the at least two carriers of the subset of carriers correspond to at least two antenna ports.
  • the capability component 1125 may be configured as or otherwise support a means for receiving the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is not supported by the UE.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and where the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers.
  • the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from a third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the first carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the first carrier for transmission of the uplink message.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the second carrier for transmission of the uplink message to the base station based on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • the mapping component 1140 may be configured as or otherwise support a means for applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers.
  • the at least one of the subset of carriers includes the third carrier for transmission of the uplink message to the base station based on switching from the second radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of a device 905, a device 1005, or a base station 105 as described herein.
  • the device 1205 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1220, a network communications manager 1210, a transceiver 1215, an antenna 1225, a memory 1230, code 1235, a processor 1240, and an inter-station communications manager 1245.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1250) .
  • the network communications manager 1210 may manage communications with a core network 130 (e.g., via one or more wired backhaul links) .
  • the network communications manager 1210 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the device 1205 may include a single antenna 1225. However, in some other cases the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1215 may communicate bi-directionally, via the one or more antennas 1225, wired, or wireless links as described herein.
  • the transceiver 1215 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1215 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1225 for transmission, and to demodulate packets received from the one or more antennas 1225.
  • the transceiver 1215 may be an example of a transmitter 915, a transmitter 1015, a receiver 910, a receiver 1010, or any combination thereof or component thereof, as described herein.
  • the memory 1230 may include RAM and ROM.
  • the memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed by the processor 1240, cause the device 1205 to perform various functions described herein.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting carrier aggregation switching for switching multiple radio frequency bands) .
  • the device 1205 or a component of the device 1205 may include a processor 1240 and memory 1230 coupled to the processor 1240, the processor 1240 and memory 1230 configured to perform various functions described herein.
  • the inter-station communications manager 1245 may manage communications with other base stations 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between base stations 105.
  • the communications manager 1220 may support wireless communication at the device 1205 (e.g., a base station) in accordance with examples as disclosed herein.
  • the communications manager 1220 may be configured as or otherwise support a means for receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the communications manager 1220 may be configured as or otherwise support a means for transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the communications manager 1220 may be configured as or otherwise support a means for receiving the uplink message to the device 1205 on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the device 1205 may support techniques for improved communication reliability and reduced latency.
  • the communications manager 1220 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1215, the one or more antennas 1225, or any combination thereof.
  • the communications manager 1220 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1220 may be supported by or performed by the processor 1240, the memory 1230, the code 1235, or any combination thereof.
  • the code 1235 may include instructions executable by the processor 1240 to cause the device 1205 to perform various aspects of carrier aggregation switching for switching multiple radio frequency bands as described herein, or the processor 1240 and the memory 1230 may be otherwise configured to perform or support such operations.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1300 may be implemented by a UE or its components as described herein.
  • the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a carrier component 730 as described with reference to FIG. 7.
  • the method may include transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a message component 735 as described with reference to FIG. 7.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1400 may be implemented by a UE or its components as described herein.
  • the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the operations of 1405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1405 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by a carrier component 730 as described with reference to FIG. 7.
  • the method may include applying a mapping from the combination of radio frequency bands to the at least one of the subset of carriers, where the combination of radio frequency bands includes at least one carrier of the subset of carriers, and where the at least one of the subset of carriers corresponds to at least one antenna port.
  • the operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a mapping component 740 as described with reference to FIG. 7.
  • the method may include transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with the mapping.
  • the operations of 1420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1420 may be performed by a message component 735 as described with reference to FIG. 7.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1500 may be implemented by a UE or its components as described herein.
  • the operations of the method 1500 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the operations of 1505 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1505 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a carrier component 730 as described with reference to FIG. 7.
  • the method may include transmitting the UE capability to indicate whether simultaneous transmission of uplink messages on two or more carriers is supported by the UE.
  • the operations of 1515 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1515 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the operations of 1520 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1520 may be performed by a message component 735 as described with reference to FIG. 7.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports carrier aggregation switching for switching multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1600 may be implemented by a base station or its components as described herein.
  • the operations of the method 1600 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands.
  • the operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1605 may be performed by a capability component 1125 as described with reference to FIG. 11.
  • the method may include transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, where the subset of carriers is associated with a combination of radio frequency bands.
  • the operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a carrier component 1130 as described with reference to FIG. 11.
  • the method may include receiving the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, where the mapping is based on the UE capability.
  • the operations of 1615 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1615 may be performed by a message component 1135 as described with reference to FIG. 11.
  • a method for wireless communication at a UE comprising: transmitting, to a base station, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands; receiving, from the base station and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, wherein the subset of carriers is associated with a combination of radio frequency bands; and transmitting the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, wherein the mapping is based at least in part on the UE capability.
  • Aspect 2 The method of aspect 1, wherein transmitting the UE capability further comprises: transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is supported by the UE.
  • Aspect 3 The method of aspect 2, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises one or both of the first carrier or the second carrier for transmission of the uplink message to the base station.
  • Aspect 4 The method of any of aspects 1 through 3, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises at least one carrier of the subset of carriers, and wherein the at least one of the subset of carriers corresponds to at least one antenna port.
  • Aspect 5 The method of any of aspects 1 through 4, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises at least two carriers of the subset of carriers, and wherein the at least two carriers of the subset of carriers correspond to at least two antenna ports.
  • Aspect 6 The method of any of aspects 1 through 5, wherein transmitting the UE capability further comprises: transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is not supported by the UE.
  • Aspect 7 The method of aspect 6, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the second carrier for transmission of the uplink message to the base station based at least in part on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Aspect 8 The method of any of aspects 6 through 7, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the first carrier for transmission of the uplink message to the base station based at least in part on switching from a third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Aspect 9 The method of any of aspects 6 through 8, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the third carrier for transmission of the uplink message to the base station based at least in part on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • Aspect 10 The method of any of aspects 6 through 9, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the first carrier for transmission of the uplink message to the base station based at least in part on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the first carrier for transmission of the uplink message.
  • Aspect 11 The method of any of aspects 6 through 10, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the second carrier for transmission of the uplink message to the base station based at least in part on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Aspect 12 The method of any of aspects 6 through 11, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the third carrier for transmission of the uplink message to the base station based at least in part on switching from the second radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • a method for wireless communication at a base station comprising: receiving, from a UE, first control signaling indicating a UE capability for switching between carriers of a group of carriers during uplink communications using carrier aggregation, the group of carriers including three or more carriers that are each associated with different radio frequency bands; transmitting, to the UE and in response to the first control signaling, second control signaling that includes an indication for the UE to switch to a subset of carriers of the group of carriers for transmission of an uplink message, wherein the subset of carriers is associated with a combination of radio frequency bands; and receiving the uplink message to the base station on at least one of the subset of carriers in accordance with a mapping between the combination of radio frequency bands and the at least one of the subset of carriers, wherein the mapping is based at least in part on the UE capability.
  • Aspect 14 The method of aspect 13, wherein receiving the UE capability further comprises: receiving the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is supported by the UE.
  • Aspect 15 The method of aspect 14, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises one or both of the first carrier or the second carrier for transmission of the uplink message to the base station.
  • Aspect 16 The method of any of aspects 14 through 15, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises at least one carrier of the subset of carriers, and wherein the at least one of the subset of carriers corresponds to at least one antenna port.
  • Aspect 17 The method of any of aspects 14 through 16, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises at least two carriers of the subset of carriers, and wherein the at least two carriers of the subset of carriers correspond to at least two antenna ports.
  • Aspect 18 The method of any of aspects 13 through 17, wherein receiving the UE capability further comprises: receiving the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers is not supported by the UE.
  • Aspect 19 The method of aspect 18, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the second carrier for transmission of the uplink message to the base station based at least in part on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Aspect 20 The method of any of aspects 18 through 19, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a second radio frequency band associated with a second carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the first carrier for transmission of the uplink message to the base station based at least in part on switching from a third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Aspect 21 The method of any of aspects 18 through 20, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the third carrier for transmission of the uplink message to the base station based at least in part on switching from the first radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • Aspect 22 The method of any of aspects 18 through 21, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a first radio frequency band associated with a first carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the first carrier for transmission of the uplink message to the base station based at least in part on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the first carrier for transmission of the uplink message.
  • Aspect 23 The method of any of aspects 18 through 22, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the second carrier for transmission of the uplink message to the base station based at least in part on switching from the third radio frequency band associated with two or more carriers or being scheduled to switch to the second carrier for transmission of the uplink message.
  • Aspect 24 The method of any of aspects 18 through 23, further comprising: applying the mapping from the combination of radio frequency bands to the at least one of the subset of carriers, wherein the combination of radio frequency bands comprises a second radio frequency band associated with a second carrier of the group of carriers and a third radio frequency band associated with a third carrier of the group of carriers, and wherein the at least one of the subset of carriers comprises the third carrier for transmission of the uplink message to the base station based at least in part on switching from the second radio frequency band associated with two or more carriers or being scheduled to switch to the third carrier for transmission of the uplink message.
  • Aspect 25 An apparatus for wireless communication, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 12.
  • Aspect 26 An apparatus for wireless communication, comprising at least one means for performing a method of any of aspects 1 through 12.
  • Aspect 27 A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 12.
  • Aspect 28 An apparatus for wireless communication, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 13 through 24.
  • Aspect 29 An apparatus for wireless communication, comprising at least one means for performing a method of any of aspects 13 through 24.
  • Aspect 30 A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to perform a method of any of aspects 13 through 24.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (such as receiving information) , accessing (such as accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and other such similar actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne des procédés, des systèmes et des dispositifs de communication sans fil. Un dispositif peut transmettre une première signalisation de commande indiquant une capacité de commutation entre des porteuses d'un groupe de porteuses pendant des communications de liaison montante à l'aide d'une agrégation de porteuses. Le groupe de porteuses comprend au moins trois porteuses qui sont chacune associées à différentes bandes de fréquences radio. Le dispositif peut recevoir une seconde signalisation de commande qui comprend une indication pour que le dispositif commute vers un sous-ensemble de porteuses du groupe de porteuses pour la transmission d'un message de liaison montante. Le sous-ensemble de porteuses peut être associé à une combinaison de bandes de fréquences radio. Le dispositif peut transmettre le message de liaison montante sur au moins une porteuse parmi le sous-ensemble de porteuses en fonction d'un mappage entre la combinaison de bandes de fréquences radio et l'au moins une des porteuses parmi le sous-ensemble de porteuses, le mappage étant basé sur la capacité.
PCT/CN2021/130241 2021-11-12 2021-11-12 Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio WO2023082167A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/130241 WO2023082167A1 (fr) 2021-11-12 2021-11-12 Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio
PCT/CN2022/127645 WO2023082998A1 (fr) 2021-11-12 2022-10-26 Commutation d'agrégation de porteuses pour commuter de multiples bandes radiofréquence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130241 WO2023082167A1 (fr) 2021-11-12 2021-11-12 Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio

Publications (1)

Publication Number Publication Date
WO2023082167A1 true WO2023082167A1 (fr) 2023-05-19

Family

ID=86334806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130241 WO2023082167A1 (fr) 2021-11-12 2021-11-12 Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio

Country Status (1)

Country Link
WO (1) WO2023082167A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728890A (zh) * 2013-06-27 2019-05-07 华为技术有限公司 载波切换方法、基站和用户设备
US20190313298A1 (en) * 2018-04-10 2019-10-10 Qualcomm Incorporated Carrier aggregation for low-latency handover
US20200045685A1 (en) * 2018-08-01 2020-02-06 Qualcomm Incorporated Carrier switching and antenna switching for a target carrier combination
CN113016158A (zh) * 2018-11-13 2021-06-22 苹果公司 带内非连续载波聚合中的波束切换

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728890A (zh) * 2013-06-27 2019-05-07 华为技术有限公司 载波切换方法、基站和用户设备
US20190313298A1 (en) * 2018-04-10 2019-10-10 Qualcomm Incorporated Carrier aggregation for low-latency handover
US20200045685A1 (en) * 2018-08-01 2020-02-06 Qualcomm Incorporated Carrier switching and antenna switching for a target carrier combination
CN113016158A (zh) * 2018-11-13 2021-06-22 苹果公司 带内非连续载波聚合中的波束切换

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on Tx Switching between Two Uplink Carriers", 3GPP TSG RAN WG1 #102-E,R1-2005996, 7 August 2020 (2020-08-07), XP051915112 *

Similar Documents

Publication Publication Date Title
WO2021155505A1 (fr) Ressources d'un signal de référence de sondage sur la base d'un code de couverture de domaine temporel et de répétitions et permettant une commutation d'antenne
US11799604B2 (en) Techniques for adapting a number of tracking reference signal symbols
US11770802B2 (en) Reducing latency for closed loop sidelink communications for non-terrestrial networks
US20220104211A1 (en) Incentive-based relaying with prioritization
WO2021253456A1 (fr) Alignement de durées pour répétitions d'un canal physique partagé lors de transmissions à panneaux multiples
WO2021226956A1 (fr) Surveillance pour des répétitions de liaison descendante
EP4029343A1 (fr) Motifs de synchronisation de transmission en liaison montante
US11825464B2 (en) User equipment coordination for sidelink
US20230141998A1 (en) Measuring self-interference for full-duplex communications
WO2023070239A1 (fr) Priorisation de transmissions de signal de synchronisation de liaison latérale
US11627019B2 (en) Managing sounding reference signal repetitions through downlink control information
WO2022213298A1 (fr) Signalisation de groupement de signaux de référence de sondage
WO2023082167A1 (fr) Commutation d'agrégation de porteuses pour commuter de multiples bandes de fréquences radio
WO2023082998A1 (fr) Commutation d'agrégation de porteuses pour commuter de multiples bandes radiofréquence
US11937270B2 (en) Techniques for configuring TCI states for MBS transmissions
US11683351B2 (en) Protection level indication and configuration
US11576201B2 (en) Candidate uplink grants for channel access
WO2022232967A1 (fr) Périodes de garde pour ensembles de ressources de signal de référence de sondage
WO2022226877A1 (fr) Temps de préparation de commutation de chaîne de transmission pour canal partagé de liaison montante
WO2023130421A1 (fr) Commutation de liaison montante pour transmissions simultanées
WO2023039742A1 (fr) Configuration de ressources de canal d'accès aléatoire pour équipement utilisateur à capacité différente
US20230292317A1 (en) Signaling of a set of resources to support inter user equipment coordination
US20230239841A1 (en) Configured bandwidth part and resource allocation switching
WO2023193131A1 (fr) Amélioration de planification de signal de référence de sondage apériodique
WO2023150992A1 (fr) Indication de configuration de transmission unifiée pour de multiples points d'émission-réception

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963617

Country of ref document: EP

Kind code of ref document: A1