WO2023080152A1 - Direction detector, object being steered, steering instrument, and distance detector - Google Patents

Direction detector, object being steered, steering instrument, and distance detector Download PDF

Info

Publication number
WO2023080152A1
WO2023080152A1 PCT/JP2022/040972 JP2022040972W WO2023080152A1 WO 2023080152 A1 WO2023080152 A1 WO 2023080152A1 JP 2022040972 W JP2022040972 W JP 2022040972W WO 2023080152 A1 WO2023080152 A1 WO 2023080152A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
remote control
receiving module
control receiving
time
Prior art date
Application number
PCT/JP2022/040972
Other languages
French (fr)
Japanese (ja)
Inventor
英之 吉川
Original Assignee
英之 吉川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英之 吉川 filed Critical 英之 吉川
Publication of WO2023080152A1 publication Critical patent/WO2023080152A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • the present invention relates to direction detectors, steered objects, pilots, and distance detectors using infrared rays.
  • the direction detection function has been improved, and a remote control system that is easy to operate and inexpensive has been put to practical use.
  • the component used in this invention is a "remote control receiver module" used for infrared remote controls for home electric appliances.
  • the "remote control receiving module” is a component that receives infrared rays emitted by an infrared remote control and converts them into electrical signals. In the present invention, a plurality of these parts were used to assemble a remote control system.
  • a direction detector is a direction detector for detecting the direction of an optical signal emitted from an external device, and has a quasi-horizontal shape, and is arranged such that light receiving surfaces face different directions, a plurality of remote control receiving modules for receiving optical signals from and outputting a high signal or a low signal according to the intensity of the received optical signals; a memory for storing signal information from the remote control receiving modules; and a microcomputer that processes the signal information obtained by the processing.
  • the optical signal emitted from the external device includes a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time.
  • the microcomputer stores the timing of the change from the high signal to the low signal in the memory as time axis data BR>[, and the light receiving surface is different.
  • the incoming direction ⁇ of the received light beam from the external device is calculated from the time axis data corresponding to the signals from the plurality of remote control receiving modules facing the direction.
  • the light receiving surface of the remote control receiving module may be arranged in a substantially circular shape facing outward.
  • a controlled object is a controlled object that is controlled by a control device that outputs an optical signal, has a quasi-horizontal plane, and is arranged such that light receiving surfaces face different directions.
  • a plurality of remote control receiving modules for receiving the optical signal from the device and outputting a high signal or a low signal according to the intensity of the received optical signal;
  • a memory for storing signal information from the remote control receiving module;
  • a direction detector having a microcomputer for processing signal information stored in a direction detector and direction driving means.
  • the optical signal output from the controller includes a series of command signals and a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time, and is output from the remote control receiving module.
  • the signal changes from high to low at a predetermined timing in accordance with the orientation of the light receiving surface, and the remote control is maintained for a predetermined time after receiving the command until receiving the gradual increase signal output by the controller.
  • the power of the receiving module is turned off, the automatic gain adjuster of the remote control receiving module is initialized, and the microcomputer stores the timing of the change from the high signal to the low signal in the memory as time axis data, and the light receiving surface.
  • the incoming direction ⁇ of the received light beam from the control device is calculated, and the control signal including the direction signal ⁇ included in the command and the incoming direction .theta., the direction driving means may be driven.
  • the steering device includes a direction input device for inputting a direction ⁇ , a direction signal corresponding to the direction ⁇ by operating the direction input device, and a gradually increasing signal whose amplitude changes with time or whose pulse width changes with time. and an output device for outputting an optical signal including a gradually increasing pulse width modulated signal.
  • the steering device generates an optical signal including a direction signal corresponding to a predetermined direction ⁇ and a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time. It may be characterized by comprising an output device for outputting.
  • a distance detector is a distance detector that detects a distance to an external device that outputs an optical signal, receives the optical signal from the external device, and measures the intensity of the received optical signal.
  • a remote control receiving module for outputting a high signal or a low signal in response, and a microcomputer for processing signal information output from the remote control receiving module may be provided.
  • the optical signal output from the external device includes a gradually increasing signal whose amplitude changes with time or a pulse width modulated signal whose pulse width gradually increases with time, and the remote control receiving module receives the gradually increasing signal output from the external device.
  • the remote control receiving module Powering off the remote control receiving module for a predetermined time until receiving a signal, initializing an automatic gain adjuster of the remote control receiving module, and after performing the initialization of the automatic gain adjuster the remote control receiving module is powered on to receive the gradual increase signal emitted by an external device; It is characterized in that the distance to the external device is detected from the relationship between the determined time at which the high signal changes to the low signal and the distance to the external device.
  • FIG. 1 is a diagram schematically showing a top view of the remote control system according to the first embodiment.
  • FIG. 2 is a diagram schematically showing a side view of the remote control system according to the first embodiment;
  • FIG. 3 is a block diagram for generating a "steering signal" emitted from the pilot 1 according to the first embodiment.
  • FIG. 4 is a block diagram of the traveling body 2 according to the first embodiment.
  • FIG. 5 is a diagram showing waveforms of infrared signals emitted from the pilot device 1 according to the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the remote control receiving module according to the first embodiment.
  • FIG. 7 is a representative block diagram of the "remote control receiving module" according to the first embodiment.
  • FIG. 8 is a block diagram of the "receive infrared digital command" stand-alone type.
  • FIG. 9 is a block diagram of a stand-alone "digital command reception by radio wave” type.
  • FIG. 10 is a representative block diagram of the "simplified receiver remote control receiver module”.
  • FIG. 11 is a block diagram of a usage example of the "simplified receiver remote control receiver module”.
  • FIG. 12 is a diagram for explaining an example of performing a tracking operation.
  • FIG. 13 is a diagram for explaining an example in which the running body 2D tracks the running body 2C.
  • the traveling body 2C also has a control device function and a light-emitting diode.
  • FIG. 14 is a diagram for explaining an example of "four remote control receiving modules" covered with cylindrical transparent plastic.
  • FIG. 14 is a diagram for explaining an example of "four remote control receiving modules" covered with cylindrical transparent plastic.
  • FIG. 15 is a diagram for explaining an example of a three-dimensional sensor.
  • FIG. 16 is a diagram for explaining a usage example of the three-dimensional sensor.
  • FIG. 17 is a block diagram of the pilot 101 according to the second embodiment.
  • FIG. 18 is an overall block diagram of a "remote control receiving module" according to the second embodiment.
  • FIG. 19 is a diagram showing waveforms of infrared signals emitted from the pilot device 1 according to the second embodiment.
  • the direction detector and remote control system according to the first embodiment will be described below using several examples.
  • FIG. 1 plan view
  • FIG. 2 side view
  • a running body 2 is operated by using a controller 1 to play a soccer game or the like.
  • the traveling body 2 corresponds to the object to be controlled in the present invention.
  • the direction detector of the present invention is incorporated in the traveling body 2 .
  • the direction detectors are arranged in a quasi-horizontal plane with light-receiving surfaces facing different directions, receive optical signals from an external device (for example, the controller 1 in FIG. 1), and detect the intensity of the received optical signals.
  • It can comprise a plurality of remote control receiving modules for outputting a high signal or a low signal accordingly, a memory for storing signal information from the remote control receiving modules, and a microcomputer for processing the signal information stored in the memory.
  • the running body 2 is an example in which six "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are built in, but if the condensing lens or the like is improved, the number of “remote control receiving modules” can be reduced. It is also possible.
  • the "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are arranged in a pseudo-horizontal plane with their light receiving surfaces facing in different directions. For example, they are arranged in a substantially circular shape with the light receiving surfaces facing outward. In some cases, unsuitable condenser lenses are also scraped off.
  • the controller 1 in FIG. 1 has a "joystick” 17 or the like for inputting a direction, and it is used to directly control the target traveling direction ⁇ of the traveling body 2.
  • FIG. Furthermore, various switches 18 and the like are used to carry out maneuvers such as forward, backward, running maneuvers and shoots.
  • the "steering signal” is emitted toward the traveling body 2 as an infrared signal, radio wave signal, or the like. Also, if the "left and right wheels" of the traveling body 2 are changed to "caterpillars", the motions are the same, but the motions of the caterpillars look more dynamic.
  • a front portion of the running body 2 is provided with a shooting mechanism 12 for manipulating the ball. (details omitted)
  • FIG. 3 shows a block diagram for generating a "steering signal” emitted from the pilot 1 in this embodiment.
  • an angle signal (analog signal) generated by operating the joystick 17 is input to the analog port of the arithmetic processing unit and output to the arithmetic element (CPU).
  • the operation switch 19 is operated to generate an operation switch signal including an ON signal (eg "1") or an OFF signal (eg "0") and input to the input port of the arithmetic element (CPU).
  • the arithmetic element converts the angle signal (analog signal) and the operation switch signal into a digital signal, and outputs the converted digital signal from the serial data transmitter of the arithmetic processing unit to the analog amplifier.
  • the arithmetic element controls the DA converter via the input/output port to generate a predetermined analog signal and outputs it to the analog amplifier at a predetermined timing.
  • the analog signal output from this DA converter corresponds to a gradual increase signal, which will be described in detail later.
  • the digital signal output from the serial data transmitter of the computing element (CPU) and the analog signal output via the DA converter are input to the analog amplifier, combined by the analog amplifier, and driven by the infrared photodiode. In this way, the controller 1 emits an infrared "steering signal".
  • the analog amplifier utilizes, for example, a clock signal used in the arithmetic element (CPU), and synchronizes with this clock signal to output from the serial data transmitter of the arithmetic element (CPU). It is configured to synthesize and amplify a digital signal and an analog signal output via a DA converter.
  • FIG. FIG. 4 shows a block diagram of the traveling body 2 according to this embodiment.
  • FIG. 5 schematically shows the waveform of the infrared signal emitted from the control device 1 according to this embodiment.
  • FIG. 5(a) shows the waveform of the infrared signal (control signal) emitted from the controller 1.
  • FIG. 5(b) is a figure for demonstrating the state by which the infrared signal shown to Fig.5 (a) is transmitted continuously.
  • an infrared signal emitted from the controller 1 is received by the light receiving screen 30 of the remote control receiving module, which will be described later, and converted into an electric signal. shows the electrical signal waveform (AC component) after being processed by
  • FIG. 4 is an internal block diagram of the running body 2, in which "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are drawn side by side at the top. This "remote control receiver module” has two roles.
  • the "first role” is the original function, which is to receive the "infrared digital signal 21" of the command code (FIG. 4) from the controller 1.
  • signals from a plurality of (three in this example) "remote control receiving modules” are collected by a NOR gate 15 so that they can be received in any direction by the controller 1.
  • the signal passes through a "serial data receiver 41" in the microcomputer 40, is converted into a parallel signal, and is received and input to a "CPU (arithmetic element) 44".
  • CPU central processing unit
  • the “second role” is a completely new role for the "remote control receiving module", and uses the “gradual increase signal 22" in FIG. 5(a).
  • the “gradual increase signal 22" is a signal whose amplitude changes from small to large, and is the same signal each time. All the “remote control receiving modules” 3, 4, 5, 6, 7, 8 are installed in a circle, facing different directions, as can be seen in FIG. And all the “remote control receiving modules” will receive the infrared "gradual increase signal 22".
  • the "instruction code” in (A) of FIG. 6 the "infrared level” is high, so the AGC of the module works, and the gradual increase signal reception processing of (C) in FIG. 6 is impossible as it is. .
  • AGC works (during instruction code reception)
  • the amplification factor of the internal amplifiers 31 of the six modules decreases, and it takes time to recover. Therefore, when the power is turned off and the entire module is forcibly initialized, the amplification factors of the internal amplifiers 31 of the six modules return to the maximum value (initial value) when the power is turned back on. become.
  • Remote control receiver modules are sold by many companies, but the basic structure is considered to be roughly made as shown in Fig. 7.
  • the “remote control receiver module” is configured to drop its output to a low level when it detects an optical signal above a certain level.
  • infrared rays when incident from the left side, they pass through the condensing lens 36 and illuminate the light-receiving screen 30 of the light-receiving element.
  • the light-receiving element converts the light into an electric signal according to the light intensity of the received infrared light, which is then amplified by the variable amplifier 31 . After that, the frequency is selected by the frequency band filter 32 and detected by the detector 33 to become the internal detection output 66 .
  • AGC automatic gain control
  • the electrical terminals are generally composed of three terminals: (1) a power supply terminal 37, (2) a ground terminal 39, and (3) a digital signal output terminal 38.
  • a "remote control receiver module” was used for infrared reception, but the operation of the AGC was an obstacle for the "second role”. Therefore, at the position of (B) in FIG. 6, the power supply of the "remote control receiving module” was turned off in order to initialize the AGC. Then, of course, the outputs of all “remote control receiving modules” become (0V).
  • the ⁇ 1 ⁇ module has a slightly weaker infrared ray than the [0 ⁇ module. Then the ⁇ 1 ⁇ module falls low a little later than ⁇ 0 ⁇ as in (27). The concern here is whether or not the AGC will start to operate during the reception of the "increment signal", or will this cause malfunctions. Next, this will be explained in detail.
  • the increment signal is a signal that ramps up from 0, the AGC will never operate before the module output has fallen low. After the module output has fallen low, the Increment signal continues to increase. Even if the AGC starts to work after the module output falls low, the gradual signal becomes even louder, and even if the AGC reduces the amplification factor, returning the module output to high impossible. In other words, even if the AGC starts operating, no malfunction will occur.
  • modules ⁇ 2 ⁇ and ⁇ 3 ⁇ are located on the opposite side of the controller 1 to receive light, they are on the shadow side and the infrared rays are very weak. Then it stays high (meaning signal 0) until the end.
  • FIG. 8 shows a block diagram of the "infrared digital command reception" stand-alone type.
  • the content is an example in which a "remote control receiving module” 9 is provided exclusively for receiving a "digital signal".
  • a hemispherical reflecting mirror 88 is attached above the "remote control receiving module” 9 in order to enhance the absorption of infrared rays in the horizontal direction.
  • Six “remote control receiving modules" 3, 4, 5, 6, 7 and 8 are used exclusively for “receiving the incremental signal 22". However, immediately before the "receipt of the gradual increase signal 22", a period during which the "remote control receiving module” is powered off is provided to initialize the AVC.
  • FIG. 9 shows a block diagram of a stand-alone type "digital command reception by radio wave".
  • the content is that a radio wave receiver 83 is used to receive digital signals.
  • Six “remote control receiving modules" 3, 4, 5, 6, 7 and 8 are used exclusively for “receiving the incremental signal 22". However, immediately before the “receipt of the gradual increase signal 22", a period during which the "remote control receiving module” is powered off is provided to initialize the AVC.
  • FIG. 10 shows a representative block diagram of the "simplified receiver remote control receiver module".
  • FIG. 11 shows a block diagram of a usage example of a compact and low-priced "simplified receiver remote control receiver module". It is a "simplified remote control receiving module" without the AGC function, and is characterized by low cost and miniaturization dedicated to "receiving the gradual increase signal 22". It's not that such a product exists today, it's that it's convenient to have. Simple remote control receiving module 3A, 4A, 5A, 6A, 7A, 8A is used. Since the "simplified remote control receiving module" does not have an AGC function, AGC initialization is not required, and therefore the "simplified remote control receiving module” remains powered on. No need for switch function.
  • a tracking button 19 is provided on the controller 1 .
  • FIG. 13 shows a combined view of the controller 1 manipulating the traveling object 2C and the traveling object 2D tracking the traveling object 2C.
  • the traveling body 2C has a light-emitting diode 16 attached to the ordinary traveling body 2, and also has the software for the control device function.
  • the controller 1 Through the controller 1, the operator not only steers the traveling object 2C but also performs maneuvers related to tracking of the traveling object 2D. For example, (1) the traveling object 2D should follow the traveling object 2C.
  • the running body 2D can steer the running body 2D by issuing a command to the running body 2C such as to stop following the running body 2C. Also, the traveling body 2C can be steered by operating the traveling body 2D.
  • FIG. 14 shows a diagram for explaining an example of "four remote control receiving modules" covered with cylindrical transparent plastic.
  • four remote control receiver modules are covered with cylindrical transparent plastic as shown in the figure.
  • the angle from A to E greater than 180 degrees expands to the light receiving angle of one "remote control receiver module" due to the lens effect. can be reduced to four.
  • FIG. 15 is a diagram showing the relationship between the number of remote control receiving modules and the number of light receiving angles.
  • FIG. 15(A) is a diagram for obtaining a light-receiving angle of 360 degrees in the horizontal direction using four modules. For simplicity, FIG. 15 shows a module with an improved lens.
  • a light receiving angle ⁇ detector of 360 degrees in the horizontal direction is formed.
  • the present invention first measures and calculates the brightness of each "remote control receiving module" illuminated by infrared rays. After that, it is decided which one is to be combined with which, and the light receiving angle ⁇ is calculated.
  • the horizontal direction ⁇ H is "remote control receiving module" 3, 4, 5, 6, the vertical vertical direction ⁇ V is 6, 10, 4, the vertical horizontal direction ⁇ VS is 3, 10, 5,
  • the omnidirectional pilot position can be detected. It can be used for detailed control of flying objects such as toy drones.
  • FIG. 16 shows a three-dimensional usage example.
  • the traveling body 2 is being moved by the tracking function.
  • a remote control receiving module receives an optical signal from the control device 1 (external device) and outputs a high signal or a low signal according to the intensity of the received optical signal, and an output from the remote control receiving module It can function as a distance detector including a microcomputer that processes the signal information.
  • the direction detector and remote control system according to the second embodiment will be explained using several examples.
  • the direction detector and the remote control system according to the second embodiment have the same configuration except that the waveform of the infrared signal (control signal) emitted from the control device 1 is different. Other than that, the description is omitted.
  • Infrared signals (steering signals) emitted from the manipulator 101 of the second embodiment will be described in detail below.
  • FIG. 17 shows a block diagram of the pilot device 101 according to the second embodiment.
  • FIG. 18 shows a representative block diagram of the "remote control receiving module" according to the second embodiment.
  • FIG. 19 shows a waveform diagram of an infrared signal emitted from the controller 101 according to the second embodiment.
  • a pulse width modulated signal ( A signal including a PWM signal) 22b is emitted.
  • the entire signal is emitted as a continuous signal by a "pair" of the digital signal 21 and the PWM signal 22b, as shown in FIG. 19(b).
  • the PWM signal 22b can be generated relatively easily by, for example, programming predetermined software (program) into an arithmetic element (CPU) and controlling the pulse generating circuit with this arithmetic element.
  • FIG. 17 shows a block diagram for generating the "steering signal" emitted from the pilot 101 in this embodiment.
  • the digital signal converted from the angle signal (analog signal) and the operation switch signal by the arithmetic element (CPU) is output from the serial data transmitter of the arithmetic processing unit to the digital amplifier. be.
  • the computing element (CPU) generates the PWM signal 22b and outputs it to the digital amplifier via the output port.
  • the digital signal output from the serial data transmitter of the arithmetic element (CPU) and the PWM signal 22b output from the output port of the arithmetic element (CPU) are combined by a digital amplifier to drive the infrared photodiode. . In this way, the controller 1 emits an infrared "steering signal".
  • FIG. 18 shows an overall block diagram of a “remote control receiving module” according to the second embodiment.
  • the “remote control receiving module” of this embodiment can have the same configuration as the block diagram of the "remote control receiving module" according to the first embodiment shown in FIG.
  • the "remote control receiver module” is configured such that the output drops to a low level when an optical signal of a certain level is detected.
  • an infrared signal emitted from the controller 101 is received by a remote control receiving module incorporated in the traveling body 2 .
  • the light-receiving element converts the light into an electric signal according to the light intensity of the received infrared light, which is then amplified by the variable amplifier 31 .
  • a signal amplified by the variable amplifier 31 passes through the frequency band filter 32 .
  • the PWM signal 22b (electrical signal) passes through the frequency band filter, harmonics other than the fundamental wave are attenuated and removed. Therefore, as shown in FIG. 19(d), it is converted into a gradual increase signal similar to the gradual increase signal described in the first embodiment. After that, it is detected by the detector 33 and becomes an internal detection output 66 .
  • AGC automatic gain control
  • Controller 2 Running bodies 2C, 2D: With infrared light emitting diodes_Running bodies 3, 4, 5, 6, 7, 8, 9, 10: Remote control receiving module 3b, 4b, 5b, 6b, 7b, 8b, 9b, 10b: remote control receiving module 3A, 4A, 5A, 6A, 7A, 8A: Simple remote control receiver module (without AVC) 11: Simple remote control receiver module 12: Shoot mechanism 13: Right wheel 14: Left wheel 15: Ball 16: Infrared light emitting diode 17: Joystick 18: Push button switch 21: Serial command signal (infrared) 22: Gradual increase signal (infrared) 23: Serial command signal (electrical signal) 24: coincidence signal (electrical signal) 39: Switch circuit 40: Microcomputer 41: Serial data receiver 42: Input port 43: Output port 44: CPU 45, 46, 47: PWM generators 48, 49, 50: amplifier 51: left motor 52: right motor 53: chute motor 54: microprocessor 55: memory 65: threshold 66: detection output 71

Abstract

The purpose of the present invention is to create a remote steering system using few components at low cost, the remote steering system controlling a traveling body, which detects the flight direction θ of an infrared ray emitted by a steering instrument. The steering instrument according to the present invention transmits an "infrared signal the amplitude of which changes over time," and the traveling body, in which a plurality of "infrared remote control reception modules" are arranged in radial form, measures and computes a reception timing to thereby obtain an infrared ray flight direction θ and executes, in combination, and command and direction data α from the steering instrument.

Description

方向検出器、被操縦物体、操縦器、及び距離検出器Direction Detector, Maneuvered Object, Manipulator, and Range Detector
本発明は、赤外線を使った向検出器、被操縦物体、操縦器、及び距離検出器に関するものである。 The present invention relates to direction detectors, steered objects, pilots, and distance detectors using infrared rays.
 従来、走行模型の遠隔操縦システムは、舵の動き自体を、遠隔で操作することが基本であったため、向きの操縦が大変難しい欠点があった。 In the past, remote control systems for running models were based on remote control of the movement of the rudder itself, so it had the disadvantage of being very difficult to steer.
WO01/095043 公報WO01/095043 Publication
これを改善するために、被操縦物体に、操縦器の位置の方向検出機能を設けて、フィードバック制御する手法が試されたが、部品数も多く、コストも高かった。 In order to improve this, a method of feedback control was tried by providing the object to be steered with a function for detecting the direction of the position of the pilot, but the number of parts was large and the cost was high.
本発明では、方向検出機能を改良し、易しい操縦で、コストの安い遠隔操縦システムの実用化を行った。この発明に、利用した部品は、家電製品の赤外線リモコン用に使われている「リモコン受信モジュール」である。本来、「リモコン受信モジュール」は、主として、赤外線リモコンが発する赤外線を受信し、電気信号に変換する部品である。本発明では、この部品を複数個使用して、遠隔操縦システムを組み立てた。 In the present invention, the direction detection function has been improved, and a remote control system that is easy to operate and inexpensive has been put to practical use. The component used in this invention is a "remote control receiver module" used for infrared remote controls for home electric appliances. Originally, the "remote control receiving module" is a component that receives infrared rays emitted by an infrared remote control and converts them into electrical signals. In the present invention, a plurality of these parts were used to assemble a remote control system.
本発明に係る方向検出器は、外部機器から発せられる光信号の方向を検出する方向検出器であって、疑似水平面状であって、受光面が異なる方向を向くように配置され、前記外部機器からの光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力する複数のリモコン受信モジュールと、前記リモコン受信モジュールからの信号情報を保存するメモリと、前記メモリに保存した信号情報を処理するマイコンとを備える。前記外部機器から発せられる光信号は、時間と共に振幅が変化する漸増信号、又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号を含み、前記リモコン受信モジュールから出力される信号は、前記受光面の向きに応じて所定のタイミングでハイからロウに変化し、前記マイコンは、ハイ信号からロウ信号に変化する前記タイミングを時間軸データ・BR>[として前記メモリに記憶させ、前記受光面が異なる方向を向いた前記複数のリモコン受信モジュールからの信号に対応する前記時間軸データーから、前記外部機器からの受光光線の飛来方向θを算出することを特徴とする。 A direction detector according to the present invention is a direction detector for detecting the direction of an optical signal emitted from an external device, and has a quasi-horizontal shape, and is arranged such that light receiving surfaces face different directions, a plurality of remote control receiving modules for receiving optical signals from and outputting a high signal or a low signal according to the intensity of the received optical signals; a memory for storing signal information from the remote control receiving modules; and a microcomputer that processes the signal information obtained by the processing. The optical signal emitted from the external device includes a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time. The microcomputer stores the timing of the change from the high signal to the low signal in the memory as time axis data BR>[, and the light receiving surface is different. The incoming direction θ of the received light beam from the external device is calculated from the time axis data corresponding to the signals from the plurality of remote control receiving modules facing the direction.
また、本発明に係る方向検出器において、前記リモコン受信モジュールの前記受光面が、外側に向けて、略円形に配置されていることを特徴としてもよい。 Also, in the direction detector according to the present invention, the light receiving surface of the remote control receiving module may be arranged in a substantially circular shape facing outward.
また、本発明に係る被操縦物体は、光信号を出力する操縦器により操縦される被操縦物体であって、疑似水平面状であって、受光面が異なる方向を向くように配置され、前記操縦器からの前記光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力する複数のリモコン受信モジュールと、前記リモコン受信モジュールからの信号情報を保存するメモリと、前記メモリに保存した信号情報を処理するマイコンとを有する方向検出器と、方向駆動手段とを備えることができる。前記操縦器から出力される光信号は、一連のコマンド信号と、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号を含み、前記リモコン受信モジュールから出力される信号は、前記受光面の向きに応じて所定のタイミングでハイからロウに変化し、前記コマンドを受信後、前記操縦器が出力する前記漸増信号を受信するまでの所定の時間の間、前記リモコン受信モジュールの電源をオフにして、リモコン受信モジュールの自動利得調整器が初期化され、前記マイコンは、ハイ信号からロウ信号に変化する前記タイミングを時間軸データーとして前記メモリに記憶させ、前記受光面が異なる方向を向いた複数のリモコン受信モジュールからの信号に対応する前記時間軸データーから、前記操縦器からの受光光線の飛来方向θを算出し、前記コマンドに含まれる向き信号αを含む操縦信号と、前記飛来方向θとの演算に基づいて、前記方向駆動手段を駆動するように構成されたことを特徴としてもよい。 Further, a controlled object according to the present invention is a controlled object that is controlled by a control device that outputs an optical signal, has a quasi-horizontal plane, and is arranged such that light receiving surfaces face different directions. a plurality of remote control receiving modules for receiving the optical signal from the device and outputting a high signal or a low signal according to the intensity of the received optical signal; a memory for storing signal information from the remote control receiving module; A direction detector having a microcomputer for processing signal information stored in a direction detector and direction driving means. The optical signal output from the controller includes a series of command signals and a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time, and is output from the remote control receiving module. The signal changes from high to low at a predetermined timing in accordance with the orientation of the light receiving surface, and the remote control is maintained for a predetermined time after receiving the command until receiving the gradual increase signal output by the controller. The power of the receiving module is turned off, the automatic gain adjuster of the remote control receiving module is initialized, and the microcomputer stores the timing of the change from the high signal to the low signal in the memory as time axis data, and the light receiving surface. from the time-axis data corresponding to the signals from a plurality of remote control receiving modules facing different directions, the incoming direction θ of the received light beam from the control device is calculated, and the control signal including the direction signal α included in the command and the incoming direction .theta., the direction driving means may be driven.
また、本発明に係る操縦器は、方向αを入力する方向入力装置と、前記方向入力装置の操作により方向αに対応した向き信号と、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号とを含む光信号を出力する出力装置とを備えたことを特徴としてもよい。 Further, the steering device according to the present invention includes a direction input device for inputting a direction α, a direction signal corresponding to the direction α by operating the direction input device, and a gradually increasing signal whose amplitude changes with time or whose pulse width changes with time. and an output device for outputting an optical signal including a gradually increasing pulse width modulated signal.
また、本発明に係る操縦器は、所定の方向αに対応した向き信号と、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号とを含む光信号とを出力する出力装置を備えたことを特徴としてもよい。 Further, the steering device according to the present invention generates an optical signal including a direction signal corresponding to a predetermined direction α and a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time. It may be characterized by comprising an output device for outputting.
また、本発明に係る距離検出器は、光信号を出力する外部機器との距離を検出する距離検出器であって、前記外部機器からの前記光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力するリモコン受信モジュールと、前記リモコン受信モジュールから出力された信号情報を処理するマイコンとを備えることができる。前記外部機器から出力される光信号は、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号を含み、前記リモコン受信モジュールは、前記外部機器が出力する前記漸増信号を受信するまでの所定の時間の間、前記リモコン受信モジュールの電源をオフにして、リモコン受信モジュールの自動利得調整器の初期化を行い、前記自動利得調整器の前記初期化を行った後に、前記リモコン受信モジュールの電源をオンにして、外部機器が発する前記漸増信号を受信し、前記マイコンは、前記外部機器からの距離に応じてハイ信号からロウ信号に変化する時間を測定し、予め決定されたハイ信号からロウ信号に変化する時間と外部機器との距離との関係から、前記外部機器との距離を検出するように構成されたことを特徴とする。 Further, a distance detector according to the present invention is a distance detector that detects a distance to an external device that outputs an optical signal, receives the optical signal from the external device, and measures the intensity of the received optical signal. A remote control receiving module for outputting a high signal or a low signal in response, and a microcomputer for processing signal information output from the remote control receiving module may be provided. The optical signal output from the external device includes a gradually increasing signal whose amplitude changes with time or a pulse width modulated signal whose pulse width gradually increases with time, and the remote control receiving module receives the gradually increasing signal output from the external device. Powering off the remote control receiving module for a predetermined time until receiving a signal, initializing an automatic gain adjuster of the remote control receiving module, and after performing the initialization of the automatic gain adjuster the remote control receiving module is powered on to receive the gradual increase signal emitted by an external device; It is characterized in that the distance to the external device is detected from the relationship between the determined time at which the high signal changes to the low signal and the distance to the external device.
この発明により、少ない部品でコストが安くて、使いやすい遠隔操縦システムが作成できた。また、量産部品を多く使用しているので、性能も安定している。 With this invention, it is possible to create a remote control system that is easy to use, has a low cost, and has a small number of parts. In addition, since many mass-produced parts are used, the performance is stable.
図1は、第1の実施形態に係る遠隔操縦システムの上面図を概略的に示す図である。FIG. 1 is a diagram schematically showing a top view of the remote control system according to the first embodiment. 図2は、第1の実施形態に係る遠隔操縦システムの側面図を概略的に示す図である。FIG. 2 is a diagram schematically showing a side view of the remote control system according to the first embodiment; FIG. 図3は、第1の実施形態に係る操縦器1から発せられる「操縦信号」を生成するためのブロック図である。FIG. 3 is a block diagram for generating a "steering signal" emitted from the pilot 1 according to the first embodiment. 図4は、第1の実施形態に係る走行体2のブロック図である。FIG. 4 is a block diagram of the traveling body 2 according to the first embodiment. 図5は、第1の実施形態に係る操縦器1から発せられる赤外線信号の波形を示す図である。FIG. 5 is a diagram showing waveforms of infrared signals emitted from the pilot device 1 according to the first embodiment. 図6は、第1の実施形態に係るリモコン受信モジュールの動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the remote control receiving module according to the first embodiment. 図7は、第1の実施形態に係る「リモコン受信モジュール」の代表ブロック図である。FIG. 7 is a representative block diagram of the "remote control receiving module" according to the first embodiment. 図8は、「赤外線のデジタルコマンド受信」独立型のブロック図である。FIG. 8 is a block diagram of the "receive infrared digital command" stand-alone type. 図9は、「電波によるデジタルコマンド受信」独立型のブロック図である。FIG. 9 is a block diagram of a stand-alone "digital command reception by radio wave" type. 図10は、「簡易型受信リモコン受信モジュール」の代表ブロック図である。FIG. 10 is a representative block diagram of the "simplified receiver remote control receiver module". 図11は、「簡易型受信リモコン受信モジュール」の使用例ブロック図である。FIG. 11 is a block diagram of a usage example of the "simplified receiver remote control receiver module". 図12は、追尾動作を行う例を説明するための図である。FIG. 12 is a diagram for explaining an example of performing a tracking operation. 図13は、走行体2Dが、走行体2Cを、追尾する例を説明するための図である。走行体2Cには、操縦器の機能、発光ダイオードも添付している。FIG. 13 is a diagram for explaining an example in which the running body 2D tracks the running body 2C. The traveling body 2C also has a control device function and a light-emitting diode. 図14は、円柱状の透明プラスチックで覆った「4個のリモコン受信モジュール」の例を説明するための図である。FIG. 14 is a diagram for explaining an example of "four remote control receiving modules" covered with cylindrical transparent plastic. 図15は、3次元センサーの例を説明するための図である。FIG. 15 is a diagram for explaining an example of a three-dimensional sensor. 図16は、3次元センサーの利用例を説明するための図である。FIG. 16 is a diagram for explaining a usage example of the three-dimensional sensor. 図17は、第2の実施形態に係る操縦器101のブロック図である。FIG. 17 is a block diagram of the pilot 101 according to the second embodiment. 図18は、第2の実施形態に係る「リモコン受信モジュール」の全体ブロック図である。FIG. 18 is an overall block diagram of a "remote control receiving module" according to the second embodiment. 図19は、第2の実施形態に係る操縦器1から発せられる赤外線信号の波形を示す図である。FIG. 19 is a diagram showing waveforms of infrared signals emitted from the pilot device 1 according to the second embodiment.
いくつかの実施形態に係る方向検出器および遠隔操縦システムを、以下に図面を参照しつつ説明する。以下の説明では、図面の説明において同一の要素には同一の符号を付する。

(第1の実施形態)
Direction detectors and remote control systems according to some embodiments are described below with reference to the drawings. In the following description, the same reference numerals are given to the same elements in the description of the drawings.

(First embodiment)
 以下に、第1の実施形態に係る方向検出器および遠隔操縦システムについて、いくつかの実施例を用いて説明する。 The direction detector and remote control system according to the first embodiment will be described below using several examples.
本発明のサッカーゲーム機の概略を、図1:平面図、図2:側面図に示す。
操縦器1を使って、走行体2を操縦し、サッカーゲーム等を行う。本実施形態において、走行体2が、本発明における被操縦物体に相当する。また、走行体2に本発明の方向検出器が組み込まれている。方向検出器は、疑似水平面状であって、受光面が異なる方向を向くように配置され、外部機器(例えば図1の操縦器1)からの光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力する複数のリモコン受信モジュールと、リモコン受信モジュールからの信号情報を保存するメモリと、メモリに保存した信号情報を処理するマイコンとを備えることができる。
The outline of the soccer game machine of the present invention is shown in FIG. 1: plan view and FIG. 2: side view.
A running body 2 is operated by using a controller 1 to play a soccer game or the like. In this embodiment, the traveling body 2 corresponds to the object to be controlled in the present invention. Moreover, the direction detector of the present invention is incorporated in the traveling body 2 . The direction detectors are arranged in a quasi-horizontal plane with light-receiving surfaces facing different directions, receive optical signals from an external device (for example, the controller 1 in FIG. 1), and detect the intensity of the received optical signals. It can comprise a plurality of remote control receiving modules for outputting a high signal or a low signal accordingly, a memory for storing signal information from the remote control receiving modules, and a microcomputer for processing the signal information stored in the memory.
走行体2は、6個の「リモコン受信モジュール」3,4,5,6、7,8を、内蔵する例であるが、集光レンズなどを改良すれば「リモコン受信モジール」の数を減らすことも、可能である。また、「リモコン受信モジュール」3,4,5,6、7,8は、疑似水平面状であって、受光面が互いに異なる方向を向いて、配置されている。例えば、受光面を外側に向け、略円形に並べて配置されている。また、場合によって不適格な集光レンズを、削り取ることも行う。 The running body 2 is an example in which six "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are built in, but if the condensing lens or the like is improved, the number of "remote control receiving modules" can be reduced. It is also possible. The "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are arranged in a pseudo-horizontal plane with their light receiving surfaces facing in different directions. For example, they are arranged in a substantially circular shape with the light receiving surfaces facing outward. In some cases, unsuitable condenser lenses are also scraped off.
図1の操縦器1には、方向を入力する「ジョイスティック」17等があり、それを使って走行体2の走行目標向きαの直接コントロールを行う。さらに、様々なスイッチ18等を使い、前進、後進、走行操縦やシュートなど操縦を行う。「操縦信号」は赤外線信号または電波信号などとして走行体2に向けて放出される。また、走行体2の「左右の車輪」を、「キャタピラー」に変更すれば、動作は、同じであるが、キャタピラーの方が、動作が、ダイナミックに見える。 The controller 1 in FIG. 1 has a "joystick" 17 or the like for inputting a direction, and it is used to directly control the target traveling direction α of the traveling body 2. FIG. Furthermore, various switches 18 and the like are used to carry out maneuvers such as forward, backward, running maneuvers and shoots. The "steering signal" is emitted toward the traveling body 2 as an infrared signal, radio wave signal, or the like. Also, if the "left and right wheels" of the traveling body 2 are changed to "caterpillars", the motions are the same, but the motions of the caterpillars look more dynamic.
図1、図2の走行体2には、モータ付きの右車輪13と左車輪14が備えられ、走行体2の向きを自由に変えながら、左右・前進、後進して自由に走行できる。走行体2の前部には、ボールを操るためのシュート機構12を備えている。(詳細は省略) 1 and 2 is provided with a right wheel 13 and a left wheel 14 with a motor, so that the traveling body 2 can freely move left and right, forward and backward while freely changing its direction. A front portion of the running body 2 is provided with a shooting mechanism 12 for manipulating the ball. (details omitted)
図3に、本実施形態における操縦器1から発せられる「操縦信号」を生成するためのブロック図を示す。図3に示すように、ジョイスティック17の操作により生成される角度信号(アナログ信号)を、演算処理部のアナログポートに入力し、演算素子(CPU)に出力する。一方、操作スイッチ19を操作して、オン信号(例えば「1」)、またはオフ信号(例えば「0」)を含む操作スイッチ信号を生成し、演算素子(CPU)の入力ポートに入力する。 FIG. 3 shows a block diagram for generating a "steering signal" emitted from the pilot 1 in this embodiment. As shown in FIG. 3, an angle signal (analog signal) generated by operating the joystick 17 is input to the analog port of the arithmetic processing unit and output to the arithmetic element (CPU). On the other hand, the operation switch 19 is operated to generate an operation switch signal including an ON signal (eg "1") or an OFF signal (eg "0") and input to the input port of the arithmetic element (CPU).
 演算素子(CPU)は、角度信号(アナログ信号)と操作スイッチ信号から、デジタル信号に変換し、演算処理部のシリアルデーター送信器から、変換されたデジタル信号をアナログ増幅器に出力する。 The arithmetic element (CPU) converts the angle signal (analog signal) and the operation switch signal into a digital signal, and outputs the converted digital signal from the serial data transmitter of the arithmetic processing unit to the analog amplifier.
 また、後で詳述するが、演算素子(CPU)は、入出力ポート介してDAコンバータを制御して、所定のアナログ信号を生成し、所定のタイミングでアナログ増幅器に出力する。本実施形態では、このDAコンバータから出力されるアナログ信号は、後で詳述するが、漸増信号に相当する。 Also, as will be described in detail later, the arithmetic element (CPU) controls the DA converter via the input/output port to generate a predetermined analog signal and outputs it to the analog amplifier at a predetermined timing. In this embodiment, the analog signal output from this DA converter corresponds to a gradual increase signal, which will be described in detail later.
 演算素子(CPU)のシリアルデーター送信機から出力されたデジタル信号と、DAコンバータを介して出力されたアナログ信号をアナログ増幅器に入力し、アナログ増幅器で合成されて、赤外フォトダイオードを駆動する。このようにして、操縦器1から赤外光の「操縦信号」が発せられる。 The digital signal output from the serial data transmitter of the computing element (CPU) and the analog signal output via the DA converter are input to the analog amplifier, combined by the analog amplifier, and driven by the infrared photodiode. In this way, the controller 1 emits an infrared "steering signal".
 なお、本実施形態では、アナログ増幅器は、例えば演算素子(CPU)で用いているクロック信号を利用して、このクロック信号に同期して、演算素子(CPU)のシリアルデーター送信機から出力されたデジタル信号と、DAコンバータを介して出力されたアナログ信号を合成し、増幅するように構成されている。 In this embodiment, the analog amplifier utilizes, for example, a clock signal used in the arithmetic element (CPU), and synchronizes with this clock signal to output from the serial data transmitter of the arithmetic element (CPU). It is configured to synthesize and amplify a digital signal and an analog signal output via a DA converter.
 次に、図4及び図5を参照しながら、第1の実施形態に係る走行体2について説明する。図4に、本実施形態に係る走行体2のブロック図を示す。また、図5に、本実施形態に係る操縦器1から発せられる赤外線信号の波形を概略的に示す。なお、図5(a)は、操縦器1から発せられる赤外線信号(操縦信号)の波形である。図5(b)は、図5(a)で示した赤外信号が、連続的に送信されている状態を説明するための図である。なお、図5(c)には、後述するリモコン受信モジュールの受光幕30で操縦器1から発せられる赤
外線信号を受信し、電気信号に変換された後に、この変換された電気信号が可変増幅器31で処理された後の電気信号波形(交流成分)を示している
Next, the traveling body 2 according to the first embodiment will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 shows a block diagram of the traveling body 2 according to this embodiment. Also, FIG. 5 schematically shows the waveform of the infrared signal emitted from the control device 1 according to this embodiment. FIG. 5(a) shows the waveform of the infrared signal (control signal) emitted from the controller 1. FIG. FIG.5(b) is a figure for demonstrating the state by which the infrared signal shown to Fig.5 (a) is transmitted continuously. In FIG. 5(c), an infrared signal emitted from the controller 1 is received by the light receiving screen 30 of the remote control receiving module, which will be described later, and converted into an electric signal. shows the electrical signal waveform (AC component) after being processed by
信号全体は、図5(b)のように、デジタル信号21、時間と共に振幅が変化する漸増信号22の「ペア」による連続的な信号として発せられる。図4は、走行体2の内部ブロック図であるが、「リモコン受信モジュール」3,4,5,6、7、8が、上部に並んで描いている。この「リモコン受信モジュール」の役目は、2つある。 The overall signal is emitted as a continuous signal with "pairs" of a digital signal 21, a time-varying amplitude gradual signal 22, as shown in FIG. 5(b). FIG. 4 is an internal block diagram of the running body 2, in which "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are drawn side by side at the top. This "remote control receiver module" has two roles.
「第1の役目」は、本来の機能であり、操縦器1からの命令コード(図4)の「赤外線デジタル信号21」を受信することである。図4に於いて、操縦器1がどの方向にあっても、受信できるように、複数(本例では3個)の「リモコン受信モジュール」の信号を、NORゲート15で信号を集め、集めた信号は、マイコン40内の「シリアルデーター受信器41」を通り、パラレル信号に変換して「CPU(演算素子)44」に受信入力される。「第1の役目」では、図4の「デジタル信号21」のみが処理される。 The "first role" is the original function, which is to receive the "infrared digital signal 21" of the command code (FIG. 4) from the controller 1. In FIG. 4, signals from a plurality of (three in this example) "remote control receiving modules" are collected by a NOR gate 15 so that they can be received in any direction by the controller 1. The signal passes through a "serial data receiver 41" in the microcomputer 40, is converted into a parallel signal, and is received and input to a "CPU (arithmetic element) 44". In the 'first role', only the 'digital signal 21' in FIG. 4 is processed.
「第2の役目」は、「リモコン受信モジュール」としては、全く新しい役目であり、図5(a)の「漸増信号22」を使用する。但し、「漸増信号22」は、振幅が小から大まで変化する信号であり、毎回、同じ信号である。すべての「リモコン受信モジュール」3,4,5,6,7,8は、図1を見るとわかるように、すべてが円周状に、異なる方向を向いて設置されている。そして、すべての「リモコン受信モジュール」は、赤外線「漸増信号22」を受光することになる。 The "second role" is a completely new role for the "remote control receiving module", and uses the "gradual increase signal 22" in FIG. 5(a). However, the "gradual increase signal 22" is a signal whose amplitude changes from small to large, and is the same signal each time. All the "remote control receiving modules" 3, 4, 5, 6, 7, 8 are installed in a circle, facing different directions, as can be seen in FIG. And all the "remote control receiving modules" will receive the infrared "gradual increase signal 22".
操縦器1から出るときは、同一の信号であったが、「リモコン受信モジュール」が受光するときは、すべて異なる方向の、従って、異なる大きさの赤外線を受光することになる。そしてすべての「リモコン受信モジュール」の受光信号は、図4の「入力ポート42」を使って、CPU44に、読み取られる。この信号の処理は、図6の表で、詳細に説明する。
図6の(1)に「操縦器1が発する赤外線」が描かれている。すなわち、命令コード21と漸増信号22の赤外線が、6個のモジュールに入ってくる。
When coming out of the controller 1, it is the same signal, but when it is received by the "remote control receiving module", it will receive infrared rays of different directions and thus different magnitudes. Then, the received light signals of all the "remote control receiving modules" are read by the CPU 44 using the "input port 42" in FIG. The processing of this signal is detailed in the table of FIG.
FIG. 6(1) depicts "infrared rays emitted by the controller 1". That is, the infrared rays of the instruction code 21 and the increment signal 22 enter six modules.
図6の(2)には、6個のモジュールの出力(電気出力23){0} {1} {2} {3} {4} {5} と、6本のデジタル信号出力が並ぶ。これは赤外線入力を6個のモジュールが、同時に検波を行い、デジタル電気信号23に変換したものである。点線になっているところ({2}、{3})は、信号レベルが小さくて検波しても、変換できないことを意味する。
図6の(3)は、6個のモジュールの電源のオン、オフを示している。図6の(B)電源オフのところで、Tk1の時間は、6個のモジュールの電源を、すべてオフにしているが、これは、(6個のモジュールの)AGC(自動利得調整器)の初期化をすることを意味する。
In (2) of FIG. 6, six module outputs (electrical outputs 23) {0} {1} {2} {3} {4} {5} and six digital signal outputs are arranged. This is obtained by simultaneously detecting an infrared input by six modules and converting it into a digital electrical signal 23 . Dotted lines ({2}, {3}) mean that even if the signal level is low and detected, it cannot be converted.
(3) in FIG. 6 shows power on/off of the six modules. At (B) power off in Fig. 6, the power of all six modules is turned off during Tk1, which is the initial stage of the AGC (automatic gain controller) (of the six modules). means to transform.
図6の(A)「命令コード」の受信時には、「赤外線レベル」が大きいので、モジュールのAGCが働いてしまい、そのままでは、図6の(C)の漸増信号受信処理は、不可能である。(命令コード受信中に)AGCが働くと、6個のモジュールの内部増幅器31は、増幅率が下がってしまい、元に戻るには時間がかかる。そこで、電源オフにして、モジュール全体を、強制的に、初期化すると、電源オンに戻したときには、6個のモジュールの内部増幅器31の増幅率は、最大値(初期値)に戻っていることになる。 At the time of receiving the "instruction code" in (A) of FIG. 6, the "infrared level" is high, so the AGC of the module works, and the gradual increase signal reception processing of (C) in FIG. 6 is impossible as it is. . When AGC works (during instruction code reception), the amplification factor of the internal amplifiers 31 of the six modules decreases, and it takes time to recover. Therefore, when the power is turned off and the entire module is forcibly initialized, the amplification factors of the internal amplifiers 31 of the six modules return to the maximum value (initial value) when the power is turned back on. become.
 「リモコン受信モジュール」は、多くの会社から販売されているが、基本的な構造は、おおむね図7のように作られていると考えられる。「リモコン受信モジュール」は、一定レベル以上の光信号を検出すると、出力がロウレベルに落ちるように構成されている。図7に於いて、左側から赤外線が入射すると、集光レンズ36を通って、受光素子の受光幕30を照らす。ここで、受光素子によって、受光した赤外線の光強度に応じて電気信号に変換され、その後、可変増幅器31で増幅される。その後、周波数帯域フィルタ32で周波数を選別され、検波器33で検波され、内部の検波出力66になる。この一部はAGCコントローラ35に戻り、可変増幅器31の増幅率をコントロールし、自動利得調整(AGC)機能を動作させる。そして赤外線入力の大きさが変化しても、受信動作を最適化できるようになっている。また、検波出力66は、デジタル成型機34に入って、2値のデジタル信号に変化させ、デジタル信号出力端子38を通って、外部に出てゆく。 "Remote control receiver modules" are sold by many companies, but the basic structure is considered to be roughly made as shown in Fig. 7. The "remote control receiver module" is configured to drop its output to a low level when it detects an optical signal above a certain level. In FIG. 7, when infrared rays are incident from the left side, they pass through the condensing lens 36 and illuminate the light-receiving screen 30 of the light-receiving element. Here, the light-receiving element converts the light into an electric signal according to the light intensity of the received infrared light, which is then amplified by the variable amplifier 31 . After that, the frequency is selected by the frequency band filter 32 and detected by the detector 33 to become the internal detection output 66 . A portion of this is returned to the AGC controller 35 to control the gain of the variable amplifier 31 and operate the automatic gain control (AGC) function. And even if the size of the infrared input changes, the reception operation can be optimized. Also, the detection output 66 enters the digital molding machine 34, is changed into a binary digital signal, and passes through the digital signal output terminal 38 to the outside.
 電気関係の端子は、概ね図7のように、ほぼ、3端子で構成されており、(1)電源端子37、(2)アース端子39、(3)デジタル信号出力端子38である。 As shown in FIG. 7, the electrical terminals are generally composed of three terminals: (1) a power supply terminal 37, (2) a ground terminal 39, and (3) a digital signal output terminal 38.
次に、図4の6個の「リモコン受信モジュール」が、図6の(A)の「命令コード」の「赤外線変調波21」を受信すると、それは、検波されて、{0},{1},{4},{5}のように、「命令コード23」が出力される。但し受信レベルが小さいと、{2},{3}のように、出力が出ない点線の場合もある。ここで、「NORゲート15」を使って、「シリアルデーター受信器41」に入れると、操縦器1から送られた「コマンド」が、走行体2の「CPU44」に読み込まれる。 Next, when the six "remote control receiving modules" in FIG. 4 receive the "infrared modulated wave 21" of the "instruction code" in (A) of FIG. }, {4}, and {5}, "instruction code 23" is output. However, when the reception level is low, there are cases of dotted lines such as {2} and {3} where no output is produced. Here, when the "NOR gate 15" is used to enter the "serial data receiver 41", the "command" sent from the controller 1 is read into the "CPU 44" of the traveling body 2.
赤外線の受信のために、「リモコン受信モジュール」を使用したが、「第2の役目」にとっては、AGCの動作は、邪魔になる課題であった。そこで、図6の(B)の位置では、AGCの初期化のために、「リモコン受信モジュール」の電源をオフにした。すると、当然ながら、すべての「リモコン受信モジュール」の出力は(0V)になる。 A "remote control receiver module" was used for infrared reception, but the operation of the AGC was an obstacle for the "second role". Therefore, at the position of (B) in FIG. 6, the power supply of the "remote control receiving module" was turned off in order to initialize the AGC. Then, of course, the outputs of all "remote control receiving modules" become (0V).
次に、Tk1 時間後、「リモコン受信モジュール」の電源を、すべてオンに復活させる。それによって、「リモコン受信モジュール」は、すべて、初期化された状態で、電源がオンの状態を迎える。その時、漸増信号(赤外線)は、まだ、0であるために、6個の「モジュール」の出力端子は、すべて、ハイに変わる(電源オンで負論理の0のまま)。ここで、漸増信号22の受信が始まる。6個のモジュールそれぞれに、異なる信号レベルの「漸増信号」の受信が始まる。赤外線の強いモジュールは、漸増信号も強いので、早く信号を検出し、出力端子は、ロウに落ちる。例えば、{0}のモジュールは、(26)のように早くロウに、落ちる。 Next, after Tk1 hours, turn on all the "remote control receiver modules" again. As a result, the "remote control receiving module" is all initialized and the power is turned on. At that time, since the incremental signal (infrared) is still 0, the output terminals of the 6 "modules" all turn high (remain negative logic 0 at power on). Receipt of the increment signal 22 now begins. Each of the 6 modules begins to receive an "increase signal" with a different signal level. A module with stronger infrared will detect the signal sooner, and the output terminal will fall low, because the incremental signal will also be stronger. For example, the {0} module falls low as early as (26).
また、{1}のモジュールは、[0}のモジュールよりも少し赤外線が弱いとする。すると{1}のモジュールは、(27)のように{0}より少し遅くロウに落ちる。ここで心配なことは、「漸増信号」受信中に、AGCの動作が始まらないか、又は、それによって誤動作が起きないのかということである。次に、これについて、詳細に説明する。まず、漸増信号は、0から次第に大きくなってゆく信号であるから、モジュール出力が、ロウに落ちるより前には、AGCは絶対に動作はしない。モジュール出力がロウに落ちた後は、さらに漸増信号は増加を続ける。もしモジュール出力が、ロウに落ちた後、AGCが働き始めたとしても、漸増信号はさらに大きくなった後であり、AGCで増幅率が下がったとしても、モジュール出力を、ハイに戻すことは、あり得ない。すなわち、AGCが動作を始めても誤動作は起きないということである。 It is also assumed that the {1} module has a slightly weaker infrared ray than the [0} module. Then the {1} module falls low a little later than {0} as in (27). The concern here is whether or not the AGC will start to operate during the reception of the "increment signal", or will this cause malfunctions. Next, this will be explained in detail. First, since the increment signal is a signal that ramps up from 0, the AGC will never operate before the module output has fallen low. After the module output has fallen low, the Increment signal continues to increase. Even if the AGC starts to work after the module output falls low, the gradual signal becomes even louder, and even if the AGC reduces the amplification factor, returning the module output to high impossible. In other words, even if the AGC starts operating, no malfunction will occur.
また、{2},{3}のモジュールは、操縦器1から見て反対側の受光に位置しているので、影側となり、赤外線は非常に弱いとする。すると、最後まで、ハイのままである(信号0を意味する)。 Also, since modules {2} and {3} are located on the opposite side of the controller 1 to receive light, they are on the shadow side and the infrared rays are very weak. Then it stays high (meaning signal 0) until the end.
T[0],T[1], , , ,T[5]の時間の数値化の例を説明する。「(4)の走行体のソフトウエア」の位置に書いてあるように、漸増信号の受信中は、「漸増カウンター(ソフトウエア)28」が動作している。例として、最初、「漸増カウンター28」が、初期値99として、一定時間間隔で(―1ずつ)99から0まで減算させているとする。図6の(C)の最初は、漸増カウンター28は、99である。そして、だんだん、小さくなっていき、(C)の最後には、0に、達する。CPU44は、図6の(C)の期間中、フルに動作して、6個のモジュールの出力端子を読み、ハイからロウに変化するかどうかをチェックして、チェックにかかった時に、「漸増カウンター28」の値を読んで、T[n](n=1~6)に代入し、リモコン受信モジュールから出力されるリモコン受信モジュール信号のハイ信号からロウ信号に変化するタイミングを、時間軸データーとして、例えば、マイコン40内に内蔵されたメモリ素子に記憶させることを、図6の(C)の時間が終わるまで、作業を続ける。そうすると、すべてのT[n]に数字を入れることができる。 An example of time quantification for T[0], T[1], , , ,T[5] will be explained. As described in the position of "(4) running body software", the "increment counter (software) 28" operates while the increment signal is being received. As an example, it is assumed that the "gradual increase counter 28" initially has an initial value of 99 and is decremented from 99 to 0 (by 1) at regular time intervals. At the beginning of FIG. 6C, the increment counter 28 is ninety-nine. Then, it gradually becomes smaller and reaches 0 at the end of (C). During the period of (C) in FIG. 6, the CPU 44 operates at full capacity, reads the output terminals of the six modules, checks whether they change from high to low, and when the check starts, the "gradual increase The value of the counter 28" is read and substituted into T[n] (n=1 to 6), and the timing at which the remote control receiving module signal output from the remote control receiving module changes from a high signal to a low signal is recorded as time axis data. As such, for example, the work is continued until the time of (C) in FIG. Then you can put a number in every T[n].
それにより、T[0]=70,T[1]=58, T[2]=0,T[3]=0 ,T[4]=45 ,T[5]=68のように、各「リモコン受信モジュール」の赤外線受光強度の数字読取ができるようになる。これにより、図1の「リモコン受信モジュール」3-8に照射される赤外線の大きさがわかるようになり、すなわち走行体2の受光角度「θ」が計算できるようになった。 As a result, each " It becomes possible to read the numerical value of the infrared reception intensity of the remote control reception module. As a result, the size of the infrared rays irradiated to the "remote control receiving module" 3-8 in FIG.
 本実施形態において、操縦者が、操縦器1の「ジョイスティック17」を操作すると、操縦角αが変化し、αを受信した走行体2は、α=θ になるように制御されるため、走行体2は、ジョイスティック17を倒した方向に向きを合わせながら走ることになる。このような、遠隔操縦システムを、低コストかつ小スペースで作ることが可能になる。 In this embodiment, when the operator operates the "joystick 17" of the controller 1, the steering angle α changes, and the traveling object 2 that receives α is controlled so that α=θ. The body 2 runs while facing the direction in which the joystick 17 is tilted. It becomes possible to manufacture such a remote control system at low cost and in a small space.
次に、「赤外線のデジタルコマンド受信」独立型のブロック図を図8に示す。内容は、「デジタル信号」の受信専用に「リモコン受信モジュール」9を設ける例である。ここでは、横方向の赤外線の取り込みを強くするため、半円球の反射鏡88を「リモコン受信モジュール」9の上に取り付けている。そして、6個の「リモコン受信モジュール」3、4、5、6、7,8は、「漸増信号22の受信」専用に使用する。但し、「漸増信号22の受信」の直前には、「リモコン受信モジュール」の電源オフの期間を設け、AVCの初期化を行う。 Next, FIG. 8 shows a block diagram of the "infrared digital command reception" stand-alone type. The content is an example in which a "remote control receiving module" 9 is provided exclusively for receiving a "digital signal". In this case, a hemispherical reflecting mirror 88 is attached above the "remote control receiving module" 9 in order to enhance the absorption of infrared rays in the horizontal direction. Six "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are used exclusively for "receiving the incremental signal 22". However, immediately before the "receipt of the gradual increase signal 22", a period during which the "remote control receiving module" is powered off is provided to initialize the AVC.
次に、「電波によるデジタルコマンド受信」独立型のブロック図でブロック図を図9に示す。内容は、デジタル信号の受信には、電波の受信器83を使用する。そして、6個の「リモコン受信モジュール」3、4、5、6、7,8は、「漸増信号22の受信」専用に使用する。但し、「漸増信号22の受信」の直前には、「リモコン受信モジュール」の電源オフの期間を設け、AVCの初期化を行う。 Next, FIG. 9 shows a block diagram of a stand-alone type "digital command reception by radio wave". The content is that a radio wave receiver 83 is used to receive digital signals. Six "remote control receiving modules" 3, 4, 5, 6, 7 and 8 are used exclusively for "receiving the incremental signal 22". However, immediately before the "receipt of the gradual increase signal 22", a period during which the "remote control receiving module" is powered off is provided to initialize the AVC.
図10に、「簡易型受信リモコン受信モジュール」の代表ブロック図を示す。また、図11に小型で低価格な「簡易型受信リモコン受信モジュール」の使用例ブロック図を示す。AGC機能を、取り除いた「簡易型リモコン受信モジュール」であり、「漸増信号22の受信」専用の安価、小型化が特徴である。このような製品が現在あるということではなく、あると便利ということである。簡易型リモコン受信モジュール」3A,4A,5A,6A,7A,8Aを使用する。「簡易型リモコン受信モジュール」はAGC機能がないために、AGCの初期化は必要なく、したがって、「簡易型リモコン受信モジュール」の電源は、ONのままである。スイッチ機能は必要無い。 FIG. 10 shows a representative block diagram of the "simplified receiver remote control receiver module". Also, FIG. 11 shows a block diagram of a usage example of a compact and low-priced "simplified receiver remote control receiver module". It is a "simplified remote control receiving module" without the AGC function, and is characterized by low cost and miniaturization dedicated to "receiving the gradual increase signal 22". It's not that such a product exists today, it's that it's convenient to have. Simple remote control receiving module 3A, 4A, 5A, 6A, 7A, 8A is used. Since the "simplified remote control receiving module" does not have an AGC function, AGC initialization is not required, and therefore the "simplified remote control receiving module" remains powered on. No need for switch function.
 次に、図12を参照しながら、追尾機能について説明する。操縦器1に、追尾ボタン19を、設けたとする例である。通常は、ジョイスティック17を倒して方向角を、αに代入するが、追尾ボタンを押したときは、ジョイスティック17を無視して、α=180度(固定値)の命令を赤外線で送信する。目的方向が、α=180度ということは、常に、走行体2は、操縦器1の方向を向いて走行することになるので、結局、追尾走行をすることになる。 Next, the tracking function will be described with reference to FIG. This is an example in which a tracking button 19 is provided on the controller 1 . Normally, the joystick 17 is tilted and the direction angle is substituted for α, but when the tracking button is pressed, the joystick 17 is ignored and a command of α=180 degrees (fixed value) is transmitted via infrared rays. If the target direction is α=180 degrees, the traveling object 2 always travels in the direction of the maneuvering device 1, so that the traveling object follows after all.
 図13に、操縦器1が、走行体2Cを操縦している図と、走行体2Dが走行体2Cを追尾している図を、組み合わせた図を示す。走行体2Cには、通常の走行体2に発光ダイオード16がついていて、操縦器の機能のソフトもついていることになる。操縦者は、操縦器1を通じて、走行体2Cを操縦するほかに、走行体2Dの追尾に関する操縦もすることになる。例えば、(1)走行体2Dは、走行体2Cの後を追尾せよ。(2)走行体2Dは、走行体2Cの後を追うのを中止せよ、などの指令を走行体2Cに出して操縦することで、走行体2Dを操縦することができる。また、走行体2Dを操縦することで、走行体2Cを操縦することもでる。 FIG. 13 shows a combined view of the controller 1 manipulating the traveling object 2C and the traveling object 2D tracking the traveling object 2C. The traveling body 2C has a light-emitting diode 16 attached to the ordinary traveling body 2, and also has the software for the control device function. Through the controller 1, the operator not only steers the traveling object 2C but also performs maneuvers related to tracking of the traveling object 2D. For example, (1) the traveling object 2D should follow the traveling object 2C. (2) The running body 2D can steer the running body 2D by issuing a command to the running body 2C such as to stop following the running body 2C. Also, the traveling body 2C can be steered by operating the traveling body 2D.
次に、 図14に、円柱状の透明プラスチックで覆った「4個のリモコン受信モジュール」の例を説明するための図を示す。円柱状の透明プラスチックで図のように、4個のリモコン受信モジュールを覆った例である。図のように円柱状の透明樹脂で覆うと、レンズ効果により、AからEまでの角度(180度より大きい)が「リモコン受信モジュール」1個分の受光角に広がることになり、リモコン受信モジュールの総個数を4個に減らすことができるようになる。 Next, FIG. 14 shows a diagram for explaining an example of "four remote control receiving modules" covered with cylindrical transparent plastic. In this example, four remote control receiver modules are covered with cylindrical transparent plastic as shown in the figure. When covered with a cylindrical transparent resin as shown in the figure, the angle from A to E (greater than 180 degrees) expands to the light receiving angle of one "remote control receiver module" due to the lens effect. can be reduced to four.
 図15は、リモコン受信モジュールの数と受光角の数との関係の関係を示す図である。図15(A)は、4個のモジュールを使い、水平方向360度の範囲の受光角を、得る図である。図15は、簡単なため、改良レンズを付けたモジュールとする。4個のリモコン受信モジュール3,4,5,6を、走行体2の上に、水平に並べると、水平方向に360度の受光角θ検出器ができる。 FIG. 15 is a diagram showing the relationship between the number of remote control receiving modules and the number of light receiving angles. FIG. 15(A) is a diagram for obtaining a light-receiving angle of 360 degrees in the horizontal direction using four modules. For simplicity, FIG. 15 shows a module with an improved lens. When the four remote control receiving modules 3, 4, 5, 6 are horizontally arranged on the traveling body 2, a light receiving angle θ detector of 360 degrees in the horizontal direction is formed.
次に、図15(B)のように、4個のモジュールの上に、新たに「リモコン受信モジュール」10をつけ加えると、図15(A)の水平の受信角θhの他に、垂直縦方向θVと垂直横方向θKの、受光角θ検出器を作ることができるようになる。なぜこのようなことが可能なのかを説明すると、本発明では、先にすべての「リモコン受信モジュール」それぞれに対しての、赤外線で照らされる明るさを測定し、計算する。そして、その後、どれとどれを組み合わせるのかを決めて、受光角θを計算することになる。例えば、水平方向θHは、「リモコン受信モジュール」3,4,5,6であり、垂直縦方向θVは、6,10,4であり、垂直横方向θVSは、3,10,5であり、3回計算をすれば、操縦器1の走行体2から見た3次元位置が計算できる。図15(C)は、図15(B)と同じものを、裏側にもつけると、全方位の操縦器位置を検出できる。トイドローンなど飛行物体の詳細操縦に使用できる。 Next, as shown in FIG. 15(B), if a new "remote control receiver module" 10 is added on top of the four modules, in addition to the horizontal reception angle θh shown in FIG. It becomes possible to make an acceptance angle θ detector with θV and vertical lateral direction θK. To explain why this is possible, the present invention first measures and calculates the brightness of each "remote control receiving module" illuminated by infrared rays. After that, it is decided which one is to be combined with which, and the light receiving angle θ is calculated. For example, the horizontal direction θH is "remote control receiving module" 3, 4, 5, 6, the vertical vertical direction θV is 6, 10, 4, the vertical horizontal direction θVS is 3, 10, 5, By performing the calculation three times, the three-dimensional position of the controller 1 viewed from the traveling body 2 can be calculated. In FIG. 15(C), if the same one as in FIG. 15(B) is attached to the back side, the omnidirectional pilot position can be detected. It can be used for detailed control of flying objects such as toy drones.
次に、3次元使用例を、図16に示す。追尾機能で走行体2を動かしているとする。水平方向で方向を制御し、さらに、前後方向に、高さ角θV=40度で追尾させる。θVを測定し、θV<40度ならば、走行体の速度を早くし、逆に、θV>40度ならば、走行体の速度を遅く制御すれば一定の速度で、ついて来る。また、操縦者が立っていれば、走行体2は、操縦者から離れており、座れば近づいて来るので、いわゆる、ロボット犬のような動作が、簡単にできることになる。逆に、θh=180度にすれば、走行体2が先導することになる。 Next, FIG. 16 shows a three-dimensional usage example. Assume that the traveling body 2 is being moved by the tracking function. The direction is controlled in the horizontal direction, and it is tracked in the forward and backward direction at a height angle θV = 40 degrees. Measure θV, and if θV<40 degrees, increase the speed of the traveling object. In addition, when the operator is standing, the running body 2 is away from the operator, and when the operator is sitting down, the traveling body 2 approaches the operator. Conversely, if θh=180 degrees, the traveling body 2 leads.
 また、上記で説明したように、走行体2を操縦器1に操縦することで、走行体2が操縦器1に追尾したり、操縦器1により走行体2Cを操縦することにより、走行体2Cを走行体2Dが追尾するようにすることができる。このとき、追尾する走行体2が操縦器1に衝突することを回避し、所定の距離で追尾を行うことができる。走行体2Dが走行体2Cを追尾する場合も同様である。つまり、本実施例では、操縦器1(外部機器)からの光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力するリモコン受信モジュールと、リモコン受信モジュールから出力された信号情報を処理するマイコンとを含む距離検出器として機能することができる。

(第2の実施形態)
Further, as described above, by manipulating the running body 2 with the manipulator 1, the running body 2 tracks the manipulator 1, or by manipulating the running body 2C with the manipulator 1, the running body 2C can be tracked by the moving body 2D. At this time, the tracked object 2 can avoid colliding with the maneuvering device 1 and can be tracked at a predetermined distance. The same applies when the running body 2D tracks the running body 2C. In other words, in this embodiment, a remote control receiving module receives an optical signal from the control device 1 (external device) and outputs a high signal or a low signal according to the intensity of the received optical signal, and an output from the remote control receiving module It can function as a distance detector including a microcomputer that processes the signal information.

(Second embodiment)
 次に、第2の実施形態に係る方向検出器および遠隔操縦システムについて、いくつかの実施例を用いて説明する。なお、第2の実施形態に係る方向検出器および遠隔操縦システムは、操縦器1から発せられる赤外線信号(操縦信号)の波形が異なる以外は、同様の構成であるので、特に説明が必要なとき以外は、説明を省略する。以下に、第2の実施形態の操縦器101から発せられる赤外線信号(操縦信号)について、詳細に説明する。 Next, the direction detector and remote control system according to the second embodiment will be explained using several examples. Note that the direction detector and the remote control system according to the second embodiment have the same configuration except that the waveform of the infrared signal (control signal) emitted from the control device 1 is different. Other than that, the description is omitted. Infrared signals (steering signals) emitted from the manipulator 101 of the second embodiment will be described in detail below.
図17に、第2の実施形態に係る操縦器101のブロック図を示す。図18に、第2の実施形態に係る「リモコン受信モジュール」の代表ブロック図を示す。また、図19に第2の実施形態に係る操縦器101から発せられる赤外線信号の波形図を示す。 FIG. 17 shows a block diagram of the pilot device 101 according to the second embodiment. FIG. 18 shows a representative block diagram of the "remote control receiving module" according to the second embodiment. Also, FIG. 19 shows a waveform diagram of an infrared signal emitted from the controller 101 according to the second embodiment.
図19(a)に示すように、第2の実施形態に係る操縦器101からは、図5(b)に示した漸増信号22に代えて、パルス幅が徐々に大きくなるパルス幅変調信号(PWM信号)22bを含む信号が発せられる。つまり、信号全体は、図19(b)のように、デジタル信号21と、PWM信号22bとの「ペア」による連続的な信号として発せられる。 As shown in FIG. 19(a), a pulse width modulated signal ( A signal including a PWM signal) 22b is emitted. In other words, the entire signal is emitted as a continuous signal by a "pair" of the digital signal 21 and the PWM signal 22b, as shown in FIG. 19(b).
 PWM信号22bは、例えば、所定のソフトウエア(プログラム)を演算素子(CPU)にプログラムし、この演算素子でパルス発生回路を制御することで、比較的容易に作成することができる。 The PWM signal 22b can be generated relatively easily by, for example, programming predetermined software (program) into an arithmetic element (CPU) and controlling the pulse generating circuit with this arithmetic element.
 図17に、本実施形態における操縦器101から発せられる「操縦信号」を生成するためのブロック図を示す。図17を参照すると、演算素子(CPU)により、角度信号(アナログ信号)と操作スイッチ信号から、デジタル信号に変換されたデジタル信号は、演算処理部のシリアルデーター送信器から、デジタル増幅器に出力される。 FIG. 17 shows a block diagram for generating the "steering signal" emitted from the pilot 101 in this embodiment. Referring to FIG. 17, the digital signal converted from the angle signal (analog signal) and the operation switch signal by the arithmetic element (CPU) is output from the serial data transmitter of the arithmetic processing unit to the digital amplifier. be.
また、本実施形態における操縦器101においては、演算素子(CPU)が、PWM信号22bを生成し、出力ポート介して、デジタル増幅器に出力される。演算素子(CPU)のシリアルデーター送信機から出力されたデジタル信号と、演算素子(CPU)の出力ポートから出力されたPWM信号22bとは、デジタル増幅器で合成されて、赤外フォトダイオードを駆動する。このようにして、操縦器1から赤外光の「操縦信号」が発せられる
Further, in the pilot device 101 of this embodiment, the computing element (CPU) generates the PWM signal 22b and outputs it to the digital amplifier via the output port. The digital signal output from the serial data transmitter of the arithmetic element (CPU) and the PWM signal 22b output from the output port of the arithmetic element (CPU) are combined by a digital amplifier to drive the infrared photodiode. . In this way, the controller 1 emits an infrared "steering signal".
 次に、第2の実施形態における「リモコン受信モジュール」について、説明する。図18に、第2の実施形態に係る「リモコン受信モジュール」の全体のブロック図を示す。図18に示すように、本実施形態の「リモコン受信モジュール」は、図7に示した第1の実施形態に係る「リモコン受信モジュール」のブロック図と同様の構成を有することができる。 Next, the "remote control receiving module" in the second embodiment will be explained. FIG. 18 shows an overall block diagram of a "remote control receiving module" according to the second embodiment. As shown in FIG. 18, the "remote control receiving module" of this embodiment can have the same configuration as the block diagram of the "remote control receiving module" according to the first embodiment shown in FIG.
「リモコン受信モジュール」は、一定レベルの光信号を検出すると、出力がロウレベルに落ちるように構成されている。図18に於いて、操縦器101から発せられた赤外線信号は、走行体2に組み込まれたリモコン受信モジュールにより受信される。左側から赤外線が入射すると、集光レンズ36を通って、受光素子の受光幕30を照らす。ここで、受光素子によって、受光した赤外線の光強度に応じて電気信号に変換され、その後、可変増幅器31で増幅される。可変増幅器31で増幅された信号が、周波数帯域フィルタ32を通過する。PWM信号22b(電気信号)は、周波数帯域フィルタを通過すると、基本波以外の高調波は、減衰し除去される。このため、図19(d)に示すように、第1の実施形態で説明した漸増信号と同様の漸増信号に変換される。その後、検波器33で検波され、内部の検波出力66になる。 The "remote control receiver module" is configured such that the output drops to a low level when an optical signal of a certain level is detected. In FIG. 18, an infrared signal emitted from the controller 101 is received by a remote control receiving module incorporated in the traveling body 2 . When infrared rays are incident from the left side, they pass through the condensing lens 36 and illuminate the light receiving screen 30 of the light receiving element. Here, the light-receiving element converts the light into an electric signal according to the light intensity of the received infrared light, which is then amplified by the variable amplifier 31 . A signal amplified by the variable amplifier 31 passes through the frequency band filter 32 . When the PWM signal 22b (electrical signal) passes through the frequency band filter, harmonics other than the fundamental wave are attenuated and removed. Therefore, as shown in FIG. 19(d), it is converted into a gradual increase signal similar to the gradual increase signal described in the first embodiment. After that, it is detected by the detector 33 and becomes an internal detection output 66 .
 この一部はAGCコントローラ35に戻り、可変増幅器31の増幅率をコントロールし、自動利得調整(AGC)機能を動作させる。そして赤外線入力の大きさが変化しても、受信動作を最適化できるようになっている。
 また、検波出力66は、デジタル成型機34に入って、2値のデジタル信号に変化させ、デジタル信号出力端子38を通って、外部に出てゆく。
A portion of this is returned to the AGC controller 35 to control the gain of the variable amplifier 31 and operate the automatic gain control (AGC) function. And even if the size of the infrared input changes, the reception operation can be optimized.
Also, the detection output 66 enters the digital molding machine 34, is changed into a binary digital signal, and passes through the digital signal output terminal 38 to the outside.
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって 認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない 。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権 利を請求する。
Having illustrated and described the principles of the invention in a preferred embodiment, it will be appreciated by those skilled in the art that the invention may be varied in arrangement and detail without departing from such principles. The invention is not limited to the specific configurations disclosed in this embodiment. I therefore claim all modifications and variations coming within the scope and spirit of the following claims.
この発明によると、直観的な操縦が可能になるため、サッカーゲーム機以外にも、さまざまな疑似スポーツゲーム機のリアルゲーム化の可能性があると思われる。また、この中で、赤外線を利用した方向測定器を、安価に実現する方法を示しているが、本発明のような遠隔操縦走行車への利用だけではなく、様々な機械の自動運転に使えると思われる。 According to this invention, since intuitive control becomes possible, it is thought that various pseudo-sport game machines other than soccer game machines can be realized as real games. In addition, in this, a method for realizing a direction measuring device using infrared rays at low cost is shown, but it can be used not only for remote control vehicles like the present invention, but also for automatic operation of various machines. I think that the.
1:操縦器
2:走行体
2C、2D:赤外発光ダイオード付き_走行体
3、4、5、6、7,8,9,10:リモコン受信モジュール 
3b、4b、5b、6b、7b,8b,9b,10b:リモコン受信モジュール 
3A、4A、5A、6A、7A,8A:簡易型リモコン受信モジュール(AVC無し)
11:簡易型リモコン受信モジュール 
12:シュート機構
13:右車輪
14:左車輪
15:ボール
16:赤外発光ダイオード
17:ジョイスティック
18:押し釦スイッチ
21:シリアルコマンド信号(赤外線)
22:漸増信号(赤外線)
23:シリアルコマンド信号(電気信号)
24:一致信号(電気信号)
39:スイッチ回路
40:マイコン
41:シリアルデーター受信器
42:入力ポート
43:出力ポート
44:CPU
45、46、47:PWM生成器
48、49、50:増幅器
51:左モータ
52:右モータ
53:シュートモータ
54:マイクロプロセッサ
55:メモリ
65:閾値
66:検波出力
71:検波出力と閾値の交点
81:受光ダイオード
83:電波受信器
85:基板
86:遮光板
87:支柱
88:反射鏡
α:ジョイスティックを倒した方向、または、ロータリーエンコーダ―の示す方向、操縦角
β:走行体の向き
θ:赤外線飛来方向
γ:赤外線入力感度角
1: Controller 2: Running bodies 2C, 2D: With infrared light emitting diodes_Running bodies 3, 4, 5, 6, 7, 8, 9, 10: Remote control receiving module
3b, 4b, 5b, 6b, 7b, 8b, 9b, 10b: remote control receiving module
3A, 4A, 5A, 6A, 7A, 8A: Simple remote control receiver module (without AVC)
11: Simple remote control receiver module
12: Shoot mechanism 13: Right wheel 14: Left wheel 15: Ball 16: Infrared light emitting diode 17: Joystick 18: Push button switch 21: Serial command signal (infrared)
22: Gradual increase signal (infrared)
23: Serial command signal (electrical signal)
24: coincidence signal (electrical signal)
39: Switch circuit 40: Microcomputer 41: Serial data receiver 42: Input port 43: Output port 44: CPU
45, 46, 47: PWM generators 48, 49, 50: amplifier 51: left motor 52: right motor 53: chute motor 54: microprocessor 55: memory 65: threshold 66: detection output 71: intersection of detection output and threshold 81: Light receiving diode 83: Radio wave receiver 85: Substrate 86: Light shielding plate 87: Post 88: Reflector α: Direction in which joystick is tilted or direction indicated by rotary encoder Steering angle β: Direction of traveling object θ: Infrared incoming direction γ: Infrared input sensitivity angle

Claims (6)

  1. 外部機器から発せられる光信号の方向を検出する方向検出器であって、
    疑似水平面状であって、受光面が異なる方向を向くように配置され、前記外部機器からの光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力する複数のリモコン受信モジュールと、
    前記リモコン受信モジュールからの信号情報を保存するメモリと、
    前記メモリに保存した信号情報を処理するマイコンと、を備え、
    前記外部機器から発せられる光信号は、時間と共に振幅が変化する漸増信号、又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号を含み、
    前記リモコン受信モジュールから出力される信号は、前記受光面の向きに応じて所定のタイミングでハイからロウに変化し、
    前記マイコンは、ハイ信号からロウ信号に変化する前記タイミングを時間軸データ・BR>[として前記メモリに記憶させ、前記受光面が異なる方向を向いた前記複数のリモコン受信モジュールからの信号に対応する前記時間軸データーから、前記外部機器からの受光光線の飛来方向θを算出することを特徴とする方向検出器。
    A direction detector for detecting the direction of an optical signal emitted from an external device,
    A plurality of remote controllers arranged in a pseudo-horizontal plane with light-receiving surfaces facing different directions, receiving optical signals from the external device, and outputting high or low signals according to the intensity of the received optical signals. a receiving module;
    a memory for storing signal information from the remote control receiving module;
    A microcomputer that processes the signal information stored in the memory,
    the optical signal emitted from the external device includes a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time;
    a signal output from the remote control receiving module changes from high to low at a predetermined timing according to the orientation of the light receiving surface;
    The microcomputer stores the timing of changing from a high signal to a low signal in the memory as time axis data BR>[, and responds to signals from the plurality of remote control receiving modules whose light receiving surfaces face different directions. A direction detector that calculates an incoming direction θ of the received light beam from the external device from the time axis data.
  2. 前記リモコン受信モジュールの前記受光面が、外側に向けて、略円形に配置されていることを特徴とする請求項1に記載の方向検出器。
    2. The direction detector according to claim 1, wherein the light receiving surface of the remote control receiving module is arranged outward in a substantially circular shape.
  3. 光信号を出力する操縦器により操縦される被操縦物体であって、
    疑似水平面状であって、受光面が異なる方向を向くように配置され、前記操縦器からの前記光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力する複数のリモコン受信モジュールと、前記リモコン受信モジュールからの信号情報を保存するメモリと、前記メモリに保存した信号情報を処理するマイコンとを有する方向検出器と、
    方向駆動手段と、を備え、
     前記操縦器から出力される光信号は、一連のコマンド信号と、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号を含み、
    前記リモコン受信モジュールから出力される信号は、前記受光面の向きに応じて所定のタイミングでハイからロウに変化し、
    前記コマンドを受信後、前記操縦器が出力する前記漸増信号を受信するまでの所定の時間の間、前記リモコン受信モジュールの電源をオフにして、リモコン受信モジュールの自動利得調整器が初期化され、
    前記マイコンは、ハイ信号からロウ信号に変化する前記タイミングを時間軸データーとして前記メモリに記憶させ、前記受光面が異なる方向を向いた複数のリモコン受信モジュールからの信号に対応する前記時間軸データーから、前記操縦器からの受光光線の飛来方向θを算出し、前記コマンドに含まれる向き信号αを含む操縦信号と、前記飛来方向θとの演算に基づいて、前記方向駆動手段を駆動するように構成されたことを特徴とする被操縦物体。
    A steered object steered by a steerer that outputs an optical signal,
    A plurality of quasi-horizontal planes arranged with light-receiving surfaces facing in different directions receive the optical signal from the control device and output a high signal or a low signal according to the intensity of the received optical signal. a direction detector having a remote control receiving module, a memory for storing signal information from the remote control receiving module, and a microcomputer for processing the signal information stored in the memory;
    a directional drive means,
    The optical signal output from the controller includes a series of command signals and a gradual signal whose amplitude changes with time or a pulse width modulated signal whose pulse width gradually increases with time;
    a signal output from the remote control receiving module changes from high to low at a predetermined timing according to the orientation of the light receiving surface;
    After receiving the command, turning off the power of the remote control receiving module for a predetermined time until receiving the gradual increase signal output by the controller to initialize an automatic gain adjuster of the remote control receiving module;
    The microcomputer stores the timing at which a high signal changes to a low signal in the memory as time-axis data, and stores the time-axis data corresponding to signals from a plurality of remote control receiving modules whose light-receiving surfaces face different directions. and calculating the incoming direction θ of the received light beam from the steering device, and driving the direction driving means based on the calculation of the incoming direction θ and the steering signal including the direction signal α included in the command. A steerable object characterized by comprising:
  4. 方向αを入力する方向入力装置と、
    前記方向入力装置の操作により方向αに対応した向き信号と、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号とを含む光信号を出力する出力装置と、を備えたことを特徴とする操縦器。
    a direction input device for inputting a direction α;
    an output device for outputting an optical signal including a direction signal corresponding to the direction α by operating the direction input device and a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time; A maneuvering device comprising:
  5. 所定の方向αに対応した向き信号と、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号とを含む光信号とを出力する出力装置を備えたことを特徴とする操縦器。
    An output device for outputting an optical signal including a direction signal corresponding to a predetermined direction α and a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time. and the pilot.
  6.  光信号を出力する外部機器との距離を検出する距離検出器であって、
    前記外部機器からの前記光信号を受光し、受光した光信号の強度に応じてハイ信号又はロー信号を出力するリモコン受信モジュールと、
    前記リモコン受信モジュールから出力された信号情報を処理するマイコンと、を備え、
     前記外部機器から出力される光信号は、時間と共に振幅が変化する漸増信号又は時間と共にパルス幅が徐々に大きくなるパルス幅変調信号を含み、
    前記リモコン受信モジュールは、前記外部機器が出力する前記漸増信号を受信するまでの所定の時間の間、前記リモコン受信モジュールの電源をオフにして、リモコン受信モジュールの自動利得調整器の初期化を行い、
     前記自動利得調整器の前記初期化を行った後に、前記リモコン受信モジュールの電源をオンにして、外部機器が発する前記漸増信号を受信し、
    前記マイコンは、前記外部機器からの距離に応じてハイ信号からロウ信号に変化する時間を測定し、予め決定されたハイ信号からロウ信号に変化する時間と外部機器との距離との関係から、前記外部機器との距離を検出するように構成された距離検出器。
    A distance detector that detects the distance to an external device that outputs an optical signal,
    a remote control receiver module that receives the optical signal from the external device and outputs a high signal or a low signal according to the intensity of the received optical signal;
    a microcomputer that processes signal information output from the remote control receiving module;
    The optical signal output from the external device includes a gradually increasing signal whose amplitude changes with time or a pulse width modulation signal whose pulse width gradually increases with time,
    The remote control receiving module turns off the power of the remote control receiving module and initializes an automatic gain adjuster of the remote control receiving module for a predetermined time until the gradually increasing signal output from the external device is received. ,
    After performing the initialization of the automatic gain adjuster, powering on the remote control receiving module to receive the gradual increase signal emitted by an external device;
    The microcomputer measures the time required for the signal to change from a high signal to a low signal according to the distance from the external device, and based on the relationship between the predetermined time required for the signal to change from the high signal to the low signal and the distance from the external device, A distance detector configured to detect a distance to the external device.
PCT/JP2022/040972 2021-11-04 2022-11-02 Direction detector, object being steered, steering instrument, and distance detector WO2023080152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021180263 2021-11-04
JP2021-180263 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023080152A1 true WO2023080152A1 (en) 2023-05-11

Family

ID=86241553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040972 WO2023080152A1 (en) 2021-11-04 2022-11-02 Direction detector, object being steered, steering instrument, and distance detector

Country Status (1)

Country Link
WO (1) WO2023080152A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095043A1 (en) * 2000-06-05 2001-12-13 Hideyuki Yoshikawa Remote control traveling device
JP2006004204A (en) * 2004-06-18 2006-01-05 ▲吉▼川 英之 Automatic traveling system
JP2007149044A (en) * 2005-03-22 2007-06-14 ▲吉▼川 英之 Travel control system
JP2010152923A (en) * 2010-03-04 2010-07-08 ▲吉▼川 英之 Remote control device
JP2012173209A (en) * 2011-02-23 2012-09-10 Nippon Hoso Kyokai <Nhk> Fmcw radar system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095043A1 (en) * 2000-06-05 2001-12-13 Hideyuki Yoshikawa Remote control traveling device
JP2006004204A (en) * 2004-06-18 2006-01-05 ▲吉▼川 英之 Automatic traveling system
JP2007149044A (en) * 2005-03-22 2007-06-14 ▲吉▼川 英之 Travel control system
JP2010152923A (en) * 2010-03-04 2010-07-08 ▲吉▼川 英之 Remote control device
JP2012173209A (en) * 2011-02-23 2012-09-10 Nippon Hoso Kyokai <Nhk> Fmcw radar system

Similar Documents

Publication Publication Date Title
US6564168B1 (en) High-resolution optical encoder with phased-array photodetectors
CN102288191B (en) Intelligent navigating bogie
US20040088079A1 (en) Method and device for obstacle detection and distance measurement by infrared radiation
US9636598B2 (en) Sensing control system for electric toy
US20060136097A1 (en) Robot system
US20070173171A1 (en) Reflected light controlled vehicle
WO2017012533A1 (en) Intelligent distance-measurement and obstacle-avoidance apparatus
JP4611735B2 (en) Light control movable toy
Hanumante et al. Low cost obstacle avoidance robot
US6224454B1 (en) Dynamic searching device for toys
WO2023080152A1 (en) Direction detector, object being steered, steering instrument, and distance detector
Viswanatha et al. Intelligent line follower robot using MSP430G2ET for industrial applications
JPWO2020071465A1 (en) Distance measuring device
WO2001095043A1 (en) Remote control traveling device
KR100364590B1 (en) Micro robot system
US9746558B2 (en) Proximity sensor apparatus for a game device
US20120122367A1 (en) Advanced Light Beam Remote Control
US20230003887A1 (en) Lidar with a balanced detector
US20230003861A1 (en) Lidar with segmented photodiode
JP4034773B2 (en) Mobile operation system
US20230003883A1 (en) Lidar with pixel-based phase modulated continuous wave
US20230012158A1 (en) Interlacing scan patterns to enhance regions of interest
JP2001347478A (en) Teaching method and device on object to be operated in robot, and robot
US20230003846A1 (en) Lidar with photonic integrated circuit
JPH07287632A (en) Coordinate detector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023501490

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889972

Country of ref document: EP

Kind code of ref document: A1