WO2023080149A1 - Operating voltage estimation device and operating voltage estimation method - Google Patents
Operating voltage estimation device and operating voltage estimation method Download PDFInfo
- Publication number
- WO2023080149A1 WO2023080149A1 PCT/JP2022/040959 JP2022040959W WO2023080149A1 WO 2023080149 A1 WO2023080149 A1 WO 2023080149A1 JP 2022040959 W JP2022040959 W JP 2022040959W WO 2023080149 A1 WO2023080149 A1 WO 2023080149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modulated light
- operating voltage
- monochromatic
- wavelength
- sub
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000001228 spectrum Methods 0.000 claims abstract description 99
- 230000001360 synchronised effect Effects 0.000 claims abstract description 57
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims description 28
- 238000004364 calculation method Methods 0.000 claims description 23
- 230000001678 irradiating effect Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 abstract description 8
- 230000005855 radiation Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
- H02S50/15—Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an operating voltage estimating device and an operating voltage estimating method.
- This application claims priority based on Japanese Patent Application No. 2021-181765 filed in Japan on November 8, 2021, the contents of which are incorporated herein.
- a multi-junction solar cell having a plurality of sub-cells is conventionally known (see Patent Document 1).
- a multi-junction solar cell as described in FIG. 4 of Patent Document 1 is composed of stacked solar cells of different semiconductors, and absorbs sunlight over a wide wavelength range by dividing it by wavelength. Therefore, multi-junction solar cells can convert sunlight with high efficiency and are used for artificial satellites and the like because of their high performance.
- the light absorbed by the solar cells in each layer is the light that the solar cells in the previous layer could not absorb.
- the light absorbed by the middle sub-cell is the light that could not be absorbed by the preceding top sub-cell.
- the wavelength range of light absorbed by the solar cell of the layer of interest is 1240/E g1 to It can be expressed as 1240/E g2 (nm). If there is no preceding stage, the first term is the shortest wavelength of the incident light. However, if the intensity of the incident light is very strong or if the preceding layer is thin, light of 1240/E g1 (nm) or less cannot be absorbed by the preceding layer. Even the layer of interest will be absorbed by the solar cell.
- the wavelength dependence of the incident light intensity should be understood and then the light absorption layers of the solar cells of each layer should be are designed to absorb light in each wavelength range.
- a computer simulation can be used to accurately obtain the optical light absorption characteristics of the cells in each layer, but the current at a voltage of 0 V in each cell, that is, the short-circuit current, is only estimated. Furthermore, the performance of tunnel junctions between cells may deviate from the design, and it is extremely difficult to predict the electrical characteristics of the entire constituent cells. Designing a multi-junction solar cell is thus difficult, and we had to empirically optimize it based on prototypes with various layer structures. In particular, there has been no means in the past to determine the actual operating voltage of each layer cell in a multi-junction solar cell during power generation with high accuracy, and it has not been easy to optimize the operating voltage of each layer cell.
- an object of the present invention is to provide an operating voltage estimating device and an operating voltage estimating method capable of estimating the operating voltage of each sub-cell of a multi-junction solar cell with high accuracy.
- One aspect of the present invention is an operating voltage estimating device for estimating the operating voltage of each of a plurality of sub-cells of a multi-junction solar cell having a plurality of sub-cells, wherein the multi-junction solar cell is irradiated with color bias light. and an external quantum efficiency for calculating an external quantum efficiency spectrum of each of the plurality of sub-cells when the multi-junction solar cell is irradiated with the color bias light by the color bias light irradiation unit.
- a spectrum calculation unit a modulated light irradiation unit that irradiates the multi-junction solar cell that is in operation by irradiation with sunlight with a monochromatic modulated light having a weak intensity when estimating the operating voltage of each of the plurality of sub-cells; a wavelength selection unit that selects the wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit; and a reference signal that indicates the phase of the monochromatic modulated light when the monochromatic modulated light is irradiated by the modulated light irradiation unit.
- a differential resistance calculator for calculating differential resistances corresponding to respective operating voltages of the plurality of sub-cells based on the synchronous component; and an operating voltage calculator for calculating each operating voltage.
- the number of wavelengths of the monochromatic modulated light selected by the wavelength selection unit is equal to the number of the plurality of sub-cells, and the wavelength selection unit selects the external quantum efficiency spectrum
- the wavelength of the monochromatic modulated light may be selected based on the external quantum efficiency spectrum of each of the plurality of sub-cells calculated by the calculator.
- the wavelength selection unit selects the plurality of sub-cells calculated by the external quantum efficiency spectrum calculation unit as the wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit. may be selected to correspond to the peak of the external quantum efficiency spectrum of each.
- the differential resistance calculator includes simultaneous equations of a number equal to the number of the differential resistances as unknowns, and the single color having the wavelength selected by the wavelength selector a synchronous component with the monochromatic modulated light extracted by the phase detection section when the modulated light is irradiated by the modulated light irradiation section; the differential resistance; and the wavelength selected by the wavelength selection section.
- the differential resistance may be calculated by solving a system of equations relating it to the external quantum efficiency spectrum.
- the wavelength selection section may select a number of wavelengths of the monochromatic modulated light that is greater than the number of the plurality of sub-cells.
- the differential resistance calculator includes a number of simultaneous equations equal to the number of wavelengths of the monochromatic modulated light selected by the wavelength selector, Selected by the synchronous component with the monochromatic modulated light extracted by the phase detection section when the monochromatic modulated light of the selected wavelength is irradiated by the modulated light irradiation section, the differential resistance, and the wavelength selection section Simultaneous equations showing the relationship between the external quantum efficiency spectrum corresponding to the wavelengths obtained using a matrix, a first vector showing the synchronous component with the monochromatic modulated light, and a second vector showing the differential resistance
- the differential resistance corresponding to the component of the second vector may be calculated by expressing with the first relational expression and using the method of least squares.
- the differential resistance calculator expresses the first relational expression using a normal equation, and calculates the second vector included in the normal equation using an inverse matrix.
- the differential resistance corresponding to the component of the second vector may be calculated by expressing it with a second relational expression and solving the second relational expression.
- the differential resistance calculator calculates the components of the second vector by ridge regression.
- the corresponding differential resistance may be calculated.
- the differential resistance calculator expresses the second vector by a third relational expression in which a unit matrix and a regularization constant are added, and the wavelength selector expresses the regular
- the constant may be selected as a set value that allows negligible effects of a measurement error of a measuring device and a numerical error of a calculator for calculating ridge regression in the wavelength of the monochromatic modulated light emitted by the modulated light irradiator.
- the wavelength selection section selects a number of wavelengths of the monochromatic modulated light equal to the number of the plurality of sub-cells
- the differential resistance calculation section causes the wavelength selection section to Simultaneous equations equal in number to the number of wavelengths of the selected monochromatic modulated light, wherein the phase detection is performed when the monochromatic modulated light of the wavelength selected by the wavelength selection section is irradiated by the modulated light irradiation section.
- Simultaneous equations showing the relationship between the synchronous component with the monochromatic modulated light extracted by the unit, the differential resistance, and the external quantum efficiency spectrum corresponding to the wavelength selected by the wavelength selection unit, the matrix and the A first relational expression using a first vector indicating a synchronous component with monochromatic modulated light and a second vector indicating the differential resistance, the first relational expression being expressed using a normal equation, and the normal equation
- the second vector contained in is represented by a second relational expression using an inverse matrix, and when the value of the determinant of the matrix is approximately zero, the derivative corresponding to the component of the second vector by ridge regression Resistance may be calculated.
- One aspect of the present invention is an operating voltage estimation method for estimating an operating voltage of each of a plurality of sub-cells of a multi-junction solar cell having a plurality of sub-cells, wherein the multi-junction solar cell is irradiated with color bias light. and an external quantum efficiency for calculating an external quantum efficiency spectrum of each of the plurality of sub-cells when the multi-junction solar cell is irradiated with the color bias light in the color bias light irradiation step.
- a spectrum calculating step a modulated light irradiation step of irradiating the multi-junction solar cell operating by irradiation with sunlight with a monochromatic modulated light having a weak intensity when estimating the operating voltage of each of the plurality of sub-cells; a wavelength selection step of selecting the wavelength of the monochromatic modulated light irradiated in the modulated light irradiation step; and a reference signal indicating the phase of the monochromatic modulated light when the monochromatic modulated light is irradiated in the modulated light irradiation step.
- a differential resistance calculation step of calculating a differential resistance corresponding to an operating voltage of each of the plurality of sub-cells based on the synchronous component; and an operating voltage calculating step of calculating each operating voltage.
- an operating voltage estimating device and an operating voltage estimating method capable of estimating the operating voltage of each sub-cell of a multi-junction solar cell with high accuracy.
- FIG. 4 is a diagram showing; 4 is a flowchart for explaining an example of processing executed by the operating voltage estimating device 1 of the first embodiment;
- FIG. 1 is a diagram showing an example of an operating voltage estimating device 1 according to a first embodiment applied to a multijunction solar cell M.
- the operating voltage estimating device 1 calculates the operating voltage of each subcell M1, . to estimate A multi-junction solar cell M is connected to a load resistor R.
- the operating voltage estimation device 1 includes a color bias light irradiation section 1A, an external quantum efficiency spectrum calculation section 1B, a modulated light irradiation section 1C, a wavelength selection section 1D, a phase detection section 1E, a differential resistance calculation section 1F, An operating voltage calculator 1G and a current clamp sensor 11 are provided.
- the color bias light irradiation section 1A irradiates the multi-junction solar cell M with color bias light.
- the external quantum efficiency spectrum calculator 1B also includes a variable-wavelength monochromatic light source corresponding to the measurement wavelength range for measuring the external quantum efficiency spectrum, a wavelength controller for the monochromatic light source, and the like.
- FIG. 2A shows the external quantum efficiency spectra ⁇ 1, ⁇ 2, and ⁇ 3 of the three sub-cells M1, M2, and M3 of the multi-junction solar cell M calculated by the external quantum efficiency spectrum calculator 1B.
- FIG. 2(B) shows external quantum efficiency spectra ⁇ 1
- FIG. 3 shows external quantum efficiency spectra ⁇ 1 and ⁇ 2 of two sub-cells M1 and M2 of the multi-junction solar cell M calculated by the external quantum efficiency spectrum calculator 1B. shows an example.
- the vertical axis indicates the external quantum efficiency (EQE) and the horizontal axis indicates the wavelength.
- the multijunction solar cell M has three subcells M1, M2, M3.
- the external quantum efficiency spectrum calculator 1B calculates an external quantum efficiency spectrum ⁇ 1 of the subcell M1, an external quantum efficiency spectrum ⁇ 2 of the subcell M2, and an external quantum efficiency spectrum ⁇ 3 of the subcell M3.
- the multijunction solar cell M has two subcells M1 and M2.
- the external quantum efficiency spectrum calculator 1B calculates an external quantum efficiency spectrum ⁇ 1 of the sub-cell M1 and an external quantum efficiency spectrum ⁇ 2 of the sub-cell M2.
- the modulated light irradiator 1C emits a monochromatic modulated light beam with a weak intensity when estimating the operating voltage of each of the sub-cells M1, . . . to irradiate.
- the modulated light irradiation section 1C includes a laser light irradiation section 1C1 and a chopper control section 1C2.
- the laser beam irradiation unit 1C1 irradiates a laser beam such as a He—Ne laser.
- the modulated light irradiation unit 1C includes a laser light irradiation unit 1C1. A portion (not shown) may be provided.
- the chopper control unit 1C2 modulates the laser light emitted from the laser light irradiation unit 1C1 into monochromatic modulated light with a predetermined phase (frequency) and minute intensity.
- the chopper control unit 1C2 also outputs a reference signal indicating the phase (frequency) of the monochromatic modulated light with a weak intensity to the phase detection unit 1E.
- Mm included in the junction solar cell M is three.
- the wavelength selection unit 1D uses the wavelength ⁇ 1 of the monochromatic modulated light with a very low intensity irradiated by the modulated light irradiation unit 1C, which is calculated by the external quantum efficiency spectrum calculation unit 1B.
- a wavelength (for example, 500 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 1 of the sub-cell M1 is selected, and the wavelength ⁇ 2 (> ⁇ 1) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C is A wavelength (for example, 750 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 2 of the sub-cell M2 calculated by the external quantum efficiency spectrum calculation unit 1B is selected, and the modulated light irradiation unit 1C irradiates a micro-intensity monochromatic modulation.
- a wavelength (for example, 950 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 3 of the sub-cell M3 calculated by the external quantum efficiency spectrum calculator 1B is selected.
- the wavelength selection unit 1D is calculated by the external quantum efficiency spectrum calculation unit 1B as the wavelength ⁇ 1 of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C.
- a wavelength (for example, 500 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 1 of the sub-cell M1 is selected, and the wavelength ⁇ 2 (> ⁇ 1) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C is A wavelength (for example, 650 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 2 of the sub-cell M2 calculated by the external quantum efficiency spectrum calculator 1B is selected, and the modulated light irradiator 1C irradiates a micro-intensity monochromatic modulation.
- the wavelength selection unit 1D uses the wavelength ⁇ 1 of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C as the wavelength ⁇ 1 of the subcell M1 calculated by the external quantum efficiency spectrum calculation unit 1B.
- a wavelength (e.g., 500 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 1 is selected, and the wavelength ⁇ 2 (> ⁇ 1) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C is defined as the external quantum efficiency spectrum.
- a wavelength (for example, 750 (nm)) corresponding to the peak of the external quantum efficiency spectrum ⁇ 2 of the sub-cell M2 calculated by the calculator 1B is selected.
- the current clamp sensor 11 is electrically out of contact with the wiring connected to the multi-junction solar cell M.
- the current clamp sensor 11 detects the output current of the multi-junction solar cell M, and outputs a signal indicating the output current of the multi-junction solar cell M (indicated by "input signal" in FIG. 1) to the phase detector 1E.
- the phase detector 1E has a lock-in amplifier 1E1.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase (frequency) of the monochromatic modulated light with a weak intensity and the multi-junction solar cell M.
- the modulated light irradiation unit 1C emits a weak monochromatic modulated light having a wavelength ⁇ 1 corresponding to the peak of the external quantum efficiency spectrum ⁇ 1 of the subcell M1.
- the lock-in amplifier 1E1 supplies a reference signal indicating the phase of the weak monochromatic modulated light having the wavelength ⁇ 1 and a weak monochromatic signal in accordance with the operating voltage of the subcell M1 of the multijunction solar cell M.
- a signal (input signal) indicating the output current of the multi-junction solar cell M mixed with the synchronous component ⁇ I1 with the modulated light is input.
- the lock-in amplifier 1E1 extracts a synchronous component .DELTA.I1 with the minute intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
- the modulated light irradiator 1C is irradiating the monochromatic modulated light with a weak intensity having a wavelength ⁇ 2 corresponding to the peak of the external quantum efficiency spectrum ⁇ 2 of the subcell M2
- the lock-in amplifier 1E1 emits a weak intensity light having a wavelength ⁇ 2.
- the output current of the multi-junction solar cell M in which the reference signal indicating the phase of the monochromatic modulated light and the synchronous component ⁇ I2 with the monochromatic modulated light of very low intensity are mixed according to the operating voltage of the sub-cell M2 of the multi-junction solar cell M.
- a signal (input signal) indicating is input.
- the lock-in amplifier 1E1 extracts the synchronous component ⁇ I2 with the weak monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
- the lock-in amplifier 1E1 emits a weak intensity light having a wavelength ⁇ 3.
- the output current of the multi-junction solar cell M in which the reference signal indicating the phase of the monochromatic modulated light and the synchronous component ⁇ I3 with the monochromatic modulated light of very low intensity are mixed according to the operating voltage of the sub-cell M3 of the multi-junction solar cell M.
- a signal (input signal) indicating is input.
- the lock-in amplifier 1E1 extracts a synchronous component .DELTA.I3 with a weak monochromatic modulated light mixed in the output current of the multi-junction solar cell M and outputs it as an output signal.
- the lock-in amplifier 1E1 contains a reference signal indicating the phase of the weak intensity monochromatic modulated light having a wavelength ⁇ 1 and a synchronization component ⁇ I1 of the weak intensity monochromatic modulated light according to the operating voltage of the sub-cell M1 of the multi-junction solar cell M.
- a signal (input signal) indicating the output current of the multi-junction solar cell M is input.
- the lock-in amplifier 1E1 extracts a synchronous component .DELTA.I1 with the minute intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
- the modulated light irradiator 1C is irradiating the monochromatic modulated light with a weak intensity having a wavelength ⁇ 2 corresponding to the peak of the external quantum efficiency spectrum ⁇ 2 of the subcell M2
- the lock-in amplifier 1E1 emits a weak intensity light having a wavelength ⁇ 2.
- the output current of the multi-junction solar cell M in which the reference signal indicating the phase of the monochromatic modulated light and the synchronous component ⁇ I2 with the monochromatic modulated light of very low intensity are mixed according to the operating voltage of the sub-cell M2 of the multi-junction solar cell M.
- a signal (input signal) indicating is input.
- the lock-in amplifier 1E1 extracts the synchronous component ⁇ I2 with the weak monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
- the differential resistance calculation unit 1F calculates the micro-intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M output by the phase detection unit 1E when the micro-intensity monochromatic modulated light is irradiated.
- ⁇ I phi indicates the light-generated current due to monochromatic modulated light of very low intensity
- FIG. 4 is a flowchart for explaining an example of processing executed by the operating voltage estimating device 1 of the first embodiment.
- the color bias light irradiation unit 1A irradiates the multi-junction solar cell M with color bias light in step S11.
- step S14 the modulated light irradiation unit 1C is selected in step S13 when estimating the operating voltage of each subcell M1, .
- step S17 the operating voltage calculator 1G calculates respective operating voltages of the m subcells M1, . .
- the operating voltage of each subcell M1, . . . , Mm of the multi-junction solar cell M can be estimated with high accuracy.
- the operating voltage estimating device 1 of the second embodiment is configured in the same manner as the operating voltage estimating device 1 of the first embodiment described above, except for the points described later. Therefore, according to the operating voltage estimating device 1 of the second embodiment, it is possible to obtain the same effects as the operating voltage estimating device 1 of the above-described first embodiment, except for the points described later.
- the operating voltage estimating device 1 of the second embodiment is configured similarly to the operating voltage estimating device 1 of the first embodiment shown in FIG. Like the operating voltage estimating device 1 of the first embodiment, the operating voltage estimating device 1 of the second embodiment has m (m is an integer equal to or greater than 2) subcells M1, . . . , Mm. Estimate the operating voltage of each subcell M1, . . . , Mm of M.
- the color bias light irradiation unit 1A irradiates the multi-junction solar cell M with color bias light
- the operating voltage estimating device 1 of the second embodiment when estimating the operating voltage of each of the sub-cells M1, .
- the lock-in of the phase detection unit 1E when the modulated light irradiation unit 1C is irradiating the modulated light irradiation unit 1C with a weak intensity monochromatic modulated light having a wavelength ⁇ i (i 1 to n) selected by the wavelength selection unit 1D
- the method of least squares is described, for example, at the following URL. https://www.osc-japan.com/wp-content/uploads/2013/04/ODN53.pdf
- the above-mentioned inverse matrix (A T A) ⁇ 1 does not exist (determinant
- 0), or the inverse matrix (A T A) ⁇ 1 may be unstable (determinant
- such a case corresponds to the case where the column or row elements of the matrix A TA are linearly dependent, specifically, the column or row elements of the matrix A TA
- the differential resistance calculator 1F performs differentiation corresponding to the component of the second vector x by ridge regression.
- the regularization constant ⁇ is determined in a numerical experiment on a computer so that, for example, the information criterion AIC is minimized.
- the information amount criterion AIC is described, for example, at the following URL. http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/inf-crite.html
- the operating voltage estimating device 1 of the third embodiment is configured in the same manner as the operating voltage estimating device 1 of the first embodiment described above, except for the points described later. Therefore, according to the operating voltage estimating device 1 of the third embodiment, it is possible to obtain the same effects as the operating voltage estimating device 1 of the above-described first embodiment, except for the points described later.
- the operating voltage estimating device 1 of the third embodiment is configured similarly to the operating voltage estimating device 1 of the first embodiment shown in FIG. Like the operating voltage estimating device 1 of the first embodiment, the operating voltage estimating device 1 of the third embodiment has m (m is an integer equal to or greater than 2) subcells M1, . . . , Mm. Estimate the operating voltage of each subcell M1, . . . , Mm of M.
- the color bias light irradiation unit 1A irradiates the multi-junction solar cell M with color bias light
- ⁇ 0), the differential resistance calculator 1F calculates the differential resistance Rdj (j 1 to m ) is calculated.
- An external quantum efficiency spectrum ⁇ 1 of the sub-cell M1, an external quantum efficiency spectrum ⁇ 2 of the sub-cell M2, and an external quantum efficiency spectrum ⁇ 3 of the sub-cell M3 shown in 2(A) are calculated.
- the definition of the external quantum efficiency spectrum ⁇ j calculated by the external quantum efficiency spectrum calculator 1B is the number of photons of energy of a given wavelength ⁇ externally irradiated onto the solar cell (incident photons) collected by the solar cell is the ratio of the number of charge carriers.
- the wavelength selection unit 1D selects about 500 (nm) (short wavelength) as the wavelength ⁇ short of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C for estimating the operating voltage of the subcell M1.
- the wavelength selector 1D selects a wavelength absorbed by only one subcell from the external quantum efficiency spectra ⁇ 1, ⁇ 2, ⁇ 3 of each of the subcells M1, M2, M3.
- the wavelength selector 1D selects the wavelengths.
- the modulated light irradiation unit 1C irradiates monochromatic modulated light of short wavelength and low intensity to estimate the operating voltage of the subcell M1, and emits monochromatic modulated light of medium wavelength and low intensity to estimate the operating voltage of the subcell M2. illuminate and emit long-wavelength, low-intensity, monochromatic modulated light to estimate the operating voltage of subcell M3.
- the short-wavelength, low-intensity monochromatic modulated light emitted by the modulated-light irradiation unit 1C is mainly absorbed by the sub-cell M1 in the first stage, and the medium-wavelength, low-intensity monochromatic modulated light emitted by the modulated-light irradiation unit 1C is absorbed.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of short wavelength and low intensity, and a multijunction solar cell. 1 shows the output current of a multi-junction solar cell M in which a synchronous component ⁇ I with a monochromatic modulated light of short wavelength and low intensity is mixed depending on the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M. A signal is input.
- the lock-in amplifier 1E1 detects the monochromatic modulated light of short wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. A synchronous component ⁇ I with light is extracted and output.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase of the low intensity monochromatic modulated light of medium wavelength and a multijunction solar cell.
- the output current of the multi-junction solar cell M in which the synchronous component ⁇ I with the monochromatic modulated light of medium wavelength and low intensity is mixed is shown according to the operating voltage of each of the three sub-cells M1, M2, and M3 of the cell M. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of medium wavelength and weak intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of medium wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. The synchronous component ⁇ I with light is extracted and output.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of long wavelength and weak intensity and a multijunction solar cell.
- the output current of the multi-junction solar cell M in which the synchronous component ⁇ I length with the monochromatic modulated light of long wavelength and low intensity is mixed according to the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M is shown. A signal is input.
- the lock-in amplifier 1E1 detects the monochromatic modulated light of long wavelength and low intensity mixed in the output current of the multi-junction solar cell M.
- the synchronous component ⁇ I length with light is extracted and output.
- the differential resistance calculation unit 1F calculates the minute intensity monochromatic modulation mixed in the output current of the multi-junction solar cell M output by the phase detection unit 1E when irradiated with minute intensity monochromatic modulated light of short, medium and long wavelengths.
- ⁇ I ph indicates the light-generated current due to monochromatic modulated light of very low intensity
- the multi-junction solar cell M which is in operation under the irradiation of natural sunlight or pseudo-sunlight, is irradiated with a monochromatic modulated light (wavelength ⁇ ) of very low intensity
- the modulated light synchronized with the lock-in amplifier output is slightly superimposed.
- the component can be represented by the sum of the components generated in each subcell (right side of equation (1)) from the theory of superposition.
- the wavelength selector 1D selects about 500 (nm) ( about 750 (nm) (medium wavelength) as the wavelength ⁇ of the weak intensity monochromatic modulated light irradiated by the modulated light irradiation unit 1C for estimating the operating voltage of the sub-cell M2, In order to estimate the operating voltage of the sub-cell M3, approximately 1000 (nm) (long wavelength) is selected as the wavelength ⁇ length of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation section 1C.
- the modulated light irradiation unit 1C irradiates monochromatic modulated light of short wavelength and low intensity for estimating the operating voltage of the subcell M1, and emits medium wavelength light for estimating the operating voltage of the subcell M2. to estimate the operating voltage of the sub-cell M3.
- the monochromatic modulated light of short wavelength and weak intensity is mainly absorbed by the sub-cell M1 in the first stage and hardly absorbed by the sub-cells M2 and M3 in the latter stage.
- the monochromatic modulated light of long wavelength and low intensity is mainly absorbed by the sub-cell M3 in the third stage and hardly absorbed by the sub-cells M1 and M2 in the preceding stage.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of short wavelength and low intensity, and a multijunction solar cell. 1 shows the output current of a multi-junction solar cell M in which a synchronous component ⁇ I with a monochromatic modulated light of short wavelength and low intensity is mixed depending on the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M. A signal is input.
- the lock-in amplifier 1E1 detects the monochromatic modulated light of short wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. A synchronous component ⁇ I with light is extracted and output.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase of the low intensity monochromatic modulated light of medium wavelength and a multijunction solar cell.
- the output current of the multi-junction solar cell M in which the synchronous component ⁇ I with the monochromatic modulated light of medium wavelength and low intensity is mixed is shown according to the operating voltage of each of the three sub-cells M1, M2, and M3 of the cell M. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of medium wavelength and weak intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of medium wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. The synchronous component ⁇ I with light is extracted and output.
- the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of long wavelength and weak intensity and a multijunction solar cell.
- the output current of the multi-junction solar cell M in which the synchronous component ⁇ I length with the monochromatic modulated light of long wavelength and low intensity is mixed according to the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M is shown. A signal is input.
- the lock-in amplifier 1E1 detects the monochromatic modulated light of long wavelength and low intensity mixed in the output current of the multi-junction solar cell M.
- the synchronous component ⁇ I length with light is extracted and output.
- the differential resistance calculation unit 1F calculates the minute intensity monochromatic modulation mixed in the output current of the multi-junction solar cell M output by the phase detection unit 1E when irradiated with minute intensity monochromatic modulated light of short, medium and long wavelengths.
- ⁇ I ph indicates the light-generated current due to monochromatic modulated light of very low intensity
- the subcell of interest for example, the subcell M2 corresponding to the external quantum efficiency spectrum ⁇ 2 shown in FIG. 2B
- the adjacent subcell for example, the external If the wavelength is close to the wavelength of the monochromatic modulated light of very low intensity mainly absorbed by the sub-cell M3) corresponding to the quantum efficiency spectrum ⁇ 3, the first embodiment described above is required.
- the subcell of interest for example, subcell M2 corresponding to external quantum efficiency spectrum ⁇ 2 shown in FIG. If the wavelength of the subcell M1) corresponding to the external quantum efficiency spectrum ⁇ 1 shown is not close to the wavelength of the monochromatic modulated light of low intensity that is mainly absorbed, the second embodiment described above is possible.
- All or part of the operating voltage estimating apparatus 1 in the above embodiment may be implemented by dedicated hardware, or may be implemented by a memory and a microprocessor. All or part of the operating voltage estimating apparatus 1 is composed of a memory and a CPU (Central Processing Unit). It may be one that realizes a function. A program for realizing all or part of the functions of the operating voltage estimating device 1 may be recorded in a computer-readable recording medium, and the program recorded in the recording medium may be read and executed by a computer system. Each part may be processed by .
- the "computer system” referred to here includes hardware such as an OS and peripheral devices.
- the "computer system” also includes the home page providing environment (or display environment) if the WWW system is used.
- computer-readable recording medium refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
- “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It also includes those that hold programs for a certain period of time, such as volatile memories inside computer systems that serve as servers and clients in that case.
- the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
This operating voltage estimation device irradiates a multi-junction solar cell with color bias light, calculates an external quantum efficiency spectrum of each sub-cell under irradiation with the color bias light, irradiates the multi-junction solar cell, which is being operated by solar radiation, with micro-intensity monochromatic modulated light during estimation of the operating voltage of each sub-cell, and selects a wavelength of the monochromatic modulated light. During irradiation with the monochromatic modulated light, a phase detection unit receives, as an input, a reference signal indicating a phase of the monochromatic modulated light, and a signal indicating an output current of the multi-junction solar cell into which is mixed a component that is synchronous with the monochromatic modulated light in accordance with the operating voltage of each sub-cell of the multi-junction solar cell. The phase detection unit extracts and outputs the component that is synchronous with the monochromatic modulated light mixed into the output current of the multi-junction solar cell. A differential resistance corresponding to the operating voltage of each sub-cell is calculated on the basis of the output component that is synchronous with the monochromatic modulated light, and the operating voltage of each sub-cell is calculated on the basis of the calculated differential resistance.
Description
本発明は、動作電圧推定装置および動作電圧推定方法に関する。
本願は、2021年11月8日に、日本に出願された特願2021-181765号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an operating voltage estimating device and an operating voltage estimating method.
This application claims priority based on Japanese Patent Application No. 2021-181765 filed in Japan on November 8, 2021, the contents of which are incorporated herein.
本願は、2021年11月8日に、日本に出願された特願2021-181765号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an operating voltage estimating device and an operating voltage estimating method.
This application claims priority based on Japanese Patent Application No. 2021-181765 filed in Japan on November 8, 2021, the contents of which are incorporated herein.
従来から、複数のサブセルを有する多接合型太陽電池が知られている(特許文献1参照)。例えば特許文献1の図4に記載されているような多接合型太陽電池は、積層した異なる半導体の太陽電池から構成され、広い波長域にわたる太陽光を波長ごとに分けて吸収する。そのため、多接合型太陽電池は太陽光を高効率的に変換でき、高性能であるため人工衛星などに利用される。
各層の太陽電池が吸収する光は前段の層の太陽電池が吸収できなかった光となる。例えば特許文献1の図4に記載されている多接合型太陽電池では、ミドルサブセルが吸収する光は前段のトップサブセルが吸収できなかった光となる。前段の層の半導体のバンドギャップEg1(eV)、注目する層の半導体のバンドギャップEg2(eV)とすれば、注目する層の太陽電池が吸収する光の波長範囲は1240/Eg1~1240/Eg2(nm)と表せる。前段がなければ第1項を入射光の最短波長とする。
ただし、入射光の強度が非常に強いか、前段の層が薄い場合は1240/Eg1(nm)以下の光を前段の層で吸収しきれないため、1240/Eg1(nm)以下の光であっても注目する層の太陽電池が吸収することになる。
各層の太陽電池の分担する波長範囲が1240/Eg1~1240/Eg2(nm)を満たすようにするには、入射光強度の波長依存性を把握した上で各層の太陽電池の光吸収層がそれぞれの波長範囲の光を吸収し切るように設計する。 A multi-junction solar cell having a plurality of sub-cells is conventionally known (see Patent Document 1). For example, a multi-junction solar cell as described in FIG. 4 ofPatent Document 1 is composed of stacked solar cells of different semiconductors, and absorbs sunlight over a wide wavelength range by dividing it by wavelength. Therefore, multi-junction solar cells can convert sunlight with high efficiency and are used for artificial satellites and the like because of their high performance.
The light absorbed by the solar cells in each layer is the light that the solar cells in the previous layer could not absorb. For example, in the multi-junction solar cell described in FIG. 4 ofPatent Document 1, the light absorbed by the middle sub-cell is the light that could not be absorbed by the preceding top sub-cell. Assuming that the bandgap E g1 (eV) of the semiconductor in the preceding layer and the bandgap E g2 (eV) of the semiconductor in the layer of interest, the wavelength range of light absorbed by the solar cell of the layer of interest is 1240/E g1 to It can be expressed as 1240/E g2 (nm). If there is no preceding stage, the first term is the shortest wavelength of the incident light.
However, if the intensity of the incident light is very strong or if the preceding layer is thin, light of 1240/E g1 (nm) or less cannot be absorbed by the preceding layer. Even the layer of interest will be absorbed by the solar cell.
In order to satisfy the wavelength range of 1240/E g1 to 1240/E g2 (nm) shared by the solar cells of each layer, the wavelength dependence of the incident light intensity should be understood and then the light absorption layers of the solar cells of each layer should be are designed to absorb light in each wavelength range.
各層の太陽電池が吸収する光は前段の層の太陽電池が吸収できなかった光となる。例えば特許文献1の図4に記載されている多接合型太陽電池では、ミドルサブセルが吸収する光は前段のトップサブセルが吸収できなかった光となる。前段の層の半導体のバンドギャップEg1(eV)、注目する層の半導体のバンドギャップEg2(eV)とすれば、注目する層の太陽電池が吸収する光の波長範囲は1240/Eg1~1240/Eg2(nm)と表せる。前段がなければ第1項を入射光の最短波長とする。
ただし、入射光の強度が非常に強いか、前段の層が薄い場合は1240/Eg1(nm)以下の光を前段の層で吸収しきれないため、1240/Eg1(nm)以下の光であっても注目する層の太陽電池が吸収することになる。
各層の太陽電池の分担する波長範囲が1240/Eg1~1240/Eg2(nm)を満たすようにするには、入射光強度の波長依存性を把握した上で各層の太陽電池の光吸収層がそれぞれの波長範囲の光を吸収し切るように設計する。 A multi-junction solar cell having a plurality of sub-cells is conventionally known (see Patent Document 1). For example, a multi-junction solar cell as described in FIG. 4 of
The light absorbed by the solar cells in each layer is the light that the solar cells in the previous layer could not absorb. For example, in the multi-junction solar cell described in FIG. 4 of
However, if the intensity of the incident light is very strong or if the preceding layer is thin, light of 1240/E g1 (nm) or less cannot be absorbed by the preceding layer. Even the layer of interest will be absorbed by the solar cell.
In order to satisfy the wavelength range of 1240/E g1 to 1240/E g2 (nm) shared by the solar cells of each layer, the wavelength dependence of the incident light intensity should be understood and then the light absorption layers of the solar cells of each layer should be are designed to absorb light in each wavelength range.
多接合型太陽電池の各層のセル電圧は直接測定が難しく、通常は多接合型太陽電池の出力電圧・電流のみで評価される。あえて測定する場合は、構成セル間に金属電極を部分的に挿入する必要があるため近似的に多接合型太陽電池を評価している。
多接合型太陽電池の設計に当たっては、構成する各層のセル単位でのI-V特性を基に、電流がセル膜厚に比例するとして各セルの出力電流が等しくなるよう決められる。しかし、実際には、上述したように前段セルで吸収されなかった透過光などの影響があるため、各層のセル単体の評価結果だけでは不正確な予想しかできない。各層のセルの光学的な光吸収特性を正確に求めるにはコンピュータシミュレーションを利用できるが、各セルの電圧が0Vの電流、つまり、短絡電流の見積もりにとどまる。さらにセル間のトンネル接合の性能が設計からずれる可能性もあり、構成セル全体の電気特性の予想は極めて難しい。
このように多接合型太陽電池の設計は難しく、様々な層構造の試作品を基に経験的に最適化を進めるしかなかった。特に発電中の多接合型太陽電池における各層セルの実際の動作電圧を高精度に求める手段は過去に存在せず、各層セルの動作電圧の観点で最適化することも容易ではなかった。 It is difficult to directly measure the cell voltage of each layer of a multi-junction solar cell, and it is usually evaluated only by the output voltage and current of the multi-junction solar cell. If we dare to measure, it is necessary to partially insert the metal electrodes between the constituent cells, so the multi-junction solar cell is evaluated approximately.
In designing a multi-junction solar cell, the output current of each cell is determined to be equal, assuming that the current is proportional to the cell film thickness, based on the IV characteristics of each layer in each cell. However, in reality, as described above, there is an influence of transmitted light that is not absorbed by the preceding cell, and thus only an inaccurate prediction can be made based on the evaluation result of each cell alone. A computer simulation can be used to accurately obtain the optical light absorption characteristics of the cells in each layer, but the current at a voltage of 0 V in each cell, that is, the short-circuit current, is only estimated. Furthermore, the performance of tunnel junctions between cells may deviate from the design, and it is extremely difficult to predict the electrical characteristics of the entire constituent cells.
Designing a multi-junction solar cell is thus difficult, and we had to empirically optimize it based on prototypes with various layer structures. In particular, there has been no means in the past to determine the actual operating voltage of each layer cell in a multi-junction solar cell during power generation with high accuracy, and it has not been easy to optimize the operating voltage of each layer cell.
多接合型太陽電池の設計に当たっては、構成する各層のセル単位でのI-V特性を基に、電流がセル膜厚に比例するとして各セルの出力電流が等しくなるよう決められる。しかし、実際には、上述したように前段セルで吸収されなかった透過光などの影響があるため、各層のセル単体の評価結果だけでは不正確な予想しかできない。各層のセルの光学的な光吸収特性を正確に求めるにはコンピュータシミュレーションを利用できるが、各セルの電圧が0Vの電流、つまり、短絡電流の見積もりにとどまる。さらにセル間のトンネル接合の性能が設計からずれる可能性もあり、構成セル全体の電気特性の予想は極めて難しい。
このように多接合型太陽電池の設計は難しく、様々な層構造の試作品を基に経験的に最適化を進めるしかなかった。特に発電中の多接合型太陽電池における各層セルの実際の動作電圧を高精度に求める手段は過去に存在せず、各層セルの動作電圧の観点で最適化することも容易ではなかった。 It is difficult to directly measure the cell voltage of each layer of a multi-junction solar cell, and it is usually evaluated only by the output voltage and current of the multi-junction solar cell. If we dare to measure, it is necessary to partially insert the metal electrodes between the constituent cells, so the multi-junction solar cell is evaluated approximately.
In designing a multi-junction solar cell, the output current of each cell is determined to be equal, assuming that the current is proportional to the cell film thickness, based on the IV characteristics of each layer in each cell. However, in reality, as described above, there is an influence of transmitted light that is not absorbed by the preceding cell, and thus only an inaccurate prediction can be made based on the evaluation result of each cell alone. A computer simulation can be used to accurately obtain the optical light absorption characteristics of the cells in each layer, but the current at a voltage of 0 V in each cell, that is, the short-circuit current, is only estimated. Furthermore, the performance of tunnel junctions between cells may deviate from the design, and it is extremely difficult to predict the electrical characteristics of the entire constituent cells.
Designing a multi-junction solar cell is thus difficult, and we had to empirically optimize it based on prototypes with various layer structures. In particular, there has been no means in the past to determine the actual operating voltage of each layer cell in a multi-junction solar cell during power generation with high accuracy, and it has not been easy to optimize the operating voltage of each layer cell.
本発明者は、鋭意研究において、特許文献2に記載された変調レーザ光を照射する技術を応用することによって、多接合型太陽電池の各サブセルの動作電圧を高精度に推定できることを見い出したのである。
つまり、本発明は、多接合型太陽電池の各サブセルの動作電圧を高精度に推定することができる動作電圧推定装置および動作電圧推定方法を提供することを目的とする。 The inventors of the present invention have made intensive research and found that by applying the technique of irradiating modulated laser light described inPatent Document 2, it is possible to estimate the operating voltage of each sub-cell of a multi-junction solar cell with high accuracy. be.
In other words, an object of the present invention is to provide an operating voltage estimating device and an operating voltage estimating method capable of estimating the operating voltage of each sub-cell of a multi-junction solar cell with high accuracy.
つまり、本発明は、多接合型太陽電池の各サブセルの動作電圧を高精度に推定することができる動作電圧推定装置および動作電圧推定方法を提供することを目的とする。 The inventors of the present invention have made intensive research and found that by applying the technique of irradiating modulated laser light described in
In other words, an object of the present invention is to provide an operating voltage estimating device and an operating voltage estimating method capable of estimating the operating voltage of each sub-cell of a multi-junction solar cell with high accuracy.
本発明の一態様は、複数のサブセルを有する多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧を推定する動作電圧推定装置であって、前記多接合型太陽電池にカラーバイアス光を照射するカラーバイアス光照射部と、前記カラーバイアス光照射部によって前記カラーバイアス光が前記多接合型太陽電池に照射されている時における前記複数のサブセルのそれぞれの外部量子効率スペクトルを算出する外部量子効率スペクトル算出部と、太陽光の照射により動作中の前記多接合型太陽電池に対し、前記複数のサブセルのそれぞれの動作電圧の推定時に微小強度の単色変調光を照射する変調光照射部と、前記変調光照射部によって照射される前記単色変調光の波長を選択する波長選択部と、前記変調光照射部によって前記単色変調光が照射されている時に、前記単色変調光の位相を示す参照信号と、前記多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧に応じて前記単色変調光との同期成分が混入する前記多接合型太陽電池の出力電流を示す信号とが入力され、前記多接合型太陽電池の出力電流に混入する前記単色変調光との同期成分を抽出して出力する位相検波部と、前記単色変調光の照射時に前記位相検波部によって出力される前記単色変調光との同期成分に基づいて、前記複数のサブセルのそれぞれの動作電圧に応じた微分抵抗を算出する微分抵抗算出部と、前記微分抵抗算出部によって算出された前記微分抵抗に基づいて、前記複数のサブセルのそれぞれの動作電圧を算出する動作電圧算出部とを備える、動作電圧推定装置である。
One aspect of the present invention is an operating voltage estimating device for estimating the operating voltage of each of a plurality of sub-cells of a multi-junction solar cell having a plurality of sub-cells, wherein the multi-junction solar cell is irradiated with color bias light. and an external quantum efficiency for calculating an external quantum efficiency spectrum of each of the plurality of sub-cells when the multi-junction solar cell is irradiated with the color bias light by the color bias light irradiation unit. a spectrum calculation unit, a modulated light irradiation unit that irradiates the multi-junction solar cell that is in operation by irradiation with sunlight with a monochromatic modulated light having a weak intensity when estimating the operating voltage of each of the plurality of sub-cells; a wavelength selection unit that selects the wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit; and a reference signal that indicates the phase of the monochromatic modulated light when the monochromatic modulated light is irradiated by the modulated light irradiation unit. , a signal indicating an output current of the multi-junction solar cell in which a synchronous component with the monochromatic modulated light is mixed according to the operating voltage of each of the plurality of sub-cells of the multi-junction solar cell; a phase detection unit that extracts and outputs a synchronous component with the monochromatic modulated light mixed in the output current of the junction-type solar cell; and the monochromatic modulated light that is output by the phase detection unit when the monochromatic modulated light is irradiated. a differential resistance calculator for calculating differential resistances corresponding to respective operating voltages of the plurality of sub-cells based on the synchronous component; and an operating voltage calculator for calculating each operating voltage.
本発明の一態様の動作電圧推定装置では、前記波長選択部によって選択される前記単色変調光の波長の数は、前記複数のサブセルの数と等しく、前記波長選択部は、前記外部量子効率スペクトル算出部によって算出された前記複数のサブセルのそれぞれの外部量子効率スペクトルに基づいて、前記単色変調光の波長を選択してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the number of wavelengths of the monochromatic modulated light selected by the wavelength selection unit is equal to the number of the plurality of sub-cells, and the wavelength selection unit selects the external quantum efficiency spectrum The wavelength of the monochromatic modulated light may be selected based on the external quantum efficiency spectrum of each of the plurality of sub-cells calculated by the calculator.
本発明の一態様の動作電圧推定装置では、前記波長選択部は、前記変調光照射部によって照射される前記単色変調光の波長として、前記外部量子効率スペクトル算出部によって算出された前記複数のサブセルのそれぞれの外部量子効率スペクトルのピークに対応する波長を選択してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the wavelength selection unit selects the plurality of sub-cells calculated by the external quantum efficiency spectrum calculation unit as the wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit. may be selected to correspond to the peak of the external quantum efficiency spectrum of each.
本発明の一態様の動作電圧推定装置では、前記微分抵抗算出部は、未知数としての前記微分抵抗の数と等しい数の連立方程式であって、前記波長選択部によって選択された波長を有する前記単色変調光が前記変調光照射部によって照射されている時に前記位相検波部によって抽出される前記単色変調光との同期成分と、前記微分抵抗と、前記波長選択部によって選択された波長に対応する前記外部量子効率スペクトルとの関係を示す連立方程式を解くことによって、前記微分抵抗を算出してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the differential resistance calculator includes simultaneous equations of a number equal to the number of the differential resistances as unknowns, and the single color having the wavelength selected by the wavelength selector a synchronous component with the monochromatic modulated light extracted by the phase detection section when the modulated light is irradiated by the modulated light irradiation section; the differential resistance; and the wavelength selected by the wavelength selection section. The differential resistance may be calculated by solving a system of equations relating it to the external quantum efficiency spectrum.
本発明の一態様の動作電圧推定装置では、前記波長選択部は、前記複数のサブセルの数より大きい数の前記単色変調光の波長を選択してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the wavelength selection section may select a number of wavelengths of the monochromatic modulated light that is greater than the number of the plurality of sub-cells.
本発明の一態様の動作電圧推定装置では、前記微分抵抗算出部は、前記波長選択部によって選択された前記単色変調光の波長の数と等しい数の連立方程式であって、前記波長選択部によって選択された波長の前記単色変調光が前記変調光照射部によって照射されている時に前記位相検波部によって抽出される前記単色変調光との同期成分と、前記微分抵抗と、前記波長選択部によって選択された波長に対応する前記外部量子効率スペクトルとの関係を示す連立方程式を、行列と、前記単色変調光との同期成分を示す第1ベクトルと、前記微分抵抗を示す第2ベクトルとを用いた第1関係式で表し、最小二乗法を用いることによって、前記第2ベクトルの成分に相当する前記微分抵抗を算出してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the differential resistance calculator includes a number of simultaneous equations equal to the number of wavelengths of the monochromatic modulated light selected by the wavelength selector, Selected by the synchronous component with the monochromatic modulated light extracted by the phase detection section when the monochromatic modulated light of the selected wavelength is irradiated by the modulated light irradiation section, the differential resistance, and the wavelength selection section Simultaneous equations showing the relationship between the external quantum efficiency spectrum corresponding to the wavelengths obtained using a matrix, a first vector showing the synchronous component with the monochromatic modulated light, and a second vector showing the differential resistance The differential resistance corresponding to the component of the second vector may be calculated by expressing with the first relational expression and using the method of least squares.
本発明の一態様の動作電圧推定装置では、前記微分抵抗算出部は、前記第1関係式を、正規方程式を用いて表し、前記正規方程式に含まれる前記第2ベクトルを、逆行列を用いた第2関係式で表し、前記第2関係式を解くことによって、前記第2ベクトルの成分に相当する前記微分抵抗を算出してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the differential resistance calculator expresses the first relational expression using a normal equation, and calculates the second vector included in the normal equation using an inverse matrix. The differential resistance corresponding to the component of the second vector may be calculated by expressing it with a second relational expression and solving the second relational expression.
本発明の一態様の動作電圧推定装置では、前記微分抵抗算出部は、前記逆行列が存在しない場合、あるいは、前記逆行列が不安定となる場合に、リッジ回帰によって前記第2ベクトルの成分に相当する前記微分抵抗を算出してもよい。
In the operating voltage estimating device according to one aspect of the present invention, when the inverse matrix does not exist or when the inverse matrix becomes unstable, the differential resistance calculator calculates the components of the second vector by ridge regression. The corresponding differential resistance may be calculated.
本発明の一態様の動作電圧推定装置では、前記微分抵抗算出部は、前記第2ベクトルを、単位行列と正則化定数とを加えた第3関係式で表し、前記波長選択部は、前記正則化定数を、前記変調光照射部によって照射される前記単色変調光の波長における測定装置の測定誤差とリッジ回帰を計算する計算機の数値誤差との影響が無視できる設定値として選択してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the differential resistance calculator expresses the second vector by a third relational expression in which a unit matrix and a regularization constant are added, and the wavelength selector expresses the regular The constant may be selected as a set value that allows negligible effects of a measurement error of a measuring device and a numerical error of a calculator for calculating ridge regression in the wavelength of the monochromatic modulated light emitted by the modulated light irradiator.
本発明の一態様の動作電圧推定装置では、前記波長選択部は、前記複数のサブセルの数と等しい数の前記単色変調光の波長を選択し、前記微分抵抗算出部は、前記波長選択部によって選択された前記単色変調光の波長の数と等しい数の連立方程式であって、前記波長選択部によって選択された波長の前記単色変調光が前記変調光照射部によって照射されている時に前記位相検波部によって抽出される前記単色変調光との同期成分と、前記微分抵抗と、前記波長選択部によって選択された波長に対応する前記外部量子効率スペクトルとの関係を示す連立方程式を、行列と、前記単色変調光との同期成分を示す第1ベクトルと、前記微分抵抗を示す第2ベクトルとを用いた第1関係式で表し、前記第1関係式を、正規方程式を用いて表し、前記正規方程式に含まれる前記第2ベクトルを、逆行列を用いた第2関係式で表し、前記行列の行列式の値が概略ゼロである場合に、リッジ回帰によって前記第2ベクトルの成分に相当する前記微分抵抗を算出してもよい。
In the operating voltage estimating device according to one aspect of the present invention, the wavelength selection section selects a number of wavelengths of the monochromatic modulated light equal to the number of the plurality of sub-cells, and the differential resistance calculation section causes the wavelength selection section to Simultaneous equations equal in number to the number of wavelengths of the selected monochromatic modulated light, wherein the phase detection is performed when the monochromatic modulated light of the wavelength selected by the wavelength selection section is irradiated by the modulated light irradiation section. Simultaneous equations showing the relationship between the synchronous component with the monochromatic modulated light extracted by the unit, the differential resistance, and the external quantum efficiency spectrum corresponding to the wavelength selected by the wavelength selection unit, the matrix and the A first relational expression using a first vector indicating a synchronous component with monochromatic modulated light and a second vector indicating the differential resistance, the first relational expression being expressed using a normal equation, and the normal equation The second vector contained in is represented by a second relational expression using an inverse matrix, and when the value of the determinant of the matrix is approximately zero, the derivative corresponding to the component of the second vector by ridge regression Resistance may be calculated.
本発明の一態様は、複数のサブセルを有する多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧を推定する動作電圧推定方法であって、前記多接合型太陽電池にカラーバイアス光を照射するカラーバイアス光照射ステップと、前記カラーバイアス光照射ステップにおいて前記カラーバイアス光が前記多接合型太陽電池に照射されている時における前記複数のサブセルのそれぞれの外部量子効率スペクトルを算出する外部量子効率スペクトル算出ステップと、太陽光の照射により動作中の前記多接合型太陽電池に対し、前記複数のサブセルのそれぞれの動作電圧の推定時に微小強度の単色変調光を照射する変調光照射ステップと、前記変調光照射ステップにおいて照射される前記単色変調光の波長を選択する波長選択ステップと、前記変調光照射ステップにおいて前記単色変調光が照射されている時に、前記単色変調光の位相を示す参照信号と、前記多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧に応じて前記単色変調光との同期成分が混入する前記多接合型太陽電池の出力電流を示す信号とが入力され、前記多接合型太陽電池の出力電流に混入する前記単色変調光との同期成分を抽出して出力する位相検波ステップと、前記単色変調光の照射時に前記位相検波ステップにおいて出力される前記単色変調光との同期成分に基づいて、前記複数のサブセルのそれぞれの動作電圧に応じた微分抵抗を算出する微分抵抗算出ステップと、前記微分抵抗算出ステップにおいて算出された前記微分抵抗に基づいて、前記複数のサブセルのそれぞれの動作電圧を算出する動作電圧算出ステップとを備える、動作電圧推定方法である。
One aspect of the present invention is an operating voltage estimation method for estimating an operating voltage of each of a plurality of sub-cells of a multi-junction solar cell having a plurality of sub-cells, wherein the multi-junction solar cell is irradiated with color bias light. and an external quantum efficiency for calculating an external quantum efficiency spectrum of each of the plurality of sub-cells when the multi-junction solar cell is irradiated with the color bias light in the color bias light irradiation step. a spectrum calculating step, a modulated light irradiation step of irradiating the multi-junction solar cell operating by irradiation with sunlight with a monochromatic modulated light having a weak intensity when estimating the operating voltage of each of the plurality of sub-cells; a wavelength selection step of selecting the wavelength of the monochromatic modulated light irradiated in the modulated light irradiation step; and a reference signal indicating the phase of the monochromatic modulated light when the monochromatic modulated light is irradiated in the modulated light irradiation step. , a signal indicating an output current of the multi-junction solar cell in which a synchronous component with the monochromatic modulated light is mixed according to the operating voltage of each of the plurality of sub-cells of the multi-junction solar cell; a phase detection step of extracting and outputting a synchronous component with the monochromatic modulated light mixed in the output current of the junction solar cell; and the monochromatic modulated light output in the phase detection step when the monochromatic modulated light is irradiated. a differential resistance calculation step of calculating a differential resistance corresponding to an operating voltage of each of the plurality of sub-cells based on the synchronous component; and an operating voltage calculating step of calculating each operating voltage.
本発明によれば、多接合型太陽電池の各サブセルの動作電圧を高精度に推定することができる動作電圧推定装置および動作電圧推定方法を提供することができる。
According to the present invention, it is possible to provide an operating voltage estimating device and an operating voltage estimating method capable of estimating the operating voltage of each sub-cell of a multi-junction solar cell with high accuracy.
以下、本発明の動作電圧推定装置および動作電圧推定方法の実施形態について説明する。
Embodiments of the operating voltage estimating device and operating voltage estimating method of the present invention will be described below.
[第1実施形態]
図1は多接合型太陽電池Mに適用された第1実施形態の動作電圧推定装置1の一例を示す図である。
図1に示す例では、動作電圧推定装置1が、m(mは2以上の整数)個のサブセルM1、…、Mmを有する多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を推定する。多接合型太陽電池Mは負荷抵抗Rに接続されている。動作電圧推定装置1は、カラーバイアス光照射部1Aと、外部量子効率スペクトル算出部1Bと、変調光照射部1Cと、波長選択部1Dと、位相検波部1Eと、微分抵抗算出部1Fと、動作電圧算出部1Gと、電流クランプセンサ11とを備えている。
カラーバイアス光照射部1Aは、多接合型太陽電池Mにカラーバイアス光を照射する。外部量子効率スペクトル算出部1Bは、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。外部量子効率スペクトル算出部1Bには、外部量子効率スペクトルを測定するための測定波長範囲に相当する可変波長の単色光源、その単色光源の波長制御部なども含まれる。 [First embodiment]
FIG. 1 is a diagram showing an example of an operatingvoltage estimating device 1 according to a first embodiment applied to a multijunction solar cell M. FIG.
In the example shown in FIG. 1, the operatingvoltage estimating device 1 calculates the operating voltage of each subcell M1, . to estimate A multi-junction solar cell M is connected to a load resistor R. The operating voltage estimation device 1 includes a color bias light irradiation section 1A, an external quantum efficiency spectrum calculation section 1B, a modulated light irradiation section 1C, a wavelength selection section 1D, a phase detection section 1E, a differential resistance calculation section 1F, An operating voltage calculator 1G and a current clamp sensor 11 are provided.
The color biaslight irradiation section 1A irradiates the multi-junction solar cell M with color bias light. The external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj of each of the m sub-cells M1, . (j=1 to m) is calculated. The external quantum efficiency spectrum calculator 1B also includes a variable-wavelength monochromatic light source corresponding to the measurement wavelength range for measuring the external quantum efficiency spectrum, a wavelength controller for the monochromatic light source, and the like.
図1は多接合型太陽電池Mに適用された第1実施形態の動作電圧推定装置1の一例を示す図である。
図1に示す例では、動作電圧推定装置1が、m(mは2以上の整数)個のサブセルM1、…、Mmを有する多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を推定する。多接合型太陽電池Mは負荷抵抗Rに接続されている。動作電圧推定装置1は、カラーバイアス光照射部1Aと、外部量子効率スペクトル算出部1Bと、変調光照射部1Cと、波長選択部1Dと、位相検波部1Eと、微分抵抗算出部1Fと、動作電圧算出部1Gと、電流クランプセンサ11とを備えている。
カラーバイアス光照射部1Aは、多接合型太陽電池Mにカラーバイアス光を照射する。外部量子効率スペクトル算出部1Bは、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。外部量子効率スペクトル算出部1Bには、外部量子効率スペクトルを測定するための測定波長範囲に相当する可変波長の単色光源、その単色光源の波長制御部なども含まれる。 [First embodiment]
FIG. 1 is a diagram showing an example of an operating
In the example shown in FIG. 1, the operating
The color bias
カラーバイアス光照射部1Aおよび外部量子効率スペクトル算出部1Bは、例えば、下記のURLが示す技術と同様の技術を用いることによって、多接合型太陽電池Mにカラーバイアス光を照射し、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。
http://www.bunkoukeiki.co.jp/spectralresponse-cep-2000.html
https://www.newport-japan.jp/pdf/65.pdf
https://www.san-eielectric.co.jp/qe-r.htm
https://www.japanlaser.co.jp/product/oriel_iqe-200/
http://www.techno-synergy.co.jp/pdt/2_Spectroscopy_Systems/pdf/BQE-100v2-1706s.pdf The color biaslight irradiation unit 1A and the external quantum efficiency spectrum calculation unit 1B irradiate the multi-junction solar cell M with color bias light, for example, by using a technique similar to the technique shown in the following URL, An external quantum efficiency spectrum Φj (j=1 to m) is calculated for each of the m sub-cells M1, .
http://www.bunkoukeiki.co.jp/spectralresponse-cep-2000.html
https://www.newport-japan.jp/pdf/65.pdf
https://www.san-eielectric.co.jp/qe-r.htm
https://www.japanlaser.co.jp/product/oriel_iqe-200/
http://www.techno-synergy.co.jp/pdt/2_Spectroscopy_Systems/pdf/BQE-100v2-1706s.pdf
http://www.bunkoukeiki.co.jp/spectralresponse-cep-2000.html
https://www.newport-japan.jp/pdf/65.pdf
https://www.san-eielectric.co.jp/qe-r.htm
https://www.japanlaser.co.jp/product/oriel_iqe-200/
http://www.techno-synergy.co.jp/pdt/2_Spectroscopy_Systems/pdf/BQE-100v2-1706s.pdf The color bias
http://www.bunkoukeiki.co.jp/spectralresponse-cep-2000.html
https://www.newport-japan.jp/pdf/65.pdf
https://www.san-eielectric.co.jp/qe-r.htm
https://www.japanlaser.co.jp/product/oriel_iqe-200/
http://www.techno-synergy.co.jp/pdt/2_Spectroscopy_Systems/pdf/BQE-100v2-1706s.pdf
図2および図3は外部量子効率スペクトル算出部1Bによって算出される多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)の例を示す図である。
詳細には、図2(A)は外部量子効率スペクトル算出部1Bによって算出される多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの外部量子効率スペクトルΦ1、Φ2、Φ3の第1例を示しており、図2(B)は外部量子効率スペクトル算出部1Bによって算出される3個の多接合型太陽電池MのサブセルM1、M2、M3のそれぞれの外部量子効率スペクトルΦ1、Φ2、Φ3の第2例を示しており、図3は外部量子効率スペクトル算出部1Bによって算出される多接合型太陽電池Mの2個のサブセルM1、M2のそれぞれの外部量子効率スペクトルΦ1、Φ2の一例を示している。
図2(A)、図2(B)および図3において、縦軸は外部量子効率(EQE)を示しており、横軸は波長を示している。
図2(A)および図2(B)に示す例では、多接合型太陽電池Mが3個のサブセルM1、M2、M3を有する。外部量子効率スペクトル算出部1Bは、サブセルM1の外部量子効率スペクトルΦ1と、サブセルM2の外部量子効率スペクトルΦ2と、サブセルM3の外部量子効率スペクトルΦ3とを算出する。
図3に示す例では、多接合型太陽電池Mが2個のサブセルM1、M2を有する。外部量子効率スペクトル算出部1Bは、サブセルM1の外部量子効率スペクトルΦ1と、サブセルM2の外部量子効率スペクトルΦ2とを算出する。 2 and 3 are examples of external quantum efficiency spectra Φj (j=1 to m) of m subcells M1, . It is a figure which shows.
Specifically, FIG. 2A shows the external quantum efficiency spectra Φ1, Φ2, and Φ3 of the three sub-cells M1, M2, and M3 of the multi-junction solar cell M calculated by the external quantum efficiency spectrum calculator 1B. A first example is shown, and FIG. 2(B) shows external quantum efficiency spectra Φ1, A second example of Φ2 and Φ3 is shown, and FIG. 3 shows external quantum efficiency spectra Φ1 and Φ2 of two sub-cells M1 and M2 of the multi-junction solar cell M calculated by the external quantum efficiency spectrum calculator 1B. shows an example.
In FIGS. 2A, 2B and 3, the vertical axis indicates the external quantum efficiency (EQE) and the horizontal axis indicates the wavelength.
In the example shown in FIGS. 2A and 2B, the multijunction solar cell M has three subcells M1, M2, M3. The external quantum efficiency spectrum calculator 1B calculates an external quantum efficiency spectrum Φ1 of the subcell M1, an external quantum efficiency spectrum Φ2 of the subcell M2, and an external quantum efficiency spectrum Φ3 of the subcell M3.
In the example shown in FIG. 3, the multijunction solar cell M has two subcells M1 and M2. The external quantum efficiency spectrum calculator 1B calculates an external quantum efficiency spectrum Φ1 of the sub-cell M1 and an external quantum efficiency spectrum Φ2 of the sub-cell M2.
詳細には、図2(A)は外部量子効率スペクトル算出部1Bによって算出される多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの外部量子効率スペクトルΦ1、Φ2、Φ3の第1例を示しており、図2(B)は外部量子効率スペクトル算出部1Bによって算出される3個の多接合型太陽電池MのサブセルM1、M2、M3のそれぞれの外部量子効率スペクトルΦ1、Φ2、Φ3の第2例を示しており、図3は外部量子効率スペクトル算出部1Bによって算出される多接合型太陽電池Mの2個のサブセルM1、M2のそれぞれの外部量子効率スペクトルΦ1、Φ2の一例を示している。
図2(A)、図2(B)および図3において、縦軸は外部量子効率(EQE)を示しており、横軸は波長を示している。
図2(A)および図2(B)に示す例では、多接合型太陽電池Mが3個のサブセルM1、M2、M3を有する。外部量子効率スペクトル算出部1Bは、サブセルM1の外部量子効率スペクトルΦ1と、サブセルM2の外部量子効率スペクトルΦ2と、サブセルM3の外部量子効率スペクトルΦ3とを算出する。
図3に示す例では、多接合型太陽電池Mが2個のサブセルM1、M2を有する。外部量子効率スペクトル算出部1Bは、サブセルM1の外部量子効率スペクトルΦ1と、サブセルM2の外部量子効率スペクトルΦ2とを算出する。 2 and 3 are examples of external quantum efficiency spectra Φj (j=1 to m) of m subcells M1, . It is a figure which shows.
Specifically, FIG. 2A shows the external quantum efficiency spectra Φ1, Φ2, and Φ3 of the three sub-cells M1, M2, and M3 of the multi-junction solar cell M calculated by the external quantum efficiency spectrum calculator 1B. A first example is shown, and FIG. 2(B) shows external quantum efficiency spectra Φ1, A second example of Φ2 and Φ3 is shown, and FIG. 3 shows external quantum efficiency spectra Φ1 and Φ2 of two sub-cells M1 and M2 of the multi-junction solar cell M calculated by the external quantum efficiency spectrum calculator 1B. shows an example.
In FIGS. 2A, 2B and 3, the vertical axis indicates the external quantum efficiency (EQE) and the horizontal axis indicates the wavelength.
In the example shown in FIGS. 2A and 2B, the multijunction solar cell M has three subcells M1, M2, M3. The external quantum efficiency spectrum calculator 1B calculates an external quantum efficiency spectrum Φ1 of the subcell M1, an external quantum efficiency spectrum Φ2 of the subcell M2, and an external quantum efficiency spectrum Φ3 of the subcell M3.
In the example shown in FIG. 3, the multijunction solar cell M has two subcells M1 and M2. The external quantum efficiency spectrum calculator 1B calculates an external quantum efficiency spectrum Φ1 of the sub-cell M1 and an external quantum efficiency spectrum Φ2 of the sub-cell M2.
図1に示す例では、変調光照射部1Cが、太陽光の照射により動作中の多接合型太陽電池Mに対し、各サブセルM1、…、Mmの動作電圧の推定時に微小強度の単色変調光を照射する。変調光照射部1Cは、レーザ光照射部1C1と、チョッパ制御部1C2とを備えている。レーザ光照射部1C1は、例えばHe-Neレーザのようなレーザ光を照射する。
図1に示す例では、変調光照射部1Cがレーザ光照射部1C1を備えているが、他の例では、変調光照射部1Cが、レーザ光以外の微小強度の単色変調光を照射する照射部(図示せず)を備えていてもよい。 In the example shown in FIG. 1, the modulatedlight irradiator 1C emits a monochromatic modulated light beam with a weak intensity when estimating the operating voltage of each of the sub-cells M1, . . . to irradiate. The modulated light irradiation section 1C includes a laser light irradiation section 1C1 and a chopper control section 1C2. The laser beam irradiation unit 1C1 irradiates a laser beam such as a He—Ne laser.
In the example shown in FIG. 1, the modulatedlight irradiation unit 1C includes a laser light irradiation unit 1C1. A portion (not shown) may be provided.
図1に示す例では、変調光照射部1Cがレーザ光照射部1C1を備えているが、他の例では、変調光照射部1Cが、レーザ光以外の微小強度の単色変調光を照射する照射部(図示せず)を備えていてもよい。 In the example shown in FIG. 1, the modulated
In the example shown in FIG. 1, the modulated
図1に示す例では、チョッパ制御部1C2が、レーザ光照射部1C1から照射されるレーザ光を所定の位相(周波数)の微小強度の単色変調光に変調する。また、チョッパ制御部1C2は、微小強度の単色変調光の位相(周波数)を示す参照信号を位相検波部1Eに出力する。
波長選択部1Dは、変調光照射部1Cによって照射される微小強度の単色変調光の波長λi(i=1~n(nは2以上の整数))を選択する。詳細には、波長選択部1Dは、変調光照射部1Cによって照射される微小強度の単色変調光の波長λiとして、値が互いに異なるn種類の波長λ1、…、λnを選択する。 In the example shown in FIG. 1, the chopper control unit 1C2 modulates the laser light emitted from the laser light irradiation unit 1C1 into monochromatic modulated light with a predetermined phase (frequency) and minute intensity. The chopper control unit 1C2 also outputs a reference signal indicating the phase (frequency) of the monochromatic modulated light with a weak intensity to thephase detection unit 1E.
Thewavelength selection unit 1D selects a wavelength λi (i=1 to n (n is an integer equal to or greater than 2)) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C. Specifically, the wavelength selection unit 1D selects n different wavelengths λ1, .
波長選択部1Dは、変調光照射部1Cによって照射される微小強度の単色変調光の波長λi(i=1~n(nは2以上の整数))を選択する。詳細には、波長選択部1Dは、変調光照射部1Cによって照射される微小強度の単色変調光の波長λiとして、値が互いに異なるn種類の波長λ1、…、λnを選択する。 In the example shown in FIG. 1, the chopper control unit 1C2 modulates the laser light emitted from the laser light irradiation unit 1C1 into monochromatic modulated light with a predetermined phase (frequency) and minute intensity. The chopper control unit 1C2 also outputs a reference signal indicating the phase (frequency) of the monochromatic modulated light with a weak intensity to the
The
図1に示す例では(つまり、第1実施形態の動作電圧推定装置1では)、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有する複数のサブセルM1、…、Mmの数mとが等しい。
例えば図1、図2(A)および図2(B)に示す例では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有するサブセルM1、…、Mmの数mとが3である。
図1および図3に示す例では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有するサブセルM1、…、Mmの数mとが2である。 In the example shown in FIG. 1 (that is, in the operatingvoltage estimating device 1 of the first embodiment), the number n of wavelengths λi (i=1 to n) of monochromatic modulated light with a weak intensity selected by the wavelength selection unit 1D and , and the number m of the plurality of subcells M1, . . . , Mm included in the multi-junction solar cell M.
For example, in the examples shown in FIGS. 1, 2A, and 2B, the number n of wavelengths λi (i=1 to n) of monochromatic modulated light with a weak intensity selected by thewavelength selection unit 1D and the number n The number m of the subcells M1, . . . , Mm included in the junction solar cell M is three.
In the examples shown in FIGS. 1 and 3, the number n of wavelengths λi (i=1 to n) of monochromatic modulated light with a weak intensity selected by thewavelength selection unit 1D, the subcell M1 of the multijunction solar cell M, , the number m of Mm is 2.
例えば図1、図2(A)および図2(B)に示す例では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有するサブセルM1、…、Mmの数mとが3である。
図1および図3に示す例では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有するサブセルM1、…、Mmの数mとが2である。 In the example shown in FIG. 1 (that is, in the operating
For example, in the examples shown in FIGS. 1, 2A, and 2B, the number n of wavelengths λi (i=1 to n) of monochromatic modulated light with a weak intensity selected by the
In the examples shown in FIGS. 1 and 3, the number n of wavelengths λi (i=1 to n) of monochromatic modulated light with a weak intensity selected by the
図1に示す例(すなわち、m=nの例)では、波長選択部1Dは、外部量子効率スペクトル算出部1Bによって算出された各サブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)に基づいて、微小強度の単色変調光の波長λi(i=1~n)を選択する。詳細には、波長選択部1Dは、変調光照射部1Cによって照射される微小強度の単色変調光の波長λi(i=1~n)として、外部量子効率スペクトル算出部1Bによって算出された各サブセルM1、…、Mmの外部量子効率スペクトルΦj(j=1~m)のピークに対応する波長λi(i=1~n)を選択する。
In the example shown in FIG. 1 (that is, the example where m=n), the wavelength selector 1D calculates the external quantum efficiency spectrum Φj(j = 1 to m), select the wavelength λi (i = 1 to n) of monochromatic modulated light with a weak intensity. Specifically, the wavelength selection unit 1D uses the wavelength λi (i=1 to n) of the monochromatic modulated light with a very low intensity irradiated by the modulated light irradiation unit 1C for each sub-cell calculated by the external quantum efficiency spectrum calculation unit 1B. Select the wavelengths λi (i=1 to n) corresponding to the peaks of the external quantum efficiency spectra Φj (j=1 to m) of M1, . . . , Mm.
例えば図1および図2(A)に示す例では、波長選択部1Dが、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ1として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長(例えば500(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ2(>λ1)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長(例えば750(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ3(>λ2)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM3の外部量子効率スペクトルΦ3のピークに対応する波長(例えば950(nm))を選択する。
例えば図1および図2(B)に示す例では、波長選択部1Dが、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ1として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長(例えば500(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ2(>λ1)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長(例えば650(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ3(>λ2)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM3の外部量子効率スペクトルΦ3のピークに対応する波長(例えば750(nm))を選択する。
図1および図3に示す例では、波長選択部1Dが、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ1として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長(例えば500(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ2(>λ1)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長(例えば750(nm))を選択する。 For example, in the example shown in FIGS. 1 and 2A, thewavelength selection unit 1D uses the wavelength λ1 of the monochromatic modulated light with a very low intensity irradiated by the modulated light irradiation unit 1C, which is calculated by the external quantum efficiency spectrum calculation unit 1B. A wavelength (for example, 500 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ1 of the sub-cell M1 is selected, and the wavelength λ2 (>λ1) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C is A wavelength (for example, 750 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ2 of the sub-cell M2 calculated by the external quantum efficiency spectrum calculation unit 1B is selected, and the modulated light irradiation unit 1C irradiates a micro-intensity monochromatic modulation. As the wavelength λ3 (>λ2) of light, a wavelength (for example, 950 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ3 of the sub-cell M3 calculated by the external quantum efficiency spectrum calculator 1B is selected.
For example, in the example shown in FIG. 1 and FIG. 2B, thewavelength selection unit 1D is calculated by the external quantum efficiency spectrum calculation unit 1B as the wavelength λ1 of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C. A wavelength (for example, 500 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ1 of the sub-cell M1 is selected, and the wavelength λ2 (>λ1) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C is A wavelength (for example, 650 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ2 of the sub-cell M2 calculated by the external quantum efficiency spectrum calculator 1B is selected, and the modulated light irradiator 1C irradiates a micro-intensity monochromatic modulation. As the light wavelength λ3 (>λ2), a wavelength (for example, 750 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ3 of the sub-cell M3 calculated by the external quantum efficiency spectrum calculator 1B is selected.
In the example shown in FIGS. 1 and 3, thewavelength selection unit 1D uses the wavelength λ1 of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C as the wavelength λ1 of the subcell M1 calculated by the external quantum efficiency spectrum calculation unit 1B. A wavelength (e.g., 500 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ1 is selected, and the wavelength λ2 (>λ1) of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C is defined as the external quantum efficiency spectrum. A wavelength (for example, 750 (nm)) corresponding to the peak of the external quantum efficiency spectrum Φ2 of the sub-cell M2 calculated by the calculator 1B is selected.
例えば図1および図2(B)に示す例では、波長選択部1Dが、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ1として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長(例えば500(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ2(>λ1)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長(例えば650(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ3(>λ2)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM3の外部量子効率スペクトルΦ3のピークに対応する波長(例えば750(nm))を選択する。
図1および図3に示す例では、波長選択部1Dが、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ1として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長(例えば500(nm))を選択し、変調光照射部1Cによって照射される微小強度の単色変調光の波長λ2(>λ1)として、外部量子効率スペクトル算出部1Bによって算出されたサブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長(例えば750(nm))を選択する。 For example, in the example shown in FIGS. 1 and 2A, the
For example, in the example shown in FIG. 1 and FIG. 2B, the
In the example shown in FIGS. 1 and 3, the
図1に示す例では、電流クランプセンサ11が、多接合型太陽電池Mに接続された配線に対して電気的に非接触である。電流クランプセンサ11は、多接合型太陽電池Mの出力電流を検出し、多接合型太陽電池Mの出力電流を示す信号(図1に「入力信号」で示す)を位相検波部1Eに出力する。
位相検波部1Eは、ロックインアンプ1E1を備えている。変調光照射部1Cによって微小強度の単色変調光が照射されている時に、ロックインアンプ1E1には、微小強度の単色変調光の位相(周波数)を示す参照信号と、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの動作電圧に応じて微小強度の単色変調光との同期成分△Ii(i=1~n)が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。変調光照射部1Cによって微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△Ii(i=1~n)を抽出し、出力信号として出力する。 In the example shown in FIG. 1, thecurrent clamp sensor 11 is electrically out of contact with the wiring connected to the multi-junction solar cell M. In the example shown in FIG. The current clamp sensor 11 detects the output current of the multi-junction solar cell M, and outputs a signal indicating the output current of the multi-junction solar cell M (indicated by "input signal" in FIG. 1) to the phase detector 1E. .
Thephase detector 1E has a lock-in amplifier 1E1. While the modulated light irradiation unit 1C is irradiating the monochromatic modulated light with a weak intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase (frequency) of the monochromatic modulated light with a weak intensity and the multi-junction solar cell M. Fig. 2 shows the output current of a multi-junction solar cell M in which a synchronous component ΔIi (i = 1 to n) with monochromatic modulated light of very low intensity mixes according to the operating voltage of each of m subcells M1, ..., Mm. A signal (input signal) is input. When the modulated light irradiation unit 1C irradiates the monochromatic modulated light with a weak intensity, the lock-in amplifier 1E1 detects a synchronous component ΔIi ( i=1 to n) are extracted and output as an output signal.
位相検波部1Eは、ロックインアンプ1E1を備えている。変調光照射部1Cによって微小強度の単色変調光が照射されている時に、ロックインアンプ1E1には、微小強度の単色変調光の位相(周波数)を示す参照信号と、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの動作電圧に応じて微小強度の単色変調光との同期成分△Ii(i=1~n)が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。変調光照射部1Cによって微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△Ii(i=1~n)を抽出し、出力信号として出力する。 In the example shown in FIG. 1, the
The
例えば図1、図2(A)および図2(B)に示す例では、サブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長λ1を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ1を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM1の動作電圧に応じて微小強度の単色変調光との同期成分△I1が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I1を抽出し、出力信号として出力する。
サブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長λ2を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ2を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM2の動作電圧に応じて微小強度の単色変調光との同期成分△I2が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I2を抽出し、出力信号として出力する。
サブセルM3の外部量子効率スペクトルΦ3のピークに対応する波長λ3を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ3を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM3の動作電圧に応じて微小強度の単色変調光との同期成分△I3が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I3を抽出し、出力信号として出力する。 For example, in the examples shown in FIGS. 1, 2A, and 2B, the modulatedlight irradiation unit 1C emits a weak monochromatic modulated light having a wavelength λ1 corresponding to the peak of the external quantum efficiency spectrum Φ1 of the subcell M1. During irradiation, the lock-in amplifier 1E1 supplies a reference signal indicating the phase of the weak monochromatic modulated light having the wavelength λ1 and a weak monochromatic signal in accordance with the operating voltage of the subcell M1 of the multijunction solar cell M. A signal (input signal) indicating the output current of the multi-junction solar cell M mixed with the synchronous component ΔI1 with the modulated light is input. The lock-in amplifier 1E1 extracts a synchronous component .DELTA.I1 with the minute intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
When the modulatedlight irradiator 1C is irradiating the monochromatic modulated light with a weak intensity having a wavelength λ2 corresponding to the peak of the external quantum efficiency spectrum Φ2 of the subcell M2, the lock-in amplifier 1E1 emits a weak intensity light having a wavelength λ2. The output current of the multi-junction solar cell M, in which the reference signal indicating the phase of the monochromatic modulated light and the synchronous component ΔI2 with the monochromatic modulated light of very low intensity are mixed according to the operating voltage of the sub-cell M2 of the multi-junction solar cell M. A signal (input signal) indicating is input. The lock-in amplifier 1E1 extracts the synchronous component ΔI2 with the weak monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
When the modulatedlight irradiator 1C is irradiating the monochromatic modulated light with a weak intensity having a wavelength λ3 corresponding to the peak of the external quantum efficiency spectrum Φ3 of the sub-cell M3, the lock-in amplifier 1E1 emits a weak intensity light having a wavelength λ3. The output current of the multi-junction solar cell M, in which the reference signal indicating the phase of the monochromatic modulated light and the synchronous component ΔI3 with the monochromatic modulated light of very low intensity are mixed according to the operating voltage of the sub-cell M3 of the multi-junction solar cell M. A signal (input signal) indicating is input. The lock-in amplifier 1E1 extracts a synchronous component .DELTA.I3 with a weak monochromatic modulated light mixed in the output current of the multi-junction solar cell M and outputs it as an output signal.
サブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長λ2を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ2を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM2の動作電圧に応じて微小強度の単色変調光との同期成分△I2が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I2を抽出し、出力信号として出力する。
サブセルM3の外部量子効率スペクトルΦ3のピークに対応する波長λ3を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ3を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM3の動作電圧に応じて微小強度の単色変調光との同期成分△I3が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I3を抽出し、出力信号として出力する。 For example, in the examples shown in FIGS. 1, 2A, and 2B, the modulated
When the modulated
When the modulated
図1および図3に示す例では、サブセルM1の外部量子効率スペクトルΦ1のピークに対応する波長λ1を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ1を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM1の動作電圧に応じて微小強度の単色変調光との同期成分△I1が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I1を抽出し、出力信号として出力する。 サブセルM2の外部量子効率スペクトルΦ2のピークに対応する波長λ2を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に、ロックインアンプ1E1には、波長λ2を有する微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池MのサブセルM2の動作電圧に応じて微小強度の単色変調光との同期成分△I2が混入する多接合型太陽電池Mの出力電流を示す信号(入力信号)とが入力される。ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I2を抽出し、出力信号として出力する。
In the example shown in FIGS. 1 and 3, when the modulated light irradiation unit 1C irradiates monochromatic modulated light with a weak intensity having a wavelength λ1 corresponding to the peak of the external quantum efficiency spectrum Φ1 of the subcell M1, the lock-in amplifier 1E1 contains a reference signal indicating the phase of the weak intensity monochromatic modulated light having a wavelength λ1 and a synchronization component ΔI1 of the weak intensity monochromatic modulated light according to the operating voltage of the sub-cell M1 of the multi-junction solar cell M. A signal (input signal) indicating the output current of the multi-junction solar cell M is input. The lock-in amplifier 1E1 extracts a synchronous component .DELTA.I1 with the minute intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal. When the modulated light irradiator 1C is irradiating the monochromatic modulated light with a weak intensity having a wavelength λ2 corresponding to the peak of the external quantum efficiency spectrum Φ2 of the subcell M2, the lock-in amplifier 1E1 emits a weak intensity light having a wavelength λ2. The output current of the multi-junction solar cell M, in which the reference signal indicating the phase of the monochromatic modulated light and the synchronous component ΔI2 with the monochromatic modulated light of very low intensity are mixed according to the operating voltage of the sub-cell M2 of the multi-junction solar cell M. A signal (input signal) indicating is input. The lock-in amplifier 1E1 extracts the synchronous component ΔI2 with the weak monochromatic modulated light mixed in the output current of the multi-junction solar cell M, and outputs it as an output signal.
図1に示す例では、微分抵抗算出部1Fが、微小強度の単色変調光の照射時に位相検波部1Eによって出力される多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△Ii(i=1~n)に基づいて、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの動作電圧に応じた微分抵抗Rdj(j=1~m)を算出する。
詳細には、微分抵抗算出部1Fは、未知数としての微分抵抗Rdj(j=1~m)の数mと等しい数の連立方程式であって、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に位相検波部1Eのロックインアンプ1E1によって抽出される微小強度の単色変調光との同期成分△Ii(i=1~n)と、微分抵抗Rdj(j=1~m)と、波長選択部1Dによって選択された波長λi(i=1~n)に対応する外部量子効率スペクトルΦj(λi)との関係を示す連立方程式(詳細には、下記の(1)式)を解くことによって、微分抵抗Rdj(j=1~m)を算出する。
(1)式において、△Iphiは微小強度の単色変調光による光発生電流を示しており、Cは定数(=1/(ΣRdj+R))を示している。 In the example shown in FIG. 1, the differentialresistance calculation unit 1F calculates the micro-intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M output by the phase detection unit 1E when the micro-intensity monochromatic modulated light is irradiated. Based on the synchronous component ΔIi (i = 1 to n) of the multi-junction solar cell M, the differential resistance Rdj (j = 1 to m) corresponding to the operating voltage of each of the m subcells M1, ..., Mm Calculate
Specifically, the differentialresistance calculation unit 1F calculates simultaneous equations of a number equal to the number m of differential resistances Rdj (j=1 to m) as unknowns, and the wavelength λi (i= 1 to n), the synchronous component ΔIi ( i=1 to n), the differential resistance Rdj (j=1 to m), and the external quantum efficiency spectrum Φj (λi) corresponding to the wavelength λi (i=1 to n) selected by the wavelength selection unit 1D The differential resistance Rdj (j=1 to m) is calculated by solving the simultaneous equations (specifically, the following equation (1)) showing the relationship.
In the equation (1), ΔI phi indicates the light-generated current due to monochromatic modulated light of very low intensity, and C indicates a constant (=1/(ΣRdj+R)).
詳細には、微分抵抗算出部1Fは、未知数としての微分抵抗Rdj(j=1~m)の数mと等しい数の連立方程式であって、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に位相検波部1Eのロックインアンプ1E1によって抽出される微小強度の単色変調光との同期成分△Ii(i=1~n)と、微分抵抗Rdj(j=1~m)と、波長選択部1Dによって選択された波長λi(i=1~n)に対応する外部量子効率スペクトルΦj(λi)との関係を示す連立方程式(詳細には、下記の(1)式)を解くことによって、微分抵抗Rdj(j=1~m)を算出する。
(1)式において、△Iphiは微小強度の単色変調光による光発生電流を示しており、Cは定数(=1/(ΣRdj+R))を示している。 In the example shown in FIG. 1, the differential
Specifically, the differential
In the equation (1), ΔI phi indicates the light-generated current due to monochromatic modulated light of very low intensity, and C indicates a constant (=1/(ΣRdj+R)).
例えば図1、図2(A)および図2(B)に示す例(m=n=3)では、微分抵抗算出部1Fが、i=1に対応する(1)式と、i=2に対応する(1)式と、i=3に対応する(1)式とを連立して同時に解くことによって、微分抵抗Rd1、Rd2、Rd3を算出する。
例えば図1および図3に示す例(m=n=2)では、微分抵抗算出部1Fが、i=1に対応する(1)式と、i=2に対応する(1)式とを連立して同時に解くことによって、微分抵抗Rd1、Rd2を算出する。 For example, in the example (m=n=3) shown in FIGS. Differential resistances Rd1, Rd2, and Rd3 are calculated by simultaneously solving the corresponding equation (1) and the equation (1) corresponding to i=3.
For example, in the example (m=n=2) shown in FIGS. 1 and 3, thedifferential resistance calculator 1F simultaneously formulates the equation (1) corresponding to i=1 and the equation (1) corresponding to i=2. and solving simultaneously, the differential resistances Rd1 and Rd2 are calculated.
例えば図1および図3に示す例(m=n=2)では、微分抵抗算出部1Fが、i=1に対応する(1)式と、i=2に対応する(1)式とを連立して同時に解くことによって、微分抵抗Rd1、Rd2を算出する。 For example, in the example (m=n=3) shown in FIGS. Differential resistances Rd1, Rd2, and Rd3 are calculated by simultaneously solving the corresponding equation (1) and the equation (1) corresponding to i=3.
For example, in the example (m=n=2) shown in FIGS. 1 and 3, the
図1に示す例では、動作電圧算出部1Gが、特許文献2に記載された技術を用いることによって、微分抵抗算出部1Fによって算出された微分抵抗Rdj(j=1~m)に基づいて、m個のサブセルM1、…、Mmのそれぞれの動作電圧を算出する。
In the example shown in FIG. 1, the operating voltage calculator 1G uses the technique described in Patent Document 2, based on the differential resistance Rdj (j=1 to m) calculated by the differential resistance calculator 1F, , Mm are calculated.
図4は第1実施形態の動作電圧推定装置1によって実行される処理の一例を説明するためのフローチャートである。
図4に示す例では、ステップS11において、カラーバイアス光照射部1Aが、多接合型太陽電池Mにカラーバイアス光を照射する。
ステップS12では、外部量子効率スペクトル算出部1Bが、ステップS11においてカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。 FIG. 4 is a flowchart for explaining an example of processing executed by the operatingvoltage estimating device 1 of the first embodiment.
In the example shown in FIG. 4, the color biaslight irradiation unit 1A irradiates the multi-junction solar cell M with color bias light in step S11.
In step S12, the external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj of each of the m sub-cells M1, . (j=1 to m) is calculated.
図4に示す例では、ステップS11において、カラーバイアス光照射部1Aが、多接合型太陽電池Mにカラーバイアス光を照射する。
ステップS12では、外部量子効率スペクトル算出部1Bが、ステップS11においてカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。 FIG. 4 is a flowchart for explaining an example of processing executed by the operating
In the example shown in FIG. 4, the color bias
In step S12, the external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj of each of the m sub-cells M1, . (j=1 to m) is calculated.
次いで、ステップS13では、波長選択部1Dが、微小強度の単色変調光の波長λi(i=1~n)を選択する。
次いで、ステップS14では、変調光照射部1Cが、太陽光の照射により動作中の多接合型太陽電池Mに対し、各サブセルM1、…、Mmの動作電圧の推定時に、ステップS13において選択された波長λi(i=1~n)を有する微小強度の単色変調光を照射する。
ステップS15では、位相検波部1Eが、ステップS14において微小強度の単色変調光が照射されている時に入力される微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの動作電圧に応じて微小強度の単色変調光との同期成分△Ii(i=1~n)が混入する多接合型太陽電池Mの出力電流を示す信号とから、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△Ii(i=1~n)を抽出して出力する。 Next, in step S13, thewavelength selection unit 1D selects a wavelength λi (i=1 to n) of monochromatic modulated light with a weak intensity.
Next, in step S14, the modulatedlight irradiation unit 1C is selected in step S13 when estimating the operating voltage of each subcell M1, . A very weak monochromatic modulated light having a wavelength λi (i=1 to n) is applied.
In step S15, thephase detection unit 1E detects the reference signal indicating the phase of the low intensity monochromatic modulated light input when the low intensity monochromatic modulated light is irradiated in step S14, and the m A signal indicating the output current of the multi-junction solar cell M in which the synchronous component ΔIi (i=1 to n) with the monochromatic modulated light of very low intensity is mixed according to the operating voltage of each of the subcells M1, . . . , Mm. , extracts and outputs a synchronous component ΔIi (i=1 to n) with a weak monochromatic modulated light mixed in the output current of the multijunction solar cell M. FIG.
次いで、ステップS14では、変調光照射部1Cが、太陽光の照射により動作中の多接合型太陽電池Mに対し、各サブセルM1、…、Mmの動作電圧の推定時に、ステップS13において選択された波長λi(i=1~n)を有する微小強度の単色変調光を照射する。
ステップS15では、位相検波部1Eが、ステップS14において微小強度の単色変調光が照射されている時に入力される微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの動作電圧に応じて微小強度の単色変調光との同期成分△Ii(i=1~n)が混入する多接合型太陽電池Mの出力電流を示す信号とから、多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△Ii(i=1~n)を抽出して出力する。 Next, in step S13, the
Next, in step S14, the modulated
In step S15, the
次いで、ステップS16では、微分抵抗算出部1Fが、微小強度の単色変調光の照射時にステップS15において出力される多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△Ii(i=1~n)に基づいて、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの動作電圧に応じた微分抵抗Rdj(j=1~m)を算出する。
次いで、ステップS17では、動作電圧算出部1Gが、ステップS16において算出された微分抵抗Rdj(j=1~m)に基づいて、m個のサブセルM1、…、Mmのそれぞれの動作電圧を算出する。 Next, in step S16, thedifferential resistance calculator 1F calculates the synchronous component of the weak intensity monochromatic modulated light mixed in the output current of the multi-junction solar cell M output in step S15 when the weak intensity monochromatic modulated light is irradiated. Based on ΔIi (i=1 to n), differential resistance Rdj (j=1 to m) corresponding to the operating voltage of each of the m subcells M1, . . . , Mm of the multijunction solar cell M is calculated. .
Next, in step S17, the operatingvoltage calculator 1G calculates respective operating voltages of the m subcells M1, . .
次いで、ステップS17では、動作電圧算出部1Gが、ステップS16において算出された微分抵抗Rdj(j=1~m)に基づいて、m個のサブセルM1、…、Mmのそれぞれの動作電圧を算出する。 Next, in step S16, the
Next, in step S17, the operating
上述したように、第1実施形態の動作電圧推定装置1によれば、多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を高精度に推定することができる。
As described above, according to the operating voltage estimating device 1 of the first embodiment, the operating voltage of each subcell M1, . . . , Mm of the multi-junction solar cell M can be estimated with high accuracy.
[第2実施形態]
以下、本発明の動作電圧推定装置および動作電圧推定方法の第2実施形態について説明する。
第2実施形態の動作電圧推定装置1は、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様に構成されている。従って、第2実施形態の動作電圧推定装置1によれば、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様の効果を奏することができる。 [Second embodiment]
A second embodiment of the operating voltage estimating device and operating voltage estimating method of the present invention will be described below.
The operatingvoltage estimating device 1 of the second embodiment is configured in the same manner as the operating voltage estimating device 1 of the first embodiment described above, except for the points described later. Therefore, according to the operating voltage estimating device 1 of the second embodiment, it is possible to obtain the same effects as the operating voltage estimating device 1 of the above-described first embodiment, except for the points described later.
以下、本発明の動作電圧推定装置および動作電圧推定方法の第2実施形態について説明する。
第2実施形態の動作電圧推定装置1は、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様に構成されている。従って、第2実施形態の動作電圧推定装置1によれば、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様の効果を奏することができる。 [Second embodiment]
A second embodiment of the operating voltage estimating device and operating voltage estimating method of the present invention will be described below.
The operating
第2実施形態の動作電圧推定装置1は、図1に示す第1実施形態の動作電圧推定装置1と同様に構成されている。第2実施形態の動作電圧推定装置1は、第1実施形態の動作電圧推定装置1と同様に、m(mは2以上の整数)個のサブセルM1、…、Mmを有する多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を推定する。
第2実施形態の動作電圧推定装置1では、第1実施形態の動作電圧推定装置1と同様に、カラーバイアス光照射部1Aが、多接合型太陽電池Mにカラーバイアス光を照射し、外部量子効率スペクトル算出部1Bは、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。 The operatingvoltage estimating device 1 of the second embodiment is configured similarly to the operating voltage estimating device 1 of the first embodiment shown in FIG. Like the operating voltage estimating device 1 of the first embodiment, the operating voltage estimating device 1 of the second embodiment has m (m is an integer equal to or greater than 2) subcells M1, . . . , Mm. Estimate the operating voltage of each subcell M1, . . . , Mm of M.
In the operatingvoltage estimating device 1 of the second embodiment, similarly to the operating voltage estimating device 1 of the first embodiment, the color bias light irradiation unit 1A irradiates the multi-junction solar cell M with color bias light, The efficiency spectrum calculator 1B calculates external quantum efficiency spectra Φj(j = 1 to m).
第2実施形態の動作電圧推定装置1では、第1実施形態の動作電圧推定装置1と同様に、カラーバイアス光照射部1Aが、多接合型太陽電池Mにカラーバイアス光を照射し、外部量子効率スペクトル算出部1Bは、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。 The operating
In the operating
上述したように、第1実施形態の動作電圧推定装置1では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有する複数のサブセルM1、…、Mmの数mとが等しい(m=n)。
一方、第2実施形態の動作電圧推定装置1では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nが、多接合型太陽電池Mが有する複数のサブセルM1、…、Mmの数mより大きい(m<n)。つまり、波長選択部1Dは、複数のサブセルM1、…、Mmの数mより大きい数nの微小強度の単色変調光の波長λi(i=1~n)を選択する(m<n)。
第2実施形態の動作電圧推定装置1では、変調光照射部1Cが、太陽光の照射により動作中の多接合型太陽電池Mに対し、各サブセルM1、…、Mmの動作電圧の推定時に、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光を照射する。つまり、変調光照射部1Cは、m個のサブセルM1、…、Mmのそれぞれの動作電圧を推定するために、波長λi(i=1~n)を有する微小強度の単色変調光を照射する(すなわち、互いに異なる波長λi(i=1~n)を有する微小強度の単色変調光をn(>m)回照射する)。 As described above, in the operatingvoltage estimating device 1 of the first embodiment, the number n of wavelengths λi (i=1 to n) of the monochromatic modulated light of very low intensity selected by the wavelength selection unit 1D and the multijunction solar The number m of the plurality of sub-cells M1, . . . , Mm that the battery M has is equal (m=n).
On the other hand, in the operatingvoltage estimating device 1 of the second embodiment, the number n of wavelengths λi (i=1 to n) of the monochromatic modulated light of very low intensity selected by the wavelength selection unit 1D is The number of sub-cells M1, . That is, the wavelength selection unit 1D selects the wavelengths λi (i=1 to n) of monochromatic modulated light with weak intensity, the number n being larger than the number m of the plurality of sub-cells M1, . . . , Mm (m<n).
In the operatingvoltage estimating device 1 of the second embodiment, when estimating the operating voltage of each of the sub-cells M1, . A weak intensity monochromatic modulated light having a wavelength λi (i=1 to n) selected by the wavelength selection unit 1D is emitted. That is, the modulated light irradiator 1C irradiates monochromatic modulated light with a weak intensity having a wavelength λi (i=1 to n) in order to estimate the operating voltage of each of the m subcells M1, . . . , Mm ( That is, n (>m) times of irradiation with weak monochromatic modulated light having different wavelengths λi (i=1 to n).
一方、第2実施形態の動作電圧推定装置1では、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nが、多接合型太陽電池Mが有する複数のサブセルM1、…、Mmの数mより大きい(m<n)。つまり、波長選択部1Dは、複数のサブセルM1、…、Mmの数mより大きい数nの微小強度の単色変調光の波長λi(i=1~n)を選択する(m<n)。
第2実施形態の動作電圧推定装置1では、変調光照射部1Cが、太陽光の照射により動作中の多接合型太陽電池Mに対し、各サブセルM1、…、Mmの動作電圧の推定時に、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光を照射する。つまり、変調光照射部1Cは、m個のサブセルM1、…、Mmのそれぞれの動作電圧を推定するために、波長λi(i=1~n)を有する微小強度の単色変調光を照射する(すなわち、互いに異なる波長λi(i=1~n)を有する微小強度の単色変調光をn(>m)回照射する)。 As described above, in the operating
On the other hand, in the operating
In the operating
第2実施形態の動作電圧推定装置1では、微分抵抗算出部1Fが、波長選択部1Dによって選択された微小強度の単色変調光の波長λi(i=1~n)の数nと等しい数の連立方程式であって、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に位相検波部1Eのロックインアンプ1E1によって抽出される微小強度の単色変調光との同期成分△Ii(i=1~n)と、微分抵抗Rdj(j=1~m)と、波長選択部1Dによって選択された波長λi(i=1~n)に対応する外部量子効率スペクトルΦj(λi)との関係を示す連立方程式(詳細には、上記の(1)式)を、行列Aと、微小強度の単色変調光との同期成分△Ii(i=1~n)を示す第1ベクトルbと、微分抵抗Rdj(j=1~m)を示す第2ベクトルxとを用いた第1関係式(b=Ax)(詳細には、下記の(2)式)で表し、最小二乗法を用いることによって、第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。
最小二乗法については、例えば下記のURLに記載されている。
https://www.osc-japan.com/wp-content/uploads/2013/04/ODN53.pdf In the operatingvoltage estimating device 1 of the second embodiment, the differential resistance calculator 1F has a number n equal to the number n of wavelengths λi (i=1 to n) of monochromatic modulated light with a weak intensity selected by the wavelength selector 1D. Simultaneous equations, the lock-in of the phase detection unit 1E when the modulated light irradiation unit 1C is irradiating the modulated light irradiation unit 1C with a weak intensity monochromatic modulated light having a wavelength λi (i = 1 to n) selected by the wavelength selection unit 1D Synchronous component ΔIi (i=1 to n) with the monochromatic modulated light of weak intensity extracted by amplifier 1E1, differential resistance Rdj (j=1 to m), and wavelength λi ( Simultaneous equations (specifically, the above equation (1)) showing the relationship with the external quantum efficiency spectrum Φj (λi) corresponding to i = 1 to n) are the matrix A and the monochromatic modulated light of very low intensity. A first relational expression (b=Ax) (details is expressed by the following equation (2), and the differential resistance Rdj (j=1 to m) corresponding to the component of the second vector x is calculated by using the method of least squares.
The method of least squares is described, for example, at the following URL.
https://www.osc-japan.com/wp-content/uploads/2013/04/ODN53.pdf
最小二乗法については、例えば下記のURLに記載されている。
https://www.osc-japan.com/wp-content/uploads/2013/04/ODN53.pdf In the operating
The method of least squares is described, for example, at the following URL.
https://www.osc-japan.com/wp-content/uploads/2013/04/ODN53.pdf
詳細には、第2実施形態の動作電圧推定装置1では、微分抵抗算出部1Fが、第1関係式(b=Ax)を、行列Aの転置行列をATとして正規方程式(ATAx=ATb)を用いて表す。また、微分抵抗算出部1Fは、正規方程式(ATAx=ATb)に含まれる第2ベクトルxを、逆行列(ATA)-1を用いた第2関係式(x=(ATA)-1ATb)で表す。更に、微分抵抗算出部1Fは、第2関係式(x=(ATA)-1ATb)を解くことによって、第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。
第2関係式(x=(ATA)-1ATb)を解く手法については、例えば下記のURLに記載されている。
http://manabukano.brilliant-future.net/lecture/dataanalysis/doc04_MRA.pdf Specifically, in the operatingvoltage estimating device 1 of the second embodiment, the differential resistance calculator 1F converts the first relational expression (b=Ax) into a normal equation ( AT Ax= A T b) is used. Further, the differential resistance calculator 1F converts the second vector x included in the normal equation (A T Ax=A T b) into a second relational expression ( x =(A T A) −1 A T b). Further, the differential resistance calculator 1F solves the second relational expression (x=(A T A) −1 A T b) to obtain differential resistance Rdj (j=1 to m ) is calculated.
A method for solving the second relational expression (x=(A T A) −1 A T b) is described, for example, at the following URL.
http://manabukano.brilliant-future.net/lecture/dataanalysis/doc04_MRA.pdf
第2関係式(x=(ATA)-1ATb)を解く手法については、例えば下記のURLに記載されている。
http://manabukano.brilliant-future.net/lecture/dataanalysis/doc04_MRA.pdf Specifically, in the operating
A method for solving the second relational expression (x=(A T A) −1 A T b) is described, for example, at the following URL.
http://manabukano.brilliant-future.net/lecture/dataanalysis/doc04_MRA.pdf
ところで、条件によっては、上述した逆行列(ATA)-1が存在しない場合(行列式|ATA|=0)、あるいは、計算機の数値誤差や測定誤差などの影響で逆行列(ATA)-1が不安定となる場合(行列式|ATA|≒0)がある。上記のURLの記載によれば、そのような場合は、行列ATAの列成分あるいは行成分が線形従属である場合に相当し、具体的には、行列ATAの列成分あるいは行成分の間に強い相関関係がある場合に相当する。つまり、互いの成分同士が非常に似ている場合には、(ATA)-1ATbの計算ができないか計算結果の精度が悪いため、第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を適切に算出することができない。
By the way, depending on the conditions, the above-mentioned inverse matrix (A T A) −1 does not exist (determinant |A T A|=0), or the inverse matrix (A T A) −1 may be unstable (determinant |A T A|≈0). According to the above URL description, such a case corresponds to the case where the column or row elements of the matrix A TA are linearly dependent, specifically, the column or row elements of the matrix A TA This corresponds to the case where there is a strong correlation between In other words, when the components of each other are very similar, (A T A) −1 A T b cannot be calculated or the accuracy of the calculation result is poor, so the differential resistance corresponding to the component of the second vector x Rdj (j=1 to m) cannot be calculated properly.
そこで、第2実施形態の動作電圧推定装置1では、逆行列(ATA)-1が存在しない場合(行列式|ATA|=0)、あるいは、計算機の数値誤差や測定誤差などの影響で逆行列(ATA)-1が不安定となる場合(行列式|ATA|≒0)に、微分抵抗算出部1Fは、リッジ回帰によって第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。
具体的には、微分抵抗算出部1Fは、第2ベクトルxを、単位行列Iと正則化定数ρとを加えた第3関係式(x=(ATA+ρI)-1ATb)で表す。正則化定数ρは計算機上の数値実験において、例えば情報量基準AICなどが最小となるよう、決定される。
情報量基準AICについては、例えば下記のURLに記載されている。
http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/inf-crite.html Therefore, in the operatingvoltage estimating device 1 of the second embodiment, when the inverse matrix (A T A) −1 does not exist (determinant |A T A |=0), When the inverse matrix (A T A) −1 becomes unstable due to the influence (determinant |A T A|≈0), the differential resistance calculator 1F performs differentiation corresponding to the component of the second vector x by ridge regression. A resistance Rdj (j=1 to m) is calculated.
Specifically, thedifferential resistance calculator 1F expresses the second vector x by a third relational expression (x=(A T A+ρI) −1 A T b) obtained by adding the unit matrix I and the regularization constant ρ. . The regularization constant ρ is determined in a numerical experiment on a computer so that, for example, the information criterion AIC is minimized.
The information amount criterion AIC is described, for example, at the following URL.
http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/inf-crite.html
具体的には、微分抵抗算出部1Fは、第2ベクトルxを、単位行列Iと正則化定数ρとを加えた第3関係式(x=(ATA+ρI)-1ATb)で表す。正則化定数ρは計算機上の数値実験において、例えば情報量基準AICなどが最小となるよう、決定される。
情報量基準AICについては、例えば下記のURLに記載されている。
http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/inf-crite.html Therefore, in the operating
Specifically, the
The information amount criterion AIC is described, for example, at the following URL.
http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/inf-crite.html
更に、第2実施形態の動作電圧推定装置1では、波長選択部1Dが、正則化定数ρを、変調光照射部1Cによって照射される微小強度の単色変調光の波長λi(i=1~n)における測定装置の測定誤差とリッジ回帰を計算する計算機の数値誤差との影響が無視できる設定値として選択する。
第2実施形態の動作電圧推定装置1においても、第1実施形態の動作電圧推定装置1と同様に、動作電圧算出部1Gは、特許文献2に記載された技術を用いることによって、微分抵抗算出部1Fによって算出された微分抵抗Rdj(j=1~m)に基づいて、m個のサブセルM1、…、Mmのそれぞれの動作電圧を算出する。
そのため、第2実施形態の動作電圧推定装置1によれば、多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を高精度に推定することができる。 Furthermore, in the operatingvoltage estimation device 1 of the second embodiment, the wavelength selection unit 1D sets the regularization constant ρ to the wavelength λi (i=1 to n ) in which the influence of the measurement error of the measuring device and the numerical error of the calculator for calculating the ridge regression is negligible.
In the operatingvoltage estimating device 1 of the second embodiment, as in the operating voltage estimating device 1 of the first embodiment, the operating voltage calculator 1G uses the technique described in Patent Document 2 to calculate the differential resistance. Based on the differential resistance Rdj (j=1 to m) calculated by the unit 1F, the operating voltage of each of the m subcells M1, . . . , Mm is calculated.
Therefore, according to the operatingvoltage estimating device 1 of the second embodiment, the operating voltage of each subcell M1, . . . , Mm of the multi-junction solar cell M can be estimated with high accuracy.
第2実施形態の動作電圧推定装置1においても、第1実施形態の動作電圧推定装置1と同様に、動作電圧算出部1Gは、特許文献2に記載された技術を用いることによって、微分抵抗算出部1Fによって算出された微分抵抗Rdj(j=1~m)に基づいて、m個のサブセルM1、…、Mmのそれぞれの動作電圧を算出する。
そのため、第2実施形態の動作電圧推定装置1によれば、多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を高精度に推定することができる。 Furthermore, in the operating
In the operating
Therefore, according to the operating
[第3実施形態]
以下、本発明の動作電圧推定装置および動作電圧推定方法の第3実施形態について説明する。
第3実施形態の動作電圧推定装置1は、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様に構成されている。従って、第3実施形態の動作電圧推定装置1によれば、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様の効果を奏することができる。 [Third embodiment]
A third embodiment of the operating voltage estimating device and operating voltage estimating method of the present invention will be described below.
The operatingvoltage estimating device 1 of the third embodiment is configured in the same manner as the operating voltage estimating device 1 of the first embodiment described above, except for the points described later. Therefore, according to the operating voltage estimating device 1 of the third embodiment, it is possible to obtain the same effects as the operating voltage estimating device 1 of the above-described first embodiment, except for the points described later.
以下、本発明の動作電圧推定装置および動作電圧推定方法の第3実施形態について説明する。
第3実施形態の動作電圧推定装置1は、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様に構成されている。従って、第3実施形態の動作電圧推定装置1によれば、後述する点を除き、上述した第1実施形態の動作電圧推定装置1と同様の効果を奏することができる。 [Third embodiment]
A third embodiment of the operating voltage estimating device and operating voltage estimating method of the present invention will be described below.
The operating
第3実施形態の動作電圧推定装置1は、図1に示す第1実施形態の動作電圧推定装置1と同様に構成されている。第3実施形態の動作電圧推定装置1は、第1実施形態の動作電圧推定装置1と同様に、m(mは2以上の整数)個のサブセルM1、…、Mmを有する多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を推定する。
第3実施形態の動作電圧推定装置1では、第1実施形態の動作電圧推定装置1と同様に、カラーバイアス光照射部1Aが、多接合型太陽電池Mにカラーバイアス光を照射し、外部量子効率スペクトル算出部1Bは、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。 The operatingvoltage estimating device 1 of the third embodiment is configured similarly to the operating voltage estimating device 1 of the first embodiment shown in FIG. Like the operating voltage estimating device 1 of the first embodiment, the operating voltage estimating device 1 of the third embodiment has m (m is an integer equal to or greater than 2) subcells M1, . . . , Mm. Estimate the operating voltage of each subcell M1, . . . , Mm of M.
In the operatingvoltage estimating device 1 of the third embodiment, similarly to the operating voltage estimating device 1 of the first embodiment, the color bias light irradiation unit 1A irradiates the multi-junction solar cell M with color bias light, The efficiency spectrum calculator 1B calculates external quantum efficiency spectra Φj(j = 1 to m).
第3実施形態の動作電圧推定装置1では、第1実施形態の動作電圧推定装置1と同様に、カラーバイアス光照射部1Aが、多接合型太陽電池Mにカラーバイアス光を照射し、外部量子効率スペクトル算出部1Bは、カラーバイアス光照射部1Aによってカラーバイアス光が多接合型太陽電池Mに照射されている時におけるm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)を算出する。 The operating
In the operating
第3実施形態の動作電圧推定装置1では、第1実施形態の動作電圧推定装置1と同様に、波長選択部1Dによって選択される微小強度の単色変調光の波長λi(i=1~n)の数nと、多接合型太陽電池Mが有する複数のサブセルM1、…、Mmの数mとが等しい(m=n)。
つまり、第3実施形態の動作電圧推定装置1では、変調光照射部1Cが、m個のサブセルM1、…、Mmのそれぞれの動作電圧を推定するために、波長λi(i=1~n)を有する微小強度の単色変調光を照射する(すなわち、互いに異なる波長λi(i=1~n)を有する微小強度の単色変調光をn(=m)回照射する)。 In the operatingvoltage estimating device 1 of the third embodiment, similarly to the operating voltage estimating device 1 of the first embodiment, the wavelength λi (i=1 to n) of the weak intensity monochromatic modulated light selected by the wavelength selection unit 1D is is equal to the number m of the plurality of sub-cells M1, . . . , Mm included in the multi-junction solar cell M (m=n).
That is, in the operatingvoltage estimating device 1 of the third embodiment, the modulated light irradiation unit 1C uses wavelengths λi (i=1 to n) to estimate the operating voltages of the m subcells M1, . . . , Mm. (that is, n (=m) irradiations of n (=m) times of n (=m) monochromatic modulated light beams with different wavelengths λi (i=1 to n) different from each other)).
つまり、第3実施形態の動作電圧推定装置1では、変調光照射部1Cが、m個のサブセルM1、…、Mmのそれぞれの動作電圧を推定するために、波長λi(i=1~n)を有する微小強度の単色変調光を照射する(すなわち、互いに異なる波長λi(i=1~n)を有する微小強度の単色変調光をn(=m)回照射する)。 In the operating
That is, in the operating
ところで、m=nの場合であっても、行列Aの行列式の値が概略ゼロである場合(|A|≒0)がある。
そこで、第3実施形態の動作電圧推定装置1では、行列Aの行列式の値が概略ゼロである場合(|A|≒0)に、微分抵抗算出部1Fが、第2実施形態の動作電圧推定装置1と同様に、リッジ回帰によって第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。
具体的には、微分抵抗算出部1Fが、波長選択部1Dによって選択された微小強度の単色変調光の波長λi(i=1~n)の数nと等しい数の連立方程式であって、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に位相検波部1Eのロックインアンプ1E1によって抽出される微小強度の単色変調光との同期成分△Ii(i=1~n)と、微分抵抗Rdj(j=1~m)と、波長選択部1Dによって選択された波長λi(i=1~n)に対応する外部量子効率スペクトルΦj(λi)との関係を示す連立方程式(詳細には、(1)式)を、行列Aと、微小強度の単色変調光との同期成分△Ii(i=1~n)を示す第1ベクトルbと、微分抵抗Rdj(j=1~m)を示す第2ベクトルxとを用いた第1関係式(b=Ax)(詳細には、(2)式)で表す。
更に、微分抵抗算出部1Fは、第1関係式(b=Ax)を、正規方程式(ATAx=ATb)を用いて表す。また、微分抵抗算出部1Fは、正規方程式(ATAx=ATb)に含まれる第2ベクトルxを、逆行列((ATA)-1)を用いた第2関係式(x=(ATA)-1ATb)で表す。
行列Aの行列式の値が概略ゼロである場合(|A|≒0)に、微分抵抗算出部1Fは、リッジ回帰によって第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。 By the way, even when m=n, the value of the determinant of matrix A may be approximately zero (|A|≈0).
Therefore, in the operatingvoltage estimating device 1 of the third embodiment, when the value of the determinant of the matrix A is approximately zero (|A|≈0), the differential resistance calculator 1F calculates the operating voltage Similar to the estimation device 1, the differential resistance Rdj (j=1 to m) corresponding to the component of the second vector x is calculated by ridge regression.
Specifically, the differentialresistance calculation unit 1F provides a number of simultaneous equations equal to the number n of wavelengths λi (i=1 to n) of monochromatic modulated light of very low intensity selected by the wavelength selection unit 1D, The minute intensity extracted by the lock-in amplifier 1E1 of the phase detection unit 1E when the modulated light irradiation unit 1C is irradiating the monochromatic modulated light having the wavelength λi (i=1 to n) selected by the selection unit 1D. Synchronous component ΔIi (i=1 to n) with intensity monochromatic modulated light, differential resistance Rdj (j=1 to m), and wavelength λi (i=1 to n) selected by wavelength selector 1D Simultaneous equations (more specifically, equation (1)) showing the relationship with the corresponding external quantum efficiency spectrum Φj (λi) are expressed by the matrix A and the synchronous component ΔIi (i=1 to n) and the second vector x representing the differential resistance Rdj (j=1 to m), the first relational expression (b=Ax) (specifically, equation (2)) show.
Further, thedifferential resistance calculator 1F expresses the first relational expression (b=Ax) using a normal equation (A T Ax=A T b). Further, the differential resistance calculator 1F converts the second vector x included in the normal equation (A T Ax=A T b) into a second relational expression (x= (A T A) −1 A T b).
When the value of the determinant of the matrix A is approximately zero (|A|≈0), thedifferential resistance calculator 1F calculates the differential resistance Rdj (j=1 to m ) is calculated.
そこで、第3実施形態の動作電圧推定装置1では、行列Aの行列式の値が概略ゼロである場合(|A|≒0)に、微分抵抗算出部1Fが、第2実施形態の動作電圧推定装置1と同様に、リッジ回帰によって第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。
具体的には、微分抵抗算出部1Fが、波長選択部1Dによって選択された微小強度の単色変調光の波長λi(i=1~n)の数nと等しい数の連立方程式であって、波長選択部1Dによって選択された波長λi(i=1~n)を有する微小強度の単色変調光が変調光照射部1Cによって照射されている時に位相検波部1Eのロックインアンプ1E1によって抽出される微小強度の単色変調光との同期成分△Ii(i=1~n)と、微分抵抗Rdj(j=1~m)と、波長選択部1Dによって選択された波長λi(i=1~n)に対応する外部量子効率スペクトルΦj(λi)との関係を示す連立方程式(詳細には、(1)式)を、行列Aと、微小強度の単色変調光との同期成分△Ii(i=1~n)を示す第1ベクトルbと、微分抵抗Rdj(j=1~m)を示す第2ベクトルxとを用いた第1関係式(b=Ax)(詳細には、(2)式)で表す。
更に、微分抵抗算出部1Fは、第1関係式(b=Ax)を、正規方程式(ATAx=ATb)を用いて表す。また、微分抵抗算出部1Fは、正規方程式(ATAx=ATb)に含まれる第2ベクトルxを、逆行列((ATA)-1)を用いた第2関係式(x=(ATA)-1ATb)で表す。
行列Aの行列式の値が概略ゼロである場合(|A|≒0)に、微分抵抗算出部1Fは、リッジ回帰によって第2ベクトルxの成分に相当する微分抵抗Rdj(j=1~m)を算出する。 By the way, even when m=n, the value of the determinant of matrix A may be approximately zero (|A|≈0).
Therefore, in the operating
Specifically, the differential
Further, the
When the value of the determinant of the matrix A is approximately zero (|A|≈0), the
第3実施形態の動作電圧推定装置1においても、第1実施形態の動作電圧推定装置1と同様に、動作電圧算出部1Gは、特許文献2に記載された技術を用いることによって、微分抵抗算出部1Fによって算出された微分抵抗Rdj(j=1~m)に基づいて、m個のサブセルM1、…、Mmのそれぞれの動作電圧を算出する。
そのため、第3実施形態の動作電圧推定装置1によれば、多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を高精度に推定することができる。 In the operatingvoltage estimating device 1 of the third embodiment, as in the operating voltage estimating device 1 of the first embodiment, the operating voltage calculator 1G uses the technique described in Patent Document 2 to calculate the differential resistance. Based on the differential resistance Rdj (j=1 to m) calculated by the unit 1F, the operating voltage of each of the m subcells M1, . . . , Mm is calculated.
Therefore, according to the operatingvoltage estimating device 1 of the third embodiment, the operating voltage of each subcell M1, . . . , Mm of the multi-junction solar cell M can be estimated with high accuracy.
そのため、第3実施形態の動作電圧推定装置1によれば、多接合型太陽電池Mの各サブセルM1、…、Mmの動作電圧を高精度に推定することができる。 In the operating
Therefore, according to the operating
<第1実施例>
第1実施例では、外部量子効率スペクトル算出部1Bが、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)として、例えば図2(A)に示すサブセルM1の外部量子効率スペクトルΦ1とサブセルM2の外部量子効率スペクトルΦ2とサブセルM3の外部量子効率スペクトルΦ3とを算出する。
外部量子効率スペクトル算出部1Bによって算出される外部量子効率スペクトルΦjの定義は、外部から太陽電池に照射される所与の波長λのエネルギーの光子の数(入射光子)に対する太陽電池によって収集された電荷キャリアの数の比である。各サブセルの外部量子効率スペクトルΦj(λ)と、標準光源の波長ごとの光子数P(λ)に電荷素量qをかけた電流換算値q・P(λ)の積qP(λ)・Φj(λ)を波長λで積分すると各サブセルの動作電圧0Vでの短絡電流に当たる。そのため、外部量子効率スペクトルΦjは各サブセルの動作電圧を表していない。
波長選択部1Dは、サブセルM1の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ短として約500(nm)(短波長)を選択し、サブセルM2の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ中として約750(nm)(中波長)を選択し、サブセルM3の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ長として約1000(nm)(長波長)を選択する。
波長選択部1Dは、各サブセルM1、M2、M3の外部量子効率スペクトルΦ1、Φ2、Φ3から1つのサブセルのみが吸収する波長を選択する。2つ以上のサブセルが吸収する波長を選択せざるを得ない場合、波長選択部1Dは、その波長を選択する。
変調光照射部1Cは、サブセルM1の動作電圧を推定するために短波長の微小強度の単色変調光を照射し、サブセルM2の動作電圧を推定するために中波長の微小強度の単色変調光を照射し、サブセルM3の動作電圧を推定するために長波長の微小強度の単色変調光を照射する。変調光照射部1Cによって照射される短波長の微小強度の単色変調光は、1段目のサブセルM1によって主に吸収され、変調光照射部1Cによって照射される中波長の微小強度の単色変調光は、2段目のサブセルM2によって主に吸収され、変調光照射部1Cによって照射される長波長の微小強度の単色変調光は、3段目のサブセルM3によって主に吸収される。 <First embodiment>
In the first embodiment, the external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj (j=1 to m) of each of the m subcells M1, . An external quantum efficiency spectrum Φ1 of the sub-cell M1, an external quantum efficiency spectrum Φ2 of the sub-cell M2, and an external quantum efficiency spectrum Φ3 of the sub-cell M3 shown in 2(A) are calculated.
The definition of the external quantum efficiency spectrum Φj calculated by the external quantum efficiency spectrum calculator 1B is the number of photons of energy of a given wavelength λ externally irradiated onto the solar cell (incident photons) collected by the solar cell is the ratio of the number of charge carriers. The product qP(λ)・Φj of the external quantum efficiency spectrum Φj(λ) of each subcell and the current conversion value qP(λ) obtained by multiplying the photon number P(λ) for each wavelength of the standard light source by the elementary charge q Integrating (λ) over the wavelength λ corresponds to the short-circuit current at the operating voltage of 0 V of each subcell. Therefore, the external quantum efficiency spectrum Φj does not represent the operating voltage of each subcell.
Thewavelength selection unit 1D selects about 500 (nm) (short wavelength) as the wavelength λ short of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C for estimating the operating voltage of the subcell M1. In order to estimate the operating voltage of M2, select about 750 (nm) (middle wavelength) as the wavelength λ of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation unit 1C, and estimate the operating voltage of the subcell M3. For this purpose, approximately 1000 (nm) (long wavelength) is selected as the wavelength λ length of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation section 1C.
Thewavelength selector 1D selects a wavelength absorbed by only one subcell from the external quantum efficiency spectra Φ1, Φ2, Φ3 of each of the subcells M1, M2, M3. When wavelengths absorbed by two or more subcells must be selected, the wavelength selector 1D selects the wavelengths.
The modulatedlight irradiation unit 1C irradiates monochromatic modulated light of short wavelength and low intensity to estimate the operating voltage of the subcell M1, and emits monochromatic modulated light of medium wavelength and low intensity to estimate the operating voltage of the subcell M2. illuminate and emit long-wavelength, low-intensity, monochromatic modulated light to estimate the operating voltage of subcell M3. The short-wavelength, low-intensity monochromatic modulated light emitted by the modulated-light irradiation unit 1C is mainly absorbed by the sub-cell M1 in the first stage, and the medium-wavelength, low-intensity monochromatic modulated light emitted by the modulated-light irradiation unit 1C is absorbed. is mainly absorbed by the sub-cell M2 on the second stage, and the monochromatic modulated light of long wavelength and low intensity irradiated by the modulated light irradiation section 1C is mainly absorbed by the sub-cell M3 on the third stage.
第1実施例では、外部量子効率スペクトル算出部1Bが、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)として、例えば図2(A)に示すサブセルM1の外部量子効率スペクトルΦ1とサブセルM2の外部量子効率スペクトルΦ2とサブセルM3の外部量子効率スペクトルΦ3とを算出する。
外部量子効率スペクトル算出部1Bによって算出される外部量子効率スペクトルΦjの定義は、外部から太陽電池に照射される所与の波長λのエネルギーの光子の数(入射光子)に対する太陽電池によって収集された電荷キャリアの数の比である。各サブセルの外部量子効率スペクトルΦj(λ)と、標準光源の波長ごとの光子数P(λ)に電荷素量qをかけた電流換算値q・P(λ)の積qP(λ)・Φj(λ)を波長λで積分すると各サブセルの動作電圧0Vでの短絡電流に当たる。そのため、外部量子効率スペクトルΦjは各サブセルの動作電圧を表していない。
波長選択部1Dは、サブセルM1の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ短として約500(nm)(短波長)を選択し、サブセルM2の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ中として約750(nm)(中波長)を選択し、サブセルM3の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ長として約1000(nm)(長波長)を選択する。
波長選択部1Dは、各サブセルM1、M2、M3の外部量子効率スペクトルΦ1、Φ2、Φ3から1つのサブセルのみが吸収する波長を選択する。2つ以上のサブセルが吸収する波長を選択せざるを得ない場合、波長選択部1Dは、その波長を選択する。
変調光照射部1Cは、サブセルM1の動作電圧を推定するために短波長の微小強度の単色変調光を照射し、サブセルM2の動作電圧を推定するために中波長の微小強度の単色変調光を照射し、サブセルM3の動作電圧を推定するために長波長の微小強度の単色変調光を照射する。変調光照射部1Cによって照射される短波長の微小強度の単色変調光は、1段目のサブセルM1によって主に吸収され、変調光照射部1Cによって照射される中波長の微小強度の単色変調光は、2段目のサブセルM2によって主に吸収され、変調光照射部1Cによって照射される長波長の微小強度の単色変調光は、3段目のサブセルM3によって主に吸収される。 <First embodiment>
In the first embodiment, the external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj (j=1 to m) of each of the m subcells M1, . An external quantum efficiency spectrum Φ1 of the sub-cell M1, an external quantum efficiency spectrum Φ2 of the sub-cell M2, and an external quantum efficiency spectrum Φ3 of the sub-cell M3 shown in 2(A) are calculated.
The definition of the external quantum efficiency spectrum Φj calculated by the external quantum efficiency spectrum calculator 1B is the number of photons of energy of a given wavelength λ externally irradiated onto the solar cell (incident photons) collected by the solar cell is the ratio of the number of charge carriers. The product qP(λ)・Φj of the external quantum efficiency spectrum Φj(λ) of each subcell and the current conversion value qP(λ) obtained by multiplying the photon number P(λ) for each wavelength of the standard light source by the elementary charge q Integrating (λ) over the wavelength λ corresponds to the short-circuit current at the operating voltage of 0 V of each subcell. Therefore, the external quantum efficiency spectrum Φj does not represent the operating voltage of each subcell.
The
The
The modulated
変調光照射部1Cによって短波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、短波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて短波長の微小強度の単色変調光との同期成分△I短が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって短波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する短波長の微小強度の単色変調光との同期成分△I短を抽出して出力する。
変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、中波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて中波長の微小強度の単色変調光との同期成分△I中が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する中波長の微小強度の単色変調光との同期成分△I中を抽出して出力する。
変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、長波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて長波長の微小強度の単色変調光との同期成分△I長が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する長波長の微小強度の単色変調光との同期成分△I長を抽出して出力する。 When the modulatedlight irradiation unit 1C irradiates the monochromatic modulated light of short wavelength and low intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of short wavelength and low intensity, and a multijunction solar cell. 1 shows the output current of a multi-junction solar cell M in which a synchronous component ΔI with a monochromatic modulated light of short wavelength and low intensity is mixed depending on the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of short wavelength and weak intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of short wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. A synchronous component ΔI with light is extracted and output.
When the modulatedlight irradiation unit 1C irradiates the monochromatic modulated light of medium wavelength and low intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase of the low intensity monochromatic modulated light of medium wavelength and a multijunction solar cell. The output current of the multi-junction solar cell M in which the synchronous component ΔI with the monochromatic modulated light of medium wavelength and low intensity is mixed is shown according to the operating voltage of each of the three sub-cells M1, M2, and M3 of the cell M. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of medium wavelength and weak intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of medium wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. The synchronous component ΔI with light is extracted and output.
When the modulatedlight irradiation unit 1C irradiates the monochromatic modulated light of long wavelength and weak intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of long wavelength and weak intensity and a multijunction solar cell. The output current of the multi-junction solar cell M in which the synchronous component ΔI length with the monochromatic modulated light of long wavelength and low intensity is mixed according to the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M is shown. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of long wavelength and low intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of long wavelength and low intensity mixed in the output current of the multi-junction solar cell M. The synchronous component ΔI length with light is extracted and output.
変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、中波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて中波長の微小強度の単色変調光との同期成分△I中が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する中波長の微小強度の単色変調光との同期成分△I中を抽出して出力する。
変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、長波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて長波長の微小強度の単色変調光との同期成分△I長が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する長波長の微小強度の単色変調光との同期成分△I長を抽出して出力する。 When the modulated
When the modulated
When the modulated
微分抵抗算出部1Fは、短波長、中波長および長波長の微小強度の単色変調光の照射時に位相検波部1Eによって出力される多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I短、△I中、△I長に基づいて、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じた微分抵抗Rdj(j=1~3)を算出する。
詳細には、微分抵抗算出部1Fは、未知数としての微分抵抗Rdj(j=1~3)の数3と等しい数の連立方程式(詳細には、下記の(3-1)式、(3-2)式、(3-3)式)を解くことによって、微分抵抗Rdj(j=1~3)を算出する。
(3-1)式、(3-2)式および(3-3)式において、△Iphは微小強度の単色変調光による光発生電流を示しており、Cは定数(=1/(ΣRdj+R))を示している。 The differentialresistance calculation unit 1F calculates the minute intensity monochromatic modulation mixed in the output current of the multi-junction solar cell M output by the phase detection unit 1E when irradiated with minute intensity monochromatic modulated light of short, medium and long wavelengths. Differential resistance Rdj (j = 1 to 3) are calculated.
Specifically, thedifferential resistance calculator 1F calculates the number of simultaneous equations equal to the number 3 of differential resistances Rdj (j=1 to 3) as unknowns (specifically, the following equations (3-1), (3- 2) and (3-3)), the differential resistance Rdj (j=1 to 3) is calculated.
In equations (3-1), (3-2) and (3-3), ΔI ph indicates the light-generated current due to monochromatic modulated light of very low intensity, and C is a constant (=1/(ΣRdj+R )).
詳細には、微分抵抗算出部1Fは、未知数としての微分抵抗Rdj(j=1~3)の数3と等しい数の連立方程式(詳細には、下記の(3-1)式、(3-2)式、(3-3)式)を解くことによって、微分抵抗Rdj(j=1~3)を算出する。
(3-1)式、(3-2)式および(3-3)式において、△Iphは微小強度の単色変調光による光発生電流を示しており、Cは定数(=1/(ΣRdj+R))を示している。 The differential
Specifically, the
In equations (3-1), (3-2) and (3-3), ΔI ph indicates the light-generated current due to monochromatic modulated light of very low intensity, and C is a constant (=1/(ΣRdj+R )).
つまり、自然太陽光または疑似太陽光の照射により動作中の多接合型太陽電池Mに微小強度の単色変調光(波長λ)を照射すると、ロックインアンプ出力に微小に重畳している変調光同期成分は重ね合わせの理から各サブセルで発生する成分の和((1)式の右辺)で表せる。
In other words, when the multi-junction solar cell M, which is in operation under the irradiation of natural sunlight or pseudo-sunlight, is irradiated with a monochromatic modulated light (wavelength λ) of very low intensity, the modulated light synchronized with the lock-in amplifier output is slightly superimposed. The component can be represented by the sum of the components generated in each subcell (right side of equation (1)) from the theory of superposition.
動作電圧算出部1Gは、特許文献2に記載された技術を用いることにより、微分抵抗算出部1Fによって算出された微分抵抗Rdj(j=1~3)に基づいて、3個のサブセルM1、M2、M3のそれぞれの動作電圧を算出する。
可能な限り、単色変調光の1波長において、Φj(λ)>0となるΦj(λ)が1個だけで、他のΦj(λ)が無視できるくらい小さくなるよう、多接合型太陽電池Mの各サブセルM1、…、Mmの外部量子効率スペクトルΦj(j=1~m)を基に、変調光照射部1Cによって照射される微小強度の単色変調光の波長λiを選択することが望ましい。 The operatingvoltage calculator 1G uses the technique described in Patent Document 2 to calculate three subcells M1 and M2 based on the differential resistance Rdj (j=1 to 3) calculated by the differential resistance calculator 1F. , M3 are calculated.
As much as possible, the multi-junction solar cell M is arranged such that there is only one Φj(λ) where Φj(λ)>0 at one wavelength of the monochromatic modulated light, and other Φj(λ) are negligibly small. It is desirable to select the wavelength λi of the weak intensity monochromatic modulated light irradiated by the modulatedlight irradiation unit 1C based on the external quantum efficiency spectrum Φj (j=1 to m) of each subcell M1, . . . , Mm.
可能な限り、単色変調光の1波長において、Φj(λ)>0となるΦj(λ)が1個だけで、他のΦj(λ)が無視できるくらい小さくなるよう、多接合型太陽電池Mの各サブセルM1、…、Mmの外部量子効率スペクトルΦj(j=1~m)を基に、変調光照射部1Cによって照射される微小強度の単色変調光の波長λiを選択することが望ましい。 The operating
As much as possible, the multi-junction solar cell M is arranged such that there is only one Φj(λ) where Φj(λ)>0 at one wavelength of the monochromatic modulated light, and other Φj(λ) are negligibly small. It is desirable to select the wavelength λi of the weak intensity monochromatic modulated light irradiated by the modulated
<第2実施例>
第2実施例では、第1実施例と同様に、外部量子効率スペクトル算出部1Bが、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)として、例えば図2(A)に示すサブセルM1の外部量子効率スペクトルΦ1とサブセルM2の外部量子効率スペクトルΦ2とサブセルM3の外部量子効率スペクトルΦ3とを算出する。
波長選択部1Dは、第1実施例と同様に、サブセルM1の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ短として約500(nm)(短波長)を選択し、サブセルM2の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ中として約750(nm)(中波長)を選択し、サブセルM3の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ長として約1000(nm)(長波長)を選択する。
変調光照射部1Cは、第1実施例と同様に、サブセルM1の動作電圧を推定するために短波長の微小強度の単色変調光を照射し、サブセルM2の動作電圧を推定するために中波長の微小強度の単色変調光を照射し、サブセルM3の動作電圧を推定するために長波長の微小強度の単色変調光を照射する。
第2実施例では、短波長の微小強度の単色変調光が、1段目のサブセルM1によって主に吸収され、後段のサブセルM2、M3によっては殆ど吸収されない、という考え方をする。また、長波長の微小強度の単色変調光が、3段目のサブセルM3によって主に吸収され、前段のサブセルM1、M2によっては殆ど吸収されない、という考え方をする。 <Second embodiment>
In the second embodiment, as in the first embodiment, the external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj (j= 1 to m), the external quantum efficiency spectrum Φ1 of the subcell M1, the external quantum efficiency spectrum Φ2 of the subcell M2, and the external quantum efficiency spectrum Φ3 of the subcell M3 shown in FIG. 2A, for example, are calculated.
As in the first embodiment, thewavelength selector 1D selects about 500 (nm) ( about 750 (nm) (medium wavelength) as the wavelength λ of the weak intensity monochromatic modulated light irradiated by the modulated light irradiation unit 1C for estimating the operating voltage of the sub-cell M2, In order to estimate the operating voltage of the sub-cell M3, approximately 1000 (nm) (long wavelength) is selected as the wavelength λ length of the monochromatic modulated light of very low intensity irradiated by the modulated light irradiation section 1C.
As in the first embodiment, the modulatedlight irradiation unit 1C irradiates monochromatic modulated light of short wavelength and low intensity for estimating the operating voltage of the subcell M1, and emits medium wavelength light for estimating the operating voltage of the subcell M2. to estimate the operating voltage of the sub-cell M3.
In the second embodiment, it is assumed that the monochromatic modulated light of short wavelength and weak intensity is mainly absorbed by the sub-cell M1 in the first stage and hardly absorbed by the sub-cells M2 and M3 in the latter stage. Further, it is assumed that the monochromatic modulated light of long wavelength and low intensity is mainly absorbed by the sub-cell M3 in the third stage and hardly absorbed by the sub-cells M1 and M2 in the preceding stage.
第2実施例では、第1実施例と同様に、外部量子効率スペクトル算出部1Bが、多接合型太陽電池Mのm個のサブセルM1、…、Mmのそれぞれの外部量子効率スペクトルΦj(j=1~m)として、例えば図2(A)に示すサブセルM1の外部量子効率スペクトルΦ1とサブセルM2の外部量子効率スペクトルΦ2とサブセルM3の外部量子効率スペクトルΦ3とを算出する。
波長選択部1Dは、第1実施例と同様に、サブセルM1の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ短として約500(nm)(短波長)を選択し、サブセルM2の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ中として約750(nm)(中波長)を選択し、サブセルM3の動作電圧を推定するために変調光照射部1Cによって照射される微小強度の単色変調光の波長λ長として約1000(nm)(長波長)を選択する。
変調光照射部1Cは、第1実施例と同様に、サブセルM1の動作電圧を推定するために短波長の微小強度の単色変調光を照射し、サブセルM2の動作電圧を推定するために中波長の微小強度の単色変調光を照射し、サブセルM3の動作電圧を推定するために長波長の微小強度の単色変調光を照射する。
第2実施例では、短波長の微小強度の単色変調光が、1段目のサブセルM1によって主に吸収され、後段のサブセルM2、M3によっては殆ど吸収されない、という考え方をする。また、長波長の微小強度の単色変調光が、3段目のサブセルM3によって主に吸収され、前段のサブセルM1、M2によっては殆ど吸収されない、という考え方をする。 <Second embodiment>
In the second embodiment, as in the first embodiment, the external quantum efficiency spectrum calculator 1B calculates the external quantum efficiency spectrum Φj (j= 1 to m), the external quantum efficiency spectrum Φ1 of the subcell M1, the external quantum efficiency spectrum Φ2 of the subcell M2, and the external quantum efficiency spectrum Φ3 of the subcell M3 shown in FIG. 2A, for example, are calculated.
As in the first embodiment, the
As in the first embodiment, the modulated
In the second embodiment, it is assumed that the monochromatic modulated light of short wavelength and weak intensity is mainly absorbed by the sub-cell M1 in the first stage and hardly absorbed by the sub-cells M2 and M3 in the latter stage. Further, it is assumed that the monochromatic modulated light of long wavelength and low intensity is mainly absorbed by the sub-cell M3 in the third stage and hardly absorbed by the sub-cells M1 and M2 in the preceding stage.
変調光照射部1Cによって短波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、短波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて短波長の微小強度の単色変調光との同期成分△I短が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって短波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する短波長の微小強度の単色変調光との同期成分△I短を抽出して出力する。
変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、中波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて中波長の微小強度の単色変調光との同期成分△I中が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する中波長の微小強度の単色変調光との同期成分△I中を抽出して出力する。
変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、長波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて長波長の微小強度の単色変調光との同期成分△I長が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する長波長の微小強度の単色変調光との同期成分△I長を抽出して出力する。 When the modulatedlight irradiation unit 1C irradiates the monochromatic modulated light of short wavelength and low intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of short wavelength and low intensity, and a multijunction solar cell. 1 shows the output current of a multi-junction solar cell M in which a synchronous component ΔI with a monochromatic modulated light of short wavelength and low intensity is mixed depending on the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of short wavelength and weak intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of short wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. A synchronous component ΔI with light is extracted and output.
When the modulatedlight irradiation unit 1C irradiates the monochromatic modulated light of medium wavelength and low intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase of the low intensity monochromatic modulated light of medium wavelength and a multijunction solar cell. The output current of the multi-junction solar cell M in which the synchronous component ΔI with the monochromatic modulated light of medium wavelength and low intensity is mixed is shown according to the operating voltage of each of the three sub-cells M1, M2, and M3 of the cell M. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of medium wavelength and weak intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of medium wavelength and weak intensity mixed in the output current of the multi-junction solar cell M. The synchronous component ΔI with light is extracted and output.
When the modulatedlight irradiation unit 1C irradiates the monochromatic modulated light of long wavelength and weak intensity, the lock-in amplifier 1E1 receives a reference signal indicating the phase of the monochromatic modulated light of long wavelength and weak intensity and a multijunction solar cell. The output current of the multi-junction solar cell M in which the synchronous component ΔI length with the monochromatic modulated light of long wavelength and low intensity is mixed according to the operating voltage of each of the three sub-cells M1, M2 and M3 of the cell M is shown. A signal is input. Further, when the modulated light irradiator 1C irradiates the monochromatic modulated light of long wavelength and low intensity, the lock-in amplifier 1E1 detects the monochromatic modulated light of long wavelength and low intensity mixed in the output current of the multi-junction solar cell M. The synchronous component ΔI length with light is extracted and output.
変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、中波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて中波長の微小強度の単色変調光との同期成分△I中が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって中波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する中波長の微小強度の単色変調光との同期成分△I中を抽出して出力する。
変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時、ロックインアンプ1E1には、長波長の微小強度の単色変調光の位相を示す参照信号と、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じて長波長の微小強度の単色変調光との同期成分△I長が混入する多接合型太陽電池Mの出力電流を示す信号とが入力される。また、変調光照射部1Cによって長波長の微小強度の単色変調光が照射されている時に、ロックインアンプ1E1は、多接合型太陽電池Mの出力電流に混入する長波長の微小強度の単色変調光との同期成分△I長を抽出して出力する。 When the modulated
When the modulated
When the modulated
微分抵抗算出部1Fは、短波長、中波長および長波長の微小強度の単色変調光の照射時に位相検波部1Eによって出力される多接合型太陽電池Mの出力電流に混入する微小強度の単色変調光との同期成分△I短、△I中、△I長に基づいて、多接合型太陽電池Mの3個のサブセルM1、M2、M3のそれぞれの動作電圧に応じた微分抵抗Rdj(j=1~3)を算出する。
詳細には、微分抵抗算出部1Fは、未知数としての微分抵抗Rdj(j=1~3)の数3と等しい数の連立方程式(詳細には、下記の(4-1)式、(4-2)式、(4-3)式)を解くことによって、微分抵抗Rdj(j=1~3)を算出する。
(4-1)式、(4-2)式および(4-3)式において、△Iphは微小強度の単色変調光による光発生電流を示しており、Cは定数(=1/(ΣRdj+R))を示している。 The differentialresistance calculation unit 1F calculates the minute intensity monochromatic modulation mixed in the output current of the multi-junction solar cell M output by the phase detection unit 1E when irradiated with minute intensity monochromatic modulated light of short, medium and long wavelengths. Differential resistance Rdj (j = 1 to 3) are calculated.
Specifically, thedifferential resistance calculator 1F calculates the number of simultaneous equations equal to the number 3 of differential resistances Rdj (j=1 to 3) as unknowns (specifically, the following equations (4-1), (4- 2) and (4-3)), the differential resistance Rdj (j=1 to 3) is calculated.
In equations (4-1), (4-2) and (4-3), ΔI ph indicates the light-generated current due to monochromatic modulated light of very low intensity, and C is a constant (=1/(ΣRdj+R )).
詳細には、微分抵抗算出部1Fは、未知数としての微分抵抗Rdj(j=1~3)の数3と等しい数の連立方程式(詳細には、下記の(4-1)式、(4-2)式、(4-3)式)を解くことによって、微分抵抗Rdj(j=1~3)を算出する。
(4-1)式、(4-2)式および(4-3)式において、△Iphは微小強度の単色変調光による光発生電流を示しており、Cは定数(=1/(ΣRdj+R))を示している。 The differential
Specifically, the
In equations (4-1), (4-2) and (4-3), ΔI ph indicates the light-generated current due to monochromatic modulated light of very low intensity, and C is a constant (=1/(ΣRdj+R )).
動作電圧算出部1Gは、特許文献2に記載された技術を用いることにより、微分抵抗算出部1Fによって算出された微分抵抗Rdj(j=1~3)に基づいて、3個のサブセルM1、M2、M3のそれぞれの動作電圧を算出する。
The operating voltage calculator 1G uses the technique described in Patent Document 2 to calculate three subcells M1 and M2 based on the differential resistance Rdj (j=1 to 3) calculated by the differential resistance calculator 1F. , M3 are calculated.
上述したように本発明の動作電圧推定装置および動作電圧推定方法では、多接合型太陽電池Mを構成する各サブセルM1、…、Mmが主に吸収する微小強度の単色変調光の波長を事前に見積もる必要がある。注目するサブセル(例えば図2(B)に示す外部量子効率スペクトルΦ2に対応するサブセルM2)が主に吸収する微小強度の単色変調光の波長と隣接するサブセル(例えば図2(B)に示す外部量子効率スペクトルΦ3に対応するサブセルM3)が主に吸収する微小強度の単色変調光の波長とが近い場合、上述した第1実施例の対応が必要になる。一方、注目するサブセル(例えば図2(A)に示す外部量子効率スペクトルΦ2に対応するサブセルM2)が主に吸収する微小強度の単色変調光の波長と隣接するサブセル(例えば図2(A)に示す外部量子効率スペクトルΦ1に対応するサブセルM1)が主に吸収する微小強度の単色変調光の波長とが近くない場合、上述した第2実施例の対応が可能になる。
As described above, in the operating voltage estimating apparatus and operating voltage estimating method of the present invention, the wavelength of monochromatic modulated light with a weak intensity mainly absorbed by each of the sub-cells M1, . I need to estimate. The subcell of interest (for example, the subcell M2 corresponding to the external quantum efficiency spectrum Φ2 shown in FIG. 2B) mainly absorbs the wavelength of the monochromatic modulated light of low intensity and the adjacent subcell (for example, the external If the wavelength is close to the wavelength of the monochromatic modulated light of very low intensity mainly absorbed by the sub-cell M3) corresponding to the quantum efficiency spectrum Φ3, the first embodiment described above is required. On the other hand, the subcell of interest (for example, subcell M2 corresponding to external quantum efficiency spectrum Φ2 shown in FIG. If the wavelength of the subcell M1) corresponding to the external quantum efficiency spectrum Φ1 shown is not close to the wavelength of the monochromatic modulated light of low intensity that is mainly absorbed, the second embodiment described above is possible.
以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上述した各実施形態および各例に記載の構成を組み合わせてもよい。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and modifications can be made as appropriate without departing from the scope of the present invention. . You may combine the structure as described in each embodiment and each example which were mentioned above.
なお、上記の実施形態における動作電圧推定装置1の全部または一部は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。
なお、動作電圧推定装置1の全部または一部は、メモリおよびCPU(中央演算装置)により構成され、各システムが備える各部の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。
なお、動作電圧推定装置1の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 All or part of the operatingvoltage estimating apparatus 1 in the above embodiment may be implemented by dedicated hardware, or may be implemented by a memory and a microprocessor.
All or part of the operatingvoltage estimating apparatus 1 is composed of a memory and a CPU (Central Processing Unit). It may be one that realizes a function.
A program for realizing all or part of the functions of the operatingvoltage estimating device 1 may be recorded in a computer-readable recording medium, and the program recorded in the recording medium may be read and executed by a computer system. Each part may be processed by . It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The "computer system" also includes the home page providing environment (or display environment) if the WWW system is used.
The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It also includes those that hold programs for a certain period of time, such as volatile memories inside computer systems that serve as servers and clients in that case. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
なお、動作電圧推定装置1の全部または一部は、メモリおよびCPU(中央演算装置)により構成され、各システムが備える各部の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。
なお、動作電圧推定装置1の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 All or part of the operating
All or part of the operating
A program for realizing all or part of the functions of the operating
The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It also includes those that hold programs for a certain period of time, such as volatile memories inside computer systems that serve as servers and clients in that case. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
1…動作電圧推定装置、1A…カラーバイアス光照射部、1B…外部量子効率スペクトル算出部、1C…変調光照射部、1C1…レーザ光照射部、1C2…チョッパ制御部、1D…波長選択部、1E…位相検波部、1E1…ロックインアンプ、1F…微分抵抗算出部、1G…動作電圧算出部、11…電流クランプセンサ、M…多接合型太陽電池、M1…サブセル、M2…サブセル、M3…サブセル、R…負荷抵抗
Reference Signs List 1 operating voltage estimating device 1A color bias light irradiation unit 1B external quantum efficiency spectrum calculation unit 1C modulated light irradiation unit 1C1 laser light irradiation unit 1C2 chopper control unit 1D wavelength selection unit 1E... phase detector, 1E1... lock-in amplifier, 1F... differential resistance calculator, 1G... operating voltage calculator, 11... current clamp sensor, M... multi-junction solar cell, M1... sub-cell, M2... sub-cell, M3... Subcell, R... Load resistance
Claims (11)
- 複数のサブセルを有する多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧を推定する動作電圧推定装置であって、
前記多接合型太陽電池にカラーバイアス光を照射するカラーバイアス光照射部と、
前記カラーバイアス光照射部によって前記カラーバイアス光が前記多接合型太陽電池に照射されている時における前記複数のサブセルのそれぞれの外部量子効率スペクトルを算出する外部量子効率スペクトル算出部と、
太陽光の照射により動作中の前記多接合型太陽電池に対し、前記複数のサブセルのそれぞれの動作電圧の推定時に微小強度の単色変調光を照射する変調光照射部と、
前記変調光照射部によって照射される前記単色変調光の波長を選択する波長選択部と、
前記変調光照射部によって前記単色変調光が照射されている時に、前記単色変調光の位相を示す参照信号と、前記多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧に応じて前記単色変調光との同期成分が混入する前記多接合型太陽電池の出力電流を示す信号とが入力され、前記多接合型太陽電池の出力電流に混入する前記単色変調光との同期成分を抽出して出力する位相検波部と、
前記単色変調光の照射時に前記位相検波部によって出力される前記単色変調光との同期成分に基づいて、前記複数のサブセルのそれぞれの動作電圧に応じた微分抵抗を算出する微分抵抗算出部と、
前記微分抵抗算出部によって算出された前記微分抵抗に基づいて、前記複数のサブセルのそれぞれの動作電圧を算出する動作電圧算出部とを備える、
動作電圧推定装置。 An operating voltage estimating device for estimating operating voltages of each of a plurality of sub-cells of a multi-junction solar cell having a plurality of sub-cells,
a color bias light irradiation unit that irradiates the multijunction solar cell with color bias light;
an external quantum efficiency spectrum calculating unit for calculating an external quantum efficiency spectrum of each of the plurality of sub-cells when the multi-junction solar cell is irradiated with the color bias light by the color bias light irradiation unit;
a modulated light irradiator that irradiates the multi-junction solar cell, which is in operation under irradiation with sunlight, with a monochromatic modulated light of very low intensity when estimating the operating voltage of each of the plurality of sub-cells;
a wavelength selection unit that selects a wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit;
When the modulated light irradiation section irradiates the monochromatic modulated light, the monochromatic light according to a reference signal indicating the phase of the monochromatic modulated light and the operating voltage of each of the plurality of sub-cells of the multi-junction solar cell A signal indicating the output current of the multi-junction solar cell mixed with the synchronous component with the modulated light is input, and the synchronous component with the monochromatic modulated light mixed in the output current of the multi-junction solar cell is extracted. an output phase detector;
a differential resistance calculation unit that calculates a differential resistance corresponding to the operating voltage of each of the plurality of sub-cells based on a synchronous component with the monochromatic modulated light output by the phase detection unit when the monochromatic modulated light is irradiated;
an operating voltage calculator that calculates the operating voltage of each of the plurality of sub-cells based on the differential resistance calculated by the differential resistance calculator;
Operating voltage estimator. - 前記波長選択部によって選択される前記単色変調光の波長の数は、前記複数のサブセルの数と等しく、
前記波長選択部は、前記外部量子効率スペクトル算出部によって算出された前記複数のサブセルのそれぞれの外部量子効率スペクトルに基づいて、前記単色変調光の波長を選択する、
請求項1に記載の動作電圧推定装置。 the number of wavelengths of the monochromatic modulated light selected by the wavelength selection unit is equal to the number of the plurality of sub-cells;
The wavelength selection unit selects the wavelength of the monochromatic modulated light based on the external quantum efficiency spectrum of each of the plurality of sub-cells calculated by the external quantum efficiency spectrum calculation unit.
The operating voltage estimating device according to claim 1. - 前記波長選択部は、前記変調光照射部によって照射される前記単色変調光の波長として、前記外部量子効率スペクトル算出部によって算出された前記複数のサブセルのそれぞれの外部量子効率スペクトルのピークに対応する波長を選択する、
請求項2に記載の動作電圧推定装置。 The wavelength selection unit corresponds to the peak of the external quantum efficiency spectrum of each of the plurality of sub-cells calculated by the external quantum efficiency spectrum calculation unit as the wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit. select a wavelength,
The operating voltage estimating device according to claim 2. - 前記微分抵抗算出部は、
未知数としての前記微分抵抗の数と等しい数の連立方程式であって、前記波長選択部によって選択された波長を有する前記単色変調光が前記変調光照射部によって照射されている時に前記位相検波部によって抽出される前記単色変調光との同期成分と、前記微分抵抗と、前記波長選択部によって選択された波長に対応する前記外部量子効率スペクトルとの関係を示す連立方程式を解くことによって、前記微分抵抗を算出する、
請求項2に記載の動作電圧推定装置。 The differential resistance calculator,
Simultaneous equations of a number equal to the number of the differential resistances as unknowns, wherein the phase detection unit detects when the monochromatic modulated light having the wavelength selected by the wavelength selection unit is irradiated by the modulated light irradiation unit. By solving simultaneous equations showing the relationship between the synchronous component with the extracted monochromatic modulated light, the differential resistance, and the external quantum efficiency spectrum corresponding to the wavelength selected by the wavelength selection unit, the differential resistance to calculate
The operating voltage estimating device according to claim 2. - 前記波長選択部は、前記複数のサブセルの数より大きい数の前記単色変調光の波長を選択する、
請求項1に記載の動作電圧推定装置。 The wavelength selection unit selects wavelengths of the monochromatic modulated light that are greater in number than the number of the plurality of sub-cells.
The operating voltage estimating device according to claim 1. - 前記微分抵抗算出部は、
前記波長選択部によって選択された前記単色変調光の波長の数と等しい数の連立方程式であって、前記波長選択部によって選択された波長の前記単色変調光が前記変調光照射部によって照射されている時に前記位相検波部によって抽出される前記単色変調光との同期成分と、前記微分抵抗と、前記波長選択部によって選択された波長に対応する前記外部量子効率スペクトルとの関係を示す連立方程式を、行列と、前記単色変調光との同期成分を示す第1ベクトルと、前記微分抵抗を示す第2ベクトルとを用いた第1関係式で表し、最小二乗法を用いることによって、前記第2ベクトルの成分に相当する前記微分抵抗を算出する、
請求項5に記載の動作電圧推定装置。 The differential resistance calculator,
a number of simultaneous equations equal to the number of wavelengths of the monochromatic modulated light selected by the wavelength selection unit, wherein the monochromatic modulated light of the wavelengths selected by the wavelength selection unit is irradiated by the modulated light irradiation unit; Simultaneous equations showing the relationship between the synchronous component with the monochromatic modulated light extracted by the phase detection unit when the phase detector, the differential resistance, and the external quantum efficiency spectrum corresponding to the wavelength selected by the wavelength selection unit , a matrix, a first vector indicating the synchronous component with the monochromatic modulated light, and a second vector indicating the differential resistance, and using the least squares method, the second vector calculating the differential resistance corresponding to the component of
The operating voltage estimating device according to claim 5. - 前記微分抵抗算出部は、
前記第1関係式を、正規方程式を用いて表し、
前記正規方程式に含まれる前記第2ベクトルを、逆行列を用いた第2関係式で表し、
前記第2関係式を解くことによって、前記第2ベクトルの成分に相当する前記微分抵抗を算出する、
請求項6に記載の動作電圧推定装置。 The differential resistance calculator,
The first relational expression is expressed using a normal equation,
The second vector included in the normal equation is represented by a second relational expression using an inverse matrix,
calculating the differential resistance corresponding to the component of the second vector by solving the second relational expression;
The operating voltage estimating device according to claim 6. - 前記微分抵抗算出部は、
前記逆行列が存在しない場合、あるいは、前記逆行列が不安定となる場合に、
リッジ回帰によって前記第2ベクトルの成分に相当する前記微分抵抗を算出する、
請求項7に記載の動作電圧推定装置。 The differential resistance calculator,
If the inverse matrix does not exist, or if the inverse matrix becomes unstable,
calculating the differential resistance corresponding to the component of the second vector by ridge regression;
The operating voltage estimating device according to claim 7. - 前記微分抵抗算出部は、
前記第2ベクトルを、単位行列と正則化定数とを加えた第3関係式で表し、
前記波長選択部は、前記正則化定数を、前記変調光照射部によって照射される前記単色変調光の波長における測定装置の測定誤差とリッジ回帰を計算する計算機の数値誤差との影響が無視できる設定値として選択する、
請求項8に記載の動作電圧推定装置。 The differential resistance calculator,
The second vector is represented by a third relational expression in which a unit matrix and a regularization constant are added,
The wavelength selection unit sets the regularization constant so that the effects of the measurement error of a measuring device and the numerical error of a computer for calculating ridge regression in the wavelength of the monochromatic modulated light irradiated by the modulated light irradiation unit can be ignored. Select as value,
The operating voltage estimating device according to claim 8. - 前記波長選択部は、前記複数のサブセルの数と等しい数の前記単色変調光の波長を選択し、
前記微分抵抗算出部は、
前記波長選択部によって選択された前記単色変調光の波長の数と等しい数の連立方程式であって、前記波長選択部によって選択された波長の前記単色変調光が前記変調光照射部によって照射されている時に前記位相検波部によって抽出される前記単色変調光との同期成分と、前記微分抵抗と、前記波長選択部によって選択された波長に対応する前記外部量子効率スペクトルとの関係を示す連立方程式を、行列と、前記単色変調光との同期成分を示す第1ベクトルと、前記微分抵抗を示す第2ベクトルとを用いた第1関係式で表し、 前記第1関係式を、正規方程式を用いて表し、
前記正規方程式に含まれる前記第2ベクトルを、逆行列を用いた第2関係式で表し、
前記行列の行列式の値が概略ゼロである場合に、
リッジ回帰によって前記第2ベクトルの成分に相当する前記微分抵抗を算出する、
請求項1に記載の動作電圧推定装置。 The wavelength selection unit selects a number of wavelengths of the monochromatic modulated light equal to the number of the plurality of sub-cells,
The differential resistance calculator,
a number of simultaneous equations equal to the number of wavelengths of the monochromatic modulated light selected by the wavelength selection unit, wherein the monochromatic modulated light of the wavelengths selected by the wavelength selection unit is irradiated by the modulated light irradiation unit; Simultaneous equations showing the relationship between the synchronous component with the monochromatic modulated light extracted by the phase detection unit when the phase detector, the differential resistance, and the external quantum efficiency spectrum corresponding to the wavelength selected by the wavelength selection unit , a first relational expression using a matrix, a first vector indicating a synchronous component with the monochromatic modulated light, and a second vector indicating the differential resistance, and the first relational expression is expressed using a normal equation represent,
The second vector included in the normal equation is represented by a second relational expression using an inverse matrix,
if the value of the determinant of said matrix is approximately zero,
calculating the differential resistance corresponding to the component of the second vector by ridge regression;
The operating voltage estimating device according to claim 1. - 複数のサブセルを有する多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧を推定する動作電圧推定方法であって、
前記多接合型太陽電池にカラーバイアス光を照射するカラーバイアス光照射ステップと、
前記カラーバイアス光照射ステップにおいて前記カラーバイアス光が前記多接合型太陽電池に照射されている時における前記複数のサブセルのそれぞれの外部量子効率スペクトルを算出する外部量子効率スペクトル算出ステップと、
太陽光の照射により動作中の前記多接合型太陽電池に対し、前記複数のサブセルのそれぞれの動作電圧の推定時に微小強度の単色変調光を照射する変調光照射ステップと、
前記変調光照射ステップにおいて照射される前記単色変調光の波長を選択する波長選択ステップと、
前記変調光照射ステップにおいて前記単色変調光が照射されている時に、前記単色変調光の位相を示す参照信号と、前記多接合型太陽電池の前記複数のサブセルのそれぞれの動作電圧に応じて前記単色変調光との同期成分が混入する前記多接合型太陽電池の出力電流を示す信号とが入力され、前記多接合型太陽電池の出力電流に混入する前記単色変調光との同期成分を抽出して出力する位相検波ステップと、
前記単色変調光の照射時に前記位相検波ステップにおいて出力される前記単色変調光との同期成分に基づいて、前記複数のサブセルのそれぞれの動作電圧に応じた微分抵抗を算出する微分抵抗算出ステップと、
前記微分抵抗算出ステップにおいて算出された前記微分抵抗に基づいて、前記複数のサブセルのそれぞれの動作電圧を算出する動作電圧算出ステップとを備える、
動作電圧推定方法。 An operating voltage estimation method for estimating the operating voltage of each of a plurality of sub-cells of a multi-junction solar cell having a plurality of sub-cells, comprising:
a color bias light irradiation step of irradiating the multijunction solar cell with color bias light;
an external quantum efficiency spectrum calculating step of calculating an external quantum efficiency spectrum of each of the plurality of sub-cells when the multi-junction solar cell is irradiated with the color bias light in the color bias light irradiation step;
a modulated light irradiation step of irradiating the multi-junction solar cell, which is in operation by irradiation with sunlight, with a monochromatic modulated light having a weak intensity when estimating the operating voltage of each of the plurality of sub-cells;
a wavelength selection step of selecting a wavelength of the monochromatic modulated light irradiated in the modulated light irradiation step;
When the monochromatic modulated light is irradiated in the modulated light irradiation step, the monochromatic light is irradiated according to a reference signal indicating the phase of the monochromatic modulated light and the operating voltage of each of the plurality of subcells of the multijunction solar cell. A signal indicating the output current of the multi-junction solar cell mixed with the synchronous component with the modulated light is input, and the synchronous component with the monochromatic modulated light mixed in the output current of the multi-junction solar cell is extracted. a phase detection step to be output;
a differential resistance calculation step of calculating a differential resistance corresponding to an operating voltage of each of the plurality of sub-cells based on a synchronous component with the monochromatic modulated light output in the phase detection step when the monochromatic modulated light is irradiated;
an operating voltage calculating step of calculating an operating voltage of each of the plurality of sub-cells based on the differential resistance calculated in the differential resistance calculating step;
Operating voltage estimation method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021181765A JP2023069699A (en) | 2021-11-08 | 2021-11-08 | Operating voltage estimating apparatus and operating voltage estimating method |
JP2021-181765 | 2021-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023080149A1 true WO2023080149A1 (en) | 2023-05-11 |
Family
ID=86241542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040959 WO2023080149A1 (en) | 2021-11-08 | 2022-11-02 | Operating voltage estimation device and operating voltage estimation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023069699A (en) |
WO (1) | WO2023080149A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011119629A (en) * | 2009-10-28 | 2011-06-16 | Finesensing Corp | Device and method of evaluating multijunction solar cell |
JP2013089632A (en) * | 2011-10-13 | 2013-05-13 | Sharp Corp | Spectral sensitivity measurement method, spectral sensitivity measurement device and control program therefor |
JP2013156132A (en) * | 2012-01-30 | 2013-08-15 | Konica Minolta Inc | Solar cell evaluation device and solar cell evaluation method |
WO2020122105A1 (en) * | 2018-12-13 | 2020-06-18 | 学校法人帝京大学 | Estimation method for operation voltage of solar battery cell in solar cell module and solar battery cell operation voltage estimation system |
-
2021
- 2021-11-08 JP JP2021181765A patent/JP2023069699A/en active Pending
-
2022
- 2022-11-02 WO PCT/JP2022/040959 patent/WO2023080149A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011119629A (en) * | 2009-10-28 | 2011-06-16 | Finesensing Corp | Device and method of evaluating multijunction solar cell |
JP2013089632A (en) * | 2011-10-13 | 2013-05-13 | Sharp Corp | Spectral sensitivity measurement method, spectral sensitivity measurement device and control program therefor |
JP2013156132A (en) * | 2012-01-30 | 2013-08-15 | Konica Minolta Inc | Solar cell evaluation device and solar cell evaluation method |
WO2020122105A1 (en) * | 2018-12-13 | 2020-06-18 | 学校法人帝京大学 | Estimation method for operation voltage of solar battery cell in solar cell module and solar battery cell operation voltage estimation system |
Non-Patent Citations (1)
Title |
---|
YASUYUKI KOBAYASHI; DAICHI KIKUMOTO: "Contactless Estimation of a Solar Cell Voltage in a Module Using Modulated Light and a Phase Detector", ELECTRICAL ENGINEERING IN JAPAN, JOHN WILEY & SONS, INC., US, vol. 204, no. 2, 1 March 2018 (2018-03-01), US , pages 3 - 12, XP071651637, ISSN: 0424-7760, DOI: 10.1002/eej.23092 * |
Also Published As
Publication number | Publication date |
---|---|
JP2023069699A (en) | 2023-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements | |
Yıldıran et al. | Identification of photovoltaic cell single diode discrete model parameters based on datasheet values | |
Fernández et al. | A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations | |
Siefer et al. | Analysis of temperature coefficients for III–V multi‐junction concentrator cells | |
Atre et al. | Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies | |
Ulbrich et al. | Matching of silicon thin‐film tandem solar cells for maximum power output | |
Juhl et al. | The impact of voltage independent carriers on implied voltage measurements on silicon devices | |
Martinez et al. | Theoretical limits of multiple exciton generation and singlet fission tandem devices for solar water splitting | |
Steiner et al. | An investigation of solar cell interconnection schemes within CPV modules using a validated temperature‐dependent SPICE network model | |
Hussain et al. | Modelling and simulation of single-and triple-junction solar cells using MATLAB/SIMULINK | |
Bett et al. | Spectrometric characterization of monolithic perovskite/silicon tandem solar cells | |
WO2023080149A1 (en) | Operating voltage estimation device and operating voltage estimation method | |
Zheng | Solar photovoltaic energy generation and conversion—from devices to grid integration | |
Shvarts et al. | Overcoming the luminescent coupling effect in experimental search for the actual quantum efficiency values in multi-junction solar cells | |
Nesswetter et al. | Determination of subcell IV parameters by a pulsed suns-Voc method including optical coupling | |
Young et al. | A new real-time quantum efficiency measurement system | |
Palma et al. | A home-made system for IPCE measurement of standard and dye-sensitized solar cells | |
Reichmuth et al. | Transient IV measurement set-up for photovoltaic laser power converters under monochromatic irradiance | |
Song et al. | How Should Researchers Measure Perovskite‐Based Monolithic Multijunction Solar Cells’ Performance? A Calibration Lab's Perspective | |
Tayagaki et al. | Transient analysis of luminescent coupling effects in multi-junction solar cells | |
JP2013156132A (en) | Solar cell evaluation device and solar cell evaluation method | |
Zeiske et al. | Importance of spectrally invariant broadband attenuation of light in indoor photovoltaic characterization | |
Rutzinger et al. | Determination of subcell open circuit voltages and Iph–Voc curves in multijunction solar cells by sequentially pulsed, monochromatic illumination | |
Chitti Babu et al. | Analysis of photovoltaic (PV) module during partial shading based on simplified two-diode model | |
Lunin et al. | Simulation and investigation of the GaAs and GaSb photovoltaic cell performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |