WO2023079942A1 - Lower extremity control capability measurement device, lower extremity control capability measurement system, lower extremity control capability measurement program, computer-readable recording medium recording lower extremity control capability measurement program, and lower extremity control capability measurement method - Google Patents

Lower extremity control capability measurement device, lower extremity control capability measurement system, lower extremity control capability measurement program, computer-readable recording medium recording lower extremity control capability measurement program, and lower extremity control capability measurement method Download PDF

Info

Publication number
WO2023079942A1
WO2023079942A1 PCT/JP2022/038691 JP2022038691W WO2023079942A1 WO 2023079942 A1 WO2023079942 A1 WO 2023079942A1 JP 2022038691 W JP2022038691 W JP 2022038691W WO 2023079942 A1 WO2023079942 A1 WO 2023079942A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
index
control ability
lower limb
limb control
Prior art date
Application number
PCT/JP2022/038691
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 下河内
晋史郎 峯田
Original Assignee
学校法人浪商学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人浪商学園 filed Critical 学校法人浪商学園
Publication of WO2023079942A1 publication Critical patent/WO2023079942A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present invention provides a lower-limb control ability measuring device for measuring lower-limb control ability, a lower-limb control ability measuring system, a lower-limb control ability measuring program, a computer-readable recording medium recording the lower-limb control ability measuring program, and a lower-limb control ability measuring method. Regarding.
  • Patent Document 1. reference. Conventionally, there has been known a technique in which a sensor is attached to a user's body to obtain long-term sensor data, and a neural network is used to estimate a motor function from the long-term sensor data (for example, Patent Document 1. reference.).
  • An object of the present invention is to provide a lower-limb control ability measuring device, a lower-limb control ability measuring system, a lower-limb control ability measuring program, a computer-readable recording medium recording the lower-limb control ability measuring program, which facilitates measuring lower-limb control ability, and to provide a lower limb control ability measuring method.
  • a lower-limb control ability measuring device is a test subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh, and flexes and/or bends the knee joint while resisting a load.
  • a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device during a period in which the knee flexion motion including the extension motion is performed, and a detection that arranges the physical quantities acquired by the physical quantity acquisition unit along the time axis.
  • a first waveform acquisition unit that acquires a first waveform based on the waveform; a second waveform acquisition unit that acquires a second waveform by smoothing the first waveform; an index calculation unit that calculates a sum of absolute values of differences between the first waveform and the second waveform as a first index representing the lower limb control ability of the subject.
  • a lower-limb control ability measuring system includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
  • a lower-limb control ability measuring program causes a computer to function as the above-described lower-limb control ability measuring device.
  • a computer-readable recording medium records the lower limb control ability measurement program described above.
  • a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition process for acquiring physical quantities detected by the physical quantity detection device during a period in which a knee flexion exercise including an extending motion is performed; and arranging the physical quantities acquired by the physical quantity acquisition process along a time axis.
  • a first waveform acquisition process for acquiring a first waveform based on the detected waveform
  • the first waveform and the second waveform and an index calculation process of calculating the sum of the absolute values of the differences between and as a first index representing the lower limb control ability of the subject.
  • the lower limb control ability measuring system performs principal component analysis using the above-described lower limb control ability measuring device and the first index IA(z) obtained from a plurality of subjects as variables, a principal component analysis unit that obtains the first principal component of the principal component analysis as the formula (1).
  • a lower limb control ability measuring system includes the lower limb control ability measuring device described above, and the first index IA(x) and the first index IA(z) obtained from a plurality of subjects as variables and a principal component analysis unit that performs a principal component analysis to obtain the first principal component of the principal component analysis as the formula (2).
  • a leg control ability measuring system includes the leg control ability measuring device described above, the first index IA(x) obtained from a plurality of subjects, the first index IA(y), and a principal component analysis unit that performs principal component analysis with the first index IA(z) as a variable and obtains the first principal component of the principal component analysis as the above equation (3).
  • the lower limb control ability measuring system performs principal component analysis using the above-described lower limb control ability measuring device and the second index IB obtained from a plurality of subjects as variables, and the principal component and a principal component analysis unit that obtains the first principal component of the analysis as the above equation (4).
  • FIG. 2 is a block diagram showing an example of an electrical configuration of the physical quantity detection device shown in FIG. 1;
  • FIG. It is a wave form diagram which shows an example of the 1st waveform W1 and the 2nd waveform W2.
  • 4 is a graph showing an example of angular velocities when a subject wearing the physical quantity detection device shown in FIG. 1 on the thigh performs squat exercise five times.
  • 2 is a flow chart showing an example of a method for generating equations (1) to (4) by the lower limb control ability measurement system shown in FIG.
  • FIG. 1 2 is a flow chart showing an example of a method for generating equations (1) to (4) by the lower limb control ability measurement system shown in FIG. 1; 9 is a flowchart showing an example of first index acquisition processing;
  • FIG. 4 is an explanatory diagram showing a knee joint valgus angle Rk;
  • FIG. 2 is a flow chart showing an example of the operation of an index calculation unit shown in FIG. 1;
  • FIG. 4 is a spectrum diagram of an experimentally obtained angular velocity detection waveform;
  • FIG. Multiple correlation coefficient R obtained by multiple regression analysis for formula (1), multiple contribution rate R 2 , partial regression coefficient a, constant (intercept) c, standard partial regression coefficient ⁇ , and p value (p value) are shown. It is a table.
  • 10 is a table showing multiple correlation coefficient R, multiple contribution rate R 2 , partial regression coefficients c and d, constant e, standard partial regression coefficient ⁇ , and p value obtained by multiple regression analysis for Equation (2).
  • 4 is a table showing multiple correlation coefficient R, multiple contribution rate R 2 , partial regression coefficient i, constant j, standard partial regression coefficient ⁇ , and p-value obtained by multiple regression analysis for Equation (4).
  • FIG. 1 is an explanatory diagram showing an example of the configuration of a lower limb control ability measuring system according to one embodiment of the present invention.
  • a lower-limb control ability measuring system 1 shown in FIG. 1 includes a lower-limb control ability measuring device 2 and a physical quantity detection device 3 .
  • the lower limb control ability measurement system 1 is a system for measuring the subject U's lower limb control ability as an index IX.
  • the index IX can be LEECam Index representing the subject U's lower extremity eccentric control ability (LEEC: Lower Extremity Eccentric Control).
  • the index IX includes the first index IA(x), the first index IA(y), the first index IA(z), the second index IB, the knee joint valgus peak angle Rkp, and the subject U from a predetermined height. It includes the increment ⁇ GRF per unit time of the reaction force in the vertical direction from the landing point when landing.
  • the lower-limb control ability measuring system 1 can measure an index IX that is an index of the motor function of the subject's U lower limbs. If the motor function of the lower extremities of the subject U can be grasped as the index IX, it can be used to maintain and improve the motor function of the lower extremities of the subject U.
  • the lower limb control ability measuring device 2 is configured using, for example, a so-called personal computer.
  • the lower limb control ability measuring device 2 includes, for example, a control section 21, a display 22, a keyboard 23, a mouse 24, and a sensor I/F section 25 (physical quantity acquisition section).
  • the lower-limb control ability measuring device 2 is not limited to an example configured using a personal computer, and may be, for example, a smart phone, a tablet terminal, or the like.
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the physical quantity detection device 3 shown in FIG.
  • the physical quantity detection device 3 shown in FIG. 2 includes an angular velocity sensor 31 , a storage section 32 , an external I/F (interface) section 33 and a control section 34 .
  • the lower limb control ability measuring system 1 uses a small information processing device such as a so-called smartphone equipped with an angular velocity sensor 31 to integrate the lower limb control ability measuring device 2 and the physical quantity detection device 3 into a single device. It may be a system with
  • the angular velocity sensor 31 is, for example, an angular velocity sensor that detects an angular velocity Ax around the X axis, an angular velocity Ay around the Y axis, and an angular velocity Az around the Z axis in X, Y, Z orthogonal coordinates.
  • Angular velocities Ax, Ay, and Az are collectively referred to as angular velocities A hereinafter.
  • the physical quantity detection device 3 may include an acceleration sensor for detecting X-axis direction acceleration, Y-axis direction acceleration, and Z-axis direction acceleration. good. Angular velocity and acceleration are examples of physical quantities.
  • the physical quantity detection device 3 is not limited to detecting the angular velocity A and/or the acceleration with the angular velocity sensor 31 and/or the acceleration sensor.
  • the physical quantity detection device 3 includes, for example, a camera (for example, a high-speed camera) that captures the knee bending motion of the subject U, and performs three-dimensional motion analysis from the video, thereby detecting the angular velocity A and/or acceleration. .
  • Fig. 1 shows a single leg squat exercise as an example of knee flexion exercise.
  • a single leg squat exercise is a knee flexion exercise that involves flexing and extending the knee joint of one leg while resisting a load (gravity).
  • the knee flexion exercise is not limited to single-leg squat exercise, and may be double-leg squat exercise.
  • the double-leg squat is suitable for assessing lower-limb control ability related to the walking and balance functions of middle-aged and elderly people, and the single-leg squat is suitable for evaluating the lower-limb control ability related to the possibility of injury in athletes.
  • knee bending exercise is not limited to the squat exercise.
  • Various exercises can be used as the knee bending exercise.
  • knee flexion motions suitable for evaluation of lower limb control ability of middle-aged and elderly persons include motions of sitting on a chair, motions of standing up, motions of climbing stairs, and motions of running.
  • knee flexion exercises suitable for evaluating lower limb control ability related to the possibility of injury occurrence of athletes double leg vertical jump, single leg vertical jump, stop motion, side step motion, double leg landing motion, drop jump motion, A double-leg rebound jump motion, a single-leg rebound jump motion, and the like are included.
  • a stop motion is a motion to stop suddenly from a running state.
  • a drop-jump motion is a motion of jumping off a platform.
  • a rebound jump is an action of continuously jumping, such as jumping with a jump rope.
  • the load in the knee bending motion is not limited to gravity.
  • it may be a load applied to the leg due to motion such as lateral movement, stopping from lateral movement, or the like.
  • it may be a load applied to the leg by a spring or a weight.
  • the X axis of the angular velocity sensor 31 is the long axis direction of the thigh of the subject U
  • the Y axis of the angular velocity sensor 31 is the longitudinal direction of the thigh of the subject U
  • the Z axis of the angular velocity sensor 31 The physical quantity detection device 3 is attached to the thigh of the subject U so that the axis extends along the lateral direction of the thigh of the subject.
  • the storage unit 32 is a non-volatile storage device configured using, for example, flash memory.
  • the external I/F unit 33 is a communication interface circuit that is connected to the sensor I/F unit 25 of the lower limb control ability measuring device 2 via, for example, an unillustrated cable or the like, and that can transmit data to the lower limb control ability measuring device 2. .
  • the external I/F unit 33 is not limited to transmitting data to the lower-limb control ability measuring device 2 by wire, and may be a wireless communication circuit that transmits data to the lower-limb control ability measuring device 2 using a radio signal.
  • the storage unit 32 may be configured by a removable storage medium such as a memory card, and the external I/F unit 33 may be a connector or the like that allows the storage medium to be removed.
  • the control unit 34 is configured using, for example, a so-called microcomputer.
  • the control unit 34 consists of a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile storage unit, a timer circuit, and these peripheral circuits. It is The control unit 34 operates as follows by executing a predetermined control program.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • the control unit 34 acquires the angular velocities Ax, Ay, and Az detected by the angular velocity sensor 31 at a preset sampling frequency fs, and cumulatively stores them in the storage unit 32 . Further, the control unit 34 transfers the data stored in the storage unit 32 to the lower limb control ability measuring device when the external I/F unit 33 and the sensor I/F unit 25 are connected, for example, by a cable (not shown) or the like. 2.
  • FIG. 11 is a spectrum diagram of the detected waveform Wd of the angular velocity Ax obtained experimentally. As shown in FIG. 11, since the main frequency components of the detected waveform Wd are 8 Hz or less, 80 Hz or more can be preferably used as the sampling frequency fs.
  • the sensor I/F unit 25 shown in FIG. 1 corresponds to an example of a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device 3.
  • the sensor I/F unit 25 may be, for example, a communication circuit capable of receiving data from the external I/F unit 33 in a wired manner via a cable. It may be a wireless communication circuit capable of receiving data from the external I/F unit 33 via the sensor I/F unit 25 or an interface circuit that reads data from a storage medium in which data is written by the sensor I/F unit 25 .
  • the control unit 21 of the lower limb control ability measuring device 2 is configured using, for example, a microcomputer.
  • the control unit 21 includes a CPU that executes predetermined arithmetic processing, a RAM that temporarily stores data, non-volatile storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive), peripheral circuits thereof, etc. consists of
  • the storage device also functions as an analysis result storage unit 215 .
  • the analysis result storage unit 215 stores equations (1) to (4), etc., which will be described later.
  • the control unit 21 executes the lower-limb control ability measurement program stored in the storage device described above, for example, to obtain a first waveform acquisition unit 211, a second waveform acquisition unit 212, an index calculation unit 213, and a principal component analysis unit 214. function as
  • the principal component analysis unit 214 is not limited to being included in the lower limb control ability measuring device 2 .
  • the principal component analysis unit 214 may be configured as a device independent of the lower limb control ability measuring device 2 .
  • the first waveform acquisition unit 211 acquires a first waveform W1 based on a detected waveform Wd in which at least one of the angular velocities Ax, Ay, and Az (physical quantities) acquired by the sensor I/F unit 25 is arranged along the time axis. to get
  • the first waveform acquisition unit 211 acquires a waveform obtained by filtering the detected waveform Wd with a low-pass filter as the first waveform W1.
  • High-frequency noise components can be removed by filtering.
  • a Butterworth filter for example, can be used as the low-pass filter.
  • the cutoff frequency of the low-pass filter can be set as appropriate. For example, a frequency of 5 Hz to 10 Hz can be used, more preferably a frequency of 6 Hz to 8 Hz can be used, and 6 Hz is particularly preferable.
  • the main frequency component of the detected waveform Wd is 8 Hz or less, so 6 Hz to 8 Hz is suitable as the cutoff frequency. Also, 6 Hz is the cutoff frequency actually used in the experiments described later, and is suitable as the cutoff frequency of the low-pass filter.
  • the first waveform acquisition unit 211 may use the detected waveform Wd as it is as the first waveform W1.
  • the first waveform W1 includes a first waveform W1(x) based on the detected waveform Wd(x), which is the waveform of the angular velocity Ax, and a first waveform W1(y) based on the detected waveform Wd(y), which is the waveform of the angular velocity Ay. ) and a first waveform W1(z) based on the detected waveform Wd(z), which is the waveform of the angular velocity Az.
  • the first waveform acquisition unit 211 may acquire at least one of the first waveform W1(x), the first waveform W1(y), and the first waveform W1(z) according to the purpose.
  • the second waveform acquisition unit 212 acquires the second waveform W2 by smoothing the first waveform W1 acquired by the first waveform acquisition unit 211.
  • FIG. 3 is a waveform diagram showing an example of the first waveform W1 and the second waveform W2.
  • the second waveform acquisition unit 212 acquires the second waveform W2 by performing a moving average for moving the first waveform W1 along the time axis as smoothing processing.
  • the moving average is performed by calculating the average value of the number of data N detected by the physical quantity detection device 3 during a preset moving average time ta.
  • the moving average time ta can be, for example, 0.5 seconds to 2 seconds, preferably 1 second.
  • the number of data N is given by the following formula (A) from the moving average time ta and the sampling frequency fs.
  • the second waveform acquisition unit 212 averages 201 consecutive data along the time axis in the first waveform W1, and repeats this average while moving the data one by one along the time axis. , to perform a moving average.
  • a waveform obtained as a result of executing the moving average in this way is the second waveform W2.
  • the smoothing process is not limited to the moving average, and the second waveform acquisition section 212 can perform various smoothing processes.
  • the second waveform W2 includes a second waveform W2(x) obtained by smoothing the first waveform W1(x), a second waveform W2(y) obtained by smoothing the first waveform W1(y), and a first
  • the waveform W1(z) may include at least one of the smoothed second waveform W2(z).
  • the second waveform acquisition unit 212 may acquire at least one of the second waveform W2(x), the second waveform W2(y), and the second waveform W2(z) according to the purpose.
  • the index calculation unit 213 calculates the sum of the absolute values of the differences between the first waveform W1 and the second waveform W2 within the preset target period Tw as the first index IA representing the lower limb control ability of the subject U. .
  • Any period can be set as the target period Tw.
  • the knee bending motion is a squat motion
  • the descending period during which the center of gravity of the subject U (physical quantity detection device 3) descends (the period from the fully extended knee position to the maximum knee flexed position) is set as the target period Tw. is more preferred.
  • the descending period in the squat exercise corresponds to an example of the period during which the knee joint is bent while resisting the load.
  • FIG. 4 is an explanatory diagram for explaining the first index IA.
  • the area of the gray shaded portion corresponds to the first index IA.
  • the entirety of FIG. 4 corresponds to the target period Tw.
  • the first index IA and the second index IB which will be described later, are the leg extensibility. It becomes the control capability index (LEECAmpIndex).
  • constriction contraction in which the muscle exerts force while its length shortens
  • isometric contraction in which the muscle exerts force while the length is constant
  • force exertion while the muscle lengthens There is an eccentric contraction that exerts In knee flexion exercise, when the knee joint is flexed while resisting the load
  • squat exercise when the body's center of gravity is lowered while bending the knee and hip joints, the contraction that occurs in the extensor muscles of the lower extremities is mainly eccentric contraction. .
  • Eccentric contractions of the extensor muscles of the lower extremities are involved in daily activities such as shock-absorbing situations where falls and injuries are likely to occur, walking down stairs, and sitting on a chair. used. If a person does not have the ability to slowly lower the center of gravity of the body, the muscles cannot absorb the impact during these movements, so it is believed that the person is more likely to receive a large impact and fall more easily.
  • the index IX is from the viewpoint of preventing sports injuries for athletes, improving the QOL of middle-aged and elderly people, and preventing nursing care. Therefore, it is considered to be particularly effective as an indicator of the ability to control the lower extremities.
  • FIG. 5 is a graph showing an example of the angular velocity Az when the subject U who has the physical quantity detection device 3 shown in FIG.
  • a graph G1 corresponds to an example of the detected waveform Wd(z) indicating the angular velocity Az
  • a graph G2 indicates the inclination angle of the thigh.
  • the horizontal axis of the graph shown in FIG. 5 is time (sec), the left vertical axis is angular velocity (dps: degree per second) corresponding to graph G1, and the right vertical axis is tilt angle (degree) corresponding to graph G2.
  • the tilt angle of the thigh that is, the tilt angle of the X-axis is obtained by integrating the angular velocity Az.
  • the tilt angle indicates that the thigh (X-axis) is vertical at 0 degrees, and the thigh (X-axis) is horizontal at -90 degrees.
  • Angular velocities Ax, Ay are substantially the same as angular velocity Az (detected waveforms Wd(z)). Description of y)) is omitted.
  • the graph G2 decreases during the descending period when the subject U bends the leg and the center of gravity descends, and the graph G2 increases during the ascending period when the subject U stretches the leg and the center of gravity rises. Therefore, it is possible to distinguish between the falling period and the rising period based on the inclination angle of the graph G2.
  • the index calculation unit 213 can calculate the first index IA based on the first waveform W1 and the second waveform W2 of the target period Tw corresponding to one falling period thus determined.
  • the first index IA includes a first index IA(x) that is the sum of absolute values of the differences between the first waveform W1(x) and the second waveform W2(x), and the first waveform W1(y) and the first waveform W1(y).
  • a first index IA(y) that is the sum of the absolute values of the differences between the two waveforms W2(y), and a sum of the absolute values of the differences between the first waveform W1(z) and the second waveform W2(z). and at least one of the first index IA(z).
  • the index calculator 213 may calculate at least one of the first index IA(x), the first index IA(y), and the first index IA(z) according to the purpose.
  • the principal component analysis unit 214 performs principal component analysis using the first index IA or the second index IB obtained from a plurality of subjects U as variables, and from the first principal component of the principal component analysis, formula (1 ) to (4), and stored in the analysis result storage unit 215 .
  • FIGS. 6 and 7 are flowcharts showing an example of a method of generating equations (1) to (4) by the lower limb control ability measuring system 1 shown in FIG.
  • the same step numbers are given to the same processes, and the description thereof will be omitted.
  • a first index acquisition process is executed for a plurality of subjects U (step S1).
  • FIG. 8 is a flowchart showing an example of the first index acquisition process.
  • the physical quantity detection device 3 is attached to the thigh on the side of the subject U performing the knee bending exercise (step S21).
  • subject U performs knee flexion exercise five times.
  • the physical quantity detection device 3 detects the angular velocities Ax, Ay, and Az during the period of knee bending motion (step S22).
  • the control unit 34 samples the angular velocities Ax, Ay, and Az detected by the angular velocity sensor 31 of the physical quantity detection device 3 at the sampling frequency fs and stores them in the storage unit 32 .
  • a case of performing a one-leg squat as a knee bending exercise will be described as an example.
  • the subject U stands by on one leg with the leg to which the physical quantity detection device 3 is attached as the support leg, and the knee joint of the opposite leg (free leg side) is bent at an arbitrary angle.
  • the subject U performs a one-leg squat at the same time as the start signal is given.
  • Single-leg squats start from a single-legged position, lower the center of gravity until the knee of the opposite leg touches the ground over 5 seconds, and when the knee of the opposite leg touches the ground, extend the knee and perform five consecutive single-leg squats. .
  • Angular velocities Ax, Ay, and Az are detected by performing one set of this for each person.
  • the physical quantity detection device 3 is removed from the subject U, and the external I/F section 33 of the physical quantity detection device 3 and the sensor I/F section 25 of the lower limb control ability measurement device 2 are connected, for example, with a cable not shown. Then, the sensor I/F unit 25 acquires the angular velocities Ax, Ay, and Az from the physical quantity detection device 3 attached to the left thigh, and the control unit 21 stores them in the storage device (step S23: physical quantity acquisition processing ).
  • the first waveform acquisition unit 211 arranges the angular velocities Ax, Ay, and Az in the target period Tw for three of the five knee flexion movements excluding the first and last, along the time axis, thereby obtaining the angular velocity Ax.
  • Detected waveform Wd(x), detected waveform Wd(y) of angular velocity Ay, and detected waveform Wd(z) of angular velocity Az are generated three each, and detected waveforms Wd(x), Wd(y), Wd(z) are generated.
  • the first waveforms W1(x), W1(y), and W1(z) are obtained three times (step S24: first waveform obtaining process).
  • the index calculator 213 preferably acquires the angular velocities Ax, Ay, and Az in the squat exercise excluding the first and last squat exercises among multiple squat exercises.
  • angular velocities Ax, Ay, and Az in the initial and final squat motions do not necessarily have to be excluded.
  • the number of squat exercises is not limited to 5 times, and may be 6 times or more, 4 times or less, or 1 time.
  • the second waveform acquisition unit 212 smoothes the three first waveforms W1(x), W1(y), and W1(z) to obtain the three second waveforms W2(x) , W2(y), and W2(z) are obtained (step S25: second waveform obtaining process).
  • the index calculator 213 calculates the absolute values of the differences between the first waveforms W1(x), W1(y), W1(z) and the second waveforms W2(x), W2(y), W2(z). are calculated as the first indexes IA(x), IA(y) and IA(z). By repeating this three times, the three first indices IA(x), IA(y), and IA(z) of the subject U are calculated (step S26: index calculation processing).
  • the index calculation unit 213 averages the first index IA(x) for three times to obtain a new first index IA(x), and averages the first index IA(y) for three times to obtain a new first index IA(x).
  • the final first index IA (x ), IA(y), and IA(z) are obtained (step S27). In the following processing, final first indices IA(x), IA(y), and IA(z) are to be processed.
  • the human can compensate for random errors and random motion variations that occur in motion measurements. Note that it is not always necessary to average the first indices IA(x), IA(y), and IA(z) for a plurality of times.
  • step S24 to S26 the first waveforms W1(x), W1(y), W1(z) and the second waveforms W2(x), W2(y), W2(z) obtained from one knee flexion exercise ) are used as the final first indices IA(x), IA(y), IA(z), and step It is not necessary to execute S27.
  • step S24 the first waveforms W1(x), W1(y), W1(z) for a plurality of times obtained in step S24 are averaged, and in step S25, the averaged first waveforms W1(x), W1( y), W1(z) to acquire the second waveforms W2(x), W2(y), W2(z), and in step S26, the averaged first waveforms W1(x), W1(y) , W1(z) and the second waveforms W2(x), W2(y), W2(z), the final first indices IA(x), IA(y), and IA(z) are calculated.
  • step S27 may not be executed.
  • steps S21 to S27 By executing steps S21 to S27 for a plurality of subjects U, a plurality of first indices IA(x), IA(y), and IA(z) are obtained (step S1). Note that in steps S21 to S27, the knee bending exercise described above may be performed instead of the one-leg squat exercise.
  • the principal component analysis unit 214 executes principal component analysis using the first index IA(z) obtained from a plurality of subjects U as variables (step S2: principal component analysis processing).
  • the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (1), the coefficient a, and the constant b (step S3: main component analysis processing).
  • Knee joint valgus peak angle Rkp aIA(z)+b (1)
  • FIG. 9 is an explanatory diagram showing the knee joint valgus angle Rk.
  • the knee joint valgus angle Rk is an acute angle formed by the extension line L1 of the long axis U1 of the thigh and the long axis U2 of the lower leg when viewing the subject U in a standing state from the front.
  • a case in which the major axis U2 rotates outward with respect to the extension line L1 is referred to as knee valgus.
  • the knee joint valgus peak angle Rkp is the maximum value of the knee joint valgus angle Rk within the target period Tw in one knee flexion exercise.
  • knee joint valgus peak angle Rkp An increase in the knee joint valgus peak angle Rkp is known to be a risk factor for typical knee joint injuries such as anterior cruciate ligament injury, medial collateral ligament injury, and lateral meniscus injury. Therefore, the knee joint valgus peak angle Rkp can be used as an index representing the lower limb control ability, and if the knee joint valgus peak angle Rkp can be obtained from the knee flexion movement, the lower limb control ability of the subject U can be measured. easier to do.
  • the greater the number of significant digits of the coefficient a and the constant b the more preferable the accuracy of predicting the knee joint valgus peak angle Rkp from the first index IA(z) improves.
  • the principal component analysis unit 214 stores the formula (1), the coefficient a and the constant b in the analysis result storage unit 215, so that the lower limb control ability measuring device 2 measures the first index IA(z) of the new subject U. Based on the results, it is possible to predict the knee joint valgus peak angle Rkp, which represents the controllability of the lower extremity. Validity of equation (1), coefficient a and constant b will be described later.
  • the principal component analysis unit 214 executes principal component analysis using the first indices IA(x) and IA(z) obtained from a plurality of subjects U as variables (step S4: principal component analysis processing).
  • the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (2), coefficients c and d, and constant e (step S5 : principal component analysis processing).
  • ⁇ GRF is the amount of increase per unit time of the reaction force in the vertical direction from the landing point when the subject U lands from a predetermined height.
  • ⁇ GRF is an index that indicates how rapidly the floor reaction force is generated.
  • ⁇ GRF vertical floor reaction force per unit time
  • ⁇ GRF can be used as an index representing the controllability of the lower limbs, and if ⁇ GRF can be obtained from the knee bending motion, it becomes easier to measure the controllability of the lower limbs of the subject U.
  • coefficients c, d, and constant e, ⁇ GRF increases as the first index IA(z) increases, and ⁇ GRF decreases as the first index IA(x) increases.
  • the first indices IA(x) and IA(z) themselves can be used as indices indicating the lower limb control ability related to the degree of causes of the knee joint injury of the subject U. Since the first indices IA(x) and IA(z) are easier to measure than the direct measurement of ⁇ GRF, it becomes easier to measure the controllability of the lower extremities.
  • the principal component analysis unit 214 stores the equation (2), the coefficients c and d, and the constant e in the analysis result storage unit 215, so that the lower limb control ability measuring device 2 obtains the new first index IA(x ), and IA(z), it is possible to predict ⁇ GRF, which represents the ability to control the lower extremities.
  • ⁇ GRF the new first index
  • the principal component analysis unit 214 executes principal component analysis using the first indices IA(x), IA(y), and IA(z) obtained from a plurality of subjects U as variables (step S6: principal component analysis processing).
  • the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (3) and coefficients f, g, h (step S7: main component analysis processing).
  • the present inventors have found that the second index IB has a correlation with the knee joint valgus peak angle Rkp, and if the second index IB increases, the knee joint valgus peak angle Rkp also increases. It was found that there is a correlation that Therefore, the second index IB can be used as an index showing the subject's U lower limb control ability. Since the second index IB is easier to measure than directly measuring the knee joint valgus peak angle Rkp, it becomes easier to measure the controllability of the lower limbs.
  • the principal component analysis unit 214 stores the equation (3) and the coefficients f, g, and h in the analysis result storage unit 215, so that the lower limb control ability measuring device 2 obtains the new first index IA(x) of the subject U , IA(y), and IA(z), it is possible to calculate the second index IB having a correlation with the knee joint valgus peak angle Rkp.
  • Validity of equation (3) and coefficients f, g, and h will be described later.
  • the principal component analysis unit 214 calculates the multiple subjects U is calculated (step S11).
  • the principal component analysis unit 214 executes principal component analysis using the plurality of second indices IB obtained from the plurality of subjects U as variables (step S12: principal component analysis processing).
  • the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (4), coefficient i and constant j (step S13: principal component analytical processing).
  • Knee joint valgus peak angle Rkp iIB+j (4)
  • the knee joint valgus peak angle Rkp can be used as an index representing the control ability of the lower limbs, and if the knee joint valgus peak angle Rkp can be obtained from the knee flexion movement, it is possible to control the lower limbs of the subject U.
  • Ability can be easily measured.
  • the greater the number of significant digits of the coefficient i and the constant j the more preferable in that the accuracy of predicting the knee joint valgus peak angle Rkp from the second index IB improves.
  • the coefficient i and the constant j if the second index IB increases, the knee joint valgus peak angle Rkp also increases. It can be used as an indicator of ability. Since the second index IB is easier to measure than directly measuring the knee joint valgus peak angle Rkp, it becomes easier to measure the controllability of the lower limbs.
  • the lower limb control ability measuring device 2 does not have to include the principal component analysis unit 214 and does not need to execute steps S1 to S13.
  • the lower-limb control ability measuring device 2 uses the first index IA(x), IA(y), IA(z), the second index IB, the knee joint valgus peak angle Rkp, and ⁇ GRF of the subject U as the index IX. By calculating at least one of the indices, the subject's U lower extremity control ability is measured.
  • FIG. 10 shows the first index IA(x), IA(y), IA(z), the second index IB, the knee joint valgus peak angle Rkp, and ⁇ GRF measured by the lower limb control ability measuring device 2 shown in FIG. 4 is a flow chart showing an example of a method of calculating each index;
  • test subject U who intends to measure each index is subjected to the same kind of knee bending exercise as that performed when calculating the formulas, coefficients, and constants stored in the analysis result storage unit 215, in steps S21 to The first index acquisition process of S27 is executed to acquire the first indices IA(x), IA(y), IA(z) of the subject U (step S31).
  • the first indices IA(x), IA(y), and IA(z) are correlated with the knee joint valgus peak angle Rkp and ⁇ GRF, which are risk factors for knee joint injury. If the first indices IA(x), IA(y), and IA(z) can be obtained from the flexion movement, the first index IA(x) can be used as an index indicating the control ability of the lower extremity of the subject U that affects the knee joint injury. , IA(y), IA(z) can be measured.
  • the index calculation unit 213 substitutes the first index IA(z) obtained from the subject U into Equation (1) to calculate the knee joint valgus peak angle Rkp (step S32: index calculation processing). .
  • the index calculator 213 notifies the user of the knee joint valgus peak angle Rkp by, for example, displaying it on the display 22 .
  • knee joint valgus peak angle Rkp is known to be a risk factor for knee joint injury.
  • the knee joint valgus peak angle Rkp can be measured as an index indicating the control ability of the subject's U lower limbs that affects the joint injury.
  • the index calculation unit 213 substitutes the first indices IA(x) and IA(z) obtained from the subject U into Equation (2) to calculate ⁇ GRF (step S33: index calculation processing).
  • the index calculator 213 notifies the user of ⁇ GRF by, for example, displaying it on the display 22 .
  • ⁇ GRF the greater the risk of knee joint injury.
  • ⁇ GRF can be measured as an index showing the controllability of
  • the index calculation unit 213 substitutes the first indices IA(x), IA(y), and IA(z) obtained from the subject U into the equation (3) to calculate the second index IB (step S34: index calculation processing).
  • the index calculator 213 notifies the user of the second index IB by, for example, displaying it on the display 22 .
  • the second index IB has a correlation with the knee joint valgus peak angle Rkp, which is a risk factor for knee joint injury.
  • a second index IB can be measured as an index indicating the control ability of the lower extremities of the subject U that affects the .
  • the index calculation unit 213 substitutes the second index IB obtained from the subject U into Equation (4) to calculate the knee joint valgus peak angle Rkp (step S35: index calculation processing).
  • the index calculator 213 notifies the user of the knee joint valgus peak angle Rkp by, for example, displaying it on the display 22 .
  • knee joint valgus peak angle Rkp is known to be a risk factor for knee joint injury.
  • the knee joint valgus peak angle Rkp can be measured as an index indicating the control ability of the subject's U lower limbs that affects the joint injury.
  • the one-leg landing task is to stand on one leg on a 30 cm platform and land on the force plate installed on the floor with one leg at the same time as the signal is given.
  • the maximum knee joint valgus angle Rk in the analysis interval from when the foot hits the ground until the body's center of gravity reaches the lowest point was measured as the knee joint valgus peak angle Rkp.
  • the floor reaction force at the time of landing was measured with a force plate at a sampling frequency of 1000 Hz.
  • ⁇ GRF which is The one-leg landing task was performed with the right leg for the subject U who performed the above-described single-leg squat with the right leg, and with the left leg for the subject U who performed the above-described single-leg squat with the left leg.
  • the first index IA (z) of each subject U is used as an independent variable for multiple regression analysis
  • the knee joint valgus peak angle Rkp is used as a dependent variable to represent a multiple regression model (1)
  • coefficient a 0 .110
  • the first index IA(z) is considered appropriate as an index representing the subject's U lower-limb control ability.
  • FIG. 12 shows the multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficient a, constant (intercept) b, standard partial regression coefficient ⁇ , and p value (p value).
  • the p-value of the first index IA(z) is 0.001, which is smaller than 0.05.
  • the p-value is smaller than 0.05, it is determined to be significant, so the first index IA(z) can be determined to be significant from the results of the multiple regression analysis.
  • the first index IA(z) obtained from the single-leg squat is significant from the results of the multiple regression analysis for the formula (1) regarding the knee joint valgus peak angle Rkp. It means that the knee joint valgus peak angle Rkp of the subject U can be estimated by substituting the index IA(z) into the formula (1) and calculating the knee joint valgus peak angle Rkp.
  • FIG. 13 shows multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficients c and d, constant e, standard partial regression coefficient ⁇ , and p value obtained by multiple regression analysis for formula (2).
  • the heavy contribution rate R2 is 0.204, which accounts for 20.4% of the variation in ⁇ GRF obtained from the one-foot landing task. This means that it can be explained by ⁇ GRF calculated by Equation (2).
  • the p-value of the first index IA(z) is 0.001
  • the p-value of the first index IA(x) is 0.035.
  • the p-value is smaller than 0.05, it is determined to be significant, so the first indicators IA(x) and IA(z) can be determined to be significant from the results of the multiple regression analysis. .
  • the first indices IA(x) and IA(z) obtained from the single-leg squat are significant from the results of the multiple regression analysis on the formula (2) regarding ⁇ GRF, which is the first It means that the ⁇ GRF of the subject U can be estimated by substituting the indices IA(x) and IA(z) into the equation (2) to calculate ⁇ GRF.
  • the second index IB is considered appropriate as an index representing the subject's U lower limb control ability.
  • FIG. 14 shows the multiple correlation coefficient R, the multiple contribution ratio R 2 , the partial regression coefficient i, the constant j, the standard partial regression coefficient ⁇ , and the p-value obtained by multiple regression analysis for Equation (4).
  • the p-value of the second index IB is 0.011, which is smaller than 0.05.
  • the p-value is smaller than 0.05, it is determined to be significant, so the second indicator IB can be determined to be significant from the results of the multiple regression analysis.
  • the fact that the second index IB obtained from the single-leg squat is significant from the results of the multiple regression analysis on the formula (4) regarding the knee joint valgus peak angle Rkp indicates that the second index IB of the subject U is It means that the knee joint valgus peak angle Rkp of the subject U can be estimated by substituting it into Equation (4) and calculating the knee joint valgus peak angle Rkp.
  • the knee joint valgus peak angle Rkp is calculated as an index indicating the control ability of the lower extremity of the subject U that affects the knee joint injury. be able to.
  • the principal component analysis unit 214 does not need to execute steps S6 and S7, does not need to execute steps S4 and S5, and does not need to execute steps S2 and S3. Further, the index calculation unit 213 may not execute step S35, may not execute step S34, may not execute step S33, and may not execute step S32.
  • a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device during a period in which the knee flexion motion including the extension motion is performed, and the physical quantity acquired by the physical quantity acquisition unit are arranged along the time axis.
  • a first waveform acquisition unit that acquires a first waveform based on the detected waveform
  • a second waveform acquisition unit that acquires a second waveform by smoothing the first waveform
  • a preset target period an index calculation unit that calculates a sum of absolute values of differences between the first waveform and the second waveform as a first index representing the lower limb control ability of the subject.
  • a lower-limb control ability measuring system includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
  • a lower-limb control ability measuring program causes a computer to function as the above-described lower-limb control ability measuring device.
  • a computer-readable recording medium records the lower limb control ability measurement program described above.
  • a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition process for acquiring physical quantities detected by the physical quantity detection device during a period in which a knee flexion exercise including an extending motion is performed; and arranging the physical quantities acquired by the physical quantity acquisition process along a time axis.
  • a first waveform acquisition process for acquiring a first waveform based on the detected waveform
  • the first waveform and the second waveform and an index calculation process of calculating the sum of the absolute values of the differences between and as a first index representing the lower limb control ability of the subject.
  • the physical quantity detection device is attached to the subject's thigh, and the first index representing the subject's lower limb control ability is calculated from the waveform of the physical quantity acquired when the subject performs a knee flexion exercise. Therefore, it is easy to measure the control ability of the lower extremities.
  • the first waveform acquisition unit acquires, as the first waveform, a waveform obtained by filtering the detected waveform with a low-pass filter.
  • noise components can be removed from the first waveform, so the accuracy of the first index representing the subject's lower limb control ability is improved.
  • the second waveform acquisition unit performs the smoothing by performing a moving average on the first waveform while moving along the time axis.
  • a moving average is suitable as a smoothing process.
  • the physical quantity detection device detects the physical quantity at a preset sampling frequency, and in the moving average, the number of data detected by the physical quantity detection device during a preset moving average time period. It is preferable to calculate the average value of
  • the degree of smoothing by the moving average can be made constant, so the value of the first index is stabilized and relative comparison between multiple first indices becomes easy.
  • the moving average may be repeated multiple times.
  • the knee bending exercise includes an operation of bending the knee joint while resisting the load
  • the target period is a period during which the knee bending exercise is performing the operation of bending the knee joint while resisting the load. A period is preferred.
  • the contraction morphology that occurs in the extensor muscles of the lower extremities of the subject is mainly eccentric contraction.
  • eccentric contractile ability is particularly important from the viewpoints of injury prevention for athletes, improvement of QOL for middle-aged and elderly people, and prevention of nursing care. Therefore, by setting the period during which the eccentric contraction exercise is performed as the target period for calculating the first index, the ability to control the lower extremities is particularly beneficial from the perspectives of injury prevention for athletes, improvement of QOL for middle-aged and elderly people, and prevention of nursing care. can be measured.
  • the knee flexion exercise is a one-leg squat
  • the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
  • the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
  • the angular velocity is about at least one of an X-axis extending in the longitudinal direction of the thigh, a Y-axis extending in the front-rear direction of the thigh, and a Z-axis extending in the left-right direction of the thigh. and the acceleration is acceleration in at least one axial direction of the X-axis, the Y-axis, and the Z-axis.
  • the X-axis extending in the longitudinal direction of the thigh, the Y-axis extending in the front-rear direction of the thigh, and the Z-axis extending in the left-right direction of the thigh are axial directions that are closely related to the ability to control the lower limbs in knee flexion motion. Therefore, the first waveform representing the control ability of the lower extremity of the subject is obtained from the physical quantity corresponding to at least one of the X-axis, Y-axis, and Z-axis, and is represented by the first index. The accuracy of the control ability of the subject's lower extremities is improved.
  • the first waveform acquisition unit obtains a first waveform W1(x) based on the detected waveform, which is a waveform of angular velocity about the X-axis, and the detected waveform, which is a waveform of angular velocity about the Y-axis.
  • the acquisition unit obtains a second waveform W2(x) obtained by smoothing the first waveform W1(x), a second waveform W2(y) obtained by smoothing the first waveform W1(y), and the Obtaining at least one of a second waveform W2(z) obtained by smoothing one waveform W1(z), the index calculation unit calculates the first waveform W1(x) and the second waveform W2(x ), and a first index IA (x) that is the sum of the absolute values of the differences between the first waveform W1 (y) and the second waveform W2 (y). At least one of IA(y) and a first index IA(z) that is the sum of absolute values of differences between the first waveform W1(z) and
  • the first index IA(x) corresponding to at least one axial direction of the X-axis, Y-axis, and Z-axis, which is closely related to the ability to control the lower limbs in knee bending motion, and the first index IA At least one of (y) and the first index IA(z) can be calculated as the first index.
  • the coefficient a is 0.1 in one significant digit, and the constant b is -4 in one significant digit.
  • the coefficient a is preferably 0.1 in one significant digit
  • the constant b is preferably -4 in one significant digit.
  • the index calculation unit calculates the first index IA(x) and the first index IA(z) as the first index, and the index calculation unit further calculates the first index IA(x) And from the first index IA (z), using the following formula (2), the amount of increase per unit time in the vertical reaction force from the landing point when the subject lands from a predetermined height It is preferable to calculate ⁇ GRF.
  • ⁇ GRF cIA(z)+dIA(x)+e (2), where c and d are coefficients and e is a constant.
  • the coefficient c is 0.007 with one significant digit
  • the coefficient d is -0.003 with one significant digit
  • the constant e is 0.9 with one significant digit.
  • the coefficient c is preferably 0.007 in one significant digit
  • the coefficient d is -0.003 in one significant digit
  • the constant e is preferably 0.9 in one significant digit.
  • the index calculation unit calculates the first index IA(x), the first index IA(y), and the first index IA(z) as the first index, and the index calculation unit Furthermore, it is preferable to calculate the second index IB using the following formula (3).
  • Second index IB fIA(x)+gIA(y)+hIA(z) (3), where f, g and h are coefficients.
  • the second index IB is the first index IA(x), IA(y) of all three axes, the X-axis, Y-axis, and Z-axis, which are closely related to the ability to control the lower limbs in knee flexion exercise. , IA(z) are reflected. As a result, the second index IB is a comprehensive index representing the control ability of the subject's lower extremities.
  • the coefficient f is 0.5 in one significant digit
  • the coefficient g is 0.5 in one significant digit
  • the coefficient h is preferably 0.4 with one significant figure.
  • the coefficient f is preferably 0.5 with one significant digit
  • the coefficient g is preferably 0.5 with one significant digit
  • the coefficient h is preferably 0.4 with one significant digit. I found out.
  • the coefficient i is preferably 2 with one significant digit
  • the constant j is preferably -2 with one significant digit.
  • the lower limb control ability measuring system performs principal component analysis using the above-described lower limb control ability measuring device and the first index IA(z) obtained from a plurality of subjects as variables, a principal component analysis unit that obtains the first principal component of the principal component analysis as the formula (1).
  • the above formula (1) can be obtained based on the first index IA(z) obtained from a plurality of subjects.
  • a lower limb control ability measuring system includes the lower limb control ability measuring device described above, and the first index IA(x) and the first index IA(z) obtained from a plurality of subjects as variables and a principal component analysis unit that performs a principal component analysis to obtain the first principal component of the principal component analysis as the formula (2).
  • the above equation (2) can be obtained based on the first indices IA(x) and IA(z) obtained from a plurality of subjects.
  • a leg control ability measuring system includes the leg control ability measuring device described above, the first index IA(x) obtained from a plurality of subjects, the first index IA(y), and a principal component analysis unit that performs principal component analysis with the first index IA(z) as a variable and obtains the first principal component of the principal component analysis as the above equation (3).
  • the above formula (3) can be obtained based on the first indices IA(x), IA(y), and IA(z) obtained from a plurality of subjects.
  • the lower limb control ability measuring system performs principal component analysis using the above-described lower limb control ability measuring device and the second index IB obtained from a plurality of subjects as variables, and the principal component and a principal component analysis unit that obtains the first principal component of the analysis as the above equation (4).
  • the above formula (4) can be obtained based on the second index IB obtained from a plurality of subjects.
  • the lower limb control ability measuring device, the lower limb control ability measuring system, the lower limb control ability measuring program, the computer-readable recording medium recording the lower limb control ability measuring program, and the lower limb control ability measuring method configured as described above are the control ability of the lower limbs. is easy to measure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention comprises: a sensor I/F unit 25 that acquires a physical amount detected in a period during which knee flexion exercise is performed by a subject U, with a physical amount detection device 3 for detecting a predetermined physical amount attached to a femoral area of the subject U; a first waveform acquisition unit 211 that acquires a first waveform W1 based on a detected waveform obtained by arranging the physical amount acquired by the sensor I/F unit 25 along a time axis; a second waveform acquisition unit 212 that acquires a second waveform W2 by smoothing the first waveform W1; and an index calculation unit 213 that calculates, as a first index IA indicating the lower extremity control capability of the subject U, the sum of the respective absolute values of differences between the first waveform W1 and the second waveform W2 within a target period Tw.

Description

下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、下肢制御能力測定プログラムを記録したコンピュータ読み取り可能な記録媒体、及び下肢制御能力測定方法Lower-limb control ability measuring device, lower-limb control ability measuring system, lower-limb control ability measuring program, computer-readable recording medium recording lower-limb control ability measuring program, and lower-limb control ability measuring method
 本発明は、下肢の制御能力を測定する下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、下肢制御能力測定プログラムを記録したコンピュータ読み取り可能な記録媒体、及び下肢制御能力測定方法に関する。 The present invention provides a lower-limb control ability measuring device for measuring lower-limb control ability, a lower-limb control ability measuring system, a lower-limb control ability measuring program, a computer-readable recording medium recording the lower-limb control ability measuring program, and a lower-limb control ability measuring method. Regarding.
 従来より、ユーザの身体にセンサを取り付けて長時間のセンサデータを取得し、その長時間のセンサデータから、ニューラルネットワークを用いて運動機能を推定する技術が知られている(例えば、特許文献1参照。)。 Conventionally, there has been known a technique in which a sensor is attached to a user's body to obtain long-term sensor data, and a neural network is used to estimate a motor function from the long-term sensor data (for example, Patent Document 1. reference.).
特開2018-33949号公報Japanese Unexamined Patent Application Publication No. 2018-33949
 しかしながら、特許文献1に記載の技術のように、ニューラルネットワークを用いて運動機能を推定するためには、ニューラルネットワークを学習させるための教師データを大量に準備する必要がある。また、そのような教師データを用いてニューラルネットワークを学習させたとしても、ニューラルネットワークから適切な推定結果が出力されるかどうかはやってみなければ判らない。さらに、ニューラルネットワークから出力された推定結果が適切かどうかを検証する必要がある。そのため、特許文献1に記載の技術を実際に実施するには非常に手間がかかり、かつ適切な推定結果が得られるかどうかは、実際にやってみないと判らない。 However, like the technique described in Patent Document 1, in order to estimate motor function using a neural network, it is necessary to prepare a large amount of training data for learning the neural network. Moreover, even if a neural network is trained using such teacher data, it is impossible to know whether or not the neural network will output an appropriate estimation result by trying. Furthermore, it is necessary to verify whether the estimation results output from the neural network are appropriate. Therefore, it takes a lot of time and effort to actually implement the technique described in Patent Document 1, and whether or not an appropriate estimation result can be obtained cannot be known until the technique is actually performed.
 本発明の目的は、下肢の制御能力を測定することが容易な下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、下肢制御能力測定プログラムを記録したコンピュータ読み取り可能な記録媒体、及び下肢制御能力測定方法を提供することである。 An object of the present invention is to provide a lower-limb control ability measuring device, a lower-limb control ability measuring system, a lower-limb control ability measuring program, a computer-readable recording medium recording the lower-limb control ability measuring program, which facilitates measuring lower-limb control ability, and to provide a lower limb control ability measuring method.
 本発明の一局面に従う下肢制御能力測定装置は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得部と、前記物理量取得部によって取得された物理量を時間軸に沿って並べた検出波形に基づく第一波形を取得する第一波形取得部と、前記第一波形を平滑化することにより第二波形を取得する第二波形取得部と、予め設定された対象期間内における、前記第一波形と前記第二波形との差分の絶対値の総和を、前記被験者の下肢制御能力を表す第一指標として算出する指標算出部とを備える。 A lower-limb control ability measuring device according to one aspect of the present invention is a test subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh, and flexes and/or bends the knee joint while resisting a load. Alternatively, a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device during a period in which the knee flexion motion including the extension motion is performed, and a detection that arranges the physical quantities acquired by the physical quantity acquisition unit along the time axis. A first waveform acquisition unit that acquires a first waveform based on the waveform; a second waveform acquisition unit that acquires a second waveform by smoothing the first waveform; an index calculation unit that calculates a sum of absolute values of differences between the first waveform and the second waveform as a first index representing the lower limb control ability of the subject.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、前記物理量検出装置とを含む。 Also, a lower-limb control ability measuring system according to one aspect of the present invention includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
 また、本発明の一局面に従う下肢制御能力測定プログラムは、上述の下肢制御能力測定装置として、コンピュータを機能させる。 Also, a lower-limb control ability measuring program according to one aspect of the present invention causes a computer to function as the above-described lower-limb control ability measuring device.
 また、本発明の一局面に従うコンピュータ読み取り可能な記録媒体は、上述の下肢制御能力測定プログラムを記録する。 Also, a computer-readable recording medium according to one aspect of the present invention records the lower limb control ability measurement program described above.
 また、本発明の一局面に従う下肢制御能力測定方法は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得処理と、前記物理量取得処理によって取得された物理量を時間軸に沿って並べた検出波形に基づく第一波形を取得する第一波形取得処理と、前記第一波形を平滑化することにより第二波形を取得する第二波形取得処理と、前記第一波形と前記第二波形との差分の絶対値の総和を、前記被験者の下肢制御能力を表す第一指標として算出する指標算出処理とを含む。 Further, in the method for measuring lower limb control ability according to one aspect of the present invention, a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition process for acquiring physical quantities detected by the physical quantity detection device during a period in which a knee flexion exercise including an extending motion is performed; and arranging the physical quantities acquired by the physical quantity acquisition process along a time axis. a first waveform acquisition process for acquiring a first waveform based on the detected waveform; a second waveform acquisition process for acquiring a second waveform by smoothing the first waveform; and the first waveform and the second waveform. and an index calculation process of calculating the sum of the absolute values of the differences between and as a first index representing the lower limb control ability of the subject.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(1)として求める主成分分析部とを含む。 Further, the lower limb control ability measuring system according to one aspect of the present invention performs principal component analysis using the above-described lower limb control ability measuring device and the first index IA(z) obtained from a plurality of subjects as variables, a principal component analysis unit that obtains the first principal component of the principal component analysis as the formula (1).
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記第一指標IA(x)及び前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(2)として求める主成分分析部とを含む。 Further, a lower limb control ability measuring system according to one aspect of the present invention includes the lower limb control ability measuring device described above, and the first index IA(x) and the first index IA(z) obtained from a plurality of subjects as variables and a principal component analysis unit that performs a principal component analysis to obtain the first principal component of the principal component analysis as the formula (2).
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記前記第一指標IA(x)、前記第一指標IA(y)、及び前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(3)として求める主成分分析部とを含む。 Further, a leg control ability measuring system according to one aspect of the present invention includes the leg control ability measuring device described above, the first index IA(x) obtained from a plurality of subjects, the first index IA(y), and a principal component analysis unit that performs principal component analysis with the first index IA(z) as a variable and obtains the first principal component of the principal component analysis as the above equation (3).
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記第二指標IBを変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(4)として求める主成分分析部とを含む。 Further, the lower limb control ability measuring system according to one aspect of the present invention performs principal component analysis using the above-described lower limb control ability measuring device and the second index IB obtained from a plurality of subjects as variables, and the principal component and a principal component analysis unit that obtains the first principal component of the analysis as the above equation (4).
本発明の一実施形態に係る下肢制御能力測定システムの構成の一例を示す説明図である。It is an explanatory view showing an example of composition of a leg control ability measuring system concerning one embodiment of the present invention. 図1に示す物理量検出装置の電気的構成の一例を示すブロック図である。2 is a block diagram showing an example of an electrical configuration of the physical quantity detection device shown in FIG. 1; FIG. 第一波形W1及び第二波形W2の一例を示す波形図である。It is a wave form diagram which shows an example of the 1st waveform W1 and the 2nd waveform W2. 第一指標IAを説明するための説明図である。It is an explanatory view for explaining the first index IA. 図1に示す物理量検出装置を大腿部に取り付けた被験者がスクワット運動を5回行った際の角速度の一例を示すグラフである。4 is a graph showing an example of angular velocities when a subject wearing the physical quantity detection device shown in FIG. 1 on the thigh performs squat exercise five times. 図1に示す下肢制御能力測定システムによって、式(1)~式(4)を生成する方法の一例を示すフローチャートである。2 is a flow chart showing an example of a method for generating equations (1) to (4) by the lower limb control ability measurement system shown in FIG. 1; 図1に示す下肢制御能力測定システムによって、式(1)~式(4)を生成する方法の一例を示すフローチャートである。2 is a flow chart showing an example of a method for generating equations (1) to (4) by the lower limb control ability measurement system shown in FIG. 1; 第一指標取得処理の一例を示すフローチャートである。9 is a flowchart showing an example of first index acquisition processing; 膝関節外反角度Rkを示す説明図である。FIG. 4 is an explanatory diagram showing a knee joint valgus angle Rk; 図1に示す指標算出部の動作の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the operation of an index calculation unit shown in FIG. 1; FIG. 実験的に得られた角速度の検出波形のスペクトラム図である。4 is a spectrum diagram of an experimentally obtained angular velocity detection waveform; FIG. 式(1)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数a、定数(切片)c、標準偏回帰係数β、及びp値(p value)を示す表である。Multiple correlation coefficient R obtained by multiple regression analysis for formula (1), multiple contribution rate R 2 , partial regression coefficient a, constant (intercept) c, standard partial regression coefficient β, and p value (p value) are shown. It is a table. 式(2)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数c,d、定数e、標準偏回帰係数β、及びp値を示す表である。FIG. 10 is a table showing multiple correlation coefficient R, multiple contribution rate R 2 , partial regression coefficients c and d, constant e, standard partial regression coefficient β, and p value obtained by multiple regression analysis for Equation (2). 式(4)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数i、定数j、標準偏回帰係数β、及びp値を示す表である。4 is a table showing multiple correlation coefficient R, multiple contribution rate R 2 , partial regression coefficient i, constant j, standard partial regression coefficient β, and p-value obtained by multiple regression analysis for Equation (4).
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る下肢制御能力測定システムの構成の一例を示す説明図である。図1に示す下肢制御能力測定システム1は、下肢制御能力測定装置2と、物理量検出装置3とを備えている。 Hereinafter, embodiments according to the present invention will be described based on the drawings. It should be noted that the same reference numerals in each figure indicate the same configuration, and the description thereof will be omitted. FIG. 1 is an explanatory diagram showing an example of the configuration of a lower limb control ability measuring system according to one embodiment of the present invention. A lower-limb control ability measuring system 1 shown in FIG. 1 includes a lower-limb control ability measuring device 2 and a physical quantity detection device 3 .
 下肢制御能力測定システム1は、被験者Uの下肢制御能力を指標IXとして測定するためのシステムである。特に、指標IXを、被験者Uの下肢伸張性制御能力(LEEC:Lower Extremity Eccentric Control)を表すLEECAmp Indexとすることができる。 The lower limb control ability measurement system 1 is a system for measuring the subject U's lower limb control ability as an index IX. In particular, the index IX can be LEECam Index representing the subject U's lower extremity eccentric control ability (LEEC: Lower Extremity Eccentric Control).
 指標IXには、第一指標IA(x)、第一指標IA(y)、第一指標IA(z)、第二指標IB、膝関節外反ピーク角度Rkp、及び被験者Uが所定高さから着地した際の着地点からの垂直方向の反力の単位時間当たりの増加量△GRFが含まれる。 The index IX includes the first index IA(x), the first index IA(y), the first index IA(z), the second index IB, the knee joint valgus peak angle Rkp, and the subject U from a predetermined height. It includes the increment ΔGRF per unit time of the reaction force in the vertical direction from the landing point when landing.
 アスリートのスポーツ傷害予防や中高年齢者のQOL(Quality Of Life)向上には、下肢の運動機能の維持向上が重要となる。下肢制御能力測定システム1は、被験者Uの下肢の運動機能を指標化した指標IXを測定することが可能となる。被験者Uの下肢の運動機能を指標IXとして把握することができれば、被験者Uの下肢の運動機能の維持向上に役立てることができる。  It is important to maintain and improve the motor function of the lower extremities in order to prevent sports injuries for athletes and improve the QOL (Quality Of Life) of middle-aged and elderly people. The lower-limb control ability measuring system 1 can measure an index IX that is an index of the motor function of the subject's U lower limbs. If the motor function of the lower extremities of the subject U can be grasped as the index IX, it can be used to maintain and improve the motor function of the lower extremities of the subject U.
 下肢制御能力測定装置2は、例えば、いわゆるパーソナルコンピュータを用いて構成されている。下肢制御能力測定装置2は、例えば、制御部21、ディスプレイ22、キーボード23、マウス24、及びセンサI/F部25(物理量取得部)を備えている。なお、下肢制御能力測定装置2は、パーソナルコンピュータを用いて構成される例に限られず、例えばスマートフォンや、タブレット端末等であってもよい。 The lower limb control ability measuring device 2 is configured using, for example, a so-called personal computer. The lower limb control ability measuring device 2 includes, for example, a control section 21, a display 22, a keyboard 23, a mouse 24, and a sensor I/F section 25 (physical quantity acquisition section). In addition, the lower-limb control ability measuring device 2 is not limited to an example configured using a personal computer, and may be, for example, a smart phone, a tablet terminal, or the like.
 物理量検出装置3は、例えばベルトや粘着テープ等を用いて被験者Uの大腿部に取り付けられて用いられる。図2は、図1に示す物理量検出装置3の電気的構成の一例を示すブロック図である。図2に示す物理量検出装置3は、角速度センサ31、記憶部32、外部I/F(インターフェイス)部33、及び制御部34を備える。 The physical quantity detection device 3 is attached to the subject's U thigh using, for example, a belt or adhesive tape. FIG. 2 is a block diagram showing an example of the electrical configuration of the physical quantity detection device 3 shown in FIG. The physical quantity detection device 3 shown in FIG. 2 includes an angular velocity sensor 31 , a storage section 32 , an external I/F (interface) section 33 and a control section 34 .
 なお、下肢制御能力測定システム1は、角速度センサ31を備えたいわゆるスマートフォン等の小型情報処理装置を用いて、下肢制御能力測定装置2と、物理量検出装置3とを単一の装置で一体に構成したシステムであってもよい。 In addition, the lower limb control ability measuring system 1 uses a small information processing device such as a so-called smartphone equipped with an angular velocity sensor 31 to integrate the lower limb control ability measuring device 2 and the physical quantity detection device 3 into a single device. It may be a system with
 角速度センサ31は、例えば、X,Y,Zの直交座標における、X軸回りの角速度Ax、Y軸回りの角速度Ay、及びZ軸回りの角速度Azを検出する角速度センサである。以下、角速度Ax,Ay,Azを総称して角速度Aと称する。 The angular velocity sensor 31 is, for example, an angular velocity sensor that detects an angular velocity Ax around the X axis, an angular velocity Ay around the Y axis, and an angular velocity Az around the Z axis in X, Y, Z orthogonal coordinates. Angular velocities Ax, Ay, and Az are collectively referred to as angular velocities A hereinafter.
 なお、物理量検出装置3は、角速度センサ31に加えて、あるいは角速度センサ31の代わりに、X軸方向の加速度、Y軸方向の加速度、及びZ軸方向の加速度を検出する加速度センサを備えてもよい。角速度及び加速度は、物理量の一例に相当する。 In addition to the angular velocity sensor 31, or instead of the angular velocity sensor 31, the physical quantity detection device 3 may include an acceleration sensor for detecting X-axis direction acceleration, Y-axis direction acceleration, and Z-axis direction acceleration. good. Angular velocity and acceleration are examples of physical quantities.
 また、物理量検出装置3は、角速度センサ31及び/又は加速度センサによって、角速度A及び/又は加速度を検出するものに限らない。物理量検出装置3は、例えば被験者Uの膝屈曲運動を撮影するカメラ(例えばハイスピードカメラ)を備え、その動画から三次元動作解析を行うことにより、角速度A及び/又は加速度を検出してもよい。 Also, the physical quantity detection device 3 is not limited to detecting the angular velocity A and/or the acceleration with the angular velocity sensor 31 and/or the acceleration sensor. The physical quantity detection device 3 includes, for example, a camera (for example, a high-speed camera) that captures the knee bending motion of the subject U, and performs three-dimensional motion analysis from the video, thereby detecting the angular velocity A and/or acceleration. .
 図1には、膝屈曲運動の一例として、片脚スクワット運動を示している。片脚スクワット運動は、荷重(重力)に抗しながら片脚の膝関節を屈曲及び伸展する動作を含む膝屈曲運動である。 Fig. 1 shows a single leg squat exercise as an example of knee flexion exercise. A single leg squat exercise is a knee flexion exercise that involves flexing and extending the knee joint of one leg while resisting a load (gravity).
 なお、膝屈曲運動は、片脚スクワット運動に限られず、両脚スクワットであってもよい。両脚スクワットは中高齢者の歩行機能やバランス機能等に関わる下肢制御能力評価に適し、片脚スクワットはアスリートの傷害発生の可能性等に関わる下肢制御能力を評価するのに適している。 It should be noted that the knee flexion exercise is not limited to single-leg squat exercise, and may be double-leg squat exercise. The double-leg squat is suitable for assessing lower-limb control ability related to the walking and balance functions of middle-aged and elderly people, and the single-leg squat is suitable for evaluating the lower-limb control ability related to the possibility of injury in athletes.
 また、膝屈曲運動は、スクワット運動に限らない。膝屈曲運動としては、種々の運動を用いることができる。例えば、中高齢者の下肢制御能力評価に適した膝屈曲運動として、椅子へ座る動作、立ち上がる動作、階段昇降動作、及び走る動作等が挙げられる。また、例えば、アスリートの傷害発生の可能性等に関わる下肢制御能力評価に適した膝屈曲運動として、両脚垂直跳び、片脚垂直跳び、ストップ動作、サイドステップ動作、両脚着地動作、ドロップジャンプ動作、両脚リバウンドジャンプ動作、及び片脚リバウンドジャンプ動作等が挙げられる。 Also, the knee bending exercise is not limited to the squat exercise. Various exercises can be used as the knee bending exercise. For example, knee flexion motions suitable for evaluation of lower limb control ability of middle-aged and elderly persons include motions of sitting on a chair, motions of standing up, motions of climbing stairs, and motions of running. In addition, for example, as knee flexion exercises suitable for evaluating lower limb control ability related to the possibility of injury occurrence of athletes, double leg vertical jump, single leg vertical jump, stop motion, side step motion, double leg landing motion, drop jump motion, A double-leg rebound jump motion, a single-leg rebound jump motion, and the like are included.
 ストップ動作は、走っている状態から急激に止まる動作である。ドロップジャンプ動作は、台から飛び降りてジャンプする動作である。リバウンドジャンプは、例えば縄跳びでジャンプするように、連続でジャンプする動作である。 A stop motion is a motion to stop suddenly from a running state. A drop-jump motion is a motion of jumping off a platform. A rebound jump is an action of continuously jumping, such as jumping with a jump rope.
 また、膝屈曲運動における荷重は重力に限らない。例えば、横方向への移動、横方向の移動からの停止、等の運動により脚部に加わる荷重であってもよい。あるいは、例えば、マシントレーニングにおいて、バネや錘によって脚部に加えられる荷重であってもよい。 Also, the load in the knee bending motion is not limited to gravity. For example, it may be a load applied to the leg due to motion such as lateral movement, stopping from lateral movement, or the like. Alternatively, for example, in machine training, it may be a load applied to the leg by a spring or a weight.
 図1、図2を参照して、角速度センサ31のX軸が被験者Uの大腿部の長軸方向、角速度センサ31のY軸が被験者Uの大腿部の前後方向、角速度センサ31のZ軸が被験者Uの大腿部の左右方向に沿うように、物理量検出装置3が被験者Uの大腿部に取り付けられる。 1 and 2, the X axis of the angular velocity sensor 31 is the long axis direction of the thigh of the subject U, the Y axis of the angular velocity sensor 31 is the longitudinal direction of the thigh of the subject U, and the Z axis of the angular velocity sensor 31 The physical quantity detection device 3 is attached to the thigh of the subject U so that the axis extends along the lateral direction of the thigh of the subject.
 記憶部32は、例えばフラッシュメモリ等を用いて構成された、不揮発性の記憶装置である。外部I/F部33は、例えば図略のケーブル等を介して下肢制御能力測定装置2のセンサI/F部25に接続され、下肢制御能力測定装置2へデータ送信可能な通信インターフェイス回路である。 The storage unit 32 is a non-volatile storage device configured using, for example, flash memory. The external I/F unit 33 is a communication interface circuit that is connected to the sensor I/F unit 25 of the lower limb control ability measuring device 2 via, for example, an unillustrated cable or the like, and that can transmit data to the lower limb control ability measuring device 2. .
 なお、外部I/F部33は、有線で下肢制御能力測定装置2へデータ送信するものに限られず、無線信号によって下肢制御能力測定装置2へデータを送信する無線通信回路であってもよい。あるいは、例えば記憶部32を、脱着可能なメモリカード等の記憶媒体によって構成し、外部I/F部33は、記憶媒体を脱着可能なコネクタ等であってもよい。 Note that the external I/F unit 33 is not limited to transmitting data to the lower-limb control ability measuring device 2 by wire, and may be a wireless communication circuit that transmits data to the lower-limb control ability measuring device 2 using a radio signal. Alternatively, for example, the storage unit 32 may be configured by a removable storage medium such as a memory card, and the external I/F unit 33 may be a connector or the like that allows the storage medium to be removed.
 制御部34は、例えばいわゆるマイクロコンピュータを用いて構成されている。制御部34は、所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、不揮発性の記憶部、タイマ回路、及びこれらの周辺回路等から構成されている。制御部34は、所定の制御プログラムを実行することによって、以下のように動作する。 The control unit 34 is configured using, for example, a so-called microcomputer. The control unit 34 consists of a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile storage unit, a timer circuit, and these peripheral circuits. It is The control unit 34 operates as follows by executing a predetermined control program.
 制御部34は、角速度センサ31によって検出された角速度Ax,Ay,Azを、予め設定されたサンプリング周波数fsで取得し、累積的に記憶部32へ記憶させる。また、制御部34は、例えば図略のケーブル等によって外部I/F部33とセンサI/F部25とが接続された場合等に、記憶部32に記憶されたデータを下肢制御能力測定装置2へ送信する。 The control unit 34 acquires the angular velocities Ax, Ay, and Az detected by the angular velocity sensor 31 at a preset sampling frequency fs, and cumulatively stores them in the storage unit 32 . Further, the control unit 34 transfers the data stored in the storage unit 32 to the lower limb control ability measuring device when the external I/F unit 33 and the sensor I/F unit 25 are connected, for example, by a cable (not shown) or the like. 2.
 図11は、実験的に得られた角速度Axの検出波形Wdのスペクトラム図である。図11に示すように、検出波形Wdの主要な周波数成分は、8Hz以下であることから、サンプリング周波数fsとしては、80Hz以上を好適に用いることができる。 FIG. 11 is a spectrum diagram of the detected waveform Wd of the angular velocity Ax obtained experimentally. As shown in FIG. 11, since the main frequency components of the detected waveform Wd are 8 Hz or less, 80 Hz or more can be preferably used as the sampling frequency fs.
 図1に示すセンサI/F部25は、物理量検出装置3によって検出された物理量を取得する物理量取得部の一例に相当する。センサI/F部25は、例えばケーブルを介して有線で外部I/F部33からデータ受信可能な通信回路であってもよく、例えばWiFi(登録商標)、Bluetooth(登録商標)等の無線通信によって外部I/F部33からデータ受信可能な無線通信回路であってもよく、センサI/F部25でデータが書き込まれた記憶媒体からデータを読み取るインターフェイス回路であってもよい。 The sensor I/F unit 25 shown in FIG. 1 corresponds to an example of a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device 3. The sensor I/F unit 25 may be, for example, a communication circuit capable of receiving data from the external I/F unit 33 in a wired manner via a cable. It may be a wireless communication circuit capable of receiving data from the external I/F unit 33 via the sensor I/F unit 25 or an interface circuit that reads data from a storage medium in which data is written by the sensor I/F unit 25 .
 下肢制御能力測定装置2の制御部21は、例えばマイクロコンピュータを用いて構成されている。制御部21は、所定の演算処理を実行するCPU、データを一時的に記憶するRAM、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の不揮発性の記憶装置、及びこれらの周辺回路等から構成されている。記憶装置は、分析結果記憶部215としても機能する。分析結果記憶部215には、後述する式(1)~式(4)等が記憶される。 The control unit 21 of the lower limb control ability measuring device 2 is configured using, for example, a microcomputer. The control unit 21 includes a CPU that executes predetermined arithmetic processing, a RAM that temporarily stores data, non-volatile storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive), peripheral circuits thereof, etc. consists of The storage device also functions as an analysis result storage unit 215 . The analysis result storage unit 215 stores equations (1) to (4), etc., which will be described later.
 制御部21は、例えば上述の記憶装置に記憶された下肢制御能力測定プログラムを実行することによって、第一波形取得部211、第二波形取得部212、指標算出部213、及び主成分分析部214として機能する。 The control unit 21 executes the lower-limb control ability measurement program stored in the storage device described above, for example, to obtain a first waveform acquisition unit 211, a second waveform acquisition unit 212, an index calculation unit 213, and a principal component analysis unit 214. function as
 なお、主成分分析部214は、下肢制御能力測定装置2に含まれる例に限らない。下肢制御能力測定装置2とは独立した別の装置として主成分分析部214が構成されていてもよい。 Note that the principal component analysis unit 214 is not limited to being included in the lower limb control ability measuring device 2 . The principal component analysis unit 214 may be configured as a device independent of the lower limb control ability measuring device 2 .
 第一波形取得部211は、センサI/F部25によって取得された角速度Ax,Ay,Az(物理量)のうち少なくとも一つを、時間軸に沿って並べた検出波形Wdに基づく第一波形W1を取得する。 The first waveform acquisition unit 211 acquires a first waveform W1 based on a detected waveform Wd in which at least one of the angular velocities Ax, Ay, and Az (physical quantities) acquired by the sensor I/F unit 25 is arranged along the time axis. to get
 具体的には、第一波形取得部211は、検出波形Wdに対して低域通過フィルタによるフィルタ処理を施した波形を第一波形W1として取得する。フィルタ処理を施すことにより、高周波のノイズ成分を除去することができる。低域通過フィルタとしては、例えばバターワースフィルタを用いることができる。低域通過フィルタの遮断周波数は、適宜設定することができるが、例えば5Hz~10Hzの周波数を用いることができ、より好適には6Hz~8Hzの周波数を用いることができ、特に6Hzが好適である。図11に示すように、検出波形Wdの主要な周波数成分は8Hz以下であることから、6Hz~8Hzは、遮断周波数として好適である。また、6Hzは、後述する実験で実際に用いた遮断周波数であり、低域通過フィルタの遮断周波数として好適である。 Specifically, the first waveform acquisition unit 211 acquires a waveform obtained by filtering the detected waveform Wd with a low-pass filter as the first waveform W1. High-frequency noise components can be removed by filtering. A Butterworth filter, for example, can be used as the low-pass filter. The cutoff frequency of the low-pass filter can be set as appropriate. For example, a frequency of 5 Hz to 10 Hz can be used, more preferably a frequency of 6 Hz to 8 Hz can be used, and 6 Hz is particularly preferable. . As shown in FIG. 11, the main frequency component of the detected waveform Wd is 8 Hz or less, so 6 Hz to 8 Hz is suitable as the cutoff frequency. Also, 6 Hz is the cutoff frequency actually used in the experiments described later, and is suitable as the cutoff frequency of the low-pass filter.
 なお、第一波形取得部211は、検出波形Wdをそのまま第一波形W1としてもよい。 Note that the first waveform acquisition unit 211 may use the detected waveform Wd as it is as the first waveform W1.
 第一波形W1には、角速度Axの波形である検出波形Wd(x)に基づく第一波形W1(x)と、角速度Ayの波形である検出波形Wd(y)に基づく第一波形W1(y)と、角速度Azの波形である検出波形Wd(z)に基づく第一波形W1(z)とのうち少なくとも一つを含むことができる。第一波形取得部211は、目的に応じて適宜、第一波形W1(x)、第一波形W1(y)、及び第一波形W1(z)のうち少なくとも一つを取得すればよい。 The first waveform W1 includes a first waveform W1(x) based on the detected waveform Wd(x), which is the waveform of the angular velocity Ax, and a first waveform W1(y) based on the detected waveform Wd(y), which is the waveform of the angular velocity Ay. ) and a first waveform W1(z) based on the detected waveform Wd(z), which is the waveform of the angular velocity Az. The first waveform acquisition unit 211 may acquire at least one of the first waveform W1(x), the first waveform W1(y), and the first waveform W1(z) according to the purpose.
 第二波形取得部212は、第一波形取得部211によって取得された第一波形W1を平滑化することにより第二波形W2を取得する。図3は、第一波形W1及び第二波形W2の一例を示す波形図である。 The second waveform acquisition unit 212 acquires the second waveform W2 by smoothing the first waveform W1 acquired by the first waveform acquisition unit 211. FIG. 3 is a waveform diagram showing an example of the first waveform W1 and the second waveform W2.
 具体的には、第二波形取得部212は、平滑化処理として、第一波形W1に対して時間軸に沿って移動させつつ平均する移動平均を行うことによって、第二波形W2を取得する。移動平均は、予め設定された移動平均時間taの期間中に、物理量検出装置3によって検出されたデータ数Nの平均値を算出することにより実行する。移動平均時間taは、例えば0.5秒~2秒とすることができ、特に1秒が好適である。 Specifically, the second waveform acquisition unit 212 acquires the second waveform W2 by performing a moving average for moving the first waveform W1 along the time axis as smoothing processing. The moving average is performed by calculating the average value of the number of data N detected by the physical quantity detection device 3 during a preset moving average time ta. The moving average time ta can be, for example, 0.5 seconds to 2 seconds, preferably 1 second.
 この場合、データ数Nは、移動平均時間taとサンプリング周波数fsとから、下記の式(A)で与えられる。 In this case, the number of data N is given by the following formula (A) from the moving average time ta and the sampling frequency fs.
 データ数N=ta×fs+1 ・・・(A) Number of data N = ta x fs + 1 ... (A)
 例えば、移動平均時間taが1秒、サンプリング周波数fsが200Hzであれば、データ数Nは201個となる。従って、第二波形取得部212は、第一波形W1における、時間軸に沿って連続する201個のデータを平均し、この平均を時間軸に沿って1個ずつデータを移動しながら繰り返すことによって、移動平均を実行する。このようにして移動平均を実行した結果得られた波形が、第二波形W2となる。 For example, if the moving average time ta is 1 second and the sampling frequency fs is 200 Hz, the number of data N is 201. Therefore, the second waveform acquisition unit 212 averages 201 consecutive data along the time axis in the first waveform W1, and repeats this average while moving the data one by one along the time axis. , to perform a moving average. A waveform obtained as a result of executing the moving average in this way is the second waveform W2.
 なお、平滑化処理は、移動平均に限られず、第二波形取得部212は、種々の平滑化処理を行うことができる。 Note that the smoothing process is not limited to the moving average, and the second waveform acquisition section 212 can perform various smoothing processes.
 第二波形W2には、第一波形W1(x)が平滑化された第二波形W2(x)、第一波形W1(y)が平滑化された第二波形W2(y)、及び第一波形W1(z)が平滑化された第二波形W2(z)とのうち少なくとも一つを含むことができる。第二波形取得部212は、目的に応じて適宜、第二波形W2(x)、第二波形W2(y)、及び第二波形W2(z)のうち少なくとも一つを取得すればよい。 The second waveform W2 includes a second waveform W2(x) obtained by smoothing the first waveform W1(x), a second waveform W2(y) obtained by smoothing the first waveform W1(y), and a first The waveform W1(z) may include at least one of the smoothed second waveform W2(z). The second waveform acquisition unit 212 may acquire at least one of the second waveform W2(x), the second waveform W2(y), and the second waveform W2(z) according to the purpose.
 指標算出部213は、予め設定された対象期間Tw内における、第一波形W1と第二波形W2との差分の絶対値の総和を、被験者Uの下肢制御能力を表す第一指標IAとして算出する。対象期間Twとしては任意の期間を設定することができる。しかしながら、膝屈曲運動をスクワット運動とした場合、被験者U(物理量検出装置3)の重心が下降する下降期間(膝完全伸展位~膝最大屈曲位までの期間)が対象期間Twとして設定されることがより好ましい。スクワット運動における下降期間は、荷重に抗しながら膝関節を屈曲する動作を実行中の期間の一例に相当する。 The index calculation unit 213 calculates the sum of the absolute values of the differences between the first waveform W1 and the second waveform W2 within the preset target period Tw as the first index IA representing the lower limb control ability of the subject U. . Any period can be set as the target period Tw. However, if the knee bending motion is a squat motion, the descending period during which the center of gravity of the subject U (physical quantity detection device 3) descends (the period from the fully extended knee position to the maximum knee flexed position) is set as the target period Tw. is more preferred. The descending period in the squat exercise corresponds to an example of the period during which the knee joint is bent while resisting the load.
 図4は、第一指標IAを説明するための説明図である。図4において、灰色の網掛で示す部分の面積が、第一指標IAに相当する。図4の全体が、対象期間Twに対応している。 FIG. 4 is an explanatory diagram for explaining the first index IA. In FIG. 4, the area of the gray shaded portion corresponds to the first index IA. The entirety of FIG. 4 corresponds to the target period Tw.
 荷重に抗しながら膝関節を屈曲する動作を実行中の期間(スクワット運動においては下降期間)が対象期間Twとして設定された場合、第一指標IA及び後述する第二指標IBは、下肢伸張性制御能力指標(LEECAmp Index)となる。 When the period during which the knee joint is bent while resisting the load (descent period in squat exercise) is set as the target period Tw, the first index IA and the second index IB, which will be described later, are the leg extensibility. It becomes the control capability index (LEECAmpIndex).
 筋肉の収縮様式には、筋の長さが短くなりながら力を発揮する短縮性収縮と、筋の長さが一定で力を発揮する等尺性収縮と、筋の長さが長くなりながら力を発揮する伸張性収縮とがある。膝屈曲運動では、荷重に抗しながら膝関節を屈曲する時、スクワット運動では膝や股関節を曲げながら身体重心を下降させる時に、下肢伸筋群に生じる収縮形態が、主に伸張性収縮となる。 There are three types of muscle contraction patterns: constriction contraction in which the muscle exerts force while its length shortens, isometric contraction in which the muscle exerts force while the length is constant, and force exertion while the muscle lengthens. There is an eccentric contraction that exerts In knee flexion exercise, when the knee joint is flexed while resisting the load, and in squat exercise, when the body's center of gravity is lowered while bending the knee and hip joints, the contraction that occurs in the extensor muscles of the lower extremities is mainly eccentric contraction. .
 大腿四頭筋、大殿筋、腓腹筋、ヒラメ筋など、下肢伸筋群の伸張性収縮は、人の日常動作で転倒や怪我が生じやすい衝撃吸収局面、階段の降り動作、椅子に座る動作などで使われる。人は、ゆっくりと身体重心を下降させる能力が無いと、これらの動作時に衝撃吸収を筋肉で行うことができないため、大きな衝撃も受けやすく、転倒もしやすくなると考えられている。 Eccentric contractions of the extensor muscles of the lower extremities, such as the quadriceps femoris, gluteus maximus, gastrocnemius, and soleus, are involved in daily activities such as shock-absorbing situations where falls and injuries are likely to occur, walking down stairs, and sitting on a chair. used. If a person does not have the ability to slowly lower the center of gravity of the body, the muscles cannot absorb the impact during these movements, so it is believed that the person is more likely to receive a large impact and fall more easily.
 また、伸張性収縮を強調した筋力トレーニング(エキセントリックトレーニング)は、他の収縮様式のみの筋力トレーニングよりも、筋力向上効果などが高いことが知られている(日本文芸社発行、野坂和則著、「ゆ~っくり座れば、一生歩ける!」)。従って、自重で行うスクワット運動において、身体重心をゆっくりと下げることができる運動能力を評価することは、アスリートのスポーツ傷害予防の観点、及び中高齢者が安全に日常生活を送るための基礎筋力の評価の観点で、評価手法として有効である。 In addition, it is known that strength training that emphasizes eccentric contraction (eccentric training) is more effective in improving muscle strength than strength training that only uses other contraction modes (published by Nihon Bungeisha, written by Kazunori Nosaka, " If you sit comfortably, you can walk for the rest of your life!"). Therefore, evaluating the ability to slowly lower the body's center of gravity during squat exercises performed with one's own weight is useful from the perspective of preventing athletes from sports injuries and improving the basic muscle strength for middle-aged and elderly people to safely lead daily lives. From the viewpoint of evaluation, it is effective as an evaluation method.
 従って、下降期間を対象期間Twとして設定し、指標IXを下肢伸張性制御能力指標とすれば、指標IXは、アスリートのスポーツ傷害予防の観点、及び中高年齢者のQOL向上や介護予防などの観点で、下肢の制御能力を表す指標として、特に有効性が高いと考えられる。 Therefore, if the descent period is set as the target period Tw and the index IX is set as the lower extensibility control ability index, the index IX is from the viewpoint of preventing sports injuries for athletes, improving the QOL of middle-aged and elderly people, and preventing nursing care. Therefore, it is considered to be particularly effective as an indicator of the ability to control the lower extremities.
 図5は、図1に示す物理量検出装置3を大腿部に取り付けた被験者Uがスクワット運動を5回行った際の角速度Azの一例を示すグラフである。グラフG1は角速度Azを示す検出波形Wd(z)の一例に相当し、グラフG2は大腿部の傾斜角を示している。 FIG. 5 is a graph showing an example of the angular velocity Az when the subject U who has the physical quantity detection device 3 shown in FIG. A graph G1 corresponds to an example of the detected waveform Wd(z) indicating the angular velocity Az, and a graph G2 indicates the inclination angle of the thigh.
 図5に示すグラフの横軸は時間(sec)、左縦軸はグラフG1に対応する角速度(dps:degree per sec)、右縦軸はグラフG2に対応する傾斜角(度)を示している。大腿部の傾斜角、すなわちX軸の傾斜角は、角速度Azを積分することにより得られる。傾斜角は、0度で大腿部(X軸)が垂直、-90度で大腿部(X軸)が水平であることを示している。角速度Ax,Ay(検出波形Wd(x),Wd(y))については角速度Az(検出波形Wd(z))と略同様であるので、角速度Ax,Ay(検出波形Wd(x),Wd(y))についての説明は省略する。 The horizontal axis of the graph shown in FIG. 5 is time (sec), the left vertical axis is angular velocity (dps: degree per second) corresponding to graph G1, and the right vertical axis is tilt angle (degree) corresponding to graph G2. . The tilt angle of the thigh, that is, the tilt angle of the X-axis is obtained by integrating the angular velocity Az. The tilt angle indicates that the thigh (X-axis) is vertical at 0 degrees, and the thigh (X-axis) is horizontal at -90 degrees. Angular velocities Ax, Ay (detected waveforms Wd(x), Wd(y)) are substantially the same as angular velocity Az (detected waveforms Wd(z)). Description of y)) is omitted.
 図5に示すように、被験者Uが脚を曲げて重心が下降する下降期間ではグラフG2が低下し、被験者Uが脚を伸ばして重心が上昇する上昇期間ではグラフG2が上昇する。従って、グラフG2の傾斜角に基づいて、下降期間と上昇期間とを判別することができる。 As shown in FIG. 5, the graph G2 decreases during the descending period when the subject U bends the leg and the center of gravity descends, and the graph G2 increases during the ascending period when the subject U stretches the leg and the center of gravity rises. Therefore, it is possible to distinguish between the falling period and the rising period based on the inclination angle of the graph G2.
 指標算出部213は、このようにして判別された一回分の下降期間に対応する対象期間Twの第一波形W1と第二波形W2とに基づいて、第一指標IAを算出することができる。 The index calculation unit 213 can calculate the first index IA based on the first waveform W1 and the second waveform W2 of the target period Tw corresponding to one falling period thus determined.
 第一指標IAには、第一波形W1(x)と第二波形W2(x)との差分の絶対値の総和である第一指標IA(x)と、第一波形W1(y)と第二波形W2(y)との差分の絶対値の総和である第一指標IA(y)と、第一波形W1(z)と第二波形W2(z)との差分の絶対値の総和である第一指標IA(z)とのうち少なくとも一つを含むことができる。指標算出部213は、目的に応じて適宜、第一指標IA(x)、第一指標IA(y)、及び第一指標IA(z)のうち少なくとも一つを算出すればよい。 The first index IA includes a first index IA(x) that is the sum of absolute values of the differences between the first waveform W1(x) and the second waveform W2(x), and the first waveform W1(y) and the first waveform W1(y). A first index IA(y) that is the sum of the absolute values of the differences between the two waveforms W2(y), and a sum of the absolute values of the differences between the first waveform W1(z) and the second waveform W2(z). and at least one of the first index IA(z). The index calculator 213 may calculate at least one of the first index IA(x), the first index IA(y), and the first index IA(z) according to the purpose.
 主成分分析部214は、複数の被験者Uから取得された第一指標IA又は第二指標IBを変数とする主成分分析を実行し、主成分分析の第一主成分から、後述する式(1)~式(4)のうち少なくとも一つを求め、分析結果記憶部215に記憶させる。 The principal component analysis unit 214 performs principal component analysis using the first index IA or the second index IB obtained from a plurality of subjects U as variables, and from the first principal component of the principal component analysis, formula (1 ) to (4), and stored in the analysis result storage unit 215 .
 図6、図7は、図1に示す下肢制御能力測定システム1によって、式(1)~式(4)を生成する方法の一例を示すフローチャートである。以下のフローチャートにおいて、同一の処理には同一のステップ番号を付してその説明を省略する。 FIGS. 6 and 7 are flowcharts showing an example of a method of generating equations (1) to (4) by the lower limb control ability measuring system 1 shown in FIG. In the following flowcharts, the same step numbers are given to the same processes, and the description thereof will be omitted.
 式(1)~式(4)を生成するために、まず、複数の被験者Uに対して、第一指標取得処理を実行する(ステップS1)。 In order to generate equations (1) to (4), first, a first index acquisition process is executed for a plurality of subjects U (step S1).
 図8は、第一指標取得処理の一例を示すフローチャートである。まず、被験者Uの膝屈曲運動を行う側の大腿部に物理量検出装置3を取り付ける(ステップS21)。 FIG. 8 is a flowchart showing an example of the first index acquisition process. First, the physical quantity detection device 3 is attached to the thigh on the side of the subject U performing the knee bending exercise (step S21).
 次に、被験者Uが、膝屈曲運動を5回実施する。そうすると、膝屈曲運動の期間中に、物理量検出装置3が角速度Ax,Ay,Azを検出する(ステップS22)。具体的には、物理量検出装置3の角速度センサ31が検出した角速度Ax,Ay,Azを、制御部34が、サンプリング周波数fsでサンプリングして記憶部32に記憶させる。以下、膝屈曲運動として片脚スクワットを行う場合を例に説明する。 Next, subject U performs knee flexion exercise five times. Then, the physical quantity detection device 3 detects the angular velocities Ax, Ay, and Az during the period of knee bending motion (step S22). Specifically, the control unit 34 samples the angular velocities Ax, Ay, and Az detected by the angular velocity sensor 31 of the physical quantity detection device 3 at the sampling frequency fs and stores them in the storage unit 32 . In the following, a case of performing a one-leg squat as a knee bending exercise will be described as an example.
 片脚スクワット運動の詳細について説明する。まず、被験者Uは、物理量検出装置3が取り付けられた脚を支持脚とした片脚立ちの状態で待機し、逆脚(遊脚側)の膝関節は任意の角度に曲げておく。被験者Uは、開始の合図と同時に片脚スクワットを実施する。片脚スクワットは片脚立ちの状態から始め、5秒かけて逆脚の膝が地面に着くまで重心を下げ、逆脚の膝が地面についたら膝を伸ばす片脚スクワット運動を5回連続で行う。これを一人1セット行い、角速度Ax,Ay,Azを検出する。 Explain the details of the single leg squat exercise. First, the subject U stands by on one leg with the leg to which the physical quantity detection device 3 is attached as the support leg, and the knee joint of the opposite leg (free leg side) is bent at an arbitrary angle. The subject U performs a one-leg squat at the same time as the start signal is given. Single-leg squats start from a single-legged position, lower the center of gravity until the knee of the opposite leg touches the ground over 5 seconds, and when the knee of the opposite leg touches the ground, extend the knee and perform five consecutive single-leg squats. . Angular velocities Ax, Ay, and Az are detected by performing one set of this for each person.
 次に、例えば被験者Uから物理量検出装置3を取り外し、例えば図略のケーブルで物理量検出装置3の外部I/F部33と下肢制御能力測定装置2のセンサI/F部25とを接続する。そして、センサI/F部25が、左大腿部に取り付けられていた物理量検出装置3から角速度Ax,Ay,Azを取得し、制御部21が記憶装置に記憶させる(ステップS23:物理量取得処理)。 Next, for example, the physical quantity detection device 3 is removed from the subject U, and the external I/F section 33 of the physical quantity detection device 3 and the sensor I/F section 25 of the lower limb control ability measurement device 2 are connected, for example, with a cable not shown. Then, the sensor I/F unit 25 acquires the angular velocities Ax, Ay, and Az from the physical quantity detection device 3 attached to the left thigh, and the control unit 21 stores them in the storage device (step S23: physical quantity acquisition processing ).
 次に、第一波形取得部211は、膝屈曲運動5回のうち最初と最後を除く3回分の対象期間Twにおける角速度Ax,Ay,Azを、時間軸に沿って並べることによって、角速度Axの検出波形Wd(x)、角速度Ayの検出波形Wd(y)、及び角速度Azの検出波形Wd(z)を三つずつ生成し、検出波形Wd(x),Wd(y),Wd(z)にフィルタ処理を施すことによって、第一波形W1(x),W1(y),W1(z)を、それぞれ3回分取得する(ステップS24:第一波形取得処理)。 Next, the first waveform acquisition unit 211 arranges the angular velocities Ax, Ay, and Az in the target period Tw for three of the five knee flexion movements excluding the first and last, along the time axis, thereby obtaining the angular velocity Ax. Detected waveform Wd(x), detected waveform Wd(y) of angular velocity Ay, and detected waveform Wd(z) of angular velocity Az are generated three each, and detected waveforms Wd(x), Wd(y), Wd(z) are generated. , the first waveforms W1(x), W1(y), and W1(z) are obtained three times (step S24: first waveform obtaining process).
 図5に示すように、スクワット運動を開始した直後の1回目は、2回目以降と比べてスクワット運動のリズムが異なり、下降期間が長くなるなど、角速度の傾向が異なり易い。また、2~4回目は前後に他のスクワット運動の角速度波形が連なるため、1回分のスクワット運動の期間が判別し易い。一方、最初の1回目はスクワット運動の開始タイミングを判別し難く、最後の5回目はスクワット運動の終了タイミングを判別し難い。従って、指標算出部213は、複数回のスクワット運動のうち最初と最後を除くスクワット運動における角速度Ax,Ay,Azを取得することが好ましい。 As shown in FIG. 5, the first squat exercise immediately after the start of the squat exercise has a different rhythm of the squat exercise compared to the second and subsequent times, and the tendencies of the angular velocity tend to differ, such as a longer falling period. In addition, since the angular velocity waveforms of other squat exercises are connected before and after the second to fourth times, the period of one squat exercise can be easily determined. On the other hand, it is difficult to determine the start timing of the squat exercise for the first time, and it is difficult to determine the end timing of the squat exercise for the last fifth time. Therefore, the index calculator 213 preferably acquires the angular velocities Ax, Ay, and Az in the squat exercise excluding the first and last squat exercises among multiple squat exercises.
 なお、必ずしも最初と最後のスクワット運動における角速度Ax,Ay,Azを除外しなくてもよい。また、スクワット運動の回数は、5回に限られず、6回以上であってもよく、4回以下であってもよく、1回でもよい。 It should be noted that the angular velocities Ax, Ay, and Az in the initial and final squat motions do not necessarily have to be excluded. Also, the number of squat exercises is not limited to 5 times, and may be 6 times or more, 4 times or less, or 1 time.
 次に、第二波形取得部212は、3回分の第一波形W1(x),W1(y),W1(z)を、それぞれ平滑化することにより、3回分の第二波形W2(x),W2(y),W2(z)を取得する(ステップS25:第二波形取得処理)。 Next, the second waveform acquisition unit 212 smoothes the three first waveforms W1(x), W1(y), and W1(z) to obtain the three second waveforms W2(x) , W2(y), and W2(z) are obtained (step S25: second waveform obtaining process).
 次に、指標算出部213は、第一波形W1(x),W1(y),W1(z)と第二波形W2(x),W2(y),W2(z)との差分の絶対値の総和を、第一指標IA(x),IA(y),IA(z)として算出する。これを、3回分繰り返すことによって、被験者Uの、3回分の第一指標IA(x),IA(y),IA(z)を算出する(ステップS26:指標算出処理)。 Next, the index calculator 213 calculates the absolute values of the differences between the first waveforms W1(x), W1(y), W1(z) and the second waveforms W2(x), W2(y), W2(z). are calculated as the first indexes IA(x), IA(y) and IA(z). By repeating this three times, the three first indices IA(x), IA(y), and IA(z) of the subject U are calculated (step S26: index calculation processing).
 次に、指標算出部213は、3回分の第一指標IA(x)を平均して新たな第一指標IA(x)とし、3回分の第一指標IA(y)を平均して新たな第一指標IA(y)とし、3回分の第一指標IA(z)を平均して新たな第一指標IA(z)とすることにより、被験者Uの、最終的な第一指標IA(x),IA(y),IA(z)を取得する(ステップS27)。以下の処理では、最終的な第一指標IA(x),IA(y),IA(z)を処理対象とする。 Next, the index calculation unit 213 averages the first index IA(x) for three times to obtain a new first index IA(x), and averages the first index IA(y) for three times to obtain a new first index IA(x). The final first index IA (x ), IA(y), and IA(z) are obtained (step S27). In the following processing, final first indices IA(x), IA(y), and IA(z) are to be processed.
 複数回分の第一指標IA(x),IA(y),IA(z)を平均して最終的な第一指標IA(x),IA(y),IA(z)とすることによって、人の運動の測定で生じるランダムエラーやランダムな動きのばらつきを相殺することができる。なお、必ずしも複数回分の第一指標IA(x),IA(y),IA(z)を平均する必要はない。ステップS24~S26において、1回の膝屈曲運動から得られた第一波形W1(x),W1(y),W1(z)と第二波形W2(x),W2(y),W2(z)とに基づき得られた第一指標IA(x),IA(y),IA(z)を、そのまま最終的な第一指標IA(x),IA(y),IA(z)とし、ステップS27を実行しなくてもよい。 By averaging the first indices IA(x), IA(y), and IA(z) for multiple times to obtain the final first indices IA(x), IA(y), and IA(z), the human can compensate for random errors and random motion variations that occur in motion measurements. Note that it is not always necessary to average the first indices IA(x), IA(y), and IA(z) for a plurality of times. In steps S24 to S26, the first waveforms W1(x), W1(y), W1(z) and the second waveforms W2(x), W2(y), W2(z) obtained from one knee flexion exercise ) are used as the final first indices IA(x), IA(y), IA(z), and step It is not necessary to execute S27.
 あるいは、ステップS24で得られた複数回分の第一波形W1(x),W1(y),W1(z)を平均し、ステップS25では平均された後の第一波形W1(x),W1(y),W1(z)に基づき第二波形W2(x),W2(y),W2(z)を取得し、ステップS26では平均された後の第一波形W1(x),W1(y),W1(z)と、第二波形W2(x),W2(y),W2(z)とに基づき最終的な第一指標IA(x),IA(y),IA(z)を算出し、ステップS27を実行しなくてもよい。 Alternatively, the first waveforms W1(x), W1(y), W1(z) for a plurality of times obtained in step S24 are averaged, and in step S25, the averaged first waveforms W1(x), W1( y), W1(z) to acquire the second waveforms W2(x), W2(y), W2(z), and in step S26, the averaged first waveforms W1(x), W1(y) , W1(z) and the second waveforms W2(x), W2(y), W2(z), the final first indices IA(x), IA(y), and IA(z) are calculated. , step S27 may not be executed.
 ステップS21~S27を、複数の被験者Uに対して実行することによって、複数の第一指標IA(x),IA(y),IA(z)が得られる(ステップS1)。なお、ステップS21~S27において、片脚スクワット運動の代わりに上述の膝屈曲運動を行ってもよい。 By executing steps S21 to S27 for a plurality of subjects U, a plurality of first indices IA(x), IA(y), and IA(z) are obtained (step S1). Note that in steps S21 to S27, the knee bending exercise described above may be performed instead of the one-leg squat exercise.
 次に、主成分分析部214は、複数の被験者Uから得られた第一指標IA(z)を変数とする主成分分析を実行する(ステップS2:主成分分析処理)。 Next, the principal component analysis unit 214 executes principal component analysis using the first index IA(z) obtained from a plurality of subjects U as variables (step S2: principal component analysis processing).
 次に、主成分分析部214は、主成分分析により得られた第一主成分を、下記の式(1)、係数a、及び定数bとして分析結果記憶部215に記憶する(ステップS3:主成分分析処理)。 Next, the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (1), the coefficient a, and the constant b (step S3: main component analysis processing).
膝関節外反ピーク角度Rkp=aIA(z)+b ・・・(1) Knee joint valgus peak angle Rkp=aIA(z)+b (1)
 図9は、膝関節外反角度Rkを示す説明図である。膝関節外反角度Rkは、立った状態の被験者Uを正面から見て、大腿部の長軸U1の延長線L1と下腿の長軸U2の成す鋭角である。長軸U2が延長線L1に対して外側に回転した場合を膝外反と称する。膝関節外反ピーク角度Rkpは、1回の膝屈曲運動における対象期間Tw内での膝関節外反角度Rkの最大値である。 FIG. 9 is an explanatory diagram showing the knee joint valgus angle Rk. The knee joint valgus angle Rk is an acute angle formed by the extension line L1 of the long axis U1 of the thigh and the long axis U2 of the lower leg when viewing the subject U in a standing state from the front. A case in which the major axis U2 rotates outward with respect to the extension line L1 is referred to as knee valgus. The knee joint valgus peak angle Rkp is the maximum value of the knee joint valgus angle Rk within the target period Tw in one knee flexion exercise.
 膝関節外反ピーク角度Rkpの増大は、膝関節の前十字靭帯損傷、内側側副靭帯損傷、及び外側半月板損傷等の代表的な膝関節傷害の危険因子であることが知られている。従って、膝関節外反ピーク角度Rkpは、下肢の制御能力を表す指標として用いることができ、膝屈曲運動から膝関節外反ピーク角度Rkpを得ることができれば、被験者Uの下肢の制御能力を測定することが容易となる。 An increase in the knee joint valgus peak angle Rkp is known to be a risk factor for typical knee joint injuries such as anterior cruciate ligament injury, medial collateral ligament injury, and lateral meniscus injury. Therefore, the knee joint valgus peak angle Rkp can be used as an index representing the lower limb control ability, and if the knee joint valgus peak angle Rkp can be obtained from the knee flexion movement, the lower limb control ability of the subject U can be measured. easier to do.
 本発明者らは、大学生アスリート50名について、片脚スクワット運動によりステップS21~S27の第一指標取得処理を実施し、50名分の第一指標IA(x),IA(y),IA(z)を取得した。そして、50名分の第一指標IA(z)の主成分分析結果から、第一主成分として、式(1)の係数a=0.110、定数b=-4.119を算出した。 The present inventors performed the first index acquisition processing in steps S21 to S27 by performing a one-leg squat exercise on 50 university student athletes, and performed the first index IA(x), IA(y), IA( z) was obtained. Then, from the principal component analysis results of the first index IA(z) for 50 subjects, the coefficient a=0.110 and the constant b=−4.119 of formula (1) were calculated as the first principal component.
 従って、係数a及び定数bとして、係数a=0.110、定数b=-4.119を好適に用いることができる。なお、有効数字三桁で係数a=0.110、定数b=-4.12としてもよく、有効数字二桁で係数a=0.11、定数b=-4.1としてもよく、有効数字一桁で係数a=0.1、定数b=-4としてもよい。しかしながら、係数a及び定数bの有効数字桁数が多いほど、第一指標IA(z)から膝関節外反ピーク角度Rkpを予測する精度が向上する点でより好ましい。 Therefore, coefficient a=0.110 and constant b=-4.119 can be preferably used as coefficient a and constant b. Note that coefficient a = 0.110 and constant b = -4.12 with three significant digits, or coefficient a = 0.11 and constant b = -4.1 with two significant digits. A coefficient a=0.1 and a constant b=-4 may be set in one digit. However, the greater the number of significant digits of the coefficient a and the constant b, the more preferable the accuracy of predicting the knee joint valgus peak angle Rkp from the first index IA(z) improves.
 式(1)、係数a、及び定数bから、第一指標IA(z)が増大すれば、膝関節外反ピーク角度Rkpもまた増大する相関関係を有するから、第一指標IA(z)そのものを、被験者Uの下肢制御能力を示す指標として用いることができる。第一指標IA(z)は、直接膝関節外反ピーク角度Rkpを測定するよりも測定が容易であるから、下肢の制御能力を測定することが容易となる。 From equation (1), coefficient a, and constant b, if the first index IA(z) increases, the knee joint valgus peak angle Rkp also increases, so the first index IA(z) itself can be used as an index showing the lower limb control ability of the subject U. Since the first index IA(z) is easier to measure than directly measuring the knee joint valgus peak angle Rkp, it becomes easier to measure the controllability of the lower limbs.
 主成分分析部214が式(1)、係数a及び定数bを分析結果記憶部215に記憶することによって、下肢制御能力測定装置2は、新たな被験者Uの第一指標IA(z)の測定結果に基づき、下肢の制御能力を表す膝関節外反ピーク角度Rkpを予測することが可能となる。式(1)、係数a及び定数bの妥当性については後述する。 The principal component analysis unit 214 stores the formula (1), the coefficient a and the constant b in the analysis result storage unit 215, so that the lower limb control ability measuring device 2 measures the first index IA(z) of the new subject U. Based on the results, it is possible to predict the knee joint valgus peak angle Rkp, which represents the controllability of the lower extremity. Validity of equation (1), coefficient a and constant b will be described later.
 次に、主成分分析部214は、複数の被験者Uから得られた第一指標IA(x),IA(z)を変数とする主成分分析を実行する(ステップS4:主成分分析処理)。 Next, the principal component analysis unit 214 executes principal component analysis using the first indices IA(x) and IA(z) obtained from a plurality of subjects U as variables (step S4: principal component analysis processing).
 次に、主成分分析部214は、主成分分析により得られた第一主成分を、下記の式(2)、係数c,d、及び定数eとして分析結果記憶部215に記憶する(ステップS5:主成分分析処理)。 Next, the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (2), coefficients c and d, and constant e (step S5 : principal component analysis processing).
△GRF=cIA(z)+dIA(x)+e ・・・(2) ΔGRF=cIA(z)+dIA(x)+e (2)
 △GRFは、被験者Uが所定高さから着地した際の着地点からの垂直方向の反力の単位時間当たりの増加量である。△GRFは、どれだけ急激に床反力が生じたかを示す指標である。 △GRF is the amount of increase per unit time of the reaction force in the vertical direction from the landing point when the subject U lands from a predetermined height. ΔGRF is an index that indicates how rapidly the floor reaction force is generated.
 単位時間当たりの垂直方向の床反力の増加量(△GRF)が大きいことは、着地後により大きな垂直方向の床反力が急激に作用することを意味する。前述の膝関節傷害は接地後約40msec以内の接地した直後に生じることが知られている。従って、膝関節外反ピーク角度Rkpが大きく、△GRFが大きいほど、膝関節傷害の受傷リスクが増大する。すなわち、△GRFは、膝関節傷害の発生要因の程度を評価しうる指標となる。 A large increase in the vertical floor reaction force per unit time (ΔGRF) means that a greater vertical floor reaction force suddenly acts after landing. It is known that the aforementioned knee joint injury occurs immediately after contacting the ground within about 40 msec after contacting the ground. Therefore, the greater the knee joint valgus peak angle Rkp and the greater the ΔGRF, the greater the risk of knee joint injury. That is, ΔGRF is an index that can evaluate the degree of factors causing knee joint injury.
 従って、△GRFは、下肢の制御能力を表す指標として用いることができ、膝屈曲運動から△GRFを得ることができれば、被験者Uの下肢の制御能力を測定することが容易となる。 Therefore, ΔGRF can be used as an index representing the controllability of the lower limbs, and if ΔGRF can be obtained from the knee bending motion, it becomes easier to measure the controllability of the lower limbs of the subject U.
 本発明者らは、上述の大学生アスリート50名分の第一指標IA(x),IA(z)の主成分分析結果から、第一主成分として、式(2)の係数c=0.007、係数d=-0.003、定数e=0.868を算出した。 From the principal component analysis results of the first indexes IA(x) and IA(z) for 50 university student athletes, the present inventors determined that the coefficient c of formula (2) = 0.007 as the first principal component. , the coefficient d=−0.003, and the constant e=0.868.
 従って、係数c,d及び定数eとして、係数c=0.007、係数d=-0.003、定数e=0.868を好適に用いることができる。なお、有効数字二桁で係数c=0.007、係数d=-0.003、定数e=0.87としてもよく、有効数字一桁で係数c=0.007、係数d=-0.003、定数e=0.9としてもよい。しかしながら、係数c,d及び定数eの有効数字桁数が多いほど、第一指標IA(x),IA(z)から△GRFを予測する精度が向上する点でより好ましい。 Therefore, coefficient c=0.007, coefficient d=-0.003, and constant e=0.868 can be preferably used as coefficients c, d, and constant e. Note that the coefficient c=0.007, the coefficient d=-0.003, and the constant e=0.87 with two significant digits, or the coefficient c=0.007 with one significant digit, and the coefficient d=-0. 003, and constant e=0.9. However, it is more preferable to increase the number of significant digits of the coefficients c and d and the constant e in that the accuracy of predicting ΔGRF from the first indices IA(x) and IA(z) improves.
 式(2)、係数c,d、及び定数eから、第一指標IA(z)が増大すれば△GRFは増大し、第一指標IA(x)が増大すれば△GRFは減少する相関関係を有するから、第一指標IA(x),IA(z)そのものを、被験者Uの膝関節傷害の発生要因の程度に関する下肢制御能力を示す指標として用いることができる。第一指標IA(x),IA(z)は、直接△GRFを測定するよりも測定が容易であるから、下肢の制御能力を測定することが容易となる。 From equation (2), coefficients c, d, and constant e, ΔGRF increases as the first index IA(z) increases, and ΔGRF decreases as the first index IA(x) increases. , the first indices IA(x) and IA(z) themselves can be used as indices indicating the lower limb control ability related to the degree of causes of the knee joint injury of the subject U. Since the first indices IA(x) and IA(z) are easier to measure than the direct measurement of ΔGRF, it becomes easier to measure the controllability of the lower extremities.
 主成分分析部214は、式(2)、係数c,d及び定数eを分析結果記憶部215に記憶することによって、下肢制御能力測定装置2は、新たな被験者Uの第一指標IA(x),IA(z)の測定結果に基づき、下肢の制御能力を表す△GRFを予測することが可能となる。式(2)、係数c,d及び定数eの妥当性については後述する。 The principal component analysis unit 214 stores the equation (2), the coefficients c and d, and the constant e in the analysis result storage unit 215, so that the lower limb control ability measuring device 2 obtains the new first index IA(x ), and IA(z), it is possible to predict ΔGRF, which represents the ability to control the lower extremities. Validity of equation (2), coefficients c and d, and constant e will be described later.
 次に、主成分分析部214は、複数の被験者Uから得られた第一指標IA(x),IA(y),IA(z)を変数とする主成分分析を実行する(ステップS6:主成分分析処理)。 Next, the principal component analysis unit 214 executes principal component analysis using the first indices IA(x), IA(y), and IA(z) obtained from a plurality of subjects U as variables (step S6: principal component analysis processing).
 次に、主成分分析部214は、主成分分析により得られた第一主成分を、下記の式(3)、係数f,g,hとして分析結果記憶部215に記憶する(ステップS7:主成分分析処理)。 Next, the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (3) and coefficients f, g, h (step S7: main component analysis processing).
第二指標IB=fIA(x)+gIA(y)+hIA(z) ・・・(3) Second index IB=fIA(x)+gIA(y)+hIA(z) (3)
 本発明者らは、後述するように、第二指標IBは、膝関節外反ピーク角度Rkpと相関関係を有し、第二指標IBが増大すれば、膝関節外反ピーク角度Rkpもまた増大する相関関係を有することを見出した。従って、第二指標IBを、被験者Uの下肢制御能力を示す指標として用いることができる。第二指標IBは、直接膝関節外反ピーク角度Rkpを測定するよりも測定が容易であるから、下肢の制御能力を測定することが容易となる。 As will be described later, the present inventors have found that the second index IB has a correlation with the knee joint valgus peak angle Rkp, and if the second index IB increases, the knee joint valgus peak angle Rkp also increases. It was found that there is a correlation that Therefore, the second index IB can be used as an index showing the subject's U lower limb control ability. Since the second index IB is easier to measure than directly measuring the knee joint valgus peak angle Rkp, it becomes easier to measure the controllability of the lower limbs.
 本発明者らは、上述の大学生アスリート50名分の第一指標IA(x),IA(y),IA(z)の主成分分析結果から、第一主成分として、式(3)の係数f=0.487、係数g=0.465、係数h=0.352を算出した。 From the principal component analysis results of the first indices IA(x), IA(y), and IA(z) for 50 university student athletes described above, the present inventors calculated the coefficient of formula (3) as the first principal component f=0.487, coefficient g=0.465, coefficient h=0.352 were calculated.
 従って、係数f,g,hとして、係数f=0.487、係数g=0.465、係数h=0.352を好適に用いることができる。なお、有効数字二桁で係数f=0.49、係数g=0.47、係数h=0.35としてもよく、有効数字一桁で係数f=0.5、係数g=0.5、係数h=0.4としてもよい。 Therefore, the coefficient f=0.487, the coefficient g=0.465, and the coefficient h=0.352 can be preferably used as the coefficients f, g, and h. In addition, the coefficient f = 0.49, the coefficient g = 0.47, and the coefficient h = 0.35 with two significant digits, and the coefficient f = 0.5, the coefficient g = 0.5, with one significant digit. A coefficient h=0.4 may be used.
 また、第二指標IBそのものを評価指標として用いる観点では、係数f、g及びhの比率が、有効数字三桁でf:g:h=487:465:352、有効数字二桁でf:g:h=49:47:35、有効数字一桁でf:g:h=5:5:4であればよい。 In addition, from the viewpoint of using the second index IB itself as an evaluation index, the ratio of the coefficients f, g, and h is f: g: h = 487: 465: 352 in three significant digits, and f: g in two significant digits. :h=49:47:35, f:g:h=5:5:4 with one significant digit.
 しかしながら、係数f,g,hの有効数字桁数が多いほど、第二指標IBと膝関節外反ピーク角度Rkpとの相関精度が向上する点でより好ましい。 However, the greater the number of significant digits of the coefficients f, g, and h, the more preferable the accuracy of the correlation between the second index IB and the knee joint valgus peak angle Rkp is.
 主成分分析部214が式(3)、及び係数f,g,hを分析結果記憶部215に記憶することによって、下肢制御能力測定装置2は、新たな被験者Uの第一指標IA(x),IA(y),IA(z)の測定結果に基づき、膝関節外反ピーク角度Rkpと相関関係を有する第二指標IBを算出することが可能となる。式(3)、及び係数f,g,hの妥当性については後述する。 The principal component analysis unit 214 stores the equation (3) and the coefficients f, g, and h in the analysis result storage unit 215, so that the lower limb control ability measuring device 2 obtains the new first index IA(x) of the subject U , IA(y), and IA(z), it is possible to calculate the second index IB having a correlation with the knee joint valgus peak angle Rkp. Validity of equation (3) and coefficients f, g, and h will be described later.
 次に、主成分分析部214は、複数の被験者Uから得られた第一指標IA(x),IA(y),IA(z)と、式(3)とに基づいて、複数の被験者Uの第二指標IBを算出する(ステップS11)。 Next, the principal component analysis unit 214 calculates the multiple subjects U is calculated (step S11).
 次に、主成分分析部214は、複数の被験者Uから得られた複数の第二指標IBを変数とする主成分分析を実行する(ステップS12:主成分分析処理)。 Next, the principal component analysis unit 214 executes principal component analysis using the plurality of second indices IB obtained from the plurality of subjects U as variables (step S12: principal component analysis processing).
 次に、主成分分析部214は、主成分分析により得られた第一主成分を、下記の式(4)、係数i及び定数jとして分析結果記憶部215に記憶する(ステップS13:主成分分析処理)。 Next, the principal component analysis unit 214 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 215 as the following formula (4), coefficient i and constant j (step S13: principal component analytical processing).
膝関節外反ピーク角度Rkp=iIB+j ・・・(4) Knee joint valgus peak angle Rkp=iIB+j (4)
 上述したように、膝関節外反ピーク角度Rkpは、下肢の制御能力を表す指標として用いることができ、膝屈曲運動から膝関節外反ピーク角度Rkpを得ることができれば、被験者Uの下肢の制御能力を測定することが容易となる。 As described above, the knee joint valgus peak angle Rkp can be used as an index representing the control ability of the lower limbs, and if the knee joint valgus peak angle Rkp can be obtained from the knee flexion movement, it is possible to control the lower limbs of the subject U. Ability can be easily measured.
 本発明者らは、上述の大学生アスリート50名分の第二指標IBの主成分分析結果から、第一主成分として、式(4)の係数i=1.666、定数j=-1.664を算出した。 From the principal component analysis results of the second index IB for 50 university student athletes described above, the present inventors determined that the first principal component is the coefficient i = 1.666 and the constant j = -1.664 in formula (4). was calculated.
 従って、係数i及び定数jとして、係数i=1.666、定数j=-1.664を好適に用いることができる。なお、有効数字三桁で係数i=1.67、定数j=-1.66としてもよく、有効数字二桁で係数i=1.7、定数j=-1.7としてもよく、有効数字一桁で係数i=2、定数j=-2としてもよい。しかしながら、係数i及び定数jの有効数字桁数が多いほど、第二指標IBから膝関節外反ピーク角度Rkpを予測する精度が向上する点でより好ましい。 Therefore, coefficient i=1.666 and constant j=-1.664 can be preferably used as coefficient i and constant j. In addition, coefficient i=1.67 and constant j=-1.66 may be set with three significant digits, or coefficient i=1.7 and constant j=-1.7 may be set with two significant digits. A coefficient i=2 and a constant j=-2 may be set in one digit. However, the greater the number of significant digits of the coefficient i and the constant j, the more preferable in that the accuracy of predicting the knee joint valgus peak angle Rkp from the second index IB improves.
 式(4)、係数i及び定数jから、第二指標IBが増大すれば、膝関節外反ピーク角度Rkpもまた増大する相関関係を有するから、第二指標IBそのものを、被験者Uの下肢制御能力を示す指標として用いることができる。第二指標IBは、直接膝関節外反ピーク角度Rkpを測定するよりも測定が容易であるから、下肢の制御能力を測定することが容易となる。 From the equation (4), the coefficient i and the constant j, if the second index IB increases, the knee joint valgus peak angle Rkp also increases. It can be used as an indicator of ability. Since the second index IB is easier to measure than directly measuring the knee joint valgus peak angle Rkp, it becomes easier to measure the controllability of the lower limbs.
 なお、下肢制御能力測定装置2は、主成分分析部214を備えず、ステップS1~S13を実行しなくてもよい。 It should be noted that the lower limb control ability measuring device 2 does not have to include the principal component analysis unit 214 and does not need to execute steps S1 to S13.
 次に、図1に示す下肢制御能力測定装置2による、被験者Uの下肢の制御能力測定処理について説明する。下肢制御能力測定装置2は、指標IXとして、被験者Uの第一指標IA(x),IA(y),IA(z)、第二指標IB、膝関節外反ピーク角度Rkp、及び△GRFの各指標のうち少なくとも一つを算出することによって、被験者Uの下肢の制御能力を測定する。 Next, the lower limb control ability measurement process of the subject U by the lower limb control ability measuring device 2 shown in FIG. 1 will be described. The lower-limb control ability measuring device 2 uses the first index IA(x), IA(y), IA(z), the second index IB, the knee joint valgus peak angle Rkp, and ΔGRF of the subject U as the index IX. By calculating at least one of the indices, the subject's U lower extremity control ability is measured.
 図10は、図1に示す下肢制御能力測定装置2による第一指標IA(x),IA(y),IA(z)、第二指標IB、膝関節外反ピーク角度Rkp、及び△GRFの各指標を算出する方法の一例を示すフローチャートである。 FIG. 10 shows the first index IA(x), IA(y), IA(z), the second index IB, the knee joint valgus peak angle Rkp, and ΔGRF measured by the lower limb control ability measuring device 2 shown in FIG. 4 is a flow chart showing an example of a method of calculating each index;
 まず、各指標を測定しようとする被験者Uに対して、分析結果記憶部215に記憶された式、係数、及び定数を算出する際に行った運動と同じ種類の膝屈曲運動によって、ステップS21~S27の第一指標取得処理を実行し、被験者Uの第一指標IA(x),IA(y),IA(z)を取得する(ステップS31)。 First, the test subject U who intends to measure each index is subjected to the same kind of knee bending exercise as that performed when calculating the formulas, coefficients, and constants stored in the analysis result storage unit 215, in steps S21 to The first index acquisition process of S27 is executed to acquire the first indices IA(x), IA(y), IA(z) of the subject U (step S31).
 上述したように、第一指標IA(x),IA(y),IA(z)は、膝関節傷害の危険因子である膝関節外反ピーク角度Rkpや△GRFと相関関係を有するから、膝屈曲運動から第一指標IA(x),IA(y),IA(z)を得ることができれば、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として第一指標IA(x),IA(y),IA(z)を測定することができる。 As described above, the first indices IA(x), IA(y), and IA(z) are correlated with the knee joint valgus peak angle Rkp and ΔGRF, which are risk factors for knee joint injury. If the first indices IA(x), IA(y), and IA(z) can be obtained from the flexion movement, the first index IA(x) can be used as an index indicating the control ability of the lower extremity of the subject U that affects the knee joint injury. , IA(y), IA(z) can be measured.
 次に、指標算出部213は、被験者Uから得られた第一指標IA(z)を、式(1)に代入して膝関節外反ピーク角度Rkpを算出する(ステップS32:指標算出処理)。指標算出部213は、膝関節外反ピーク角度Rkpを、例えばディスプレイ22に表示させるなどしてユーザに報知する。 Next, the index calculation unit 213 substitutes the first index IA(z) obtained from the subject U into Equation (1) to calculate the knee joint valgus peak angle Rkp (step S32: index calculation processing). . The index calculator 213 notifies the user of the knee joint valgus peak angle Rkp by, for example, displaying it on the display 22 .
 上述したように、膝関節外反ピーク角度Rkpの増大は、膝関節傷害の危険因子であることが知られているから、膝屈曲運動から膝関節外反ピーク角度Rkpを得ることができれば、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として膝関節外反ピーク角度Rkpを測定することができる。 As described above, an increase in the knee joint valgus peak angle Rkp is known to be a risk factor for knee joint injury. The knee joint valgus peak angle Rkp can be measured as an index indicating the control ability of the subject's U lower limbs that affects the joint injury.
 次に、指標算出部213は、被験者Uから得られた第一指標IA(x),IA(z)を式(2)に代入して△GRFを算出する(ステップS33:指標算出処理)。指標算出部213は、△GRFを、例えばディスプレイ22に表示させるなどしてユーザに報知する。 Next, the index calculation unit 213 substitutes the first indices IA(x) and IA(z) obtained from the subject U into Equation (2) to calculate ΔGRF (step S33: index calculation processing). The index calculator 213 notifies the user of ΔGRF by, for example, displaying it on the display 22 .
 上述したように、△GRFが大きいほど、膝関節傷害の受傷リスクが増大することが知られているから、膝屈曲運動から△GRFを得ることができれば、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として△GRFを測定することができる。 As described above, it is known that the greater the ΔGRF, the greater the risk of knee joint injury. ΔGRF can be measured as an index showing the controllability of
 次に、指標算出部213は、被験者Uから得られた第一指標IA(x),IA(y),IA(z)を、式(3)に代入して第二指標IBを算出する(ステップS34:指標算出処理)。指標算出部213は、第二指標IBを、例えばディスプレイ22に表示させるなどしてユーザに報知する。 Next, the index calculation unit 213 substitutes the first indices IA(x), IA(y), and IA(z) obtained from the subject U into the equation (3) to calculate the second index IB ( step S34: index calculation processing). The index calculator 213 notifies the user of the second index IB by, for example, displaying it on the display 22 .
 上述したように、第二指標IBは、膝関節傷害の危険因子である膝関節外反ピーク角度Rkpと相関関係を有するから、膝屈曲運動から第二指標IBを得ることができれば、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として第二指標IBを測定することができる。 As described above, the second index IB has a correlation with the knee joint valgus peak angle Rkp, which is a risk factor for knee joint injury. A second index IB can be measured as an index indicating the control ability of the lower extremities of the subject U that affects the .
 次に、指標算出部213は、被験者Uから得られた第二指標IBを、式(4)に代入して膝関節外反ピーク角度Rkpを算出する(ステップS35:指標算出処理)。指標算出部213は、膝関節外反ピーク角度Rkpを、例えばディスプレイ22に表示させるなどしてユーザに報知する。 Next, the index calculation unit 213 substitutes the second index IB obtained from the subject U into Equation (4) to calculate the knee joint valgus peak angle Rkp (step S35: index calculation processing). The index calculator 213 notifies the user of the knee joint valgus peak angle Rkp by, for example, displaying it on the display 22 .
 上述したように、膝関節外反ピーク角度Rkpの増大は、膝関節傷害の危険因子であることが知られているから、膝屈曲運動から膝関節外反ピーク角度Rkpを得ることができれば、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として膝関節外反ピーク角度Rkpを測定することができる。 As described above, an increase in the knee joint valgus peak angle Rkp is known to be a risk factor for knee joint injury. The knee joint valgus peak angle Rkp can be measured as an index indicating the control ability of the subject's U lower limbs that affects the joint injury.
 次に、式(1)~式(4)、係数a,c,d,f,g,h,i、及び定数b,e,jの妥当性について説明する。本発明者らは、上述の片脚スクワットにより第一指標IA(x),IA(y),IA(z)を取得したのと同じアスリート50名を被験者Uとして片足着地課題を実施し、13台の赤外線カメラを用いてサンプリング周波数240Hzで、膝関節外反ピーク角度Rkpを計測した。また、フォースプレートを用いてサンプリング周波数1000Hzで△GRFを計測した。 Next, the validity of equations (1) to (4), coefficients a, c, d, f, g, h, and i, and constants b, e, and j will be explained. The present inventors performed a one-leg landing task with the same 50 athletes who acquired the first indices IA(x), IA(y), and IA(z) by the above-mentioned single-leg squat as subjects U. Knee joint valgus peak angle Rkp was measured using a table infrared camera at a sampling frequency of 240 Hz. Also, ΔGRF was measured at a sampling frequency of 1000 Hz using a force plate.
 片足着地課題は、30cmの台の上に片足立ち状態で立ち、合図と同時に片足で床に設置したフォースプレート上に着地を行うものである。片足着地課題において、足が地面に着いた接地から、身体重心が最下点に達するまでの解析区間で最大の膝関節外反角度Rkを、膝関節外反ピーク角度Rkpとして計測した。また、着地した際の床反力を、フォースプレートによって1000Hzのサンプリング周波数で計測し、被験者Uが30cmの高さから着地した際の着地点からの垂直方向の反力の単位時間当たりの増加量である△GRFを測定した。片足着地課題は、上述の片脚スクワットを右脚で行った被験者Uについては右脚で、上述の片脚スクワットを左脚で行った被験者Uについては左脚で行った。 The one-leg landing task is to stand on one leg on a 30 cm platform and land on the force plate installed on the floor with one leg at the same time as the signal is given. In the one-foot landing task, the maximum knee joint valgus angle Rk in the analysis interval from when the foot hits the ground until the body's center of gravity reaches the lowest point was measured as the knee joint valgus peak angle Rkp. In addition, the floor reaction force at the time of landing was measured with a force plate at a sampling frequency of 1000 Hz. ΔGRF, which is The one-leg landing task was performed with the right leg for the subject U who performed the above-described single-leg squat with the right leg, and with the left leg for the subject U who performed the above-described single-leg squat with the left leg.
 50名の被験者Uについて、このようにして得られた膝関節外反ピーク角度Rkpと、第一指標IA(z)との関係について、重回帰分析を行った。 For 50 subjects U, multiple regression analysis was performed on the relationship between the knee joint valgus peak angle Rkp thus obtained and the first index IA(z).
 具体的には、各被験者Uの第一指標IA(z)を重回帰分析の独立変数とし、膝関節外反ピーク角度Rkpを従属変数として重回帰モデルを示す式(1)、係数a=0.110、定数b=-4.119について、上述の片足着地課題により得られた膝関節外反ピーク角度Rkpとの相関関係を重回帰分析により検証した。片足着地課題により得られた膝関節外反ピーク角度Rkpと、式(1)、係数a=0.110、定数b=-4.119により得られた膝関節外反ピーク角度Rkpとの間に有意な関連性が有れば、第一指標IA(z)は、被験者Uの下肢制御能力を表す指標として妥当であると考えられる。 Specifically, the first index IA (z) of each subject U is used as an independent variable for multiple regression analysis, and the knee joint valgus peak angle Rkp is used as a dependent variable to represent a multiple regression model (1), coefficient a = 0 .110, constant b=-4.119, the correlation with the knee joint valgus peak angle Rkp obtained by the above-mentioned one-leg landing task was verified by multiple regression analysis. Between the knee joint valgus peak angle Rkp obtained by the one-leg landing task and the knee joint valgus peak angle Rkp obtained by Equation (1), coefficient a = 0.110, constant b = -4.119 If there is a significant relationship, the first index IA(z) is considered appropriate as an index representing the subject's U lower-limb control ability.
 図12は、式(1)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数a、定数(切片)b、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 12 shows the multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficient a, constant (intercept) b, standard partial regression coefficient β, and p value (p value).
 図12に示す膝関節外反ピーク角度Rkpに関する重回帰分析結果によれば、重寄与率Rが0.202となっており、これは片足着地課題により得られた膝関節外反ピーク角度Rkpの変動のうち20.2%を、式(1)で算出された膝関節外反ピーク角度Rkpで説明できることを意味している。 According to the multiple regression analysis results for the knee joint valgus peak angle Rkp shown in FIG. This means that 20.2% of the variation in can be explained by the knee joint valgus peak angle Rkp calculated by Equation (1).
 すなわち、式(1)で算出された膝関節外反ピーク角度Rkpは、片足着地課題により得られた膝関節外反ピーク角度Rkpと相関関係を有しており、式(1)によって被験者Uの実際の膝関節外反ピーク角度Rkpを推定可能であることを示している。従って、式(1)、係数a=0.110、定数b=-4.119が妥当であることが確認できた。 That is, the knee joint valgus peak angle Rkp calculated by the formula (1) has a correlation with the knee joint valgus peak angle Rkp obtained by the one-leg landing task. It shows that the actual knee joint valgus peak angle Rkp can be estimated. Therefore, it was confirmed that the formula (1), the coefficient a=0.110 and the constant b=-4.119, are appropriate.
 また、図12に示す膝関節外反ピーク角度Rkpに関する重回帰分析結果によれば、第一指標IA(z)のp値は0.001であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、第一指標IA(z)は、重回帰分析の結果から有意であると判断できる。 Also, according to the multiple regression analysis results regarding the knee joint valgus peak angle Rkp shown in FIG. 12, the p-value of the first index IA(z) is 0.001, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the first index IA(z) can be determined to be significant from the results of the multiple regression analysis.
 ここで、片脚スクワットから得られた第一指標IA(z)が、膝関節外反ピーク角度Rkpに関する式(1)についての重回帰分析の結果から有意であることは、被験者Uの第一指標IA(z)を式(1)に代入して膝関節外反ピーク角度Rkpを計算することによって、その被験者Uの膝関節外反ピーク角度Rkpを推定可能であることを意味する。 Here, the first index IA(z) obtained from the single-leg squat is significant from the results of the multiple regression analysis for the formula (1) regarding the knee joint valgus peak angle Rkp. It means that the knee joint valgus peak angle Rkp of the subject U can be estimated by substituting the index IA(z) into the formula (1) and calculating the knee joint valgus peak angle Rkp.
 そこで、例えば式(1)、係数a=0.110、定数b=-4.119を予め分析結果記憶部215に記憶しておき、指標算出部213は、ステップS31で算出された第一指標IA(z)を、分析結果記憶部215に記憶された式(1)に代入することによって、膝関節外反ピーク角度Rkpを、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として算出することができる。 Therefore, for example, formula (1), coefficient a = 0.110, constant b = -4.119 are stored in advance in the analysis result storage unit 215, and the index calculation unit 213 calculates the first index calculated in step S31. By substituting IA(z) into the formula (1) stored in the analysis result storage unit 215, the knee joint valgus peak angle Rkp is used as an index showing the control ability of the lower extremity of the subject U that affects the knee joint injury. can be calculated as
 また、本発明者らは、各被験者Uの第一指標IA(x),IA(z)を重回帰分析の独立変数とし、△GRFを従属変数として重回帰モデルを示す式(2)、係数c=0.007、係数d=-0.003、定数e=0.868について、上述の片足着地課題により得られた△GRFとの相関関係を重回帰分析により検証した。片足着地課題により得られた△GRFと、式(2)、係数c=0.007、係数d=-0.003、定数e=0.868により得られた△GRFとの間に有意な関連性が有れば、第一指標IA(x),IA(z)は、被験者Uの下肢制御能力を表す指標として妥当であると考えられる。 In addition, the present inventors set the first indices IA (x) and IA (z) of each subject U as independent variables for multiple regression analysis, and used ΔGRF as the dependent variable to express the multiple regression model (2), the coefficient For c=0.007, coefficient d=−0.003, and constant e=0.868, the correlation with ΔGRF obtained by the above-mentioned one-foot landing task was verified by multiple regression analysis. Significant association between the ΔGRF obtained from the one-foot landing task and the ΔGRF obtained from Equation (2), coefficient c = 0.007, coefficient d = -0.003, constant e = 0.868 If so, the first indices IA(x) and IA(z) are considered appropriate as indices representing the subject U's ability to control the lower extremities.
 図13は、式(2)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数c,d、定数e、標準偏回帰係数β、及びp値を示している。 FIG. 13 shows multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficients c and d, constant e, standard partial regression coefficient β, and p value obtained by multiple regression analysis for formula (2). there is
 図13に示す△GRFに関する重回帰分析結果によれば、重寄与率Rが0.204となっており、これは片足着地課題により得られた△GRFの変動のうち20.4%を、式(2)で算出された△GRFで説明できることを意味している。 According to the multiple regression analysis results for ΔGRF shown in FIG. 13, the heavy contribution rate R2 is 0.204, which accounts for 20.4% of the variation in ΔGRF obtained from the one-foot landing task. This means that it can be explained by ΔGRF calculated by Equation (2).
 すなわち、式(2)で算出された△GRFは、片足着地課題により得られた△GRFと相関関係を有しており、式(2)によって被験者Uの実際の△GRFを推定可能であることを示している。従って、式(2)、係数c=0.007、係数d=-0.003、定数e=0.868が妥当であることが確認できた。 That is, the ΔGRF calculated by the formula (2) has a correlation with the ΔGRF obtained by the one-leg landing task, and the actual ΔGRF of the subject U can be estimated by the formula (2). is shown. Therefore, it was confirmed that the formula (2), the coefficient c=0.007, the coefficient d=-0.003, and the constant e=0.868, is appropriate.
 また、図13に示す△GRFに関する重回帰分析結果によれば、第一指標IA(z)のp値は0.001であり、第一指標IA(x)のp値は0.035であり、いずれも0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、第一指標IA(x),IA(z)は、重回帰分析の結果から有意であると判断できる。 Further, according to the multiple regression analysis results for ΔGRF shown in FIG. 13, the p-value of the first index IA(z) is 0.001, and the p-value of the first index IA(x) is 0.035. , are both less than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the first indicators IA(x) and IA(z) can be determined to be significant from the results of the multiple regression analysis. .
 ここで、片脚スクワットから得られた第一指標IA(x),IA(z)が、△GRFに関する式(2)についての重回帰分析の結果から有意であることは、被験者Uの第一指標IA(x),IA(z)を式(2)に代入して△GRFを計算することによって、その被験者Uの△GRFを推定可能であることを意味する。 Here, the first indices IA(x) and IA(z) obtained from the single-leg squat are significant from the results of the multiple regression analysis on the formula (2) regarding ΔGRF, which is the first It means that the ΔGRF of the subject U can be estimated by substituting the indices IA(x) and IA(z) into the equation (2) to calculate ΔGRF.
 そこで、例えば式(2)、係数c=0.007、係数d=-0.003、定数e=0.868を予め分析結果記憶部215に記憶しておき、指標算出部213は、ステップS31で算出された第一指標IA(x),IA(z)を、分析結果記憶部215に記憶された式(2)に代入することによって、△GRFを、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として算出することができる。 Therefore, for example, formula (2), the coefficient c=0.007, the coefficient d=−0.003, and the constant e=0.868 are stored in advance in the analysis result storage unit 215, and the index calculation unit 213 performs step S31 By substituting the first indices IA(x) and IA(z) calculated in the equation (2) stored in the analysis result storage unit 215, ΔGRF is calculated as It can be calculated as an index showing the ability to control the lower extremities.
 また、本発明者らは、各被験者Uの第二指標IBを重回帰分析の独立変数とし、膝関節外反ピーク角度Rkpを従属変数として重回帰モデルを示す式(4)、係数i=1.666、定数j=-1.664について、上述の片足着地課題により得られた膝関節外反ピーク角度Rkpとの相関関係を重回帰分析により検証した。片足着地課題により得られた膝関節外反ピーク角度Rkpと、式(4)、係数i=1.666、定数j=-1.664により得られた膝関節外反ピーク角度Rkpとの間に有意な関連性が有れば、第二指標IBは、被験者Uの下肢制御能力を表す指標として妥当であると考えられる。 In addition, the present inventors used the second index IB of each subject U as an independent variable in multiple regression analysis, and the knee joint valgus peak angle Rkp as a dependent variable to represent a multiple regression model (4), coefficient i = 1 0.666 and a constant j=-1.664, the correlation with the knee joint valgus peak angle Rkp obtained by the above-mentioned one-leg landing task was verified by multiple regression analysis. Between the knee joint valgus peak angle Rkp obtained by the one-foot landing task and the knee joint valgus peak angle Rkp obtained by Equation (4), coefficient i = 1.666, constant j = -1.664 If there is a significant relationship, the second index IB is considered appropriate as an index representing the subject's U lower limb control ability.
 図14は、式(4)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数i、定数j、標準偏回帰係数β、及びp値を示している。 FIG. 14 shows the multiple correlation coefficient R, the multiple contribution ratio R 2 , the partial regression coefficient i, the constant j, the standard partial regression coefficient β, and the p-value obtained by multiple regression analysis for Equation (4).
 図14に示す膝関節外反ピーク角度Rkpに関する重回帰分析結果によれば、重寄与率Rが0.126となっており、これは片足着地課題により得られた膝関節外反ピーク角度Rkpの変動のうち12.6%を、式(4)で算出された膝関節外反ピーク角度Rkpで説明できることを意味している。 According to the multiple regression analysis results for the knee joint valgus peak angle Rkp shown in FIG. This means that 12.6% of the variation in can be explained by the knee joint valgus peak angle Rkp calculated by Equation (4).
 すなわち、式(4)で算出された膝関節外反ピーク角度Rkpは、片足着地課題により得られた膝関節外反ピーク角度Rkpと相関関係を有しており、式(4)によって被験者Uの実際の膝関節外反ピーク角度Rkpを推定可能であることを示している。従って、式(4)、係数i=1.666、定数j=-1.664が妥当であることが確認できた。 That is, the knee joint valgus peak angle Rkp calculated by the formula (4) has a correlation with the knee joint valgus peak angle Rkp obtained by the one-leg landing task, and the subject U's It shows that the actual knee joint valgus peak angle Rkp can be estimated. Therefore, it was confirmed that the formula (4), the coefficient i=1.666 and the constant j=-1.664, are appropriate.
 また、図14に示す膝関節外反ピーク角度Rkpに関する重回帰分析結果によれば、第二指標IBのp値は0.011であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、第二指標IBは、重回帰分析の結果から有意であると判断できる。 Also, according to the multiple regression analysis results regarding the knee joint valgus peak angle Rkp shown in FIG. 14, the p-value of the second index IB is 0.011, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the second indicator IB can be determined to be significant from the results of the multiple regression analysis.
 ここで、片脚スクワットから得られた第二指標IBが、膝関節外反ピーク角度Rkpに関する式(4)についての重回帰分析の結果から有意であることは、被験者Uの第二指標IBを式(4)に代入して膝関節外反ピーク角度Rkpを計算することによって、その被験者Uの膝関節外反ピーク角度Rkpを推定可能であることを意味する。 Here, the fact that the second index IB obtained from the single-leg squat is significant from the results of the multiple regression analysis on the formula (4) regarding the knee joint valgus peak angle Rkp indicates that the second index IB of the subject U is It means that the knee joint valgus peak angle Rkp of the subject U can be estimated by substituting it into Equation (4) and calculating the knee joint valgus peak angle Rkp.
 そこで、例えば式(4)、係数i=1.666、定数j=-1.664を予め分析結果記憶部215に記憶しておき、指標算出部213は、ステップS34で算出された第二指標IBを、分析結果記憶部215に記憶された式(4)に代入することによって、膝関節外反ピーク角度Rkpを、膝関節傷害に影響する被験者Uの下肢の制御能力を示す指標として算出することができる。 Therefore, for example, the equation (4), the coefficient i=1.666, and the constant j=−1.664 are stored in advance in the analysis result storage unit 215, and the index calculation unit 213 calculates the second index calculated in step S34. By substituting IB into the formula (4) stored in the analysis result storage unit 215, the knee joint valgus peak angle Rkp is calculated as an index indicating the control ability of the lower extremity of the subject U that affects the knee joint injury. be able to.
 さらに、第二指標IBが有意であるならば、第二指標IBを算出するために用いた式(3)、係数f=0.487、係数g=0.465、係数h=0.352もまた妥当であると判断できる。 Furthermore, if the second index IB is significant, the equation (3) used to calculate the second index IB, coefficient f = 0.487, coefficient g = 0.465, coefficient h = 0.352 It can also be judged to be appropriate.
 なお、主成分分析部214は、ステップS6,S7を実行しなくてもよく、ステップS4,S5を実行しなくてもよく、ステップS2,S3を実行しなくてもよい。また、指標算出部213は、ステップS35を実行しなくてもよく、ステップS34を実行しなくてもよく、ステップS33を実行しなくてもよく、ステップS32を実行しなくてもよい。 Note that the principal component analysis unit 214 does not need to execute steps S6 and S7, does not need to execute steps S4 and S5, and does not need to execute steps S2 and S3. Further, the index calculation unit 213 may not execute step S35, may not execute step S34, may not execute step S33, and may not execute step S32.
 すなわち、本発明の一局面に従う下肢制御能力測定装置は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得部と、前記物理量取得部によって取得された物理量を時間軸に沿って並べた検出波形に基づく第一波形を取得する第一波形取得部と、前記第一波形を平滑化することにより第二波形を取得する第二波形取得部と、予め設定された対象期間内における、前記第一波形と前記第二波形との差分の絶対値の総和を、前記被験者の下肢制御能力を表す第一指標として算出する指標算出部とを備える。 That is, in the lower limb control ability measuring device according to one aspect of the present invention, a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device during a period in which the knee flexion motion including the extension motion is performed, and the physical quantity acquired by the physical quantity acquisition unit are arranged along the time axis. A first waveform acquisition unit that acquires a first waveform based on the detected waveform, a second waveform acquisition unit that acquires a second waveform by smoothing the first waveform, and a preset target period, an index calculation unit that calculates a sum of absolute values of differences between the first waveform and the second waveform as a first index representing the lower limb control ability of the subject.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、前記物理量検出装置とを含む。 Also, a lower-limb control ability measuring system according to one aspect of the present invention includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
 また、本発明の一局面に従う下肢制御能力測定プログラムは、上述の下肢制御能力測定装置として、コンピュータを機能させる。 Also, a lower-limb control ability measuring program according to one aspect of the present invention causes a computer to function as the above-described lower-limb control ability measuring device.
 また、本発明の一局面に従うコンピュータ読み取り可能な記録媒体は、上述の下肢制御能力測定プログラムを記録する。 Also, a computer-readable recording medium according to one aspect of the present invention records the lower limb control ability measurement program described above.
 また、本発明の一局面に従う下肢制御能力測定方法は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得処理と、前記物理量取得処理によって取得された物理量を時間軸に沿って並べた検出波形に基づく第一波形を取得する第一波形取得処理と、前記第一波形を平滑化することにより第二波形を取得する第二波形取得処理と、前記第一波形と前記第二波形との差分の絶対値の総和を、前記被験者の下肢制御能力を表す第一指標として算出する指標算出処理とを含む。 Further, in the method for measuring lower limb control ability according to one aspect of the present invention, a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition process for acquiring physical quantities detected by the physical quantity detection device during a period in which a knee flexion exercise including an extending motion is performed; and arranging the physical quantities acquired by the physical quantity acquisition process along a time axis. a first waveform acquisition process for acquiring a first waveform based on the detected waveform; a second waveform acquisition process for acquiring a second waveform by smoothing the first waveform; and the first waveform and the second waveform. and an index calculation process of calculating the sum of the absolute values of the differences between and as a first index representing the lower limb control ability of the subject.
 これらの構成によれば、被験者の大腿部に物理量検出装置を取り付け、被験者が膝屈曲運動を行った際に取得された物理量の波形から、被験者の下肢制御能力を表す第一指標を算出することができるので、下肢の制御能力を測定することが容易である。 According to these configurations, the physical quantity detection device is attached to the subject's thigh, and the first index representing the subject's lower limb control ability is calculated from the waveform of the physical quantity acquired when the subject performs a knee flexion exercise. Therefore, it is easy to measure the control ability of the lower extremities.
 また、前記第一波形取得部は、前記検出波形に対して低域通過フィルタによるフィルタ処理を施した波形を前記第一波形として取得することが好ましい。 Further, it is preferable that the first waveform acquisition unit acquires, as the first waveform, a waveform obtained by filtering the detected waveform with a low-pass filter.
 この構成によれば、第一波形からノイズ成分を除去することができるので、第一指標が被験者の下肢制御能力を表す精度が向上する。 According to this configuration, noise components can be removed from the first waveform, so the accuracy of the first index representing the subject's lower limb control ability is improved.
 また、前記第二波形取得部は、前記第一波形に対して、前記時間軸に沿って移動させつつ平均する移動平均を行うことにより前記平滑化を行うことが好ましい。 Further, it is preferable that the second waveform acquisition unit performs the smoothing by performing a moving average on the first waveform while moving along the time axis.
 移動平均は、平滑化処理として好適である。 A moving average is suitable as a smoothing process.
 また、前記物理量検出装置は、前記物理量を、予め設定されたサンプリング周波数で検出し、前記移動平均では、予め設定された移動平均時間の期間中に、前記物理量検出装置によって検出されたデータ数分の平均値を算出することが好ましい。 Further, the physical quantity detection device detects the physical quantity at a preset sampling frequency, and in the moving average, the number of data detected by the physical quantity detection device during a preset moving average time period. It is preferable to calculate the average value of
 この構成によれば、移動平均による平滑化の程度を一定にすることができるので、第一指標の値が安定し、複数の第一指標同士での相対比較が容易になる。 According to this configuration, the degree of smoothing by the moving average can be made constant, so the value of the first index is stabilized and relative comparison between multiple first indices becomes easy.
 また、前記平滑化において、前記移動平均を複数回繰り返してもよい。 Also, in the smoothing, the moving average may be repeated multiple times.
 移動平均を複数回繰り返すことにより、平滑化の程度が増大する。 By repeating the moving average multiple times, the degree of smoothing increases.
 また、前記膝屈曲運動は、前記荷重に抗しながら膝関節を屈曲する動作を含み、前記対象期間は、前記膝屈曲運動における、前記荷重に抗しながら膝関節を屈曲する動作を実行中の期間であることが好ましい。 Further, the knee bending exercise includes an operation of bending the knee joint while resisting the load, and the target period is a period during which the knee bending exercise is performing the operation of bending the knee joint while resisting the load. A period is preferred.
 荷重に抗しながら膝関節を屈曲する動作を実行中の期間は、被験者の下肢伸筋群に生じる収縮形態が、主に伸張性収縮となる期間である。後述するように、伸張性収縮能力は、アスリートの傷害予防、中高年齢者のQOL向上、及び介護予防などの観点で、特に重要である。従って、伸張性収縮運動を行う期間を、第一指標を算出する対象期間とすることによって、アスリートの傷害予防、中高年齢者のQOL向上、及び介護予防などの観点で特に有益な下肢の制御能力を測定することが可能となる。 During the period during which the knee joint is flexed while resisting the load, the contraction morphology that occurs in the extensor muscles of the lower extremities of the subject is mainly eccentric contraction. As will be described later, eccentric contractile ability is particularly important from the viewpoints of injury prevention for athletes, improvement of QOL for middle-aged and elderly people, and prevention of nursing care. Therefore, by setting the period during which the eccentric contraction exercise is performed as the target period for calculating the first index, the ability to control the lower extremities is particularly beneficial from the perspectives of injury prevention for athletes, improvement of QOL for middle-aged and elderly people, and prevention of nursing care. can be measured.
 また、前記膝屈曲運動は、片脚スクワットであり、前記物理量検出装置は、前記片脚スクワットを行う側の大腿部に取り付けられることが好ましい。 Further, it is preferable that the knee flexion exercise is a one-leg squat, and the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
 膝屈曲運動を片脚スクワットとした場合、物理量検出装置の取り付け箇所は、片脚スクワットを行う側の大腿部が好適である。 When the knee flexion exercise is a one-leg squat, it is preferable that the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
 また、前記角速度は、前記大腿部の長軸方向に延びるX軸、前記大腿部の前後方向に延びるY軸、及び前記大腿部の左右方向に延びるZ軸のうち少なくとも一つの軸回りの角速度であり、前記加速度は、前記X軸、前記Y軸、及び前記Z軸のうち少なくとも一つの軸方向の加速度であることが好ましい。 The angular velocity is about at least one of an X-axis extending in the longitudinal direction of the thigh, a Y-axis extending in the front-rear direction of the thigh, and a Z-axis extending in the left-right direction of the thigh. and the acceleration is acceleration in at least one axial direction of the X-axis, the Y-axis, and the Z-axis.
 大腿部の長軸方向に延びるX軸、大腿部の前後方向に延びるY軸、及び大腿部の左右方向に延びるZ軸は、膝屈曲運動における下肢制御能力との関連が深い軸方向であるから、X軸、Y軸、及びZ軸のうち少なくとも一つの軸方向に対応する物理量から、被験者の下肢の制御能力を表す第一波形が取得されることによって、第一指標によって表される被験者の下肢の制御能力の精度が向上する。 The X-axis extending in the longitudinal direction of the thigh, the Y-axis extending in the front-rear direction of the thigh, and the Z-axis extending in the left-right direction of the thigh are axial directions that are closely related to the ability to control the lower limbs in knee flexion motion. Therefore, the first waveform representing the control ability of the lower extremity of the subject is obtained from the physical quantity corresponding to at least one of the X-axis, Y-axis, and Z-axis, and is represented by the first index. The accuracy of the control ability of the subject's lower extremities is improved.
 また、前記第一波形取得部は、前記X軸の軸回りの角速度の波形である前記検出波形に基づく第一波形W1(x)と、前記Y軸の軸回りの角速度の波形である前記検出波形に基づく第一波形W1(y)と、前記Z軸の軸回りの角速度の波形である前記検出波形に基づく第一波形W1(z)とのうち少なくとも一つを取得し、前記第二波形取得部は、前記第一波形W1(x)が平滑化された第二波形W2(x)と、前記第一波形W1(y)が平滑化された第二波形W2(y)と、前記第一波形W1(z)が平滑化された第二波形W2(z)とのうち少なくとも一つを取得し、前記指標算出部は、前記第一波形W1(x)と前記第二波形W2(x)との差分の絶対値の総和である第一指標IA(x)と、前記第一波形W1(y)と前記第二波形W2(y)との差分の絶対値の総和である第一指標IA(y)と、前記第一波形W1(z)と前記第二波形W2(z)との差分の絶対値の総和である第一指標IA(z)とのうち少なくとも一つを前記第一指標として算出することが好ましい。 Further, the first waveform acquisition unit obtains a first waveform W1(x) based on the detected waveform, which is a waveform of angular velocity about the X-axis, and the detected waveform, which is a waveform of angular velocity about the Y-axis. obtaining at least one of a first waveform W1(y) based on the waveform and a first waveform W1(z) based on the detected waveform, which is a waveform of angular velocity about the Z axis, and obtaining the second waveform; The acquisition unit obtains a second waveform W2(x) obtained by smoothing the first waveform W1(x), a second waveform W2(y) obtained by smoothing the first waveform W1(y), and the Obtaining at least one of a second waveform W2(z) obtained by smoothing one waveform W1(z), the index calculation unit calculates the first waveform W1(x) and the second waveform W2(x ), and a first index IA (x) that is the sum of the absolute values of the differences between the first waveform W1 (y) and the second waveform W2 (y). At least one of IA(y) and a first index IA(z) that is the sum of absolute values of differences between the first waveform W1(z) and the second waveform W2(z) is It is preferable to calculate as an index.
 この構成によれば、膝屈曲運動における下肢制御能力との関連が深いX軸、Y軸、及びZ軸のうち少なくとも一つの軸方向に対応する第一指標IA(x)と、第一指標IA(y)と、第一指標IA(z)とのうち少なくとも一つを第一指標として算出することができる。 According to this configuration, the first index IA(x) corresponding to at least one axial direction of the X-axis, Y-axis, and Z-axis, which is closely related to the ability to control the lower limbs in knee bending motion, and the first index IA At least one of (y) and the first index IA(z) can be calculated as the first index.
 また、前記指標算出部は、前記第一指標IA(z)を前記第一指標として算出し、前記指標算出部は、さらに、前記第一指標IA(z)から、下記の式(1)を用いて、前記被験者の膝関節外反ピーク角度Rkpを算出することが好ましい。膝関節外反ピーク角度Rkp=aIA(z)+b ・・・(1)、aは係数、bは定数。 Further, the index calculation unit calculates the first index IA(z) as the first index, and the index calculation unit further calculates the following formula (1) from the first index IA(z): is preferably used to calculate the knee joint valgus peak angle Rkp of the subject. Knee joint valgus peak angle Rkp=aIA(z)+b (1), where a is a coefficient and b is a constant.
 この構成によれば、被験者の膝関節外反ピーク角度Rkpを直接計測しなくても、第一指標IA(z)から被験者の膝関節外反ピーク角度Rkpを算出することが可能になる。 According to this configuration, it is possible to calculate the subject's knee joint valgus peak angle Rkp from the first index IA(z) without directly measuring the subject's knee joint valgus peak angle Rkp.
 また、前記係数aは、有効数字1桁で0.1、前記定数bは、有効数字1桁で-4であることが好ましい。 Also, it is preferable that the coefficient a is 0.1 in one significant digit, and the constant b is -4 in one significant digit.
 本発明者らは、係数aは有効数字1桁で0.1、前記定数bは有効数字1桁で-4が好適であることを見出した。 The inventors have found that the coefficient a is preferably 0.1 in one significant digit, and the constant b is preferably -4 in one significant digit.
 また、前記指標算出部は、前記第一指標IA(x)及び前記第一指標IA(z)を前記第一指標として算出し、前記指標算出部は、さらに、前記第一指標IA(x)及び前記第一指標IA(z)から、下記の式(2)を用いて、前記被験者が所定高さから着地した際の着地点からの垂直方向の反力の単位時間当たりの増加量である△GRFを算出することが好ましい。△GRF=cIA(z)+dIA(x)+e ・・・(2)、c及びdは係数、eは定数。 Further, the index calculation unit calculates the first index IA(x) and the first index IA(z) as the first index, and the index calculation unit further calculates the first index IA(x) And from the first index IA (z), using the following formula (2), the amount of increase per unit time in the vertical reaction force from the landing point when the subject lands from a predetermined height It is preferable to calculate ΔGRF. ΔGRF=cIA(z)+dIA(x)+e (2), where c and d are coefficients and e is a constant.
 この構成によれば、被験者の△GRFを直接計測しなくても、第一指標IA(x)及び前記第一指標IA(z)から被験者の△GRFを算出することが可能になる。 According to this configuration, it is possible to calculate the subject's ΔGRF from the first index IA(x) and the first index IA(z) without directly measuring the subject's ΔGRF.
 また、前記係数cは、有効数字1桁で0.007、前記係数dは、有効数字1桁で-0.003、前記定数eは、有効数字1桁で0.9であることが好ましい。 Further, it is preferable that the coefficient c is 0.007 with one significant digit, the coefficient d is -0.003 with one significant digit, and the constant e is 0.9 with one significant digit.
 本発明者らは、係数cは有効数字1桁で0.007、係数dは有効数字1桁で-0.003、定数eは有効数字1桁で0.9が好適であることを見出した。 The present inventors have found that the coefficient c is preferably 0.007 in one significant digit, the coefficient d is -0.003 in one significant digit, and the constant e is preferably 0.9 in one significant digit. .
 また、前記指標算出部は、前記第一指標IA(x)、前記第一指標IA(y)、及び前記第一指標IA(z)を前記第一指標として算出し、前記指標算出部は、さらに、下記の式(3)を用いて第二指標IBを算出することが好ましい。第二指標IB=fIA(x)+gIA(y)+hIA(z) ・・・(3)、f、g及びhは係数。 Further, the index calculation unit calculates the first index IA(x), the first index IA(y), and the first index IA(z) as the first index, and the index calculation unit Furthermore, it is preferable to calculate the second index IB using the following formula (3). Second index IB=fIA(x)+gIA(y)+hIA(z) (3), where f, g and h are coefficients.
 この構成によれば、第二指標IBは、膝屈曲運動における下肢制御能力との関連が深いX軸、Y軸、及びZ軸の三軸すべての第一指標IA(x),IA(y),IA(z)が反映された指標となる。その結果、第二指標IBは、総合的に被験者の下肢の制御能力を表す指標となる。 According to this configuration, the second index IB is the first index IA(x), IA(y) of all three axes, the X-axis, Y-axis, and Z-axis, which are closely related to the ability to control the lower limbs in knee flexion exercise. , IA(z) are reflected. As a result, the second index IB is a comprehensive index representing the control ability of the subject's lower extremities.
 また、前記係数f、g及びhの比率が、有効数字一桁でf:g:h=5:5:4であることが好ましい。 Also, it is preferable that the ratio of the coefficients f, g, and h is f:g:h=5:5:4 with one significant figure.
 本発明者らは、係数f、g及びhの比率が、有効数字一桁でf:g:h=5:5:4が好適であることを見出した。 The inventors found that the ratio of coefficients f, g, and h is preferably f:g:h=5:5:4 with one significant figure.
 また、前記係数fは、有効数字1桁で0.5、前記係数gは、有効数字1桁で0.5、 Also, the coefficient f is 0.5 in one significant digit, the coefficient g is 0.5 in one significant digit,
 前記係数hは、有効数字1桁で0.4であることが好ましい。 The coefficient h is preferably 0.4 with one significant figure.
 本発明者らは、係数fは、有効数字1桁で0.5、前記係数gは、有効数字1桁で0.5、前記係数hは、有効数字1桁で0.4が好適であることを見出した。 The present inventors have found that the coefficient f is preferably 0.5 with one significant digit, the coefficient g is preferably 0.5 with one significant digit, and the coefficient h is preferably 0.4 with one significant digit. I found out.
 また、前記指標算出部は、さらに、前記第二指標IBから、下記の式(4)を用いて、前記被験者の膝関節外反ピーク角度Rkpを算出することが好ましい。膝関節外反ピーク角度Rkp=iIB+j ・・・(4)、iは係数、jは定数。 Further, it is preferable that the index calculation unit further calculates the subject's knee joint valgus peak angle Rkp from the second index IB using the following formula (4). Knee joint valgus peak angle Rkp=iIB+j (4), where i is a coefficient and j is a constant.
 この構成によれば、被験者の膝関節外反ピーク角度Rkpを直接計測しなくても、第二指標IBから被験者の膝関節外反ピーク角度Rkpを算出することが可能になる。 According to this configuration, it is possible to calculate the subject's knee joint valgus peak angle Rkp from the second index IB without directly measuring the subject's knee joint valgus peak angle Rkp.
 本発明者らは、前記係数iは有効数字1桁で2、前記定数jは有効数字1桁で-2が好適であることを見出した。 The inventors have found that the coefficient i is preferably 2 with one significant digit, and the constant j is preferably -2 with one significant digit.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(1)として求める主成分分析部とを含む。 Further, the lower limb control ability measuring system according to one aspect of the present invention performs principal component analysis using the above-described lower limb control ability measuring device and the first index IA(z) obtained from a plurality of subjects as variables, a principal component analysis unit that obtains the first principal component of the principal component analysis as the formula (1).
 この構成によれば、複数の被験者から取得された第一指標IA(z)に基づいて、前記式(1)を求めることができる。 According to this configuration, the above formula (1) can be obtained based on the first index IA(z) obtained from a plurality of subjects.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記第一指標IA(x)及び前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(2)として求める主成分分析部とを含む。 Further, a lower limb control ability measuring system according to one aspect of the present invention includes the lower limb control ability measuring device described above, and the first index IA(x) and the first index IA(z) obtained from a plurality of subjects as variables and a principal component analysis unit that performs a principal component analysis to obtain the first principal component of the principal component analysis as the formula (2).
 この構成によれば、複数の被験者から取得された第一指標IA(x),IA(z)に基づいて、前記式(2)を求めることができる。 According to this configuration, the above equation (2) can be obtained based on the first indices IA(x) and IA(z) obtained from a plurality of subjects.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記前記第一指標IA(x)、前記第一指標IA(y)、及び前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(3)として求める主成分分析部とを含む。 Further, a leg control ability measuring system according to one aspect of the present invention includes the leg control ability measuring device described above, the first index IA(x) obtained from a plurality of subjects, the first index IA(y), and a principal component analysis unit that performs principal component analysis with the first index IA(z) as a variable and obtains the first principal component of the principal component analysis as the above equation (3).
 この構成によれば、複数の被験者から取得された第一指標IA(x),IA(y),IA(z)に基づいて、前記式(3)を求めることができる。 According to this configuration, the above formula (3) can be obtained based on the first indices IA(x), IA(y), and IA(z) obtained from a plurality of subjects.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記第二指標IBを変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(4)として求める主成分分析部とを含む。 Further, the lower limb control ability measuring system according to one aspect of the present invention performs principal component analysis using the above-described lower limb control ability measuring device and the second index IB obtained from a plurality of subjects as variables, and the principal component and a principal component analysis unit that obtains the first principal component of the analysis as the above equation (4).
 この構成によれば、複数の被験者から取得された第二指標IBに基づいて、前記式(4)を求めることができる。 According to this configuration, the above formula (4) can be obtained based on the second index IB obtained from a plurality of subjects.
 このような構成の下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、下肢制御能力測定プログラムを記録したコンピュータ読み取り可能な記録媒体、及び下肢制御能力測定方法は、下肢の制御能力を測定することが容易である。 The lower limb control ability measuring device, the lower limb control ability measuring system, the lower limb control ability measuring program, the computer-readable recording medium recording the lower limb control ability measuring program, and the lower limb control ability measuring method configured as described above are the control ability of the lower limbs. is easy to measure.
 この出願は、2021年11月5日に出願された日本国特許出願特願2021-180865を基礎とするものであり、その内容は、本願に含まれるものである。なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、本発明は、そのような具体例にのみ限定して狭義に解釈されるべきものではない。 This application is based on Japanese Patent Application No. 2021-180865 filed on November 5, 2021, the contents of which are included in this application. It should be noted that the specific embodiments or examples described in the section for carrying out the invention merely clarify the technical content of the present invention, and the present invention is based on such specific examples. It should not be interpreted narrowly by limiting only
1    下肢制御能力測定システム
2    下肢制御能力測定装置
3    物理量検出装置
21  制御部
22  ディスプレイ
23  キーボード
24  マウス
25  センサI/F部(物理量取得部)
31  角速度センサ
32  記憶部
33  外部I/F部
34  制御部
211      第一波形取得部
212      第二波形取得部
213      指標算出部
214      主成分分析部
215      分析結果記憶部
A,Ax,Ay,Az    角速度
IA,IA(x),IA(y),IA(z)    第一指標
IB  第二指標
L1  延長線
N    データ数
R    重相関係数
  重寄与率
Rk  膝関節外反角度
Rkp      膝関節外反ピーク角度
Tw  対象期間
U    被験者
U1  大腿部の長軸
U2  下腿の長軸
W1,W1(x),W1(y),W1(z)  第一波形
W2,W2(x),W2(y),W2(z)  第二波形
Wd,Wd(x),Wd(y),Wd(z)  検出波形
a,c,d,f,g,h,i    係数
b,e,j  定数
fs  サンプリング周波数
ta  移動平均時間
β    標準偏回帰係数
1 Lower Limb Control Ability Measuring System 2 Lower Limb Control Ability Measuring Device 3 Physical Quantity Detector 21 Control Unit 22 Display 23 Keyboard 24 Mouse 25 Sensor I/F Unit (Physical Quantity Acquisition Unit)
31 Angular velocity sensor 32 Storage unit 33 External I/F unit 34 Control unit 211 First waveform acquisition unit 212 Second waveform acquisition unit 213 Index calculation unit 214 Principal component analysis unit 215 Analysis result storage unit A, Ax, Ay, Az Angular velocity IA , IA(x), IA(y), IA(z) First index IB Second index L1 Extension line N Number of data R Multiple correlation coefficient R Double contribution rate Rk Knee joint valgus angle Rkp Knee joint valgus peak Angle Tw Target period U Subject U1 Long axis of thigh U2 Long axis of lower leg W1, W1(x), W1(y), W1(z) First waveform W2, W2(x), W2(y), W2 (z) Second waveforms Wd, Wd(x), Wd(y), Wd(z) Detected waveforms a, c, d, f, g, h, i Coefficients b, e, j Constant fs Sampling frequency ta Moving average Time β Standard partial regression coefficient

Claims (26)

  1.  角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得部と、
     前記物理量取得部によって取得された物理量を時間軸に沿って並べた検出波形に基づく第一波形を取得する第一波形取得部と、
     前記第一波形を平滑化することにより第二波形を取得する第二波形取得部と、
     予め設定された対象期間内における、前記第一波形と前記第二波形との差分の絶対値の総和を、前記被験者の下肢制御能力を表す第一指標として算出する指標算出部とを備える下肢制御能力測定装置。
    The period during which the subject, whose thigh is equipped with a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration, performs a knee flexion exercise that includes flexion and/or extension of the knee joint while resisting the load. a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device;
    a first waveform acquisition unit that acquires a first waveform based on a detected waveform in which the physical quantities acquired by the physical quantity acquisition unit are arranged along the time axis;
    a second waveform acquisition unit that acquires a second waveform by smoothing the first waveform;
    an index calculation unit that calculates the sum of the absolute values of the differences between the first waveform and the second waveform within a preset target period as a first index representing the lower limb control ability of the subject. Ability measuring device.
  2.  前記第一波形取得部は、前記検出波形に対して低域通過フィルタによるフィルタ処理を施した波形を前記第一波形として取得する請求項1記載の下肢制御能力測定装置。 The lower limb control ability measuring device according to claim 1, wherein the first waveform acquisition unit acquires, as the first waveform, a waveform obtained by filtering the detected waveform with a low-pass filter.
  3.  前記第二波形取得部は、前記第一波形に対して、前記時間軸に沿って移動させつつ平均する移動平均を行うことにより前記平滑化を行う請求項1又は2に記載の下肢制御能力測定装置。 3. The leg control ability measurement according to claim 1 or 2, wherein the second waveform acquisition unit performs the smoothing by performing a moving average that averages the first waveform while moving it along the time axis. Device.
  4.  前記物理量検出装置は、前記物理量を、予め設定されたサンプリング周波数で検出し、
     前記移動平均では、予め設定された移動平均時間の期間中に、前記物理量検出装置によって検出されたデータ数分の平均値を算出する請求項3記載の下肢制御能力測定装置。
    The physical quantity detection device detects the physical quantity at a preset sampling frequency,
    4. The lower limb control ability measuring device according to claim 3, wherein the moving average calculates an average value for the number of data detected by the physical quantity detecting device during a period of a preset moving average time.
  5.  前記平滑化において、前記移動平均を複数回繰り返す請求項4記載の下肢制御能力測定装置。 The lower limb control ability measuring device according to claim 4, wherein in the smoothing, the moving average is repeated multiple times.
  6.  前記膝屈曲運動は、前記荷重に抗しながら膝関節を屈曲する動作を含み、
     前記対象期間は、前記膝屈曲運動における、前記荷重に抗しながら膝関節を屈曲する動作を実行中の期間である請求項1~5のいずれか1項に記載の下肢制御能力測定装置。
    The knee bending motion includes an action of bending the knee joint while resisting the load,
    The lower-limb control ability measuring device according to any one of claims 1 to 5, wherein the target period is a period during which an action of bending the knee joint while resisting the load is being performed in the knee bending exercise.
  7.  前記膝屈曲運動は、片脚スクワットであり、
     前記物理量検出装置は、前記片脚スクワットを行う側の大腿部に取り付けられる請求項1~6のいずれか1項に記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The lower limb control ability measuring device according to any one of claims 1 to 6, wherein the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
  8.  前記角速度は、前記大腿部の長軸方向に延びるX軸、前記大腿部の前後方向に延びるY軸、及び前記大腿部の左右方向に延びるZ軸のうち少なくとも一つの軸回りの角速度であり、
     前記加速度は、前記X軸、前記Y軸、及び前記Z軸のうち少なくとも一つの軸方向の加速度である請求項1~7のいずれか1項に記載の下肢制御能力測定装置。
    The angular velocity is an angular velocity around at least one of an X-axis extending in the longitudinal direction of the thigh, a Y-axis extending in the front-rear direction of the thigh, and a Z-axis extending in the left-right direction of the thigh. and
    The lower limb control ability measuring device according to any one of claims 1 to 7, wherein the acceleration is acceleration in at least one axial direction of the X-axis, the Y-axis, and the Z-axis.
  9.  前記第一波形取得部は、
     前記X軸の軸回りの角速度の波形である前記検出波形に基づく第一波形W1(x)と、
     前記Y軸の軸回りの角速度の波形である前記検出波形に基づく第一波形W1(y)と、
     前記Z軸の軸回りの角速度の波形である前記検出波形に基づく第一波形W1(z)とのうち少なくとも一つを取得し、
     前記第二波形取得部は、
     前記第一波形W1(x)が平滑化された第二波形W2(x)と、
     前記第一波形W1(y)が平滑化された第二波形W2(y)と、
     前記第一波形W1(z)が平滑化された第二波形W2(z)とのうち少なくとも一つを取得し、
     前記指標算出部は、
     前記第一波形W1(x)と前記第二波形W2(x)との差分の絶対値の総和である第一指標IA(x)と、
     前記第一波形W1(y)と前記第二波形W2(y)との差分の絶対値の総和である第一指標IA(y)と、
     前記第一波形W1(z)と前記第二波形W2(z)との差分の絶対値の総和である第一指標IA(z)とのうち少なくとも一つを前記第一指標として算出する請求項8記載の下肢制御能力測定装置。
    The first waveform acquisition unit,
    a first waveform W1(x) based on the detected waveform, which is a waveform of angular velocity about the X axis;
    a first waveform W1(y) based on the detected waveform, which is a waveform of angular velocity about the Y axis;
    obtaining at least one of a first waveform W1(z) based on the detected waveform, which is a waveform of angular velocity about the Z axis;
    The second waveform acquisition unit,
    a second waveform W2(x) obtained by smoothing the first waveform W1(x);
    a second waveform W2(y) obtained by smoothing the first waveform W1(y);
    obtaining at least one of the smoothed second waveform W2(z) of the first waveform W1(z);
    The index calculation unit
    a first index IA(x) that is the sum of the absolute values of the differences between the first waveform W1(x) and the second waveform W2(x);
    a first index IA(y) that is the sum of the absolute values of the differences between the first waveform W1(y) and the second waveform W2(y);
    At least one of a first index IA(z), which is a sum of absolute values of differences between the first waveform W1(z) and the second waveform W2(z), is calculated as the first index. 9. The lower limb control ability measuring device according to 8.
  10.  前記指標算出部は、前記第一指標IA(z)を前記第一指標として算出し、
     前記指標算出部は、さらに、前記第一指標IA(z)から、下記の式(1)を用いて、前記被験者の膝関節外反ピーク角度Rkpを算出する請求項9記載の下肢制御能力測定装置。
     膝関節外反ピーク角度Rkp=aIA(z)+b ・・・(1)
     aは係数、bは定数
    The index calculation unit calculates the first index IA(z) as the first index,
    10. The lower limb control ability measurement according to claim 9, wherein the index calculation unit further calculates a knee joint valgus peak angle Rkp of the subject from the first index IA(z) using the following formula (1). Device.
    Knee joint valgus peak angle Rkp=aIA(z)+b (1)
    a is a coefficient, b is a constant
  11.  前記係数aは、有効数字1桁で0.1、
     前記定数bは、有効数字1桁で-4である請求項10記載の下肢制御能力測定装置。
    The coefficient a is 0.1 with one significant figure,
    11. The lower limb control ability measuring device according to claim 10, wherein the constant b is -4 in one significant figure.
  12.  前記指標算出部は、前記第一指標IA(x)及び前記第一指標IA(z)を前記第一指標として算出し、
     前記指標算出部は、さらに、前記第一指標IA(x)及び前記第一指標IA(z)から、下記の式(2)を用いて、前記被験者が所定高さから着地した際の着地点からの垂直方向の反力の単位時間当たりの増加量である△GRFを算出する請求項9~11のいずれか1項に記載の下肢制御能力測定装置。
     △GRF=cIA(z)+dIA(x)+e ・・・(2)
     c及びdは係数、eは定数
    The index calculation unit calculates the first index IA(x) and the first index IA(z) as the first index,
    The index calculation unit further uses the following formula (2) from the first index IA(x) and the first index IA(z) to calculate the landing point when the subject lands from a predetermined height. The lower limb control ability measuring device according to any one of claims 9 to 11, which calculates ΔGRF, which is the amount of increase per unit time of the reaction force in the vertical direction from.
    ΔGRF=cIA(z)+dIA(x)+e (2)
    c and d are coefficients, e is a constant
  13.  前記係数cは、有効数字1桁で0.007、
     前記係数dは、有効数字1桁で-0.003、
     前記定数eは、有効数字1桁で0.9である請求項12記載の下肢制御能力測定装置。
    The coefficient c is 0.007 with one significant figure,
    The coefficient d is -0.003 with one significant figure,
    13. The lower limb control ability measuring device according to claim 12, wherein the constant e is 0.9 with one significant figure.
  14.  前記指標算出部は、前記第一指標IA(x)、前記第一指標IA(y)、及び前記第一指標IA(z)を前記第一指標として算出し、
     前記指標算出部は、さらに、下記の式(3)を用いて第二指標IBを算出する請求項9~13のいずれか1項に記載の下肢制御能力測定装置。
     第二指標IB=fIA(x)+gIA(y)+hIA(z) ・・・(3)
     f、g及びhは係数
    The index calculation unit calculates the first index IA(x), the first index IA(y), and the first index IA(z) as the first index,
    The lower limb control ability measuring device according to any one of claims 9 to 13, wherein the index calculator further calculates a second index IB using the following formula (3).
    Second index IB=fIA(x)+gIA(y)+hIA(z) (3)
    f, g and h are coefficients
  15.  前記係数f、g及びhの比率が、
     有効数字一桁でf:g:h=5:5:4
    である請求項14記載の下肢制御能力測定装置。
    The ratio of the coefficients f, g and h is
    f:g:h=5:5:4 with one significant digit
    15. The lower limb control ability measuring device according to claim 14.
  16.  前記係数fは、有効数字1桁で0.5、
     前記係数gは、有効数字1桁で0.5、
     前記係数hは、有効数字1桁で0.4である請求項15記載の下肢制御能力測定装置。
    The coefficient f is 0.5 with one significant figure,
    The coefficient g is 0.5 with one significant figure,
    16. The lower limb control ability measuring device according to claim 15, wherein the coefficient h is 0.4 with one significant figure.
  17.  前記指標算出部は、さらに、前記第二指標IBから、下記の式(4)を用いて、前記被験者の膝関節外反ピーク角度Rkpを算出する請求項16記載の下肢制御能力測定装置。
     膝関節外反ピーク角度Rkp=iIB+j ・・・(4)
     iは係数、jは定数
    17. The lower limb control ability measuring device according to claim 16, wherein the index calculation unit further calculates a knee joint valgus peak angle Rkp of the subject from the second index IB using the following formula (4).
    Knee joint valgus peak angle Rkp=iIB+j (4)
    i is a coefficient, j is a constant
  18.  前記係数iは、有効数字1桁で2、
     前記定数jは、有効数字1桁で-2である請求項17記載の下肢制御能力測定装置。
    The coefficient i is 2 in one significant digit,
    18. The lower limb control ability measuring device according to claim 17, wherein the constant j is -2 in one significant figure.
  19.  請求項10又は11に記載の下肢制御能力測定装置と、
     複数の被験者から取得された前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(1)として求める主成分分析部とを含む下肢制御能力測定システム。
    a lower limb control ability measuring device according to claim 10 or 11;
    a principal component analysis unit that performs principal component analysis using the first index IA(z) obtained from a plurality of subjects as a variable, and obtains the first principal component of the principal component analysis as the formula (1). Lower extremity control ability measurement system.
  20.  請求項12又は13に記載の下肢制御能力測定装置と、
     複数の被験者から取得された前記第一指標IA(x)及び前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(2)として求める主成分分析部とを含む下肢制御能力測定システム。
    a lower limb control ability measuring device according to claim 12 or 13;
    A principal component analysis is performed using the first index IA (x) and the first index IA (z) obtained from a plurality of subjects as variables, and the first principal component of the principal component analysis is expressed by the formula (2) A lower limb control ability measurement system including a principal component analysis part obtained as
  21.  請求項14~18のいずれか1項に記載の下肢制御能力測定装置と、
     複数の被験者から取得された前記前記第一指標IA(x)、前記第一指標IA(y)、及び前記第一指標IA(z)を変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(3)として求める主成分分析部とを含む下肢制御能力測定システム。
    a lower limb control ability measuring device according to any one of claims 14 to 18;
    Principal component analysis is performed using the first index IA (x), the first index IA (y), and the first index IA (z) obtained from a plurality of subjects as variables, and the principal component analysis A lower limb control ability measuring system including a principal component analysis unit that obtains the first principal component of as the above equation (3).
  22.  請求項17又は18に記載の下肢制御能力測定装置と、
     複数の被験者から取得された前記第二指標IBを変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(4)として求める主成分分析部とを含む下肢制御能力測定システム。
    A lower limb control ability measuring device according to claim 17 or 18;
    a principal component analysis unit that performs principal component analysis using the second index IB obtained from a plurality of subjects as a variable, and obtains the first principal component of the principal component analysis as the above equation (4). measurement system.
  23.  請求項1~18のいずれか1項に記載の下肢制御能力測定装置と、
     前記物理量検出装置とを含む下肢制御能力測定システム。
    a lower limb control ability measuring device according to any one of claims 1 to 18;
    A lower limb control ability measuring system including the physical quantity detection device.
  24.  請求項1~18のいずれか1項に記載の下肢制御能力測定装置として、コンピュータを機能させる下肢制御能力測定プログラム。 A lower-limb control ability measuring program that causes a computer to function as the lower-limb control ability measuring device according to any one of claims 1 to 18.
  25.  請求項24に記載の下肢制御能力測定プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium recording the lower limb control ability measuring program according to claim 24.
  26.  角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得処理と、
     前記物理量取得処理によって取得された物理量を時間軸に沿って並べた検出波形に基づく第一波形を取得する第一波形取得処理と、
     前記第一波形を平滑化することにより第二波形を取得する第二波形取得処理と、
     前記第一波形と前記第二波形との差分の絶対値の総和を、前記被験者の下肢制御能力を表す第一指標として算出する指標算出処理とを含む下肢制御能力測定方法。
    The period during which the subject, whose thigh is equipped with a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration, performs a knee flexion exercise that includes flexion and/or extension of the knee joint while resisting the load. a physical quantity acquisition process for acquiring the physical quantity detected by the physical quantity detection device during
    a first waveform acquisition process for acquiring a first waveform based on a detected waveform in which the physical quantities acquired by the physical quantity acquisition process are arranged along the time axis;
    a second waveform acquisition process for acquiring a second waveform by smoothing the first waveform;
    An index calculation process of calculating a sum of absolute values of differences between the first waveform and the second waveform as a first index representing the lower limb control ability of the subject.
PCT/JP2022/038691 2021-11-05 2022-10-18 Lower extremity control capability measurement device, lower extremity control capability measurement system, lower extremity control capability measurement program, computer-readable recording medium recording lower extremity control capability measurement program, and lower extremity control capability measurement method WO2023079942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180865 2021-11-05
JP2021180865 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023079942A1 true WO2023079942A1 (en) 2023-05-11

Family

ID=86241470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038691 WO2023079942A1 (en) 2021-11-05 2022-10-18 Lower extremity control capability measurement device, lower extremity control capability measurement system, lower extremity control capability measurement program, computer-readable recording medium recording lower extremity control capability measurement program, and lower extremity control capability measurement method

Country Status (1)

Country Link
WO (1) WO2023079942A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038469A (en) * 2001-05-21 2003-02-12 Shigeru Ota Motion function measuring device and motion function measuring system
JP2011078731A (en) * 2009-10-07 2011-04-21 Ind Technol Res Inst System and method for monitoring muscle power of limbs and exercise/physical ability
JP2016059729A (en) * 2014-09-22 2016-04-25 カシオ計算機株式会社 Measurement device, measurement method and measurement program
JP2016106948A (en) * 2014-12-09 2016-06-20 シャープ株式会社 Step-counting device, walking function determination device, and step-counting system
WO2018101071A1 (en) * 2016-11-29 2018-06-07 日本電気株式会社 Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038469A (en) * 2001-05-21 2003-02-12 Shigeru Ota Motion function measuring device and motion function measuring system
JP2011078731A (en) * 2009-10-07 2011-04-21 Ind Technol Res Inst System and method for monitoring muscle power of limbs and exercise/physical ability
JP2016059729A (en) * 2014-09-22 2016-04-25 カシオ計算機株式会社 Measurement device, measurement method and measurement program
JP2016106948A (en) * 2014-12-09 2016-06-20 シャープ株式会社 Step-counting device, walking function determination device, and step-counting system
WO2018101071A1 (en) * 2016-11-29 2018-06-07 日本電気株式会社 Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program

Similar Documents

Publication Publication Date Title
US20180133551A1 (en) System and method for personalized exercise training and coaching
Schweizer et al. Correlation of forearm strength and sport climbing performance
JP3871247B2 (en) Center-of-gravity detection device that can evaluate motor ability
JP6881451B2 (en) Walking state judgment device, walking state judgment system, walking state judgment method and program
Janssen et al. Lower extremity kinematics and kinetics when landing from unloaded and loaded jumps
Meng et al. Alterations in over-ground walking patterns in obese and overweight adults
AU2014253670B2 (en) Method and apparatus for monitoring dynamic status of a body
WO2015056280A1 (en) Method and apparatus for assessing the performances of an athlete that performs a gymnastic exercise
Aguilera-Castells et al. Correlational data concerning body centre of mass acceleration, muscle activity, and forces exerted during a suspended lunge under different stability conditions in high-standard track and field athletes
WO2023079942A1 (en) Lower extremity control capability measurement device, lower extremity control capability measurement system, lower extremity control capability measurement program, computer-readable recording medium recording lower extremity control capability measurement program, and lower extremity control capability measurement method
Gorelick et al. Test–retest reliability of the IDEEA system in the quantification of step parameters during walking and stair climbing
JP2020120807A (en) Fall risk evaluation device, fall risk evaluation method and fall risk evaluation program
KR20170139645A (en) Indicators, wearable devices and mobile devices
Schmid et al. Reliability and validity of trunk accelerometry-derived performance measurements in a standardized heel-rise test in elderly subjects.
WO2021049196A1 (en) Factor estimation system and factor estimation method
JP2020151470A (en) Walking evaluation device, walking evaluation method, and program
Hojka et al. Does a linear position transducer placed on a stick and belt provide sufficient validity and reliability of countermovement jump performance outcomes?
WO2023017675A1 (en) Lower limb control capability measurement device, lower limb control capability measurement system, lower limb control capability measurement program, and lower limb control capability measurement method
JP2017148287A (en) Evaluation method of stumbling risk
KR100639530B1 (en) Apparatus for Rehabilitation Training and Method of the Rehabilitation Training
JP6079585B2 (en) Gait balance evaluation device
KR20190016753A (en) Method and apparatus for evaluating imbalance during running and walking
Verkerke et al. Measuring changes in step parameters during an exhausting running exercise
Satkunskiene et al. 487. Acceleration based evaluation of the human walking and running parameters.
KR20160121460A (en) Fitness monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557929

Country of ref document: JP