WO2023079908A1 - Etchant, etching method, method for producing semiconductor device, and method for producing gate-all-around transistor - Google Patents

Etchant, etching method, method for producing semiconductor device, and method for producing gate-all-around transistor Download PDF

Info

Publication number
WO2023079908A1
WO2023079908A1 PCT/JP2022/037834 JP2022037834W WO2023079908A1 WO 2023079908 A1 WO2023079908 A1 WO 2023079908A1 JP 2022037834 W JP2022037834 W JP 2022037834W WO 2023079908 A1 WO2023079908 A1 WO 2023079908A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
component
etching
etching solution
silicon germanium
Prior art date
Application number
PCT/JP2022/037834
Other languages
French (fr)
Japanese (ja)
Inventor
憲 原田
鉄夫 笠井
竜暢 鈴木
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023079908A1 publication Critical patent/WO2023079908A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to an etchant, an etching method, a semiconductor device manufacturing method, and a gate all-around transistor manufacturing method.
  • the Fin FET not only increases the number of transistors per unit area but also exhibits excellent performance in ON/OFF control at low voltage by forming Fins in the vertical direction with respect to the silicon substrate. In order to exhibit further performance improvement, it is necessary to devise measures such as increasing the aspect ratio of the fin. However, if the aspect ratio is too large, there is a problem that the Fins collapse during the washing process and the drying process for forming the Fins.
  • the transistor performance per unit area is improved by covering the channel nanosheets and nanowires with the gate electrode and increasing the contact area between the channel and the gate electrode.
  • Patent Document 1 discloses an etchant containing a quaternary ammonium hydroxide compound, specifically ethyltrimethylammonium hydroxide.
  • the etching solution containing ethyltrimethylammonium hydroxide disclosed in Patent Document 1 does not have sufficient selective solubility of silicon with respect to silicon germanium.
  • the etching solution of the present invention which will be described later, suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and has excellent selective solubility of silicon with respect to silicon germanium.
  • the gist of the present invention is as follows. [1] An etchant that selectively dissolves silicon relative to silicon germanium, containing a phosphonium salt (A). [2] The etching solution according to [1], wherein the phosphonium salt (A) contains a quaternary phosphonium salt. [3] The etching solution according to [2], wherein the four alkyl groups of the quaternary phosphonium salt are the same alkyl group. [4] The etching solution according to [3], wherein the phosphonium salt (A) contains tetrabutylphosphonium hydroxide.
  • An etching method comprising etching a structure containing silicon and silicon germanium using the etchant according to any one of [1] to [9].
  • a method for manufacturing a semiconductor device comprising the step of etching a structure containing silicon and silicon germanium using the etchant according to any one of [1] to [9].
  • a method for manufacturing a gate-all-around transistor comprising etching a structure containing silicon and silicon germanium using the etchant according to any one of [1] to [9].
  • the etching solution of the present invention suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and is excellent in the selective solubility of silicon with respect to silicon germanium.
  • the etching method of the present invention using the etching solution of the present invention, the method of manufacturing a semiconductor device of the present invention, and the method of manufacturing a gate-all-around transistor of the present invention suppress dissolution of silicon germanium and dissolution of silicon in the etching step. , and the excellent selective solubility of silicon with respect to silicon germanium enables high-precision etching to produce desired products with good yield.
  • the etching solution of the present invention can selectively dissolve silicon with respect to silicon germanium by containing a phosphonium salt (A) (hereinafter sometimes referred to as “component (A)”).
  • component (A) a phosphonium salt
  • the etching solution of the present invention further includes a chelating agent (B) (hereinafter sometimes referred to as “component (B)”), a water-miscible solvent (C) (hereinafter sometimes referred to as “component (C)”). ), and water (D) (hereinafter sometimes referred to as “component (D)”).
  • Component (A) is a phosphonium salt (A). By including the phosphonium salt (A) in the etching solution, the effect of dissolving silicon and silicon germanium is exhibited.
  • Examples of the phosphonium salt (A) of component (A) include quaternary phosphonium salts and the like. Among these, the quaternary phosphonium salts are preferable because they are excellent in silicon selective solubility.
  • a quaternary phosphonium salt is a compound containing a cation and an anion in which four hydrogen atoms of a phosphonium ion are replaced by alkyl groups.
  • the types of anions of the quaternary phosphonium salts include hydroxide salts, halide salts, boron tetrafluoride salts, phosphate hexafluoride salts, sulfonates, acetates, and the like.
  • hydroxide salts boron tetrafluoride salts, phosphorus hexafluoride salts, sulfonates, and acetates are preferable, and hydroxide salts are more preferable, because they are excellent in silicon selective solubility.
  • the number of carbon atoms in the alkyl group of the quaternary phosphonium salt is preferably 4 to 48, more preferably 8 to 24, since selective solubility of silicon in silicon germanium is excellent.
  • the four alkyl groups of the quaternary phosphonium salt may be the same or different, but are preferably the same from the viewpoint of selective solubility of silicon with respect to silicon germanium.
  • quaternary phosphonium salts include tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium hydroxide, tetrahexylphosphonium hydroxide and the like.
  • tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium hydroxide, and tetrahexylphosphonium hydroxide are preferred from the viewpoint of selective solubility of silicon to silicon germanium, and tetrabutyl Phosphonium hydroxide is more preferred.
  • the phosphonium salt (A) may be used alone or in combination of two or more.
  • the concentration of the component (A) in the etching solution of the present invention is preferably 0.1 mol/L or more, more preferably 0.3 mol/L or more, because of excellent selective solubility of silicon.
  • the concentration of the component (A) in the etching solution of the present invention is preferably 3 mol/L or less, more preferably 2 mol/L or less, because of excellent selective solubility of silicon.
  • the content of component (A) is preferably 5% by mass or more, more preferably 10% by mass or more, based on 100% by mass of the etching liquid, because of its excellent selective solubility of silicon.
  • the content of the component (A) is preferably 78% by mass or less, more preferably 52% by mass or less, based on 100% by mass of the etching solution, because of its excellent selective solubility of silicon.
  • the etching solution of the present invention preferably contains a chelating agent as component (B) in addition to component (A).
  • a chelating agent in addition to component (A).
  • Chelating agents include, for example, amine compounds, amino acids, organic acids and the like.
  • the chelating agents may be used singly or in combination of two or more.
  • amine compounds, amino acids, and organic acids are preferable, and amine compounds are more preferable, because they are excellent in selective solubility of silicon with respect to silicon germanium.
  • amine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, diethylenetriaminepentakis(methylphosphonic acid), ethylenediamine-N, N'-bis[2-(2-hydroxyphenyl)acetic acid], N,N'-bis(3-aminopropane)ethylenediamine, N-methyl-1,3-diaminopropane, 2-aminoethanol, N-methyldiethanolamine , 2-amino-2-methyl-1-propanol and the like.
  • An amine compound may be used individually by 1 type, and may use 2 or more types together.
  • ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, and triethylenetetraaminehexalamine are preferred because of their excellent selective solubility of silicon in silicon germanium.
  • acetic acid, diethylenetriaminepentakis(methylphosphonic acid), ethylenediamine-N,N'-bis[2-(2-hydroxyphenyl)acetic acid], N,N'-bis(3-aminopropane)ethylenediamine, N-methyl-1, 3-diaminopropane, 2-aminoethanol, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol are preferred, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriamine Pentaacetic acid, triethylenetetraaminehexaacetic acid, diethylenetriaminepentakis(methylphosphonic acid), and ethylenediamine-N,N'-bis[2-(2-hydroxyphenyl)acetic acid] are more preferred.
  • amino acids examples include glycine, arginine, histidine, (2-dihydroxyethyl)glycine, and the like. Amino acids may be used singly or in combination of two or more.
  • glycine, arginine, histidine, and (2-dihydroxyethyl)glycine are preferred, and (2-dihydroxyethyl)glycine is more preferred, because of their excellent selective solubility of silicon in silicon germanium.
  • organic acids examples include oxalic acid, citric acid, tartaric acid, malic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, and the like.
  • An organic acid may be used individually by 1 type, and may use 2 or more types together.
  • oxalic acid citric acid, tartaric acid, malic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid are preferred because of their excellent selective solubility of silicon in silicon germanium.
  • the content of the component (B) is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, based on 100% by mass of the etching liquid, because of its excellent selective solubility of silicon with respect to silicon germanium.
  • the content of component (B) is preferably 25% by mass or less, more preferably 10% by mass or less, based on 100% by mass of the etching solution, because of its excellent selective solubility of silicon with respect to silicon germanium.
  • the etching solution of the present invention preferably contains a water-miscible solvent as component (C) in addition to components (A) and (B).
  • a water-miscible solvent By including a water-miscible solvent in the etchant, the effect of protecting silicon germanium is exhibited.
  • Any water-miscible solvent may be used as long as it has excellent solubility in water, and a solvent having a solubility parameter (SP value) of 7.0 (cal/cm 3 ) 1/2 or more is preferable.
  • water-miscible solvents include polar protic solvents such as isopropanol, ethylene glycol, propylene glycol, methanol, ethanol, propanol, butanol, glycerol, 2-(2-aminoethoxyethanol); Polar aprotic solvents such as N-dimethylformamide, N-methylpyrrolidone and acetonitrile; and nonpolar solvents such as hexane, benzene, toluene and diethyl ether.
  • the water-miscible solvents may be used singly or in combination of two or more.
  • glycerol 2-(2-aminoethoxyethanol), ethylene glycol, and propylene glycol are preferred because of their excellent selective solubility of silicon in silicon germanium.
  • the content of component (C) is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the etchant, because of its excellent selective solubility of silicon with respect to silicon germanium.
  • the content of the component (C) is preferably 80% by mass or less, more preferably 60% by mass or less, based on 100% by mass of the etching solution, because of its excellent selective solubility of silicon with respect to silicon germanium.
  • the etching solution of the present invention preferably contains water as component (D) in addition to component (A), component (B) and component (C).
  • the content of component (D) may be the balance of component (A), component (B), component (C), and other components described later.
  • the etching solution of the present invention may contain other components in addition to component (A), component (B), component (C) and component (D).
  • surfactants such as anionic surfactants, nonionic surfactants, and cationic surfactants
  • polyvinyl alcohol polyethylene glycol, polypropylene glycol, polyethyleneimine, polypropyleneimine, polyacrylic acid, and the like.
  • oxidizing agents such as hydrogen peroxide, perchloric acid and periodic acid; reducing agents such as ascorbic acid, gallic acid, pyrogallol, pyrocatechol, resorcinol and hydroquinone.
  • Other components may be used singly or in combination of two or more.
  • the mass ratio of component (B) to component (A) is preferably from 0.0001 to 2, more preferably from 0.001 to 1, since the selective solubility of silicon with respect to silicon germanium is excellent.
  • the mass ratio of component (C) to component (A) is preferably from 0.001 to 6, more preferably from 0.01 to 2, since the selective solubility of silicon with respect to silicon germanium is excellent.
  • the method for producing the etching solution of the present invention is not particularly limited, and is produced by mixing the component (A), and optionally the component (B), the component (C), the component (D), and other components. can do.
  • the order of mixing is not particularly limited, and all components may be mixed at once, or some components may be premixed and then the remaining components mixed.
  • the silicon etch rate ER Si of the etching solution of the present invention is preferably 1 nm/min or more, more preferably 3 nm/min or more, because the selective solubility of silicon with respect to silicon germanium is excellent.
  • the etch rate ER SiGe of silicon germanium of the etching solution of the present invention is preferably 3 nm/min or less, more preferably 2 nm/min or less, and 1.5 nm/min or less because it has excellent selective solubility of silicon with respect to silicon germanium. is more preferred.
  • the dissolution selectivity (ER Si /ER SiGe ) of silicon germanium and silicon in the etching solution of the present invention is preferably 4 or more, more preferably 10 or more, because the selective solubility of silicon with respect to silicon germanium is excellent.
  • the etch rate ER Si , the etch rate ER SiGe , and the dissolution selectivity are measured and calculated by the methods described in Examples below.
  • the etching solution of the present invention suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and is excellent in the selective solubility of silicon with respect to silicon germanium. Therefore, the etching solution of the present invention is suitable for structures containing silicon and silicon germanium, such as semiconductor devices, as objects to be etched. It is particularly suitable for structures with silicon germanium.
  • the content of silicon in silicon germanium to be etched is preferably 10% by mass or more, more preferably 20% by mass or more based on 100% by mass of silicon germanium, since it is suitable for etching with the etching solution of the present invention.
  • the content of silicon in silicon germanium to be etched is preferably 95% by mass or less, more preferably 85% by mass or less based on 100% by mass of silicon germanium, because it is suitable for etching with the etching solution of the present invention.
  • the content of germanium in silicon germanium to be etched is preferably 5% by mass or more, more preferably 15% by mass or more based on 100% by mass of silicon germanium, since it is suitable for etching with the etching solution of the present invention.
  • the content of germanium in silicon germanium to be etched is preferably 90% by mass or less, more preferably 80% by mass or less based on 100% by mass of silicon germanium, since it is suitable for etching with the etching solution of the present invention.
  • the silicon-germanium alloy film can be manufactured by forming a film by a known method.
  • a silicon-germanium alloy film is preferably formed by a crystal growth method because it has excellent mobility of electrons and holes after the transistor is formed.
  • Silicon oxide may be exposed in a structure containing silicon and silicon germanium or a structure in which silicon and silicon germanium are alternately laminated.
  • the etching method of the present invention is a method of etching a structure containing silicon and silicon germanium using the etching solution of the present invention.
  • a known etching method can be used. For example, a batch type, a single wafer type, and the like can be mentioned.
  • the temperature during etching is preferably 15° C. or higher, more preferably 20° C. or higher, since the etching rate can be improved.
  • the temperature during etching is preferably 100° C. or lower, more preferably 80° C. or lower, from the viewpoints of reducing damage to the substrate and etching stability.
  • the temperature during etching corresponds to the temperature of the etchant during etching.
  • the etching solution of the present invention and the etching method of the present invention can be suitably used for manufacturing semiconductor devices including a step of etching a structure containing silicon and silicon germanium.
  • a step of etching a structure containing silicon and silicon germanium since it suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and has excellent selective solubility of silicon with respect to silicon germanium, it is possible to produce a GAA type FET including a step of etching a structure containing silicon and silicon germanium. It can be used particularly preferably for production.
  • the cross section of the substrate after immersion was observed with an electron microscope to measure the width (nm) of the silicon germanium layer, and the etch rate ER SiGe [nm/min] of the silicon germanium layer was calculated using the following formula (2).
  • ER SiGe [nm/min] (width of silicon germanium layer before immersion - Width of silicon germanium layer after immersion) ⁇ 2 minutes (2)
  • Dissolution selectivity ER Si [nm/min] ⁇ ER SiGe [nm/min] (3)
  • Example 1 In 100% by mass of the etching solution, each component was mixed so that the component (A-1) was 0.5 mol / L (13.8% by mass) and the component (D-1) was the balance, to obtain an etching solution. . Table 1 shows the evaluation results of the obtained etchant.
  • Example 2 An etchant was obtained in the same manner as in Example 1, except that the content of component (A-1) was changed to 1.0 mol/L (27.6% by mass). Table 1 shows the evaluation results of the obtained etchant.
  • Example 3 An etching solution was obtained in the same manner as in Example 1, except that the content of component (A-1) was changed to 1.3 mol/L (35.9% by mass). Table 1 shows the evaluation results of the obtained etchant.
  • Example 2 in 100% by mass of the etching solution, component (B-1), component (B-2), component (B-3), component (C-1), component (C-2) or component (C -3) in the amount shown in Table 1, component (D-1) is the balance, except that these components were added, each component was mixed to obtain an etching solution. .
  • Table 1 shows the evaluation results of the obtained etchant.
  • Example 1 An etchant was obtained in the same manner as in Example 1, except that 1.4 mol/L of component (A'-1) was used instead of component (A-1). Table 1 shows the evaluation results of the obtained etchant.
  • Example 2 Same as Example 2, except that component (A'-2), component (A'-3), or component (A'-4) was used as shown in Table 1 instead of component (A-1). to obtain an etchant.
  • Table 1 shows the evaluation results of the obtained etchant.
  • the etching solutions containing tetrabutylphosphonium hydroxide as the component (A) obtained in Examples 1 to 9 suppress the dissolution of silicon germanium, promote the dissolution of silicon, Excellent selective solubility of silicon with respect to germanium.
  • the etchant obtained in Comparative Example 1 using ethyltrimethylammonium hydroxide as in Patent Document 1 instead of tetrabutylphosphonium hydroxide also promotes the dissolution of silicon germanium, making silicon selective to silicon germanium. Poor solubility.
  • Comparative Examples 2 to 4 when tetramethylammonium hydroxide, tetraethylammonium hydroxide, and potassium hydroxide were used, the selective solubility of silicon relative to silicon germanium was poor.
  • the etchant of the present invention and the etching method of the present invention using this etchant suppress the dissolution of silicon germanium, promote the dissolution of silicon, and are excellent in the selective solubility of silicon with respect to silicon germanium. Therefore, the etchant of the present invention and the etching method of the present invention using this etchant can be suitably used in the manufacture of semiconductor devices, and particularly in the manufacture of GAA FETs.

Abstract

An etchant which contains a phosphonium salt (A) and selectively dissolves silicon over silicon-manium, the phosphonium salt (A) being especially preferably tetrabutylphosphonium hydroxide; and an etching method comprising using the etchant to etch a structure comprising silicon and silicon-germanium.

Description

エッチング液、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法Etching liquid, etching method, semiconductor device manufacturing method, and gate all-around type transistor manufacturing method
 本発明は、エッチング液、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法に関する。 The present invention relates to an etchant, an etching method, a semiconductor device manufacturing method, and a gate all-around transistor manufacturing method.
 ムーアの法則に則り、集積回路の微細化が進んでいる。
 近年では、従来の平面型トランジスタのサイズを小さくするだけではなく、Fin型トランジスタ(Fin型FET)やゲートオールアラウンド型トランジスタ(GAA型FET)のように、構造を変化させて性能を向上させると共に、更なる微細化や集積化を進めるための検討がされている。
In accordance with Moore's law, miniaturization of integrated circuits is progressing.
In recent years, not only the size of the conventional planar transistor has been reduced, but also the performance has been improved by changing the structure, such as the Fin type transistor (Fin type FET) and the gate all around type transistor (GAA type FET). , further miniaturization and integration are being investigated.
 Fin型FETでは、シリコン基板に対して垂直方向にFinを形成することにより、単位面積あたりのトランジスタ数を増やすだけでなく、低い電圧時のON/OFF制御に優れた性能を示す。
 更なる性能向上を発揮させるためには、Finのアスペクト比を大きくする等の工夫が必要となる。しかし、アスペクト比が大き過ぎると、Fin形成のための洗浄工程や乾燥工程においてFinが倒壊する等の課題がある。
The Fin FET not only increases the number of transistors per unit area but also exhibits excellent performance in ON/OFF control at low voltage by forming Fins in the vertical direction with respect to the silicon substrate.
In order to exhibit further performance improvement, it is necessary to devise measures such as increasing the aspect ratio of the fin. However, if the aspect ratio is too large, there is a problem that the Fins collapse during the washing process and the drying process for forming the Fins.
 GAA型FETでは、チャネルとなるナノシートやナノワイヤーをゲート電極で覆い、チャネルとゲート電極の接触面積を増やすことにより、単位面積あたりのトランジスタの性能を向上させる。 In the GAA FET, the transistor performance per unit area is improved by covering the channel nanosheets and nanowires with the gate electrode and increasing the contact area between the channel and the gate electrode.
 GAA型FETを形成させるためには、シリコンとシリコンゲルマニウムが交互に積層された構造体から、シリコン又はシリコンゲルマニウムを選択的にエッチングするためのエッチング液が必要となる。そのようなエッチング液として、特許文献1には、4級水酸化アンモニウム化合物、具体的にはエチルトリメチルアンモニウムヒドロキシドを含むエッチング液が開示されている。 In order to form a GAA-type FET, an etchant is required to selectively etch silicon or silicon-germanium from a structure in which silicon and silicon-germanium are alternately laminated. As such an etchant, Patent Document 1 discloses an etchant containing a quaternary ammonium hydroxide compound, specifically ethyltrimethylammonium hydroxide.
特開2019-050364号公報JP 2019-050364 A
 特許文献1で開示されているエチルトリメチルアンモニウムヒドロキシドを含むエッチング液は、シリコンゲルマニウムに対するシリコンの選択的溶解性が十分ではない。 The etching solution containing ethyltrimethylammonium hydroxide disclosed in Patent Document 1 does not have sufficient selective solubility of silicon with respect to silicon germanium.
 本発明の目的は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れるエッチング液を提供することにある。
 本発明の目的はまた、このエッチング液を用いたエッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法を提供することにある。
An object of the present invention is to provide an etchant that suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and has excellent selective solubility of silicon with respect to silicon germanium.
Another object of the present invention is to provide an etching method, a method of manufacturing a semiconductor device, and a method of manufacturing a gate-all-around type transistor using this etchant.
 本発明者は、後述する本発明のエッチング液が、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることを見出した。 The inventors have found that the etching solution of the present invention, which will be described later, suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and has excellent selective solubility of silicon with respect to silicon germanium.
 即ち、本発明の要旨は、以下の通りである。
[1] ホスホニウム塩(A)を含む、シリコンゲルマニウムに対してシリコンを選択的に溶解するエッチング液。
[2] ホスホニウム塩(A)が、第四級ホスホニウム塩を含む、[1]に記載のエッチング液。
[3] 第四級ホスホニウム塩の4つのアルキル基が、同一のアルキル基である、[2]に記載のエッチング液。
[4] ホスホニウム塩(A)が、テトラブチルホスホニウムヒドロキシドを含む、[3]に記載のエッチング液。
[5] ホスホニウム塩(A)の濃度が、0.1mol/L以上である、[1]~[4]のいずれかに記載のエッチング液。
[6] ホスホニウム塩(A)の濃度が、0.3mol/L以上である、[5]に記載のエッチング液。
[7] 更に、キレート剤(B)を含む、[1]~[6]のいずれかに記載のエッチング液。
[8] 更に、水混和性溶媒(C)を含む、[1]~[7]のいずれかに記載のエッチング液。
[9] 更に、水(D)を含む、[1]~[8]のいずれかに記載のエッチング液。
[10] [1]~[9]のいずれかに記載のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする、エッチング方法。
[11] [1]~[9]のいずれかに記載のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、半導体デバイスの製造方法。
[12] [1]~[9]のいずれかに記載のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、ゲートオールアラウンド型トランジスタの製造方法。
That is, the gist of the present invention is as follows.
[1] An etchant that selectively dissolves silicon relative to silicon germanium, containing a phosphonium salt (A).
[2] The etching solution according to [1], wherein the phosphonium salt (A) contains a quaternary phosphonium salt.
[3] The etching solution according to [2], wherein the four alkyl groups of the quaternary phosphonium salt are the same alkyl group.
[4] The etching solution according to [3], wherein the phosphonium salt (A) contains tetrabutylphosphonium hydroxide.
[5] The etching solution according to any one of [1] to [4], wherein the phosphonium salt (A) has a concentration of 0.1 mol/L or more.
[6] The etching solution according to [5], wherein the phosphonium salt (A) has a concentration of 0.3 mol/L or more.
[7] The etching solution according to any one of [1] to [6], further comprising a chelating agent (B).
[8] The etching solution according to any one of [1] to [7], further comprising a water-miscible solvent (C).
[9] The etching solution according to any one of [1] to [8], further comprising water (D).
[10] An etching method comprising etching a structure containing silicon and silicon germanium using the etchant according to any one of [1] to [9].
[11] A method for manufacturing a semiconductor device, comprising the step of etching a structure containing silicon and silicon germanium using the etchant according to any one of [1] to [9].
[12] A method for manufacturing a gate-all-around transistor, comprising etching a structure containing silicon and silicon germanium using the etchant according to any one of [1] to [9].
 本発明のエッチング液は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。
 本発明のエッチング液を用いる本発明のエッチング方法、本発明の半導体デバイスの製造方法及び本発明のゲートオールアラウンド型トランジスタの製造方法は、エッチング工程において、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの優れた選択的溶解性により、高精度のエッチングを行って所望の製品を歩留りよく製造することができる。
The etching solution of the present invention suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and is excellent in the selective solubility of silicon with respect to silicon germanium.
The etching method of the present invention using the etching solution of the present invention, the method of manufacturing a semiconductor device of the present invention, and the method of manufacturing a gate-all-around transistor of the present invention suppress dissolution of silicon germanium and dissolution of silicon in the etching step. , and the excellent selective solubility of silicon with respect to silicon germanium enables high-precision etching to produce desired products with good yield.
 以下に本発明について詳述する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
The present invention will be described in detail below. The present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist thereof.
In this specification, when the expression "~" is used, it is used as an expression including the numerical values or physical property values before and after it.
 本発明のエッチング液は、ホスホニウム塩(A)(以下、「成分(A)」と称す場合がある。)を含むことで、シリコンゲルマニウムに対してシリコンを選択的に溶解することができる。
 本発明のエッチング液は、更にキレート剤(B)(以下、「成分(B)」と称す場合がある。)、水混和性溶媒(C)(以下、「成分(C)」と称す場合がある。)、水(D)(以下、「成分(D)」と称す場合がある。)を含んでいてもよい。
The etching solution of the present invention can selectively dissolve silicon with respect to silicon germanium by containing a phosphonium salt (A) (hereinafter sometimes referred to as “component (A)”).
The etching solution of the present invention further includes a chelating agent (B) (hereinafter sometimes referred to as "component (B)"), a water-miscible solvent (C) (hereinafter sometimes referred to as "component (C)"). ), and water (D) (hereinafter sometimes referred to as “component (D)”).
<成分(A)>
 成分(A)は、ホスホニウム塩(A)である。エッチング液にホスホニウム塩(A)を含むことで、シリコンやシリコンゲルマニウムを溶解する効果を発現する。
<Component (A)>
Component (A) is a phosphonium salt (A). By including the phosphonium salt (A) in the etching solution, the effect of dissolving silicon and silicon germanium is exhibited.
 成分(A)のホスホニウム塩(A)としては、例えば、第四級ホスホニウム塩等が挙げられる。これらのうち、シリコン選択的溶解性に優れることから、第四級ホスホニウム塩が好ましい。 Examples of the phosphonium salt (A) of component (A) include quaternary phosphonium salts and the like. Among these, the quaternary phosphonium salts are preferable because they are excellent in silicon selective solubility.
 第四級ホスホニウム塩は、ホスホニウムイオンの4つの水素原子がアルキル基に置換されたカチオンとアニオンとを含む化合物である。
 第四級ホスホニウム塩のアニオンの種類としては、水酸化物塩、ハロゲン化物塩、四フッ化ホウ素塩、六フッ化リン塩、スルホン酸塩、酢酸塩等が挙げられる。これらのうち、シリコン選択的溶解性に優れることから、水酸化物塩、四フッ化ホウ素塩、六フッ化リン塩、スルホン酸塩、酢酸塩が好ましく、水酸化物塩がより好ましい。
A quaternary phosphonium salt is a compound containing a cation and an anion in which four hydrogen atoms of a phosphonium ion are replaced by alkyl groups.
The types of anions of the quaternary phosphonium salts include hydroxide salts, halide salts, boron tetrafluoride salts, phosphate hexafluoride salts, sulfonates, acetates, and the like. Among these, hydroxide salts, boron tetrafluoride salts, phosphorus hexafluoride salts, sulfonates, and acetates are preferable, and hydroxide salts are more preferable, because they are excellent in silicon selective solubility.
 第四級ホスホニウム塩のアルキル基の炭素数は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、4~48が好ましく、8~24がより好ましい。
 第四級ホスホニウム塩の4つのアルキル基は、同一であってもよく、異なるものであってもよいが、同一であることが、シリコンゲルマニウムに対するシリコンの選択的溶解性の観点から好ましい。
The number of carbon atoms in the alkyl group of the quaternary phosphonium salt is preferably 4 to 48, more preferably 8 to 24, since selective solubility of silicon in silicon germanium is excellent.
The four alkyl groups of the quaternary phosphonium salt may be the same or different, but are preferably the same from the viewpoint of selective solubility of silicon with respect to silicon germanium.
 第四級ホスホニウム塩としては、具体的には、テトラエチルホスホニウムヒドロキシド、テトラプロピルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド、テトラヘキシルホスホニウムヒドロキシド等が挙げられる。
 これらの第四級ホスホニウム塩のうち、シリコンゲルマニウムに対するシリコンの選択的溶解性の観点から、テトラエチルホスホニウムヒドロキシド、テトラプロピルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド、テトラヘキシルホスホニウムヒドロキシドが好ましく、テトラブチルホスホニウムヒドロキシドがより好ましい。
Specific examples of quaternary phosphonium salts include tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium hydroxide, tetrahexylphosphonium hydroxide and the like.
Among these quaternary phosphonium salts, tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium hydroxide, and tetrahexylphosphonium hydroxide are preferred from the viewpoint of selective solubility of silicon to silicon germanium, and tetrabutyl Phosphonium hydroxide is more preferred.
 ホスホニウム塩(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。 The phosphonium salt (A) may be used alone or in combination of two or more.
 本発明のエッチング液中の成分(A)の濃度は、シリコンの選択的溶解性に優れることから、0.1mol/L以上が好ましく、0.3mol/L以上がより好ましい。
 本発明のエッチング液中の成分(A)の濃度は、シリコンの選択的溶解性に優れることから、3mol/L以下が好ましく、2mol/L以下がより好ましい。
The concentration of the component (A) in the etching solution of the present invention is preferably 0.1 mol/L or more, more preferably 0.3 mol/L or more, because of excellent selective solubility of silicon.
The concentration of the component (A) in the etching solution of the present invention is preferably 3 mol/L or less, more preferably 2 mol/L or less, because of excellent selective solubility of silicon.
 また、成分(A)の含有率は、シリコンの選択的溶解性に優れることから、エッチング液100質量%中、5質量%以上が好ましく、10質量%以上がより好ましい。
 成分(A)の含有率は、シリコンの選択的溶解性に優れることから、エッチング液100質量%中、78質量%以下が好ましく、52質量%以下がより好ましい。
In addition, the content of component (A) is preferably 5% by mass or more, more preferably 10% by mass or more, based on 100% by mass of the etching liquid, because of its excellent selective solubility of silicon.
The content of the component (A) is preferably 78% by mass or less, more preferably 52% by mass or less, based on 100% by mass of the etching solution, because of its excellent selective solubility of silicon.
<成分(B)>
 本発明のエッチング液は、成分(A)以外に、成分(B)としてキレート剤を含むことが好ましい。エッチング液にキレート剤を含むことで、シリコンゲルマニウムを保護する効果を発現する。
<Component (B)>
The etching solution of the present invention preferably contains a chelating agent as component (B) in addition to component (A). By including a chelating agent in the etching solution, an effect of protecting silicon germanium is exhibited.
 キレート剤としては、例えば、アミン化合物、アミノ酸、有機酸等が挙げられる。キレート剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらのキレート剤の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、アミン化合物、アミノ酸、有機酸が好ましく、アミン化合物がより好ましい。
Chelating agents include, for example, amine compounds, amino acids, organic acids and the like. The chelating agents may be used singly or in combination of two or more.
Among these chelating agents, amine compounds, amino acids, and organic acids are preferable, and amine compounds are more preferable, because they are excellent in selective solubility of silicon with respect to silicon germanium.
 アミン化合物としては、例えば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、ジエチレントリアミンペンタキス(メチルホスホン酸)、エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]、N,N’-ビス(3-アミノプロパン)エチレンジアミン、N-メチル-1,3-ジアミノプロパン、2-アミノエタノール、N-メチルジエタノールアミン、2-アミノ-2-メチル-1-プロパノール等が挙げられる。アミン化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of amine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, diethylenetriaminepentakis(methylphosphonic acid), ethylenediamine-N, N'-bis[2-(2-hydroxyphenyl)acetic acid], N,N'-bis(3-aminopropane)ethylenediamine, N-methyl-1,3-diaminopropane, 2-aminoethanol, N-methyldiethanolamine , 2-amino-2-methyl-1-propanol and the like. An amine compound may be used individually by 1 type, and may use 2 or more types together.
 これらのアミン化合物の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、ジエチレントリアミンペンタキス(メチルホスホン酸)、エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]、N,N’-ビス(3-アミノプロパン)エチレンジアミン、N-メチル-1,3-ジアミノプロパン、2-アミノエタノール、N-メチルジエタノールアミン、2-アミノ-2-メチル-1-プロパノールが好ましく、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、ジエチレントリアミンペンタキス(メチルホスホン酸)、エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]がより好ましい。 Among these amine compounds, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, and triethylenetetraaminehexalamine are preferred because of their excellent selective solubility of silicon in silicon germanium. acetic acid, diethylenetriaminepentakis(methylphosphonic acid), ethylenediamine-N,N'-bis[2-(2-hydroxyphenyl)acetic acid], N,N'-bis(3-aminopropane)ethylenediamine, N-methyl-1, 3-diaminopropane, 2-aminoethanol, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol are preferred, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriamine Pentaacetic acid, triethylenetetraaminehexaacetic acid, diethylenetriaminepentakis(methylphosphonic acid), and ethylenediamine-N,N'-bis[2-(2-hydroxyphenyl)acetic acid] are more preferred.
 アミノ酸としては、例えば、グリシン、アルギニン、ヒスチジン、(2-ジヒドロキシエチル)グリシン等が挙げられる。アミノ酸は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of amino acids include glycine, arginine, histidine, (2-dihydroxyethyl)glycine, and the like. Amino acids may be used singly or in combination of two or more.
 これらのアミノ酸の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、グリシン、アルギニン、ヒスチジン、(2-ジヒドロキシエチル)グリシンが好ましく、(2-ジヒドロキシエチル)グリシンがより好ましい。 Among these amino acids, glycine, arginine, histidine, and (2-dihydroxyethyl)glycine are preferred, and (2-dihydroxyethyl)glycine is more preferred, because of their excellent selective solubility of silicon in silicon germanium.
 有機酸としては、例えば、シュウ酸、クエン酸、酒石酸、リンゴ酸、2-ホスホノブタン-1,2,4-トリカルボン酸等が挙げられる。有機酸は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of organic acids include oxalic acid, citric acid, tartaric acid, malic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, and the like. An organic acid may be used individually by 1 type, and may use 2 or more types together.
 これらの有機酸の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、シュウ酸、クエン酸、酒石酸、リンゴ酸、2-ホスホノブタン-1,2,4-トリカルボン酸が好ましく、クエン酸、2-ホスホノブタン-1,2,4-トリカルボン酸がより好ましい。 Among these organic acids, oxalic acid, citric acid, tartaric acid, malic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid are preferred because of their excellent selective solubility of silicon in silicon germanium. Citric acid, 2-phosphonobutane-1,2,4-tricarboxylic acid is more preferred.
 成分(B)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング液100質量%中、0.001質量%以上が好ましく、0.01質量%以上がより好ましい。
 成分(B)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング液100質量%中、25質量%以下が好ましく、10質量%以下がより好ましい。
The content of the component (B) is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, based on 100% by mass of the etching liquid, because of its excellent selective solubility of silicon with respect to silicon germanium.
The content of component (B) is preferably 25% by mass or less, more preferably 10% by mass or less, based on 100% by mass of the etching solution, because of its excellent selective solubility of silicon with respect to silicon germanium.
<成分(C)>
 本発明のエッチング液は、成分(A)、成分(B)以外に、成分(C)として水混和性溶媒を含むことが好ましい。エッチング液に水混和性溶媒を含むことで、シリコンゲルマニウムを保護する効果を発現する。
<Component (C)>
The etching solution of the present invention preferably contains a water-miscible solvent as component (C) in addition to components (A) and (B). By including a water-miscible solvent in the etchant, the effect of protecting silicon germanium is exhibited.
 水混和性溶媒としては、水に対する溶解性に優れるものであればよく、溶解パラメータ(SP値)が7.0(cal/cm1/2以上の溶媒が好ましい。
 水混和性溶媒としては、例えば、イソプロパノール、エチレングリコール、プロピレングリコール、メタノール、エタノール、プロパノール、ブタノール、グリセロール、2-(2-アミノエトキシエタノール)等の極性プロトン性溶媒;アセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルピロリドン、アセトニトリル等の極性非プロトン性溶媒;ヘキサン、ベンゼン、トルエン、ジエチルエーテル等の非極性溶媒等が挙げられる。水混和性溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
Any water-miscible solvent may be used as long as it has excellent solubility in water, and a solvent having a solubility parameter (SP value) of 7.0 (cal/cm 3 ) 1/2 or more is preferable.
Examples of water-miscible solvents include polar protic solvents such as isopropanol, ethylene glycol, propylene glycol, methanol, ethanol, propanol, butanol, glycerol, 2-(2-aminoethoxyethanol); Polar aprotic solvents such as N-dimethylformamide, N-methylpyrrolidone and acetonitrile; and nonpolar solvents such as hexane, benzene, toluene and diethyl ether. The water-miscible solvents may be used singly or in combination of two or more.
 これらの水混和性溶媒の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、グリセロール、2-(2-アミノエトキシエタノール)、エチレングリコール、プロピレングリコールが好ましい。 Among these water-miscible solvents, glycerol, 2-(2-aminoethoxyethanol), ethylene glycol, and propylene glycol are preferred because of their excellent selective solubility of silicon in silicon germanium.
 成分(C)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング液100質量%中、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。
 成分(C)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング液100質量%中、80質量%以下が好ましく、60質量%以下がより好ましい。
The content of component (C) is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the etchant, because of its excellent selective solubility of silicon with respect to silicon germanium.
The content of the component (C) is preferably 80% by mass or less, more preferably 60% by mass or less, based on 100% by mass of the etching solution, because of its excellent selective solubility of silicon with respect to silicon germanium.
<成分(D)>
 本発明のエッチング液は、成分(A)、成分(B)、成分(C)以外に、成分(D)として水を含むことが好ましい。成分(D)の含有率は、成分(A)、成分(B)、成分(C)及び後述する他の成分の残部とすればよい。
<Component (D)>
The etching solution of the present invention preferably contains water as component (D) in addition to component (A), component (B) and component (C). The content of component (D) may be the balance of component (A), component (B), component (C), and other components described later.
<他の成分>
 本発明のエッチング液は、成分(A)、成分(B)、成分(C)、成分(D)以外に、他の成分を含んでもよい。
<Other ingredients>
The etching solution of the present invention may contain other components in addition to component (A), component (B), component (C) and component (D).
 他の成分としては、例えば、アニオン型界面活性剤、ノニオン型界面活性剤、カチオン型界面活性剤等の界面活性剤;ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、ポリプロピレンイミン、ポリアクリル酸等の水溶性高分子;過酸化水素、過塩素酸、過ヨウ素酸等の酸化剤;アスコルビン酸、没食子酸、ピロガロール、ピロカテコール、レゾルシノール、ヒドロキノン等の還元剤等が挙げられる。他の成分は、1種を単独で用いてもよく、2種以上を併用してもよい。 Other components include surfactants such as anionic surfactants, nonionic surfactants, and cationic surfactants; polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyethyleneimine, polypropyleneimine, polyacrylic acid, and the like. oxidizing agents such as hydrogen peroxide, perchloric acid and periodic acid; reducing agents such as ascorbic acid, gallic acid, pyrogallol, pyrocatechol, resorcinol and hydroquinone. Other components may be used singly or in combination of two or more.
<各成分の質量比>
 本発明のエッチング液が成分(A)と成分(B)を含む場合、成分(A)に対する成分(B)の質量比(成分(B)の質量/成分(A)の質量、以下、「(B)/(A)」と記載する。)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、0.0001~2が好ましく、0.001~1がより好ましい。
<Mass ratio of each component>
When the etching solution of the present invention contains component (A) and component (B), the mass ratio of component (B) to component (A) (mass of component (B) / mass of component (A), hereinafter, "( B)/(A)”) is preferably from 0.0001 to 2, more preferably from 0.001 to 1, since the selective solubility of silicon with respect to silicon germanium is excellent.
 本発明のエッチング液が成分(A)と成分(C)を含む場合、成分(A)に対する成分(C)の質量比(成分(C)の質量/成分(A)の質量、以下、「(C)/(A)」と記載する。)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、0.001~6が好ましく、0.01~2がより好ましい。 When the etching solution of the present invention contains component (A) and component (C), the mass ratio of component (C) to component (A) (mass of component (C) / mass of component (A), hereinafter, "( C)/(A)”) is preferably from 0.001 to 6, more preferably from 0.01 to 2, since the selective solubility of silicon with respect to silicon germanium is excellent.
<エッチング液の製造方法>
 本発明のエッチング液の製造方法は、特に限定されず、成分(A)と、必要に応じて成分(B)、成分(C)、成分(D)、及び他の成分を混合することで製造することができる。
 混合の順番は、特に限定されず、一度にすべての成分を混合してもよく、一部の成分を予め混合した後に残りの成分を混合してもよい。
<Method for producing etching solution>
The method for producing the etching solution of the present invention is not particularly limited, and is produced by mixing the component (A), and optionally the component (B), the component (C), the component (D), and other components. can do.
The order of mixing is not particularly limited, and all components may be mixed at once, or some components may be premixed and then the remaining components mixed.
<エッチング液の物性>
 本発明のエッチング液のシリコンのエッチレートERSiは、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、1nm/分以上が好ましく、3nm/分以上がより好ましい。
<Physical properties of etching solution>
The silicon etch rate ER Si of the etching solution of the present invention is preferably 1 nm/min or more, more preferably 3 nm/min or more, because the selective solubility of silicon with respect to silicon germanium is excellent.
 本発明のエッチング液のシリコンゲルマニウムのエッチレートERSiGeは、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、3nm/分以下が好ましく、2nm/分以下がより好ましく、1.5nm/分以下が更に好ましい。 The etch rate ER SiGe of silicon germanium of the etching solution of the present invention is preferably 3 nm/min or less, more preferably 2 nm/min or less, and 1.5 nm/min or less because it has excellent selective solubility of silicon with respect to silicon germanium. is more preferred.
 本発明のエッチング液のシリコンゲルマニウムとシリコンの溶解選択比(ERSi/ERSiGe)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、4以上が好ましく、10以上がより好ましい。 The dissolution selectivity (ER Si /ER SiGe ) of silicon germanium and silicon in the etching solution of the present invention is preferably 4 or more, more preferably 10 or more, because the selective solubility of silicon with respect to silicon germanium is excellent.
 エッチレートERSi、エッチレートERSiGe、溶解選択比は、後掲の実施例の項に記載の方法で測定、算出される。 The etch rate ER Si , the etch rate ER SiGe , and the dissolution selectivity are measured and calculated by the methods described in Examples below.
<エッチング液のエッチング対象>
 本発明のエッチング液は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。このため、本発明のエッチング液は、エッチング対象として、シリコンとシリコンゲルマニウムとを含む構造体、例えば、半導体デバイスに好適であり、GAA型FETの形成に必要なシリコンとシリコンゲルマニウムが交互に積層された構造体に特に好適である。
<Etching target of etchant>
The etching solution of the present invention suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and is excellent in the selective solubility of silicon with respect to silicon germanium. Therefore, the etching solution of the present invention is suitable for structures containing silicon and silicon germanium, such as semiconductor devices, as objects to be etched. It is particularly suitable for structures with
 エッチング対象となるシリコンゲルマニウム中のシリコンの含有率は、本発明のエッチング液によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、10質量%以上が好ましく、20質量%以上がより好ましい。
 エッチング対象となるシリコンゲルマニウム中のシリコンの含有率は、本発明のエッチング液によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、95質量%以下が好ましく、85質量%以下がより好ましい。
 エッチング対象となるシリコンゲルマニウム中のゲルマニウムの含有率は、本発明のエッチング液によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、5質量%以上が好ましく、15質量%以上がより好ましい。
 エッチング対象となるシリコンゲルマニウム中のゲルマニウムの含有率は、本発明のエッチング液によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、90質量%以下が好ましく、80質量%以下がより好ましい。
The content of silicon in silicon germanium to be etched is preferably 10% by mass or more, more preferably 20% by mass or more based on 100% by mass of silicon germanium, since it is suitable for etching with the etching solution of the present invention.
The content of silicon in silicon germanium to be etched is preferably 95% by mass or less, more preferably 85% by mass or less based on 100% by mass of silicon germanium, because it is suitable for etching with the etching solution of the present invention.
The content of germanium in silicon germanium to be etched is preferably 5% by mass or more, more preferably 15% by mass or more based on 100% by mass of silicon germanium, since it is suitable for etching with the etching solution of the present invention.
The content of germanium in silicon germanium to be etched is preferably 90% by mass or less, more preferably 80% by mass or less based on 100% by mass of silicon germanium, since it is suitable for etching with the etching solution of the present invention.
 シリコンゲルマニウムの合金膜は、公知の方法で成膜して製造すればよい。トランジスタ形成後の電子やホールの移動性に優れることから、シリコンゲルマニウムの合金膜は、結晶成長法で成膜して製造することが好ましい。 The silicon-germanium alloy film can be manufactured by forming a film by a known method. A silicon-germanium alloy film is preferably formed by a crystal growth method because it has excellent mobility of electrons and holes after the transistor is formed.
 シリコンとシリコンゲルマニウムとを含む構造体やシリコンとシリコンゲルマニウムが交互に積層された構造体は、シリコン酸化物が露出していてもよい。 Silicon oxide may be exposed in a structure containing silicon and silicon germanium or a structure in which silicon and silicon germanium are alternately laminated.
<エッチング方法>
 本発明のエッチング方法は、本発明のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする方法である。
<Etching method>
The etching method of the present invention is a method of etching a structure containing silicon and silicon germanium using the etching solution of the present invention.
 エッチング様式は、公知の様式を用いることができる。例えば、バッチ式、枚葉式等が挙げられる。 A known etching method can be used. For example, a batch type, a single wafer type, and the like can be mentioned.
 エッチング時の温度は、エッチレートを向上させることができることから、15℃以上が好ましく、20℃以上がより好ましい。
 エッチング時の温度は、基板へのダメージ低減とエッチングの安定性の観点から、100℃以下が好ましく、80℃以下がより好ましい。
 ここで、エッチング時の温度とは、エッチング時のエッチング液の温度に該当する。
The temperature during etching is preferably 15° C. or higher, more preferably 20° C. or higher, since the etching rate can be improved.
The temperature during etching is preferably 100° C. or lower, more preferably 80° C. or lower, from the viewpoints of reducing damage to the substrate and etching stability.
Here, the temperature during etching corresponds to the temperature of the etchant during etching.
<用途>
 本発明のエッチング液や本発明のエッチング方法は、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む半導体デバイスの製造に好適に用いることができる。特に、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含むGAA型FETの製造に特に好適に用いることができる。
<Application>
The etching solution of the present invention and the etching method of the present invention can be suitably used for manufacturing semiconductor devices including a step of etching a structure containing silicon and silicon germanium. In particular, since it suppresses the dissolution of silicon germanium, promotes the dissolution of silicon, and has excellent selective solubility of silicon with respect to silicon germanium, it is possible to produce a GAA type FET including a step of etching a structure containing silicon and silicon germanium. It can be used particularly preferably for production.
 以下、実施例を用いて本発明を更に具体的に説明する。本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 Hereinafter, the present invention will be described more specifically using examples. The present invention is not limited to the description of the following examples as long as it does not depart from the gist thereof.
<原料>
 以下の実施例及び比較例において、エッチング液の製造原料としては、以下のものを用いた。
 成分(A-1):テトラブチルホスホニウムヒドロキシド
 成分(A’-1):エチルトリメチルアンモニウムヒドロキシド
 成分(A’-2):テトラメチルアンモニウムヒドロキシド
 成分(A’-3):テトラエチルアンモニウムヒドロキシド
 成分(A’-4):水酸化カリウム
 成分(B-1):エチレンジアミン
 成分(B-2):グリシン
 成分(B-3):クエン酸
 成分(C-1):エチレングリコール
 成分(C-2):グリセロール
 成分(C-3):イソプロピルアルコール
 成分(D-1):水
<raw materials>
In the following examples and comparative examples, the following materials were used as raw materials for manufacturing the etchant.
Component (A-1): Tetrabutylphosphonium hydroxide Component (A'-1): Ethyltrimethylammonium hydroxide Component (A'-2): Tetramethylammonium hydroxide Component (A'-3): Tetraethylammonium hydroxide Component (A'-4): Potassium hydroxide Component (B-1): Ethylenediamine Component (B-2): Glycine Component (B-3): Citric acid Component (C-1): Ethylene glycol Component (C-2 ): Glycerol Component (C-3): Isopropyl alcohol Component (D-1): Water
<シリコンのエッチレート>
 膜厚10nmのシリコンゲルマニウムと膜厚10nm(浸漬前のシリコン層の幅=10nm)のシリコンが積層された構造体を含む基板を0.5質量%のフッ化水素酸水溶液に60秒浸漬させた後、超純水でリンスし、その後、実施例及び比較例で得られたエッチング液に50℃で2分間浸漬させた。浸漬後の基板断面を電子顕微鏡で観察してシリコン層の幅(nm)を測定し、下記式(1)を用いてシリコンのエッチレートERSi[nm/分]を算出した。
 ERSi[nm/分]=(浸漬前のシリコン層の幅-浸漬後のシリコン層の幅)÷2分 (1)
<Silicon etch rate>
A substrate including a structure in which silicon germanium with a thickness of 10 nm and silicon with a thickness of 10 nm (the width of the silicon layer before immersion = 10 nm) is laminated was immersed in a 0.5 mass% hydrofluoric acid aqueous solution for 60 seconds. After that, it was rinsed with ultrapure water, and then immersed in the etching solutions obtained in Examples and Comparative Examples at 50° C. for 2 minutes. After the immersion, the cross section of the substrate was observed with an electron microscope to measure the width (nm) of the silicon layer, and the silicon etch rate ER Si [nm/min] was calculated using the following formula (1).
ER Si [nm/min]=(Width of silicon layer before immersion−Width of silicon layer after immersion)/2 min (1)
<シリコンゲルマニウムのエッチレート>
 膜厚10nm(浸漬前のシリコンゲルマニウム層の幅=10nm)のシリコンゲルマニウムと膜厚10nmのシリコンが積層された構造体を含む基板を0.5質量%のフッ化水素酸水溶液に60秒浸漬させた後、超純水でリンスし、その後、実施例及び比較例で得られたエッチング液に50℃で2分間浸漬させた。浸漬後の基板断面を電子顕微鏡で観察して、シリコンゲルマニウム層の幅(nm)を測定し、下記式(2)を用いてシリコンゲルマニウム層のエッチレートERSiGe[nm/分]を算出した。
 ERSiGe[nm/分]=(浸漬前のシリコンゲルマニウム層の幅-
 浸漬後のシリコンゲルマニウム層の幅)÷2分      (2)
<Etching rate of silicon germanium>
A substrate including a structure in which silicon germanium with a thickness of 10 nm (the width of the silicon germanium layer before immersion=10 nm) and silicon with a thickness of 10 nm are laminated was immersed in a 0.5 mass % hydrofluoric acid aqueous solution for 60 seconds. After that, it was rinsed with ultrapure water, and then immersed in the etching solutions obtained in Examples and Comparative Examples at 50° C. for 2 minutes. The cross section of the substrate after immersion was observed with an electron microscope to measure the width (nm) of the silicon germanium layer, and the etch rate ER SiGe [nm/min] of the silicon germanium layer was calculated using the following formula (2).
ER SiGe [nm/min] = (width of silicon germanium layer before immersion -
Width of silicon germanium layer after immersion) ÷ 2 minutes (2)
<シリコンとシリコンゲルマニウムの溶解選択比>
 下記式(3)を用いて、シリコンゲルマニウムとシリコンの溶解選択比を算出した。
 溶解選択比=ERSi[nm/分]÷ERSiGe[nm/分] (3)
<Dissolution selectivity of silicon and silicon germanium>
The dissolution selectivity between silicon germanium and silicon was calculated using the following formula (3).
Dissolution selectivity = ER Si [nm/min] ÷ ER SiGe [nm/min] (3)
[実施例1]
 エッチング液100質量%中、成分(A-1)が0.5mol/L(13.8質量%)、成分(D-1)が残部となるよう、各成分を混合し、エッチング液を得た。
 得られたエッチング液の評価結果を、表1に示す。
[Example 1]
In 100% by mass of the etching solution, each component was mixed so that the component (A-1) was 0.5 mol / L (13.8% by mass) and the component (D-1) was the balance, to obtain an etching solution. .
Table 1 shows the evaluation results of the obtained etchant.
[実施例2]
 成分(A-1)の含有率を1.0mol/L(27.6質量%)とした以外は、実施例1と同様に操作を行い、エッチング液を得た。
 得られたエッチング液の評価結果を、表1に示す。
[Example 2]
An etchant was obtained in the same manner as in Example 1, except that the content of component (A-1) was changed to 1.0 mol/L (27.6% by mass).
Table 1 shows the evaluation results of the obtained etchant.
[実施例3]
 成分(A-1)の含有率を1.3mol/L(35.9質量%)とした以外は、実施例1と同様に操作を行い、エッチング液を得た。
 得られたエッチング液の評価結果を、表1に示す。
[Example 3]
An etching solution was obtained in the same manner as in Example 1, except that the content of component (A-1) was changed to 1.3 mol/L (35.9% by mass).
Table 1 shows the evaluation results of the obtained etchant.
[実施例4~9]
 実施例2において、エッチング液100質量%中、成分(B-1)、成分(B-2)、成分(B-3)、成分(C-1)、成分(C-2)又は成分(C-3)の含有率が表1に示す量で、成分(D-1)が残部となるように、更にこれらの成分を添加したこと以外は、各成分を混合し、それぞれエッチング液を得た。
 得られたエッチング液の評価結果を、表1に示す。
[Examples 4 to 9]
In Example 2, in 100% by mass of the etching solution, component (B-1), component (B-2), component (B-3), component (C-1), component (C-2) or component (C -3) in the amount shown in Table 1, component (D-1) is the balance, except that these components were added, each component was mixed to obtain an etching solution. .
Table 1 shows the evaluation results of the obtained etchant.
[比較例1]
 成分(A-1)の代りに成分(A’-1)を1.4mol/L用いた以外は、実施例1と同様に操作を行い、エッチング液を得た。
 得られたエッチング液の評価結果を、表1に示す。
[Comparative Example 1]
An etchant was obtained in the same manner as in Example 1, except that 1.4 mol/L of component (A'-1) was used instead of component (A-1).
Table 1 shows the evaluation results of the obtained etchant.
[比較例2~4]
 成分(A-1)の代りに、表1に示す通り、成分(A’-2)、成分(A’-3)又は成分(A’-4)を用いた以外は、実施例2と同様に操作を行い、エッチング液を得た。
 得られたエッチング液の評価結果を、表1に示す。
[Comparative Examples 2 to 4]
Same as Example 2, except that component (A'-2), component (A'-3), or component (A'-4) was used as shown in Table 1 instead of component (A-1). to obtain an etchant.
Table 1 shows the evaluation results of the obtained etchant.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からも分かるように、実施例1~9で得られた、成分(A)としてテトラブチルホスホニウムヒドロキシドを含むエッチング液は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れた。
 一方、テトラブチルホスホニウムヒドロキシドの代りに特許文献1のようにエチルトリメチルアンモニウムヒドロキシドを用いた比較例1で得られたエッチング液は、シリコンゲルマニウムの溶解も促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に劣った。
 また、比較例2~4のように、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、水酸化カリウムを用いた場合も、シリコンゲルマニウムに対するシリコンの選択的溶解性は劣るものであった。
As can be seen from Table 1, the etching solutions containing tetrabutylphosphonium hydroxide as the component (A) obtained in Examples 1 to 9 suppress the dissolution of silicon germanium, promote the dissolution of silicon, Excellent selective solubility of silicon with respect to germanium.
On the other hand, the etchant obtained in Comparative Example 1 using ethyltrimethylammonium hydroxide as in Patent Document 1 instead of tetrabutylphosphonium hydroxide also promotes the dissolution of silicon germanium, making silicon selective to silicon germanium. Poor solubility.
Also, as in Comparative Examples 2 to 4, when tetramethylammonium hydroxide, tetraethylammonium hydroxide, and potassium hydroxide were used, the selective solubility of silicon relative to silicon germanium was poor.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年11月2日付で出願された日本特許出願2021-179579に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2021-179579 filed on November 2, 2021, which is incorporated by reference in its entirety.
 本発明のエッチング液及びこのエッチング液を用いた本発明のエッチング方法は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。このため、本発明のエッチング液及びこのエッチング液を用いた本発明のエッチング方法は、半導体デバイスの製造に好適に用いることができ、特にGAA型FETの製造に好適に用いることができる。 The etchant of the present invention and the etching method of the present invention using this etchant suppress the dissolution of silicon germanium, promote the dissolution of silicon, and are excellent in the selective solubility of silicon with respect to silicon germanium. Therefore, the etchant of the present invention and the etching method of the present invention using this etchant can be suitably used in the manufacture of semiconductor devices, and particularly in the manufacture of GAA FETs.

Claims (12)

  1.  ホスホニウム塩(A)を含む、シリコンゲルマニウムに対してシリコンを選択的に溶解するエッチング液。 An etchant that selectively dissolves silicon with respect to silicon germanium, containing a phosphonium salt (A).
  2.  ホスホニウム塩(A)が、第四級ホスホニウム塩を含む、請求項1に記載のエッチング液。 The etching solution according to claim 1, wherein the phosphonium salt (A) contains a quaternary phosphonium salt.
  3.  第四級ホスホニウム塩の4つのアルキル基が、同一のアルキル基である、請求項2に記載のエッチング液。 The etching solution according to claim 2, wherein the four alkyl groups of the quaternary phosphonium salt are the same alkyl group.
  4.  ホスホニウム塩(A)が、テトラブチルホスホニウムヒドロキシドを含む、請求項3に記載のエッチング液。 The etching solution according to claim 3, wherein the phosphonium salt (A) contains tetrabutylphosphonium hydroxide.
  5.  ホスホニウム塩(A)の濃度が、0.1mol/L以上である、請求項1~4のいずれか1項に記載のエッチング液。 The etching solution according to any one of claims 1 to 4, wherein the phosphonium salt (A) has a concentration of 0.1 mol/L or more.
  6.  ホスホニウム塩(A)の濃度が、0.3mol/L以上である、請求項5に記載のエッチング液。 The etching solution according to claim 5, wherein the concentration of the phosphonium salt (A) is 0.3 mol/L or more.
  7.  更に、キレート剤(B)を含む、請求項1~6のいずれか1項に記載のエッチング液。 The etching solution according to any one of claims 1 to 6, further comprising a chelating agent (B).
  8.  更に、水混和性溶媒(C)を含む、請求項1~7のいずれか1項に記載のエッチング液。 The etching solution according to any one of claims 1 to 7, further comprising a water-miscible solvent (C).
  9.  更に、水(D)を含む、請求項1~8のいずれか1項に記載のエッチング液。 The etching solution according to any one of claims 1 to 8, further comprising water (D).
  10.  請求項1~9のいずれか1項に記載のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする、エッチング方法。 An etching method comprising etching a structure containing silicon and silicon germanium using the etching solution according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, comprising the step of etching a structure containing silicon and silicon germanium using the etchant according to any one of claims 1 to 9.
  12.  請求項1~9のいずれか1項に記載のエッチング液を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、ゲートオールアラウンド型トランジスタの製造方法。 A method for manufacturing a gate-all-around transistor, comprising etching a structure containing silicon and silicon germanium using the etching solution according to any one of claims 1 to 9.
PCT/JP2022/037834 2021-11-02 2022-10-11 Etchant, etching method, method for producing semiconductor device, and method for producing gate-all-around transistor WO2023079908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179579 2021-11-02
JP2021-179579 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023079908A1 true WO2023079908A1 (en) 2023-05-11

Family

ID=86241313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037834 WO2023079908A1 (en) 2021-11-02 2022-10-11 Etchant, etching method, method for producing semiconductor device, and method for producing gate-all-around transistor

Country Status (2)

Country Link
TW (1) TW202336213A (en)
WO (1) WO2023079908A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120329200A1 (en) * 2011-06-21 2012-12-27 International Business Machines Corporation Silicon surface texturing method for reducing surface reflectance
JP2013509711A (en) * 2009-10-30 2013-03-14 セイケム インコーポレイテッド Silicon selective etching method
JP2019050364A (en) * 2017-08-25 2019-03-28 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Etchant for selective removal of silicon relative to silicon-germanium alloy from silicon-germanium/silicon stack during manufacturing of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509711A (en) * 2009-10-30 2013-03-14 セイケム インコーポレイテッド Silicon selective etching method
US20120329200A1 (en) * 2011-06-21 2012-12-27 International Business Machines Corporation Silicon surface texturing method for reducing surface reflectance
JP2019050364A (en) * 2017-08-25 2019-03-28 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Etchant for selective removal of silicon relative to silicon-germanium alloy from silicon-germanium/silicon stack during manufacturing of semiconductor device

Also Published As

Publication number Publication date
TW202336213A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US10651045B2 (en) Compositions and methods for etching silicon nitride-containing substrates
JP4815406B2 (en) Silicon oxide film selective wet etching solution and etching method
TWI615508B (en) Etchant composition for a cu-based metal film, manufacturing method of an array substrate for liquid crystal display and array substrate for a liqouid crystal display
KR101674037B1 (en) A method of forming a capacitor structure, and a silicon etching liquid used in this method
KR101941910B1 (en) Method of etching silicon, silicon etchant used in the same, and kit thereof
KR20200051838A (en) Etching solution for simultaneous removal of silicon and silicon-germanium alloys from silicon-germanium / silicon stacks during the manufacture of semiconductor devices
TWI721311B (en) Etching solution for selectively removing tantalum nitride over titanium nitride during manufacture of a semiconductor device
JP5548225B2 (en) Semiconductor substrate product manufacturing method and etching solution
WO2023079908A1 (en) Etchant, etching method, method for producing semiconductor device, and method for producing gate-all-around transistor
JP2007328153A (en) Composition for removing resist and method for removing resist
JP5548224B2 (en) Semiconductor substrate product manufacturing method and etching solution
WO2022153658A1 (en) Etching composition, etching method, production method for semiconductor device, and production method for gate-all-around transistor
WO2012017814A1 (en) Etchant composition and method for forming metal wiring
TWI649454B (en) Etching solution composition and etching method using the same
KR102278765B1 (en) Etching solution with selectivity to silicon nitride layer and method for manufacturing a semiconductor device using the same
KR101170382B1 (en) Etchant for thin film transistor-liquid crystal display
JP2013012614A (en) Etching method and silicon etchant used for the same
WO2022138754A1 (en) Silicon etching liquid, and method for producing silicon devices and method for processing substrates, each using said etching liquid
WO2022025163A1 (en) Silicon etching liquid, and method for producing silicon device and method for processing silicon substrate, each using said etching liquid
CN107653451B (en) Etching solution composition and method for manufacturing metal pattern using the same
TW202208596A (en) Silicon etching liquid, and method for producing silicon device and method for processing silicon substrate, each using said etching liquid
KR20220081169A (en) Etchant composition for etching silicon and method of manufacturing semiconductor device using the same
KR100906502B1 (en) Wet etching solution having high selectivity for silicon oxide
JP2010067982A (en) Etching solution
KR20080031717A (en) Wet etching solution having high selectivity for silicon oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557911

Country of ref document: JP