WO2023079805A1 - Automobile battery case protection structure and floor crossmember - Google Patents

Automobile battery case protection structure and floor crossmember Download PDF

Info

Publication number
WO2023079805A1
WO2023079805A1 PCT/JP2022/029955 JP2022029955W WO2023079805A1 WO 2023079805 A1 WO2023079805 A1 WO 2023079805A1 JP 2022029955 W JP2022029955 W JP 2022029955W WO 2023079805 A1 WO2023079805 A1 WO 2023079805A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
floor
battery case
cross member
width direction
Prior art date
Application number
PCT/JP2022/029955
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 樋貝
毅 塩崎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2023079805A1 publication Critical patent/WO2023079805A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units

Definitions

  • the present invention relates to a battery case protection structure for protecting a battery case of an automobile, and a floor cross member used in the battery case protection structure.
  • a floor cross member one of the body frame parts of an automobile, extends in the width direction of the vehicle body on the floor (floor panel) to improve the rigidity and strength of the vehicle body.
  • Fig. 12 shows the structure around the floor cross member in an internal combustion engine (ICE). Note that FIG. 12 illustrates the left half of the figure in the width direction of the vehicle body.
  • the central part of the floor 3 of the internal combustion locomotive (ICE) is formed to be convex upward in order to pass the exhaust system and power transmission mechanism provided under the floor.
  • a floor tunnel 21 is provided so as to extend in the longitudinal direction of the vehicle body.
  • the floor cross member 23 has one end joined to the floor tunnel 21 and the other end connected to the side sill 7 (FIG. It is joined to the constituting side sill inner (only side sill inner 7a is shown).
  • the floor 3 is often designed to be flat without providing the floor tunnel 21 in order to install a large-capacity battery and secure the space in the cabin.
  • the floor cross member is provided so as to cross over the battery case mounted under the floor in the width direction of the vehicle body and connect the left and right side sills. By doing so, the floor cross member reduces deformation of the battery case in the event of a side collision, and prevents damage to the battery stored inside the battery case.
  • the floor cross member has the function of protecting the battery case from the crash load during a side crash of the car, so it is a part that requires a high level of strength.
  • thickening and ultra-high strength steel exceeding HP1.5GP are progressing, but the accompanying weight increase and manufacturing cost are issues. It's becoming Therefore, there are many technologies related to vehicle structure modification as described below.
  • Patent Document 1 a floor panel of a vehicle, a pair of side members arranged spaced apart from each other in the vehicle width direction below the floor panel and extending in the vehicle front-rear direction, and above the floor panel in the vehicle width direction. and a floor cross member arranged to extend from the side member, wherein the lower part of the floor cross member is positioned above the outer lower part of the side member between the pair of side members.
  • a floor structure of a vehicle body characterized in that the floor panel has a recess formed along the recess and is provided with a reinforcing member that is detachably connected to the pair of side members. .
  • a concave portion that is recessed upward is provided in the lower portion of the floor cross member, thereby increasing the space under the floor panel and securing the mounting space for the battery unit.
  • the reinforcing member brace
  • Patent Document 2 describes "a floor of a vehicle, a battery pack mounted under the floor, and a cloth provided on the floor extending in the left-right direction of the vehicle so as to traverse above the battery pack. and a member, wherein the cross member has sloping portions on each of the right and left halves that rise toward the center.
  • the inclined portion transmits the collision load to the central portion and pushes up the central portion, bending the cross member upward. It is said that the input of collision load to the pack is suppressed.
  • Patent Document 3 discloses that "a pair of lockers are arranged on both sides of a vehicle floor panel in the vehicle width direction and extend along the vehicle front-rear direction, and the vehicle width direction is the longitudinal direction. and a plurality of cross members each having both ends in the longitudinal direction fixed to the pair of rockers respectively, and spaced apart in the vehicle front-rear direction, wherein the distance between adjacent cross members in the vehicle front-rear direction discloses a vehicle side structure in which a bending reaction force of the rocker against an input load applied at the time of a side collision of the vehicle is set to be greater than or equal to the input load.
  • Patent Document 3 it is possible to secure the necessary bending reaction force N of the side sill (rocker) at the time of a side collision of the vehicle. It is said that it is possible to suppress the intrusion of
  • Patent Document 4 discloses an automobile floor structure in which a cross member has a front wall and a rear wall and a member made of fiber reinforced resin such as CFRP (carbon fiber reinforced resin) with an open bottom surface is applied.
  • CFRP carbon fiber reinforced resin
  • Patent Document 1 Although the technique of Patent Document 1 described above has a certain effect against side collisions, the increase in the number of parts increases the weight and cost, and complicates the manufacturing of the vehicle body.
  • the technology of Patent Document 2 suppresses deformation of the battery case, the floor cross member is bent upward (toward the inside of the vehicle) so as to project upward, reducing the cabin volume and increasing the degree of freedom in design. decreases significantly.
  • the technique of Patent Document 3 can secure the necessary bending reaction force of the side sills in the event of a side collision of the vehicle, but the installation position of the floor cross member is limited. Since the floor cross member is also used to fix the seat rails, if the installation position of the floor cross member is limited, the degree of freedom in vehicle design is greatly reduced.
  • Patent Document 4 is such that even if fiber reinforced resin such as CFRP (carbon fiber reinforced resin), which is stronger, more rigid and lighter than steel materials, is applied to the floor cross member, the fiber reinforced resin breaks. Low elongation. For this reason, the technique of Patent Document 4 has a problem in that deformation of the battery case of an automobile in which the battery case is mounted cannot be sufficiently suppressed in the event of a side collision.
  • CFRP carbon fiber reinforced resin
  • the present invention was made to solve such problems, and suppresses the deformation of the battery case in the event of a side collision, enables weight reduction of the automotive body, and provides vibration-damping properties.
  • a battery case protection structure for an automobile comprises: a floor that constitutes at least a part of a floor portion of a vehicle body that constitutes an automobile; a battery case that is mounted under the floor and stores a battery; a pair of side sills provided at both ends of the vehicle body and extending in the longitudinal direction of the vehicle body;
  • a battery case protection structure for protecting the battery case in a vehicle body structure of an automobile comprising a floor cross member which is provided in a pair of side sills and has both ends in contact with the side surfaces of the pair of side sills, wherein the floor cross member is , a hat-shaped section part having a top portion, a side wall portion and a flange portion; and an inner surface of at least said vertical wall portion of said hat-shaped section part and/or a resin attached or applied to the outer surface, and a reinforcing plate (reinforcement) disposed so as to cover the resin and adhered to the resin.
  • the resin is disposed with a constant thickness only in the range of the floor cross member that protrudes from the battery case in the vehicle width direction.
  • the resin is disposed with a constant thickness only in the area of the floor cross member located above the battery case.
  • the resin is disposed over the entire length of the floor cross member, and the thickness of the resin is constant in the range above the battery case, and extends outward in the vehicle width direction in other ranges. It is preferable that the thickness is gradually reduced.
  • the resin has a thickness of 0.1 to 5 mm and the reinforcing plate has a thickness of 0.15 to 1 mm.
  • a floor cross member comprises a floor constituting at least a part of a floor portion of a vehicle body of an automobile, a battery case mounted under the floor for storing a battery, and both ends of the floor in the width direction of the vehicle body. and a pair of side sills extending in the longitudinal direction of the vehicle body.
  • a floor cross member provided on the upper surface of the floor so as to protrude on both sides in the vehicle width direction and having both end portions in contact with the side surfaces of the pair of side sills, the hat section having a top plate portion, a vertical wall portion and a flange portion.
  • the resin is disposed with a constant thickness only in a range that protrudes in the vehicle width direction from the battery case in the attached state.
  • the resin is arranged with a constant thickness only in a range located above the battery case in the attached state.
  • the resin is arranged over the entire length in the longitudinal direction, and the thickness of the resin is constant in the range located above the battery case in the attached state, and in the other range outward in the vehicle width direction. It is preferable that it gradually becomes thinner toward
  • a hat cross-sectional member having a top plate portion, a vertical wall portion and a flange portion, a resin attached or applied to at least the inner surface and / or the outer surface of the vertical wall portion of the hat cross-sectional member, and so as to cover the resin
  • a floor cross member is provided and comprises a resin and a bonded reinforcing plate.
  • FIG. 1A and 1B are diagrams for explaining a battery case protection structure according to an embodiment of the present invention, FIG. 1A being an exploded perspective view, and FIG. It is a diagram.
  • FIG. 2 is a diagram for explaining a resin pasting (applying) range in the longitudinal direction of the floor cross member in the battery case protection structure shown in FIG.
  • FIG. 3 is a cross-sectional view of a conventional floor cross member as a comparative example of the floor cross member of FIG. Fig. 4 shows a model (invention model) for evaluating the plane stiffness of the vertical wall portion of the floor cross member in Fig. 1 and the conventional model in Fig. 3 for evaluating the plane stiffness of the vertical wall portion of the floor cross member.
  • FIG. 5 is a graph showing the results of evaluating the surface rigidity of the conventional model and the invention model of FIG.
  • FIG. 6 is a diagram for explaining the deformation state of the floor cross member at the time of a side collision.
  • FIG. 7 is a diagram illustrating another aspect of the resin pasting (applying) range in the longitudinal direction of the floor cross member (No. 1).
  • FIG. 8 is a diagram illustrating another aspect of the resin pasting (applying) range in the longitudinal direction of the floor cross member (No. 2).
  • FIG. 9 is a diagram illustrating another aspect of the resin pasting (applying) range in the circumferential direction of the floor cross member.
  • FIG. 10A and 10B are diagrams showing the application (sticking) range of the resin in the circumferential direction of the test body according to Example 1
  • FIG. 9A and FIG. 9B are examples of the invention
  • FIG. 11 is a diagram showing load-stroke curves during collision tests of Invention Example 1 and Comparative Example 1 according to Example 1.
  • FIG. FIG. 12 is a diagram illustrating a configuration around a floor cross member on the floor of an internal combustion engine (ICE).
  • ICE internal combustion engine
  • FIG. 1 is a schematic diagram showing a battery case protective structure 1 of this embodiment.
  • the direction of the arrow FR in the drawing indicates the front of the vehicle body, and the direction of the arrow UP indicates the upper direction of the vehicle body.
  • FIG. 2 is a schematic diagram showing a part of the vehicle width direction in a vertical cross section of the battery case protection structure 1 of FIG.
  • the battery case protection structure 1 as shown in FIG. It protects the battery case 5 from the load caused by
  • the floor 3 is the floor of the electric vehicle, and the battery case 5 is mounted under the floor 3.
  • a pair of side sills 7 (only a portion of the side sill inner 7a constituting the side sills 7 is shown in FIG. 1) are provided at both ends of the floor 3 in the vehicle width direction, and the floor cross members 9 extend in the vehicle width direction. It is provided on the upper surface of the floor 3 .
  • Each configuration will be described in detail below.
  • the floor 3 is a member (panel) that constitutes at least a part of the floor portion of the vehicle body that constitutes the electric vehicle. Since the floor 3 is not provided with a floor tunnel 21 (see FIG. 12) like the floor of an internal combustion engine (ICE), it has a shape that facilitates securing a space for the battery case 5 and a cabin space.
  • ICE internal combustion engine
  • the battery case 5 stores the battery of the electric vehicle, and is composed of a battery case lower 5a, a battery case upper 5b, and a battery case cross 5c. It is configured.
  • the battery case lower 5a is made of a bottomed frame that stores the battery, and the battery case upper 5b is a lid that covers the battery case lower 5a.
  • the battery case cross 5c is a stiffening member that improves the rigidity of the battery case 5 itself, and is provided inside the battery case lower 5a so as to extend in the vehicle width direction. Suppress deformation.
  • the side sills 7 are arranged so as to extend in the longitudinal direction of the vehicle body and are joined to both outer sides of the floor 3 in the vehicle width direction.
  • the side sill 7 is composed of a side sill inner 7a arranged inside the vehicle body and a side sill outer 7b arranged outside the vehicle body (see FIG. 2).
  • a horizontal portion of a fixing component 11 having an L-shaped cross section is joined to the lower portion of the side sill inner 7a. is joined to the side wall portion of the lower battery case 5a.
  • the battery case 5 is fixed to the side sill 7 via the fixing parts 11 .
  • the floor cross member 9 is a hat-shaped cross-sectional part, as shown in FIG. 1(b). Further, as shown in FIG. 2, the floor cross member 9 is provided on the upper surface of the floor 3 so as to cross the upper side of the battery case 5 in the vehicle width direction. It protrudes on both sides in the width direction and is joined to the side sill inner 7a.
  • the floor cross member 9 is provided above the battery case 5 so as to protrude to both sides of the battery case 5 in the vehicle width direction. As a result, the load at the time of side collision is input to the floor cross member 9 before the battery case 5, and the load input to the battery case 5 is reduced.
  • the floor cross member 9 includes a hat section member 13, a resin 15 attached or applied to the inner surface of the hat section member 13, and a reinforcing plate 17 provided so as to cover the resin 15. and
  • the hat cross-sectional member 13 is a hat cross-sectional metal (for example, steel sheet) member having a top plate portion 13a, a vertical wall portion 13b, and a flange portion 13c.
  • the flange portion 13c of the hat cross-section member 13 is joined to the upper surface of the floor 3, and the vertical wall flange portions 13d formed at both ends of the vertical wall portion 13b in the vehicle width direction are connected to the side sill inner 7a.
  • a high strength steel sheet of, for example, 980 MPa (MPa-class) or more is used in order to increase strength and rigidity.
  • a resin 15 is patched or coated on the inner surface of the vertical wall portion 13b of the hat cross-section member 13 with a predetermined adhesive strength.
  • the resin 15 may be pre-molded (injection-molded resin part) and attached to the hat cross-section member 13, or the pre-molded resin may be applied to the hat cross-section member 13 and baked ( baking).
  • the lower limit of the thickness of the resin 15 in the case of forming the resin 15 by applying the resin to the hat cross-section member 13 before molding and baking it is about 0.1 mm, which allows uniform application.
  • the lower limit of the thickness of the resin 15 when the film-like resin 15 is attached to the hat cross-section member 13 is about 20 ⁇ m.
  • the upper limit of the thickness of the resin 15 is preferably about 5 mm from the viewpoint of cost.
  • a reinforcing plate 17 is provided so as to cover the resin 15 .
  • the reinforcing plate 17 prevents the peeling of the resin 15 from the vertical wall portion 13b of the hat cross-section member 13, and cooperates with the resin 15 to improve the surface rigidity of the vertical wall portion 13b as described later. It improves the rigidity of the member 9 .
  • the reinforcing plate 17 is fixed to the vertical wall portion 13b of the hat section member 13 by spot welding. Further, the reinforcing plate 17 and the resin 15 are adhered with a predetermined strength. The effect of improving the surface rigidity of the vertical wall portion 13b in the present embodiment does not greatly depend on the tensile strength of the material of the reinforcing plate 17, as will be described later.
  • the tensile strength of the material of the reinforcing plate 17 may be lower than the tensile strength of the material of the hat section member 13, and from the viewpoint of manufacturing cost reduction, the tensile strength may be 270 MPa class to 590 MPa class. Further, since the reinforcing plate 17 only needs to prevent the resin 15 from peeling off from the vertical wall portion 13b of the hat cross-section member 13, the thickness of the reinforcing plate 17 is thinner than the thickness of the material of the hat cross-section member 13. good. A specific thickness of the reinforcing plate 17 may be 0.15 to 1 mm from the viewpoint of weight reduction and manufacturing cost reduction.
  • the tensile strength of the 270 MPa grade to 590 MPa grade is set because the 270 MPa grade has the lowest tensile strength among steel sheets that are normally used, and if the tensile strength exceeds the 590 MPa grade, the cost increases significantly.
  • the 270 MPa grade (so-called mild steel), which is a grade of inexpensive general cold rolled steel sheet called common steel such as JIS standard SPCC, is used. It is preferable from the viewpoint of cost.
  • the reason why the plate thickness is set to 0.15 to 1 mm is that if the thickness is less than 0.15 mm, the manufacturing cost rises, and if it exceeds 1 mm, the effect of weight reduction decreases.
  • a conventional general floor cross member 23 was composed only of a metal hat cross-section member 13, as shown in FIG. In this case, in order to increase the strength and rigidity of the floor cross member 23, it is necessary to increase the plate thickness of the hat section member 13, which increases the weight.
  • the hat section member 13 is provided with the resin 15 and the reinforcing plate 17, and the apparent plate thickness of the resin 15 and the reinforcing plate 17 is increased.
  • the weight is less likely to increase compared to the case where the plate thickness of the hat cross-section member 13 itself is increased as in the related art. This is because the floor cross member 9 is made of resin 15 having a density lower than that of metal.
  • the surface rigidity of the vertical wall portion 13b can be improved.
  • the surface rigidity of the vertical wall portion refers to the rigidity (bending rigidity) before buckling deformation starts when a load is input from the end of the vertical wall portion in the in-plane direction of the vertical wall portion. stiffness)). This point will be described with reference to FIGS. 4 and 5.
  • Figure 4 shows the conventional model and the invention model.
  • the conventional model is a model for evaluating the surface rigidity of the vertical wall portion 13b of the conventional floor cross member 23 (see FIG. 3), and is composed only of a steel plate (hat section member 13).
  • the invention model is a model for evaluating the surface rigidity of the vertical wall portion 13b of the floor cross member 9 (see FIG. 1(b)) of the present embodiment, and the sandwich structure (three-layer laminated structure) described above is used. have.
  • parts corresponding to those in FIGS. 1 and 3 are denoted by the same reference numerals.
  • the surface stiffness of the conventional model which is composed only of steel plates, is generally given by the product EI of the material's Young's modulus E and the geometrical moment of inertia I.
  • the surface rigidity EI in the case of a sandwich structure like the invention model can be obtained using the following formula (1).
  • L is the width of the laminated body
  • i is a subscript to identify the material
  • n is the number of layers
  • Ei is the Young's modulus of material i
  • FIG. 5 shows the results of comparing the difference in surface stiffness EI when the weight of the conventional model and the invention model shown in FIG. 4 is substantially the same.
  • the thickness of the hat section member 13 of the conventional model is 1.2t (total thickness of 1.2t)
  • the thickness of the hat section member 13 of the model of the present invention is 0.6t
  • the thickness of the resin 15 is 1.5t
  • the thickness of the reinforcing plate 17 is 1.5t.
  • each surface stiffness EI was calculated using the formula (1).
  • the weight ratio of the two models in FIG. 5 was 0.97 for the invention model when the weight of the conventional model was taken as the standard (1.00). As shown in FIG.
  • the surface rigidity of the invention model (1.65 ⁇ 10 ⁇ 7 GPa ⁇ m 4 ) is 5.3 times higher than that of the conventional model (0.31 ⁇ 10 ⁇ 7 GPa ⁇ m 4 ).
  • the plate thickness of the hat cross-section member 13 (made of metal) of the invention model is made thinner than that of the conventional model, and the resin 15, which has a lower density and a lower Young's modulus than the metal, is replaced with the reinforcing plate 17.
  • the total thickness of the sandwich structure is made thicker than that of the conventional model.
  • the invention model can significantly increase the surface rigidity compared to the conventional model even if the weight is approximately the same as that of the conventional model.
  • FIG. 6 is a plan view schematically showing how the floor cross member 9 deforms when the side of the vehicle body collides with the pole 19.
  • FIG. 6(a) shows the state before the collision
  • FIG. 6(b) shows the state after the collision.
  • the pole 19 is in the position shown in FIG. 6(a)
  • the vehicle body moves in the direction of the black arrow in FIG.
  • the deformation of the floor cross member 9 is often in a bending mode in which it bends toward the colliding part.
  • the top plate portion 13a undergoes in-plane deformation, while the vertical wall portion 13b undergoes out-of-plane deformation. Therefore, the vertical wall portion 13b is more easily deformed than the top plate portion 13a. Therefore, by providing the vertical wall portion 13b with the resin 15 and the reinforcing plate 17 to increase the surface rigidity of the vertical wall portion 13b, the resistance to the bending mode of the floor cross member 9 is effectively improved.
  • the surface rigidity EI is 271.5 GPa ⁇ mm 4 (Young's modulus of iron is 206 GPa, and Young's modulus of resin is 2 GPa).
  • the surface rigidity EI of the bonded hat section member 13 and the resin 15 is 19.3 GPa ⁇ mm 4
  • the surface rigidity EI of the reinforcing plate 17 alone is 3.7. Since it is GPa ⁇ mm 4 , the total is 23 GPa ⁇ mm 4 , and the surface rigidity as a whole is remarkably lowered. Therefore, the hat cross-section member 13 and the resin 15 are bonded with sufficient strength so that the hat cross-section member 13, the resin 15 and the reinforcing plate 17 can receive the load together, and the resin 15 and the reinforcing plate 17 are bonded with sufficient strength. It is important that they are glued together.
  • the adhesive strength is preferably 5 MPa or more, for example. In bending mode deformation as shown in FIG. 6, if the adhesive strength is 5 MPa or more, the adhesive does not separate from the steel plate in bending deformation up to about 90°. Regarding the end of the floor cross member 9, there is a case where an axial crush occurs at the initial stage of the collision, causing a bellows-shaped buckling deformation (see FIG. 6(b)). The amount of deformation is greater than If the resin 15 is peeled off at the initial stage of deformation, the yield strength at the time of subsequent (bellows) deformation is reduced. Therefore, it is more preferable to set the adhesive strength to 10 MPa or more for portions where large deformation such as axial crushing is expected.
  • the deformation of the floor cross member 9 is in the folding mode.
  • the amount of deformation of the floor cross member 9 is even greater than in the bending mode of FIG. 6(b). Even when the pole 19 collides with one floor cross member 9 in the axial direction, if the adhesive strength is set to 10 MPa or more, peeling of the resin can be prevented.
  • the present invention does not limit the range of application (or application) of the resin 15 in the longitudinal direction of the floor cross member 9 .
  • the resin 15 may be provided only in the range in which the rigidity of is desired to be improved. Therefore, for example, as shown in FIG. 2, the resin 15 may be attached (or applied) with a constant thickness only to the area of the floor cross member 9 that protrudes from the battery case 5 in the vehicle width direction.
  • the example in FIG. 2 assumes that the side sill 7 alone is designed to absorb the crash energy, and the floor cross member 9 is likely to break (bending deformation) and buckling deformation. It is intended to improve the surface rigidity of the vertical wall portion 13b in the range (see FIG. 6(b)).
  • the amount of the resin 15 used is the minimum required, so the weight of the parts can be reduced and the manufacturing cost can be suppressed.
  • the resin may be provided with a constant thickness only in the area of the floor cross member 9 located above the battery case 5 .
  • "above the battery case 5" should include at least above the portion of the battery case 5 that stores the battery. Therefore, as in the example of FIG. 7, it is located above the portion between one side wall portion 5d of the battery case 5 (specifically, the side wall portion of the lower battery case 5a) and the other side wall portion (not shown).
  • the resin 15 may be provided in the range.
  • the resin 15 is provided with a constant thickness, but the thickness of the resin 15 may not necessarily be constant, and may vary partially. For example, when the resin 15 is arranged over the entire length of the floor cross member 9 as shown in FIG. You may make it become thin gradually toward the outer side of .
  • the surface rigidity of the vertical wall portion 13b of the portion of the floor cross member 9 protruding from the battery case 5 decreases toward the outside. Deformation starts from the end side with low . Since the deformation can be controlled so as to start from the portion apart from the battery case 5 in this way, the effect of suppressing the deformation of the battery case 5 is improved as compared with the example of FIG.
  • the resin 15 and the reinforcing plate 17 are provided only on the vertical wall portion 13b of the hat section member 13 (see FIG. 1(b)). and a reinforcing plate 17 may be provided. Therefore, as shown in FIG. 9, resin 15 and reinforcing plate 17 may be provided on vertical wall portion 13b and top plate portion 13a.
  • the present invention does not limit the thickness of the resin 15 of the floor cross member 9, but if the resin 15 is too thin, the effect of improving the surface rigidity of the vertical wall portion 13b will be reduced, and if it is too thick, the weight will be reduced. may be less effective. Therefore, it is preferable to determine the resin thickness in consideration of the balance between the two. An example of such a resin thickness determination method will be described below.
  • a hat cross-sectional member 13 is prepared as a basis for examination, and the weight and surface rigidity of the vertical wall portion 13b are obtained.
  • a hat cross-sectional member 13 made of steel plate having a thickness of 1.6 mm was prepared, and the weight (including the weight of the floor) and surface rigidity of the vertical wall portion 13b were determined (see ⁇ base>> in Table 1 below).
  • a hat cross-section member 13 having a thickness smaller than that of the hat cross-section member 13 serving as the base is prepared.
  • three types of hat cross-sectional members 13 with plate thicknesses of 0.8 mm ⁇ No.1>>, 1.0 mm ⁇ No.2>>, and 1.2 mm ⁇ No.3>> were prepared.
  • the reinforcing plate 17 is made of a steel plate having a thickness of 0.4 mm (same for ⁇ No.1>> to ⁇ No.3>>).
  • the resin thickness was obtained when the surface rigidity was adjusted to be approximately the same as the surface rigidity of (A). Also, the resin thickness was obtained when the weight of the floor cross member 9 was adjusted to be approximately the same as the weight of the ⁇ base>> (B). Table 1 shows the results. The weight in Table 1 includes the weight of the floor (0.9kg common). Also, the surface rigidity is assumed to be that of the vertical wall portion.
  • a of ⁇ No.1>> to ⁇ No.3>> shown in Table 1 makes the plate thickness of the hat cross-section member 13 thinner than the ⁇ base>>, provides a resin 15 having a lower Young's modulus than the steel plate, and provides a reinforcing plate.
  • the total thickness of the sandwich structure with 17 is made thicker than the plate thickness of the ⁇ base>>.
  • the weight reduction rate is 21% for ⁇ No.1>>, 12% for ⁇ No.2>>, and 4% for ⁇ No.3>>.
  • the resin thickness is thickened until it reaches the same weight as the ⁇ base ⁇ (3.59 kg), and the total thickness of the sandwich structure is thicker than A. This is intended to maximize the effect of improving the surface rigidity.
  • the surface rigidity improvement rate is 1599% for ⁇ No.1>>, 796% for ⁇ No.2>>, and 171% for ⁇ No.3>>.
  • the lower limit is the resin thickness in the case of A, which allows the maximum weight reduction without lowering the surface rigidity than the ⁇ base>>, and the maximum surface rigidity without increasing the weight over the ⁇ base>>.
  • the resin thickness should be set within the range of 0.02mm to 0.8mm. By doing so, the thickness of the resin 15 can be determined in consideration of the balance between weight reduction and improvement in surface rigidity (flexural rigidity).
  • the rigidity of the floor cross member 9 is improved, the deformation of the battery case 5 in the event of a side collision is suppressed more than before, and the weight of the floor cross member 9 can be reduced.
  • the installation position of the floor cross member 9 is not limited, the degree of freedom in vehicle design is not reduced, and the cabin volume is not reduced. It should be noted that this embodiment can also improve damping properties. This point will be specifically described in the examples below.
  • the resin 15 and the reinforcing plate 17 are provided on the inner surface of the hat section member 13 of the floor cross member 9, but the present invention is not limited to this.
  • the resin 15 and the reinforcing plate 17 may be provided on the substrate. Further, the inner surface and the outer surface of the hat section member may be provided with the resin 15 and the reinforcing plate 17, respectively.
  • the present invention is characterized by the configuration of the floor cross member, which is a part of the battery case protection structure. Therefore, the present application also includes the invention as a single floor cross member. Since the embodiment of the floor cross member is the same as the above description, the description is omitted.
  • the above-mentioned specimens have resin 15 and reinforcing plate 17 provided on top plate portion 13a and vertical wall portion 13b of hat cross-section member 13 as shown in FIG.
  • a hat cross-section member 13 having only the vertical wall portion 13b provided with the resin 15 and the reinforcing plate 17 was prepared.
  • FIG. I used something else.
  • a steel plate was used for the hat section member 13 of the test body, and a steel plate having a thickness of 1.0 mm and a pressure of 440 MPa was used for each of the flat plates.
  • parts corresponding to those in FIGS. 1 and 9 are denoted by the same reference numerals.
  • an acceleration sensor was attached near the edge of the top plate portion 13a of the suspended test body, and an impact hammer was used to apply impact vibration to the vertical wall portion 13b of the test body. do. Then, the impact force obtained from the impact hammer and the acceleration measured by the test body were input to the FFT analyzer, and the frequency response function of Accelerance (m/s 2 /N) was calculated. Here, the frequency response function was obtained by averaging the results of five impact tests.
  • Tables 2 to 6 show the details of the invention examples and comparative examples (the tensile strength and plate thickness of the hat cross-section member and the reinforcing plate, and the resin thickness of the steel plate of the hat cross-section member and the resin thickness) and the results of the above tests.
  • FIG. 11 shows the load-stroke curves of Invention Example 1 and Comparative Example 1 as an example of the load-stroke curves obtained in the collision test. The test results of this example were evaluated from five points of view, which will be described in detail below.
  • the "whole circumference” described in the "bonding position of the resin/reinforcement plate in the cross-sectional direction” refers to the top plate portion 13a and the vertical wall portion 13b of the hat cross-section member 13 as shown in FIG. 10(a). shows that the resin 15 and the reinforcing plate 17 are provided.
  • the "face stiffness" in each table was calculated based on the formula described above.
  • Comparative Example 1 is an example composed only of the hat cross-section member 13 as shown in FIG. This is an example in which a resin 15 and a reinforcing plate 17 are provided on 13b. As shown in Table 2, the surface rigidity of Inventive Examples 1 to 3 is higher than that of Comparative Example 1 in all cases.
  • the impact strength which indicates the impact characteristics, corresponds to the maximum load in the load-stroke curve (see Fig. 11) obtained by the impact test, and was 310 kN for Comparative Example 1 and 600 kN for Invention Example 1. Although the weight of Invention Example 1 is greater than that of Comparative Example 1, the crash resistance is 1.9 times or more that of Comparative Example 1, which is a significant improvement. In invention examples 2 and 3, which were adjusted to have a weight similar to that of comparative example 1, the impact resistance was improved as compared to comparative example 1.
  • vibration damping which indicates vibration characteristics, is the value of acceleration at a frequency of 200 Hz obtained by an impact vibration test. Suppressed.
  • invention examples 1 to 3 can improve surface rigidity, impact resistance, and damping performance with a weight comparable to that of comparative example 1.
  • Invention Examples 4 to 6 in Table 3 are examples adjusted to achieve weight reduction while maintaining surface rigidity, impact strength, and vibration damping properties equal to or higher than those of Comparative Example 1 described above.
  • resin 15 and reinforcing plate 17 are provided on top plate portion 13a and vertical wall portion 13b over the entire length in the longitudinal direction of hat cross-section member 13 (FIG. 10).
  • Inventive Examples 4 to 6 all have surface rigidity and impact strength equal to or higher than those of Comparative Example 1, and achieve weight reductions of 10%, 12%, and 21%, respectively, compared to Comparative Example 1.
  • the damping property was greatly improved in all cases of Inventive Examples 4 to 6.
  • invention examples 4 to 6 are capable of weight reduction while ensuring surface rigidity, impact resistance, and damping performance equivalent to or greater than those of comparative example 1.
  • Invention Examples 7 to 9 in Table 4 are examples in which surface rigidity and impact strength are improved compared to Comparative Example 1 described above, and adjustments are made so as to achieve weight reduction.
  • resin 15 and reinforcing plate 17 are provided on top plate portion 13a and vertical wall portion 13b over the entire length in the longitudinal direction of hat cross-section member 13 (FIG. 10). (a)).
  • Invention Example 7 was 3% (0.09 kg) lighter than Comparative Example 1, while improving crash resistance by 11% (35 kN).
  • Inventive Example 8 was 7% (0.27 kg) lighter than Comparative Example 1, while improving crash strength by 6.4% (20 kN).
  • Inventive example 9 is an example with the thinnest resin thickness among the inventive examples, and even in this case, the weight was reduced by 4% (0.13 kg), while the crash strength was improved by 3% (10 kN). In addition, the damping property was greatly improved in all cases of Inventive Examples 7 to 9.
  • invention examples 7 to 9 were shown to be lighter than comparative example 1 while improving surface rigidity and impact strength.
  • the hat cross-section member 13 and the resin 15 and the resin 15 and the reinforcing plate 17 are adhered to each other so that the portion concerned is It is necessary to be able to receive the load as one unit.
  • Comparative Example 2 the adhesive strength is 0 MPa, that is, neither the hat cross-section member 13 and the resin 15 nor the resin 15 and the reinforcing plate 17 are bonded, so the surface rigidity cannot be calculated from the formula (1). Instead, it is the total value of the surface stiffness EI of the hat section member 13, the resin 15, and the reinforcing plate 17. As a result, the surface rigidity of Comparative Example 3 was lower than that of Comparative Example 1 by 45%, and the impact resistance was also lower than that of Comparative Example 1 by 6.5% (20 kN). Moreover, the damping property was the same as that of Comparative Example 1, and no improvement was observed.
  • a resin 15 and a reinforcing plate 17 are attached "only to the vertical wall portion 13b" over the "full length" of the hat cross-section member 13 in the longitudinal direction (see FIG. 10(b)), which is a comparative example. 9% (0.32kg) lighter than 1.
  • the effect of reducing the weight is great because the resin 15 and the reinforcing plate 17 are not provided on the top plate portion 13a.
  • the crash resistance is slightly lower than that of Invention Example 8, it is better than that of Comparative Example 1. Vibration damping is also greatly improved.
  • the surface rigidity and impact strength can be effectively improved.
  • the hat section member 13 does not necessarily have to be provided over the entire length in the longitudinal direction, and a certain effect can be obtained even when the resin 15 and the reinforcing plate 17 are provided in a part of the longitudinal direction. rice field.
  • Comparative example a is an example of a floor cross member 9 composed only of a hat cross-section member 13 similar to the conventional example (see FIG. 3).
  • Inventive Examples A to F and Comparative Example b are examples in which the resin 15 and the reinforcing plate 17 are provided on the hat cross-sectional member 13, and all configurations except for the bonding positions of the resin 15 and the reinforcing plate 17 are the same. All adhesive strengths were set to 11 MPa.
  • Comparative Example a (conventional example), as shown in Table 7, the floor cross member 9 buckled at the tip and a large break (bending deformation) occurred, and the battery case 5 was also greatly deformed.
  • Example F slight buckling deformation was observed at the tip of the floor cross member 9 on the pole collision side, but there was no large deformation such as bending (bending deformation), and the battery case 5 was not deformed.
  • the deformation of the battery case in the event of a side collision can be suppressed, the weight can be reduced, the damping performance is excellent, the cabin volume can be reduced, and the degree of freedom in vehicle design can be reduced. Therefore, it is possible to provide a battery case protection structure for an automobile and a floor cross member used in the battery case protection structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

An automobile battery case protection structure 1 according to the present invention comprises a floor 3, a battery case 5, a pair of side sills 7, and a floor crossmember 9 provided on the upper surface of the floor 3 so as to cross over the battery case 5 in the vehicle width direction and protrude out farther than the battery case 5 on both sides in the vehicle width direction, wherein the floor crossmember 9 comprises: a hat cross-section member 13 having a top plate 13a, vertical walls 13b, and flanges 13c; a resin 15 affixed or applied to at least the inner and/or outer surface of the vertical walls 13b of the hat cross-section member 13; and a reinforcing plate 17 laid out to cover the resin 15 and bonded to the resin 15.

Description

自動車のバッテリーケース保護構造及びフロアクロスメンバAutomotive battery case protection structure and floor cross member
 本発明は、自動車(automobile)のバッテリーケース(battery case)を保護するバッテリーケース保護構造及び、該バッテリーケース保護構造に用いられるフロアクロスメンバ(floor cross member)に関する。 The present invention relates to a battery case protection structure for protecting a battery case of an automobile, and a floor cross member used in the battery case protection structure.
 自動車の骨格部品(body frame parts)の一つであるフロアクロスメンバは、自動車のフロア(フロアパネル(floor panel))上において車体幅方向に延在することで車体の剛性や強度を向上させる機能を有するものである。図12に内燃機関車(internal combustion engine)(ICE)におけるフロアクロスメンバ周辺の構造を示す。なお、図12は車体幅方向の図中左半分を図示したものである。内燃機関車(ICE)のフロア3の中央部には、フロア下に設けられる排気系(exhaust system)や動力伝達機構(power transmission mechanism)を通すため、上方向に凸となるように形成されたフロアトンネル(floor tunnel)21が、車体前後方向に延びるように設けられている。フロアトンネル21が設けられたフロア3の場合、フロアクロスメンバ23は、図12に示すように、一端がフロアトンネル21に接合され、他端はサイドシル(side sill)7(図12はサイドシル7を構成するサイドシルインナ(side sill inner)7aのみ図示)に接合される。 A floor cross member, one of the body frame parts of an automobile, extends in the width direction of the vehicle body on the floor (floor panel) to improve the rigidity and strength of the vehicle body. It has Fig. 12 shows the structure around the floor cross member in an internal combustion engine (ICE). Note that FIG. 12 illustrates the left half of the figure in the width direction of the vehicle body. The central part of the floor 3 of the internal combustion locomotive (ICE) is formed to be convex upward in order to pass the exhaust system and power transmission mechanism provided under the floor. A floor tunnel 21 is provided so as to extend in the longitudinal direction of the vehicle body. In the case of the floor 3 provided with the floor tunnel 21, the floor cross member 23 has one end joined to the floor tunnel 21 and the other end connected to the side sill 7 (FIG. It is joined to the constituting side sill inner (only side sill inner 7a is shown).
 一方、電気自動車(battery electric vehicle)の場合は排気系やチェンジ機構が設けられないので、上述したフロアトンネル21を設ける必要がない。そこで最近は、大容量バッテリーの搭載及びキャビン(cabin)内空間の確保のため、フロアトンネル21を設けず、フロア3をフラットに設計することが多くなっている。上記のようにフロアトンネルを有さないフロアの場合、フロアクロスメンバは、フロア下に搭載されるバッテリーケースの上方を車体幅方向に横切って、左右のサイドシルをつなぐように設けられる。このようにすることで、側面衝突の際にフロアクロスメンバがバッテリーケースの変形を低減し、バッテリーケースの内部に格納されたバッテリーの損傷を防止する。 On the other hand, in the case of an electric vehicle (battery electric vehicle), no exhaust system or change mechanism is provided, so there is no need to provide the floor tunnel 21 described above. Therefore, recently, the floor 3 is often designed to be flat without providing the floor tunnel 21 in order to install a large-capacity battery and secure the space in the cabin. In the case of a floor that does not have a floor tunnel as described above, the floor cross member is provided so as to cross over the battery case mounted under the floor in the width direction of the vehicle body and connect the left and right side sills. By doing so, the floor cross member reduces deformation of the battery case in the event of a side collision, and prevents damage to the battery stored inside the battery case.
 上記のようにフロアクロスメンバは、自動車の側面衝突(side crash)時の衝突荷重(crash load)からバッテリーケースを保護する機能を有するので、高レベルな強度が求められる部品である。フロアクロスメンバの剛性(stiffness)を向上させるため、厚肉化(thickening)やHP1.5GPを超える超ハイテン化(ultra hight strength steel)が進んでいるが、それに伴う重量アップや製造コストが課題となっている。そこで下記のように車両構造変更に関わる多くの技術が存在している。 As mentioned above, the floor cross member has the function of protecting the battery case from the crash load during a side crash of the car, so it is a part that requires a high level of strength. In order to improve the stiffness of the floor cross member, thickening and ultra-high strength steel exceeding HP1.5GP are progressing, but the accompanying weight increase and manufacturing cost are issues. It's becoming Therefore, there are many technologies related to vehicle structure modification as described below.
 例えば特許文献1では、「車両のフロアパネルと、前記フロアパネルの下方に車幅方向に互いに離間して配置され車両前後方向に延びる一対のサイドメンバと、前記フロアパネルの上方に前記車幅方向に延びて配置されるフロアクロスメンバと、を備えた車体のフロア構造であって、前記一対のサイドメンバの間において、前記フロアクロスメンバの下部には前記サイドメンバの外側の下部より上方に位置する凹部を有し、前記フロアパネルは前記凹部に沿って形成され、前記一対のサイドメンバに着脱可能に連結される強度部材を備えたことを特徴とする車体のフロア構造」が開示されている。上記技術は、フロアクロスメンバの下部に、上側に凹む凹部が設けられていることにより、フロアパネル下のスペースを増加させて電池ユニットの搭載スペースを確保できる、としている。また、エンジン車(gasoline engine vehicle)においては、上記強度部材(ブレース(brace))によって一対のサイドメンバを連結することで、側面衝突に対する強度を確保できる、としている。 For example, in Patent Document 1, "a floor panel of a vehicle, a pair of side members arranged spaced apart from each other in the vehicle width direction below the floor panel and extending in the vehicle front-rear direction, and above the floor panel in the vehicle width direction. and a floor cross member arranged to extend from the side member, wherein the lower part of the floor cross member is positioned above the outer lower part of the side member between the pair of side members. A floor structure of a vehicle body, characterized in that the floor panel has a recess formed along the recess and is provided with a reinforcing member that is detachably connected to the pair of side members. . According to the above technique, a concave portion that is recessed upward is provided in the lower portion of the floor cross member, thereby increasing the space under the floor panel and securing the mounting space for the battery unit. In addition, in a gasoline engine vehicle, by connecting a pair of side members with the reinforcing member (brace), it is possible to ensure strength against side collisions.
 また、特許文献2には、「車両のフロアと、前記フロア下に搭載されたバッテリパック(battery pack)と、前記バッテリパック上方を横切るように車両左右方向に延びて前記フロアに設けられたクロスメンバと、備え、前記クロスメンバは、右半分および左半分のそれぞれに中央に向けて高くなる傾斜部を有する、車両の下部車体構造」が開示されている。特許文献2においては、側面衝突時、傾斜部が衝突荷重を中央部に伝えて中央部を押し上げ、クロスメンバが上方に向けて屈曲するので、バッテリパックがある下方への変形が抑止され、バッテリパックへの衝突荷重の入力が抑制される、としている。 Further, Patent Document 2 describes "a floor of a vehicle, a battery pack mounted under the floor, and a cloth provided on the floor extending in the left-right direction of the vehicle so as to traverse above the battery pack. and a member, wherein the cross member has sloping portions on each of the right and left halves that rise toward the center. In Patent Document 2, in the event of a side collision, the inclined portion transmits the collision load to the central portion and pushes up the central portion, bending the cross member upward. It is said that the input of collision load to the pack is suppressed.
 また、特許文献3には、「車両のフロアパネルの車両幅方向の両外側にそれぞれ配設され、車両前後方向に沿って延在された一対のロッカ(locker)と、車両幅方向を長手方向として配置されると共に長手方向の両端部が前記一対のロッカにそれぞれ固定され、車両前後方向に離間して配置された複数のクロスメンバと、を備え、車両前後方向に隣り合うクロスメンバの離間距離は、前記車両の側面衝突時に入力された入力荷重に対する前記ロッカの曲げ反力が前記入力荷重以上となるように設定されている車両側部構造」が開示されている。特許文献3においては、車両の側面衝突時において必要なサイドシル(ロッカ)の曲げ反力Nを確保することができ、例えばポール衝突(side pole impact)の際に、ポールの車両幅方向の内側への侵入を抑制することができる、としている。 In addition, Patent Document 3 discloses that "a pair of lockers are arranged on both sides of a vehicle floor panel in the vehicle width direction and extend along the vehicle front-rear direction, and the vehicle width direction is the longitudinal direction. and a plurality of cross members each having both ends in the longitudinal direction fixed to the pair of rockers respectively, and spaced apart in the vehicle front-rear direction, wherein the distance between adjacent cross members in the vehicle front-rear direction discloses a vehicle side structure in which a bending reaction force of the rocker against an input load applied at the time of a side collision of the vehicle is set to be greater than or equal to the input load. In Patent Document 3, it is possible to secure the necessary bending reaction force N of the side sill (rocker) at the time of a side collision of the vehicle. It is said that it is possible to suppress the intrusion of
 特許文献4では、クロスメンバに前壁および後壁を有して下面が開放したCFRP(カーボンファイバー強化樹脂)等の繊維強化樹脂製の部材を適用した自動車のフロア構造が開示されている。 Patent Document 4 discloses an automobile floor structure in which a cross member has a front wall and a rear wall and a member made of fiber reinforced resin such as CFRP (carbon fiber reinforced resin) with an open bottom surface is applied.
特開2018-161934号公報JP 2018-161934 A 特開2019-151294号公報JP 2019-151294 A 特開2019-31219号公報JP 2019-31219 A 特開2014-91422号公報JP 2014-91422 A
 上述した特許文献1の技術は、側面衝突に対して一定の効果をもたらす一方で、部品点数の増加によって重量やコストが増加し、車体製造が複雑化する。
 また、特許文献2の技術は、バッテリーケースの変形が抑えられるが、フロアクロスメンバが上方(車両内部方向)に向かって凸となるように屈曲しているため、キャビン容積が小さくなり設計自由度が著しく低下する。
 また、特許文献3の技術は、車両の側面衝突時において必要なサイドシルの曲げ反力を確保することができるが、フロアクロスメンバの設置位置が限定される。フロアクロスメンバはシートレールの固定にも使用されるので、フロアクロスメンバの設置位置が限定されると車両設計の自由度が大幅に低下する。
Although the technique of Patent Document 1 described above has a certain effect against side collisions, the increase in the number of parts increases the weight and cost, and complicates the manufacturing of the vehicle body.
In addition, although the technology of Patent Document 2 suppresses deformation of the battery case, the floor cross member is bent upward (toward the inside of the vehicle) so as to project upward, reducing the cabin volume and increasing the degree of freedom in design. decreases significantly.
Further, the technique of Patent Document 3 can secure the necessary bending reaction force of the side sills in the event of a side collision of the vehicle, but the installation position of the floor cross member is limited. Since the floor cross member is also used to fix the seat rails, if the installation position of the floor cross member is limited, the degree of freedom in vehicle design is greatly reduced.
 上述のように、側面衝突時に発生するサイドシルからの大荷重がバッテリーケースに入力することを防ぐ機能向上の技術開示は多くあるが、大幅な重量アップや製造コストアップを伴ったり、車両設計の自由度を低下させたりするという問題があった。 As mentioned above, there are many technical disclosures for improving the function to prevent the large load from the side sills generated in the event of a side collision from entering the battery case. There was a problem of lowering the degree.
 さらに、特許文献4の技術は、鉄鋼材料よりも高強度かつ高剛性にして軽量であるCFRP(カーボンファイバー強化樹脂)等の繊維強化樹脂をフロアクロスメンバに適用しても、繊維強化樹脂は破断伸度が低い。このため、特許文献4の技術は、側面衝突時にバッテリーケースを搭載した自動車のバッテリーケースの変形を十分に抑制することができない問題があった。 Furthermore, the technology of Patent Document 4 is such that even if fiber reinforced resin such as CFRP (carbon fiber reinforced resin), which is stronger, more rigid and lighter than steel materials, is applied to the floor cross member, the fiber reinforced resin breaks. Low elongation. For this reason, the technique of Patent Document 4 has a problem in that deformation of the battery case of an automobile in which the battery case is mounted cannot be sufficiently suppressed in the event of a side collision.
 本発明は、かかる課題を解決するためになされたものであり、側面衝突時のバッテリーケースの変形を抑制するとともに、軽量化(weight reduction of automotive body)が可能であり、制振性(vibration-damping properties)にも優れ、キャビン容積を低下させたり車両設計の自由度を低下させたりすることなく、自動車のバッテリーケース保護構造及び該バッテリーケース保護構造に用いられるフロアクロスメンバを提供することを目的とする。 The present invention was made to solve such problems, and suppresses the deformation of the battery case in the event of a side collision, enables weight reduction of the automotive body, and provides vibration-damping properties. To provide an automotive battery case protection structure and a floor cross member used in the battery case protection structure, without reducing the cabin volume or reducing the freedom of vehicle design. and
 本発明に係る自動車のバッテリーケース保護構造は、自動車を構成する車体の床部分の少なくとも一部を構成するフロアと、該フロア下に搭載されてバッテリーを格納するバッテリーケースと、前記フロアの車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシルと、前記バッテリーケースの上方を車幅方向に横切って前記バッテリーケースよりも車幅方向両側に突出するように前記フロアの上面に設けられると共に両端部が前記一対のサイドシルの側面に当接するフロアクロスメンバとを備えて構成された自動車の車体構造において前記バッテリーケースを保護するバッテリーケース保護構造であって、前記フロアクロスメンバは、天板部(top portion)、縦壁部(side wall portion)及びフランジ部(flange portion)を有するハット断面部材(hat-shaped section part)と、該ハット断面部材の少なくとも前記縦壁部の内面及び/又は外面に貼付又は塗布された樹脂(resin)と、該樹脂を覆うように配設されて該樹脂と接着された補強板(reinforcement)とを備える。 A battery case protection structure for an automobile according to the present invention comprises: a floor that constitutes at least a part of a floor portion of a vehicle body that constitutes an automobile; a battery case that is mounted under the floor and stores a battery; a pair of side sills provided at both ends of the vehicle body and extending in the longitudinal direction of the vehicle body; A battery case protection structure for protecting the battery case in a vehicle body structure of an automobile comprising a floor cross member which is provided in a pair of side sills and has both ends in contact with the side surfaces of the pair of side sills, wherein the floor cross member is , a hat-shaped section part having a top portion, a side wall portion and a flange portion; and an inner surface of at least said vertical wall portion of said hat-shaped section part and/or a resin attached or applied to the outer surface, and a reinforcing plate (reinforcement) disposed so as to cover the resin and adhered to the resin.
 また、前記樹脂は、前記フロアクロスメンバにおける前記バッテリーケースより車幅方向に突出する範囲にのみ一定の厚みで配設されているとよい。 Further, it is preferable that the resin is disposed with a constant thickness only in the range of the floor cross member that protrudes from the battery case in the vehicle width direction.
 また、前記樹脂は、前記フロアクロスメンバにおける前記バッテリーケースの上方に位置する範囲にのみ一定の厚みで配設されているとよい。 Further, it is preferable that the resin is disposed with a constant thickness only in the area of the floor cross member located above the battery case.
 また、前記樹脂は、前記フロアクロスメンバの全長に亘って配設され、その厚みが、前記バッテリーケースの上方に位置する範囲は一定であり、その他の範囲は車幅方向の外方に向かって漸次薄くなっているとよい。 The resin is disposed over the entire length of the floor cross member, and the thickness of the resin is constant in the range above the battery case, and extends outward in the vehicle width direction in other ranges. It is preferable that the thickness is gradually reduced.
 また、前記樹脂の厚みが0.1~5mm、前記補強板の厚みが0.15~1mmであるとよい。 Further, it is preferable that the resin has a thickness of 0.1 to 5 mm and the reinforcing plate has a thickness of 0.15 to 1 mm.
 本発明に係るフロアクロスメンバは、自動車の車体の床部分の少なくとも一部を構成するフロアと、該フロア下に搭載されてバッテリーを格納するバッテリーケースと、前記フロアの車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシルと、を有する自動車の車体構造に取り付けられ、前記車体への取付状態において、前記バッテリーケースの上方を車幅方向に横切って前記バッテリーケースよりも車幅方向両側に突出するように前記フロアの上面に設けられると共に両端部が前記一対のサイドシルの側面に当接するフロアクロスメンバであって、天板部、縦壁部及びフランジ部を有するハット断面部材と、該ハット断面部材の少なくとも前記縦壁部の内面及び/又は外面に貼付又は塗布された樹脂と、該樹脂を覆うように配設されて該樹脂と接着された補強板とを備える。 A floor cross member according to the present invention comprises a floor constituting at least a part of a floor portion of a vehicle body of an automobile, a battery case mounted under the floor for storing a battery, and both ends of the floor in the width direction of the vehicle body. and a pair of side sills extending in the longitudinal direction of the vehicle body. A floor cross member provided on the upper surface of the floor so as to protrude on both sides in the vehicle width direction and having both end portions in contact with the side surfaces of the pair of side sills, the hat section having a top plate portion, a vertical wall portion and a flange portion. a member, a resin attached or applied to at least the inner surface and/or the outer surface of the vertical wall portion of the hat section member, and a reinforcing plate disposed so as to cover the resin and adhered to the resin.
 また、前記樹脂は、取付状態において前記バッテリーケースより車幅方向に突出する範囲にのみ一定の厚みで配設されているとよい。 Further, it is preferable that the resin is disposed with a constant thickness only in a range that protrudes in the vehicle width direction from the battery case in the attached state.
 また、前記樹脂は、取付状態において前記バッテリーケースの上方に位置する範囲にのみ一定の厚みで配設されているとよい。 Further, it is preferable that the resin is arranged with a constant thickness only in a range located above the battery case in the attached state.
 また、前記樹脂は、長手方向の全長に亘って配設され、前記樹脂の厚みが、取付状態において前記バッテリーケースの上方に位置する範囲は一定であり、その他の範囲は車幅方向の外方に向かって漸次薄くなっているとよい。 In addition, the resin is arranged over the entire length in the longitudinal direction, and the thickness of the resin is constant in the range located above the battery case in the attached state, and in the other range outward in the vehicle width direction. It is preferable that it gradually becomes thinner toward
 本発明においては、天板部、縦壁部及びフランジ部を有するハット断面部材と、ハット断面部材の少なくとも縦壁部の内面及び/又は外面に貼付又は塗布された樹脂と、樹脂を覆うように配設されて樹脂と接着された補強板とを備えてなるフロアクロスメンバを備えている。これにより、フロアクロスメンバの剛性(stiffness)が向上して側面衝突時のバッテリーケースの変形を抑制できると共に、フロアクロスメンバの軽量化及び制振性の向上も可能となる。また、フロアクロスメンバの設置位置を限定するものではないので、車両設計の自由度を低下させることがない。さらに、従来のフロアクロスメンバの形状を大きく変える必要もないのでキャビン容積が小さくなることもない。 In the present invention, a hat cross-sectional member having a top plate portion, a vertical wall portion and a flange portion, a resin attached or applied to at least the inner surface and / or the outer surface of the vertical wall portion of the hat cross-sectional member, and so as to cover the resin A floor cross member is provided and comprises a resin and a bonded reinforcing plate. As a result, the stiffness of the floor cross member is improved to suppress the deformation of the battery case in the event of a side collision, and the weight of the floor cross member can be reduced and the damping performance can be improved. In addition, since the installation position of the floor cross member is not limited, the flexibility of vehicle design is not reduced. Furthermore, since there is no need to change the shape of the conventional floor cross member significantly, the cabin volume is not reduced.
図1は、本発明の一実施の形態に係るバッテリーケース保護構造を説明する図であり、図1(a)は分解斜視図、図1(b)は図1(a)のA-A断面図である。1A and 1B are diagrams for explaining a battery case protection structure according to an embodiment of the present invention, FIG. 1A being an exploded perspective view, and FIG. It is a diagram. 図2は、図1に示すバッテリーケース保護構造において、フロアクロスメンバの長手方向における樹脂の貼付(塗布)範囲を説明する図である。FIG. 2 is a diagram for explaining a resin pasting (applying) range in the longitudinal direction of the floor cross member in the battery case protection structure shown in FIG. 図3は、図1のフロアクロスメンバの比較例として、従来のフロアクロスメンバの断面を示す図である。FIG. 3 is a cross-sectional view of a conventional floor cross member as a comparative example of the floor cross member of FIG. 図4は、図1のフロアクロスメンバの縦壁部の面剛性(plane stiffness)を評価するためのモデル(発明モデル)と、図3の従来のフロアクロスメンバの縦壁部の面剛性を評価するためのモデル(従来モデル)を説明する図である。Fig. 4 shows a model (invention model) for evaluating the plane stiffness of the vertical wall portion of the floor cross member in Fig. 1 and the conventional model in Fig. 3 for evaluating the plane stiffness of the vertical wall portion of the floor cross member. It is a figure explaining the model (conventional model) for doing. 図5は、図4の従来モデルと発明モデルの面剛性を評価した結果を示すグラフである。FIG. 5 is a graph showing the results of evaluating the surface rigidity of the conventional model and the invention model of FIG. 図6は、側面衝突時におけるフロアクロスメンバの変形状態を説明する図である。FIG. 6 is a diagram for explaining the deformation state of the floor cross member at the time of a side collision. 図7は、フロアクロスメンバの長手方向における樹脂の貼付(塗布)範囲の他の態様を説明する図である(その1)。FIG. 7 is a diagram illustrating another aspect of the resin pasting (applying) range in the longitudinal direction of the floor cross member (No. 1). 図8は、フロアクロスメンバの長手方向における樹脂の貼付(塗布)範囲の他の態様を説明する図である(その2)。FIG. 8 is a diagram illustrating another aspect of the resin pasting (applying) range in the longitudinal direction of the floor cross member (No. 2). 図9は、フロアクロスメンバの周方向における樹脂の貼付(塗布)範囲の他の態様を説明する図である。FIG. 9 is a diagram illustrating another aspect of the resin pasting (applying) range in the circumferential direction of the floor cross member. 図10は、実施例1に係る試験体の周方向における樹脂の塗布(貼付)範囲を示す図であり、図9(a)、図9(b)は発明例、図9(c)は比較例である。10A and 10B are diagrams showing the application (sticking) range of the resin in the circumferential direction of the test body according to Example 1, FIG. 9A and FIG. 9B are examples of the invention, and FIG. For example. 図11は、実施例1に係る発明例1及び比較例1の衝突試験時の荷重-ストローク曲線を示す図である。FIG. 11 is a diagram showing load-stroke curves during collision tests of Invention Example 1 and Comparative Example 1 according to Example 1. FIG. 図12は、内燃機関車(ICE)のフロアにおけるフロアクロスメンバの周辺の構成を説明する図である。FIG. 12 is a diagram illustrating a configuration around a floor cross member on the floor of an internal combustion engine (ICE).
 本発明の一実施の形態に係る自動車のバッテリーケース保護構造1(以下、単に「バッテリーケース保護構造1」という)について図1、図2に基づいて説明する。図1は本実施の形態のバッテリーケース保護構造1を示す模式図である。図中の矢印FRの向きが車体の前方、矢印UPの向きが車体の上方を示している。図2は図1のバッテリーケース保護構造1の垂直断面における車幅方向の一部を示す模式図である。 An automobile battery case protection structure 1 (hereinafter simply referred to as "battery case protection structure 1") according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a schematic diagram showing a battery case protective structure 1 of this embodiment. The direction of the arrow FR in the drawing indicates the front of the vehicle body, and the direction of the arrow UP indicates the upper direction of the vehicle body. FIG. 2 is a schematic diagram showing a part of the vehicle width direction in a vertical cross section of the battery case protection structure 1 of FIG.
 バッテリーケース保護構造1は、図1に示すように、フロア3と、バッテリーケース5と、一対のサイドシル7と、フロアクロスメンバ9とを備えて構成された電気自動車の車体下部構造において、側面衝突による荷重からバッテリーケース5を保護するものである。フロア3は、電気自動車のフロアであり、バッテリーケース5は、フロア3の下に搭載される。一対のサイドシル7(図1はサイドシル7を構成するサイドシルインナ7aの一部のみ図示)は、フロア3の車体幅方向の両端部に設けられ、フロアクロスメンバ9は、車幅方向に延びるようにフロア3の上面に設けられる。以下、各構成を詳細に説明する。 The battery case protection structure 1, as shown in FIG. It protects the battery case 5 from the load caused by The floor 3 is the floor of the electric vehicle, and the battery case 5 is mounted under the floor 3. A pair of side sills 7 (only a portion of the side sill inner 7a constituting the side sills 7 is shown in FIG. 1) are provided at both ends of the floor 3 in the vehicle width direction, and the floor cross members 9 extend in the vehicle width direction. It is provided on the upper surface of the floor 3 . Each configuration will be described in detail below.
<フロア>
 フロア3は、電気自動車を構成する車体の床部分の少なくとも一部を構成する部材(パネル)である。フロア3は、内燃機関車(ICE)のフロアにあるようなフロアトンネル21(図12参照)が設けられていないので、バッテリーケース5の空間及びキャビン空間が確保しやすい形状となっている。
<floor>
The floor 3 is a member (panel) that constitutes at least a part of the floor portion of the vehicle body that constitutes the electric vehicle. Since the floor 3 is not provided with a floor tunnel 21 (see FIG. 12) like the floor of an internal combustion engine (ICE), it has a shape that facilitates securing a space for the battery case 5 and a cabin space.
<バッテリーケース>
 バッテリーケース5は、電気自動車のバッテリーを格納するものであり、バッテリーケースロア(battery case lower)5aと、バッテリーケースアッパ(battery case upper)5bと、バッテリーケースクロス(battery case cross)5cと、によって構成されている。バッテリーケースロア5aは、バッテリーを格納する有底枠体からなり、バッテリーケースアッパ5bは、バッテリーケースロア5aを覆う蓋である。バッテリーケースクロス5cは、バッテリーケース5自体の剛性を向上させる補剛部材(stiffing member)であり、バッテリーケースロア5aの内部に車体幅方向に延びるように設けられ、側面衝突時のバッテリーケース5の変形を抑制する。
<Battery case>
The battery case 5 stores the battery of the electric vehicle, and is composed of a battery case lower 5a, a battery case upper 5b, and a battery case cross 5c. It is configured. The battery case lower 5a is made of a bottomed frame that stores the battery, and the battery case upper 5b is a lid that covers the battery case lower 5a. The battery case cross 5c is a stiffening member that improves the rigidity of the battery case 5 itself, and is provided inside the battery case lower 5a so as to extend in the vehicle width direction. Suppress deformation.
<サイドシル>
 サイドシル7は、車体前後方向に延びるように配置されてフロア3の車幅方向の両外側にそれぞれ接合されている。サイドシル7は、車体の内側に配置されるサイドシルインナ7aと、車体の外側に配置されるサイドシルアウタ(side sill outer)7bと、によって構成されている(図2参照)。サイドシルインナ7aの下部には、図2に示すように、断面L字状の固定部品11の水平部が接合されており、固定部品11の垂直部はバッテリーケース5の側壁部5d(具体的にはバッテリーケースロア5aの側壁部)に接合されている。上記のように、バッテリーケース5は固定部品11を介してサイドシル7に固定されている。
<Side sill>
The side sills 7 are arranged so as to extend in the longitudinal direction of the vehicle body and are joined to both outer sides of the floor 3 in the vehicle width direction. The side sill 7 is composed of a side sill inner 7a arranged inside the vehicle body and a side sill outer 7b arranged outside the vehicle body (see FIG. 2). As shown in FIG. 2, a horizontal portion of a fixing component 11 having an L-shaped cross section is joined to the lower portion of the side sill inner 7a. is joined to the side wall portion of the lower battery case 5a. As described above, the battery case 5 is fixed to the side sill 7 via the fixing parts 11 .
<フロアクロスメンバ>
 フロアクロスメンバ9は、図1(b)に示すように、ハット断面形状の部品である。また、フロアクロスメンバ9は、図2に示すように、フロア3の上面にバッテリーケース5の上方を車幅方向に横切るように設けられ、その両端部がバッテリーケース5の側壁部5dよりも車幅方向両側に突出して、サイドシルインナ7aに接合されている。
<Floor cross member>
The floor cross member 9 is a hat-shaped cross-sectional part, as shown in FIG. 1(b). Further, as shown in FIG. 2, the floor cross member 9 is provided on the upper surface of the floor 3 so as to cross the upper side of the battery case 5 in the vehicle width direction. It protrudes on both sides in the width direction and is joined to the side sill inner 7a.
 上記のように、フロアクロスメンバ9がバッテリーケース5の上方において、バッテリーケース5よりも車幅方向両側に突出して設けられている。これにより、側面衝突時の荷重はバッテリーケース5より先にフロアクロスメンバ9に入力され、バッテリーケース5に入力する荷重が低減する。 As described above, the floor cross member 9 is provided above the battery case 5 so as to protrude to both sides of the battery case 5 in the vehicle width direction. As a result, the load at the time of side collision is input to the floor cross member 9 before the battery case 5, and the load input to the battery case 5 is reduced.
 フロアクロスメンバ9は、図1(b)に示すように、ハット断面部材13と、ハット断面部材13の内面に貼付又は塗布された樹脂15と、樹脂15を覆うように設けられた補強板17とを備えている。 As shown in FIG. 1(b), the floor cross member 9 includes a hat section member 13, a resin 15 attached or applied to the inner surface of the hat section member 13, and a reinforcing plate 17 provided so as to cover the resin 15. and
 ハット断面部材13は、天板部13a、縦壁部13b及びフランジ部13cを有するハット断面形状の金属製(例えば鋼板(steel sheet)製)の部材である。ハット断面部材13のフランジ部13cがフロア3の上面に接合されている、また、縦壁部13bの車幅方向両端部に形成された縦壁フランジ部(side wall flange portion)13dがサイドシルインナ7aに接合されている。ハット断面部材13の素材としては、強度及び剛性を高めるため、例えば980MPa(MPa-class)以上の高強度ハイテン材(high strength steel sheet)が用いられる。 The hat cross-sectional member 13 is a hat cross-sectional metal (for example, steel sheet) member having a top plate portion 13a, a vertical wall portion 13b, and a flange portion 13c. The flange portion 13c of the hat cross-section member 13 is joined to the upper surface of the floor 3, and the vertical wall flange portions 13d formed at both ends of the vertical wall portion 13b in the vehicle width direction are connected to the side sill inner 7a. is joined to As a material for the hat cross-section member 13, a high strength steel sheet of, for example, 980 MPa (MPa-class) or more is used in order to increase strength and rigidity.
 ハット断面部材13の縦壁部13bの内面には、樹脂15が所定の接着強度(adhesive strength)で貼付(patch)又は塗布(coat)されている。樹脂15は、予め成形されたもの(射出成形樹脂部品(injection‐molded resin part))をハット断面部材13に貼付してもよいし、成形前の樹脂をハット断面部材13に塗布して焼付(baking)することによって形成してもよい。 A resin 15 is patched or coated on the inner surface of the vertical wall portion 13b of the hat cross-section member 13 with a predetermined adhesive strength. The resin 15 may be pre-molded (injection-molded resin part) and attached to the hat cross-section member 13, or the pre-molded resin may be applied to the hat cross-section member 13 and baked ( baking).
 成形前の樹脂をハット断面部材13に塗布して焼付することによって樹脂15を形成する場合の樹脂15の厚みの下限は、均一に塗布可能な0.1mm程度である。フィルム状の樹脂15をハット断面部材13に貼付する場合の樹脂15の厚みの下限は20μm程度である。また、樹脂15の厚みの上限は、コストの観点から5mm程度とするのが好ましい。 The lower limit of the thickness of the resin 15 in the case of forming the resin 15 by applying the resin to the hat cross-section member 13 before molding and baking it is about 0.1 mm, which allows uniform application. The lower limit of the thickness of the resin 15 when the film-like resin 15 is attached to the hat cross-section member 13 is about 20 μm. Also, the upper limit of the thickness of the resin 15 is preferably about 5 mm from the viewpoint of cost.
 さらに、樹脂15を覆うように補強板17が設けられている。補強板17は、ハット断面部材13の縦壁部13bより樹脂15が剥離するのを防止し、後述するように樹脂15と協働して縦壁部13bの面剛性を向上して、フロアクロスメンバ9の剛性を向上するものである。補強板17は、ハット断面部材13の縦壁部13bにスポット溶接(spot welding)によって固定されている。また、補強板17と樹脂15は所定の強度で接着されている。本実施の形態における縦壁部13bの面剛性向上の効果は、後述するように補強板17の素材の引張強度(tensile strength)に大きく依存しない。このため、補強板17の素材の引張強度は、ハット断面部材13の素材の引張強度より低くてもよく、製造コスト低減の観点から、引張強度270MPa級~590MPa級でよい。また、補強板17は、樹脂15のハット断面部材13の縦壁部13bから剥離するのを防止すればよいので、補強板17の板厚はハット断面部材13の素材の板厚よりも薄肉でよい。具体的な補強板17の板厚は、軽量化及び製造コスト低減の観点から、0.15~1mmでよい。引張強度270MPa級~590MPa級としたのは、通常使用される鋼板において最も引張強度が低いのが270MPa級であり、引張強度が590MPa級を超えるとコストが大きく上昇するためである。この範囲の中では、特にJIS規格SPCC等の普通鋼(common steel)と呼ばれる安価な一般的な冷延鋼板(cold rolled steel sheet)のグレードである270MPa級(いわゆる、軟鋼(mild steel))がコスト面から好ましい。また、板厚0.15~1mmとしたのは、0.15mm未満では製造コストが上昇し、1mmを超えると軽量化効果が低下するためである。 Furthermore, a reinforcing plate 17 is provided so as to cover the resin 15 . The reinforcing plate 17 prevents the peeling of the resin 15 from the vertical wall portion 13b of the hat cross-section member 13, and cooperates with the resin 15 to improve the surface rigidity of the vertical wall portion 13b as described later. It improves the rigidity of the member 9 . The reinforcing plate 17 is fixed to the vertical wall portion 13b of the hat section member 13 by spot welding. Further, the reinforcing plate 17 and the resin 15 are adhered with a predetermined strength. The effect of improving the surface rigidity of the vertical wall portion 13b in the present embodiment does not greatly depend on the tensile strength of the material of the reinforcing plate 17, as will be described later. Therefore, the tensile strength of the material of the reinforcing plate 17 may be lower than the tensile strength of the material of the hat section member 13, and from the viewpoint of manufacturing cost reduction, the tensile strength may be 270 MPa class to 590 MPa class. Further, since the reinforcing plate 17 only needs to prevent the resin 15 from peeling off from the vertical wall portion 13b of the hat cross-section member 13, the thickness of the reinforcing plate 17 is thinner than the thickness of the material of the hat cross-section member 13. good. A specific thickness of the reinforcing plate 17 may be 0.15 to 1 mm from the viewpoint of weight reduction and manufacturing cost reduction. The tensile strength of the 270 MPa grade to 590 MPa grade is set because the 270 MPa grade has the lowest tensile strength among steel sheets that are normally used, and if the tensile strength exceeds the 590 MPa grade, the cost increases significantly. Within this range, the 270 MPa grade (so-called mild steel), which is a grade of inexpensive general cold rolled steel sheet called common steel such as JIS standard SPCC, is used. It is preferable from the viewpoint of cost. The reason why the plate thickness is set to 0.15 to 1 mm is that if the thickness is less than 0.15 mm, the manufacturing cost rises, and if it exceeds 1 mm, the effect of weight reduction decreases.
 従来の一般的なフロアクロスメンバ23は、図3に示すように、金属製のハット断面部材13のみで構成されていた。この場合、フロアクロスメンバ23の強度及び剛性を高めるには、ハット断面部材13の板厚を厚くする必要があり、重量が増加していた。 A conventional general floor cross member 23 was composed only of a metal hat cross-section member 13, as shown in FIG. In this case, in order to increase the strength and rigidity of the floor cross member 23, it is necessary to increase the plate thickness of the hat section member 13, which increases the weight.
 この点、本実施の形態のフロアクロスメンバ9は、ハット断面部材13に樹脂15と補強板17を設けており、樹脂15と補強板17の部分の見かけの板厚が厚くなっているが、従来のようにハット断面部材13自体の板厚を厚くする場合と比べて重量が増加しにくい。これは、フロアクロスメンバ9に、金属よりも低密度の樹脂15を用いているためである。 In this regard, in the floor cross member 9 of the present embodiment, the hat section member 13 is provided with the resin 15 and the reinforcing plate 17, and the apparent plate thickness of the resin 15 and the reinforcing plate 17 is increased. The weight is less likely to increase compared to the case where the plate thickness of the hat cross-section member 13 itself is increased as in the related art. This is because the floor cross member 9 is made of resin 15 having a density lower than that of metal.
 そして、金属製のハット断面部材13と補強板17で樹脂を挟んだサンドイッチ構造(sandwich structure)としたことにより、縦壁部13bの面剛性を向上させることができる。ここで、縦壁部の面剛性とは、縦壁部の端部より縦壁部の面内方向に荷重が入力し、座屈変形(buckling deformation)が開始する前の剛性(曲げ剛性(bending stiffness))である。この点について、図4、図5に基づいて説明する。 Further, by adopting a sandwich structure in which resin is sandwiched between the metal hat cross-section member 13 and the reinforcing plate 17, the surface rigidity of the vertical wall portion 13b can be improved. Here, the surface rigidity of the vertical wall portion refers to the rigidity (bending rigidity) before buckling deformation starts when a load is input from the end of the vertical wall portion in the in-plane direction of the vertical wall portion. stiffness)). This point will be described with reference to FIGS. 4 and 5. FIG.
 図4に、従来モデルと発明モデルとを示す。従来モデルは、従来のフロアクロスメンバ23(図3参照)の縦壁部13bの面剛性を評価するためのモデルであり、鋼板(ハット断面部材13)のみから構成される。発明モデルは、本実施の形態のフロアクロスメンバ9(図1(b)参照)の縦壁部13bの面剛性を評価するためのモデルであり、上述したサンドイッチ構造(3層の積層構造)を有する。図4において図1、図3と対応する部分には同一の符号を付す。 Figure 4 shows the conventional model and the invention model. The conventional model is a model for evaluating the surface rigidity of the vertical wall portion 13b of the conventional floor cross member 23 (see FIG. 3), and is composed only of a steel plate (hat section member 13). The invention model is a model for evaluating the surface rigidity of the vertical wall portion 13b of the floor cross member 9 (see FIG. 1(b)) of the present embodiment, and the sandwich structure (three-layer laminated structure) described above is used. have. In FIG. 4, parts corresponding to those in FIGS. 1 and 3 are denoted by the same reference numerals.
 従来モデルのように鋼板のみから構成される場合の面剛性は、一般的に材料のヤング率(Young's modulus)Eと、断面2次モーメント(geometrical moment of inertia)Iとの積EIで与えられる。これに対し、発明モデルのようにサンドイッチ構造となっている場合の面剛性EIは、下記式(1)を用いて求めることができる。  The surface stiffness of the conventional model, which is composed only of steel plates, is generally given by the product EI of the material's Young's modulus E and the geometrical moment of inertia I. On the other hand, the surface rigidity EI in the case of a sandwich structure like the invention model can be obtained using the following formula (1).
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 上記式(1)において、Lは積層材(laminated body)の幅、iは材料を識別するための添字、nは層の数、Eiは材料iのヤング率、hiはi=1の材料から材料iの層までの厚み、λはi=1の材料の表面から積層材の中立面(neutral plane)までの距離である。 In the above formula (1), L is the width of the laminated body, i is a subscript to identify the material, n is the number of layers, Ei is the Young's modulus of material i, hi is from the material with i = 1 Thickness to layer of material i, λ is the distance from the surface of the material with i=1 to the neutral plane of the laminate.
 図4の従来モデルと発明モデルを略同一の重量とした場合の面剛性EIの違いを比較したのでその結果を図5に示す。図5は、従来モデルのハット断面部材13の厚みを1.2t(総厚み1.2t)とし、本発明モデルのハット断面部材13の厚みを0.6t、樹脂15の厚みを1.5t、補強板17の厚みを0.3t(総厚み2.4t)とし、それぞれの面剛性EIを式(1)を用いて算出したものである。図5における両モデルの重量比は、従来モデルの重量を基準(1.00)としたとき、発明モデルは0.97であった。図5に示されるように、発明モデルの面剛性(1.65×10-7GPa・m4)は従来モデル(0.31×10-7GPa・m4)の5.3倍に向上した。このように、発明モデルのハット断面部材13(金属製)の板厚を従来モデルの板厚よりも薄くして、金属よりも低密度でヤング率の低い樹脂15に置き換えて、補強板17とのサンドイッチ構造の総厚みを従来モデルの板厚よりも厚くする。これにより、発明モデルは、従来モデルと同程度の重量でも面剛性を従来モデルから著しく上昇させることができる。 FIG. 5 shows the results of comparing the difference in surface stiffness EI when the weight of the conventional model and the invention model shown in FIG. 4 is substantially the same. In FIG. 5, the thickness of the hat section member 13 of the conventional model is 1.2t (total thickness of 1.2t), the thickness of the hat section member 13 of the model of the present invention is 0.6t, the thickness of the resin 15 is 1.5t, and the thickness of the reinforcing plate 17 is 1.5t. With a thickness of 0.3t (total thickness of 2.4t), each surface stiffness EI was calculated using the formula (1). The weight ratio of the two models in FIG. 5 was 0.97 for the invention model when the weight of the conventional model was taken as the standard (1.00). As shown in FIG. 5, the surface rigidity of the invention model (1.65×10 −7 GPa·m 4 ) is 5.3 times higher than that of the conventional model (0.31×10 −7 GPa·m 4 ). In this way, the plate thickness of the hat cross-section member 13 (made of metal) of the invention model is made thinner than that of the conventional model, and the resin 15, which has a lower density and a lower Young's modulus than the metal, is replaced with the reinforcing plate 17. The total thickness of the sandwich structure is made thicker than that of the conventional model. As a result, the invention model can significantly increase the surface rigidity compared to the conventional model even if the weight is approximately the same as that of the conventional model.
 次に、樹脂15及び補強板17をハット断面部材13の縦壁部13bに設けた理由について、図6を用いて説明する。図6は、車体の側面がポール19に衝突した場合のフロアクロスメンバ9の変形の様子を模式的に示した平面図である。図6(a)は衝突前の状態、図6(b)は衝突後の状態を示している。図6(a)に示す位置にポール19があるとき、図6(b)の黒矢印の方向に車体が移動して車体の左側面がポール19に衝突すると、ポール19と衝突した部分の両側のフロアクロスメンバ9の変形は、衝突した部分に向かって屈曲する折れモード(bending mode)となることが多い。 Next, the reason why the resin 15 and the reinforcing plate 17 are provided on the vertical wall portion 13b of the hat cross-section member 13 will be described with reference to FIG. 6 is a plan view schematically showing how the floor cross member 9 deforms when the side of the vehicle body collides with the pole 19. FIG. FIG. 6(a) shows the state before the collision, and FIG. 6(b) shows the state after the collision. When the pole 19 is in the position shown in FIG. 6(a), when the vehicle body moves in the direction of the black arrow in FIG. The deformation of the floor cross member 9 is often in a bending mode in which it bends toward the colliding part.
 図6(b)のような折れモードの変形時には、天板部13aが面内変形(in-plane deformation)となるのに対し、縦壁部13bは面外変形(out-of-plane deformation)となるので、縦壁部13bは天板部13aより変形しやすい。したがって、縦壁部13bに樹脂15及び補強板17を設けて縦壁部13bの面剛性を高めることにより、フロアクロスメンバ9の折れモードに対する耐力が向上するので効果的である。 At the time of deformation in the folding mode as shown in FIG. 6(b), the top plate portion 13a undergoes in-plane deformation, while the vertical wall portion 13b undergoes out-of-plane deformation. Therefore, the vertical wall portion 13b is more easily deformed than the top plate portion 13a. Therefore, by providing the vertical wall portion 13b with the resin 15 and the reinforcing plate 17 to increase the surface rigidity of the vertical wall portion 13b, the resistance to the bending mode of the floor cross member 9 is effectively improved.
 なお、ハット断面部材13と樹脂15と補強板17とが一体となって荷重を受けることで面剛性が効果的に向上するので、ハット断面部材と樹脂、及び、樹脂と補強板は所定の強度で接着されている必要がある。この点について具体例をあげて説明する。 In addition, since the hat section member 13, the resin 15, and the reinforcing plate 17 are united to receive the load, the surface rigidity is effectively improved. must be glued together. This point will be described with a specific example.
 例えば、ハット断面部材13の板厚を1.0mm、樹脂15の厚みを1.0mm、補強板17(鉄製)の板厚を0.6mmとした場合、ハット断面部材13と樹脂15、樹脂15と補強板17とがそれぞれ接着されていれば、面剛性EIは271.5GPa・mm4となる(鉄のヤング率を206GPa、樹脂のヤング率を2GPaとした)。ここで、樹脂15と補強板17が接着されていない場合には、接着されているハット断面部材13と樹脂15の面剛性EIは19.3GPa・mm4、補強板17単体の面剛性EIは3.7GPa・mm4であるので、合計しても23GPa・mm4となり、全体としての面剛性が著しく低下する。したがって、ハット断面部材13と樹脂15と補強板17が一体で荷重を受けられるよう、ハット断面部材13と樹脂15が十分な強度で接着され、かつ、樹脂15と補強板17が十分な強度で接着されていることが重要である。 For example, if the thickness of the hat section member 13 is 1.0 mm, the thickness of the resin 15 is 1.0 mm, and the thickness of the reinforcing plate 17 (made of iron) is 0.6 mm, the hat section member 13 and the resin 15, and the resin 15 and the reinforcing plate 17 are adhered to each other, the surface rigidity EI is 271.5 GPa·mm 4 (Young's modulus of iron is 206 GPa, and Young's modulus of resin is 2 GPa). Here, when the resin 15 and the reinforcing plate 17 are not bonded, the surface rigidity EI of the bonded hat section member 13 and the resin 15 is 19.3 GPa·mm 4 , and the surface rigidity EI of the reinforcing plate 17 alone is 3.7. Since it is GPa·mm 4 , the total is 23 GPa·mm 4 , and the surface rigidity as a whole is remarkably lowered. Therefore, the hat cross-section member 13 and the resin 15 are bonded with sufficient strength so that the hat cross-section member 13, the resin 15 and the reinforcing plate 17 can receive the load together, and the resin 15 and the reinforcing plate 17 are bonded with sufficient strength. It is important that they are glued together.
 接着強度としては、例えば5MPa以上が好ましい。図6のような折れモードの変形において、接着強度が5MPa以上あれば、90°程度までの曲げ変形において、鋼板から接着剤が剥離しない。なお、フロアクロスメンバ9の端部に関しては、衝突の初期に軸圧壊(axial crush)して蛇腹状(bellows-shaped)に座屈変形する場合があり(図6(b)参照)、曲げ変形よりも変形量が大きくなる。変形の初期に樹脂15が剥離すると、次の(蛇腹)変形時の耐力が低下するため、軸圧壊のように大きな変形が想定される部位は接着強度を10MPa以上とするのがより好ましい。また、図6のように2つのフロアクロスメンバ9の間にポール19が衝突するような場合は、フロアクロスメンバ9の変形が折れモードとなる。これに対して、1つのフロアクロスメンバ9の軸方向にポール19が衝突する場合には、フロアクロスメンバ9の変形量は図6(b)の折れモードの場合よりもさらに大きくなる。1つのフロアクロスメンバ9の軸方向にポール19が衝突する場合にも接着強度を10MPa以上としておけば、樹脂の剥離を防止できる。 The adhesive strength is preferably 5 MPa or more, for example. In bending mode deformation as shown in FIG. 6, if the adhesive strength is 5 MPa or more, the adhesive does not separate from the steel plate in bending deformation up to about 90°. Regarding the end of the floor cross member 9, there is a case where an axial crush occurs at the initial stage of the collision, causing a bellows-shaped buckling deformation (see FIG. 6(b)). The amount of deformation is greater than If the resin 15 is peeled off at the initial stage of deformation, the yield strength at the time of subsequent (bellows) deformation is reduced. Therefore, it is more preferable to set the adhesive strength to 10 MPa or more for portions where large deformation such as axial crushing is expected. Also, when the pole 19 collides between two floor cross members 9 as shown in FIG. 6, the deformation of the floor cross member 9 is in the folding mode. On the other hand, when the pole 19 collides with one floor cross member 9 in the axial direction, the amount of deformation of the floor cross member 9 is even greater than in the bending mode of FIG. 6(b). Even when the pole 19 collides with one floor cross member 9 in the axial direction, if the adhesive strength is set to 10 MPa or more, peeling of the resin can be prevented.
 なお、本発明はフロアクロスメンバ9の長手方向における樹脂15の貼付(又は塗布)範囲を限定するものではないので、長手方向の全長に亘って樹脂15を設けてもよいし、フロアクロスメンバ9の剛性を向上させたい範囲にのみ樹脂15を設けてもよい。したがって、例えば図2のように、フロアクロスメンバ9におけるバッテリーケース5より車幅方向に突出する範囲にのみ一定の厚みで樹脂15を貼付(又は塗布)するようにしてもよい。図2の例は、サイドシル7のみで衝突エネルギー(crash energy)を吸収するように設計した場合を想定し、フロアクロスメンバ9の折れ(曲げ変形(bending deformation))や座屈変形の発生しやすい範囲(図6(b)参照)の縦壁部13bの面剛性を向上させるようにしたものである。この例は樹脂15の使用量が必要最小限であるので、部品を軽量化して製造コストを抑えることができる。 The present invention does not limit the range of application (or application) of the resin 15 in the longitudinal direction of the floor cross member 9 . The resin 15 may be provided only in the range in which the rigidity of is desired to be improved. Therefore, for example, as shown in FIG. 2, the resin 15 may be attached (or applied) with a constant thickness only to the area of the floor cross member 9 that protrudes from the battery case 5 in the vehicle width direction. The example in FIG. 2 assumes that the side sill 7 alone is designed to absorb the crash energy, and the floor cross member 9 is likely to break (bending deformation) and buckling deformation. It is intended to improve the surface rigidity of the vertical wall portion 13b in the range (see FIG. 6(b)). In this example, the amount of the resin 15 used is the minimum required, so the weight of the parts can be reduced and the manufacturing cost can be suppressed.
 また、他の態様としては、図7に示すようにフロアクロスメンバ9におけるバッテリーケース5の上方に位置する範囲にのみ一定の厚みで樹脂を配設するようにしてもよい。ここで、「バッテリーケース5の上方」とは、少なくともバッテリーケース5におけるバッテリーを格納する部分の上方を含んでいればよい。したがって、図7の例のようにバッテリーケース5の一方の側壁部5d(具体的にはバッテリーケースロア5aの側壁部)から他方の側壁部(図示なし)までの間の部分の上方に位置する範囲に樹脂15を設ければよい。 As another aspect, as shown in FIG. 7, the resin may be provided with a constant thickness only in the area of the floor cross member 9 located above the battery case 5 . Here, "above the battery case 5" should include at least above the portion of the battery case 5 that stores the battery. Therefore, as in the example of FIG. 7, it is located above the portion between one side wall portion 5d of the battery case 5 (specifically, the side wall portion of the lower battery case 5a) and the other side wall portion (not shown). The resin 15 may be provided in the range.
 図7の例は、フロアクロスメンバ9の端部のみ縦壁部13bの面剛性が低いので、当該部分のみ曲げ変形や座屈変形が生じやすくなっている。これにより、側面衝突時にサイドシル7とともにフロアクロスメンバ9の端部も変形するので、衝突エネルギー吸収能力(crash energy absorptive properties)が向上する。また、バッテリーケース5から外側に突出する部分を除く大部分に樹脂15を配置するので、樹脂15を長手方向の全長に亘って配置した場合と同等のバッテリーケース変形抑止効果及び軽量化効果を得ることができる。 In the example of FIG. 7, since the surface rigidity of the vertical wall portion 13b is low only at the end portion of the floor cross member 9, bending deformation and buckling deformation are likely to occur only at that portion. As a result, the end portion of the floor cross member 9 is deformed together with the side sill 7 in the event of a side collision, thereby improving crash energy absorbing properties. In addition, since the resin 15 is disposed on most of the battery case 5 except for the portion protruding outward from the battery case 5, the effect of suppressing deformation of the battery case and the effect of weight reduction equivalent to those obtained when the resin 15 is disposed over the entire length in the longitudinal direction can be obtained. be able to.
 図2、図7の例は樹脂15を一定の厚みで設けたものであったが、樹脂15の厚みは必ずしも一定でなくてもよく、部分的に変化してもよい。例えば、図8に示すようにフロアクロスメンバ9の全長に亘って樹脂15を配設する場合に、バッテリーケース5の側壁部5dから外方に突出する部分において、樹脂15の厚みが車幅方向の外方に向かって漸次薄くなるようにしてもよい。  In the examples of Figs. 2 and 7, the resin 15 is provided with a constant thickness, but the thickness of the resin 15 may not necessarily be constant, and may vary partially. For example, when the resin 15 is arranged over the entire length of the floor cross member 9 as shown in FIG. You may make it become thin gradually toward the outer side of .
 このようにすると、フロアクロスメンバ9におけるバッテリーケース5から突出した部分は、外方に向かって縦壁部13bの面剛性が低くなるので、フロアクロスメンバ9に荷重が入力した際に、面剛性が低い端部側から変形が始まる。このようにバッテリーケース5から離れた部分から変形が始まるように制御できるので、バッテリーケース5の変形抑止効果は図7の例より向上する。 With this arrangement, the surface rigidity of the vertical wall portion 13b of the portion of the floor cross member 9 protruding from the battery case 5 decreases toward the outside. Deformation starts from the end side with low . Since the deformation can be controlled so as to start from the portion apart from the battery case 5 in this way, the effect of suppressing the deformation of the battery case 5 is improved as compared with the example of FIG.
 なお、上記はハット断面部材13の縦壁部13bにのみ樹脂15及び補強板17を設けたものであったが(図1(b)参照)、本発明においては少なくとも縦壁部13bに樹脂15及び補強板17が設けられていればよい。このため、図9に示すように、縦壁部13bと天板部13aに樹脂15及び補強板17が設けられたものであってもよい。 In the above description, the resin 15 and the reinforcing plate 17 are provided only on the vertical wall portion 13b of the hat section member 13 (see FIG. 1(b)). and a reinforcing plate 17 may be provided. Therefore, as shown in FIG. 9, resin 15 and reinforcing plate 17 may be provided on vertical wall portion 13b and top plate portion 13a.
<樹脂厚の決定方法>
 前述したように、本発明はフロアクロスメンバ9の樹脂15の厚みを限定するものではないが、樹脂15が薄すぎると縦壁部13bの面剛性向上の効果が低くなり、厚すぎると軽量化の効果が低くなる場合がある。よって、両者のバランスを考慮して樹脂厚を決定するのが好ましい。以下に、そのような樹脂厚の決定方法の一例について説明する。
<Method for determining resin thickness>
As described above, the present invention does not limit the thickness of the resin 15 of the floor cross member 9, but if the resin 15 is too thin, the effect of improving the surface rigidity of the vertical wall portion 13b will be reduced, and if it is too thick, the weight will be reduced. may be less effective. Therefore, it is preferable to determine the resin thickness in consideration of the balance between the two. An example of such a resin thickness determination method will be described below.
 まず、検討のベースとなるようなハット断面部材13を用意し、重量と、縦壁部13bの面剛性を求める。ここでは、板厚1.6mmの鋼板製のハット断面部材13を用意し、重量(フロアの重量を含む)と縦壁部13bにおける面剛性を求めた(下記表1の≪ベース≫参照)。 First, a hat cross-sectional member 13 is prepared as a basis for examination, and the weight and surface rigidity of the vertical wall portion 13b are obtained. Here, a hat cross-sectional member 13 made of steel plate having a thickness of 1.6 mm was prepared, and the weight (including the weight of the floor) and surface rigidity of the vertical wall portion 13b were determined (see <<base>> in Table 1 below).
 次に、本実施の形態に係るフロアクロスメンバ9を構成するハット断面部材13として、上記ベースとなるハット断面部材13の板厚よりも板厚が薄いものを用意する。ここでは、板厚0.8mm≪No.1≫、1.0mm≪No.2≫、1.2mm≪No.3≫の3種類のハット断面部材13を用意した。補強板17は、板厚0.4mmの鋼板製のものを用いることした(≪No.1≫~≪No.3≫で共通)。 Next, as the hat cross-section member 13 constituting the floor cross member 9 according to the present embodiment, a hat cross-section member 13 having a thickness smaller than that of the hat cross-section member 13 serving as the base is prepared. Here, three types of hat cross-sectional members 13 with plate thicknesses of 0.8 mm <<No.1>>, 1.0 mm <<No.2>>, and 1.2 mm <<No.3>> were prepared. The reinforcing plate 17 is made of a steel plate having a thickness of 0.4 mm (same for <<No.1>> to <<No.3>>).
 上記≪No.1≫~≪No.3≫のハット断面部材13と補強板17を用いて図9のようなフロアクロスメンバ9を構成する場合に、縦壁部13bの面剛性が≪ベース≫の面剛性と同程度になるように調整したときの樹脂厚を求めた(A)。また、フロアクロスメンバ9の重量が≪ベース≫の重量と同程度になるように調整したときの樹脂厚を求めた(B)。その結果を表1に示す。なお、表1の重量にはフロアの重量(0.9kg共通)も含まれている。また、面剛性は縦壁部におけるものとする。 When constructing the floor cross member 9 as shown in FIG. The resin thickness was obtained when the surface rigidity was adjusted to be approximately the same as the surface rigidity of (A). Also, the resin thickness was obtained when the weight of the floor cross member 9 was adjusted to be approximately the same as the weight of the <<base>> (B). Table 1 shows the results. The weight in Table 1 includes the weight of the floor (0.9kg common). Also, the surface rigidity is assumed to be that of the vertical wall portion.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1に示す≪No.1≫~≪No.3≫のAは、ハット断面部材13の板厚を≪ベース≫よりも薄くして、鋼板よりもヤング率の低い樹脂15を設け、補強板17とのサンドイッチ構造の総厚みを≪ベース≫の板厚よりも厚くしたものである。これにより、≪ベース≫の面剛性(70GPa・mm4)と同程度の面剛性を確保しつつ、鋼板よりも低密度の樹脂を用いることによる軽量化の効果の最大化を図ったものである。その軽量化率は、≪No.1≫で21%、≪No.2≫で12%、≪No.3≫で4%となっている。 A of <<No.1>> to <<No.3>> shown in Table 1 makes the plate thickness of the hat cross-section member 13 thinner than the <<base>>, provides a resin 15 having a lower Young's modulus than the steel plate, and provides a reinforcing plate. The total thickness of the sandwich structure with 17 is made thicker than the plate thickness of the <<base>>. As a result, while maintaining the same level of surface rigidity as the <<base>> surface rigidity (70GPa・mm 4 ), the use of a resin with a lower density than the steel plate maximizes the effect of weight reduction. . The weight reduction rate is 21% for <<No.1>>, 12% for <<No.2>>, and 4% for <<No.3>>.
 一方、≪No.1≫~≪No.3≫のBは、≪ベース≫の重量(3.59kg)と同程度の重量となるまで樹脂厚を厚くし、Aよりもサンドイッチ構造の総厚みを厚くして、面剛性向上の効果の最大化を図ったものである。その面剛性向上率は、≪No.1≫で1599%、≪No.2≫で796%、≪No.3≫で171%となっている。 On the other hand, for ≪No.1≫ to ≪No.3≫ B, the resin thickness is thickened until it reaches the same weight as the ≪base≫ (3.59 kg), and the total thickness of the sandwich structure is thicker than A. This is intended to maximize the effect of improving the surface rigidity. The surface rigidity improvement rate is 1599% for <<No.1>>, 796% for <<No.2>>, and 171% for <<No.3>>.
 表1の結果に基づき、≪ベース≫よりも面剛性を低下させずに最大限軽量化できるAの場合の樹脂厚を下限値とし、≪ベース≫よりも重量を増加させずに最大限面剛性を向上できるBの場合の樹脂厚を上限値として、樹脂厚を決定する。したがって、≪No.1≫(ハット断面部材の板厚hc=0.8mm、補強板の板厚hp=0.4mm)の場合は、0.45mm~4.0mmの範囲内で樹脂厚を設定すればよい。同様に、≪No.2≫(ハット断面部材の板厚hc=1.0mm、補強板の板厚hp=0.4mm)の場合は、0.25mm~2.5mmの範囲内、≪No.3≫(ハット断面部材の板厚hc=1.2mm、補強板の板厚hp=0.4mm)の場合は、0.02mm~0.8mmの範囲内で樹脂厚を設定すればよい。上記のようにすることで、軽量化と面剛性(曲げ剛性)向上のバランスを考慮して樹脂15の厚みを決定することができる。 Based on the results in Table 1, the lower limit is the resin thickness in the case of A, which allows the maximum weight reduction without lowering the surface rigidity than the <<base>>, and the maximum surface rigidity without increasing the weight over the <<base>>. The resin thickness is determined with the upper limit of the resin thickness in the case of B that can improve the . Therefore, in the case of <<No. 1>> (thickness hc of the hat section member = 0.8 mm, thickness of the reinforcing plate hp = 0.4 mm), the resin thickness should be set within the range of 0.45 mm to 4.0 mm. Similarly, in the case of <<No.2>> (hat cross section member thickness hc=1.0mm, reinforcing plate thickness hp=0.4mm), within the range of 0.25mm to 2.5mm, <<No.3>> (hat If the thickness of the cross section member hc=1.2mm and the thickness of the reinforcing plate hp=0.4mm), the resin thickness should be set within the range of 0.02mm to 0.8mm. By doing so, the thickness of the resin 15 can be determined in consideration of the balance between weight reduction and improvement in surface rigidity (flexural rigidity).
 以上のように、本実施の形態によれば、ハット断面部材13の少なくとも縦壁部13bの内面に貼付又は塗布された樹脂15と、樹脂15を覆うように配設されて接着された補強板17とを備えてなるフロアクロスメンバ9を備えている。これにより、フロアクロスメンバ9の剛性が向上して側面衝突時のバッテリーケース5の変形が従来よりも抑制されると共にフロアクロスメンバ9の軽量化も可能である。また、フロアクロスメンバ9の設置位置を限定するものではないので、車両設計の自由度を低下させることもなく、キャビン容積を低下させるものでもない。
 なお、本実施の形態は、制振性も向上させることができる。この点については、後述の実施例で具体的に説明する。
As described above, according to the present embodiment, the resin 15 attached or applied to at least the inner surface of the vertical wall portion 13b of the hat cross-section member 13 and the reinforcing plate disposed and adhered so as to cover the resin 15 17. As a result, the rigidity of the floor cross member 9 is improved, the deformation of the battery case 5 in the event of a side collision is suppressed more than before, and the weight of the floor cross member 9 can be reduced. Further, since the installation position of the floor cross member 9 is not limited, the degree of freedom in vehicle design is not reduced, and the cabin volume is not reduced.
It should be noted that this embodiment can also improve damping properties. This point will be specifically described in the examples below.
 上記の実施の形態ではフロアクロスメンバ9のハット断面部材13の内面に樹脂15及び補強板17が設けられた例を用いて説明したが、本発明はこれに限らず、ハット断面部材13の外面に樹脂15及び補強板17が設けられたものでもよい。また、ハット断面部材の内面及び外面にそれぞれ樹脂15及び補強板17が設けられたものでもよい。 In the above embodiment, the resin 15 and the reinforcing plate 17 are provided on the inner surface of the hat section member 13 of the floor cross member 9, but the present invention is not limited to this. The resin 15 and the reinforcing plate 17 may be provided on the substrate. Further, the inner surface and the outer surface of the hat section member may be provided with the resin 15 and the reinforcing plate 17, respectively.
 さらに、上記は自動車のバッテリーケース保護構造としての実施の形態を説明したものであったが、本発明はバッテリーケース保護構造の一部品であるフロアクロスメンバの構成に特徴を有するものである。したがって、本願にはフロアクロスメンバ単体としての発明も含まれている。フロアクロスメンバの実施の形態については、上記説明と同様であるので説明を省略する。 Furthermore, although the above describes an embodiment of the battery case protection structure for an automobile, the present invention is characterized by the configuration of the floor cross member, which is a part of the battery case protection structure. Therefore, the present application also includes the invention as a single floor cross member. Since the embodiment of the floor cross member is the same as the above description, the description is omitted.
 本発明の作用効果を評価する具体的な実験を行ったので、その結果について以下に説明する。本実施例においては、フロアクロスメンバに相当するハット断面形状の部品と、フロアパネルに相当する平板とからなる筒状の試験体(長さ200mm)を用意し、衝突特性(crash worthiness)を評価する衝突試験と、振動特性(vibration characteristics)を評価する打撃振動試験(impact vibration test)を行った。 Specific experiments were conducted to evaluate the effects of the present invention, and the results are described below. In this example, a cylindrical specimen (length 200 mm) consisting of a hat cross-sectional part corresponding to the floor cross member and a flat plate corresponding to the floor panel was prepared, and crash worthiness was evaluated. An impact test to evaluate vibration characteristics and an impact vibration test to evaluate vibration characteristics were conducted.
 上記試験体には、発明例として、図10(a)のようにハット断面部材13の天板部13aと縦壁部13bに樹脂15と補強板17を設けたものや、図10(b)のようにハット断面部材13の縦壁部13bのみに樹脂15と補強板17を設けたものを用意した。また、比較例として、図3のようにハット断面部材13のみから構成されるものや、図10(c)のようにハット断面部材13の天板部13aのみに樹脂15と補強板17を設けたものを用いた。試験体におけるハット断面部材13に鋼板を用い、平板には、いずれも板厚1.0mmの440MPaの鋼板を用いた。なお、図10において、図1や図9と対応する部分には同一の符号を付す。 As an example of the invention, the above-mentioned specimens have resin 15 and reinforcing plate 17 provided on top plate portion 13a and vertical wall portion 13b of hat cross-section member 13 as shown in FIG. As shown in FIG. 1, a hat cross-section member 13 having only the vertical wall portion 13b provided with the resin 15 and the reinforcing plate 17 was prepared. Also, as a comparative example, as shown in FIG. I used something else. A steel plate was used for the hat section member 13 of the test body, and a steel plate having a thickness of 1.0 mm and a pressure of 440 MPa was used for each of the flat plates. In FIG. 10, parts corresponding to those in FIGS. 1 and 9 are denoted by the same reference numerals.
 衝突試験では、試験体の軸方向(長手方向)に試験速度8.9m/sの打撃パンチで荷重を入力し、試験体を200mmから180mmまで20mm軸方向に変形させた。その際、試験体の支持部に生じる荷重と打撃パンチのストローク(軸圧壊変形量(amount of axial crush deformation))を計測して荷重-ストローク曲線(load-stroke curve)を取得し、該荷重-ストローク曲線の最大荷重(kN)を試験体の衝突に対する耐力(yield strength)(衝突耐力(crash yield strength)と称す)とした。衝突耐力の最大値は、軸圧壊変形の開始直後の弾性変形(elastic deformation)を経て塑性変形(plastic deformation)に転じる際の荷重を示すものであり、この値が高いほど衝突時の変形が生じにくく、衝突特性が良好であると言える。 In the impact test, a load was applied in the axial direction (longitudinal direction) of the test piece with an impact punch at a test speed of 8.9m/s, and the test piece was deformed 20mm in the axial direction from 200mm to 180mm. At that time, the load generated on the supporting part of the test piece and the stroke of the impact punch (amount of axial crush deformation) were measured to obtain a load-stroke curve, and the load- The maximum load (kN) of the stroke curve was taken as the yield strength of the specimen against collision (referred to as crash yield strength). The maximum value of impact resistance indicates the load that changes from elastic deformation immediately after the start of axial crushing deformation to plastic deformation. The higher this value, the more deformation occurs during collision. It can be said that the collision characteristics are good.
 打撃振動試験では、吊り下げた試験体の天板部13aのエッジ付近に加速度センサー(acceleration sensor)を取り付け、インパクトハンマ(impact hammer)で試験体の縦壁部13bを打撃加振(impact vibration)する。そして、インパクトハンマから得られる加振力(impact force)と試験体で計測した加速度をFFTアナライザに取り込み、Accelerance(m/s2/N)の周波数応答関数(frequency response function)を算出した。ここで、周波数応答関数は、5回の打撃試験結果の平均化処理により求めた。 In the impact vibration test, an acceleration sensor was attached near the edge of the top plate portion 13a of the suspended test body, and an impact hammer was used to apply impact vibration to the vertical wall portion 13b of the test body. do. Then, the impact force obtained from the impact hammer and the acceleration measured by the test body were input to the FFT analyzer, and the frequency response function of Accelerance (m/s 2 /N) was calculated. Here, the frequency response function was obtained by averaging the results of five impact tests.
 試験体である発明例及び比較例の詳細(ハット断面部材と補強板の鋼板の引張強度と板厚、及び樹脂厚)と上記試験の結果を表2~表6に示す。また、衝突試験において得られる荷重-ストローク曲線の一例として、発明例1と比較例1の荷重-ストローク曲線を図11に示す。本実施例の試験結果について、5つの観点で評価したので、以下、具体的に説明する。なお、各表において、「断面方向の樹脂・補強板の貼付け位置」に記載の「全周」とは、図10(a)のようにハット断面部材13の天板部13aと縦壁部13bに樹脂15と補強板17を設けたことを示す。また、各表の「面剛性」は、前述した計算式に基づいて算出した。 Tables 2 to 6 show the details of the invention examples and comparative examples (the tensile strength and plate thickness of the hat cross-section member and the reinforcing plate, and the resin thickness of the steel plate of the hat cross-section member and the resin thickness) and the results of the above tests. FIG. 11 shows the load-stroke curves of Invention Example 1 and Comparative Example 1 as an example of the load-stroke curves obtained in the collision test. The test results of this example were evaluated from five points of view, which will be described in detail below. In each table, the "whole circumference" described in the "bonding position of the resin/reinforcement plate in the cross-sectional direction" refers to the top plate portion 13a and the vertical wall portion 13b of the hat cross-section member 13 as shown in FIG. 10(a). shows that the resin 15 and the reinforcing plate 17 are provided. In addition, the "face stiffness" in each table was calculated based on the formula described above.
<面剛性および衝突耐力の向上を目的とした発明例の評価>
 下記表2の実験結果に基づき、本発明における面剛性および衝突耐力を向上させる効果について評価した。
<Evaluation of Invention Examples for Improving Surface Rigidity and Collision Resistance>
Based on the experimental results shown in Table 2 below, the effect of improving the surface rigidity and impact resistance of the present invention was evaluated.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 比較例1は、図3のようにハット断面部材13のみから構成される例であり、発明例1~3は、ハット断面部材13の長手方向全長に亘って、天板部13aと縦壁部13bに樹脂15と補強板17を設けた例である。表2に示すように発明例1~3はいずれの場合も比較例1より面剛性が向上している。 Comparative Example 1 is an example composed only of the hat cross-section member 13 as shown in FIG. This is an example in which a resin 15 and a reinforcing plate 17 are provided on 13b. As shown in Table 2, the surface rigidity of Inventive Examples 1 to 3 is higher than that of Comparative Example 1 in all cases.
 衝突特性を示す衝突耐力は、衝突試験によって得られた荷重-ストローク曲線(図11参照)の最大荷重に相当するものであり、比較例1で310kN、発明例1で600kNであった。発明例1は重量が比較例1より増加しているものの、衝突耐力は比較例1にくらべて1.9倍以上となり、大幅に向上した。比較例1と同程度の重量となるように調整した発明例2、3に関しても、比較例1より衝突耐力が向上した。 The impact strength, which indicates the impact characteristics, corresponds to the maximum load in the load-stroke curve (see Fig. 11) obtained by the impact test, and was 310 kN for Comparative Example 1 and 600 kN for Invention Example 1. Although the weight of Invention Example 1 is greater than that of Comparative Example 1, the crash resistance is 1.9 times or more that of Comparative Example 1, which is a significant improvement. In invention examples 2 and 3, which were adjusted to have a weight similar to that of comparative example 1, the impact resistance was improved as compared to comparative example 1.
 また、振動特性を示す「制振性」は、打撃振動試験によって得られた周波数200HzにおけるAcceleranceの値であり、発明例1~3のいずれの場合も、比較例1と比べて振動を大幅に抑制した。 In addition, "vibration damping", which indicates vibration characteristics, is the value of acceleration at a frequency of 200 Hz obtained by an impact vibration test. Suppressed.
 上述のように発明例1~3は、比較例1と同程度の重量で、面剛性、衝突耐力、制振性を向上できることが示された。 As described above, it was shown that invention examples 1 to 3 can improve surface rigidity, impact resistance, and damping performance with a weight comparable to that of comparative example 1.
<軽量化を目的とした発明例の評価>
 下記表3の実験結果に基づき、本発明における軽量化の効果について評価した。
<Evaluation of Invention Examples for Weight Reduction>
Based on the experimental results shown in Table 3 below, the effect of weight reduction in the present invention was evaluated.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表3の発明例4~6は、前述した比較例1と同等以上の面剛性、衝突耐力、制振性を維持しつつ、軽量化を実現するように調整した例である。発明例4~6は発明例1~3と同様に、ハット断面部材13の長手方向全長に亘って、天板部13aと縦壁部13bに樹脂15と補強板17を設けている(図10(a)参照)。発明例4~6の例はいずれも面剛性と衝突耐力は比較例1と同等以上であり、それぞれ、比較例1に対して10%、12%、21%の軽量化を実現している。また、制振性は発明例4~6のいずれの場合も大幅に向上した。 Invention Examples 4 to 6 in Table 3 are examples adjusted to achieve weight reduction while maintaining surface rigidity, impact strength, and vibration damping properties equal to or higher than those of Comparative Example 1 described above. In invention examples 4 to 6, similar to invention examples 1 to 3, resin 15 and reinforcing plate 17 are provided on top plate portion 13a and vertical wall portion 13b over the entire length in the longitudinal direction of hat cross-section member 13 (FIG. 10). (a)). Inventive Examples 4 to 6 all have surface rigidity and impact strength equal to or higher than those of Comparative Example 1, and achieve weight reductions of 10%, 12%, and 21%, respectively, compared to Comparative Example 1. In addition, the damping property was greatly improved in all cases of Inventive Examples 4 to 6.
 上述のように発明例4~6は、比較例1と同等以上の面剛性、衝突耐力および制振性を確保しつつ、軽量化が可能であることが示された。 As described above, it was shown that invention examples 4 to 6 are capable of weight reduction while ensuring surface rigidity, impact resistance, and damping performance equivalent to or greater than those of comparative example 1.
<面剛性および衝突耐力の向上と軽量化の両方を目的とした発明例の評価>
 下記表4の実験結果に基づき、本発明における面剛性・衝突耐力の向上と軽量化の両方を実現する効果について評価した。
<Evaluation of Invention Examples Aimed at Both Improvement of Surface Rigidity and Impact Resistance and Weight Reduction>
Based on the experimental results shown in Table 4 below, the effect of realizing both improvement in surface rigidity/impact resistance and weight reduction in the present invention was evaluated.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表4の発明例7~9は、前述した比較例1よりも面剛性、衝突耐力が向上し、かつ、軽量化も実現するように調整した例である。発明例7~9は発明例1~6と同様に、ハット断面部材13の長手方向全長に亘って、天板部13aと縦壁部13bに樹脂15と補強板17を設けている(図10(a)参照)。 Invention Examples 7 to 9 in Table 4 are examples in which surface rigidity and impact strength are improved compared to Comparative Example 1 described above, and adjustments are made so as to achieve weight reduction. In invention examples 7 to 9, similar to invention examples 1 to 6, resin 15 and reinforcing plate 17 are provided on top plate portion 13a and vertical wall portion 13b over the entire length in the longitudinal direction of hat cross-section member 13 (FIG. 10). (a)).
 発明例7は、比較例1よりも3%(0.09kg)軽量化しつつ、衝突耐力を11%(35kN)向上させた。発明例8は、比較例1よりも7%(0.27kg)軽量化しつつ、衝突耐力を6.4%(20kN)向上させた。発明例9は、発明例の中で最も樹脂厚が薄い例であるが、この場合においても4%(0.13kg)軽量化しつつ、衝突耐力を3%(10kN)向上させた。また、制振性は発明例7~9のいずれの場合も大幅に向上した。 Invention Example 7 was 3% (0.09 kg) lighter than Comparative Example 1, while improving crash resistance by 11% (35 kN). Inventive Example 8 was 7% (0.27 kg) lighter than Comparative Example 1, while improving crash strength by 6.4% (20 kN). Inventive example 9 is an example with the thinnest resin thickness among the inventive examples, and even in this case, the weight was reduced by 4% (0.13 kg), while the crash strength was improved by 3% (10 kN). In addition, the damping property was greatly improved in all cases of Inventive Examples 7 to 9.
 上述のように発明例7~9は、比較例1よりも軽量化しつつ、面剛性および衝突耐力を向上できることが示された。 As described above, invention examples 7 to 9 were shown to be lighter than comparative example 1 while improving surface rigidity and impact strength.
<接着の有無及び接着強度の影響評価>
 実施の形態で説明したように、本発明における面剛性向上の効果を適切に発揮するためには、ハット断面部材13と樹脂15及び樹脂15と補強板17とをそれぞれ接着して、当該部分が一体となって荷重を受けるようにする必要がある。また、軸圧壊に対して接着の一部が剥離して衝突耐力が低下しないよう、例えば10MPa以上の十分な接着強度で接着するのが好ましい。
<Evaluation of presence or absence of adhesion and influence of adhesion strength>
As described in the embodiment, in order to properly exhibit the effect of improving the surface rigidity in the present invention, the hat cross-section member 13 and the resin 15 and the resin 15 and the reinforcing plate 17 are adhered to each other so that the portion concerned is It is necessary to be able to receive the load as one unit. In addition, it is preferable to bond with a sufficient bonding strength of, for example, 10 MPa or more so that a part of the bonding does not delaminate due to axial crushing and the impact strength does not decrease.
 そこで、下記表5の実験結果に基づき、接着の有無によって面剛性および衝突耐力がどの程度影響を受けるかについて評価した。 Therefore, based on the experimental results shown in Table 5 below, we evaluated how much surface rigidity and impact resistance are affected by the presence or absence of adhesion.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 表5における比較例1を除く4例は、いずれも比較例1と同じ引張強度の鋼板製のハット断面部材13を用いたものであり、接着強度以外はすべて同様に構成されている。接着強度が10MPa以上である発明例10、11は、比較例1と比べて、どちらも面剛性が向上し、衝突耐力も6.4%(20kN)向上した。また、制振性も大きく向上し、振動を大幅に抑制した。 The four examples in Table 5, except for Comparative Example 1, all use the steel plate hat cross-section member 13 having the same tensile strength as Comparative Example 1, and are constructed in the same manner except for the adhesive strength. In invention examples 10 and 11, which had an adhesive strength of 10 MPa or more, both had improved surface rigidity and improved impact strength by 6.4% (20 kN) compared to comparative example 1. In addition, damping performance has been greatly improved, and vibration has been greatly suppressed.
 また、比較例2は、接着強度が0MPa、即ち、ハット断面部材13と樹脂15、樹脂15と補強板17がどちらも接着されていないので、面剛性は式(1)から算出されるものではなく、ハット断面部材13、樹脂15、補強板17の各面剛性EIの合計値となる。その結果、比較例3の面剛性は比較例1よりも45%低下し、衝突耐力も比較例1より6.5%(20kN)低下した。また、制振性は比較例1と同じであり、改善が見られなかった。 In Comparative Example 2, the adhesive strength is 0 MPa, that is, neither the hat cross-section member 13 and the resin 15 nor the resin 15 and the reinforcing plate 17 are bonded, so the surface rigidity cannot be calculated from the formula (1). Instead, it is the total value of the surface stiffness EI of the hat section member 13, the resin 15, and the reinforcing plate 17. As a result, the surface rigidity of Comparative Example 3 was lower than that of Comparative Example 1 by 45%, and the impact resistance was also lower than that of Comparative Example 1 by 6.5% (20 kN). Moreover, the damping property was the same as that of Comparative Example 1, and no improvement was observed.
 以上より、ハット断面部材13と樹脂15、及び、樹脂15と補強板17を接着することの有効性が示された。 From the above, the effectiveness of bonding the hat cross-section member 13 and the resin 15, and the resin 15 and the reinforcing plate 17, has been demonstrated.
<樹脂の貼付(塗布)範囲の評価>
 下記表6の実験結果に基づき、ハット断面部材13に対して樹脂15と補強板17の貼付する位置(範囲)を変えた場合について評価した。
<Evaluation of resin sticking (coating) range>
Based on the experimental results shown in Table 6 below, evaluation was made on the case where the position (range) where the resin 15 and the reinforcing plate 17 were adhered to the hat section member 13 was changed.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 表6における比較例1を除く4例は、いずれも比較例1と同じ引張強度の鋼板製のハット断面部材13を用いたものであり、樹脂15・補強板17の貼付け位置以外はすべて同様に構成されている。発明例8(表4と同じ)は、ハット断面部材13の長手方向「全長」に亘って、「縦壁部13bと天板部13a」に樹脂15、補強板17を貼付けたものであり(図10(a)参照)、その実験結果は前述したとおり、比較例1よりも7%(0.27kg)軽量化しつつ、衝突耐力を6.4%(20kN)向上させた。制振性も大幅に向上した。 The four examples in Table 6, except for Comparative Example 1, all use the steel plate hat cross-section member 13 having the same tensile strength as Comparative Example 1, and are all the same except for the affixing positions of the resin 15 and the reinforcing plate 17. It is configured. In invention example 8 (same as Table 4), resin 15 and reinforcing plate 17 are attached to "vertical wall portion 13b and top plate portion 13a" over the "full length" of hat cross-section member 13 in the longitudinal direction ( (See FIG. 10(a)). As described above, the experimental result was that the weight was reduced by 7% (0.27 kg) compared to Comparative Example 1, while the crash resistance was improved by 6.4% (20 kN). Vibration damping is also greatly improved.
 発明例12は、ハット断面部材13の長手方向「全長」に亘って、「縦壁部13bのみ」に樹脂15、補強板17を貼付けたものであり(図10(b)参照)、比較例1よりも9%(0.32kg)軽量化した。発明例8と比較しても、天板部13aに樹脂15と補強板17を設けていない分、軽量化の効果は大きい。衝突耐力は発明例8と比較すると若干低下するものの、比較例1より向上している。制振性も大幅に向上した。 In Invention Example 12, a resin 15 and a reinforcing plate 17 are attached "only to the vertical wall portion 13b" over the "full length" of the hat cross-section member 13 in the longitudinal direction (see FIG. 10(b)), which is a comparative example. 9% (0.32kg) lighter than 1. Compared with Example 8 of the invention, the effect of reducing the weight is great because the resin 15 and the reinforcing plate 17 are not provided on the top plate portion 13a. Although the crash resistance is slightly lower than that of Invention Example 8, it is better than that of Comparative Example 1. Vibration damping is also greatly improved.
 比較例3は、ハット断面部材13の長手方向「全長」に亘って、「天板部13aのみ」に樹脂15、補強板17を貼付けたものであり(図10(c)参照)、比較例1よりも10%(0.37kg)軽量化した。これはハット断面部材13には縦壁部13bが2面あるのに対して天板部13aは1面しかないので、より重量が低減したからと思われる。制振性も比較例1より向上した。一方、衝突耐力向上の効果は、発明例8、発明例12よりも小さかった。本実施例の衝突試験は試験体の軸方向に荷重を入力するものであったので、比較例4と発明例8、12の衝突耐力の差はわずかであったが、図6のような折れモードの変形の場合には、変形に対する耐力の差がさらに顕著となることが期待できる。なお、縦壁部13bに樹脂15、補強板17を設けることで折れモードの変形に効果的であることについては後述する実施例2で説明する。 In Comparative Example 3, a resin 15 and a reinforcing plate 17 are attached to "only the top plate portion 13a" over the "full length" of the hat cross-section member 13 (see FIG. 10(c)). 10% (0.37kg) lighter than 1. This is probably because the hat section member 13 has two vertical wall portions 13b but only one top plate portion 13a, thereby further reducing the weight. The damping property was also improved compared to Comparative Example 1. On the other hand, the effect of improving crash resistance was smaller than that of Invention Examples 8 and 12. In the collision test of this example, the load was input in the axial direction of the specimen. In the case of modal deformation, it can be expected that the difference in yield strength against deformation will become even more pronounced. It should be noted that the fact that the provision of the resin 15 and the reinforcing plate 17 on the vertical wall portion 13b is effective for deformation in the bending mode will be described in a second embodiment described later.
 発明例13は、ハット断面部材13の先端部から長手方向に「40%」の範囲のみに、「縦壁部13bと天板部13a」に樹脂15、補強板17を貼付けたものであり(図10(a)参照)、比較例1よりも20%(0.72kg)軽量化しつつ、衝突耐力を6%(20kN)向上させた。制振性も大幅に向上した。 In invention example 13, resin 15 and reinforcing plate 17 are pasted on "vertical wall portion 13b and top plate portion 13a" only in the range of "40%" in the longitudinal direction from the tip of hat cross-section member 13 ( (See FIG. 10(a)), while the weight is reduced by 20% (0.72 kg) compared to Comparative Example 1, the crash resistance is improved by 6% (20 kN). Vibration damping is also greatly improved.
 上述したように、ハット断面部材13の断面方向においては、少なくとも縦壁部13bを含む範囲に樹脂15、補強板17を設けることで効果的に面剛性および衝突耐力を向上できる。また、ハット断面部材13の長手方向においては、必ずしも全長に亘って設ける必要はなく、長手方向の一部に樹脂15、補強板17を設けた場合にも一定の効果が得られることが示された。 As described above, in the cross-sectional direction of the hat cross-sectional member 13, by providing the resin 15 and the reinforcing plate 17 in a range including at least the vertical wall portion 13b, the surface rigidity and impact strength can be effectively improved. In addition, it is shown that the hat section member 13 does not necessarily have to be provided over the entire length in the longitudinal direction, and a certain effect can be obtained even when the resin 15 and the reinforcing plate 17 are provided in a part of the longitudinal direction. rice field.
 本実施例では、図6のポール側突を模擬したCAE解析を行い、フロアクロスメンバ9及びバッテリーケース5における変形の有無を確認した。CAE計算では、図6の2つのフロアクロスメンバ9の長さを1400mmとし、ポール19を模擬した円柱を2つのフロアクロスメンバ9の中間のサイドシル7に速度8.9m/s(=32km/h)で衝突させ、200kNの荷重がサイドシル7に入力するようにした。フロアクロスメンバ9の構成を変更しながら、上記CAE計算を行ったので、各計算におけるフロアクロスメンバ9の構成と、その計算結果を表7に示す。表7において、「部品長手方向の樹脂・補強板貼付け位置」の「サイドシル側」は、図2の態様を示している。また、「バッテリーケース上部」は図7の態様、「全長※シル側を薄ゲージ化」は図8の態様を示している。 In this embodiment, a CAE analysis simulating the side impact of the pole shown in FIG. In the CAE calculation, the length of the two floor crossmembers 9 in FIG. , and a load of 200 kN was input to the side sill 7. Since the above CAE calculation was performed while changing the configuration of the floor cross member 9, Table 7 shows the configuration of the floor cross member 9 and the calculation results in each calculation. In Table 7, "side sill side" of "resin/reinforcement plate pasting position in part longitudinal direction" indicates the mode in FIG. In addition, "battery case upper part" shows the aspect of FIG. 7, and "full length * sill side thin gauge" shows the aspect of FIG.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 比較例aは、従来例と同様のハット断面部材13のみから構成されるフロアクロスメンバ9の例である(図3参照)。また、発明例A~F及び比較例bは、ハット断面部材13に樹脂15、補強板17を設けた例であり、樹脂15、補強板17の貼付け位置を除く構成はすべて同じとした。接着強度はすべて11MPaとした。 Comparative example a is an example of a floor cross member 9 composed only of a hat cross-section member 13 similar to the conventional example (see FIG. 3). Inventive Examples A to F and Comparative Example b are examples in which the resin 15 and the reinforcing plate 17 are provided on the hat cross-sectional member 13, and all configurations except for the bonding positions of the resin 15 and the reinforcing plate 17 are the same. All adhesive strengths were set to 11 MPa.
 フロアクロスメンバ9とバッテリーケース5の変形有無の評価は、変形がない場合を〇とし、変形がある場合には、比較例a(従来例)と同等である場合を×、比較例aよりも変形の程度が小さい場合を△とした。また△は、変形の程度を(小、中)で判定した。 In the evaluation of the presence or absence of deformation of the floor cross member 9 and the battery case 5, if there is no deformation, ◯ is given, and if there is deformation, x is given if it is the same as Comparative Example a (conventional example). The case where the degree of deformation was small was rated as Δ. Also, △ indicates the degree of deformation (small, medium).
 比較例a(従来例)は、表7に示すように、フロアクロスメンバ9に先端座屈と大きな折れ(曲げ変形)が発生し、バッテリーケース5も大きく変形した。 In Comparative Example a (conventional example), as shown in Table 7, the floor cross member 9 buckled at the tip and a large break (bending deformation) occurred, and the battery case 5 was also greatly deformed.
 これに対し、発明例A~Cはフロアクロスメンバ9、バッテリーケース5共に変形がなく、良好な結果が得られた。 On the other hand, in invention examples A to C, both the floor cross member 9 and the battery case 5 were not deformed, and good results were obtained.
 発明例Dは、フロアクロスメンバ9におけるポール衝突側の先端部に極軽微な座屈変形が見られたものの、曲げ折れ(曲げ変形)等の大きな変形はなく、バッテリーケース5の変形はなかった。同様に、発明例A′及び発明例Eも、フロアクロスメンバ9におけるポール衝突側の先端部に極軽微な座屈変形が見られたものの、曲げ折れ等の大きな変形はなく、バッテリーケース5の変形はなかった。 In Invention Example D, although very slight buckling deformation was observed at the tip of the floor cross member 9 on the pole collision side, there was no large deformation such as bending (bending deformation), and the battery case 5 was not deformed. . Similarly, in invention examples A' and invention examples E, although very slight buckling deformation was observed at the tip of the floor cross member 9 on the pole impact side, there was no large deformation such as bending. There was no deformation.
 実施例Fは、フロアクロスメンバ9におけるポール衝突側の先端部に軽微な座屈変形が見られたものの、曲げ折れ(曲げ変形)等の大きな変形はなく、バッテリーケース5の変形はなかった。 In Example F, slight buckling deformation was observed at the tip of the floor cross member 9 on the pole collision side, but there was no large deformation such as bending (bending deformation), and the battery case 5 was not deformed.
 比較例bは、フロアクロスメンバ9に先端座屈と折れ(曲げ変形)が発生し、バッテリーケース5にも軽度の変形が見られた。 In Comparative Example b, buckling and breakage (bending deformation) occurred at the tip of the floor cross member 9, and slight deformation was observed in the battery case 5 as well.
 以上のように、比較例a、bにはバッテリーケース5の変形が見られたのに対し、発明例A~Fにはバッテリーケース5の変形が見られなかった。これにより、本発明は、従来例と同等以下の重量でバッテリーケースを保護する効果を向上できることが検証できた。 As described above, deformation of the battery case 5 was observed in Comparative Examples a and b, whereas deformation of the battery case 5 was not observed in Invention Examples A to F. As a result, it was verified that the present invention can improve the effect of protecting the battery case with a weight equal to or less than that of the conventional example.
 本発明によれば、側面衝突時のバッテリーケースの変形を抑制するとともに、軽量化が可能であり、制振性にも優れ、キャビン容積を低下させたり車両設計の自由度を低下させたりすることなく、自動車のバッテリーケース保護構造及び該バッテリーケース保護構造に用いられるフロアクロスメンバを提供することができる。 According to the present invention, the deformation of the battery case in the event of a side collision can be suppressed, the weight can be reduced, the damping performance is excellent, the cabin volume can be reduced, and the degree of freedom in vehicle design can be reduced. Therefore, it is possible to provide a battery case protection structure for an automobile and a floor cross member used in the battery case protection structure.
  1 自動車のバッテリーケース保護構造
  3 フロア
  5 バッテリーケース
  5a バッテリーケースロア
  5b バッテリーケースアッパ
  5c バッテリーケースクロス
  5d 側壁部
  7 サイドシル
  7a サイドシルインナ
  7b サイドシルアウタ
  9 フロアクロスメンバ
 11 固定部品
 13 ハット断面部材
 13a 天板部
 13b 縦壁部
 13c フランジ部
 13d 縦壁フランジ部
 15 樹脂
 17 補強板
 19 ポール
 21 フロアトンネル
 23 フロアクロスメンバ(従来例)
1 Automotive Battery Case Protective Structure 3 Floor 5 Battery Case 5a Battery Case Lower 5b Battery Case Upper 5c Battery Case Cloth 5d Side Wall Part 7 Side Sill 7a Side Sill Inner 7b Side Sill Outer 9 Floor Cross Member 11 Fixing Part 13 Hat Sectional Member 13a Top Plate 13b vertical wall portion 13c flange portion 13d vertical wall flange portion 15 resin 17 reinforcing plate 19 pole 21 floor tunnel 23 floor cross member (conventional example)

Claims (9)

  1.  自動車を構成する車体の床部分の少なくとも一部を構成するフロアと、
     該フロア下に搭載されてバッテリーを格納するバッテリーケースと、
     前記フロアの車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシルと、
     前記バッテリーケースの上方を車幅方向に横切って前記バッテリーケースよりも車幅方向両側に突出するように前記フロアの上面に設けられると共に両端部が前記一対のサイドシルの側面に当接するフロアクロスメンバとを備えて構成された自動車の車体構造において前記バッテリーケースを保護するバッテリーケース保護構造であって、
     前記フロアクロスメンバは、
     天板部、縦壁部及びフランジ部を有するハット断面部材と、
     該ハット断面部材の少なくとも前記縦壁部の内面及び/又は外面に貼付又は塗布された樹脂と、
     該樹脂を覆うように配設されて該樹脂と接着された補強板とを備える、自動車のバッテリーケース保護構造。
    a floor that constitutes at least a part of a floor portion of a vehicle body that constitutes an automobile;
    a battery case mounted under the floor for storing the battery;
    a pair of side sills provided at both ends of the floor in the width direction of the vehicle body and extending in the longitudinal direction of the vehicle body;
    a floor cross member provided on the upper surface of the floor so as to traverse above the battery case in the vehicle width direction and protrude to both sides in the vehicle width direction beyond the battery case, and have both ends thereof in contact with side surfaces of the pair of side sills; A battery case protection structure for protecting the battery case in an automobile body structure configured with
    The floor cross member is
    a hat cross-sectional member having a top plate portion, a vertical wall portion and a flange portion;
    a resin attached or applied to at least the inner surface and/or the outer surface of the vertical wall portion of the hat cross-section member;
    A battery case protection structure for an automobile, comprising: a reinforcing plate disposed so as to cover the resin and adhered to the resin.
  2.  前記樹脂は、前記フロアクロスメンバにおける前記バッテリーケースより車幅方向に突出する範囲にのみ一定の厚みで配設されている、請求項1に記載の自動車のバッテリーケース保護構造。 2. The battery case protective structure for an automobile according to claim 1, wherein the resin is provided with a constant thickness only in a range of the floor cross member that protrudes in the vehicle width direction from the battery case.
  3.  前記樹脂は、前記フロアクロスメンバにおける前記バッテリーケースの上方に位置する範囲にのみ一定の厚みで配設されている、請求項1に記載の自動車のバッテリーケース保護構造。 The battery case protective structure for an automobile according to claim 1, wherein the resin is provided with a constant thickness only in the area of the floor cross member located above the battery case.
  4.  前記樹脂は、前記フロアクロスメンバの全長に亘って配設され、その厚みが、前記バッテリーケースの上方に位置する範囲は一定であり、その他の範囲は車幅方向の外方に向かって漸次薄くなっている、請求項1に記載の自動車のバッテリーケース保護構造。 The resin is disposed over the entire length of the floor cross member, and the thickness of the resin is constant in the range above the battery case, and gradually decreases outward in the vehicle width direction in other ranges. The automotive battery case protection structure according to claim 1, wherein:
  5.  前記樹脂の厚みが0.1~5mm、前記補強板の厚みが0.15~1mmである、請求項1乃至4のいずれか一項に記載の自動車のバッテリーケース保護構造。 The automotive battery case protection structure according to any one of claims 1 to 4, wherein the resin has a thickness of 0.1 to 5 mm, and the reinforcing plate has a thickness of 0.15 to 1 mm.
  6.  自動車の車体の床部分の少なくとも一部を構成するフロアと、
     該フロア下に搭載されてバッテリーを格納するバッテリーケースと、
     前記フロアの車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシルと、を有する自動車の車体構造に取り付けられ、前記車体への取付状態において、前記バッテリーケースの上方を車幅方向に横切って前記バッテリーケースよりも車幅方向両側に突出するように前記フロアの上面に設けられると共に両端部が前記一対のサイドシルの側面に当接するフロアクロスメンバであって、
     天板部、縦壁部及びフランジ部を有するハット断面部材と、
     該ハット断面部材の少なくとも前記縦壁部の内面及び/又は外面に貼付又は塗布された樹脂と、
     該樹脂を覆うように配設されて該樹脂と接着された補強板とを備える、フロアクロスメンバ。
    a floor that constitutes at least a part of the floor portion of the vehicle body of the automobile;
    a battery case mounted under the floor for storing the battery;
    A pair of side sills provided at both ends of the floor in the width direction of the vehicle body and extending in the longitudinal direction of the vehicle body. A floor cross member provided on the upper surface of the floor so as to traverse in the width direction and protrude to both sides in the vehicle width direction beyond the battery case, and has both ends thereof in contact with the side surfaces of the pair of side sills,
    a hat cross-sectional member having a top plate portion, a vertical wall portion and a flange portion;
    a resin attached or applied to at least the inner surface and/or the outer surface of the vertical wall portion of the hat cross-section member;
    A floor cross member comprising a reinforcing plate disposed so as to cover the resin and adhered to the resin.
  7.  前記樹脂は、取付状態において前記バッテリーケースより車幅方向に突出する範囲にのみ一定の厚みで配設されている、請求項6に記載のフロアクロスメンバ。 The floor cross member according to claim 6, wherein the resin is provided with a constant thickness only in a range that protrudes in the vehicle width direction from the battery case in the attached state.
  8.  前記樹脂は、取付状態において前記バッテリーケースの上方に位置する範囲にのみ一定の厚みで配設されている、請求項6に記載のフロアクロスメンバ。 The floor cross member according to claim 6, wherein the resin is provided with a constant thickness only in a range located above the battery case in the attached state.
  9.  前記樹脂は、長手方向の全長に亘って配設され、
     前記樹脂の厚みが、取付状態において前記バッテリーケースの上方に位置する範囲は一定であり、その他の範囲は車幅方向の外方に向かって漸次薄くなっている、請求項6に記載のフロアクロスメンバ。
    The resin is arranged over the entire length in the longitudinal direction,
    7. The floor cloth according to claim 6, wherein the thickness of said resin is constant in a range located above said battery case in an attached state, and gradually decreases outward in the vehicle width direction in other ranges. member.
PCT/JP2022/029955 2021-11-04 2022-08-04 Automobile battery case protection structure and floor crossmember WO2023079805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021180008A JP7264204B1 (en) 2021-11-04 2021-11-04 Automotive battery case protection structure and floor cross member
JP2021-180008 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023079805A1 true WO2023079805A1 (en) 2023-05-11

Family

ID=86096172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029955 WO2023079805A1 (en) 2021-11-04 2022-08-04 Automobile battery case protection structure and floor crossmember

Country Status (2)

Country Link
JP (1) JP7264204B1 (en)
WO (1) WO2023079805A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138950A (en) * 1996-11-12 1998-05-26 Nissan Motor Co Ltd Shock absorbing member and manufacture therefor
JP2010215092A (en) * 2009-03-17 2010-09-30 Mazda Motor Corp Lower part structure of vehicle body
JP2018149836A (en) * 2017-03-10 2018-09-27 マツダ株式会社 Lower body structure of vehicle
JP2020011640A (en) * 2018-07-19 2020-01-23 トヨタ自動車株式会社 Vehicle body side section structure
WO2020120076A1 (en) * 2018-12-14 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Energy storage underbody for a motor car body-in-white
WO2020129327A1 (en) * 2018-12-20 2020-06-25 Jfeスチール株式会社 Automotive crashworthiness energy absorption part and production method for same
JP6729762B1 (en) * 2019-05-28 2020-07-22 Jfeスチール株式会社 Collision energy absorbing component for automobile and manufacturing method thereof
JP2020142612A (en) * 2019-03-06 2020-09-10 マツダ株式会社 Lower vehicle body structure of vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138950A (en) * 1996-11-12 1998-05-26 Nissan Motor Co Ltd Shock absorbing member and manufacture therefor
JP2010215092A (en) * 2009-03-17 2010-09-30 Mazda Motor Corp Lower part structure of vehicle body
JP2018149836A (en) * 2017-03-10 2018-09-27 マツダ株式会社 Lower body structure of vehicle
JP2020011640A (en) * 2018-07-19 2020-01-23 トヨタ自動車株式会社 Vehicle body side section structure
WO2020120076A1 (en) * 2018-12-14 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Energy storage underbody for a motor car body-in-white
WO2020129327A1 (en) * 2018-12-20 2020-06-25 Jfeスチール株式会社 Automotive crashworthiness energy absorption part and production method for same
JP2020142612A (en) * 2019-03-06 2020-09-10 マツダ株式会社 Lower vehicle body structure of vehicle
JP6729762B1 (en) * 2019-05-28 2020-07-22 Jfeスチール株式会社 Collision energy absorbing component for automobile and manufacturing method thereof

Also Published As

Publication number Publication date
JP2023068736A (en) 2023-05-18
JP7264204B1 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP5776451B2 (en) Vehicle body structure
US7677617B2 (en) Efficient joint for vehicle energy-absorbing device
US8052198B2 (en) Pedestrian safe automotive hood having reinforcing foam
KR102019219B1 (en) Vehicle rear structure
JP5549395B2 (en) Body front structure
WO2020149305A1 (en) Automobile door
JP5561062B2 (en) Mounting structure for vehicle seat
WO2023079805A1 (en) Automobile battery case protection structure and floor crossmember
US7390055B2 (en) Engine hood for automobiles
JP2011020614A (en) Hood panel for automobile
WO2022185774A1 (en) Vehicular component
WO2023079804A1 (en) Floor crossmember
JP7215557B1 (en) Battery case and battery case cross member
JP2012210904A (en) Vehicle hood
WO2023243177A1 (en) Battery case
KR20240090848A (en) Battery case and battery case cross member
JPWO2020149296A1 (en) Car door
US20230399059A1 (en) Vehicle body rear structure
CN111497945A (en) Wheel casing assembly, automobile body and vehicle
WO2023090112A1 (en) Body lower structure and side sill structure for automotive vehicle
CN218577868U (en) Front wall structure and vehicle
JPH04193691A (en) Resin floor structure for automobile
EP3235709B1 (en) Vehicle body assembly
JPS6346947A (en) Bumper for automobile
KR20240093636A (en) Car body underbody structure and side sill structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889630

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)