WO2023079669A1 - Learning method for automatically detecting regions of interest from radar image, and automatic detection device - Google Patents

Learning method for automatically detecting regions of interest from radar image, and automatic detection device Download PDF

Info

Publication number
WO2023079669A1
WO2023079669A1 PCT/JP2021/040695 JP2021040695W WO2023079669A1 WO 2023079669 A1 WO2023079669 A1 WO 2023079669A1 JP 2021040695 W JP2021040695 W JP 2021040695W WO 2023079669 A1 WO2023079669 A1 WO 2023079669A1
Authority
WO
WIPO (PCT)
Prior art keywords
procedure
image
learning
interest
radar
Prior art date
Application number
PCT/JP2021/040695
Other languages
French (fr)
Japanese (ja)
Inventor
将敬 鈴木
俊平 亀山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/040695 priority Critical patent/WO2023079669A1/en
Priority to JP2023549976A priority patent/JP7391278B2/en
Publication of WO2023079669A1 publication Critical patent/WO2023079669A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Definitions

  • the technology disclosed herein relates to a learning method and an automatic detection device for automatically detecting a region of interest from a radar image.
  • Patent Document 1 radar image data from a synthetic aperture radar undergoes conversion processing to bring the reflection characteristics of the confusion intensity closer to the reflection characteristics of black-and-white panchromatic, which is familiar to humans, and is superimposed on an optical image. Therefore, a technique for obtaining a composite image that is closer to an image captured by an optical satellite has been disclosed.
  • the disclosed technique goes further and aims to provide a learning method for automatic detection of regions of interest from radar images.
  • the region of interest may be, for example, a location of a disaster such as an oil spill on the sea surface, a landslide caused by heavy rain or an earthquake, a forest fire, a fallen tree, or a flood.
  • a learning method calculates a feature value for detecting a region of interest from an optical satellite image, detects the position of the region of interest on a map using the feature value, and teaches the position.
  • a label is generated, a learning data set is created for the radar satellite image paired with the optical satellite image, and machine learning is performed using the learning data set.
  • the learning method according to the disclosed technique includes the above procedure, it can solve the problem of automatically detecting a region of interest from a radar image.
  • FIG. 1 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to Embodiment 1.
  • FIG. 2 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the second embodiment.
  • FIG. 3 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the third embodiment.
  • FIG. 4 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the fourth embodiment.
  • FIG. 5 is a flow chart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the fifth embodiment.
  • FIG. 6 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the sixth embodiment.
  • FIG. 1 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to Embodiment 1.
  • FIG. 1 the learning method according to Embodiment 1 is roughly divided into three procedures.
  • the three procedures are a procedure for optical satellite images (ST1, ST2, and ST3), a procedure for radar satellite images (ST4), and a procedure for learning (ST5).
  • the procedure related to the optical satellite image shown in FIG. 1 includes a procedure of calculating a feature amount (ST1), a procedure of detecting a target position (ST2), and a procedure of creating a teacher label (ST3).
  • the procedure related to radar satellite images shown in FIG. 1 includes a procedure (ST4) of creating a learning data set.
  • the procedure for learning shown in FIG. 1 includes a procedure for performing machine learning (ST5).
  • semantic segmentation refers to supervised learning problems and techniques that associate labels or categories, such as what is seen, on a pixel-by-pixel basis in an image.
  • semantic segmentation a data set consisting of an input image and a mask image is used, and learning is performed so that the mask image is output when the input image is input.
  • a dataset consisting of the input image and the mask image is sometimes referred to as a dataset consisting of the original image and the labeled image.
  • the radar image is the input image
  • the mask image is the location of the disaster indicated by the color of each type of disaster. That is, when a radar image is input, outputting a mask image in which disaster locations such as oil spills, landslides, and forest fires are masked with a color corresponding to the type of disaster, which is what the present disclosure is about. This is one of the goals of technology.
  • Semantic segmentation like other supervised learning, requires huge amounts of training and validation datasets.
  • a learning data set in the case where a radar image is used as an input image needs to be set by creating a mask image in which the disaster location is masked for the prepared radar image.
  • the radar image has poor visibility and it is difficult to decipher the features. Therefore, it is not easy to create a mask image directly from a radar image. Therefore, the technology disclosed herein pairs a radar satellite image with an optical satellite image in which at least a portion of the same area is captured, and creates a learning data set and a verification data set from the information of the paired images. think.
  • the technology disclosed herein uses a pair of a radar satellite image and an optical satellite image obtained by capturing the same area in the procedure of creating a learning data set.
  • the procedures for optical satellite images (ST1, ST2, and ST3) and the procedure for radar satellite images (ST4) shown in FIG. 1 represent that the disclosed technique uses paired images.
  • the shutter is pressed at the timing when half of the photographing area overlaps the next image.
  • the whole data is made up of multiple images taken. Therefore, the optical satellite image and the radar satellite image do not have to be a strict pair, but it is sufficient that they cover the same area as a whole.
  • the learning data set is hereinafter simply referred to as a “learning data set”.
  • the verification data set is hereinafter simply referred to as a "verification data set”.
  • a first procedure according to the technology disclosed herein is a procedure (ST1) for calculating a feature amount for an optical satellite image.
  • semantic segmentation may be performed in advance on the optical image.
  • Semantic segmentation for optical images may be realized, for example, by FCN (Fully Convolutional Networks).
  • FCN is a kind of CNN, but considering that 1 ⁇ 1 convolution covering the entire region is performed, it has the property that the same result can be obtained even if the fully connected layer is replaced with the convolution layer.
  • FCN has the advantage that it does not require resizing of the input image.
  • the FCN includes a process of calculating a feature amount for detecting a region of interest from an input optical satellite image, that is, a feature amount calculation procedure (ST1).
  • Semantic segmentation for optical images may be performed by SegNet, U-Net, PSPNet, DeepLab, etc., in addition to FCN.
  • NDVI Normalized Difference Vegetation Index
  • NIR represents the reflectance of the near-infrared region (Band 5 of Landsat 8)
  • RED represents the reflectance of red light (Band 4 of Landsat 8).
  • the NDVI is indicated by a normalized numerical value between -1 and 1, and the denser the vegetation, the larger the NDVI value.
  • a pixel having an NDVI greater than or equal to a certain threshold may be determined to be a pixel in which vegetation is observed.
  • the technique of the present disclosure may compare a reference image of a certain period with the current image and images of two periods. Changes in vegetation can also be detected by comparing images from two periods and evaluating the amount of change in NDVI. Details of the method using NDVI and other inter-band operations will become clear from the description of the third embodiment and subsequent embodiments.
  • a second procedure according to the technology disclosed herein is a procedure (ST2) for detecting a target position on an optical satellite image.
  • the term "subject” in the second procedure is synonymous with the aforementioned region of interest.
  • the term "target position” in the second procedure is synonymous with the position of the region of interest.
  • Each pixel in the satellite image can be associated with a location on the map, eg, latitude and longitude.
  • the technique of superimposing a radar image and an optical image exemplified in Patent Literature 1 can also be realized because each image can be represented by a common coordinate system, which is a position on a map.
  • a map may be considered as a representation of the real space, which is part or all of the earth, as information on a coordinate system.
  • the procedure for detecting the target position (ST2) is to specify the pixels of the region of interest in the optical satellite image and obtain the position on the map associated with the pixels.
  • a third procedure according to the disclosed technology is a procedure (ST3) for creating teacher labels for optical satellite images.
  • the procedure for creating teacher labels (ST3) is nothing other than creating the above-described mask image.
  • mask images are also referred to as labeled images.
  • the creation of the mask image may be manually performed by a human using the optical satellite image, or may be performed using semantic segmentation that has been pre-learned on the optical image.
  • a fourth procedure according to the technology disclosed herein is a procedure (ST4) for creating a learning data set for radar satellite images.
  • the procedure for creating a learning data set for radar satellite images can be further broken down into detailed procedures.
  • Detailed procedure 1 is to prepare a pair of optical satellite images for radar satellite images.
  • Detailed procedure 2 is to refer to the mask image for the paired optical satellite image.
  • Detailed procedure 3 is to convert the mask information into information on map coordinates from the positions on the map associated with the pixels in the mask image.
  • the mask information is nothing but label information given in units of pixels.
  • the detailed procedure 4 is to create a mask image for the radar satellite image from the mask information on the map coordinates.
  • a radar satellite image and its mask image form a training data set for the radar satellite image.
  • Radar satellite image data Data consisting of radar satellite images (hereinafter referred to as "radar satellite image data") may be processed into data suitable for learning.
  • a radar satellite image may be trimmed to a predetermined size, such as N vertical pixels and M horizontal pixels.
  • a radar satellite image may be processed to have as many layers or attributes as there are polarizations available.
  • the fifth procedure according to the technology disclosed herein is the procedure for performing machine learning (ST5).
  • a learning data set used for machine learning is a learning data set for radar satellite images created in the procedure for creating a learning data set (ST4).
  • the machine learning performed here can be the same as the semantic segmentation performed on optical satellite imagery.
  • the machine learning model performed here may use a neural network having the same structure as the neural network used in the semantic segmentation performed on the optical satellite image.
  • the disclosed technology obtains a trained model that performs semantic segmentation on radar satellite images by performing the above first to fifth procedures.
  • the learning method according to Embodiment 1 includes the above procedure, it is possible to automatically detect a region of interest from a radar image with poor visibility and difficult to interpret features.
  • Embodiment 2 shows up to the stage of obtaining a learning model.
  • a method according to Embodiment 2 includes the method according to Embodiment 1, and further includes a procedure for verifying the learning model.
  • explanations overlapping those of the first embodiment are omitted as appropriate.
  • FIG. 2 is a flowchart showing the steps of a learning method for automatically detecting a region of interest from a radar image, according to the second embodiment.
  • the method according to Embodiment 2 includes, in addition to the procedure shown in Embodiment 1, a procedure for creating a verification data set (ST6) and a procedure for confirming verification results (ST7). include.
  • a sixth procedure according to the technology disclosed herein is a procedure (ST6) for creating a verification data set for radar satellite images.
  • a different radar satellite image is used for the verification data set than the radar satellite image for the training data set.
  • Creation of the verification data set may be performed in the same manner as the creation of the learning data set shown in the first embodiment.
  • a seventh procedure according to the technology disclosed herein is a procedure (ST7) for confirming the verification result of the radar satellite image.
  • semantic segmentation is performed on radar satellite images prepared for verification using a model with advanced learning, and whether the results are correct or not is compared with the mask image of the verification data set. If the result of the verification is correct within an acceptable range, the learning is terminated. If the result of verification is not correct within an acceptable range, add training data and continue learning.
  • the learning model can be verified, and the region of interest can be automatically detected from a radar image with poor visibility and difficult to interpret features.
  • Embodiment 3 It can be said that the methods according to Embodiments 1 and 2 are general-purpose methods without limiting the type of region of interest. Embodiment 3 clarifies a learning method for automatically detecting a region of interest from a radar image, which is specialized for fallen trees, by limiting the region of interest to fallen trees. In Embodiment 3, explanations overlapping those of the above-described embodiments are omitted as appropriate.
  • optical satellite images and radar satellite images before and after the occurrence of a fallen tree are used as a learning data set.
  • Optical satellite images are used that include multispectral data for at least red light and near-infrared light. Radar satellite images are used in a wavelength band such as the L band, which allows the transmission of plant branches and leaves.
  • FIG. 3 is a flow chart showing the procedure of a learning method for automatically detecting a region of interest from a radar image, according to the third embodiment.
  • the method according to the third embodiment is divided into a procedure for obtaining a learning model and a procedure for verifying the learning model.
  • the procedure for obtaining a learning model includes a procedure for reading multispectral data (ST31), a procedure for calculating NDVI (ST32), a procedure for calculating the amount of change in NDVI (ST33), and comparing the amount of change in NDVI with a threshold. (ST34), generating a teacher label (ST35), creating a learning data set (ST36), and performing machine learning (ST37).
  • the procedure for verifying the learning model includes a procedure for creating a verification data set (ST38) and a procedure for confirming verification results (ST39).
  • a first procedure according to Embodiment 3 is a procedure (ST31) of reading multispectral data for an optical satellite image.
  • Optical satellite images containing multispectral data may be prepared by using a multispectral or hyperspectral camera on board the optical satellite.
  • An image obtained by a multispectral camera is called a multispectral image.
  • Reading multispectral data may be considered synonymous with obtaining a multispectral image.
  • a second procedure according to Embodiment 3 is a procedure (ST32) of calculating NDVI for an optical satellite image or a multispectral image.
  • NDVI is calculated from each of the multispectral images before and after the fallen tree.
  • the method according to Embodiment 3 is based on the conjecture principle that ⁇ areas where fallen trees have occurred will have lower NDVI due to reduced trunk exposure and chlorophyll uptake''.
  • NDWI Normalized Difference Water Index
  • a third procedure according to Embodiment 3 is a procedure (ST33) for calculating the amount of change in NDVI for an optical satellite image or a multispectral image.
  • the difference in NDVI is calculated for image data before and after a typhoon that is estimated to have caused a fallen tree.
  • a fourth procedure according to Embodiment 3 is a procedure (ST34) of comparing the amount of change in NDVI with a threshold for the optical satellite image or the multispectral image.
  • the NDVI obtained in the third procedure is compared with a threshold, and pixels exceeding the threshold are determined to be pixels in the region of interest where fallen trees have occurred.
  • An empirically determined value may be used as the NDVI threshold for fallen trees.
  • ⁇ NDVI represents the amount of change in NDVI
  • ⁇ V ⁇ represents the threshold value.
  • a fifth procedure according to Embodiment 3 is a procedure (ST35) for generating teacher labels for optical satellite images or multispectral images. This procedure is the same as the third procedure according to the first embodiment, that is, the procedure for creating teacher labels (ST3).
  • the sixth procedure according to Embodiment 3 is a procedure (ST36) for creating a learning data set for radar satellite images. This procedure is also the same as the procedure (ST4) for creating the learning data set according to the first embodiment.
  • the seventh procedure according to Embodiment 3 is the procedure for performing machine learning (ST37). This procedure is also the same as the procedure (ST5) for performing machine learning according to the first embodiment.
  • the eighth procedure according to Embodiment 3 is a procedure (ST38) for creating a verification data set for radar satellite images. This procedure is the same as the procedure (ST6) for creating the verification data set according to the second embodiment.
  • the ninth procedure according to Embodiment 3 is a procedure (ST39) for confirming the verification result of the radar satellite image. This procedure is also the same as the procedure (ST7) for confirming the verification result according to the second embodiment.
  • the learning method according to Embodiment 3 includes the above procedure, it is possible to verify the learning model and automatically detect areas where fallen trees have occurred from radar images with poor visibility and difficult to interpret features.
  • Embodiment 4 is a learning method for automatically detecting a region of interest from a radar image, which is specialized for fallen trees, by limiting the region of interest to fallen trees.
  • Embodiment 4 clarifies a learning method for automatically detecting a region of interest from a radar image, which limits the region of interest to flooding and is specialized for flooding.
  • descriptions overlapping those of the previous embodiments are omitted as appropriate.
  • Flooding here specifically means that a land area is invaded by water when river flooding occurs due to heavy rain, typhoon, or the like.
  • optical satellite images and radar satellite images before and after flooding are used as learning data sets.
  • Before and after the occurrence of flooding may be, for example, before and after heavy rain, or before and after a typhoon.
  • Optical satellite images are used that include multispectral data of at least near-infrared light and short-wave infrared light. It is generally known that the backscattering coefficient of a radar satellite image changes before and after flooding occurs. This property confirms that it is possible to identify a flooded area of interest from a radar satellite image.
  • FIG. 4 is a flowchart showing the procedure of a learning method for automatically detecting a region of interest from a radar image according to the fourth embodiment.
  • the method according to Embodiment 4 is divided into a procedure for obtaining a learning model and a procedure for verifying the learning model.
  • the procedure for obtaining a learning model includes a procedure for reading multispectral data (ST41), a procedure for calculating NDWI (ST42), a procedure for comparing NDWI with a threshold (ST43), and a procedure for generating teacher labels (ST44). , a procedure for creating a learning data set (ST45), and a procedure for performing machine learning (ST46).
  • a procedure for verifying the learning model includes a procedure for creating a verification data set (ST47) and a procedure for confirming the verification result (ST48).
  • the first procedure according to Embodiment 4 is a procedure (ST41) for reading multispectral data for optical satellite images. This procedure is the same as the procedure for reading multispectral data (ST31) according to the third embodiment.
  • a second procedure according to the fourth embodiment is a procedure (ST42) of calculating NDWI for an optical satellite image or a multispectral image. This procedure is similar to the procedure for calculating NDVI (ST32) according to the third embodiment.
  • NDWI is specifically given by the following equation.
  • NIR represents reflectance in the near-infrared region (Band 5 of Landsat 8)
  • SWIR represents reflectance in the short-wave infrared region (Band 6 or Band 7 of Landsat 8).
  • a third procedure according to Embodiment 4 is a procedure (ST43) of comparing the NDWI with a threshold for the optical satellite image or the multispectral image.
  • the NDWI obtained in the second procedure is compared with the threshold value for each pixel.
  • a condition is considered such that the NDWI is smaller than the threshold in the multispectral image before the occurrence of flooding, but the NDWI is larger than the threshold in the multispectral image after the occurrence of flooding.
  • a pixel that satisfies this condition is originally a land area and is determined to be a pixel for a flooded area.
  • An empirically determined value may be used as the NDWI threshold for flooding.
  • NDWI pre is the NDWI in the multispectral image before the occurrence of flooding
  • NDWI post is the NDWI in the multispectral image after the occurrence of flooding.
  • ⁇ Wpre represents the NDWI threshold in the multispectral image before the occurrence of water inundation
  • ⁇ Wpost represents the NDWI threshold in the multispectral image after the occurrence of water inundation. Note that ⁇ Wpre and ⁇ Wpost may be the same value.
  • the fourth procedure according to Embodiment 4 is a procedure (ST44) for generating teacher labels for optical satellite images or multispectral images. This procedure is the same as the procedure (ST3) for creating teacher labels according to the first embodiment.
  • the fifth procedure according to Embodiment 4 is a procedure (ST45) for creating a learning data set for radar satellite images. This procedure is also the same as the procedure (ST4) for creating the learning data set according to the first embodiment.
  • the sixth procedure according to Embodiment 4 is the procedure for performing machine learning (ST46). This procedure is also the same as the procedure (ST5) for performing machine learning according to the first embodiment.
  • a seventh procedure according to the fourth embodiment is a procedure (ST47) for creating a verification data set for radar satellite images. This procedure is the same as the procedure (ST6) for creating the verification data set according to the second embodiment.
  • the eighth procedure according to Embodiment 4 is a procedure (ST48) for confirming the verification result of the radar satellite image. This procedure is also the same as the procedure (ST7) for confirming the verification result according to the second embodiment.
  • the learning method according to Embodiment 4 includes the above procedure, it is possible to verify the learning model and automatically detect flooded areas from radar images with poor visibility and difficult to interpret features.
  • Embodiment 5 In situations where flooded areas are automatically detected from radar images, if it is known in advance which locations on the map are water areas, false detections can be expected to be reduced. Embodiment 5 is based on the learning method according to Embodiment 4, and clarifies a learning method that positively uses water area information. In the fifth embodiment, descriptions overlapping those of the previous embodiments are omitted as appropriate.
  • FIG. 5 is a flowchart showing the procedure of a learning method for automatically detecting a region of interest from a radar image, according to Embodiment 5. As shown in FIG. 5, the method according to Embodiment 5 further includes a procedure for reading water area information (ST51) in addition to the procedure shown in Embodiment 4.
  • ST51 water area information
  • the geospatial information database shown in FIG. 5 is a database in which coordinates on the earth and land cover classifications are linked.
  • Land cover classification refers to classification of land into types such as roads, rivers, forests, etc., or information summarizing the classification results.
  • the method according to the technology disclosed herein positively uses the geospatial information database in situations where it can be used. As mentioned above, if a geospatial information database can be used, false detections can be expected to be reduced. Furthermore, creating a geospatial information database is expected to reduce the number of satellite images required for learning.
  • the second to ninth procedures according to the fifth embodiment are substantially the same as the first to eighth procedures according to the fourth embodiment. There are some differences between the fourth procedure according to the fifth embodiment and the third procedure according to the fourth embodiment. Compared to the procedure (ST43) of comparing the NDWI and the threshold according to the fourth embodiment, the procedure (ST54) for comparing the NDWI and the threshold according to the fifth embodiment is different from the land area or The method of judging water areas is different. Embodiment 5 directly uses water area information obtained from a geospatial information database instead of comparing the NDWI of the multispectral image before the occurrence of flooding with a threshold value.
  • the NDWI and the threshold value are compared only for the multispectral image after the occurrence of flooding. Furthermore, in the procedure (ST54) for comparing the NDWI with the threshold value according to Embodiment 5, the NDWI is compared with the threshold value only for the pixels corresponding to the areas other than the water area obtained from the geospatial information data. .
  • the learning model can be verified, and the flooded area can be automatically detected from the radar image with poor visibility and difficult to interpret the features.
  • the technology of the present disclosure can actively use it, reduce false detections, and reduce the number of satellite images required for learning.
  • Embodiments 3 to 5 have clarified methods using NDVI and NDWI.
  • Embodiment 6 discloses yet another inter-band operation, NDSI (Noralized Difference Snow Index), and clarifies aspects of the method using multi-temporal observation data.
  • NDSI Temporalized Difference Snow Index
  • the region of interest is not limited to the place where the disaster occurred.
  • FIG. 6 is a flowchart showing a procedure of a learning method for automatically detecting a region of interest from a radar image according to Embodiment 6.
  • the procedure for obtaining the learning model includes a procedure for calculating the feature quantity (ST61), a procedure for calculating the amount of change in the feature quantity (ST62), a procedure for comparing the amount of change in the feature quantity with a threshold (ST63), and a teacher It includes a label creation procedure (ST64), a teacher label reading procedure (ST65), a learning data set creation procedure (ST66), and a machine learning procedure (ST67).
  • the procedure for verifying the learning model includes a procedure for creating a verification data set (ST68) and a procedure for confirming verification results (ST69).
  • a first procedure according to Embodiment 6 is a procedure (ST61) for calculating a feature amount for an optical satellite image.
  • NDSI shown in the following equation may be added in addition to NDVI and NDWI.
  • GREEN represents the reflectance of the green region (Band 3 of Landsat 8)
  • SWIR represents the reflectance of the short wavelength infrared region (Band 6 or Band 7 of Landsat 8).
  • Optical satellite images to which the technology of the present disclosure is applied may be observation data from multiple periods. By calculating the NDSI with respect to the observation data of multiple periods, it is possible to specify the area and the period of snowfall.
  • the second procedure according to Embodiment 6 is the procedure (ST62) for calculating the amount of change in the feature amount for the optical satellite image.
  • the optical satellite images for calculating the amount of change in the feature amount are the optical satellite image at the place and time of interest, the optical satellite image taken at the time just before the change in the land cover at that place, should be used.
  • the time immediately prior to the change in land cover at the location may be, for example, one week prior, such as August 27, 2021 if the time of interest was September 3, 2021. .
  • the third procedure according to Embodiment 6 is a procedure (ST63) for comparing the amount of change in the feature quantity and the threshold for the optical satellite image.
  • a threshold value may be provided for each type of feature amount.
  • an index such as NDVI is indicated by a normalized numerical value between -1 and 1. Therefore, the threshold for the amount of change in NDVI or the like may be set at 0.5, for example. Since the amount of change in NDVI or the like can be both positive and negative, the threshold values may also be determined on the positive side and the negative side, respectively.
  • the fourth procedure according to Embodiment 6 is the procedure (ST64) of creating teacher labels for optical satellite images or multispectral images.
  • the teacher label may be a label with content according to the nature of the feature quantity. For example, a pixel identified by comparing the amount of change in NDVI with a threshold value may be associated with a teacher label named "Vegetation”. Similarly, a pixel specified by comparing the NDSI change amount and the threshold value may be associated with a teacher label named "Snow".
  • the fifth procedure according to Embodiment 6 is the procedure of reading teacher labels (ST65).
  • Embodiment 6 uses multi-time observation data as described above. Therefore, the teacher label created in the procedure for creating the teacher label (ST64) is temporarily stored in the database shown in FIG.
  • the procedure of reading teacher labels (ST65) is a procedure that is executed when machine learning is finally performed after sufficient multi-time observation data has been collected.
  • a sixth procedure according to Embodiment 6 is a procedure (ST66) for creating a learning data set for radar satellite images. This procedure is the same as the procedure (ST4) for creating the learning data set according to the first embodiment.
  • the seventh procedure according to Embodiment 6 is the procedure for performing machine learning (ST67). This procedure is also the same as the procedure (ST5) for performing machine learning according to the first embodiment.
  • the eighth procedure according to Embodiment 6 is the procedure for creating a verification data set (ST68). This procedure is the same as the procedure (ST6) for creating the verification data set according to the second embodiment.
  • the ninth procedure according to Embodiment 6 is the procedure for confirming the verification result (ST69). This procedure is also the same as the procedure (ST7) for confirming the verification result according to the second embodiment.
  • the learning model can be verified, and automatic detection according to the type of land cover can be performed from a radar image with poor visibility and difficult to interpret features. can.
  • the disclosed technology can be applied to an automatic detection device for damaged areas using radar satellite images, and has industrial applicability.

Abstract

The learning method according to the technique of the present disclosure comprises: calculating a feature for detecting a region of interest from an optical satellite image; detecting the location of the region of interest on a map using the feature; generating a teacher label for the location; creating a training data set for a radar satellite image, which is paired with the optical satellite image; and performing machine learning using the training data set.

Description

レーダ画像から関心領域を自動検出するための学習方法、及び自動検出装置LEARNING METHOD AND AUTOMATIC DETECTION DEVICE FOR AUTOMATIC DETECTION OF REGION OF INTEREST FROM RADAR IMAGE
 本開示技術は、レーダ画像から関心領域を自動検出するための学習方法、及び自動検出装置に関する。 The technology disclosed herein relates to a learning method and an automatic detection device for automatically detecting a region of interest from a radar image.
 従来から、人工衛星又は航空機に搭載されたレーダからのレーダ画像を用いて、地物を判読することが試みられている。
 マイクロ波を用いるレーダは、その特性を利用して、昼夜、天候に関係なく、広域を面的に撮影することができる。ただしレーダ画像は、複雑な散乱メカニズム、及びノイズの影響により、地物の判読が難しい。
 地物の判読を行う手段として、光学画像を用いることも考えられる。光学画像は、可視域の波長が用いられているため、人が肉眼で見るものと同じ情報が得られ、地物を判読しやすい。ただし光学画像は、良好な天候の時にしか撮影できない。
Conventionally, attempts have been made to interpret features using radar images from satellites or radars mounted on aircraft.
Radar that uses microwaves can use its characteristics to photograph a wide area in a wide area regardless of the weather, day or night. However, radar images are difficult to decipher features due to complex scattering mechanisms and noise effects.
It is also conceivable to use an optical image as a means for interpreting features. Since the optical image uses wavelengths in the visible range, the same information as that seen by the human eye can be obtained, and features are easy to read. However, optical images can only be captured in good weather.
 例えば特許文献1には、合成開口レーダによるレーダ画像データについて、錯乱強度の反射特性を人的に馴染みのある白黒パンクロマチックの反射特性に近づけるための変換処理を行い、これと光学画像を重ね合わせるため、より光学衛星で撮影された画像に近い合成画像を得る技術が開示されている。 For example, in Patent Document 1, radar image data from a synthetic aperture radar undergoes conversion processing to bring the reflection characteristics of the confusion intensity closer to the reflection characteristics of black-and-white panchromatic, which is familiar to humans, and is superimposed on an optical image. Therefore, a technique for obtaining a composite image that is closer to an image captured by an optical satellite has been disclosed.
特開2009-47516号公報JP 2009-47516 A
 光学画像と性質の近い合成画像を得ることができれば、人間の目で当該合成画像を精査し、例えば災害を発見できるかもしれない。
 本開示技術は、さらに先へ進み、レーダ画像から関心領域を自動検出するための学習方法の提供を目的とする。ここで関心領域とは、例えば、海水面上におけるオイル流出、大雨又は地震に起因する土砂崩れ、森林火災、風倒木、浸水、といった災害の箇所などが考えられる。
If it is possible to obtain a composite image that is similar in nature to an optical image, it may be possible to examine the composite image with human eyes and discover, for example, a disaster.
The disclosed technique goes further and aims to provide a learning method for automatic detection of regions of interest from radar images. Here, the region of interest may be, for example, a location of a disaster such as an oil spill on the sea surface, a landslide caused by heavy rain or an earthquake, a forest fire, a fallen tree, or a flood.
 本開示技術に係る学習方法は、光学衛星画像から関心領域を検出するための特徴量を計算し、前記特徴量を用いて前記関心領域の地図上の位置を検出し、前記位置に対して教師ラベルを生成し、前記光学衛星画像とペアのレーダ衛星画像に対して学習データセットを作成し、前記学習データセットを用いて機械学習を行う。 A learning method according to the technology disclosed herein calculates a feature value for detecting a region of interest from an optical satellite image, detects the position of the region of interest on a map using the feature value, and teaches the position. A label is generated, a learning data set is created for the radar satellite image paired with the optical satellite image, and machine learning is performed using the learning data set.
 本開示技術に係る学習方法は上記手順を含むため、レーダ画像から関心領域を自動検出する、という課題を解決できる。 Since the learning method according to the disclosed technique includes the above procedure, it can solve the problem of automatically detecting a region of interest from a radar image.
図1は、実施の形態1に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。FIG. 1 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to Embodiment 1. FIG. 図2は、実施の形態2に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。FIG. 2 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the second embodiment. 図3は、実施の形態3に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。FIG. 3 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the third embodiment. 図4は、実施の形態4に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。FIG. 4 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the fourth embodiment. 図5は、実施の形態5に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。FIG. 5 is a flow chart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the fifth embodiment. 図6は、実施の形態6に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。FIG. 6 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to the sixth embodiment.
実施の形態1.
 図1は、実施の形態1に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。図1に示されるとおり実施の形態1に係る学習方法は、大きく3つの手順に分けられる。3つの手順は、光学衛星画像に係る手順(ST1、ST2、及びST3)と、レーダ衛星画像に係る手順(ST4)と、学習に係る手順(ST5)と、である。
Embodiment 1.
FIG. 1 is a flowchart showing procedures of a learning method for automatically detecting a region of interest from a radar image according to Embodiment 1. FIG. As shown in FIG. 1, the learning method according to Embodiment 1 is roughly divided into three procedures. The three procedures are a procedure for optical satellite images (ST1, ST2, and ST3), a procedure for radar satellite images (ST4), and a procedure for learning (ST5).
 図1に示される光学衛星画像に係る手順は、特徴量を算出する手順(ST1)と、対象位置を検出する手順(ST2)と、教師ラベルを作成する手順(ST3)と、を含む。
 図1に示されるレーダ衛星画像に係る手順は、学習データセットを作成する手順(ST4)を含む。
 図1に示される学習に係る手順は、機械学習を行う手順(ST5)を含む。
The procedure related to the optical satellite image shown in FIG. 1 includes a procedure of calculating a feature amount (ST1), a procedure of detecting a target position (ST2), and a procedure of creating a teacher label (ST3).
The procedure related to radar satellite images shown in FIG. 1 includes a procedure (ST4) of creating a learning data set.
The procedure for learning shown in FIG. 1 includes a procedure for performing machine learning (ST5).
 本開示技術が目指すゴールの一つの態様には、レーダ画像に対してSemantic Segmentation(以降、「セマンティックセグメンテーション」と称する)が挙げられる。セマンティックセグメンテーションとは、画像のピクセル単位すなわち画素単位で、何が写っているかといったラベル又はカテゴリを関連付ける教師あり学習の問題及び手法を言う。セマンティックセグメンテーションでは、入力画像とマスク画像とがセットとなったデータセットを使い、入力画像を入れたときにマスク画像が出力されるよう、学習を行う。入力画像とマスク画像とからなるデータセットは、元画像とラベル付き画像とからなるデータセットと称されることもある。
 本開示技術が想定する場面を当てはめれば、レーダ画像が入力画像であり、災害の箇所を災害の種類ごとの色で示したものがマスク画像である。すなわち、レーダ画像を入力したときに、オイル流出、土砂崩れ、森林火災、といった災害の箇所に対して、災害の種類に応じた色のマスキングがされたマスク画像を出力すること、これこそが本開示技術が目指すゴールの一つである。
One aspect of the goals aimed at by the technique of the present disclosure is semantic segmentation (hereinafter referred to as “semantic segmentation”) for radar images. Semantic segmentation refers to supervised learning problems and techniques that associate labels or categories, such as what is seen, on a pixel-by-pixel basis in an image. In semantic segmentation, a data set consisting of an input image and a mask image is used, and learning is performed so that the mask image is output when the input image is input. A dataset consisting of the input image and the mask image is sometimes referred to as a dataset consisting of the original image and the labeled image.
If the scene assumed by the technology of the present disclosure is applied, the radar image is the input image, and the mask image is the location of the disaster indicated by the color of each type of disaster. That is, when a radar image is input, outputting a mask image in which disaster locations such as oil spills, landslides, and forest fires are masked with a color corresponding to the type of disaster, which is what the present disclosure is about. This is one of the goals of technology.
 セマンティックセグメンテーションは、他の教師あり学習と同様、膨大な量の学習用データセットと検証用データセットとを必要とする。レーダ画像を入力画像とした場合の学習用データセットは、準備したレーダ画像に対して、災害箇所がマスキングされたマスク画像を作成してセットとする必要がある。ただし前述のとおりレーダ画像は、視認性が悪く、地物の判読が難しい。このため、レーダ画像から直接マスク画像を作成することは、容易ではない。
 そこで本開示技術は、レーダ衛星画像と、少なくとも一部が同じ領域を撮影した光学衛星画像と、をペアにし、ペア画像の情報から学習用データセットと検証用データセットとを作り上げていくことを考える。すなわち本開示技術は、学習用データセットを作成する手順において、レーダ衛星画像と同じ領域を撮影した光学衛星画像とのペアを用いる。図1に示された光学衛星画像に係る手順(ST1、ST2、及びST3)とレーダ衛星画像に係る手順(ST4)とは、本開示技術がペア画像を用いることを表している。
 一般に、航空写真及び衛星画像は、撮影領域の半分が次の画像と重なるタイミングでシャッターが押される。そして撮影された複数の画像により、全体のデータが作り上げられている。よって、光学衛星画像とレーダ衛星画像とは、厳密なペアである必要はないが、全体として同じ領域がカバーされていればよい。
 なお学習用データセットは、以降、単に「学習データセット」と称する。また検証用データセットは、以降、単に「検証データセット」と称する。
Semantic segmentation, like other supervised learning, requires huge amounts of training and validation datasets. A learning data set in the case where a radar image is used as an input image needs to be set by creating a mask image in which the disaster location is masked for the prepared radar image. However, as described above, the radar image has poor visibility and it is difficult to decipher the features. Therefore, it is not easy to create a mask image directly from a radar image.
Therefore, the technology disclosed herein pairs a radar satellite image with an optical satellite image in which at least a portion of the same area is captured, and creates a learning data set and a verification data set from the information of the paired images. think. That is, the technology disclosed herein uses a pair of a radar satellite image and an optical satellite image obtained by capturing the same area in the procedure of creating a learning data set. The procedures for optical satellite images (ST1, ST2, and ST3) and the procedure for radar satellite images (ST4) shown in FIG. 1 represent that the disclosed technique uses paired images.
Generally, for aerial photographs and satellite images, the shutter is pressed at the timing when half of the photographing area overlaps the next image. And the whole data is made up of multiple images taken. Therefore, the optical satellite image and the radar satellite image do not have to be a strict pair, but it is sufficient that they cover the same area as a whole.
Note that the learning data set is hereinafter simply referred to as a “learning data set”. Also, the verification data set is hereinafter simply referred to as a "verification data set".
 本開示技術に係る第1の手順は、光学衛星画像について、特徴量を算出する手順(ST1)である。
 本開示技術は、光学画像についてあらかじめセマンティックセグメンテーションを行っておくとよい。光学画像についてのセマンティックセグメンテーションは、例えばFCN(Fully Convolutional Networks)により実現されてよい。FCNは、CNNの一種であるが、領域全体をカバーする1×1の畳込みを行うことを考えて、全結合層を畳込み層に置き換えても同じような結果を得るという性質を有する。FCNは、入力画像のサイズを修正する必要がない、という利点がある。FCNには、入力された光学衛星画像から関心領域を検出するための特徴量を算出する過程、すなわち特徴量を算出する手順(ST1)、が含まれている。
 光学画像についてのセマンティックセグメンテーションは、FCNのほか、SegNet、U-Net、PSPNet、DeepLab、等で行ってもよい。
A first procedure according to the technology disclosed herein is a procedure (ST1) for calculating a feature amount for an optical satellite image.
In the technology disclosed herein, semantic segmentation may be performed in advance on the optical image. Semantic segmentation for optical images may be realized, for example, by FCN (Fully Convolutional Networks). FCN is a kind of CNN, but considering that 1×1 convolution covering the entire region is performed, it has the property that the same result can be obtained even if the fully connected layer is replaced with the convolution layer. FCN has the advantage that it does not require resizing of the input image. The FCN includes a process of calculating a feature amount for detecting a region of interest from an input optical satellite image, that is, a feature amount calculation procedure (ST1).
Semantic segmentation for optical images may be performed by SegNet, U-Net, PSPNet, DeepLab, etc., in addition to FCN.
 本開示技術は、この特徴量について、NDVI(Normalized Difference Vegetation Index)を利用することも考えられる。NDVIは、植生の分布状況、及び活性度を示す指標である。NDVIは、日本語では正規化差植生指数と称される。NDVIは、次式によって与えられる。

Figure JPOXMLDOC01-appb-I000001

ここでNIRは近赤外域(Landsat8のBand5)の反射率を、REDは赤色光(Landsat8のBand4)の反射率を、それぞれ表す。NDVIは、-1から1の間に正規化された数値で示され、植生が濃い場合、NDVIの値が大きくなる。NDVIが或る閾値以上を示す画素は、植生を観測した画素であると判断してよい。
 また、本開示技術は、或る時期の基準となる画像と現在の画像と、2つの時期の画像を比較してもよい。2つの時期の画像を比較し、NDVIの変化量を評価することで、植生に関する変化を検出することもできる。
 NDVI及びその他のバンド間演算を活用した方法の詳細は、実施の形態3以降の説明により明らかとなる。
The technology disclosed herein may also use NDVI (Normalized Difference Vegetation Index) for this feature amount. NDVI is an index that indicates the distribution of vegetation and the degree of activity. NDVI is called Normalized Difference Vegetation Index in Japanese. NDVI is given by the following equation.

Figure JPOXMLDOC01-appb-I000001

Here, NIR represents the reflectance of the near-infrared region (Band 5 of Landsat 8), and RED represents the reflectance of red light (Band 4 of Landsat 8). The NDVI is indicated by a normalized numerical value between -1 and 1, and the denser the vegetation, the larger the NDVI value. A pixel having an NDVI greater than or equal to a certain threshold may be determined to be a pixel in which vegetation is observed.
In addition, the technique of the present disclosure may compare a reference image of a certain period with the current image and images of two periods. Changes in vegetation can also be detected by comparing images from two periods and evaluating the amount of change in NDVI.
Details of the method using NDVI and other inter-band operations will become clear from the description of the third embodiment and subsequent embodiments.
 本開示技術に係る第2の手順は、光学衛星画像について、対象位置を検出する手順(ST2)である。第2の手順における用語の「対象」は、前述の関心領域と同義である。また第2の手順における用語の「対象位置」は、関心領域の位置と同義である。
 衛星画像の各画素は、地図上の位置、例えば緯度経度と対応付けることができる。特許文献1に例示されたレーダ画像と光学画像とを重ね合わせる技術も、それぞれの画像が地図上の位置という共通の座標系で表すことができるため、実現できるものである。地図は、地球上の一部又は全部である実空間を座標系の情報として表したものと考えてよい。
 具体的に対象位置を検出する手順(ST2)は、光学衛星画像について関心領域の画素を特定し、その画素に対応づけられた地図上の位置を求める、というものである。
A second procedure according to the technology disclosed herein is a procedure (ST2) for detecting a target position on an optical satellite image. The term "subject" in the second procedure is synonymous with the aforementioned region of interest. Also, the term "target position" in the second procedure is synonymous with the position of the region of interest.
Each pixel in the satellite image can be associated with a location on the map, eg, latitude and longitude. The technique of superimposing a radar image and an optical image exemplified in Patent Literature 1 can also be realized because each image can be represented by a common coordinate system, which is a position on a map. A map may be considered as a representation of the real space, which is part or all of the earth, as information on a coordinate system.
Specifically, the procedure for detecting the target position (ST2) is to specify the pixels of the region of interest in the optical satellite image and obtain the position on the map associated with the pixels.
 本開示技術に係る第3の手順は、光学衛星画像について、教師ラベルを作成する手順(ST3)である。前述のとおり光学画像についてセマンティックセグメンテーションを行う場合、教師ラベルを作成する手順(ST3)は、前述のマスク画像を作成することに他ならない。前述のとおり、マスク画像はラベル付き画像とも称される。マスク画像の作成は、光学衛星画像について人間が手動により行ってもよいし、あらかじめ光学画像について学習させたセマンティックセグメンテーションを用いてもよい。 A third procedure according to the disclosed technology is a procedure (ST3) for creating teacher labels for optical satellite images. As described above, when performing semantic segmentation on an optical image, the procedure for creating teacher labels (ST3) is nothing other than creating the above-described mask image. As mentioned above, mask images are also referred to as labeled images. The creation of the mask image may be manually performed by a human using the optical satellite image, or may be performed using semantic segmentation that has been pre-learned on the optical image.
 本開示技術に係る第4の手順は、レーダ衛星画像について、学習データセットを作成する手順(ST4)である。
 レーダ衛星画像についての学習データセットの作成手順は、さらに詳細な手順に分解できる。詳細手順その1は、レーダ衛星画像について、ペアとなる光学衛星画像を準備することである。詳細手順その2は、ペアとなる光学衛星画像についてのマスク画像を参照することである。詳細手順その3は、マスク画像における画素と対応づけられた地図上の位置から、マスク情報を地図座標上の情報に変換することである。ここでマスク情報は、画素単位で与えられたラベル情報にほかならない。最後に詳細手順その4は、地図座標上のマスク情報から、レーダ衛星画像についてのマスク画像を作り上げていくことである。レーダ衛星画像とそのマスク画像とが、レーダ衛星画像についての学習データセットとなる。
A fourth procedure according to the technology disclosed herein is a procedure (ST4) for creating a learning data set for radar satellite images.
The procedure for creating a learning data set for radar satellite images can be further broken down into detailed procedures. Detailed procedure 1 is to prepare a pair of optical satellite images for radar satellite images. Detailed procedure 2 is to refer to the mask image for the paired optical satellite image. Detailed procedure 3 is to convert the mask information into information on map coordinates from the positions on the map associated with the pixels in the mask image. Here, the mask information is nothing but label information given in units of pixels. Finally, the detailed procedure 4 is to create a mask image for the radar satellite image from the mask information on the map coordinates. A radar satellite image and its mask image form a training data set for the radar satellite image.
 レーダ衛星画像からなるデータ(以降、「レーダ衛星画像データ」と称する)は、学習に適したものに加工されてもよい。例えばレーダ衛星画像は、縦画素数がNで横画素数がMといったあらかじめ決められたサイズにトリミングされてもよい。また、例えばレーダ衛星画像は、利用可能な偏波の数だけレイヤ数又は属性数を有するよう加工されてもよい。 Data consisting of radar satellite images (hereinafter referred to as "radar satellite image data") may be processed into data suitable for learning. For example, a radar satellite image may be trimmed to a predetermined size, such as N vertical pixels and M horizontal pixels. Also, for example, a radar satellite image may be processed to have as many layers or attributes as there are polarizations available.
 本開示技術に係る第5の手順は、機械学習を行う手順(ST5)である。機械学習に用いる学習データセットは、学習データセットを作成する手順(ST4)で作成したレーダ衛星画像についての学習データセットである。ここで行う機械学習は、光学衛星画像について行ったセマンティックセグメンテーションと同じでよい。またここで行う機械学習のモデルは、光学衛星画像について行ったセマンティックセグメンテーションで用いたニューラルネットワークと同様の構造のニューラルネットワークが用いられてよい。 The fifth procedure according to the technology disclosed herein is the procedure for performing machine learning (ST5). A learning data set used for machine learning is a learning data set for radar satellite images created in the procedure for creating a learning data set (ST4). The machine learning performed here can be the same as the semantic segmentation performed on optical satellite imagery. Also, the machine learning model performed here may use a neural network having the same structure as the neural network used in the semantic segmentation performed on the optical satellite image.
 本開示技術は、上記の第1から第5の手順を実施することにより、レーダ衛星画像についてセマンティックセグメンテーションを行う学習済みモデルを得る。 The disclosed technology obtains a trained model that performs semantic segmentation on radar satellite images by performing the above first to fifth procedures.
 以上のとおり実施の形態1に係る学習方法は上記手順を含むため、視認性が悪く地物の判読が難しいレーダ画像から関心領域を自動検出することができる。 As described above, since the learning method according to Embodiment 1 includes the above procedure, it is possible to automatically detect a region of interest from a radar image with poor visibility and difficult to interpret features.
実施の形態2.
 実施の形態1に係る方法は、学習モデルを得る段階までを示したものである。実施の形態2に係る方法は、実施の形態1に係る方法を含み、学習モデルを検証する手順をさらに備えるものである。
 実施の形態2において、実施の形態1と重複する説明は適宜省略される。
Embodiment 2.
The method according to Embodiment 1 shows up to the stage of obtaining a learning model. A method according to Embodiment 2 includes the method according to Embodiment 1, and further includes a procedure for verifying the learning model.
In the second embodiment, explanations overlapping those of the first embodiment are omitted as appropriate.
 図2は、実施の形態2に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。図2に示されるとおり実施の形態2に係る方法は、実施の形態1に示される手順に加え、検証データセットを作成する手順(ST6)と、検証結果を確認する手順(ST7)と、を含む。 FIG. 2 is a flowchart showing the steps of a learning method for automatically detecting a region of interest from a radar image, according to the second embodiment. As shown in FIG. 2, the method according to Embodiment 2 includes, in addition to the procedure shown in Embodiment 1, a procedure for creating a verification data set (ST6) and a procedure for confirming verification results (ST7). include.
 本開示技術に係る第6の手順は、レーダ衛星画像について、検証データセットを作成する手順(ST6)である。検証データセットにおけるレーダ衛星画像は、学習データセットにおけるレーダ衛星画像とは異なるものを用いる。検証データセットの作成は、実施の形態1で示した学習データセットの作成と同じ要領で実施されてよい。 A sixth procedure according to the technology disclosed herein is a procedure (ST6) for creating a verification data set for radar satellite images. A different radar satellite image is used for the verification data set than the radar satellite image for the training data set. Creation of the verification data set may be performed in the same manner as the creation of the learning data set shown in the first embodiment.
 本開示技術に係る第7の手順は、レーダ衛星画像について、検証結果を確認する手順(ST7)である。ここでは、検証用に準備したレーダ衛星画像に対し、学習が進んだモデルによるセマンティックセグメンテーションを行い、その結果が正しかったかどうか、検証データセットのマスク画像と比較する。
 検証を行った結果が許容できる範囲の正しさであった場合、学習を終了する。検証を行った結果が許容できる範囲の正しさでなかった場合、学習用のデータを追加し、学習を継続する。
A seventh procedure according to the technology disclosed herein is a procedure (ST7) for confirming the verification result of the radar satellite image. Here, semantic segmentation is performed on radar satellite images prepared for verification using a model with advanced learning, and whether the results are correct or not is compared with the mask image of the verification data set.
If the result of the verification is correct within an acceptable range, the learning is terminated. If the result of verification is not correct within an acceptable range, add training data and continue learning.
 以上のとおり実施の形態2に係る学習方法は上記手順を含むため、学習モデルを検証でき、視認性が悪く地物の判読が難しいレーダ画像から関心領域を自動検出することができる。 As described above, since the learning method according to Embodiment 2 includes the above procedure, the learning model can be verified, and the region of interest can be automatically detected from a radar image with poor visibility and difficult to interpret features.
実施の形態3.
 実施の形態1及び実施の形態2に係る方法は、関心領域の種類を限定せず、汎用的な方法であるといえる。
 実施の形態3は、関心領域を倒木に限定し、倒木に特化した、レーダ画像から関心領域を自動検出するための学習方法について明らかにする。
 実施の形態3において、既出の実施の形態と重複する説明は適宜省略される。
Embodiment 3.
It can be said that the methods according to Embodiments 1 and 2 are general-purpose methods without limiting the type of region of interest.
Embodiment 3 clarifies a learning method for automatically detecting a region of interest from a radar image, which is specialized for fallen trees, by limiting the region of interest to fallen trees.
In Embodiment 3, explanations overlapping those of the above-described embodiments are omitted as appropriate.
 倒木の発生した領域を関心領域とする場合、学習データセットとして、倒木発生前後の光学衛星画像及びレーダ衛星画像が用いられる。倒木発生前後は、例えば台風前後としてもよい。
 光学衛星画像は、少なくとも赤色光と近赤外光のマルチスペクトルデータを含むものが用いられる。
 またレーダ衛星画像は、Lバンドといった植物の枝葉を透過する波長帯のものが用いられる。
When a region in which a fallen tree occurs is set as a region of interest, optical satellite images and radar satellite images before and after the occurrence of a fallen tree are used as a learning data set. Before and after the occurrence of a fallen tree may be, for example, before and after a typhoon.
Optical satellite images are used that include multispectral data for at least red light and near-infrared light.
Radar satellite images are used in a wavelength band such as the L band, which allows the transmission of plant branches and leaves.
 図3は、実施の形態3に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。図3に示されるとおり実施の形態3に係る方法は、学習モデルを得る手順と、学習モデルを検証する手順と、に分けられる。学習モデルを得る手順は、マルチスペクトルデータを読み込む手順(ST31)と、NDVIを算出する手順(ST32)と、NDVIの変化量を算出する手順(ST33)と、NDVIの変化量と閾値とを比較する手順(ST34)と、教師ラベルを生成する手順(ST35)と、学習データセットを作成する手順(ST36)と、機械学習を行う手順(ST37)と、を含む。学習モデルを検証する手順は、検証データセットを作成する手順(ST38)と、検証結果を確認する手順(ST39)と、を含む。 FIG. 3 is a flow chart showing the procedure of a learning method for automatically detecting a region of interest from a radar image, according to the third embodiment. As shown in FIG. 3, the method according to the third embodiment is divided into a procedure for obtaining a learning model and a procedure for verifying the learning model. The procedure for obtaining a learning model includes a procedure for reading multispectral data (ST31), a procedure for calculating NDVI (ST32), a procedure for calculating the amount of change in NDVI (ST33), and comparing the amount of change in NDVI with a threshold. (ST34), generating a teacher label (ST35), creating a learning data set (ST36), and performing machine learning (ST37). The procedure for verifying the learning model includes a procedure for creating a verification data set (ST38) and a procedure for confirming verification results (ST39).
 実施の形態3に係る第1の手順は、光学衛星画像について、マルチスペクトルデータを読み込む手順(ST31)である。
 マルチスペクトルデータを含む光学衛星画像は、光学衛星に搭載するカメラをマルチスペクトルカメラ、又はハイパースペクトルカメラとすることで準備されてもよい。マルチスペクトルカメラにより得られる画像は、マルチスペクトル画像と称される。マルチスペクトルデータを読み込むことは、マルチスペクトル画像を得ることと同義であると考えてよい。
A first procedure according to Embodiment 3 is a procedure (ST31) of reading multispectral data for an optical satellite image.
Optical satellite images containing multispectral data may be prepared by using a multispectral or hyperspectral camera on board the optical satellite. An image obtained by a multispectral camera is called a multispectral image. Reading multispectral data may be considered synonymous with obtaining a multispectral image.
 マルチスペクトル画像は、異なる波長帯の情報を有するため、特定の地表の物体の特徴をうまくとらえられる。異なる波長帯の情報を用いた演算は、バンド間演算と称される。実施の形態1に記載のNDVIは、バンド間演算の代表的なもののひとつである。 Because multispectral images contain information in different wavelength bands, they can better capture the features of specific surface objects. Calculations using information in different wavelength bands are referred to as interband calculations. The NDVI described in Embodiment 1 is one of representative inter-band operations.
 実施の形態3に係る第2の手順は、光学衛星画像又はマルチスペクトル画像について、NDVIを算出する手順(ST32)である。
 ここでは、倒木前後のマルチスペクトル画像のそれぞれから、NDVIが算出される。実施の形態3に係る方法は、「倒木が発生した領域は、幹部分の露出及びクロロフィルの吸収の減少からNDVIが低下するであろう」という推測原理に基づく。
 実施の形態3に係る方法は、バンド間演算における赤色光の反射率に代えて、短波長赤外光の反射率を利用することも考えられる。バンド間演算に単波長赤外光の反射率を用いるNDWI(Normalized Difference Water Index)の詳細は、実施の形態4の説明により明らかとなる。
A second procedure according to Embodiment 3 is a procedure (ST32) of calculating NDVI for an optical satellite image or a multispectral image.
Here, NDVI is calculated from each of the multispectral images before and after the fallen tree. The method according to Embodiment 3 is based on the conjecture principle that ``areas where fallen trees have occurred will have lower NDVI due to reduced trunk exposure and chlorophyll uptake''.
In the method according to the third embodiment, it is conceivable to use the reflectance of short-wavelength infrared light instead of the reflectance of red light in the inter-band calculation. The details of NDWI (Normalized Difference Water Index), which uses the reflectance of single-wavelength infrared light for inter-band calculation, will become clear from the description of the fourth embodiment.
 実施の形態3に係る第3の手順は、光学衛星画像又はマルチスペクトル画像について、NDVIの変化量を算出する手順(ST33)である。
 ここでは、例えば倒木が発生したと推定される台風の前後の画像データについて、NDVIの差を計算する。
A third procedure according to Embodiment 3 is a procedure (ST33) for calculating the amount of change in NDVI for an optical satellite image or a multispectral image.
Here, for example, the difference in NDVI is calculated for image data before and after a typhoon that is estimated to have caused a fallen tree.
 実施の形態3に係る第4の手順は、光学衛星画像又はマルチスペクトル画像について、NDVIの変化量と閾値とを比較する手順(ST34)である。
 ここでは、第3の手順で求めたNDVIと閾値とを比較し、閾値を超える画素は倒木が発生した関心領域の画素であると判断する。倒木に係るNDVIの閾値は、経験的に求めた値が用いられてよい。図3に示されるNDVIの変化量と閾値とを比較する手順(ST34)のフローチャートブロックにおいて、ΔNDVIはNDVIの変化量を、σVΔは閾値を、それぞれ表す。
A fourth procedure according to Embodiment 3 is a procedure (ST34) of comparing the amount of change in NDVI with a threshold for the optical satellite image or the multispectral image.
Here, the NDVI obtained in the third procedure is compared with a threshold, and pixels exceeding the threshold are determined to be pixels in the region of interest where fallen trees have occurred. An empirically determined value may be used as the NDVI threshold for fallen trees. In the flowchart block of the procedure (ST34) for comparing the amount of change in NDVI with the threshold value shown in FIG. 3, ΔNDVI represents the amount of change in NDVI, and σVΔ represents the threshold value.
 実施の形態3に係る第5の手順は、光学衛星画像又はマルチスペクトル画像について、教師ラベルを生成する手順(ST35)である。この手順は、実施の形態1に係る第3の手順、すなわち教師ラベルを作成する手順(ST3)、と同じである。 A fifth procedure according to Embodiment 3 is a procedure (ST35) for generating teacher labels for optical satellite images or multispectral images. This procedure is the same as the third procedure according to the first embodiment, that is, the procedure for creating teacher labels (ST3).
 実施の形態3に係る第6の手順は、レーダ衛星画像について、学習データセットを作成する手順(ST36)である。この手順も、実施の形態1に係る学習データセットを作成する手順(ST4)と同じである。 The sixth procedure according to Embodiment 3 is a procedure (ST36) for creating a learning data set for radar satellite images. This procedure is also the same as the procedure (ST4) for creating the learning data set according to the first embodiment.
 実施の形態3に係る第7の手順は、機械学習を行う手順(ST37)である。この手順も、実施の形態1に係る機械学習を行う手順(ST5)と同じである。 The seventh procedure according to Embodiment 3 is the procedure for performing machine learning (ST37). This procedure is also the same as the procedure (ST5) for performing machine learning according to the first embodiment.
 実施の形態3に係る第8の手順は、レーダ衛星画像について、検証データセットを作成する手順(ST38)である。この手順は、実施の形態2に係る検証データセットを作成する手順(ST6)と同じである。 The eighth procedure according to Embodiment 3 is a procedure (ST38) for creating a verification data set for radar satellite images. This procedure is the same as the procedure (ST6) for creating the verification data set according to the second embodiment.
 実施の形態3に係る第9の手順は、レーダ衛星画像について、検証結果を確認する手順(ST39)である。この手順も、実施の形態2に係る検証結果を確認する手順(ST7)と同じである。 The ninth procedure according to Embodiment 3 is a procedure (ST39) for confirming the verification result of the radar satellite image. This procedure is also the same as the procedure (ST7) for confirming the verification result according to the second embodiment.
 以上のとおり実施の形態3に係る学習方法は上記手順を含むため、学習モデルを検証でき、視認性が悪く地物の判読が難しいレーダ画像から倒木が発生した領域を自動検出することができる。 As described above, since the learning method according to Embodiment 3 includes the above procedure, it is possible to verify the learning model and automatically detect areas where fallen trees have occurred from radar images with poor visibility and difficult to interpret features.
実施の形態4.
 実施の形態3は、関心領域を倒木に限定し、倒木に特化した、レーダ画像から関心領域を自動検出するための学習方法であった。
 実施の形態4は、関心領域を浸水に限定し、浸水に特化した、レーダ画像から関心領域を自動検出するための学習方法について明らかにする。
 実施の形態4において、既出の実施の形態と重複する説明は適宜省略される。
Embodiment 4.
Embodiment 3 is a learning method for automatically detecting a region of interest from a radar image, which is specialized for fallen trees, by limiting the region of interest to fallen trees.
Embodiment 4 clarifies a learning method for automatically detecting a region of interest from a radar image, which limits the region of interest to flooding and is specialized for flooding.
In the fourth embodiment, descriptions overlapping those of the previous embodiments are omitted as appropriate.
 ここで浸水とは、具体的には、大雨、台風、等によって河川氾濫が生じた際、陸域が水に侵されることを言う。
 浸水の発生した領域を関心領域とする場合、学習データセットとして、浸水発生前後の光学衛星画像及びレーダ衛星画像が用いられる。浸水発生前後は、例えば大雨の前後、又は台風の前途としてもよい。
 光学衛星画像は、少なくとも近赤外光と短波長赤外光のマルチスペクトルデータを含むものが用いられる。
 なお一般にレーダ衛星画像は、浸水発生前後の後方散乱係数に変化が生じることが知られている。この性質は、レーダ衛星画像から浸水が発生した関心領域を特定できることを裏付けている。
Flooding here specifically means that a land area is invaded by water when river flooding occurs due to heavy rain, typhoon, or the like.
When a flooded area is set as a region of interest, optical satellite images and radar satellite images before and after flooding are used as learning data sets. Before and after the occurrence of flooding may be, for example, before and after heavy rain, or before and after a typhoon.
Optical satellite images are used that include multispectral data of at least near-infrared light and short-wave infrared light.
It is generally known that the backscattering coefficient of a radar satellite image changes before and after flooding occurs. This property confirms that it is possible to identify a flooded area of interest from a radar satellite image.
 図4は、実施の形態4に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。図4に示されるとおり実施の形態4に係る方法は、学習モデルを得る手順と、学習モデルを検証する手順と、に分けられる。学習モデルを得る手順は、マルチスペクトルデータを読み込む手順(ST41)と、NDWIを算出する手順(ST42)と、NDWIと閾値とを比較する手順(ST43)と、教師ラベルを生成する手順(ST44)と、学習データセットを作成する手順(ST45)と、機械学習を行う手順(ST46)と、を含む。学習モデルを検証する手順は、検証データセットを作成する手順(ST47)と、検証結果を確認する手順(ST48)と、を含む。 FIG. 4 is a flowchart showing the procedure of a learning method for automatically detecting a region of interest from a radar image according to the fourth embodiment. As shown in FIG. 4, the method according to Embodiment 4 is divided into a procedure for obtaining a learning model and a procedure for verifying the learning model. The procedure for obtaining a learning model includes a procedure for reading multispectral data (ST41), a procedure for calculating NDWI (ST42), a procedure for comparing NDWI with a threshold (ST43), and a procedure for generating teacher labels (ST44). , a procedure for creating a learning data set (ST45), and a procedure for performing machine learning (ST46). A procedure for verifying the learning model includes a procedure for creating a verification data set (ST47) and a procedure for confirming the verification result (ST48).
 実施の形態4に係る第1の手順は、光学衛星画像について、マルチスペクトルデータを読み込む手順(ST41)である。この手順は、実施の形態3に係るマルチスペクトルデータを読み込む手順(ST31)と同じである。 The first procedure according to Embodiment 4 is a procedure (ST41) for reading multispectral data for optical satellite images. This procedure is the same as the procedure for reading multispectral data (ST31) according to the third embodiment.
 実施の形態4に係る第2の手順は、光学衛星画像又はマルチスペクトル画像について、NDWIを算出する手順(ST42)である。この手順は、実施の形態3に係るNDVIを算出する手順(ST32)と類似している。NDWIは、具体的には次式によって与えられる。

Figure JPOXMLDOC01-appb-I000002

ここでNIRは近赤外域(Landsat8のBand5)の反射率を、SWIRは短波長赤外域(Landsat8のBand6又はBand7)の反射率を、それぞれ表す。
A second procedure according to the fourth embodiment is a procedure (ST42) of calculating NDWI for an optical satellite image or a multispectral image. This procedure is similar to the procedure for calculating NDVI (ST32) according to the third embodiment. NDWI is specifically given by the following equation.

Figure JPOXMLDOC01-appb-I000002

Here, NIR represents reflectance in the near-infrared region (Band 5 of Landsat 8), and SWIR represents reflectance in the short-wave infrared region (Band 6 or Band 7 of Landsat 8).
 実施の形態4に係る第3の手順は、光学衛星画像又はマルチスペクトル画像について、NDWIと閾値とを比較する手順(ST43)である。
 ここでは、第2の手順で求めたNDWIと閾値との比較が各画素について行われる。浸水発生前のマルチスペクトル画像においてはNDWIが閾値よりも小さいが、浸水発生後のマルチスペクトル画像においてはNDWIが閾値よりも大きい、といった条件が検討される。この条件が当てはまる画素は、もともとは陸域であり、浸水が発生した領域についての画素であると判断される。浸水に係るNDWIの閾値は、経験的に求めた値が用いられてよい。図4に示されるNDWIと閾値とを比較する手順(ST43)のフローチャートブロックにおいて、NDWIpreは浸水発生前のマルチスペクトル画像におけるNDWIを、NDWIpostは浸水発生後のマルチスペクトル画像におけるNDWIを、それぞれ表す。また同フローチャートブロックにおいて、σWpreは浸水発生前のマルチスペクトル画像におけるNDWIの閾値を、σWpostは浸水発生後のマルチスペクトル画像におけるNDWIの閾値を、それぞれ表す。なお、σWpreとσWpostとは、同じ値であってもよい。
A third procedure according to Embodiment 4 is a procedure (ST43) of comparing the NDWI with a threshold for the optical satellite image or the multispectral image.
Here, the NDWI obtained in the second procedure is compared with the threshold value for each pixel. A condition is considered such that the NDWI is smaller than the threshold in the multispectral image before the occurrence of flooding, but the NDWI is larger than the threshold in the multispectral image after the occurrence of flooding. A pixel that satisfies this condition is originally a land area and is determined to be a pixel for a flooded area. An empirically determined value may be used as the NDWI threshold for flooding. In the flowchart block of the procedure (ST43) for comparing the NDWI and the threshold shown in FIG. 4, NDWI pre is the NDWI in the multispectral image before the occurrence of flooding, and NDWI post is the NDWI in the multispectral image after the occurrence of flooding. show. In the same flowchart block, σ Wpre represents the NDWI threshold in the multispectral image before the occurrence of water inundation, and σ Wpost represents the NDWI threshold in the multispectral image after the occurrence of water inundation. Note that σ Wpre and σ Wpost may be the same value.
 実施の形態4に係る第4の手順は、光学衛星画像又はマルチスペクトル画像について、教師ラベルを生成する手順(ST44)である。この手順は、実施の形態1に係る教師ラベルを作成する手順(ST3)と同じである。 The fourth procedure according to Embodiment 4 is a procedure (ST44) for generating teacher labels for optical satellite images or multispectral images. This procedure is the same as the procedure (ST3) for creating teacher labels according to the first embodiment.
 実施の形態4に係る第5の手順は、レーダ衛星画像について、学習データセットを作成する手順(ST45)である。この手順も、実施の形態1に係る学習データセットを作成する手順(ST4)と同じである。 The fifth procedure according to Embodiment 4 is a procedure (ST45) for creating a learning data set for radar satellite images. This procedure is also the same as the procedure (ST4) for creating the learning data set according to the first embodiment.
 実施の形態4に係る第6の手順は、機械学習を行う手順(ST46)である。この手順も、実施の形態1に係る機械学習を行う手順(ST5)と同じである。 The sixth procedure according to Embodiment 4 is the procedure for performing machine learning (ST46). This procedure is also the same as the procedure (ST5) for performing machine learning according to the first embodiment.
 実施の形態4に係る第7の手順は、レーダ衛星画像について、検証データセットを作成する手順(ST47)である。この手順は、実施の形態2に係る検証データセットを作成する手順(ST6)と同じである。 A seventh procedure according to the fourth embodiment is a procedure (ST47) for creating a verification data set for radar satellite images. This procedure is the same as the procedure (ST6) for creating the verification data set according to the second embodiment.
 実施の形態4に係る第8の手順は、レーダ衛星画像について、検証結果を確認する手順(ST48)である。この手順も、実施の形態2に係る検証結果を確認する手順(ST7)と同じである。 The eighth procedure according to Embodiment 4 is a procedure (ST48) for confirming the verification result of the radar satellite image. This procedure is also the same as the procedure (ST7) for confirming the verification result according to the second embodiment.
 以上のとおり実施の形態4に係る学習方法は上記手順を含むため、学習モデルを検証でき、視認性が悪く地物の判読が難しいレーダ画像から浸水が発生した領域を自動検出することができる。 As described above, since the learning method according to Embodiment 4 includes the above procedure, it is possible to verify the learning model and automatically detect flooded areas from radar images with poor visibility and difficult to interpret features.
実施の形態5.
 レーダ画像から浸水が発生した領域を自動検出する場面において、あらかじめ地図上のどの位置が水域であるかがわかれば、誤検出を減らすことが期待できる。
 実施の形態5は、実施の形態4に係る学習方法を基礎とし、積極的に水域情報を用いる学習方法について明らかにする。
 実施の形態5において、既出の実施の形態と重複する説明は適宜省略される。
Embodiment 5.
In situations where flooded areas are automatically detected from radar images, if it is known in advance which locations on the map are water areas, false detections can be expected to be reduced.
Embodiment 5 is based on the learning method according to Embodiment 4, and clarifies a learning method that positively uses water area information.
In the fifth embodiment, descriptions overlapping those of the previous embodiments are omitted as appropriate.
 図5は、実施の形態5に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである。図5に示されるとおり実施の形態5に係る方法は、実施の形態4に示された手順に加え、水域情報を読み込む手順(ST51)をさらに含む。 FIG. 5 is a flowchart showing the procedure of a learning method for automatically detecting a region of interest from a radar image, according to Embodiment 5. As shown in FIG. 5, the method according to Embodiment 5 further includes a procedure for reading water area information (ST51) in addition to the procedure shown in Embodiment 4. FIG.
 図5に示される地理空間情報データベースとは、地球上の座標と土地被覆分類とが紐づけられたデータベースをいう。土地被覆分類とは、土地を道路、河川、森、等の種類に分類すること又は分類した結果をまとめた情報のことをいう。本開示技術に係る方法は、地理空間情報データベースを利用できる状況においては、積極的にこれを利用する。
 前述のとおり地理空間情報データベースが利用できれば、誤検出を減らすことが期待できる。さらに地理空間情報データベースすることは、学習に必要な衛星画像の枚数を減らすことも期待できる。
The geospatial information database shown in FIG. 5 is a database in which coordinates on the earth and land cover classifications are linked. Land cover classification refers to classification of land into types such as roads, rivers, forests, etc., or information summarizing the classification results. The method according to the technology disclosed herein positively uses the geospatial information database in situations where it can be used.
As mentioned above, if a geospatial information database can be used, false detections can be expected to be reduced. Furthermore, creating a geospatial information database is expected to reduce the number of satellite images required for learning.
 図5に示されるとおり実施の形態5に係る第2から第9の手順は、実施の形態4に係る第1から第8の手順とほぼ同じである。実施の形態5に係る第4の手順と実施の形態4に係る第3の手順とには、若干の差異がある。
 実施の形態5に係るNDWIと閾値とを比較する手順(ST54)は、実施の形態4に係るNDWIと閾値とを比較する手順(ST43)と比較して、浸水発生前の状態における陸域又は水域の判断の仕方が異なる。実施の形態5は、浸水発生前のマルチスペクトル画像のNDWIと閾値との比較に代えて、直接、地理空間情報データベースから得た水域情報を利用する。
As shown in FIG. 5, the second to ninth procedures according to the fifth embodiment are substantially the same as the first to eighth procedures according to the fourth embodiment. There are some differences between the fourth procedure according to the fifth embodiment and the third procedure according to the fourth embodiment.
Compared to the procedure (ST43) of comparing the NDWI and the threshold according to the fourth embodiment, the procedure (ST54) for comparing the NDWI and the threshold according to the fifth embodiment is different from the land area or The method of judging water areas is different. Embodiment 5 directly uses water area information obtained from a geospatial information database instead of comparing the NDWI of the multispectral image before the occurrence of flooding with a threshold value.
 実施の形態5に係るNDWIと閾値とを比較する手順(ST54)では、浸水発生後のマルチスペクトル画像についてのみ、NDWIと閾値との比較が行われる。さらにいえば実施の形態5に係るNDWIと閾値とを比較する手順(ST54)では、地理空間情報データから得た水域以外の領域に対応する画素についてののみ、NDWIと閾値との比較が行われる。 In the procedure (ST54) for comparing the NDWI and the threshold value according to Embodiment 5, the NDWI and the threshold value are compared only for the multispectral image after the occurrence of flooding. Furthermore, in the procedure (ST54) for comparing the NDWI with the threshold value according to Embodiment 5, the NDWI is compared with the threshold value only for the pixels corresponding to the areas other than the water area obtained from the geospatial information data. .
 以上のとおり実施の形態5に係る学習方法は上記手順を含むため、学習モデルを検証でき、視認性が悪く地物の判読が難しいレーダ画像から浸水が発生した領域を自動検出することができる。
 また地理空間情報データベースを利用できる状況にあれば、本開示技術は積極的にこれを利用し、誤検出を減らし、学習に必要な衛星画像の枚数を減らすこともできる。
As described above, since the learning method according to Embodiment 5 includes the above procedure, the learning model can be verified, and the flooded area can be automatically detected from the radar image with poor visibility and difficult to interpret the features.
In addition, if a geospatial information database is available, the technology of the present disclosure can actively use it, reduce false detections, and reduce the number of satellite images required for learning.
実施の形態6.
 実施の形態3から実施の形態5までは、NDVI及びNDWIを用いる方法について明らかにしてきた。
 実施の形態6は、さらに別のバンド間演算であるNDSI(Noralized Difference Snow Index)について開示し、多時期の観測データを用いる方法の態様を明らかにする。また実施の形態6では、関心領域を災害が発生した箇所に限定しない。
Embodiment 6.
Embodiments 3 to 5 have clarified methods using NDVI and NDWI.
Embodiment 6 discloses yet another inter-band operation, NDSI (Noralized Difference Snow Index), and clarifies aspects of the method using multi-temporal observation data. Moreover, in Embodiment 6, the region of interest is not limited to the place where the disaster occurred.
 図6は、実施の形態6に係る、レーダ画像から関心領域を自動検出するための学習方法、の手順を示すフローチャートである
 図6に示されるとおり、実施の形態6に係る方法は、学習モデルを得る手順と、学習モデルを検証する手順と、に分けられる。学習モデルを得る手順は、特徴量を算出する手順(ST61)と、特徴量の変化量を算出する手順(ST62)と、特徴量の変化量と閾値とを比較する手順(ST63)と、教師ラベルを作成する手順(ST64)と、教師ラベルを読み込む手順(ST65)と、学習データセットを作成する手順(ST66)と、機械学習を行う手順(ST67)と、を含む。学習モデルを検証する手順は、検証データセットを作成する手順(ST68)と、検証結果を確認する手順(ST69)と、を含む。
FIG. 6 is a flowchart showing a procedure of a learning method for automatically detecting a region of interest from a radar image according to Embodiment 6. As shown in FIG. and a procedure for verifying the learning model. The procedure for obtaining the learning model includes a procedure for calculating the feature quantity (ST61), a procedure for calculating the amount of change in the feature quantity (ST62), a procedure for comparing the amount of change in the feature quantity with a threshold (ST63), and a teacher It includes a label creation procedure (ST64), a teacher label reading procedure (ST65), a learning data set creation procedure (ST66), and a machine learning procedure (ST67). The procedure for verifying the learning model includes a procedure for creating a verification data set (ST68) and a procedure for confirming verification results (ST69).
 実施の形態6に係る第1の手順は、光学衛星画像について、特徴量を算出する手順(ST61)である。ここで特徴量は、複数の種類があってよく、NDVI、NDWI、の他、次式に示すNDSIが追加されてもよい。

Figure JPOXMLDOC01-appb-I000003

ここでGREENは緑色域(Landsat8のBand3)の反射率を、SWIRは短波長赤外域(Landsat8のBand6又はBand7)の反射率を、それぞれ表す。
 本開示技術を適用する光学衛星画像は、多時期の観測データであってよい。多時期の観測データに対してNDSIを算出することによって、積雪があった地域及び時期を特定することができる。
A first procedure according to Embodiment 6 is a procedure (ST61) for calculating a feature amount for an optical satellite image. Here, there may be a plurality of types of feature amounts, and NDSI shown in the following equation may be added in addition to NDVI and NDWI.

Figure JPOXMLDOC01-appb-I000003

Here, GREEN represents the reflectance of the green region (Band 3 of Landsat 8), and SWIR represents the reflectance of the short wavelength infrared region (Band 6 or Band 7 of Landsat 8).
Optical satellite images to which the technology of the present disclosure is applied may be observation data from multiple periods. By calculating the NDSI with respect to the observation data of multiple periods, it is possible to specify the area and the period of snowfall.
 実施の形態6に係る第2の手順は、光学衛星画像について、特徴量の変化量を算出する手順(ST62)である。特徴量の変化量を算出するための光学衛星画像は、関心のある場所及び時期の光学衛星画像と、その場所の土地被覆に変化が生じる程度にその直前の時期に撮影した光学衛星画像と、を用いることが望ましい。その場所の土地被覆に変化が生じる程度にその直前の時期とは、例えば、関心のある時期が2021年9月3日だった場合の2021年8月27日、といった1週間前であってよい。 The second procedure according to Embodiment 6 is the procedure (ST62) for calculating the amount of change in the feature amount for the optical satellite image. The optical satellite images for calculating the amount of change in the feature amount are the optical satellite image at the place and time of interest, the optical satellite image taken at the time just before the change in the land cover at that place, should be used. The time immediately prior to the change in land cover at the location may be, for example, one week prior, such as August 27, 2021 if the time of interest was September 3, 2021. .
 実施の形態6に係る第3の手順は、光学衛星画像について、特徴量の変化量と閾値とを比較する手順(ST63)である。ここで閾値は、特徴量の種類ごとにそれぞれ設けられていてよい。前述のとおりNDVI等の指標は、-1から1の間に正規化された数値で示される。そこでNDVI等の変化量についての閾値は、例えば0.5と定められてよい。NDVI等の変化量は、正負の両方が考え得るため、閾値も正側と負側とそれぞれ定められてもよい。 The third procedure according to Embodiment 6 is a procedure (ST63) for comparing the amount of change in the feature quantity and the threshold for the optical satellite image. Here, a threshold value may be provided for each type of feature amount. As described above, an index such as NDVI is indicated by a normalized numerical value between -1 and 1. Therefore, the threshold for the amount of change in NDVI or the like may be set at 0.5, for example. Since the amount of change in NDVI or the like can be both positive and negative, the threshold values may also be determined on the positive side and the negative side, respectively.
 実施の形態6に係る第4の手順は、光学衛星画像又はマルチスペクトル画像について、教師ラベルを作成する手順(ST64)である。ここで教師ラベルは、特徴量の性質に応じた内容のラベルであってよい。例えば、NDVIの変化量と閾値とを比較して特定した画素は、「Vegetation」という名称の教師ラベルが対応づけられてよい。同様に、NDSIの変化量と閾値とを比較して特定した画素は、「Snow」という名称の教師ラベルが対応づけられてよい。 The fourth procedure according to Embodiment 6 is the procedure (ST64) of creating teacher labels for optical satellite images or multispectral images. Here, the teacher label may be a label with content according to the nature of the feature quantity. For example, a pixel identified by comparing the amount of change in NDVI with a threshold value may be associated with a teacher label named "Vegetation". Similarly, a pixel specified by comparing the NDSI change amount and the threshold value may be associated with a teacher label named "Snow".
 実施の形態6に係る第5の手順は、教師ラベルを読み込む手順(ST65)である。実施の形態6は、前述のとおり多時期の観測データを用いる。したがって、教師ラベルを作成する手順(ST64)で作成した教師ラベルは、いったん、図6に示されたデータベースに保存される。教師ラベルを読み込む手順(ST65)は、十分に多時期の観測データが集まった後に、機械学習をいよいよ行うときに実施される手順である。 The fifth procedure according to Embodiment 6 is the procedure of reading teacher labels (ST65). Embodiment 6 uses multi-time observation data as described above. Therefore, the teacher label created in the procedure for creating the teacher label (ST64) is temporarily stored in the database shown in FIG. The procedure of reading teacher labels (ST65) is a procedure that is executed when machine learning is finally performed after sufficient multi-time observation data has been collected.
 実施の形態6に係る第6の手順は、レーダ衛星画像について、学習データセットを作成する手順(ST66)である。この手順は、実施の形態1に係る学習データセットを作成する手順(ST4)と同じである。 A sixth procedure according to Embodiment 6 is a procedure (ST66) for creating a learning data set for radar satellite images. This procedure is the same as the procedure (ST4) for creating the learning data set according to the first embodiment.
 実施の形態6に係る第7の手順は、機械学習を行う手順(ST67)である。この手順も、実施の形態1に係る機械学習を行う手順(ST5)と同じである。 The seventh procedure according to Embodiment 6 is the procedure for performing machine learning (ST67). This procedure is also the same as the procedure (ST5) for performing machine learning according to the first embodiment.
 実施の形態6に係る第8の手順は、検証データセットを作成する手順(ST68)である。この手順は、実施の形態2に係る検証データセットを作成する手順(ST6)と同じである。 The eighth procedure according to Embodiment 6 is the procedure for creating a verification data set (ST68). This procedure is the same as the procedure (ST6) for creating the verification data set according to the second embodiment.
 実施の形態6に係る第9の手順は、検証結果を確認する手順(ST69)である。この手順も、実施の形態2に係る検証結果を確認する手順(ST7)と同じである。 The ninth procedure according to Embodiment 6 is the procedure for confirming the verification result (ST69). This procedure is also the same as the procedure (ST7) for confirming the verification result according to the second embodiment.
 以上のとおり実施の形態6に係る学習方法は上記手順を含むため、学習モデルを検証でき、視認性が悪く地物の判読が難しいレーダ画像から土地被覆の種類に応じた自動検出を行うことができる。 As described above, since the learning method according to the sixth embodiment includes the above procedure, the learning model can be verified, and automatic detection according to the type of land cover can be performed from a radar image with poor visibility and difficult to interpret features. can.
 本開示技術は、レーダ衛星画像を用いた被災箇所の自動検出装置に応用でき、産業上の利用可能性を有する。 The disclosed technology can be applied to an automatic detection device for damaged areas using radar satellite images, and has industrial applicability.

Claims (7)

  1.  光学衛星画像から関心領域を検出するための特徴量を計算し、
     前記特徴量を用いて前記関心領域の地図上の位置を検出し、
     前記位置に対して教師ラベルを生成し、
     前記光学衛星画像とペアのレーダ衛星画像に対して学習データセットを作成し、
     前記学習データセットを用いて機械学習を行う、
    学習方法。
    Calculating features for detecting regions of interest from optical satellite images,
    Detecting the position of the region of interest on a map using the feature amount,
    generate teacher labels for the positions;
    creating a training data set for the radar satellite image paired with the optical satellite image;
    performing machine learning using the learning data set;
    learning method.
  2.  さらに、前記学習データセットとは異なる検証データセットを用いて、前記機械学習を行った学習モデルを検証する、
    請求項1に記載の学習方法。
    Furthermore, using a verification data set different from the learning data set, verifying the learning model that has undergone the machine learning,
    A learning method according to claim 1.
  3.  前記特徴量はNDVIを含み、
     前記関心領域は倒木が発生した地域である
    請求項1に記載の学習方法。
    The feature quantity includes NDVI,
    2. The learning method according to claim 1, wherein the area of interest is an area where fallen trees have occurred.
  4.  前記特徴量はNDWIを含み、
     前記関心領域は浸水が発生した地域である
    請求項1に記載の学習方法。
    The feature quantity includes NDWI,
    The learning method according to claim 1, wherein the region of interest is a flooded area.
  5.  地理空間情報データベースを利用して前記教師ラベルを生成する
    請求項4に記載の学習方法。
    5. The learning method according to claim 4, wherein the teacher label is generated using a geospatial information database.
  6.  前記光学衛星画像は多時期の観測データであり、
     前記特徴量はNDSIを含む、
    請求項1に記載の学習方法。
    The optical satellite image is multi-time observation data,
    wherein the feature quantity includes NDSI;
    A learning method according to claim 1.
  7.  請求項1から6までのいずれか1項に記載の学習方法により学習された、
    自動検出装置。
    Learned by the learning method according to any one of claims 1 to 6,
    Automatic detection device.
PCT/JP2021/040695 2021-11-05 2021-11-05 Learning method for automatically detecting regions of interest from radar image, and automatic detection device WO2023079669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/040695 WO2023079669A1 (en) 2021-11-05 2021-11-05 Learning method for automatically detecting regions of interest from radar image, and automatic detection device
JP2023549976A JP7391278B2 (en) 2021-11-05 2021-11-05 Learning method and automatic detection device for automatically detecting regions of interest from radar images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040695 WO2023079669A1 (en) 2021-11-05 2021-11-05 Learning method for automatically detecting regions of interest from radar image, and automatic detection device

Publications (1)

Publication Number Publication Date
WO2023079669A1 true WO2023079669A1 (en) 2023-05-11

Family

ID=86240836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040695 WO2023079669A1 (en) 2021-11-05 2021-11-05 Learning method for automatically detecting regions of interest from radar image, and automatic detection device

Country Status (2)

Country Link
JP (1) JP7391278B2 (en)
WO (1) WO2023079669A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047516A (en) * 2007-08-17 2009-03-05 Pasuko:Kk Image formation method and program for reading feature information
US20160019458A1 (en) * 2014-07-16 2016-01-21 Deep Learning Analytics, LLC Systems and methods for recognizing objects in radar imagery
WO2017179171A1 (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Image processing device and image processing method
US20200065624A1 (en) * 2018-08-23 2020-02-27 Palantir Technologies Inc. Machine learning assistant for image analysis
CN111311022A (en) * 2020-03-12 2020-06-19 深圳前海微众银行股份有限公司 Power generation amount prediction method, device, equipment and computer readable storage medium
US20200364830A1 (en) * 2019-05-16 2020-11-19 Here Global B.V. Method, apparatus, and system for task driven approaches to super resolution
CN112434745A (en) * 2020-11-27 2021-03-02 西安电子科技大学 Occlusion target detection and identification method based on multi-source cognitive fusion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016597A (en) * 2018-07-27 2020-01-30 パナソニック株式会社 Radar data processor, object discrimination device, radar data processing method and object discrimination method
WO2020116194A1 (en) * 2018-12-07 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 Information processing device, information processing method, program, mobile body control device, and mobile body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047516A (en) * 2007-08-17 2009-03-05 Pasuko:Kk Image formation method and program for reading feature information
US20160019458A1 (en) * 2014-07-16 2016-01-21 Deep Learning Analytics, LLC Systems and methods for recognizing objects in radar imagery
WO2017179171A1 (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Image processing device and image processing method
US20200065624A1 (en) * 2018-08-23 2020-02-27 Palantir Technologies Inc. Machine learning assistant for image analysis
US20200364830A1 (en) * 2019-05-16 2020-11-19 Here Global B.V. Method, apparatus, and system for task driven approaches to super resolution
CN111311022A (en) * 2020-03-12 2020-06-19 深圳前海微众银行股份有限公司 Power generation amount prediction method, device, equipment and computer readable storage medium
CN112434745A (en) * 2020-11-27 2021-03-02 西安电子科技大学 Occlusion target detection and identification method based on multi-source cognitive fusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TORIYA TAKEKI, ASHRAF DEWAN, ITARU KITAHARA: "Corresponding point search method for SAR and optical satellite images using adversarial generative networks", IEICE TECHNICAL REPORT, vol. 119, no. 386, 16 January 2020 (2020-01-16), pages 7 - 12, XP093062392 *

Also Published As

Publication number Publication date
JPWO2023079669A1 (en) 2023-05-11
JP7391278B2 (en) 2023-12-04

Similar Documents

Publication Publication Date Title
Negru et al. Exponential contrast restoration in fog conditions for driving assistance
CN110909690B (en) Method for detecting occluded face image based on region generation
Mallinis et al. Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data
CN103914813B (en) The restored method of colored haze image defogging and illumination compensation
Mohajerani et al. Cloud and cloud shadow segmentation for remote sensing imagery via filtered jaccard loss function and parametric augmentation
CN103778418A (en) Mountain fire image identification method of image monitoring system of electric transmission line tower
CN110569797B (en) Method, system and storage medium for detecting mountain fire of geostationary orbit satellite image
CN114782298B (en) Infrared and visible light image fusion method with regional attention
Woodell et al. Advanced image processing of aerial imagery
CN114627269A (en) Virtual reality security protection monitoring platform based on degree of depth learning target detection
Oehmcke et al. Creating cloud-free satellite imagery from image time series with deep learning
CN115861756A (en) Earth background small target identification method based on cascade combination network
CN114399734A (en) Forest fire early warning method based on visual information
WO2023079669A1 (en) Learning method for automatically detecting regions of interest from radar image, and automatic detection device
Farasin et al. Supervised Burned Areas Delineation by Means of Sentinel-2 Imagery and Convolutional Neural Networks.
Sah et al. Semi-automated cloud/shadow removal and land cover change detection using satellite imagery
CN115546909A (en) Living body detection method and device, access control system, equipment and storage medium
CN115546667A (en) Real-time lane line detection method for unmanned aerial vehicle scene
CN114155165A (en) Image defogging method based on semi-supervision
Won et al. An experiment on image restoration applying the cycle generative adversarial network to partial occlusion Kompsat-3A image
CN114724023A (en) Twin network-based water body change detection method
Pacot et al. Cloud removal from aerial images using generative adversarial network with simple image enhancement
Ma et al. Smoke Detection Algorithm based on Negative Sample Mining.
Bui et al. Oil Spill Detection and Classification from Airborne EOIR Images Using a Deep Learning Model
CN117689481B (en) Natural disaster insurance processing method and system based on unmanned aerial vehicle video data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549976

Country of ref document: JP