WO2023079623A1 - Image display system, image transmission device, display control device, and image display method - Google Patents

Image display system, image transmission device, display control device, and image display method Download PDF

Info

Publication number
WO2023079623A1
WO2023079623A1 PCT/JP2021/040577 JP2021040577W WO2023079623A1 WO 2023079623 A1 WO2023079623 A1 WO 2023079623A1 JP 2021040577 W JP2021040577 W JP 2021040577W WO 2023079623 A1 WO2023079623 A1 WO 2023079623A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display
data
original image
event information
Prior art date
Application number
PCT/JP2021/040577
Other languages
French (fr)
Japanese (ja)
Inventor
章男 大場
博之 勢川
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Priority to PCT/JP2021/040577 priority Critical patent/WO2023079623A1/en
Publication of WO2023079623A1 publication Critical patent/WO2023079623A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering

Definitions

  • the present invention relates to image display technology for displaying moving images using transmitted original images.
  • UHDTV Ultra HDTV
  • HDTV High Definition Television
  • the resolution and viewing angle of images, as well as the number of pixels that make up one frame tend to increase more and more.
  • an increase in the amount of data causes various problems such as a tight transmission band, an increase in calculation cost, and an increase in power consumption.
  • the frame rate does not increase and the image quality deteriorates. .
  • the present invention has been made in view of these problems, and its purpose is to provide a technology that can easily display images with high resolution and wide viewing angles with high quality.
  • This image display system is an image display system comprising an image transmission device for transmitting original image data and a display control device for controlling image display using the original image data, wherein the image transmission device comprises: When a luminance change event occurs in any pixel in the original image, an event information generation unit that generates event information including position information of the pixel, and transmits data of the entire original image at a predetermined frame rate, and a data transmission unit that asynchronously transmits event information, and the display control device uses the data of the entire original image to generate display image data at a predetermined frame rate, and based on the latest event information,
  • the present invention is characterized by comprising a display image drawing section for locally updating a display image, and an output section for outputting data of the display image to a display device.
  • This image transmission device is an image transmission device that transmits data of an original image and realizes an image display using the original image at a transmission destination.
  • an event information generation unit that generates event information including the position information of the pixel, data of the entire original image are transmitted at a predetermined frame rate, and the event information is transmitted asynchronously, thereby generating a display image at the transmission destination.
  • a data transmission unit that locally updates the .
  • This display control device is a display control device that receives data of an original image and controls image display using the data of the original image. and an event information acquisition unit that acquires event information including position information of a pixel transmitted asynchronously with data of the entire original image in response to a luminance change event occurring in any pixel in the original image. a display image drawing unit that generates display image data at a predetermined frame rate using data of the entire original image and locally updates the display image based on recent event information; and an output unit for outputting to a display device.
  • This image display method comprises an image display system comprising an image transmission device for transmitting original image data and a display control device for controlling image display using the original image data. generating event information including position information of the pixel when a luminance change event occurs in one of the pixels; transmitting data of the entire original image at a predetermined frame rate; and the display control device generates display image data at a predetermined frame rate using the data of the entire original image, and locally updates the display image based on recent event information. and outputting data of the display image to a display device.
  • images with high resolution and wide viewing angles can be easily displayed with high quality.
  • FIG. 1 is a diagram showing an internal circuit configuration of a display control device according to this embodiment
  • FIG. 1 is a diagram showing functional block configurations of an image transmission device and a display control device according to the present embodiment
  • FIG. 10 is a diagram for explaining a problem related to the balance between the amount of provided information and the amount of received information when a flat-panel display is used as the display destination;
  • FIG. 3 is a diagram for explaining the relationship between data transmitted by an image transmission device and a display image generated by a display control device in the embodiment
  • FIG. 7 is a diagram showing another example of the relationship between data transmitted by the image transmission device and a display image generated by the display control device in the embodiment
  • 4 is a diagram illustrating data formats of an omnidirectional image and event information prepared by the image transmission device in the present embodiment
  • FIG. 5 is a diagram for explaining the relationship between the shape of the view screen and the amount of provided information
  • FIG. 4 is a diagram for explaining distortion image drawing processing in the display control device according to the embodiment
  • It is a figure which shows the modification of the image display system in this Embodiment.
  • FIG. 10 is a diagram for explaining the relationship between partial update and reprojection based on event information in the embodiment;
  • FIG. 7 is a diagram for explaining display image generation processing when an omnidirectional image is represented by a cube map in the present embodiment;
  • FIG. 10 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equirectangular projection in the present embodiment;
  • FIG. 10 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equidistant projection in the present embodiment;
  • FIG. 4 is a diagram for explaining a mode in which an omnidirectional image is represented by equidistant projection and a plurality of resolution levels are provided in the present embodiment;
  • FIG. 10 is a diagram for explaining a method of generating an equidistant projection image having a distribution in which the resolution decreases from the center to the periphery in the present embodiment;
  • FIG. 10 is a diagram for explaining display image generation processing when an omnidirectional image is represented on the plane of a regular octahedron in the present embodiment;
  • FIG. 1 shows a configuration example of an image display system to which this embodiment can be applied.
  • the image display system 1 includes display control devices 10a, 10b, and 10c that display images according to user operations, and an image transmission device 20 that provides image data used for display.
  • Input devices 14a, 14b, and 14c for user operations and display devices 16a, 16b, and 16c for displaying images are connected to the display control devices 10a, 10b, and 10c, respectively.
  • the display control devices 10a, 10b, 10c and the image transmission device 20 can establish communication via a network 8 such as a WAN (World Wide Network) or a LAN (Local Area Network).
  • a network 8 such as a WAN (World Wide Network) or a LAN (Local Area Network).
  • the display control devices 10a, 10b, 10c, the display devices 16a, 16b, 16c, and the input devices 14a, 14b, 14c may be connected either by wire or wirelessly. Alternatively, two or more of those devices may be integrally formed.
  • the display control device 10b is connected to a head-mounted display, which is the display device 16b. Since the head-mounted display can change the field of view of the displayed image according to the movement of the user wearing it on the head, it also functions as the input device 14b.
  • the display control device 10c is a mobile terminal, and is integrally configured with a display device 16c and an input device 14c, which is a touch pad covering the screen.
  • the external shape and connection form of the illustrated device are not limited.
  • the number of display control devices 10a, 10b, 10c and image transmission devices 20 connected to the network 8 is not limited either.
  • the image transmission device 20 may be a cloud server or content server in a system such as cloud gaming.
  • the display control devices 10a, 10b, and 10c may be collectively referred to as the display control device 10, the input devices 14a, 14b, and 14c as the input device 14, and the display devices 16a, 16b, and 16c as the display device 16 in some cases.
  • the input device 14 may be one or a combination of general input devices such as a controller, keyboard, mouse, touch pad, joystick, etc., and supplies the contents of user operations to the display control device 10 .
  • the display device 16 may be a general display such as a liquid crystal display, a plasma display, an organic EL display, a wearable display, or a projector, and displays images output from the display control device 10 .
  • the image transmission device 20 provides the display control device 10 with content data accompanied by image display.
  • the type of content is not particularly limited, and may be electronic games, images for viewing, television broadcasts, electronic conferences, video chats, or the like.
  • the display control device 10 basically acquires content data used for display from the image transmission device 20 and implements display processing. Alternatively, the image transmission device 20 and the display control device 10 may cooperate to generate content data, thereby distributing the load of drawing processing and the like.
  • FIG. 2 shows an example of an image transmitted and displayed in this embodiment.
  • (a) is an example of displaying the data of the captured image 130 as it is as the display image 132 in a live broadcast, video chat, or the like.
  • the source of the image data may be an imaging device connected to the display control device 10 as well as the image transmission device 20 .
  • the display device 16 is a flat display.
  • (b) is an example of preparing an omnidirectional image 134 and generating a display image 136 in a field of view corresponding to movement of the head of a user wearing a head-mounted display.
  • stereoscopic vision can be realized by displaying stereoscopic images with parallax on the left and right regions of the display panel corresponding to the left and right eyes of the user, as in the illustrated display image 136 .
  • the displayed image 136 has distortion and chromatic aberration corresponding to the eyepiece lens so that a distortion-free image can be viewed through the eyepiece lens. Give the opposite distortion.
  • the left and right images of the display image 136 are each curved in a barrel shape.
  • an image to which distortion corresponding to the eyepiece is applied is called a "distorted image”.
  • the omnidirectional image 134 may be an image rendered by computer graphics, a photographed image, or a combination thereof.
  • the image data transmission source may be a drawing mechanism inside the display control device 10, an imaging device connected to the display control device 10, or the like.
  • the delay time until display cannot be overlooked.
  • the delay time greatly affects the operability of the game.
  • the power consumption for data processing and transmission increases, especially in the case of a head-mounted display, a large-capacity storage battery may be required, and the feeling of wearing may deteriorate due to heat generation.
  • resources related to processing and transmission are saved by capturing images in units of pixels and transmitting information.
  • the data transmission source acquires the occurrence of the change event in units of pixels, and transmits only the information related to the local change event through the bypass line independently of the data of the entire image.
  • the display control device 10 locally updates the portion of the display image where the change event has occurred based on the most recently transmitted information.
  • a “change event” refers to a state in which a difference equal to or greater than a threshold occurs in observed luminance or pixel values (hereafter simply referred to as an "event").
  • a data transmission source such as the image transmission device 20 transmits data such as the captured image 130, the omnidirectional image 134, or a portion thereof at a predetermined rate, and at the time when a change event occurs, the pixel position and Send event information, including the content of the change, by bypass.
  • the display controller 10 generates frames of display images at a predetermined rate and locally updates the frames based on the transmitted event information.
  • the display control device 10 draws the display image using ray tracing technology.
  • Ray tracing is a method of generating a virtual ray that passes through each pixel on the view screen from the viewpoint and determining the pixel value based on the color information of the destination.
  • an image transmitted from the image transmission device 20 or the like is placed in front of the view screen, and the destination of the ray is obtained to acquire color information on the image. By adopting this method, it becomes possible to selectively draw only pixels where an event has occurred.
  • Ray tracing is generally regarded as a process with a large amount of computation and a heavy load.
  • most intermediate buffer memories such as depth buffers are unnecessary.
  • the efficiency of drawing can be improved while maintaining the quality.
  • by enabling the transmission and rendering of information in pixel units it is possible to minimize the transmission of data such as the background that does not contribute to the improvement of image quality, and reduce the processing and transmission load at the data transmission source.
  • FIG. 3 illustrates a specific configuration of the image display system according to this embodiment.
  • the image data that is the source of the display image is not limited to be generated by the image transmission device 20, and at least part of it is generated by a local device on the display side such as the display control device 10 or an imaging device. Although it may play a role, hereinafter, the image transmission device 20 will be mainly described. Further, the entity that forms the final display image from the image data using the ray tracing technique is not limited to the display control device 10, and at least a part thereof may be performed by the display device 16. The control device 10 will be described. Hereinafter, the image transmitted by the image transmission device 20 will be referred to as an "original image" to be distinguished from the "display image” generated by the display control device 10. FIG.
  • the figure shows a state in which two image transmission devices 20a and 20b and two display control devices 10a and 10b are connected via an arbitrary network such as LAN, WiFi (registered trademark), or 5G.
  • the image transmission device 20a transmits the moving image of the speaker 160 captured by the imaging device 140 to the display control devices 10a and 10b, as shown in FIG. 2(a).
  • the image transmission device 20b captures an omnidirectional image 142 with the imaging device 141, and transmits at least part of it to the display control devices 10a and 10b.
  • the omnidirectional image 142 is shown as a cross section of a spherical screen representing the image plane, but the representation method (data format) of the omnidirectional image 142 is not particularly limited as described later.
  • the imaging device 141 may be configured by a multi-lens camera in addition to a combination of fish-eye cameras on the front and back.
  • the image transmission devices 20a and 20b may render images equivalent to the images captured by the imaging devices 140 and 141 using computer graphics, or may render computer graphics on the captured images.
  • the display control device 10a uses the data of the original image 148 transmitted from the image transmission devices 20a and 20b to display the display image 150 on the flat panel display, which is the display device 16.
  • the display control device 10b uses the data of the original image 152 transmitted from the image transmission devices 20a and 20b to display the display image 154 on the head-mounted display, which is the display device 16.
  • the diagram shows the data of the original images 148 and 152 as part of a spherical screen representing the image plane
  • the data format is not limited to this.
  • the screen is of a flat plate type. Since the image displayed on the head-mounted display is a distorted image as described above, the screen (view screen) of the display image 154 is shown as a substantially spherical surface.
  • a display image 154 with distortion is directly generated from the original image 152.
  • the original image 152 is placed in front of the viewscreen in a curved screen shape corresponding to its distortion.
  • the original image 152 is then sampled from the curved viewscreen by ray tracing to generate the displayed image 154 .
  • the image transmission devices 20a and 20b From the image transmission devices 20a and 20b, data 166 of the entire original image is transmitted at a predetermined rate, as indicated by the thick line in the drawing.
  • the "whole original image” is the entire area of the frame of the original image, for example, the entire area of the image within the field of view.
  • the “frame” to be transmitted is not limited to the image within the field of view, and may include a range wider than the field of view used by the display control devices 10a and 10b to form the display image.
  • the image transmitting devices 20a and 20b also transmit event information 168, including the position of the pixel where the event occurred and the content of the change, via a bypass, as indicated by the dashed lines in the drawing.
  • the display control devices 10a and 10b basically use the data 166 of the entire original image transmitted from the image transmission devices 20a and 20b at a predetermined rate to generate the entire display image and cause the display device 16 to display it. At this time, the display control devices 10a and 10b increase the display frame rate by interpolating frames of the original image, or adjust the field of view according to the latest position and posture of the head of the user 162b viewing the head-mounted display. may be corrected. Then, the display control devices 10a and 10b use the event information 168 asynchronously transmitted from the image transmission devices 20a and 20b to selectively update necessary portions in the display image.
  • the display control devices 10a, 10b also transmit data 170a, 170b relating to the position or area on the screen that the user 162a, 162b looking at the display image is gazing to the image transmission device 20a, 20b at a predetermined rate. You may In this case, the image transmission devices 20a and 20b exclude, from among the events that have occurred in the original images, information on events outside the region that the users 162a and 162b are watching from the transmission targets. This makes it possible to further limit the update targets in transmission data and display images without notifying the users 162a and 162b.
  • FIG. 4 shows the internal circuit configuration of the display control device 10.
  • the display control device 10 includes a CPU (Central Processing Unit) 22 , a GPU (Graphics Processing Unit) 24 and a main memory 26 . These units are interconnected via a bus 30 .
  • An input/output interface 28 is also connected to the bus 30 .
  • the input/output interface 28 outputs data to a peripheral device interface such as USB and IEEE 1394, a communication unit 32 including a wired or wireless LAN network interface, a storage unit 34 such as a hard disk drive and a nonvolatile memory, and a display device 16.
  • An output unit 36, an input unit 38 for inputting data from the input device 14, an imaging device, etc., and a recording medium driving unit 40 for driving a removable recording medium such as a magnetic disk, an optical disk, or a semiconductor memory are connected.
  • the CPU 22 controls the entire display control device 10 by executing the operating system stored in the storage unit 34 .
  • the CPU 22 also executes various programs read from a removable recording medium and loaded into the main memory 26 or downloaded via the communication section 32 .
  • the GPU 24 performs drawing processing according to a drawing command from the CPU 22, and stores the display image in a frame buffer (not shown). Then, the display image stored in the frame buffer is converted into a video signal and output to the output section 36 .
  • the main memory 26 is composed of a RAM (Random Access Memory) and stores programs and data necessary for processing.
  • the circuit configuration of the image transmission device 20 may also be substantially the same, and in this case, the acquired or generated image data is transmitted to the display control device 10 via the communication unit 32 .
  • FIG. 5 shows the configuration of functional blocks of the image transmission device 20 and the display control device 10 in this embodiment. Note that the image transmission device 20 and the display control device 10 may perform general information processing such as progressing an electronic game or outputting sound. is shown.
  • the functional blocks shown in FIG. 5 can be realized by the configuration of the CPU 22, GPU 24, main memory 26, etc. shown in FIG. It is realized by a program that exhibits various functions such as a data input function, a data holding function, an image processing function, and a communication function. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and are not limited to either one.
  • the image transmission device 20 includes a gaze area acquisition unit 50 that acquires information related to the user's gaze area, an image data acquisition unit 52 that acquires data of the original image, and data for transmitting the data of the original image to the display control device 10.
  • a transmitter 56 is provided.
  • the gaze area acquisition unit 50 acquires information indicating the position coordinates of the gaze point of the user on the screen of the display device 16 or the area of a predetermined range including the gaze point from the display control device 10 at a predetermined rate.
  • the image data acquisition unit 52 acquires data of the entire original image at a predetermined rate.
  • the data may be generated by the image data acquisition unit 52 itself, or may be acquired from an external device (not shown).
  • the image data acquisition unit 52 acquires captured images at a predetermined rate from an imaging device connected to the image transmission device 20 .
  • the image data acquisition unit 52 draws the original image at a predetermined rate by computer graphics based on the model data and game program stored therein.
  • the image data acquisition unit 52 may acquire the content of the user's operation on the game or the like from the display control device 10 .
  • the image data acquisition unit 52 also acquires the information related to the position and orientation of the head at a predetermined rate.
  • the head-mounted display is equipped with at least one of a motion sensor and a camera that captures images of the surrounding space.
  • the display control device 10 obtains the position and orientation of the head-mounted display and, in turn, the user's head, based on the measurement values of the motion sensor and the images captured by the camera, and transmits them to the image transmission device 20 at a predetermined rate.
  • Various techniques have been put into practical use as techniques for obtaining the position and orientation of the head-mounted display, and any of them may be adopted in the present embodiment.
  • the image data acquisition unit 52 preferentially draws the original image of the area within the user's field of view, or the area expected to be within the user's field of view, among the omnidirectional images representing the virtual world, for example.
  • the image data acquisition unit 52 can be regarded as an “original image drawing unit”. Note that the image data acquisition unit 52 may draw computer graphics on the captured image.
  • the image data acquisition unit 52 also includes an event information generation unit 54 that detects the occurrence of an event and generates event information to be transmitted.
  • the event information generation unit 54 may acquire event information from the imaging device.
  • EDS event-driven sensor
  • EDS also called neuromorphic camera, silicon retina, or dynamic vision sensor
  • EDS is an image sensor that responds to local change events in brightness. Specifically, when a change occurs in the intensity of incident light in any sensor of the sensor array, it outputs a signal indicating the position, time, and whether it increases or decreases. Since EDS locally responds only to pixels that have occurred at the time when an event occurs, it has a light load, low latency, and low latency compared to an image processing approach that extracts differences while scanning the entire image. Output with power consumption is possible. In other words, information can be output with higher temporal resolution than processing the entire image.
  • the event information generation unit 54 acquires an event signal from the EDS provided in the imaging device and immediately generates event information. For example, information is generated that associates the position of a pixel where the intensity of incident light has changed by a threshold value or more, the occurrence time, and the details of the change.
  • the position of a pixel may be represented by the direction of a ray passing through each pixel of the original image from the virtual viewpoint or the center of the optical axis of the camera.
  • the content of the change is not particularly limited as long as it is information that allows the display control device 10 to update the display image based on it.
  • it may be a pixel value difference or a pixel value after change.
  • the display control device 10 itself can draw the object by including information used to draw the object represented by the pixel where the event occurred, such as depth information and model data, in the event information. You may do so.
  • the imaging device may have a configuration in which an image sensor for capturing a general color image and an EDS are separately provided, or the device may output a color image by accumulating event data for a predetermined period of time. good too.
  • the positions of the two sensor arrays are associated with each other, and clocks for generating the imaging time and the event occurrence time are synchronized.
  • it is expected that the frame rate of color images will be reduced and the compression rate will be improved, making it easier to transmit depth information and model data of the object itself in which an event has occurred.
  • the event information generation unit 54 when the image data acquisition unit 52 draws the original image by itself, the event information generation unit 54 generates event information according to a program for the image data acquisition unit 52 to draw the original image. That is, the image data acquisition unit 52 determines the movement of the object in the image world before drawing the image by ray tracing or the like. Therefore, when drawing an image, it is possible to specify by itself at which pixel an event occurs. By acquiring the information, the event information generator 54 generates event information in the same way as when using the event signal from the EDS. When synthesizing a captured image with computer graphics, the event information generating section 54 may generate event information based on both an event signal from the EDS and event information found when the image is drawn.
  • the event information generation unit 54 may further select events to be transmitted as event information based on information related to the gaze point and the gaze area acquired by the gaze area acquisition unit 50 . For example, the event information generation unit 54 excludes events that have occurred outside the attention area from transmission targets by masking them.
  • the data transmission unit 56 transmits the data of the entire original image to the display control device 10 at a predetermined rate, and immediately transmits the event information when the event information generation unit 54 generates the event information.
  • the display control device 10 includes a gaze area transmission unit 60 that transmits information related to the user's gaze area, an image data acquisition unit 62 that acquires data of the entire original image from the image transmission device 20, and acquires event information from the image transmission device 20. , an event information acquisition unit 64 for processing, a display image drawing unit 66 for drawing a display image, and an output unit 74 for outputting display image data.
  • the gaze region transmission unit 60 acquires from the display device 16 the positional coordinates of the user's gaze point on the screen of the display device 16 or the information related to the region of a predetermined range including the gaze point, and transmits the information to the image transmission device 20 at a predetermined rate. Send. For this reason, the display device 16 is provided with a gaze point detector (not shown).
  • a point-of-regard detector is a general device that detects a point of an object that a person is gazing at by, for example, photographing the reflection of infrared rays irradiated to the eyeball.
  • the image data acquisition unit 62 acquires data of the entire original image from the image transmission device 20 at a predetermined rate.
  • the event information acquisition unit 64 acquires event information from the image transmission device 20 each time.
  • the display image drawing section 66 includes a frame image drawing section 70 for drawing frames of the display image, and an event information management section 72 for changing the processing of the frame image drawing section 70 according to the occurrence of an event.
  • the frame image rendering unit 70 uses the data of the entire original image acquired by the image data acquiring unit 62 to render the frames of the display image at a predetermined rate using a technique similar to ray tracing.
  • the frame image rendering unit 70 generates a ray passing through each pixel on the view screen from the user's viewpoint, and samples the pixel values of the arrival point in the original image placed in front of the ray, thereby obtaining the pixel values of the display image. decide.
  • the pixel array of the display screen and the pixel array of the original image may be the same.
  • the frame image drawing unit 70 performs local update by switching the processing content for the place where the event occurred based on the most recent event information.
  • the frame image drawing unit 70 determines the pixel values of the display image based on the information of the pixel values of the original image included in the event information for the location where the event has occurred.
  • the position where the event occurs in the original image is associated with the direction of the ray, whether or not the event has occurred at the destination can be determined from the relationship with the ray direction set in the ray tracing.
  • the frame image drawing unit 70 replaces the sampling destination with pixel value information included in the event information, thereby updating only the necessary portion of the display image.
  • the frame image drawing unit 70 may draw the image of the object in which the event occurred by 3DCG based on the depth information and model data of the object included in the event information. At this time, the frame image drawing unit 70 may perform general ray tracing that calculates reflection, refraction, and the like on the surface of the object. In any case, in the present embodiment, the rendering of the entire display image is performed based on ray tracing, so even with such local correspondence, there is little change in processing content and switching is easy.
  • the frame image drawing unit 70 draws the frames of the display image at a rate higher than the frame rate of the original image in order to reflect the occurrence of the event in the display with high time resolution.
  • the event information management section 72 switches the drawing process in the frame image drawing section 70 as described above based on the event information acquired by the event information acquisition section 64 . That is, it determines whether or not an event has occurred at the set destination of the ray, replaces the sampling destination, or draws the object in which the event has occurred by 3DCG.
  • the output unit 74 outputs data of the display image drawn by the display image drawing unit 66 to the display device 16 for display. As a result, at a frame rate higher than the transmission rate of the original image, an image showing details of changes in the portion where the event occurred is displayed.
  • FIG. 6 is a diagram for explaining a problem related to the balance between the amount of information provided and the amount of information received when a flat panel display is used as the display destination.
  • the amount of provided information is the amount of information represented by the display image
  • the amount of received information is the amount of information recognized by the brain of the user who is viewing the image.
  • the figure shows the angle of view (or FOV: Field Of View) of the displayed image at an appropriate distance from the user's viewpoint 80 .
  • FOV Field Of View
  • the angle of view ⁇ 2K is about 33°.
  • the angles of view ⁇ 4K and ⁇ 8K are approximately 61° and 100°, respectively.
  • the figure also shows a screen 86 of a head-mounted display for comparison, and in this case, the angle of view is about 100° like the screen 84.
  • the larger the screen of the display the wider the angle of view from the line of sight V becomes.
  • the number of pixels on the screen included per unit angle when viewed from the viewpoint 80 increases as the distance from the line of sight V increases. For example, when looking at the screen 84, even if the range of the angle ⁇ is the same, a wider range of pixels come into the field of view in a region 90b distant from the line of sight V than in a region 90a close to the line of sight V.
  • the human visual function has a distribution with respect to the visual field.
  • the central region on the retina that corresponds to the center of the visual field is called the fovea, and has the highest visual acuity and ability to discriminate colors and shapes.
  • the area within about 5° from the line of sight, including the area that is foveated out of the visual field, is called central vision, the area within about 20° from the line of sight is called the effective field of view, and the area outside it is called peripheral vision. It decreases in that order.
  • the amount of received information becomes smaller the further away from the line of sight V.
  • the density of the amount of information entering the field of view increases at positions away from the line of sight V as described above, displaying the entire image with a uniform spatial detail level will increase the amount of information provided and the amount of information received. It can be said that it is in a state of balance.
  • the line of sight V changes due to the movement of the image of the object, etc., so the area that can be captured with high visual performance moves on the screen. In order to deal with this, it is necessary to raise the frame rate and update the image in detail temporally at least for the relevant area.
  • the image quality is improved by paying particular attention to an area within a predetermined range from the line of sight V, and by extension, the point of gaze, thereby correcting the imbalance between the amount of provided information and the amount of received information.
  • Eliminate waste of processing and transmission for the area Specifically, as described above, information about an event occurring outside the region of interest is excluded from transmission targets. As a result, wasteful update processing in the display control device 10 can be eliminated, and display at a high frame rate is possible.
  • FIG. 7 is a diagram for explaining the relationship between the data transmitted by the image transmission device 20 and the display image generated by the display control device 10.
  • FIG. The figure shows the passage of time in the horizontal direction, and the middle part of the figure represents the arrangement of the displayed frames.
  • the updated portion is indicated by a thick line in the vertical line representing the entire frame.
  • FIG. 2(a) it is assumed that an image captured at a remote location such as a live broadcast or video chat is displayed on a flat panel display.
  • the data transmitted from the image transmission device 20 consists of data of the entire original images 180a, 180b, . . . and event information 182a, 182b, 182c, .
  • the figure shows the images of speakers on the image plane as event information 182a, 182b, 182c, .
  • event information 182a, 182b, 182c is transmitted with higher spatial and temporal resolution, such as speaking lips or blinking eyes.
  • the event information 182a, 182b, 182c is transmitted with higher spatial and temporal resolution, such as speaking lips or blinking eyes.
  • the data of the entire original images 180a, 180b, . is sent asynchronously with the timing of event occurrence.
  • the display control device 10 generates a display image frame using the transmitted data. That is, the display image 184a is generated using the data of the entire original image 180a. Display image 184a corresponds to frame 188 in the middle row.
  • the display control device 10 updates only the necessary part 190 using the event information 182a, 182b, 182c, .
  • Display images 186a, 186b, 186c, . . . are generated. Since the transmission timing of the event information 182a, 182b, 182c, . Then, the display control device 10 generates a corresponding display image 184b based on the data of the entire original image 180b transmitted next.
  • the display control device 10 interpolates between the frames of the entire original images 180a, 180b, . to achieve the display of
  • the display control device 10 uses the original image of 30 fps or 60 fps transmitted from the image transmission device 20 and displays the image at 120 fps or 240 fps.
  • FIG. 8 shows another example of the relationship between the data transmitted by the image transmission device 20 and the display image generated by the display control device 10.
  • FIG. 8 shows another example of the relationship between the data transmitted by the image transmission device 20 and the display image generated by the display control device 10.
  • FIG. 2(b) it is assumed that an area corresponding to the user's field of view in the omnidirectional image is displayed on the head-mounted display.
  • the data transmitted from the image transmission device 20 consists of data of the entire original images 200a, 200b, . . . and event information 202a, 202b, 202c, .
  • the image transmission device 20 transmits the data of the entire original images 200a, 200b, .
  • an animal character is moving, and event information 202a, 202b, 202c, .
  • omnidirectional images are shown as the entire original images 200a, 200b, . may be limited to The event information 202a, 202b, 202c, .
  • the display control device 10 generates display images 204a, 204b, . . . using data of the entire original images 200a, 200b, . , . . . are used to generate display images 206a, 206b, 206c, .
  • the display control device 10 may perform reprojection to correct the field of view so as to correspond to the position and posture of the user's head at each time, and then generate distorted images for the left eye and the right eye. .
  • the position and posture of the user's head can be acquired using the motion sensor and camera provided in the head-mounted display.
  • the display control device 10 draws pixels where events have occurred using the event information 202a, 202b, 202c, . Even in this case, even if the frame rate of the entire original image is lowered, a high-quality image can be displayed at a high frame rate such as 120 fps or 240 fps. In addition, it is possible to achieve both low delay in the change of the visual field with respect to the movement of the user's head and low delay in the movement of the image in the fixation area. Since the event detection is performed independently of the user's motion, the motion in the world coordinate system can be accurately detected by comparing the difference between the frames of the display image.
  • FIG. 9 exemplifies the data format of the omnidirectional image and event information prepared by the image transmission device 20 .
  • (a) of the figure shows the equidistant cylindrical projection
  • (b) shows the form of equidistant projection directly expressing the output of the fisheye camera.
  • an omnidirectional camera in which fisheye cameras having an angle of view of about 220° are combined on the front and back is used.
  • an image of equidistant projection in which an object is projected onto a spherical surface is obtained.
  • such an image of equidistant projection is once converted into data 210a in equirectangular projection, and then at least part of it is targeted for transmission.
  • the event information 212a represents the occurrence position of the event by the position coordinates on the image plane of the equirectangular projection.
  • equidistant projection data 210b as shown in (b) may be transmitted. By doing so, it is possible to realize low-delay data transmission without processing for converting to data 210a in the equirectangular projection or preparing a buffer memory for that purpose.
  • the event information 212b represents the occurrence position of the event with position coordinates on the image plane in equidistant projection.
  • event information can also be transmitted with low delay without coordinate conversion of the output from the EDS.
  • only the data of the visual field range 214 in the equidistant projection data 210b may be transmitted as the data of the entire original image.
  • only the information of the event occurring in the gaze area 216 within the visual field range 214 may be transmitted.
  • FIG. 9 focused on transmission processing from the image transmission device 20
  • the display format on the display device 16 side also affects the reduction in delay until display.
  • FIG. 10 is a diagram for explaining the relationship between the shape of the view screen and the amount of provided information.
  • the viewscreen 414 is a screen for presenting central projection images on a flat panel display.
  • a view screen 426 is a screen for representing a distorted image through the eyepiece. The figure shows both screens viewed from the side along with the user's viewpoint 424 .
  • the view screen 414 is composed of a plane having a predetermined angle of view around the axis C, for example.
  • the image of the object 425 is displayed in a uniformly reduced scale according to the distance from the view screen 414 regardless of the height from the axis C.
  • a distorted image premised on an eyepiece lens has the same properties as an image captured by a fisheye lens, and as a result the view screen 426 has a curved shape as shown.
  • the detailed shape of the viewscreen 426 depends on the lens design.
  • the area of the angular range 428 in the vicinity of the optical axis (axis C) of the viewscreen 426 has a small area difference from the corresponding area of the viewscreen 414, whereas the angular range is greater than the optical axis.
  • the image in the central projection image is significantly reduced in the distorted image. be done. In other words, it can be said that part of the image represented by the central projection contains useless information that is not reflected in the distorted image.
  • FIG. 11 is a diagram for explaining distortion image drawing processing in the display control device 10.
  • FIG. The figure shows the passage of time in the horizontal direction, and the upper part of the figure represents the arrangement of the displayed frames.
  • Each frame is represented here as a curved viewscreen of the distorted image, of which the updated portion is shown in bold.
  • the format of data transmitted from the image transmission device 20 is not limited.
  • the display image drawing unit 66 of the display control device 10 draws the entire frame 220a of the display image at the timing when the data of the entire original image is transmitted. At this time, a ray is generated that passes through each pixel on the curved view screen, and the pixel value is determined by acquiring the color information of the arrival point in the original image. This allows the distorted frame 220a to be drawn directly.
  • an image pair composed of left-eye and right-eye images is generated.
  • the display image drawing unit 66 generates frames 222a, 222b, and 222c in which only the parts where the event occurred are updated based on the event information until the data of the entire original image is transmitted next time. Although only the updated portions of the frames 222a, 222b, and 222c are shown in the drawing, in reality, the regions in which no events occur are also represented as images. The direction from the optical center of the camera to the pixel where the event occurred can be determined from the positional information of the pixel where the event occurred and the camera optical system included in the event information.
  • the display image drawing unit 66 performs ray tracing using event information only for necessary parts based on the correspondence between the direction and the ray set at the time of drawing, and determines the pixel value. Again, the strain image can be drawn directly using a curved viewing screen. Next, when the data of the entire original image is transmitted, the display image drawing section 66 generates a corresponding display image frame 220b. By these procedures, low-delay and high-definition image expression can be realized without unnecessary processing and transmission even for distorted images.
  • FIG. 12 shows a modification of the image display system according to this embodiment.
  • a server 252 that generates computer graphics using 3D model data 260 is introduced.
  • the server 252 may be connected to imaging devices 240a and 240b that capture omnidirectional images and wide-angle images, acquire these captured images, and generate images combined with computer graphics.
  • the server 252 may be a server in a cloud environment such as cloud gaming.
  • the server 252 transmits the data 266 of the entire original image at a predetermined rate to the display control devices 10d and 10d of the clients, and also transmits the event information 268a and 268b through the bypass line.
  • the figure shows an equidistant projection image 242 output by a pair of fisheye cameras and a cube map image 270 as an example of the data format of the omnidirectional image.
  • a cube map is a two-dimensional map obtained by projecting an omnidirectional image onto the inner surface of a cube that circumscribes a spherical screen that represents the omnidirectional image, and then developing the image.
  • Various data formats may be used when the server 252 represents the omnidirectional image in this manner.
  • the display control device 10c connected to the flat-panel display as the display device 16c generates and outputs a centrally-projected display image 272.
  • the display control device 10d connected to the head-mounted display as the display device 16d generates and outputs a display image 274 composed of distorted images for the left eye and the right eye.
  • the display control devices 10c and 10d update only the necessary portions 276a and 276b according to the transmission of the event information 268a and 268b, thereby achieving display at a high frame rate.
  • the display control device 10 determines the color information for each pixel by ray tracing using the transmitted image, thereby limiting the type and data format of the transmitted image and the type of the display device 16. It is possible to display with a unified scheme without In addition, it is possible to locally draw images based on event information, generate distorted images without converting to images of central projection, and also make partial areas on the image, such as the area corresponding to the fovea of the eye, Fine control is possible, such as drawing at a higher resolution than other areas.
  • FIG. 13 is a diagram for explaining the relationship between partial update and reprojection based on event information.
  • the display control device 10 performs reprojection to correct the image so as to correspond to the position and posture of the user's head immediately before display.
  • the image transmission device 20 acquires information related to the position and posture of the user's head from the display control device 10 to which data is transmitted, and generates an image in the corresponding field of view.
  • the display control device 10 makes the final adjustment of the field of view according to the movement of the head during the time from generation of the image to display. As a result, the image is displayed in a field of view that follows the movement of the head.
  • the image 280 in the upper part of the figure represents the image world generated by the image transmission device 20.
  • a spherical object 282 is moving against a belt-like object 283 like the ground below.
  • (t0), (t1), and (t2) attached to the object 282 represent the positions of the object 282 at times t0, t1, and t2.
  • the display field of view at each time corresponding to the movement of the user's head is assumed to change to fields of view 284a, 284b, and 284c.
  • the image transmission device 20 predicts the movement of the user's head and transmits image data in a range wider than the field of view 284a as original image data, thereby enabling reprojection. .
  • the display control device 10 performs reprojection based on the transmitted data, and generates and outputs a display image as shown in the lower part. That is, the image data transmitted corresponding to time t0 is used to generate the display frames at times t0 and t1 (S10), and the image data transmitted corresponding to time t2 is used to generate the time t2 and the next display frame. A display frame is generated (S14).
  • S10 the image data transmitted corresponding to time t0
  • the image data transmitted corresponding to time t2 is used to generate the time t2 and the next display frame.
  • a display frame is generated (S14).
  • the image transmission device 20 transmits, as event information, information about pixels whose brightness has changed due to movement of the object 282 at a timing independent of data transmission of the entire original image.
  • the display control device 10 can appropriately draw the image of the object 282 drawn using the latest event information in the display frame at time t1 (S12), as shown in (b).
  • the drawing shows a large change in whether or not the object 282 appears in the display image. is a large value.
  • minute changes can be expressed with high definition and low delay.
  • the display control device 10 refers to the color information included in the event information for the ray corresponding to the pixel where the event occurred in ray tracing. For other rays, the color information of the original image transmitted at time t0 is referred to. On the other hand, the display control device 10 itself may draw the object 282 without including the color information in the event information.
  • the server 252 In the image display system shown in FIG. 12, the server 252 generates virtual world data represented by computer graphics. In this case, the server 252 generates information related to the three-dimensional space to be drawn, such as depth information of the object, during the image drawing process. Therefore, the server 252 transmits the information related to the generated three-dimensional space, so that the movement of the object 282, for example, can be drawn from the model data on the display control device 10 side.
  • the display control device 10 directly draws an object set at a short distance from the user, an object that interacts with the user, and the like, so that a realistic image world can be efficiently expressed.
  • the display control device 10 directly draws an object set at a short distance from the user, an object that interacts with the user, and the like, so that a realistic image world can be efficiently expressed.
  • This aspect is applicable not only to computer graphics, but also to live-action images. That is, the image transmission device 20 separately acquires and transmits the depth information and material information of the subject, so that the display control device 10 can draw only objects with changes using them.
  • depth information and material information may be estimated using deep learning or artificial intelligence, as well as using on-site measurement values or pre-obtained registration information. Technologies for estimating subject material information and depth information from captured images have made rapid progress in recent years. Material Estimation", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (USA), 2018, Vol. 1, p. 6315-6324).
  • an omnidirectional image captured by a fish-eye camera or a multi-view camera, or an omnidirectional image drawn by computer graphics can be used. Since an omnidirectional image cannot be expressed at once with a general central projection image, a three-dimensional image that contains orientation information, such as an image projected onto a polyhedron that combines planes, an equirectangular view, and an equidistant projection image. A special data format is used to represent .
  • the image transmission device 20 of the present embodiment transmits the original image in a data format other than central projection, and the display control device 10 reads the pixel values directly from the original image using a conversion formula corresponding to the data format. , produces a distorted display image.
  • the original azimuth information of the original image can be transmitted as it is, it is possible to easily generate a display image corresponding to the direction of the user's line of sight. For example, when viewing an omnidirectional image from the same position as the imaging device, since the coordinate system of the image centered on the viewpoint matches, it is sufficient to display the image in the same direction as the user's line of sight. It will be. Furthermore, if the distortion aberration of the lens of the fish-eye camera that captures the omnidirectional image and the eyepiece lens are substantially the same, the transformation for the distorted image can be minimized.
  • FIG. 14 is a diagram for explaining display image generation processing when an omnidirectional image is represented by a cube map.
  • the cube map is an image 292 obtained by projecting the image on the surface of the sphere 294 representing the omnidirectional circumference onto each surface of the cube 290 circumscribing the sphere 294 and developing the image 292 .
  • the image transmitting device 20 sets a ray from the center of the sphere 294 to each pixel of the six squares forming the cube 290 .
  • an image 292 is generated by using the color of the surface of the sphere 294 through which the ray (vector rd) passes as the pixel value of the pixel.
  • the resulting image 292 shows orientation information by means of the six squares and their positions.
  • the image transmission device 20 may transmit only the data of the area required for display in the image 292 . In this case also, the image data format is the same.
  • the display control device 10 acquires the data of the image 292 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, an image 292 is arranged as a cube circumscribing a sphere 294 centered on the viewpoint, and the pixel value is determined by sampling the color on the image 292 corresponding to the set ray (vector nor). For this processing, for example, a cube map texture reading command in the cube mapping function of OpenGL, which is a well-known computer graphics library, can be used. On the other hand, in this embodiment, event information is also transmitted in the same format.
  • OpenGL which is a well-known computer graphics library
  • the image transmission device 20 may transmit the vector rd of rays reaching the pixel.
  • the display control device 10 generates a new display frame
  • the vector rd transmitted as event information matches the ray vector nor set in generating the display frame
  • the vector nor is included in the event information. partially updates the image by sampling the latest pixel information.
  • FIG. 15 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equirectangular projection.
  • the equirectangular projection image 302 is data obtained by projecting the image on the surface of the sphere 294 representing the whole sky onto the surface of the cylinder 300 that is in contact with the equator and expanding it.
  • the image transmission device 20 first sets a ray that reaches each pixel of the cylinder 300 from the center of the sphere 294 . Then, the image 302 is generated by using the color of the surface of the sphere 294 through which the ray (vector rd) passes as the pixel value of the pixel.
  • the plane of image 302 represents longitude u in the horizontal direction and latitude v in the vertical direction.
  • the display control device 10 acquires the data of the image 302 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, the image 302 is arranged as a cylinder circumscribing the equator of the sphere 294 centered on the viewpoint, and the pixel value is determined by sampling the color on the image 302 corresponding to the set ray (vector nor). The image transmission device 20 further transmits event information indicating the position of the pixel where the event occurred by position coordinates on the plane of the image 302 . The process of partially updating the image by the display control device 10 in response to this may be the same as described with reference to FIG. 14 .
  • FIG. 16 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equidistant projection.
  • an imaging device is assumed in which fish-eye cameras having an angle of view of 220° are combined on the front and back. That is, the photographed image is data on the surface of the portion of the sphere 306 centered at the optical center, excluding the range outside 220°. Note that the drawing shows only the sphere 306 that constitutes the captured image of one of the pair of fisheye cameras. Also, the angle of view of each fisheye camera is not limited as long as it is 180° or more.
  • equidistant projection images 310a and 310b are obtained by representing the output of the sensor array as it is. However, it is not limited to the photographed image, and can be generated by drawing an image of equidistant projection by computer graphics.
  • the image transmission device 20 generates an image 308 consisting of equidistant projection images 310a and 310b representing the space in the opposite direction.
  • the plane of the image 308 represents longitude u in the horizontal direction and latitude v in the vertical direction.
  • the image transmitting device 20 sets rays at equal intervals from the center of the sphere 294 (306), and the color of the surface of the sphere 294 (306) through which the vector rd passes is displayed in pixels.
  • An image 308 can be generated by taking values.
  • the display control device 10 acquires the data of the image 308 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, the pixel value is determined by sampling the color at the position corresponding to the set ray (vector nor) in the image 308 . The image transmission device 20 further transmits event information representing the position of the pixel where the event occurred by position coordinates on the plane of the image 308 . The process of partially updating the image by the display control device 10 in response to this may be the same as described with reference to FIG. 14 .
  • FIG. 17 is a diagram for explaining a mode in which an omnidirectional image is represented by equidistant projection and a plurality of resolution levels are provided.
  • the image to be used may be an image captured by a device in which fisheye cameras having an angle of view of 180° or more are combined on the front and back, as in FIG. 16, or may be an image rendered by computer graphics in a similar format. Therefore, the original image becomes data on the surface of the sphere 306 excluding the range outside the angle of view.
  • an image represented by a curved screen such as a fisheye lens is represented by compressing the image as the distance from the center of the image increases, compared to the center projection image.
  • This feature is compatible with the human visual characteristic that visual performance decreases with increasing distance from the region corresponding to the fovea. Developing this, it is considered that the image representing the space outside the user's field of view is less likely to be immediately captured by the fovea, so even if it is prepared with a low resolution, the visual impact will be small.
  • each image 314a, 314b has a mipmap structure representing a plurality of resolution levels. For example, when the user is looking in the direction represented by image 314b, most of the area of image 314a is outside the field of view. Therefore, the image transmission device 20 preferentially transmits the image 314a with a low resolution as necessary.
  • the overall transmission data size is reduced and low delay is guaranteed compared to the two images 314a and 314b having the same resolution.
  • the image world can be visually recognized without discomfort by increasing the resolution of the image 314a gradually as the user's line of sight moves closer to the user's line of sight.
  • the process of generating the display image in the display control device 10 and the process of partially updating the image based on the event information may be the same as those described above.
  • the omnidirectional image is represented by two images of equidistant projection, but the number of images of equidistant projection may be three or more depending on the angle of view.
  • their resolutions may be controlled independently.
  • FIG. 18 is a diagram for explaining a method of generating an equidistant projection image having a distribution in which the resolution decreases from the center to the periphery.
  • the equidistant projection image 318 is represented by two-dimensional coordinates of longitude u and latitude v, as shown in (a).
  • two fish-eye cameras are used as shown in FIGS. 16 and 17, two similar images are generated, but the object to which the resolution distribution is given may be both of them, or the user is mainly looking at it. An image only is also acceptable.
  • the image transmission device 20 sets a ray that reaches each pixel on the plane of the image 318 from the optical center of the camera, and sets the color of the surface of the sphere through which the vector rd passes as the pixel value of that pixel.
  • the area represented by one pixel is increased by decreasing the ray density as the distance from the center of the image increases.
  • the transformation from the position coordinates (u, v) to the vector rd on the plane of the image 318 with the angle of view of 220° is realized, for example, by the following calculation.
  • the function f(th) is such that the larger the absolute value of the angle th corresponding to the distance from the center of the image to the position coordinates (u, v), as indicated by the broken line 320a in FIG. is a monotonically increasing function.
  • the greater the distance from the center of the image the lower the density of the rays represented by the vector rd.
  • the image 318 becomes data in which the area represented by one pixel varies depending on the position on the image plane.
  • the display control device 10 performs sampling after converting the set ray vector nor into position coordinates (u, v) on the image 318 by, for example, the following calculation.
  • the function f(th) is the inverse function of the dashed line 320a used to generate the image 318, as indicated by the solid line 320b in (b) of the figure.
  • data representing different areas represented by one pixel can be represented as data of pixels arranged evenly on the display screen.
  • reading corresponding to the mipmap structure is performed by the "LODBIAS" parameter, but the gist of the present embodiment is not limited to that.
  • FIG. 19 is a diagram for explaining display image generation processing when an omnidirectional image is represented on the plane of a regular octahedron.
  • an image 324 is generated by projecting the image on the surface of the sphere 294 representing the omnidirectional circumference onto the surface of the regular octahedron 322 circumscribing it. That is, the image transmission device 20 sets a ray that reaches each pixel of the regular octahedron 322 from the center of the sphere 294, and converts the color of the surface of the sphere 294 through which the ray (vector rd) passes to the pixel value of the pixel.
  • An image 324 is generated by .
  • the display control device 10 acquires the data of the image 324 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, the image 324 is arranged as a regular octahedron circumscribing the sphere 294 centered on the viewpoint, and the pixel value is determined by sampling the color on the image 324 corresponding to the set ray (vector nor). The image transmission device 20 further transmits event information indicating the position of the pixel where the event occurred by position coordinates on the plane of the image 324 . The process of partially updating the image by the display control device 10 in response to this may be the same as described with reference to FIG. 14 . Various methods other than those described above have been proposed for expressing an omnidirectional image with two-dimensional data, and any of them may be adopted in the present embodiment.
  • the image transmission device detects a change in brightness as an event on a pixel-by-pixel basis. , is transmitted asynchronously with the data of the entire original image.
  • the display control device that has acquired the data generates the entire area of the display frame using the data of the entire original image, and interpolates the display frame in which only the changed portion is updated pixel by pixel based on the event information.
  • the display control device enables updating for each pixel by using a ray tracing method of setting a ray corresponding to each pixel on the display image and acquiring color information.
  • a similar effect can also be obtained with a flat panel display by updating only the part where the event occurred within the gaze area.
  • the present embodiment can be easily applied regardless of the display format, such as a flat panel display or a head-mounted display, and regardless of the type of display image, such as a photographed image, computer graphics, or a composite image thereof. .
  • Display control device 16 Display device, 20 Image transmission device, 22 CPU, 24 GPU, 26 Main memory, 50 Gaze area acquisition unit, 52 Image data acquisition unit, 54 Event information generation unit, 56 Data transmission unit, 60 Gaze area Transmission unit 62 Image data acquisition unit 64 Event information acquisition unit 66 Display image drawing unit 70 Frame image drawing unit 72 Event information management unit 74 Output unit.
  • the present invention can be used for various information processing devices such as content servers, game devices, head-mounted displays, display devices, mobile terminals, personal computers, and image display systems including any of them.

Abstract

An image transmission device 20a or 20b transmits, at a predetermined rate, data 166 of an entire original image captured by an imaging device 140 or 141 to a display control device 10a or 10b, obtains a signal for a brightness change event detected by the imaging device 140 or 141 for each pixel to generate event information 168, and asynchronously transmits the event information 168. The display control device 10a or 10b generates a display image by ray tracing at a frame rate higher than the frame rate of the transmitted original image and selectively updates the corresponding image in units of pixels by using the latest event information.

Description

画像表示システム、画像送信装置、表示制御装置、および画像表示方法Image display system, image transmission device, display control device, and image display method
 この発明は、送信された原画像を用いて動画像を表示させる画像表示技術に関する。 The present invention relates to image display technology for displaying moving images using transmitted original images.
 HDTV(High Definition Television)の4倍、16倍の解像度を有するUHDTV(Ultra HDTV)の表示装置が実用化されている。またヘッドマウントディスプレイを装着したユーザの視線に対応する自由な視野で全天周映像を見せることで、画像世界への没入感を与える表示システムも普及している。5G(第5世代移動通信システム)の登場により、広帯域、低遅延でのデータ伝送も可能になり、環境を問わず高い品質で画像コンテンツを楽しめるようになってきた。 Display devices for UHDTV (Ultra HDTV), which have a resolution 4 times and 16 times that of HDTV (High Definition Television), have been put into practical use. In addition, a display system that gives a sense of immersion in the image world by showing an omnidirectional image in a free field of view corresponding to the line of sight of the user wearing the head-mounted display is also widespread. With the advent of 5G (fifth generation mobile communication system), wideband, low-delay data transmission has become possible, and it has become possible to enjoy high-quality image content regardless of the environment.
 上記のとおり様々な電子コンテンツにおいて、画像の解像度や視野角、ひいては1フレームを構成する画素の数は益々増加していく傾向にある。しかしながらこのようなデータ量の増大は、伝送帯域の逼迫、計算コストの増大、消費電力の増大など、様々な問題を引き起こす。特に1フレーム分のデータ処理や伝送に時間を要することにより、フレームレートが上がらず却って画質が低下したり、ユーザの視線の動きに対し視野の変化が遅延し違和感を与えたりすることもあり得る。 As described above, in various electronic contents, the resolution and viewing angle of images, as well as the number of pixels that make up one frame, tend to increase more and more. However, such an increase in the amount of data causes various problems such as a tight transmission band, an increase in calculation cost, and an increase in power consumption. In particular, because it takes time to process and transmit data for one frame, the frame rate does not increase and the image quality deteriorates. .
 本発明はこうした課題に鑑みてなされたものであり、その目的は、解像度や視野角が大きい画像を、高品質かつ容易に表示できる技術を提供することにある。 The present invention has been made in view of these problems, and its purpose is to provide a technology that can easily display images with high resolution and wide viewing angles with high quality.
 上記課題を解決するために、本発明のある態様は画像表示システムに関する。この画像表示システムは、原画像のデータを送信する画像送信装置と、原画像のデータを用いた画像表示を制御する表示制御装置と、を備えた画像表示システムであって、画像送信装置は、原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成するイベント情報生成部と、原画像全体のデータを所定のフレームレートで送信するとともに、イベント情報を非同期で送信するデータ送信部と、を備え、表示制御装置は、原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近のイベント情報に基づき、表示画像を局所的に更新する表示画像描画部と、表示画像のデータを表示装置に出力する出力部と、を備えたことを特徴とする。 In order to solve the above problems, one aspect of the present invention relates to an image display system. This image display system is an image display system comprising an image transmission device for transmitting original image data and a display control device for controlling image display using the original image data, wherein the image transmission device comprises: When a luminance change event occurs in any pixel in the original image, an event information generation unit that generates event information including position information of the pixel, and transmits data of the entire original image at a predetermined frame rate, and a data transmission unit that asynchronously transmits event information, and the display control device uses the data of the entire original image to generate display image data at a predetermined frame rate, and based on the latest event information, The present invention is characterized by comprising a display image drawing section for locally updating a display image, and an output section for outputting data of the display image to a display device.
 本発明の別の態様は、画像送信装置に関する。この画像送信装置は、原画像のデータを送信し、送信先において当該原画像を用いた画像表示を実現させる画像送信装置であって、原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成するイベント情報生成部と、原画像全体のデータを所定のフレームレートで送信するとともに、イベント情報を非同期で送信することにより、送信先において表示画像を局所的に更新させるデータ送信部と、を備えたことを特徴とする。 Another aspect of the present invention relates to an image transmission device. This image transmission device is an image transmission device that transmits data of an original image and realizes an image display using the original image at a transmission destination. At this time, an event information generation unit that generates event information including the position information of the pixel, data of the entire original image are transmitted at a predetermined frame rate, and the event information is transmitted asynchronously, thereby generating a display image at the transmission destination. and a data transmission unit that locally updates the .
 本発明のさらに別の態様は、表示制御装置に関する。この表示制御装置は、原画像のデータを受信し、当該原画像のデータを用いた画像表示を制御する表示制御装置であって、原画像全体のデータを所定のフレームレートで取得する画像データ取得部と、原画像におけるいずれかの画素に生じた輝度変化のイベントに応じて、原画像全体のデータと非同期で送信された、当該画素の位置情報を含むイベント情報を取得するイベント情報取得部と、原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近のイベント情報に基づき、表示画像を局所的に更新する表示画像描画部と、表示画像のデータを表示装置に出力する出力部と、を備えたことを特徴とする。 Yet another aspect of the present invention relates to a display control device. This display control device is a display control device that receives data of an original image and controls image display using the data of the original image. and an event information acquisition unit that acquires event information including position information of a pixel transmitted asynchronously with data of the entire original image in response to a luminance change event occurring in any pixel in the original image. a display image drawing unit that generates display image data at a predetermined frame rate using data of the entire original image and locally updates the display image based on recent event information; and an output unit for outputting to a display device.
 本発明のさらに別の態様は、画像表示方法に関する。この画像表示方法は、原画像のデータを送信する画像送信装置と、原画像のデータを用いた画像表示を制御する表示制御装置と、を備えた画像表示システムにおいて、画像送信装置が、原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成するステップと、原画像全体のデータを所定のフレームレートで送信するとともに、イベント情報を非同期で送信するステップと、表示制御装置が、原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近のイベント情報に基づき、表示画像を局所的に更新するステップと、表示画像のデータを表示装置に出力するステップと、を含むことを特徴とする。 Yet another aspect of the present invention relates to an image display method. This image display method comprises an image display system comprising an image transmission device for transmitting original image data and a display control device for controlling image display using the original image data. generating event information including position information of the pixel when a luminance change event occurs in one of the pixels; transmitting data of the entire original image at a predetermined frame rate; and the display control device generates display image data at a predetermined frame rate using the data of the entire original image, and locally updates the display image based on recent event information. and outputting data of the display image to a display device.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、コンピュータプログラム、データ構造、記録媒体などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, computer programs, data structures, recording media, etc. are also effective as embodiments of the present invention.
 本発明によれば、解像度や視野角が大きい画像を、高品質かつ容易に表示できる。 According to the present invention, images with high resolution and wide viewing angles can be easily displayed with high quality.
本実施の形態を適用できる画像表示システムの構成例を示す図である。It is a figure which shows the structural example of the image display system which can apply this Embodiment. 本実施の形態で送信、表示される画像の例を示す図である。4A and 4B are diagrams showing examples of images transmitted and displayed in the present embodiment; FIG. 本実施の形態における画像表示システムの具体的な構成を例示する図である。It is a figure which illustrates the concrete structure of the image display system in this Embodiment. 本実施の形態における表示制御装置の内部回路構成を示す図である。1 is a diagram showing an internal circuit configuration of a display control device according to this embodiment; FIG. 本実施の形態における画像送信装置と表示制御装置の機能ブロックの構成を示す図である。1 is a diagram showing functional block configurations of an image transmission device and a display control device according to the present embodiment; FIG. 平板型ディスプレイを表示先とした場合の、提供情報量と受容情報量のバランスに係る問題点を説明するための図である。FIG. 10 is a diagram for explaining a problem related to the balance between the amount of provided information and the amount of received information when a flat-panel display is used as the display destination; 本実施の形態において画像送信装置が送信するデータと表示制御装置が生成する表示画像の関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between data transmitted by an image transmission device and a display image generated by a display control device in the embodiment; 本実施の形態において画像送信装置が送信するデータと表示制御装置が生成する表示画像の関係の別の例を示す図である。FIG. 7 is a diagram showing another example of the relationship between data transmitted by the image transmission device and a display image generated by the display control device in the embodiment; 本実施の形態において画像送信装置が準備する全天周画像とイベント情報のデータ形式を例示する図である。4 is a diagram illustrating data formats of an omnidirectional image and event information prepared by the image transmission device in the present embodiment; FIG. ビュースクリーンの形状と提供情報量の関係を説明するための図である。FIG. 5 is a diagram for explaining the relationship between the shape of the view screen and the amount of provided information; 本実施の形態の表示制御装置における歪み画像描画処理を説明するための図である。FIG. 4 is a diagram for explaining distortion image drawing processing in the display control device according to the embodiment; 本実施の形態における画像表示システムの変形例を示す図である。It is a figure which shows the modification of the image display system in this Embodiment. 本実施の形態における、イベント情報による部分的な更新とリプロジェクションの関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between partial update and reprojection based on event information in the embodiment; 本実施の形態において全天周画像をキューブマップで表現した場合の表示画像生成処理を説明するための図である。FIG. 7 is a diagram for explaining display image generation processing when an omnidirectional image is represented by a cube map in the present embodiment; 本実施の形態において全天周画像を正距円筒図法で表現した場合の表示画像生成処理を説明するための図である。FIG. 10 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equirectangular projection in the present embodiment; 本実施の形態において全天周画像を等距離射影で表現した場合の表示画像生成処理を説明するための図である。FIG. 10 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equidistant projection in the present embodiment; 本実施の形態において全天周画像を等距離射影で表すとともに、解像度レベルを複数設ける態様を説明するための図である。FIG. 4 is a diagram for explaining a mode in which an omnidirectional image is represented by equidistant projection and a plurality of resolution levels are provided in the present embodiment; 本実施の形態において、中心から周縁にかけて解像度が減少する分布を有する等距離射影の画像を生成する手法を説明するための図である。FIG. 10 is a diagram for explaining a method of generating an equidistant projection image having a distribution in which the resolution decreases from the center to the periphery in the present embodiment; 本実施の形態において全天周画像を正八面体の面に表した場合の表示画像生成処理を説明するための図である。FIG. 10 is a diagram for explaining display image generation processing when an omnidirectional image is represented on the plane of a regular octahedron in the present embodiment;
 図1は本実施の形態を適用できる画像表示システムの構成例を示す。画像表示システム1は、ユーザ操作に応じて画像を表示させる表示制御装置10a、10b、10cおよび、表示に用いる画像データを提供する画像送信装置20を含む。表示制御装置10a、10b、10cにはそれぞれ、ユーザ操作のための入力装置14a、14b、14cと、画像を表示する表示装置16a、16b、16cが接続される。表示制御装置10a、10b、10cと画像送信装置20は、WAN(World Wide Network)やLAN(Local Area Network)などのネットワーク8を介して通信を確立できる。 FIG. 1 shows a configuration example of an image display system to which this embodiment can be applied. The image display system 1 includes display control devices 10a, 10b, and 10c that display images according to user operations, and an image transmission device 20 that provides image data used for display. Input devices 14a, 14b, and 14c for user operations and display devices 16a, 16b, and 16c for displaying images are connected to the display control devices 10a, 10b, and 10c, respectively. The display control devices 10a, 10b, 10c and the image transmission device 20 can establish communication via a network 8 such as a WAN (World Wide Network) or a LAN (Local Area Network).
 表示制御装置10a、10b、10cと、表示装置16a、16b、16cおよび入力装置14a、14b、14cはそれぞれ、有線または無線のどちらで接続されてもよい。あるいはそれらの装置の2つ以上が一体的に形成されていてもよい。例えば図において表示制御装置10bは、表示装置16bであるヘッドマウントディスプレイに接続している。ヘッドマウントディスプレイは、それを頭部に装着したユーザの動きによって表示画像の視野を変更できるため、入力装置14bとしても機能する。 The display control devices 10a, 10b, 10c, the display devices 16a, 16b, 16c, and the input devices 14a, 14b, 14c may be connected either by wire or wirelessly. Alternatively, two or more of those devices may be integrally formed. For example, in the figure, the display control device 10b is connected to a head-mounted display, which is the display device 16b. Since the head-mounted display can change the field of view of the displayed image according to the movement of the user wearing it on the head, it also functions as the input device 14b.
 また表示制御装置10cは携帯端末であり、表示装置16cと、その画面を覆うタッチパッドである入力装置14cと一体的に構成されている。このように、図示する装置の外観形状や接続形態は限定されない。ネットワーク8に接続する表示制御装置10a、10b、10cや画像送信装置20の数も限定されない。例えば画像送信装置20は、クラウドゲーミングなどのシステムにおけるクラウドサーバやコンテンツサーバであってもよい。以後、表示制御装置10a、10b、10cを表示制御装置10、入力装置14a、14b、14cを入力装置14、表示装置16a、16b、16cを表示装置16と総称する場合がある。 The display control device 10c is a mobile terminal, and is integrally configured with a display device 16c and an input device 14c, which is a touch pad covering the screen. Thus, the external shape and connection form of the illustrated device are not limited. The number of display control devices 10a, 10b, 10c and image transmission devices 20 connected to the network 8 is not limited either. For example, the image transmission device 20 may be a cloud server or content server in a system such as cloud gaming. Hereinafter, the display control devices 10a, 10b, and 10c may be collectively referred to as the display control device 10, the input devices 14a, 14b, and 14c as the input device 14, and the display devices 16a, 16b, and 16c as the display device 16 in some cases.
 入力装置14は、コントローラ、キーボード、マウス、タッチパッド、ジョイスティックなど一般的な入力装置のいずれかまたは組み合わせでよく、表示制御装置10へユーザ操作の内容を供給する。表示装置16は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、ウェアラブルディスプレイ、プロジェクタなど一般的なディスプレイでよく、表示制御装置10から出力される画像を表示する。 The input device 14 may be one or a combination of general input devices such as a controller, keyboard, mouse, touch pad, joystick, etc., and supplies the contents of user operations to the display control device 10 . The display device 16 may be a general display such as a liquid crystal display, a plasma display, an organic EL display, a wearable display, or a projector, and displays images output from the display control device 10 .
 画像送信装置20は、画像表示を伴うコンテンツのデータを表示制御装置10に提供する。当該コンテンツの種類は特に限定されず、電子ゲーム、観賞用画像、テレビジョン放送、電子会議、ビデオチャットなどのいずれでもよい。表示制御装置10は基本的に、表示に用いるコンテンツデータを画像送信装置20から取得しつつ表示処理を実現する。あるいは画像送信装置20と表示制御装置10が協働でコンテンツデータを生成することにより、描画処理等の負荷を分散させてもよい。 The image transmission device 20 provides the display control device 10 with content data accompanied by image display. The type of content is not particularly limited, and may be electronic games, images for viewing, television broadcasts, electronic conferences, video chats, or the like. The display control device 10 basically acquires content data used for display from the image transmission device 20 and implements display processing. Alternatively, the image transmission device 20 and the display control device 10 may cooperate to generate content data, thereby distributing the load of drawing processing and the like.
 図2は、本実施の形態で送信、表示される画像の例を示している。(a)は、実況中継やビデオチャットなどにおいて、撮影画像130のデータをそのまま表示画像132として表示する例である。この場合、画像データの送信元は、画像送信装置20のほか、表示制御装置10に接続された撮像装置などでもよい。また表示装置16は平板型ディスプレイとしている。 FIG. 2 shows an example of an image transmitted and displayed in this embodiment. (a) is an example of displaying the data of the captured image 130 as it is as the display image 132 in a live broadcast, video chat, or the like. In this case, the source of the image data may be an imaging device connected to the display control device 10 as well as the image transmission device 20 . The display device 16 is a flat display.
 (b)は、全天周画像134を準備し、ヘッドマウントディスプレイを装着したユーザの頭部の動きに対応する視野で表示画像136を生成する例である。ヘッドマウントディスプレイの場合、図示する表示画像136のように、ユーザの左右の目に対応する、表示パネルの左右の領域に、視差を有するステレオ画像を表示させることにより、立体視を実現できる。また視野拡大のための接眼レンズを備えるヘッドマウントディスプレイの場合、当該接眼レンズを介して見たときに歪みのない画像が視認されるよう、表示画像136には接眼レンズの歪曲収差や色収差に応じた逆の歪みを与えておく。 (b) is an example of preparing an omnidirectional image 134 and generating a display image 136 in a field of view corresponding to movement of the head of a user wearing a head-mounted display. In the case of a head-mounted display, stereoscopic vision can be realized by displaying stereoscopic images with parallax on the left and right regions of the display panel corresponding to the left and right eyes of the user, as in the illustrated display image 136 . Further, in the case of a head-mounted display provided with an eyepiece lens for expanding the field of view, the displayed image 136 has distortion and chromatic aberration corresponding to the eyepiece lens so that a distortion-free image can be viewed through the eyepiece lens. Give the opposite distortion.
 例えば画像の四辺が糸巻き状に凹んで見えるレンズの場合、表示画像136の左右の画像をそれぞれ樽型に湾曲させておく。以後、接眼レンズに対応する歪みが与えられた画像を「歪み画像」と呼ぶ。なお全天周画像134は、コンピュータグラフィクスで描画された画像、撮影画像、あるいはそれらの組み合わせでよい。また画像データの送信元は、画像送信装置20のほか、表示制御装置10内部の描画機構や表示制御装置10に接続された撮像装置などでもよい。 For example, in the case of a lens in which the four sides of the image appear to be pincushion-shaped, the left and right images of the display image 136 are each curved in a barrel shape. Hereinafter, an image to which distortion corresponding to the eyepiece is applied is called a "distorted image". The omnidirectional image 134 may be an image rendered by computer graphics, a photographed image, or a combination thereof. In addition to the image transmission device 20, the image data transmission source may be a drawing mechanism inside the display control device 10, an imaging device connected to the display control device 10, or the like.
 (a)に示す平板型ディスプレイの分野では、UHDTVのように高い画素数で高精細な画像表現を実現できるようになってきた。またヘッドマウントディスプレイの分野では(b)に示す全天周画像134のように広視野角の画像を準備しておくことで、画像世界を自由な視点で見回すことが可能になり、没入感を高められる。いずれの場合も、1フレームを構成する画素の数は増加する方向性を有する。このように1フレーム分のデータ量が増加すると、処理や伝送に要する時間が増加し高フレームレートとの両立が難しくなる。 In the field of flat panel displays shown in (a), it has become possible to realize high-definition image expression with a high number of pixels like UHDTV. Also, in the field of head-mounted displays, by preparing an image with a wide viewing angle like the omnidirectional image 134 shown in (b), it becomes possible to look around the image world from a free viewpoint, and a sense of immersion can be achieved. Increased. In either case, the number of pixels forming one frame tends to increase. When the amount of data for one frame increases in this way, the time required for processing and transmission increases, making compatibility with a high frame rate difficult.
 またリアルタイムで撮影、描画した画像を表示させる態様においては、表示までの遅延時間が看過できない程度になることがあり得る。例えばユーザ操作に応じて画像を生成する電子ゲームにおいては、遅延時間がゲームの操作性に多大な影響を及ぼす。さらにデータ処理や伝送のための消費電力が増加するため、ヘッドマウントディスプレイの場合は特に、大容量の蓄電池が必要になったり発熱により装着感が悪化したりすることも考えられる。 In addition, in the mode of displaying images shot and drawn in real time, it is possible that the delay time until display cannot be overlooked. For example, in electronic games that generate images according to user operations, the delay time greatly affects the operability of the game. Furthermore, since the power consumption for data processing and transmission increases, especially in the case of a head-mounted display, a large-capacity storage battery may be required, and the feeling of wearing may deteriorate due to heat generation.
 そこで本実施の形態では、画像を画素単位で捉えて情報の伝達を行うことにより、処理や伝送に係るリソースを節約する。具体的にはデータ送信元は、変化イベントの発生を画素単位で取得し、画像全体のデータとは独立に、当該局所的な変化イベントに係る情報のみをバイパス回線により送信する。表示制御装置10は、表示画像中、変化イベントが生じた部分について、送信された直近の情報に基づき局所的に更新する。 Therefore, in the present embodiment, resources related to processing and transmission are saved by capturing images in units of pixels and transmitting information. Specifically, the data transmission source acquires the occurrence of the change event in units of pixels, and transmits only the information related to the local change event through the bypass line independently of the data of the entire image. The display control device 10 locally updates the portion of the display image where the change event has occurred based on the most recently transmitted information.
 ここで「変化イベント」とは、観測輝度あるいは画素値にしきい値以上の差が生じた状態をいう(以後、単に「イベント」と呼ぶ)。画像送信装置20などのデータ送信元は、撮影画像130や、全天周画像134あるいはその一部などのデータを所定のレートで送信するとともに、変化イベントが生じた時点で、その画素の位置や変化の内容を含むイベント情報をバイパスにより送信する。表示制御装置10は、所定のレートで表示画像のフレームを生成するとともに、送信されたイベント情報に基づき当該フレームを局所的に更新する。 Here, a "change event" refers to a state in which a difference equal to or greater than a threshold occurs in observed luminance or pixel values (hereafter simply referred to as an "event"). A data transmission source such as the image transmission device 20 transmits data such as the captured image 130, the omnidirectional image 134, or a portion thereof at a predetermined rate, and at the time when a change event occurs, the pixel position and Send event information, including the content of the change, by bypass. The display controller 10 generates frames of display images at a predetermined rate and locally updates the frames based on the transmitted event information.
 ここで表示制御装置10は、レイトレーシングの技術を用いて表示画像を描画する。レイトレーシングは、視点からビュースクリーン上の各画素を通る仮想的な光線(レイ)を発生させ、その到達先の色情報に基づき画素値を決定する手法である。本実施の形態では、画像送信装置20等から送信された画像をビュースクリーンの前面に配置し、レイの到達先を求めることにより、当該画像上の色情報を取得する。この手法を採用することにより、イベントが発生した画素のみを選択的に描画することが可能になる。 Here, the display control device 10 draws the display image using ray tracing technology. Ray tracing is a method of generating a virtual ray that passes through each pixel on the view screen from the viewpoint and determining the pixel value based on the color information of the destination. In the present embodiment, an image transmitted from the image transmission device 20 or the like is placed in front of the view screen, and the destination of the ray is obtained to acquire color information on the image. By adopting this method, it becomes possible to selectively draw only pixels where an event has occurred.
 レイトレーシングは一般的には計算量が多く負荷が重い処理とされる。しかしながらポリゴンを射影するラスタライズと比較し、デプスバッファなどの中間バッファメモリの多くが不要であるという利点がある。また画像の内容によっては、計算量や使用リソースの面でも軽量、低遅延での運用が可能となっている。さらに処理量は描画面積に比例するため、上述のとおり更新対象を限定することで、品質を維持したまま描画の効率を上げることができる。また画素単位での情報の伝送、描画を可能にすることで、画質の向上に寄与しない背景などのデータの送信を必要最低限にでき、データ送信元での処理や伝送の負荷も軽減できる。 Ray tracing is generally regarded as a process with a large amount of computation and a heavy load. However, compared to rasterization that projects polygons, there is an advantage that most intermediate buffer memories such as depth buffers are unnecessary. In addition, depending on the content of the image, it is possible to operate with light weight and low latency in terms of calculation amount and resources used. Furthermore, since the amount of processing is proportional to the drawing area, by limiting the update targets as described above, the efficiency of drawing can be improved while maintaining the quality. In addition, by enabling the transmission and rendering of information in pixel units, it is possible to minimize the transmission of data such as the background that does not contribute to the improvement of image quality, and reduce the processing and transmission load at the data transmission source.
 図3は、本実施の形態における画像表示システムの具体的な構成を例示している。なお上述のとおり、本実施の形態において表示画像の元となる画像データの生成主体は画像送信装置20に限らず、その少なくとも一部を表示制御装置10や撮像装置など表示側のローカルな装置が担ってよいが、以後は主に画像送信装置20として説明する。また当該画像データを、レイトレーシングの手法を用いて最終的な表示画像に形成する主体は表示制御装置10に限らず、その少なくとも一部を表示装置16が担ってよいが、以後は主に表示制御装置10として説明する。以後、画像送信装置20が送信する画像を「原画像」として、表示制御装置10が生成する「表示画像」と区別する。 FIG. 3 illustrates a specific configuration of the image display system according to this embodiment. As described above, in the present embodiment, the image data that is the source of the display image is not limited to be generated by the image transmission device 20, and at least part of it is generated by a local device on the display side such as the display control device 10 or an imaging device. Although it may play a role, hereinafter, the image transmission device 20 will be mainly described. Further, the entity that forms the final display image from the image data using the ray tracing technique is not limited to the display control device 10, and at least a part thereof may be performed by the display device 16. The control device 10 will be described. Hereinafter, the image transmitted by the image transmission device 20 will be referred to as an "original image" to be distinguished from the "display image" generated by the display control device 10. FIG.
 図では2つの画像送信装置20a、20bと、2つの表示制御装置10a、10bが、LAN、WiFi(登録商標)、5Gといった任意のネットワークを介して接続された状態を示している。このうち画像送信装置20aは、図2の(a)のように、撮像装置140が撮影している発話者160の動画を、表示制御装置10a、10bに送信する。一方、画像送信装置20bは、図2の(b)のように、全天周画像142を撮像装置141で撮影し、少なくともその一部を表示制御装置10a、10bに送信する。 The figure shows a state in which two image transmission devices 20a and 20b and two display control devices 10a and 10b are connected via an arbitrary network such as LAN, WiFi (registered trademark), or 5G. Of these, the image transmission device 20a transmits the moving image of the speaker 160 captured by the imaging device 140 to the display control devices 10a and 10b, as shown in FIG. 2(a). On the other hand, as shown in FIG. 2B, the image transmission device 20b captures an omnidirectional image 142 with the imaging device 141, and transmits at least part of it to the display control devices 10a and 10b.
 なお図では全天周画像142を、その画像平面を表す球面状のスクリーンの断面で示しているが、後述するように全天周画像142の表現手法(データ形式)は特に限定されない。また撮像装置141は、魚眼カメラを表裏に組み合わせたもののほか、多眼カメラで構成してもよい。さらに後述するように、撮像装置140、141による撮影画像と同等の画像を、画像送信装置20a、20bがコンピュータグラフィクスにより描画してもよいし、撮影画像上にコンピュータグラフィクスを描画してもよい。 In the drawing, the omnidirectional image 142 is shown as a cross section of a spherical screen representing the image plane, but the representation method (data format) of the omnidirectional image 142 is not particularly limited as described later. In addition, the imaging device 141 may be configured by a multi-lens camera in addition to a combination of fish-eye cameras on the front and back. Furthermore, as will be described later, the image transmission devices 20a and 20b may render images equivalent to the images captured by the imaging devices 140 and 141 using computer graphics, or may render computer graphics on the captured images.
 表示制御装置10aは、画像送信装置20a、20bから送信された原画像148のデータを用いて、表示装置16である平板型ディスプレイに表示画像150を表示させる。一方、表示制御装置10bは、画像送信装置20a、20bから送信された原画像152のデータを用いて、表示装置16であるヘッドマウントディスプレイに表示画像154を表示させる。 The display control device 10a uses the data of the original image 148 transmitted from the image transmission devices 20a and 20b to display the display image 150 on the flat panel display, which is the display device 16. FIG. On the other hand, the display control device 10b uses the data of the original image 152 transmitted from the image transmission devices 20a and 20b to display the display image 154 on the head-mounted display, which is the display device 16. FIG.
 なお図では、原画像148、152のデータを、その画像平面を表す球面状のスクリーンの一部として示しているが、データ形式をそれに限る主旨ではない。例えば撮像装置140が撮影した中心射影の画像を原画像148とする場合、そのスクリーンは平板型となる。またヘッドマウントディスプレイに表示させる画像は、上述のとおり歪み画像のため、表示画像154のスクリーン(ビュースクリーン)を略球面で示している。 Although the diagram shows the data of the original images 148 and 152 as part of a spherical screen representing the image plane, the data format is not limited to this. For example, when the central projection image captured by the imaging device 140 is used as the original image 148, the screen is of a flat plate type. Since the image displayed on the head-mounted display is a distorted image as described above, the screen (view screen) of the display image 154 is shown as a substantially spherical surface.
 全天周画像など歪みを有する画像を原画像152とする場合、本実施の形態では、当該原画像152から歪みのある表示画像154を直接生成する。具体的には図示するように、原画像152を、その歪みに応じた湾曲したスクリーン形状でビュースクリーンの前面に配置する。そして湾曲したビュースクリーンからレイトレーシングにより原画像152をサンプリングし、表示画像154を生成する。これにより、一旦、中心射影の画像を生成する必要がなくなり、画像を展開するためのメモリや展開のための待機時間を節約できる。 When an image with distortion such as an omnidirectional image is used as the original image 152, in the present embodiment, a display image 154 with distortion is directly generated from the original image 152. Specifically, as shown, the original image 152 is placed in front of the viewscreen in a curved screen shape corresponding to its distortion. The original image 152 is then sampled from the curved viewscreen by ray tracing to generate the displayed image 154 . As a result, there is no need to generate a central projection image once, and memory for developing the image and waiting time for developing can be saved.
 画像送信装置20a、20bからは、図の太線で示すように、原画像全体のデータ166を所定のレートで送信する。ここで「原画像全体」とは、原画像のフレームの全領域、例えば視野内の画像の全領域である。ただし送信対象とする「フレーム」は視野内の画像に限らず、表示制御装置10a、10bが表示画像を形成するのに用いる、視野より広い範囲を含んでよい。画像送信装置20a、20bからはさらに、図の破線で示すように、イベントが発生した画素の位置や変化の内容を含むイベント情報168を、イベントが発生する都度、バイパスにより送信する。 From the image transmission devices 20a and 20b, data 166 of the entire original image is transmitted at a predetermined rate, as indicated by the thick line in the drawing. Here, the "whole original image" is the entire area of the frame of the original image, for example, the entire area of the image within the field of view. However, the “frame” to be transmitted is not limited to the image within the field of view, and may include a range wider than the field of view used by the display control devices 10a and 10b to form the display image. Each time an event occurs, the image transmitting devices 20a and 20b also transmit event information 168, including the position of the pixel where the event occurred and the content of the change, via a bypass, as indicated by the dashed lines in the drawing.
 表示制御装置10a、10bは基本的に、画像送信装置20a、20bから所定のレートで送信される、原画像全体のデータ166を用いて、表示画像全体を生成し表示装置16に表示させる。このとき表示制御装置10a、10bは、原画像のフレームを補間することで表示のフレームレートを上げたり、ヘッドマウントディスプレイを見ているユーザ162bの頭部の、最新の位置や姿勢に応じて視野を補正したりしてよい。そして表示制御装置10a、10bは、画像送信装置20a、20bから非同期で伝送されたイベント情報168を用いて、表示画像における必要箇所を選択的に更新する。 The display control devices 10a and 10b basically use the data 166 of the entire original image transmitted from the image transmission devices 20a and 20b at a predetermined rate to generate the entire display image and cause the display device 16 to display it. At this time, the display control devices 10a and 10b increase the display frame rate by interpolating frames of the original image, or adjust the field of view according to the latest position and posture of the head of the user 162b viewing the head-mounted display. may be corrected. Then, the display control devices 10a and 10b use the event information 168 asynchronously transmitted from the image transmission devices 20a and 20b to selectively update necessary portions in the display image.
 表示制御装置10a、10bはまた、表示画像を見ているユーザ162a、162bが注視している画面上の位置または領域に係るデータ170a、170bを、所定のレートで画像送信装置20a、20bに送信してもよい。この場合、画像送信装置20a、20bは、原画像において発生したイベントのうち、ユーザ162a、162bが注視している領域外でのイベントの情報を送信対象から除外する。これにより、ユーザ162a、162bに気づかせることなく、伝送データや表示画像における更新対象をさらに限定できる。 The display control devices 10a, 10b also transmit data 170a, 170b relating to the position or area on the screen that the user 162a, 162b looking at the display image is gazing to the image transmission device 20a, 20b at a predetermined rate. You may In this case, the image transmission devices 20a and 20b exclude, from among the events that have occurred in the original images, information on events outside the region that the users 162a and 162b are watching from the transmission targets. This makes it possible to further limit the update targets in transmission data and display images without notifying the users 162a and 162b.
 図4は表示制御装置10の内部回路構成を示している。表示制御装置10は、CPU(Central Processing Unit)22、GPU(Graphics Processing Unit)24、メインメモリ26を含む。これらの各部は、バス30を介して相互に接続されている。バス30にはさらに入出力インターフェース28が接続されている。入出力インターフェース28には、USBやIEEE1394などの周辺機器インターフェースや、有線又は無線LANのネットワークインターフェースからなる通信部32、ハードディスクドライブや不揮発性メモリなどの記憶部34、表示装置16へデータを出力する出力部36、入力装置14や撮像装置などからデータを入力する入力部38、磁気ディスク、光ディスクまたは半導体メモリなどのリムーバブル記録媒体を駆動する記録媒体駆動部40が接続される。 4 shows the internal circuit configuration of the display control device 10. FIG. The display control device 10 includes a CPU (Central Processing Unit) 22 , a GPU (Graphics Processing Unit) 24 and a main memory 26 . These units are interconnected via a bus 30 . An input/output interface 28 is also connected to the bus 30 . The input/output interface 28 outputs data to a peripheral device interface such as USB and IEEE 1394, a communication unit 32 including a wired or wireless LAN network interface, a storage unit 34 such as a hard disk drive and a nonvolatile memory, and a display device 16. An output unit 36, an input unit 38 for inputting data from the input device 14, an imaging device, etc., and a recording medium driving unit 40 for driving a removable recording medium such as a magnetic disk, an optical disk, or a semiconductor memory are connected.
 CPU22は、記憶部34に記憶されているオペレーティングシステムを実行することにより表示制御装置10の全体を制御する。CPU22はまた、リムーバブル記録媒体から読み出されてメインメモリ26にロードされた、あるいは通信部32を介してダウンロードされた各種プログラムを実行する。GPU24は、CPU22からの描画命令に従って描画処理を行い、表示画像を図示しないフレームバッファに格納する。そしてフレームバッファに格納された表示画像をビデオ信号に変換して出力部36に出力する。メインメモリ26はRAM(Random Access Memory)により構成され、処理に必要なプログラムやデータを記憶する。画像送信装置20の回路構成もほぼ同様でよく、この場合、取得または生成した画像のデータは、通信部32を介して表示制御装置10に送信される。 The CPU 22 controls the entire display control device 10 by executing the operating system stored in the storage unit 34 . The CPU 22 also executes various programs read from a removable recording medium and loaded into the main memory 26 or downloaded via the communication section 32 . The GPU 24 performs drawing processing according to a drawing command from the CPU 22, and stores the display image in a frame buffer (not shown). Then, the display image stored in the frame buffer is converted into a video signal and output to the output section 36 . The main memory 26 is composed of a RAM (Random Access Memory) and stores programs and data necessary for processing. The circuit configuration of the image transmission device 20 may also be substantially the same, and in this case, the acquired or generated image data is transmitted to the display control device 10 via the communication unit 32 .
 図5は本実施の形態における画像送信装置20と表示制御装置10の機能ブロックの構成を示している。なお画像送信装置20と表示制御装置10は、電子ゲームを進捗させたり音声を出力させたりする一般的な情報処理を行ってよいが、図5では特に、画像データを伝送し表示させる機能に着目して示している。 FIG. 5 shows the configuration of functional blocks of the image transmission device 20 and the display control device 10 in this embodiment. Note that the image transmission device 20 and the display control device 10 may perform general information processing such as progressing an electronic game or outputting sound. is shown.
 また図5に示す機能ブロックは、ハードウェア的には、図4に示したCPU22、GPU24、メインメモリ26などの構成で実現でき、ソフトウェア的には、記録媒体などからメインメモリ26にロードした、データ入力機能、データ保持機能、画像処理機能、通信機能などの諸機能を発揮するプログラムで実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。 In terms of hardware, the functional blocks shown in FIG. 5 can be realized by the configuration of the CPU 22, GPU 24, main memory 26, etc. shown in FIG. It is realized by a program that exhibits various functions such as a data input function, a data holding function, an image processing function, and a communication function. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and are not limited to either one.
 画像送信装置20は、ユーザの注視領域に係る情報を取得する注視領域取得部50、原画像のデータを取得する画像データ取得部52、および、原画像のデータを表示制御装置10に送信するデータ送信部56を備える。注視領域取得部50は、表示装置16の画面に対するユーザの注視点の位置座標、または注視点を含む所定範囲の領域を示す情報を、所定のレートで表示制御装置10から取得する。 The image transmission device 20 includes a gaze area acquisition unit 50 that acquires information related to the user's gaze area, an image data acquisition unit 52 that acquires data of the original image, and data for transmitting the data of the original image to the display control device 10. A transmitter 56 is provided. The gaze area acquisition unit 50 acquires information indicating the position coordinates of the gaze point of the user on the screen of the display device 16 or the area of a predetermined range including the gaze point from the display control device 10 at a predetermined rate.
 画像データ取得部52は、原画像全体のデータを所定のレートで取得する。当該データは、画像データ取得部52自体が生成してもよいし、図示しない外部の装置から取得してもよい。例えば画像データ取得部52は、画像送信装置20に接続された撮像装置から、撮影画像を所定のレートで取得する。あるいは画像データ取得部52は、内部に格納されたモデルデータやゲームプログラムに基づきコンピュータグラフィクスにより所定のレートで原画像を描画する。この場合、画像データ取得部52は、ゲームなどに対するユーザ操作の内容を表示制御装置10から取得してもよい。 The image data acquisition unit 52 acquires data of the entire original image at a predetermined rate. The data may be generated by the image data acquisition unit 52 itself, or may be acquired from an external device (not shown). For example, the image data acquisition unit 52 acquires captured images at a predetermined rate from an imaging device connected to the image transmission device 20 . Alternatively, the image data acquisition unit 52 draws the original image at a predetermined rate by computer graphics based on the model data and game program stored therein. In this case, the image data acquisition unit 52 may acquire the content of the user's operation on the game or the like from the display control device 10 .
 また表示装置16をヘッドマウントディスプレイとし、ユーザの頭部の動きに合わせて視野を変化させる場合、画像データ取得部52は、頭部の位置姿勢に係る情報も、所定のレートで表示制御装置10から取得する。この場合、ヘッドマウントディスプレイには、モーションセンサ、および周囲の空間を撮影するカメラの少なくともいずれかを搭載する。表示制御装置10は、当該モーションセンサの計測値やカメラの撮影画像に基づき、ヘッドマウントディスプレイ、ひいてはユーザ頭部の位置や姿勢を求め、所定のレートで画像送信装置20に送信する。なおヘッドマウントディスプレイの位置姿勢を求める技術として様々な手法が実用化されており、本実施の形態ではそのいずれを採用してもよい。 When the display device 16 is a head-mounted display and the field of view is changed according to the movement of the user's head, the image data acquisition unit 52 also acquires the information related to the position and orientation of the head at a predetermined rate. Get from In this case, the head-mounted display is equipped with at least one of a motion sensor and a camera that captures images of the surrounding space. The display control device 10 obtains the position and orientation of the head-mounted display and, in turn, the user's head, based on the measurement values of the motion sensor and the images captured by the camera, and transmits them to the image transmission device 20 at a predetermined rate. Various techniques have been put into practical use as techniques for obtaining the position and orientation of the head-mounted display, and any of them may be adopted in the present embodiment.
 これにより画像データ取得部52は、例えば仮想世界を表した全天周画像のうち、ユーザの視野に入る領域、あるいは視野に入ると予測される領域の原画像を優先して描画する。自ら画像を描画する場合、画像データ取得部52は「原画像描画部」と捉えることができる。なお画像データ取得部52は、撮影画像上にコンピュータグラフィクスを描画してもよい。 As a result, the image data acquisition unit 52 preferentially draws the original image of the area within the user's field of view, or the area expected to be within the user's field of view, among the omnidirectional images representing the virtual world, for example. When drawing an image by itself, the image data acquisition unit 52 can be regarded as an “original image drawing unit”. Note that the image data acquisition unit 52 may draw computer graphics on the captured image.
 画像データ取得部52はまた、イベントの発生を検出し、送信すべきイベント情報を生成するイベント情報生成部54を備える。表示対象の画像が撮影画像の場合、イベント情報生成部54は、撮像装置からイベント情報を取得してよい。撮像素子へ入射した光の強度に変化が生じたとき、その情報を示す信号を発生させるイベント駆動型センサ(EDS:Event Driven Sensor)が知られている(例えば国際公開第2021/033251号、国際公開第2021/033252号参照)。 The image data acquisition unit 52 also includes an event information generation unit 54 that detects the occurrence of an event and generates event information to be transmitted. When the image to be displayed is a captured image, the event information generation unit 54 may acquire event information from the imaging device. There is known an event-driven sensor (EDS) that generates a signal indicating information when there is a change in the intensity of light incident on the imaging device (for example, International Publication No. 2021/033251, International See Publication No. 2021/033252).
 EDSは、神経形態カメラ、シリコン網膜、またはダイナミックビジョンセンサとも呼ばれ、明るさの局所的な変化イベントに応答するイメージセンサである。具体的には、センサアレイのうちいずれかのセンサにおいて入射光の強度に変化が生じたとき、その位置、時刻、増加か減少か、を示す信号を出力する。EDSはイベントが発生した時刻に、発生した画素のみについて局所的に応答するため、画像全体を走査しながら差分を抽出するような画像処理でのアプローチと比較して負荷が軽く、低遅延、低消費電力での出力が可能となる。換言すれば画像全体の処理に比べ、高い時間分解能で情報を出力できる。 EDS, also called neuromorphic camera, silicon retina, or dynamic vision sensor, is an image sensor that responds to local change events in brightness. Specifically, when a change occurs in the intensity of incident light in any sensor of the sensor array, it outputs a signal indicating the position, time, and whether it increases or decreases. Since EDS locally responds only to pixels that have occurred at the time when an event occurs, it has a light load, low latency, and low latency compared to an image processing approach that extracts differences while scanning the entire image. Output with power consumption is possible. In other words, information can be output with higher temporal resolution than processing the entire image.
 そこでイベント情報生成部54は、撮像装置が備えるEDSからイベント信号を取得し、即時にイベント情報を生成する。例えば入射光の強度がしきい値以上の変化を示した画素の位置、発生時刻、変化の内容、を対応づけた情報を生成する。ここで画素の位置は、仮想視点あるいはカメラの光軸中心から原画像の各画素を通るレイの方向で表してもよい。 Therefore, the event information generation unit 54 acquires an event signal from the EDS provided in the imaging device and immediately generates event information. For example, information is generated that associates the position of a pixel where the intensity of incident light has changed by a threshold value or more, the occurrence time, and the details of the change. Here, the position of a pixel may be represented by the direction of a ray passing through each pixel of the original image from the virtual viewpoint or the center of the optical axis of the camera.
 また変化の内容は、それに基づき表示制御装置10が表示画像を更新できる情報であれば特に限定されない。例えば画素値の差分であってもよいし、変化後の画素値であってもよい。あるいは後述するように、イベントが生じた画素が表しているオブジェクトを描画するのに用いる情報、例えば深度情報やモデルデータを、イベント情報に含めることにより、表示制御装置10自体が当該オブジェクトを描画できるようにしてもよい。 Also, the content of the change is not particularly limited as long as it is information that allows the display control device 10 to update the display image based on it. For example, it may be a pixel value difference or a pixel value after change. Alternatively, as will be described later, the display control device 10 itself can draw the object by including information used to draw the object represented by the pixel where the event occurred, such as depth information and model data, in the event information. You may do so.
 なお撮像装置は、一般的なカラー画像を撮影するイメージセンサとEDSを個別に備えた構成としてもよいし、発生したイベントのデータを所定時間蓄積することで、カラー画像の出力も可能な装置としてもよい。前者の場合、2つのセンサアレイにおける位置の対応づけや撮影時刻とイベント発生時刻を生成するクロックの同期をとっておく。後者の場合、カラー画像の低フレームレート化や圧縮率の向上が見込めるため、イベントが発生したオブジェクト自体の深度情報やモデルデータの送信が容易になる。 Note that the imaging device may have a configuration in which an image sensor for capturing a general color image and an EDS are separately provided, or the device may output a color image by accumulating event data for a predetermined period of time. good too. In the former case, the positions of the two sensor arrays are associated with each other, and clocks for generating the imaging time and the event occurrence time are synchronized. In the latter case, it is expected that the frame rate of color images will be reduced and the compression rate will be improved, making it easier to transmit depth information and model data of the object itself in which an event has occurred.
 一方、画像データ取得部52が自ら原画像を描画する場合、イベント情報生成部54は、画像データ取得部52が原画像を描画するプログラムに則りイベント情報を生成する。すなわち画像データ取得部52は、レイトレーシングなどにより画像を描画する前に、画像世界でのオブジェクトの動きを決定している。したがって画像描画時には、どの画素でイベントが発生するかを自ら特定できる。イベント情報生成部54は、当該情報を取得することにより、EDSからのイベント信号を用いた場合と同様にイベント情報を生成する。撮影画像にコンピュータグラフィクスを合成する場合、イベント情報生成部54は、EDSからのイベント信号と、画像描画時に判明するイベントの情報の双方に基づきイベント情報を生成してもよい。 On the other hand, when the image data acquisition unit 52 draws the original image by itself, the event information generation unit 54 generates event information according to a program for the image data acquisition unit 52 to draw the original image. That is, the image data acquisition unit 52 determines the movement of the object in the image world before drawing the image by ray tracing or the like. Therefore, when drawing an image, it is possible to specify by itself at which pixel an event occurs. By acquiring the information, the event information generator 54 generates event information in the same way as when using the event signal from the EDS. When synthesizing a captured image with computer graphics, the event information generating section 54 may generate event information based on both an event signal from the EDS and event information found when the image is drawn.
 イベント情報生成部54はさらに、注視領域取得部50が取得した注視点や注視領域に係る情報に基づき、イベント情報として送信すべきイベントを取捨選択してよい。例えばイベント情報生成部54は、注視領域の外側で発生したイベントをマスクすることにより、送信対象から除外する。データ送信部56は表示制御装置10に対し、原画像全体のデータを所定のレートで送信するとともに、イベント情報生成部54がイベント情報を生成した際は、それを即時に送信する。 The event information generation unit 54 may further select events to be transmitted as event information based on information related to the gaze point and the gaze area acquired by the gaze area acquisition unit 50 . For example, the event information generation unit 54 excludes events that have occurred outside the attention area from transmission targets by masking them. The data transmission unit 56 transmits the data of the entire original image to the display control device 10 at a predetermined rate, and immediately transmits the event information when the event information generation unit 54 generates the event information.
 表示制御装置10は、ユーザの注視領域に係る情報を送信する注視領域送信部60、画像送信装置20から原画像全体のデータを取得する画像データ取得部62、画像送信装置20からイベント情報を取得するイベント情報取得部64、表示画像を描画する表示画像描画部66、および、表示画像のデータを出力する出力部74を備える。 The display control device 10 includes a gaze area transmission unit 60 that transmits information related to the user's gaze area, an image data acquisition unit 62 that acquires data of the entire original image from the image transmission device 20, and acquires event information from the image transmission device 20. , an event information acquisition unit 64 for processing, a display image drawing unit 66 for drawing a display image, and an output unit 74 for outputting display image data.
 注視領域送信部60は、表示装置16の画面に対するユーザの注視点の位置座標、または注視点を含む所定範囲の領域に係る情報を表示装置16から取得し、画像送信装置20に所定のレートで送信する。このため表示装置16には、図示しない注視点検出器を設ける。注視点検出器は、眼球に照射した赤外線の反射を撮影するなどして、人が見ている対象物のうち注視しているポイントを検出する一般的な装置である。 The gaze region transmission unit 60 acquires from the display device 16 the positional coordinates of the user's gaze point on the screen of the display device 16 or the information related to the region of a predetermined range including the gaze point, and transmits the information to the image transmission device 20 at a predetermined rate. Send. For this reason, the display device 16 is provided with a gaze point detector (not shown). A point-of-regard detector is a general device that detects a point of an object that a person is gazing at by, for example, photographing the reflection of infrared rays irradiated to the eyeball.
 画像データ取得部62は画像送信装置20から、原画像全体のデータを所定のレートで取得する。イベント情報取得部64は、画像送信装置20からイベント情報を都度取得する。表示画像描画部66は、表示画像のフレームを描画するフレーム画像描画部70と、イベントの発生に応じてフレーム画像描画部70の処理を変化させるイベント情報管理部72を備える。フレーム画像描画部70は、画像データ取得部62が取得した原画像全体のデータを用いて、レイトレーシングと同様の手法で表示画像のフレームを所定のレートで描画する。 The image data acquisition unit 62 acquires data of the entire original image from the image transmission device 20 at a predetermined rate. The event information acquisition unit 64 acquires event information from the image transmission device 20 each time. The display image drawing section 66 includes a frame image drawing section 70 for drawing frames of the display image, and an event information management section 72 for changing the processing of the frame image drawing section 70 according to the occurrence of an event. The frame image rendering unit 70 uses the data of the entire original image acquired by the image data acquiring unit 62 to render the frames of the display image at a predetermined rate using a technique similar to ray tracing.
 すなわちフレーム画像描画部70は、ユーザの視点からビュースクリーン上の各画素を通るレイを発生させ、その前面に配置した原画像における到達点の画素値をサンプリングすることにより、表示画像の画素値を決定する。なお中心射影の原画像を用いて平板型ディスプレイに画像を表示させる場合、表示画面の画素配列と原画像の画素配列は一致していてもよい。またフレーム画像描画部70は、直近のイベント情報に基づき、イベントが発生した箇所について処理内容を切り替えることにより、局所的な更新を行う。 That is, the frame image rendering unit 70 generates a ray passing through each pixel on the view screen from the user's viewpoint, and samples the pixel values of the arrival point in the original image placed in front of the ray, thereby obtaining the pixel values of the display image. decide. When an image is displayed on a flat-panel display using the central projection original image, the pixel array of the display screen and the pixel array of the original image may be the same. Also, the frame image drawing unit 70 performs local update by switching the processing content for the place where the event occurred based on the most recent event information.
 例えばフレーム画像描画部70は、イベントが発生した箇所については、イベント情報に含まれる原画像の画素値の情報に基づき表示画像の画素値を決定する。原画像においてイベントが発生した位置をレイの方向に対応づけている場合、レイトレーシングにおいて設定したレイの方向との関係から、到達先でイベントが発生しているか否かが判明する。到達先でイベントが発生している場合、フレーム画像描画部70はサンプリング先を、イベント情報に含まれる画素値の情報に差し替えることにより、表示画像のうち必要な部分のみを更新する。 For example, the frame image drawing unit 70 determines the pixel values of the display image based on the information of the pixel values of the original image included in the event information for the location where the event has occurred. When the position where the event occurs in the original image is associated with the direction of the ray, whether or not the event has occurred at the destination can be determined from the relationship with the ray direction set in the ray tracing. When an event occurs at the destination, the frame image drawing unit 70 replaces the sampling destination with pixel value information included in the event information, thereby updating only the necessary portion of the display image.
 あるいはフレーム画像描画部70は、イベント情報に含まれるオブジェクトの深度情報やモデルデータに基づき、イベントが生じたオブジェクトの像を、3DCGにより描画してもよい。このときフレーム画像描画部70は、オブジェクト表面での反射や屈折などを演算する一般的なレイトレーシングを実施すればよい。いずれにしろ本実施の形態では、表示画像全体の描画を、レイトレーシングをベースに行っているため、このような局所的な対応であっても処理内容の変化が少なく、切り替えが容易である。 Alternatively, the frame image drawing unit 70 may draw the image of the object in which the event occurred by 3DCG based on the depth information and model data of the object included in the event information. At this time, the frame image drawing unit 70 may perform general ray tracing that calculates reflection, refraction, and the like on the surface of the object. In any case, in the present embodiment, the rendering of the entire display image is performed based on ray tracing, so even with such local correspondence, there is little change in processing content and switching is easy.
 なおフレーム画像描画部70は、イベントの発生を高い時間分解能で表示に反映させるため、原画像のフレームレートより高いレートで表示画像のフレームを描画する。イベント情報管理部72は、イベント情報取得部64が取得したイベント情報に基づき、フレーム画像描画部70における描画処理を上記のとおり切り替える。すなわち設定したレイの到達先でイベントが発生しているか否かを判定し、サンプリング先を差し替えたり、イベントが生じたオブジェクトを3DCGにより描画させたりする。 Note that the frame image drawing unit 70 draws the frames of the display image at a rate higher than the frame rate of the original image in order to reflect the occurrence of the event in the display with high time resolution. The event information management section 72 switches the drawing process in the frame image drawing section 70 as described above based on the event information acquired by the event information acquisition section 64 . That is, it determines whether or not an event has occurred at the set destination of the ray, replaces the sampling destination, or draws the object in which the event has occurred by 3DCG.
 なおオブジェクトのモデルデータは、表示制御装置10の内部に格納しておいてもよい。出力部74は、表示画像描画部66が描画した表示画像のデータを表示装置16に出力し表示させる。これにより、原画像の送信レートより高いフレームレートで、イベントが生じた部分の変化が詳細に表された画像が表示される。 Note that the model data of the object may be stored inside the display control device 10. The output unit 74 outputs data of the display image drawn by the display image drawing unit 66 to the display device 16 for display. As a result, at a frame rate higher than the transmission rate of the original image, an image showing details of changes in the portion where the event occurred is displayed.
 図6は、平板型ディスプレイを表示先とした場合の、提供情報量と受容情報量のバランスに係る問題点を説明するための図である。ここで提供情報量とは、表示画像が表す情報量であり、受容情報量とは、それを見ているユーザが脳で認識する情報量である。図はユーザの視点80から適正距離にある表示画像の画角(あるいはFOV:Field Of View)を示している。例えば、水平画素数が2000程度のHDTVの画面81の場合、画角θ2Kは33°程度である。水平画素数が4000程度、8000程度のUHDTVの画面82、84の場合、画角θ4K、θ8Kはそれぞれ、61°、100°程度である。 FIG. 6 is a diagram for explaining a problem related to the balance between the amount of information provided and the amount of information received when a flat panel display is used as the display destination. Here, the amount of provided information is the amount of information represented by the display image, and the amount of received information is the amount of information recognized by the brain of the user who is viewing the image. The figure shows the angle of view (or FOV: Field Of View) of the displayed image at an appropriate distance from the user's viewpoint 80 . For example, in the case of an HDTV screen 81 having about 2000 horizontal pixels, the angle of view θ2K is about 33°. In the case of UHDTV screens 82 and 84 having approximately 4000 horizontal pixels and approximately 8000 horizontal pixels, the angles of view θ 4K and θ 8K are approximately 61° and 100°, respectively.
 なお図では比較のためヘッドマウントディスプレイの画面86も示しており、この場合、画角は画面84と同様100°程度である。いずれにしろ図示するようにディスプレイの画面が大きくなるほど、視線Vからの画角の開きが大きくなる。一方、視点80から見て、単位角度あたりに含まれる画面上の画素の数は、視線Vから離れるほど増加する。例えば画面84を見た場合、同じ角度θの範囲であっても、視線Vに近い領域90aと比較し、離れた領域90bでは広い範囲の画素が視野に入る。 The figure also shows a screen 86 of a head-mounted display for comparison, and in this case, the angle of view is about 100° like the screen 84. In any case, as shown in the figure, the larger the screen of the display, the wider the angle of view from the line of sight V becomes. On the other hand, the number of pixels on the screen included per unit angle when viewed from the viewpoint 80 increases as the distance from the line of sight V increases. For example, when looking at the screen 84, even if the range of the angle θ is the same, a wider range of pixels come into the field of view in a region 90b distant from the line of sight V than in a region 90a close to the line of sight V.
 すなわち視線Vから離れるほど、視野に入る情報量の密度が増加し、その差は、画角が広がり画面端と視線Vとの最大距離が大きくなるほど顕著になる。一方、人の視機能は視野に対し分布を持つことが知られている。視野の中心に対応する網膜上の中心領域は中心窩と呼ばれ、視力や、色彩・形状の弁別能力が最も高い。視野のうち中心窩視される領域を含む、視線から約5°以内の領域は中心視野、視線から約20°以内の領域は有効視野、その外側の領域は周辺視野と呼ばれ、視機能はその順で低下していく。 That is, the further away from the line of sight V, the greater the density of the amount of information entering the field of view. On the other hand, it is known that the human visual function has a distribution with respect to the visual field. The central region on the retina that corresponds to the center of the visual field is called the fovea, and has the highest visual acuity and ability to discriminate colors and shapes. The area within about 5° from the line of sight, including the area that is foveated out of the visual field, is called central vision, the area within about 20° from the line of sight is called the effective field of view, and the area outside it is called peripheral vision. It decreases in that order.
 つまり受容情報量は、視線Vから離れるほど小さくなる。上述のとおり視線Vから離れた位置で視野に入る情報量の密度が高くなることを踏まえると、一様な空間的詳細度で画像全体を表示することは、提供情報量と受容情報量をアンバランスな状態にしているといえる。また実際には、物体の像の移動などによって視線Vが変化するため、高い視機能で捉えられる領域が画面上で移動する。これに対応するためにはフレームレートを上げ、少なくとも当該領域について時間的に詳細に像を更新していく必要がある。 In other words, the amount of received information becomes smaller the further away from the line of sight V. Considering that the density of the amount of information entering the field of view increases at positions away from the line of sight V as described above, displaying the entire image with a uniform spatial detail level will increase the amount of information provided and the amount of information received. It can be said that it is in a state of balance. In addition, in reality, the line of sight V changes due to the movement of the image of the object, etc., so the area that can be captured with high visual performance moves on the screen. In order to deal with this, it is necessary to raise the frame rate and update the image in detail temporally at least for the relevant area.
 そこで本実施の形態では、特に視線V、ひいては注視点から所定範囲の領域に着目して画質の向上を図ることにより、提供情報量と受容情報量のアンバランスを是正し、注視点から離れた領域についての処理や伝送の無駄を省く。具体的には上述のとおり、注視領域外で生じたイベントについてはその情報を送信対象から除外する。これにより表示制御装置10での更新処理の無駄も省けるため、高いフレームレートでの表示が可能になる。 Therefore, in the present embodiment, the image quality is improved by paying particular attention to an area within a predetermined range from the line of sight V, and by extension, the point of gaze, thereby correcting the imbalance between the amount of provided information and the amount of received information. Eliminate waste of processing and transmission for the area. Specifically, as described above, information about an event occurring outside the region of interest is excluded from transmission targets. As a result, wasteful update processing in the display control device 10 can be eliminated, and display at a high frame rate is possible.
 図7は、画像送信装置20が送信するデータと表示制御装置10が生成する表示画像の関係を説明するための図である。図は横方向に時間経過を示しており、図の中段は表示されるフレームの配列を表す。ここでフレーム全体を表す縦線において更新部分を太線で示している。この例は図2の(a)に示したように、実況中継やビデオチャットなど遠隔地における撮影画像を平板型ディスプレイに表示させることを想定している。 FIG. 7 is a diagram for explaining the relationship between the data transmitted by the image transmission device 20 and the display image generated by the display control device 10. FIG. The figure shows the passage of time in the horizontal direction, and the middle part of the figure represents the arrangement of the displayed frames. Here, the updated portion is indicated by a thick line in the vertical line representing the entire frame. In this example, as shown in FIG. 2(a), it is assumed that an image captured at a remote location such as a live broadcast or video chat is displayed on a flat panel display.
 この場合、画像送信装置20から送信されるデータは、上段に示すように、原画像全体180a、180b、・・・のデータと、イベント情報182a、182b、182c、・・・で構成される。図では単純化し、背景に変化がなく発話者の像に変化があるとして、画像平面における発話者の像をイベント情報182a、182b、182c、・・・として示している。ただし実際には上述のとおり、画素単位でのイベントの発生を検出することにより、話している口唇部分や瞬きしている目の部分など、より高い空間分解能および時間分解能で情報を送信する。またイベント情報182a、182b、182c、・・・には、注視領域192の内部のイベントのみを含める。 In this case, the data transmitted from the image transmission device 20 consists of data of the entire original images 180a, 180b, . . . and event information 182a, 182b, 182c, . For simplification, the figure shows the images of speakers on the image plane as event information 182a, 182b, 182c, . However, in practice, as described above, by detecting the occurrence of events on a pixel-by-pixel basis, information is transmitted with higher spatial and temporal resolution, such as speaking lips or blinking eyes. Also, the event information 182a, 182b, 182c, .
 原画像全体180a、180b、・・・のデータは所定の周期で送信されるのに対し、イベント情報182a、182b、182c、・・・は、原画像全体180a、180b、・・・の送信周期とは非同期に、イベントの発生タイミングに対応して送信される。表示制御装置10では、送信されたデータを用いて表示画像のフレームを生成する。すなわち、原画像全体180aのデータを用いて、表示画像184aを生成する。表示画像184aは、中段のフレーム188に対応する。 The data of the entire original images 180a, 180b, . is sent asynchronously with the timing of event occurrence. The display control device 10 generates a display image frame using the transmitted data. That is, the display image 184a is generated using the data of the entire original image 180a. Display image 184a corresponds to frame 188 in the middle row.
 そして表示制御装置10は、次に原画像全体180bのデータが送信されるまでの期間において送信された、イベント情報182a、182b、182c、・・・を用いて、必要な部分190のみを更新した表示画像186a、186b、186c、・・・を生成する。更新部分の元となるイベント情報182a、182b、182c、・・・の送信タイミングは様々となるため、表示制御装置10は、最新のイベント情報を用いて周期的にフレームを更新していく。そして表示制御装置10は、次に送信された原画像全体180bのデータに基づき、それに対応する表示画像184bを生成する。 Then, the display control device 10 updates only the necessary part 190 using the event information 182a, 182b, 182c, . Display images 186a, 186b, 186c, . . . are generated. Since the transmission timing of the event information 182a, 182b, 182c, . Then, the display control device 10 generates a corresponding display image 184b based on the data of the entire original image 180b transmitted next.
 このようにして表示制御装置10は、画像送信装置20から送信された原画像全体180a、180b、・・・のフレームの間を、最新のイベント情報に基づき内挿することにより、高フレームレートでの表示を実現する。例えば表示制御装置10は、画像送信装置20から送信された、30fpsや60fpsの原画像を用い、120fpsや240fpsなどで画像を表示する。ユーザが見ている部分、かつ変化のある部分のみを画素単位で更新することにより、上述の視覚特性との親和性がよく、また伝送や処理の対象となるデータサイズの軽減により低遅延で高精細に変化を表すことができる。 In this way, the display control device 10 interpolates between the frames of the entire original images 180a, 180b, . to achieve the display of For example, the display control device 10 uses the original image of 30 fps or 60 fps transmitted from the image transmission device 20 and displays the image at 120 fps or 240 fps. By updating only the part that the user is looking at and the part that has changed in pixel units, it has good compatibility with the above-mentioned visual characteristics, and the reduction in the size of the data to be transmitted and processed results in low latency and high performance. Changes can be expressed precisely.
 図8は、画像送信装置20が送信するデータと表示制御装置10が生成する表示画像の関係の別の例を示している。この例は図2の(b)に示したように、全天周画像のうちユーザの視野に対応する領域をヘッドマウントディスプレイに表示させることを想定している。この場合、画像送信装置20から送信されるデータは、上段に示すように、原画像全体200a、200b、・・・のデータと、イベント情報202a、202b、202c、・・・で構成される。 FIG. 8 shows another example of the relationship between the data transmitted by the image transmission device 20 and the display image generated by the display control device 10. FIG. In this example, as shown in FIG. 2(b), it is assumed that an area corresponding to the user's field of view in the omnidirectional image is displayed on the head-mounted display. In this case, the data transmitted from the image transmission device 20 consists of data of the entire original images 200a, 200b, . . . and event information 202a, 202b, 202c, .
 原画像として全天周画像を準備することにより、ユーザが急に後ろを振り向いたとしても連続した画像世界を見せることができる。一方、ある時刻に限定すると、ヘッドマウントディスプレイに表示すべき画角は、図6で示したように100~120°程度に限られる。さらに上述のとおり、視線方向から離れた領域ほど、ユーザの視機能が低下する。したがって画像全体を一律に扱うことは、提供情報量と受容情報量のバランスを欠き、このことは平板型ディスプレイに中心射影の画像を表示させるケースより顕著になる。 By preparing an omnidirectional image as the original image, it is possible to show a continuous image world even if the user suddenly turns around. On the other hand, when limited to a certain time, the angle of view to be displayed on the head-mounted display is limited to about 100 to 120 degrees as shown in FIG. Furthermore, as described above, the visual function of the user deteriorates as the area is farther from the line-of-sight direction. Therefore, treating the entire image uniformly lacks a balance between the amount of information to be provided and the amount of information to be received.
 画像送信装置20は、原画像全体200a、200b、・・・のデータを所定の周期で送信するとともに、それとは非同期に、イベント情報202a、202b、202c、・・・を送信する。図では動物のキャラクタが動いているとして、画像平面におけるキャラクタの像をイベント情報202a、202b、202c、・・・として示している。なお図では原画像全体200a、200b、・・・として全天周画像を示しているが、送信対象はそれに限らず、ユーザの視野に対応する領域や、表示時に視野に入ると予測される領域に限定してもよい。イベント情報202a、202b、202c、・・・についても、当該視野内、あるいは注視領域内のイベントに限定してよい。 The image transmission device 20 transmits the data of the entire original images 200a, 200b, . In the drawing, it is assumed that an animal character is moving, and event information 202a, 202b, 202c, . In the figure, omnidirectional images are shown as the entire original images 200a, 200b, . may be limited to The event information 202a, 202b, 202c, .
 表示制御装置10は、送信された原画像全体200a、200b、・・・のデータを用いて表示画像204a、204b、・・・を生成するとともに、その間に送信されたイベント情報202a、202b、202c、・・・を用いて必要な部分のみを更新した表示画像206a、206b、206c、・・・を所定のレートで生成する。ここで表示制御装置10は、各時刻でのユーザの頭部の位置や姿勢に対応するように視野を補正するリプロジェクションを行ったうえで、左目用、右目用の歪み画像を生成してよい。ユーザの頭部の位置や姿勢は上述のとおり、ヘッドマウントディスプレイが備えるモーションセンサやカメラを利用して取得できる。 The display control device 10 generates display images 204a, 204b, . . . using data of the entire original images 200a, 200b, . , . . . are used to generate display images 206a, 206b, 206c, . Here, the display control device 10 may perform reprojection to correct the field of view so as to correspond to the position and posture of the user's head at each time, and then generate distorted images for the left eye and the right eye. . As described above, the position and posture of the user's head can be acquired using the motion sensor and camera provided in the head-mounted display.
 表示制御装置10は、このリプロジェクションにおいて、イベントが発生した画素についてはイベント情報202a、202b、202c、・・・を用いて描画を行う。このケースでも、原画像全体のフレームレートを低くしても、表示上は120fpsや240fpsなどの高フレームレートで高品質な画像を表示できる。また、ユーザの頭部の動きに対する視野の変化の低遅延性と、注視領域での像の動きの低遅延性を両立させることができる。なおイベント検出はユーザの動きと独立してなされるため、表示画像のフレーム間差分などと比較し、ワールド座標系での動きを正確に検出できる。 In this reprojection, the display control device 10 draws pixels where events have occurred using the event information 202a, 202b, 202c, . Even in this case, even if the frame rate of the entire original image is lowered, a high-quality image can be displayed at a high frame rate such as 120 fps or 240 fps. In addition, it is possible to achieve both low delay in the change of the visual field with respect to the movement of the user's head and low delay in the movement of the image in the fixation area. Since the event detection is performed independently of the user's motion, the motion in the world coordinate system can be accurately detected by comparing the difference between the frames of the display image.
 図9は、画像送信装置20が準備する全天周画像とイベント情報のデータ形式を例示している。図の(a)は正距円筒図法、(b)は魚眼カメラの出力をそのまま表した等距離射影の形式を示している。全天周画像を撮影により取得する場合、例えば220°程度の画角を有する魚眼カメラを表裏に組み合わせた全天周カメラを用いる。魚眼カメラを用いた場合、(b)に示すように、被写体を球面に射影する等距離射影の画像が得られる。 FIG. 9 exemplifies the data format of the omnidirectional image and event information prepared by the image transmission device 20 . (a) of the figure shows the equidistant cylindrical projection, and (b) shows the form of equidistant projection directly expressing the output of the fisheye camera. When acquiring an omnidirectional image by photographing, for example, an omnidirectional camera in which fisheye cameras having an angle of view of about 220° are combined on the front and back is used. When a fish-eye camera is used, as shown in (b), an image of equidistant projection in which an object is projected onto a spherical surface is obtained.
 (a)の場合、そのような等距離射影の画像を、一旦、正距円筒図法でのデータ210aに変換したうえで、その少なくとも一部を送信対象とする。このときイベント情報212aは、正距円筒図法の画像平面における位置座標でイベントの発生位置を表す。一方、本実施の形態では、(b)に示すような等距離射影のデータ210bを送信対象としてもよい。このようにすると、正距円筒図法でのデータ210aに変換するための処理や、そのためのバッファメモリを準備する必要がなく、低遅延でのデータ送信を実現できる。 In the case of (a), such an image of equidistant projection is once converted into data 210a in equirectangular projection, and then at least part of it is targeted for transmission. At this time, the event information 212a represents the occurrence position of the event by the position coordinates on the image plane of the equirectangular projection. On the other hand, in the present embodiment, equidistant projection data 210b as shown in (b) may be transmitted. By doing so, it is possible to realize low-delay data transmission without processing for converting to data 210a in the equirectangular projection or preparing a buffer memory for that purpose.
 このときイベント情報212bは、等距離射影での画像平面における位置座標でイベントの発生位置を表す。つまりイベント情報についても、EDSからの出力を座標変換することなく低遅延で送信できる。(b)の場合も、等距離射影のデータ210bのうち視野範囲214のデータのみを原画像全体のデータとして送信してよい。またイベント情報212bについては、視野範囲214内の注視領域216で生じたイベントの情報のみを送信対象としてよい。 At this time, the event information 212b represents the occurrence position of the event with position coordinates on the image plane in equidistant projection. In other words, event information can also be transmitted with low delay without coordinate conversion of the output from the EDS. Also in the case of (b), only the data of the visual field range 214 in the equidistant projection data 210b may be transmitted as the data of the entire original image. As for the event information 212b, only the information of the event occurring in the gaze area 216 within the visual field range 214 may be transmitted.
 図9では画像送信装置20からの送信処理に着目したが、表示までの低遅延化には表示装置16側での表示形式も影響する。図10は、ビュースクリーンの形状と提供情報量の関係を説明するための図である。ビュースクリーン414は、平板型ディスプレイに中心射影の画像を表現する際のスクリーンである。ビュースクリーン426は、接眼レンズを踏まえた歪み画像を表現する際のスクリーンである。図では両スクリーンを、ユーザの視点424とともに側面から見た状態を示している。 Although FIG. 9 focused on transmission processing from the image transmission device 20, the display format on the display device 16 side also affects the reduction in delay until display. FIG. 10 is a diagram for explaining the relationship between the shape of the view screen and the amount of provided information. The viewscreen 414 is a screen for presenting central projection images on a flat panel display. A view screen 426 is a screen for representing a distorted image through the eyepiece. The figure shows both screens viewed from the side along with the user's viewpoint 424 .
 ビュースクリーン414は、例えば軸Cを中心に所定の画角を有する平面で構成される。この場合、オブジェクト425の像は、軸Cからの高さによらず、ビュースクリーン414との距離に応じた縮尺率で一様に縮小された状態で表される。一方、接眼レンズを前提とする歪み画像は魚眼レンズによる撮影画像と同様の性質を有し、結果としてビュースクリーン426は図示するように湾曲した形状となる。ただしビュースクリーン426の詳細な形状はレンズの設計に依存する。 The view screen 414 is composed of a plane having a predetermined angle of view around the axis C, for example. In this case, the image of the object 425 is displayed in a uniformly reduced scale according to the distance from the view screen 414 regardless of the height from the axis C. On the other hand, a distorted image premised on an eyepiece lens has the same properties as an image captured by a fisheye lens, and as a result the view screen 426 has a curved shape as shown. However, the detailed shape of the viewscreen 426 depends on the lens design.
 図から明らかなように、ビュースクリーン426のうち光軸(軸C)近傍の角度範囲428の領域では、ビュースクリーン414の対応する領域との面積差が小さいのに対し、角度範囲が光軸から離れるほど、ビュースクリーン414に対する面積比が小さくなっていく。このため、画像の中心領域434では中心射影の画像と歪み画像で像の大きさにほぼ差がないのに対し、周縁領域432、426では、中心射影の画像における像が、歪み画像では著しく縮小される。つまり中心射影で表現された画像の一部は、歪み画像には反映されない無駄な情報を含んでいるといえる。 As is clear from the figure, the area of the angular range 428 in the vicinity of the optical axis (axis C) of the viewscreen 426 has a small area difference from the corresponding area of the viewscreen 414, whereas the angular range is greater than the optical axis. The farther away, the smaller the area ratio to the viewscreen 414 . For this reason, in the central region 434 of the image, there is almost no difference in image size between the central projection image and the distorted image, whereas in the peripheral regions 432 and 426, the image in the central projection image is significantly reduced in the distorted image. be done. In other words, it can be said that part of the image represented by the central projection contains useless information that is not reflected in the distorted image.
 このことは、中心射影の画像のみならず、画像平面の上下で像が拡大される、正距円筒図法の画像においてさらに顕著となる。そのためヘッドマウントディスプレイの場合、図9で説明したように、等距離射影の画像を正距円筒図法のデータに変換せずに送信することにより、最終的に表示される歪み画像において無駄となる情報の生成や伝送を排除できる。 This is even more pronounced not only in central projection images, but also in equirectangular projection images in which the image is magnified above and below the image plane. Therefore, in the case of a head-mounted display, as described with reference to FIG. 9, by transmitting the equidistant projection image without converting it into equirectangular projection data, information is wasted in the distorted image that is finally displayed. can eliminate the generation and transmission of
 図11は、表示制御装置10における歪み画像描画処理を説明するための図である。図は横方向に時間経過を示しており、図の上段は表示されるフレームの配列を表す。ここでは各フレームを、歪み画像の湾曲したビュースクリーンとして表し、そのうち更新部分を太線で示している。なお画像送信装置20から送信されるデータの形式は限定されない。 FIG. 11 is a diagram for explaining distortion image drawing processing in the display control device 10. FIG. The figure shows the passage of time in the horizontal direction, and the upper part of the figure represents the arrangement of the displayed frames. Each frame is represented here as a curved viewscreen of the distorted image, of which the updated portion is shown in bold. The format of data transmitted from the image transmission device 20 is not limited.
 表示制御装置10の表示画像描画部66は、原画像全体のデータが送信されたタイミングで、表示画像のフレーム220a全体を描画する。この際、湾曲したビュースクリーン上の各画素を通るレイを発生させ、原画像における到達点の色情報を取得することで画素値を決定していく。これにより、歪みのあるフレーム220aを直接描画できる。なお実際には図8に示すように、左目用、右目用の画像からなる画像対を生成する。 The display image drawing unit 66 of the display control device 10 draws the entire frame 220a of the display image at the timing when the data of the entire original image is transmitted. At this time, a ray is generated that passes through each pixel on the curved view screen, and the pixel value is determined by acquiring the color information of the arrival point in the original image. This allows the distorted frame 220a to be drawn directly. Incidentally, in practice, as shown in FIG. 8, an image pair composed of left-eye and right-eye images is generated.
 表示画像描画部66は、次に原画像全体のデータが送信されるまで、イベント情報に基づき、イベントが発生した部分のみを更新したフレーム222a、222b、222cを生成する。図ではフレーム222a、222b、222cのうち更新部分のみを表しているが、実際には、イベントが発生しない領域についても画像として表される。イベント情報に含まれる、イベントが発生した画素の位置情報と、そのカメラ光学系とから、カメラの光学中心からイベントが発生した画素への方向が判明する。 The display image drawing unit 66 generates frames 222a, 222b, and 222c in which only the parts where the event occurred are updated based on the event information until the data of the entire original image is transmitted next time. Although only the updated portions of the frames 222a, 222b, and 222c are shown in the drawing, in reality, the regions in which no events occur are also represented as images. The direction from the optical center of the camera to the pixel where the event occurred can be determined from the positional information of the pixel where the event occurred and the camera optical system included in the event information.
 表示画像描画部66は例えば、当該方向と描画時に設定するレイとの対応に基づき、必要な部分のみイベント情報を用いてレイトレーシングを行い、画素値を決定する。この場合も、湾曲したビュースクリーンを用いることで、歪み画像を直接描画できる。そして表示画像描画部66は、次に原画像全体のデータが送信されたら、それに対応する表示画像のフレーム220bを生成する。これらの手順により、歪み画像であっても無駄な処理や伝送を発生させることなく、低遅延かつ高精細な画像表現を実現できる。 For example, the display image drawing unit 66 performs ray tracing using event information only for necessary parts based on the correspondence between the direction and the ray set at the time of drawing, and determines the pixel value. Again, the strain image can be drawn directly using a curved viewing screen. Next, when the data of the entire original image is transmitted, the display image drawing section 66 generates a corresponding display image frame 220b. By these procedures, low-delay and high-definition image expression can be realized without unnecessary processing and transmission even for distorted images.
 図12は、本実施の形態における画像表示システムの変形例を示している。この例では画像送信装置20として、3Dモデルデータ260を用いてコンピュータグラフィクスを生成するサーバ252を導入する。なおサーバ252は、全天周画像や広角画像を撮影する撮像装置240a、240bと接続し、それらの撮影画像を取得したり、コンピュータグラフィクスと合成した画像を生成したりしてもよい。サーバ252はクラウドゲーミングなどクラウド環境のサーバであってもよい。 FIG. 12 shows a modification of the image display system according to this embodiment. In this example, as the image transmission device 20, a server 252 that generates computer graphics using 3D model data 260 is introduced. Note that the server 252 may be connected to imaging devices 240a and 240b that capture omnidirectional images and wide-angle images, acquire these captured images, and generate images combined with computer graphics. The server 252 may be a server in a cloud environment such as cloud gaming.
 この場合もサーバ252は、原画像全体のデータ266を所定のレートでクライアントの表示制御装置10d、10dに送信するとともに、イベント情報268a、268bをバイパス回線で送信する。図では全天周画像のデータ形式の例として、一対の魚眼カメラによって出力された等距離射影の画像242と、キューブマップの画像270を示している。キューブマップは、全天周画像を表す球状のスクリーンに外接する立方体の内面に、全天周画像を投影したうえ展開図とすることにより2次元化したマップである。このようにサーバ252が全天周画像を表す際のデータ形式は様々であってよい。 In this case as well, the server 252 transmits the data 266 of the entire original image at a predetermined rate to the display control devices 10d and 10d of the clients, and also transmits the event information 268a and 268b through the bypass line. The figure shows an equidistant projection image 242 output by a pair of fisheye cameras and a cube map image 270 as an example of the data format of the omnidirectional image. A cube map is a two-dimensional map obtained by projecting an omnidirectional image onto the inner surface of a cube that circumscribes a spherical screen that represents the omnidirectional image, and then developing the image. Various data formats may be used when the server 252 represents the omnidirectional image in this manner.
 いずれにしろそれらのデータのいずれかを受信した表示制御装置10c、10dのうち、表示装置16cとして平板型ディスプレイに接続された表示制御装置10cは、中心射影の表示画像272を生成して出力する。表示装置16dとしてヘッドマウントディスプレイに接続された表示制御装置10dは、左目用、右目用の歪み画像からなる表示画像274を生成して出力する。また表示制御装置10c、10dは、イベント情報268a、268bの送信に応じて、必要な部分276a、276bのみを更新することで、高フレームレートでの表示を実現する。 In any case, of the display control devices 10c and 10d that have received either of these data, the display control device 10c connected to the flat-panel display as the display device 16c generates and outputs a centrally-projected display image 272. . The display control device 10d connected to the head-mounted display as the display device 16d generates and outputs a display image 274 composed of distorted images for the left eye and the right eye. Further, the display control devices 10c and 10d update only the necessary portions 276a and 276b according to the transmission of the event information 268a and 268b, thereby achieving display at a high frame rate.
 このように表示制御装置10が、送信された画像を用いてレイトレーシングにより画素単位で色情報を決定していくことにより、送信される画像の種類やデータ形式、表示装置16の種類を限定することなく統一されたスキームで表示が可能になる。またイベント情報に基づき局所的に画像を描画したり、中心射影の画像に変換することなく歪み画像を生成したりできるほか、目の中心窩に対応する領域など画像上の一部の領域を、他の領域より高い解像度で描画するなど、細かい制御が可能になる。 In this way, the display control device 10 determines the color information for each pixel by ray tracing using the transmitted image, thereby limiting the type and data format of the transmitted image and the type of the display device 16. It is possible to display with a unified scheme without In addition, it is possible to locally draw images based on event information, generate distorted images without converting to images of central projection, and also make partial areas on the image, such as the area corresponding to the fovea of the eye, Fine control is possible, such as drawing at a higher resolution than other areas.
 図13は、イベント情報による部分的な更新とリプロジェクションの関係を説明するための図である。ヘッドマウントディスプレイの場合、表示制御装置10は上述のとおり、表示直前でのユーザの頭部の位置や姿勢に対応するように画像を補正するリプロジェクションを行う。例えば画像送信装置20は、データ送信先の表示制御装置10から、ユーザの頭部の位置や姿勢に係る情報を取得しつつ、それに対応する視野で画像を生成する。表示制御装置10は、当該画像の生成から表示までの時間における頭部の動きに応じて視野を最終調整する。これにより頭部の動きに追随する視野で画像が表示される。 FIG. 13 is a diagram for explaining the relationship between partial update and reprojection based on event information. In the case of a head-mounted display, as described above, the display control device 10 performs reprojection to correct the image so as to correspond to the position and posture of the user's head immediately before display. For example, the image transmission device 20 acquires information related to the position and posture of the user's head from the display control device 10 to which data is transmitted, and generates an image in the corresponding field of view. The display control device 10 makes the final adjustment of the field of view according to the movement of the head during the time from generation of the image to display. As a result, the image is displayed in a field of view that follows the movement of the head.
 図の上段の画像280は、画像送信装置20が生成する画像世界を表している。この画像世界では、下方にある地面のような帯状のオブジェクト283を背景として、球状のオブジェクト282が移動しているとする。オブジェクト282に付した(t0)、(t1)、(t2)は、時刻t0、t1、t2におけるオブジェクト282の位置を表している。この画像世界に対し、ユーザ頭部の動きに対応する各時刻の表示視野が、視野284a、284b、284cのように変化するとする。 The image 280 in the upper part of the figure represents the image world generated by the image transmission device 20. In this image world, it is assumed that a spherical object 282 is moving against a belt-like object 283 like the ground below. (t0), (t1), and (t2) attached to the object 282 represent the positions of the object 282 at times t0, t1, and t2. In this image world, the display field of view at each time corresponding to the movement of the user's head is assumed to change to fields of view 284a, 284b, and 284c.
 一方、画像送信装置20による原画像全体のフレームレートを、表示のフレームレートより低くし、時刻t0、t2のデータのみを送信するとした場合、当然、時刻t1のオブジェクト282を含む、視野284bの画像は送信されない。なお実際には、画像送信装置20は上述のとおり、ユーザ頭部の動きを予測するなどして、視野284aより広い範囲の画像データを原画像のデータとして送信することによりリプロジェクションを可能にする。 On the other hand, if the frame rate of the entire original image by the image transmission device 20 is set lower than the display frame rate, and only the data at times t0 and t2 are transmitted, naturally the image of the field of view 284b including the object 282 at time t1 is not sent. In practice, as described above, the image transmission device 20 predicts the movement of the user's head and transmits image data in a range wider than the field of view 284a as original image data, thereby enabling reprojection. .
 表示制御装置10では、送信されたデータを元にリプロジェクションを行い、下段に示すような表示画像を生成し出力する。すなわち時刻t0に対応して送信された画像データを用いて、時刻t0、t1の表示フレームを生成し(S10)、時刻t2に対応して送信された画像データを用いて、時刻t2と次の表示フレームを生成する(S14)。ここで時刻t0の画像データを用いて、視野のみ変化させた時刻t1の表示フレームを生成する際、(a)に示すように、背景のオブジェクト283が占める領域は適切に変化しても、本来は視野内に表れる、時刻t1のオブジェクト282が表されない結果となる。 The display control device 10 performs reprojection based on the transmitted data, and generates and outputs a display image as shown in the lower part. That is, the image data transmitted corresponding to time t0 is used to generate the display frames at times t0 and t1 (S10), and the image data transmitted corresponding to time t2 is used to generate the time t2 and the next display frame. A display frame is generated (S14). Here, when generating a display frame at time t1 in which only the field of view is changed using the image data at time t0, as shown in (a), even if the area occupied by the background object 283 changes appropriately, will result in the object 282 at time t1 appearing in the field of view not appearing.
 そのため画像送信装置20はこれまで述べたように、原画像全体のデータ送信と独立したタイミングで、オブジェクト282の移動により輝度に変化のあった画素の情報をイベント情報として送信する。これにより表示制御装置10は、(b)に示すように、時刻t1の表示フレームに、より最新のイベント情報を用いて描画したオブジェクト282の像を適切に描画できる(S12)。なお図では理解を容易にするため、オブジェクト282が表示画像に表れるか否かといった大きな変化を示しているが、実際には原画像のフレームレートも、それを用いた表示のフレームレートも、格段に大きな値となる。これにより、ごく微小な変化を高精細かつ低遅延で表現できる。 Therefore, as described above, the image transmission device 20 transmits, as event information, information about pixels whose brightness has changed due to movement of the object 282 at a timing independent of data transmission of the entire original image. As a result, the display control device 10 can appropriately draw the image of the object 282 drawn using the latest event information in the display frame at time t1 (S12), as shown in (b). To facilitate understanding, the drawing shows a large change in whether or not the object 282 appears in the display image. is a large value. As a result, minute changes can be expressed with high definition and low delay.
 イベントが生じた画素における色の変化をイベント情報に含める場合、表示制御装置10はレイトレーシングにおいて、イベントが生じた画素に対するレイについては、イベント情報に含まれる色情報を参照する。それ以外のレイについては、時刻t0に対応して送信された原画像の色情報を参照する。一方、色情報をイベント情報に含めず、表示制御装置10自体がオブジェクト282を描画してもよい。 When the event information includes the color change in the pixel where the event occurred, the display control device 10 refers to the color information included in the event information for the ray corresponding to the pixel where the event occurred in ray tracing. For other rays, the color information of the original image transmitted at time t0 is referred to. On the other hand, the display control device 10 itself may draw the object 282 without including the color information in the event information.
 図12に示した画像表示システムでは、サーバ252がコンピュータグラフィクスによって表される仮想世界のデータを生成する。この場合、サーバ252は画像描画処理の過程で、オブジェクトの深度情報など描画対象の3次元空間に係る情報を生成する。そこでサーバ252は、生成した3次元空間に係る情報を送信することにより、表示制御装置10側で、例えばオブジェクト282の移動の様子をモデルデータから描画することができる。 In the image display system shown in FIG. 12, the server 252 generates virtual world data represented by computer graphics. In this case, the server 252 generates information related to the three-dimensional space to be drawn, such as depth information of the object, during the image drawing process. Therefore, the server 252 transmits the information related to the generated three-dimensional space, so that the movement of the object 282, for example, can be drawn from the model data on the display control device 10 side.
 この場合、対象オブジェクトのマテリアル情報も送信することにより、視点移動に伴う鏡面反射の変化など、素材を踏まえた正確な光源計算処理が可能になる。例えばユーザから近距離にある設定のオブジェクトや、ユーザとインタラクションするオブジェクトなどについて、表示制御装置10が直接描画することにより、臨場感のある画像世界を効率よく表現できる。これにより、宝飾品などの仮想商品を展示するバーチャルストアや、試着や体験を仮想的に行うバーチャル試着、バーチャルメイクなどのニーズにも対応できる。 In this case, by also transmitting the material information of the target object, it is possible to perform accurate light source calculation processing based on the material, such as changes in specular reflection accompanying movement of the viewpoint. For example, the display control device 10 directly draws an object set at a short distance from the user, an object that interacts with the user, and the like, so that a realistic image world can be efficiently expressed. As a result, it is possible to respond to needs such as virtual stores that display virtual products such as jewelry, virtual try-on and virtual makeup that allows virtual try-on and experience.
 なおこの態様は、コンピュータグラフィクスに限らず、実写映像であっても適用できる。すなわち被写体の深度情報やマテリアル情報を、画像送信装置20が別途取得して送信することにより、表示制御装置10はそれを用いて変化のあるオブジェクトのみを描画できる。ここで深度情報やマテリアル情報は、その場での測定値やあらかじめ得られた登録情報を用いるのみならず、深層学習や人工知能を用いて推定してもよい。撮影画像から被写体のマテリアル情報や深度情報を推定する技術は近年、急速な発展を遂げており、それらの技術のいずれを採用してもよい(例えばAbhimitra Meka、外6名、 「LIME: Live Intrinsic Material Estimation」、 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)、 (米国)、 2018年、 第1巻、 p. 6315-6324参照)。 This aspect is applicable not only to computer graphics, but also to live-action images. That is, the image transmission device 20 separately acquires and transmits the depth information and material information of the subject, so that the display control device 10 can draw only objects with changes using them. Here, depth information and material information may be estimated using deep learning or artificial intelligence, as well as using on-site measurement values or pre-obtained registration information. Technologies for estimating subject material information and depth information from captured images have made rapid progress in recent years. Material Estimation", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (USA), 2018, Vol. 1, p. 6315-6324).
 つぎに本実施の形態において利用できる、全天周画像の表現形式について例示する。本実施の形態では、魚眼カメラや多眼カメラで撮影した全天周画像や、コンピュータグラフィクスで描画した全天周画像を利用可能とする。全天周画像は一般的な中心射影の画像では一度に表現できないため、平面を組み合わせた多面体に射影した画像、正距円筒図、等距離射影画像など、方位の情報が内在する立体的な画像を平面で表すための特殊なデータ形式が用いられる。 Next, the representation format of the omnidirectional image that can be used in the present embodiment will be exemplified. In this embodiment, an omnidirectional image captured by a fish-eye camera or a multi-view camera, or an omnidirectional image drawn by computer graphics can be used. Since an omnidirectional image cannot be expressed at once with a general central projection image, a three-dimensional image that contains orientation information, such as an image projected onto a polyhedron that combines planes, an equirectangular view, and an equidistant projection image. A special data format is used to represent .
 ヘッドマウントディスプレイなど接眼レンズを介して見る画像表示技術では、そのような特有の画像の一部を切り出したうえ、一旦、中心射影の画像に変換してから接眼レンズに対応する歪みを与えることが多い。一方、本実施の形態の画像送信装置20は、中心射影以外のデータ形式で原画像を送信し、表示制御装置10は、当該データ形式に対応する変換式により、原画像から直接画素値を読み出し、歪みのある表示画像を描き出す。 In image display technology such as a head-mounted display that is viewed through an eyepiece, it is possible to cut out a part of such a peculiar image, convert it to a centrally projected image, and then give the corresponding distortion to the eyepiece. many. On the other hand, the image transmission device 20 of the present embodiment transmits the original image in a data format other than central projection, and the display control device 10 reads the pixel values directly from the original image using a conversion formula corresponding to the data format. , produces a distorted display image.
 これにより、中心射影を経由するのに必要なリソースを節約できる。また、原画像が元来有する方位の情報をそのまま伝送できるため、ユーザの視線の向きに対応する表示画像を容易に生成できる。例えば撮像装置と同じ位置から全天周画像を鑑賞する場合、視点を中心とした画像の座標系が一致するため、撮影画像のうち、ユーザの視線の方向と同じ方向の画像を表示すればよいことになる。さらに全天周画像を撮影した魚眼カメラのレンズと接眼レンズの歪曲収差が略同一であれば、歪み画像のための変換も最小限ですむ。 This saves the resources required to go through central projection. In addition, since the original azimuth information of the original image can be transmitted as it is, it is possible to easily generate a display image corresponding to the direction of the user's line of sight. For example, when viewing an omnidirectional image from the same position as the imaging device, since the coordinate system of the image centered on the viewpoint matches, it is sufficient to display the image in the same direction as the user's line of sight. It will be. Furthermore, if the distortion aberration of the lens of the fish-eye camera that captures the omnidirectional image and the eyepiece lens are substantially the same, the transformation for the distorted image can be minimized.
 図14は、全天周画像をキューブマップで表現した場合の表示画像生成処理を説明するための図である。キューブマップは上述のとおり、全天周を表す球294の面上の画像を、球294に外接する立方体290の各面に射影したうえで展開した画像292である。画像送信装置20はまず、球294の中心から、立方体290を構成する6つの正方形の各画素に到達するレイを設定する。そして、そのレイ(ベクトルrd)が通過する、球294の表面の色を、当該画素の画素値とすることにより画像292を生成する。結果として画像292は、6つの正方形とそのうちの位置によって、方位の情報を示している。なお上述のとおり画像送信装置20は、画像292のうち、表示に必要な領域のデータのみを送信してよい。この場合も画像のデータ形式は同様である。 FIG. 14 is a diagram for explaining display image generation processing when an omnidirectional image is represented by a cube map. As described above, the cube map is an image 292 obtained by projecting the image on the surface of the sphere 294 representing the omnidirectional circumference onto each surface of the cube 290 circumscribing the sphere 294 and developing the image 292 . First, the image transmitting device 20 sets a ray from the center of the sphere 294 to each pixel of the six squares forming the cube 290 . Then, an image 292 is generated by using the color of the surface of the sphere 294 through which the ray (vector rd) passes as the pixel value of the pixel. The resulting image 292 shows orientation information by means of the six squares and their positions. Note that, as described above, the image transmission device 20 may transmit only the data of the area required for display in the image 292 . In this case also, the image data format is the same.
 表示制御装置10は画像292あるいはその一部のデータを取得し、表示画像を生成する。このとき表示制御装置10はまず、接眼レンズに対応する湾曲したスクリーンの各画素を通るレイを設定する。そして、視点を中心とする球294に外接する立方体として画像292を配置し、設定したレイ(ベクトルnor)に対応する、画像292上の色をサンプリングして画素値を決定する。この処理には、例えば周知のコンピュータグラフィクスライブラリであるOpenGLのキューブマッピング機能における、キューブマップテクスチャの読み出し命令を利用できる。一方、本実施の形態では、イベント情報も同じ形式で送信する。 The display control device 10 acquires the data of the image 292 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, an image 292 is arranged as a cube circumscribing a sphere 294 centered on the viewpoint, and the pixel value is determined by sampling the color on the image 292 corresponding to the set ray (vector nor). For this processing, for example, a cube map texture reading command in the cube mapping function of OpenGL, which is a well-known computer graphics library, can be used. On the other hand, in this embodiment, event information is also transmitted in the same format.
 すなわちイベントが発生した画素の位置を、画像292の平面での位置座標で表す。このとき画像送信装置20は、その画素に到達するレイのベクトルrdを送信してもよい。この場合、表示制御装置10は例えば、新たな表示フレームを生成する際、イベント情報として送信されたベクトルrdと、表示フレームの生成において設定したレイのベクトルnorが一致するとき、イベント情報に含まれる、最新の画素の情報をサンプリングして部分的に画像を更新する。 That is, the position of the pixel where the event occurred is represented by the position coordinates on the plane of the image 292. At this time, the image transmission device 20 may transmit the vector rd of rays reaching the pixel. In this case, for example, when the display control device 10 generates a new display frame, when the vector rd transmitted as event information matches the ray vector nor set in generating the display frame, the vector nor is included in the event information. , partially updates the image by sampling the latest pixel information.
 図15は、全天周画像を正距円筒図法で表現した場合の表示画像生成処理を説明するための図である。正距円筒図法の画像302は、全天周を表す球294の面上の画像を、赤道で接する円筒300の表面に射影したうえで展開したデータである。画像送信装置20はまず、球294の中心から、円筒300の各画素に到達するレイを設定する。そして、そのレイ(ベクトルrd)が通過する、球294の表面の色を、当該画素の画素値とすることにより画像302を生成する。結果として画像302の平面は、横方向が経度u、縦方向が緯度vを表す。 FIG. 15 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equirectangular projection. The equirectangular projection image 302 is data obtained by projecting the image on the surface of the sphere 294 representing the whole sky onto the surface of the cylinder 300 that is in contact with the equator and expanding it. The image transmission device 20 first sets a ray that reaches each pixel of the cylinder 300 from the center of the sphere 294 . Then, the image 302 is generated by using the color of the surface of the sphere 294 through which the ray (vector rd) passes as the pixel value of the pixel. As a result, the plane of image 302 represents longitude u in the horizontal direction and latitude v in the vertical direction.
 表示制御装置10は画像302あるいはその一部のデータを取得し、表示画像を生成する。このとき表示制御装置10はまず、接眼レンズに対応する湾曲したスクリーンの各画素を通るレイを設定する。そして、視点を中心とする球294の赤道に外接する円筒として画像302を配置し、設定したレイ(ベクトルnor)に対応する、画像302上の色をサンプリングして画素値を決定する。画像送信装置20はさらに、イベントが発生した画素の位置を、画像302の平面での位置座標で表したイベント情報を送信する。これに応じて表示制御装置10が部分的に画像を更新する処理は、図14で説明したのと同様でよい。 The display control device 10 acquires the data of the image 302 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, the image 302 is arranged as a cylinder circumscribing the equator of the sphere 294 centered on the viewpoint, and the pixel value is determined by sampling the color on the image 302 corresponding to the set ray (vector nor). The image transmission device 20 further transmits event information indicating the position of the pixel where the event occurred by position coordinates on the plane of the image 302 . The process of partially updating the image by the display control device 10 in response to this may be the same as described with reference to FIG. 14 .
 図16は、全天周画像を等距離射影で表現した場合の表示画像生成処理を説明するための図である。この例では、画角が220°の魚眼カメラを表裏に組み合わせた撮像装置を想定している。すなわち撮影画像は、光学中心を中心とする球306のうち、220°より外の範囲を除いた部分の表面上のデータとなる。なお図では一対の魚眼カメラのうち片方の撮影画像を構成する球306のみを示している。また各魚眼カメラの画角は180°以上であれば限定されない。魚眼カメラの場合、センサアレイの出力をそのまま表すと等距離射影の画像310a、310bが得られる。ただし撮影画像に限らず、コンピュータグラフィクスによって等距離射影の画像を描画しても生成できる。 FIG. 16 is a diagram for explaining display image generation processing when an omnidirectional image is represented by equidistant projection. In this example, an imaging device is assumed in which fish-eye cameras having an angle of view of 220° are combined on the front and back. That is, the photographed image is data on the surface of the portion of the sphere 306 centered at the optical center, excluding the range outside 220°. Note that the drawing shows only the sphere 306 that constitutes the captured image of one of the pair of fisheye cameras. Also, the angle of view of each fisheye camera is not limited as long as it is 180° or more. In the case of a fish-eye camera, equidistant projection images 310a and 310b are obtained by representing the output of the sensor array as it is. However, it is not limited to the photographed image, and can be generated by drawing an image of equidistant projection by computer graphics.
 画像送信装置20は、逆方向の空間を表した等距離射影の画像310a、310bからなる画像308を生成する。画像308の平面は、横方向が経度u、縦方向が緯度vを表す。画像308をレイトレーシングにより生成する場合、画像送信装置20は、球294すなわち球306の中心から等間隔にレイを設定し、そのベクトルrdが通過する、球294(306)の表面の色を画素値とすることにより、画像308を生成できる。 The image transmission device 20 generates an image 308 consisting of equidistant projection images 310a and 310b representing the space in the opposite direction. The plane of the image 308 represents longitude u in the horizontal direction and latitude v in the vertical direction. When the image 308 is generated by ray tracing, the image transmitting device 20 sets rays at equal intervals from the center of the sphere 294 (306), and the color of the surface of the sphere 294 (306) through which the vector rd passes is displayed in pixels. An image 308 can be generated by taking values.
 表示制御装置10は画像308あるいはその一部のデータを取得し、表示画像を生成する。このとき表示制御装置10はまず、接眼レンズに対応する湾曲したスクリーンの各画素を通るレイを設定する。そして画像308のうち、設定したレイ(ベクトルnor)に対応する位置の色をサンプリングして画素値を決定する。画像送信装置20はさらに、イベントが発生した画素の位置を、画像308の平面での位置座標で表したイベント情報を送信する。これに応じて表示制御装置10が部分的に画像を更新する処理は、図14で説明したのと同様でよい。 The display control device 10 acquires the data of the image 308 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, the pixel value is determined by sampling the color at the position corresponding to the set ray (vector nor) in the image 308 . The image transmission device 20 further transmits event information representing the position of the pixel where the event occurred by position coordinates on the plane of the image 308 . The process of partially updating the image by the display control device 10 in response to this may be the same as described with reference to FIG. 14 .
 図17は、全天周画像を等距離射影で表すとともに、解像度レベルを複数設ける態様を説明するための図である。用いる画像は図16と同様、画角が180°以上の魚眼カメラを表裏に組み合わせた装置による撮影画像でもよいし、同様の形式でコンピュータグラフィクスにより描画した画像でもよい。したがって元の画像は、画角外の範囲を除いた球306の表面上のデータとなる。 FIG. 17 is a diagram for explaining a mode in which an omnidirectional image is represented by equidistant projection and a plurality of resolution levels are provided. The image to be used may be an image captured by a device in which fisheye cameras having an angle of view of 180° or more are combined on the front and back, as in FIG. 16, or may be an image rendered by computer graphics in a similar format. Therefore, the original image becomes data on the surface of the sphere 306 excluding the range outside the angle of view.
 図10で説明したように、魚眼レンズなど湾曲したスクリーンで表される画像は、中心射影の画像と比較し、画像の中心から離れるほど像が圧縮されて表される。この特徴は、中心窩に対応する領域から離れるほど視機能が低下する、人の視覚特性に適合している。これを発展させると、ユーザの視野外の空間を表す画像については、即座に中心窩で捉えられる可能性が低いため、低い解像度で準備しておいても視認上の影響は小さいと考えられる。 As described with reference to FIG. 10, an image represented by a curved screen such as a fisheye lens is represented by compressing the image as the distance from the center of the image increases, compared to the center projection image. This feature is compatible with the human visual characteristic that visual performance decreases with increasing distance from the region corresponding to the fovea. Developing this, it is considered that the image representing the space outside the user's field of view is less likely to be immediately captured by the fovea, so even if it is prepared with a low resolution, the visual impact will be small.
 そこで画像送信装置20は、逆方向の空間を表す2つの等距離射影の画像の解像度を独立に制御する。具体的には、各画像314a、314bを、複数の解像度レベルで表したミップマップ構造とする。例えばユーザが画像314bで表される方向を見ているとき、画像314aの殆どの領域は視野外にある。そのため画像送信装置20は、画像314aについては必要に応じて、低解像度の画像を優先して送信する。 Therefore, the image transmission device 20 independently controls the resolution of the two equidistant projection images representing the space in the opposite direction. Specifically, each image 314a, 314b has a mipmap structure representing a plurality of resolution levels. For example, when the user is looking in the direction represented by image 314b, most of the area of image 314a is outside the field of view. Therefore, the image transmission device 20 preferentially transmits the image 314a with a low resolution as necessary.
 これにより、2つの画像314a、314bを同一解像度とするより、全体的な送信データサイズが軽減され、低遅延性が保証される。またユーザが急に振り向いた場合など高速での視線移動に対し不足なく表示できるとともに、視線が近づくにつれ画像314aの解像度を徐々に上げていくことにより、違和感なく画像世界を視認させることができる。 As a result, the overall transmission data size is reduced and low delay is guaranteed compared to the two images 314a and 314b having the same resolution. In addition, the image world can be visually recognized without discomfort by increasing the resolution of the image 314a gradually as the user's line of sight moves closer to the user's line of sight.
 なお表示制御装置10において表示画像を生成する処理、およびイベント情報に基づき部分的に画像を更新する処理は、これまで述べた態様と同様でよい。また図では2つの等距離射影の画像により全天周画像を表現したが、等距離射影の画像の数は、それぞれの画角によっては3つ以上でもよい。この場合も、表す方角の異なる画像ごとにミップマップ構造を構築することにより、それらの解像度を独立に制御してよい。 Note that the process of generating the display image in the display control device 10 and the process of partially updating the image based on the event information may be the same as those described above. In the figure, the omnidirectional image is represented by two images of equidistant projection, but the number of images of equidistant projection may be three or more depending on the angle of view. Again, by constructing a mipmap structure for each image represented in different orientations, their resolutions may be controlled independently.
 なお画像送信装置20は、等距離射影の画像のうち中心部分の解像度を最大とし、中心から離れるほど解像度が低くなるようなデータを生成してもよい。図18は、中心から周縁にかけて解像度が減少する分布を有する等距離射影の画像を生成する手法を説明するための図である。まず等距離射影の画像318は、(a)に示すように経度u、緯度vの2次元座標に表される。図16、17で示したように2つの魚眼カメラを用いた場合、同様の画像を2つ生成するが、解像度に分布を与える対象は、その双方でもよいし、ユーザが主に見ている画像のみでもよい。 Note that the image transmission device 20 may generate data such that the resolution of the central portion of the equidistant projection image is maximized, and the resolution decreases with increasing distance from the center. FIG. 18 is a diagram for explaining a method of generating an equidistant projection image having a distribution in which the resolution decreases from the center to the periphery. First, the equidistant projection image 318 is represented by two-dimensional coordinates of longitude u and latitude v, as shown in (a). When two fish-eye cameras are used as shown in FIGS. 16 and 17, two similar images are generated, but the object to which the resolution distribution is given may be both of them, or the user is mainly looking at it. An image only is also acceptable.
 画像送信装置20は、カメラの光学中心から画像318の平面の各画素に到達するレイを設定し、そのベクトルrdが通過する球体表面の色を、当該画素の画素値とする。ただしこのケースでは、画像中心から離れるほどレイの密度を低下させることで、1画素が表す面積を広くする。画角が220°の画像318の平面における、位置座標(u,v)からベクトルrdへの変換は、例えば次の演算により実現する。 The image transmission device 20 sets a ray that reaches each pixel on the plane of the image 318 from the optical center of the camera, and sets the color of the surface of the sphere through which the vector rd passes as the pixel value of that pixel. However, in this case, the area represented by one pixel is increased by decreasing the ray density as the distance from the center of the image increases. The transformation from the position coordinates (u, v) to the vector rd on the plane of the image 318 with the angle of view of 220° is realized, for example, by the following calculation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで関数f(th)は、図の(b)において破線320aで示すように、画像中心から位置座標(u,v)までの距離に対応する角度thの絶対値が大きいほど、変化の割合が大きくなる単調増加関数である。これにより、画像中心からの距離が大きいほど、ベクトルrdで表されるレイの密度を低下させることができる。結果として画像318は、1画素が表す面積が画像平面上の位置によって異なるデータとなる。表示制御装置10は、例えば次の演算により、設定したレイのベクトルnorを、画像318上の位置座標(u,v)に変換したうえサンプリングを行う。 Here, the function f(th) is such that the larger the absolute value of the angle th corresponding to the distance from the center of the image to the position coordinates (u, v), as indicated by the broken line 320a in FIG. is a monotonically increasing function. As a result, the greater the distance from the center of the image, the lower the density of the rays represented by the vector rd. As a result, the image 318 becomes data in which the area represented by one pixel varies depending on the position on the image plane. The display control device 10 performs sampling after converting the set ray vector nor into position coordinates (u, v) on the image 318 by, for example, the following calculation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで関数f(th)は、図の(b)において実線320bで示すように、画像318の生成に用いた破線320aの逆関数である。これにより、1画素が表す面積の異なるデータを、表示画面の均等に配列した画素のデータとして表すことができる。このような処理により、中心窩に対応する領域をより高精細に表現したり、送信データ量を削減して低遅延性を高めたりできる。なお上記演算では「LODBIAS」パラメータによりミップマップ構造に対応した読み出しを行っているが、本実施形態をそれに限る主旨ではない。 Here, the function f(th) is the inverse function of the dashed line 320a used to generate the image 318, as indicated by the solid line 320b in (b) of the figure. As a result, data representing different areas represented by one pixel can be represented as data of pixels arranged evenly on the display screen. By such processing, it is possible to express the region corresponding to the fovea with higher definition, reduce the amount of transmission data, and improve low-delay performance. In the above calculation, reading corresponding to the mipmap structure is performed by the "LODBIAS" parameter, but the gist of the present embodiment is not limited to that.
 図19は、全天周画像を正八面体の面に表した場合の表示画像生成処理を説明するための図である。この場合、全天周を表す球294の面上の画像を、それに外接する正八面体322の表面に射影したうえで展開した画像324を生成する。すなわち画像送信装置20は、球294の中心から、正八面体322の各画素に到達するレイを設定し、そのレイ(ベクトルrd)が通過する、球294の表面の色を、当該画素の画素値とすることにより画像324を生成する。 FIG. 19 is a diagram for explaining display image generation processing when an omnidirectional image is represented on the plane of a regular octahedron. In this case, an image 324 is generated by projecting the image on the surface of the sphere 294 representing the omnidirectional circumference onto the surface of the regular octahedron 322 circumscribing it. That is, the image transmission device 20 sets a ray that reaches each pixel of the regular octahedron 322 from the center of the sphere 294, and converts the color of the surface of the sphere 294 through which the ray (vector rd) passes to the pixel value of the pixel. An image 324 is generated by .
 表示制御装置10は画像324あるいはその一部のデータを取得し、表示画像を生成する。このとき表示制御装置10はまず、接眼レンズに対応する湾曲したスクリーンの各画素を通るレイを設定する。そして、視点を中心とする球294に外接する正八面体として画像324を配置し、設定したレイ(ベクトルnor)に対応する、画像324上の色をサンプリングして画素値を決定する。画像送信装置20はさらに、イベントが発生した画素の位置を、画像324の平面での位置座標で表したイベント情報を送信する。これに応じて表示制御装置10が部分的に画像を更新する処理は、図14で説明したのと同様でよい。なお全天周画像を2次元のデータで表現する手法は上記以外にも様々なものが提案されており、本実施の形態ではそのいずれを採用してもよい。 The display control device 10 acquires the data of the image 324 or part thereof and generates a display image. At this time, the display control device 10 first sets a ray passing through each pixel of the curved screen corresponding to the eyepiece. Then, the image 324 is arranged as a regular octahedron circumscribing the sphere 294 centered on the viewpoint, and the pixel value is determined by sampling the color on the image 324 corresponding to the set ray (vector nor). The image transmission device 20 further transmits event information indicating the position of the pixel where the event occurred by position coordinates on the plane of the image 324 . The process of partially updating the image by the display control device 10 in response to this may be the same as described with reference to FIG. 14 . Various methods other than those described above have been proposed for expressing an omnidirectional image with two-dimensional data, and any of them may be adopted in the present embodiment.
 以上述べた本実施の形態によれば、画像送信装置から送信された原画像のデータを用いて画像を表示するシステムにおいて、画像送信装置は、輝度に生じた変化をイベントとして画素単位で検出し、原画像全体のデータとは非同期で送信する。データを取得した表示制御装置は、原画像全体のデータを用いて表示フレームの全体領域を生成するとともに、イベント情報に基づき、変化のあった部分のみを画素単位で更新した表示フレームを内挿する。ここで表示制御装置は、表示画像上の各画素に対応するレイを設定して色情報を取得する、レイトレーシングの手法を用いることにより、画素ごとでの更新を可能にする。 According to the present embodiment described above, in a system that displays an image using data of an original image transmitted from an image transmission device, the image transmission device detects a change in brightness as an event on a pixel-by-pixel basis. , is transmitted asynchronously with the data of the entire original image. The display control device that has acquired the data generates the entire area of the display frame using the data of the entire original image, and interpolates the display frame in which only the changed portion is updated pixel by pixel based on the event information. . Here, the display control device enables updating for each pixel by using a ray tracing method of setting a ray corresponding to each pixel on the display image and acquiring color information.
 これにより、原画像全体のフレームレートを低くしても、詳細な像の動きを表示画像上で正確に表現できるため、送信すべきデータのサイズを格段に軽減できる。送信対象のイベントを、ユーザの注視領域内に限定することで、視認上の影響を最小限に、さらにデータサイズを軽減できる。結果として、全天周画像など視野角の広い画像をヘッドマウントディスプレイに表示させたり、UHDTVなど画素数の多い表示装置に表示させたりする場合でも、通信帯域や処理のリソースを節約でき、低消費電力、低遅延で高品質な画像表現を実現できる。 As a result, even if the frame rate of the entire original image is lowered, the movement of the detailed image can be accurately represented on the displayed image, so the size of the data to be transmitted can be significantly reduced. By limiting the event to be transmitted within the user's attention area, the visual impact can be minimized and the data size can be reduced. As a result, even when displaying an image with a wide viewing angle, such as an omnidirectional image, on a head-mounted display or on a display device with a large number of pixels, such as a UHDTV, communication bandwidth and processing resources can be saved, resulting in low power consumption. High-quality image representation can be achieved with low power consumption and low latency.
 またレイトレーシングを採用することにより、全天周画像のように元の画像が歪んだ状態で表現される画像から、接眼レンズの歪曲収差や色収差に対応する歪みを有する表示画像を直接生成できる。結果として、中心射影の画像を展開するためのバッファメモリが必要なくなるとともに、画像変換のための処理を簡易化できる。さらに等距離射影の画像から歪みを有する表示画像を直接生成することにより、送信から表示まで一貫して、人の視覚特性に適した分布での情報量を維持できるため、無駄な処理や情報の入る余地がなくなる。 Also, by adopting ray tracing, it is possible to directly generate a display image with distortion corresponding to the distortion and chromatic aberration of the eyepiece lens from an image in which the original image is distorted, such as an omnidirectional image. As a result, there is no need for a buffer memory for developing the central projection image, and processing for image conversion can be simplified. Furthermore, by directly generating a distorted display image from an equidistant projection image, it is possible to consistently maintain the amount of information in a distribution suitable for the human visual characteristics from transmission to display. there will be no room to enter.
 平板型ディスプレイにおいても、注視領域内でイベントの発生した部分のみを更新対象とすることにより同様の効果が得られる。本実施の形態はこのように、平板型ディスプレイ、ヘッドマウントディスプレイなど表示形式を問わず、また撮影画像、コンピュータグラフィクス、それらを合成した画像など、表示画像の種類も問わず容易に適用可能である。 A similar effect can also be obtained with a flat panel display by updating only the part where the event occurred within the gaze area. As described above, the present embodiment can be easily applied regardless of the display format, such as a flat panel display or a head-mounted display, and regardless of the type of display image, such as a photographed image, computer graphics, or a composite image thereof. .
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiment. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and that such modifications are within the scope of the present invention. .
 10 表示制御装置、 16 表示装置、 20 画像送信装置、 22 CPU、 24 GPU、 26 メインメモリ、 50 注視領域取得部、 52 画像データ取得部、 54 イベント情報生成部、 56 データ送信部、 60 注視領域送信部、 62 画像データ取得部、 64 イベント情報取得部、 66 表示画像描画部、 70 フレーム画像描画部、 72 イベント情報管理部、 74 出力部。 10 Display control device, 16 Display device, 20 Image transmission device, 22 CPU, 24 GPU, 26 Main memory, 50 Gaze area acquisition unit, 52 Image data acquisition unit, 54 Event information generation unit, 56 Data transmission unit, 60 Gaze area Transmission unit 62 Image data acquisition unit 64 Event information acquisition unit 66 Display image drawing unit 70 Frame image drawing unit 72 Event information management unit 74 Output unit.
 以上のように本発明は、コンテンツサーバ、ゲーム装置、ヘッドマウントディスプレイ、表示装置、携帯端末、パーソナルコンピュータなど各種情報処理装置や、それらのいずれかを含む画像表示システムなどに利用可能である。 As described above, the present invention can be used for various information processing devices such as content servers, game devices, head-mounted displays, display devices, mobile terminals, personal computers, and image display systems including any of them.

Claims (17)

  1.  原画像のデータを送信する画像送信装置と、前記原画像のデータを用いた画像表示を制御する表示制御装置と、を備えた画像表示システムであって、
     前記画像送信装置は、
     前記原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成するイベント情報生成部と、
     前記原画像全体のデータを所定のフレームレートで送信するとともに、前記イベント情報を非同期で送信するデータ送信部と、
     を備え、
     前記表示制御装置は、
     前記原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近の前記イベント情報に基づき、前記表示画像を局所的に更新する表示画像描画部と、
     前記表示画像のデータを表示装置に出力する出力部と、
     を備えたことを特徴とする画像表示システム。
    An image display system comprising: an image transmission device for transmitting original image data; and a display control device for controlling image display using the original image data,
    The image transmission device is
    an event information generating unit that generates event information including position information of a pixel when a luminance change event occurs in any pixel in the original image;
    a data transmission unit that transmits data of the entire original image at a predetermined frame rate and asynchronously transmits the event information;
    with
    The display control device is
    a display image drawing unit that generates display image data at a predetermined frame rate using the data of the entire original image, and locally updates the display image based on the most recent event information;
    an output unit that outputs data of the display image to a display device;
    An image display system comprising:
  2.  前記表示画像描画部は、送信される前記原画像全体のフレームレートより高いフレームレートで、前記表示画像のデータを生成することを特徴とする請求項1に記載の画像表示システム。 The image display system according to claim 1, wherein the display image drawing unit generates the data of the display image at a frame rate higher than the frame rate of the entire original image to be transmitted.
  3.  前記表示画像描画部は、前記原画像に対するレイトレーシングにより前記表示画像の画素値を決定するとともに、前記イベントの発生箇所に対応するレイについて、前記イベント情報に基づき画素値を決定することを特徴とする請求項1または2に記載の画像表示システム。 The display image drawing unit determines the pixel value of the display image by ray tracing the original image, and determines the pixel value of the ray corresponding to the occurrence location of the event based on the event information. 3. The image display system according to claim 1 or 2.
  4.  前記画像送信装置は、前記表示画像に対するユーザの注視領域に係る情報を取得する注視領域取得部をさらに備え、
     前記イベント情報生成部は、前記注視領域内で生じたイベントを選択したうえ、当該イベントに係る前記イベント情報を生成することを特徴とする請求項1から3のいずれかに記載の画像表示システム。
    The image transmission device further includes a gaze area acquiring unit that acquires information related to a user's gaze area with respect to the display image,
    4. The image display system according to any one of claims 1 to 3, wherein the event information generation unit selects an event occurring within the attention area and generates the event information related to the event.
  5.  前記イベント情報生成部は、前記原画像を撮影する、イベント駆動センサを備えた撮像装置から、前記イベントの発生を示すイベント信号を取得することにより、前記イベント情報を生成することを特徴とする請求項1から4のいずれかに記載の画像表示システム。 The event information generation unit generates the event information by acquiring an event signal indicating the occurrence of the event from an imaging device that captures the original image and is equipped with an event-driven sensor. Item 5. The image display system according to any one of Items 1 to 4.
  6.  前記画像送信装置は、前記原画像を描画する原画像描画部をさらに備え、
     前記イベント情報生成部は、前記原画像描画部による描画処理において特定されるイベント発生の情報を取得することにより、前記イベント情報を生成することを特徴とする請求項1から5のいずれかに記載の画像表示システム。
    The image transmission device further includes an original image rendering unit that renders the original image,
    6. The event information generation unit according to claim 1, wherein the event information generation unit generates the event information by acquiring information on occurrence of an event specified in drawing processing by the original image drawing unit. image display system.
  7.  前記イベント情報生成部は、前記イベントが生じた画素の画素値に係る情報を前記イベント情報に含め、
     前記表示画像描画部は、前記画素値に係る情報に基づき、前記表示画像を局所的に更新することを特徴とする請求項1から6のいずれかに記載の画像表示システム。
    wherein the event information generation unit includes information related to a pixel value of a pixel in which the event has occurred in the event information;
    7. The image display system according to any one of claims 1 to 6, wherein the display image drawing unit locally updates the display image based on the information regarding the pixel values.
  8.  前記イベント情報生成部は、前記イベントが発生した画素が表すオブジェクトの描画に用いる情報を前記イベント情報に含め、
     前記描画部は、前記描画に用いる情報を用いて、前記オブジェクトを描画することを特徴とする請求項1から6のいずれかに記載の画像表示システム。
    The event information generation unit includes information used for drawing an object represented by a pixel in which the event has occurred in the event information,
    7. The image display system according to claim 1, wherein the drawing unit draws the object using information used for the drawing.
  9.  前記出力部は、前記表示画像のデータをヘッドマウントディスプレイに出力し、
     前記表示画像描画部は、前記表示画像において、前記ヘッドマウントディスプレイを装着しているユーザの頭部の位置姿勢に対応するように前記原画像の視野を補正するとともに前記イベント情報に基づく局所的な更新を行うことを特徴とする請求項1から8のいずれかに記載の画像表示システム。
    The output unit outputs data of the display image to a head mounted display,
    The display image rendering unit corrects the field of view of the original image so as to correspond to the position and orientation of the head of a user wearing the head-mounted display in the display image, and localizes the display image based on the event information. 9. The image display system according to any one of claims 1 to 8, wherein updating is performed.
  10.  前記データ送信部は、全天周画像の少なくとも一部を、中心射影と異なる形式で表した前記原画像全体のデータを送信し、
     前記表示画像描画部は、前記原画像に対するレイトレーシングにより、前記ヘッドマウントディスプレイの接眼レンズに対応する歪みを与えた表示画像を描画することを特徴とする請求項9に記載の画像表示システム。
    The data transmission unit transmits data of the entire original image in which at least part of the omnidirectional image is represented in a format different from central projection,
    10. The image display system according to claim 9, wherein the display image rendering unit renders the display image distorted corresponding to an eyepiece lens of the head-mounted display by ray tracing the original image.
  11.  前記データ送信部は、前記全天周画像として、表す方角の異なる複数の等距離射影の画像を取得し、各画像について複数の解像度のデータを生成したうえ、それぞれについて選択した解像度のデータを送信することを特徴とする請求項10に記載の画像表示システム。 The data transmission unit acquires a plurality of equidistant projection images representing different directions as the omnidirectional image, generates data of a plurality of resolutions for each image, and transmits data of a selected resolution for each image. 11. The image display system according to claim 10, wherein:
  12.  前記データ送信部は、1画素が表す面積に分布を有する前記原画像全体のデータを送信し、
     前記表示画像描画部は、前記原画像全体のデータを用いて、中心部分の解像度を最大とする解像度分布を有する前記表示画像のデータを生成することを特徴とする請求項9から11のいずれかに記載の画像表示システム。
    The data transmission unit transmits data of the entire original image having a distribution in an area represented by one pixel,
    12. The display image rendering unit according to any one of claims 9 to 11, wherein the display image drawing unit uses the data of the entire original image to generate the data of the display image having a resolution distribution in which the resolution of the central portion is maximized. The image display system described in .
  13.  原画像のデータを送信し、送信先において当該原画像を用いた画像表示を実現させる画像送信装置であって、
     前記原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成するイベント情報生成部と、
     前記原画像全体のデータを所定のフレームレートで送信するとともに、前記イベント情報を非同期で送信することにより、送信先において表示画像を局所的に更新させるデータ送信部と、
     を備えたことを特徴とする画像送信装置。
    An image transmission device that transmits data of an original image and realizes image display using the original image at a transmission destination,
    an event information generating unit that generates event information including position information of a pixel when a luminance change event occurs in any pixel in the original image;
    a data transmission unit that transmits data of the entire original image at a predetermined frame rate and asynchronously transmits the event information, thereby locally updating a display image at a transmission destination;
    An image transmission device comprising:
  14.  原画像のデータを受信し、当該原画像のデータを用いた画像表示を制御する表示制御装置であって、
     前記原画像全体のデータを所定のフレームレートで取得する画像データ取得部と、
     前記原画像におけるいずれかの画素に生じた輝度変化のイベントに応じて、前記原画像全体のデータと非同期で送信された、当該画素の位置情報を含むイベント情報を取得するイベント情報取得部と、
     前記原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近の前記イベント情報に基づき、前記表示画像を局所的に更新する表示画像描画部と、
     前記表示画像のデータを表示装置に出力する出力部と、
     を備えたことを特徴とする表示制御装置。
    A display control device that receives data of an original image and controls image display using the data of the original image,
    an image data acquisition unit that acquires data of the entire original image at a predetermined frame rate;
    an event information acquisition unit that acquires event information including position information of a pixel transmitted asynchronously with data of the entire original image in response to a brightness change event occurring in one of the pixels in the original image;
    a display image drawing unit that generates display image data at a predetermined frame rate using the data of the entire original image, and locally updates the display image based on the most recent event information;
    an output unit that outputs data of the display image to a display device;
    A display control device comprising:
  15.  原画像のデータを送信する画像送信装置と、前記原画像のデータを用いた画像表示を制御する表示制御装置と、を備えた画像表示システムにおいて、
     前記画像送信装置が、
     前記原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成するステップと、
     前記原画像全体のデータを所定のフレームレートで送信するとともに、前記イベント情報を非同期で送信するステップと、
     前記表示制御装置が、
     前記原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近の前記イベント情報に基づき、前記表示画像を局所的に更新するステップと、
     前記表示画像のデータを表示装置に出力するステップと、
     を含むことを特徴とする画像表示方法。
    An image display system comprising an image transmission device for transmitting original image data and a display control device for controlling image display using the original image data,
    The image transmission device is
    a step of generating event information including position information of a pixel when a luminance change event occurs in any pixel in the original image;
    transmitting the data of the entire original image at a predetermined frame rate and asynchronously transmitting the event information;
    The display control device
    generating display image data at a predetermined frame rate using the data of the entire original image, and locally updating the display image based on the most recent event information;
    a step of outputting the display image data to a display device;
    An image display method comprising:
  16.  原画像のデータを送信し、送信先において当該原画像を用いた画像表示を実現させるコンピュータに、
     前記原画像におけるいずれかの画素に輝度変化のイベントが生じた際、当該画素の位置情報を含むイベント情報を生成する機能と、
     前記原画像全体のデータを所定のフレームレートで送信するとともに、前記イベント情報を非同期で送信することにより、送信先において表示画像を局所的に更新させる機能と、
     を実現させることを特徴とするコンピュータプログラム。
    To a computer that transmits original image data and realizes image display using the original image at the destination,
    a function of generating event information including position information of a pixel when a luminance change event occurs in one of the pixels in the original image;
    a function of locally updating a display image at a transmission destination by transmitting data of the entire original image at a predetermined frame rate and transmitting the event information asynchronously;
    A computer program characterized by realizing
  17.  原画像のデータを受信し、当該原画像のデータを用いた画像表示を制御するコンピュータに、
     前記原画像全体のデータを所定のフレームレートで取得する機能と、
     前記原画像におけるいずれかの画素に生じた輝度変化のイベントに応じて、前記原画像全体のデータと非同期で送信された、当該画素の位置情報を含むイベント情報を取得する機能と、
     前記原画像全体のデータを用いて、表示画像のデータを所定のフレームレートで生成するとともに、直近の前記イベント情報に基づき、前記表示画像を局所的に更新する機能と、
     前記表示画像のデータを表示装置に出力する機能と、
     を実現させることを特徴とするコンピュータプログラム。
    A computer that receives original image data and controls image display using the original image data,
    a function of acquiring data of the entire original image at a predetermined frame rate;
    a function of acquiring event information including position information of a pixel transmitted asynchronously with data of the entire original image in response to a luminance change event occurring in any pixel in the original image;
    A function of generating display image data at a predetermined frame rate using the data of the entire original image, and locally updating the display image based on the most recent event information;
    a function of outputting data of the display image to a display device;
    A computer program characterized by realizing
PCT/JP2021/040577 2021-11-04 2021-11-04 Image display system, image transmission device, display control device, and image display method WO2023079623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040577 WO2023079623A1 (en) 2021-11-04 2021-11-04 Image display system, image transmission device, display control device, and image display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040577 WO2023079623A1 (en) 2021-11-04 2021-11-04 Image display system, image transmission device, display control device, and image display method

Publications (1)

Publication Number Publication Date
WO2023079623A1 true WO2023079623A1 (en) 2023-05-11

Family

ID=86240775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040577 WO2023079623A1 (en) 2021-11-04 2021-11-04 Image display system, image transmission device, display control device, and image display method

Country Status (1)

Country Link
WO (1) WO2023079623A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233185A (en) * 2009-03-30 2010-10-14 Saxa Inc Apparatus, system and program for processing image
JP2011087257A (en) * 2009-10-19 2011-04-28 Panasonic Corp Semiconductor integrated circuit and imaging apparatus
JP2014155168A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Image synthesis device and image synthesis method
US20180098082A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Motion estimation using hybrid video imaging system
WO2019003889A1 (en) * 2017-06-26 2019-01-03 ソニー株式会社 Generation device and generation method, and playback device and playback method
JP2019134202A (en) * 2018-01-29 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Imaging apparatus and control method of image pic-up device
JP2021057767A (en) * 2019-09-30 2021-04-08 株式会社ソニー・インタラクティブエンタテインメント Image data transfer device and image data transfer method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233185A (en) * 2009-03-30 2010-10-14 Saxa Inc Apparatus, system and program for processing image
JP2011087257A (en) * 2009-10-19 2011-04-28 Panasonic Corp Semiconductor integrated circuit and imaging apparatus
JP2014155168A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Image synthesis device and image synthesis method
US20180098082A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Motion estimation using hybrid video imaging system
WO2019003889A1 (en) * 2017-06-26 2019-01-03 ソニー株式会社 Generation device and generation method, and playback device and playback method
JP2019134202A (en) * 2018-01-29 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Imaging apparatus and control method of image pic-up device
JP2021057767A (en) * 2019-09-30 2021-04-08 株式会社ソニー・インタラクティブエンタテインメント Image data transfer device and image data transfer method

Similar Documents

Publication Publication Date Title
US11575876B2 (en) Stereo viewing
JP6632443B2 (en) Information processing apparatus, information processing system, and information processing method
US10681276B2 (en) Virtual reality video processing to compensate for movement of a camera during capture
WO2017086244A1 (en) Image processing device, information processing device, and image processing method
JP7150134B2 (en) Head-mounted display and image display method
JP7358448B2 (en) Image generation device, head mounted display, and image generation method
JP7142762B2 (en) Display device and image display method
US11187895B2 (en) Content generation apparatus and method
WO2023079623A1 (en) Image display system, image transmission device, display control device, and image display method
JP6965439B2 (en) Reference image generator, display image generator, reference image generation method, and display image generation method
WO2019193698A1 (en) Reference image generation device, display image generation device, reference image generation method, and display image generation method
WO2019193699A1 (en) Reference image generation device, display image generation device, reference image generation method, and display image generation method
US20240119557A1 (en) Image display system and image display method
US11960086B2 (en) Image generation device, head-mounted display, and image generation method
US11688124B2 (en) Methods and apparatus rendering images using point clouds representing one or more objects
WO2023136073A1 (en) Image display device and image display method
WO2022230253A1 (en) Information processing device and information processing method
KR101947799B1 (en) 360 degrees Fisheye Rendering Method for Virtual Reality Contents Service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963220

Country of ref document: EP

Kind code of ref document: A1