WO2023078810A1 - Dispositif de régulation thermique, notamment de refroidissement - Google Patents

Dispositif de régulation thermique, notamment de refroidissement Download PDF

Info

Publication number
WO2023078810A1
WO2023078810A1 PCT/EP2022/080306 EP2022080306W WO2023078810A1 WO 2023078810 A1 WO2023078810 A1 WO 2023078810A1 EP 2022080306 W EP2022080306 W EP 2022080306W WO 2023078810 A1 WO2023078810 A1 WO 2023078810A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
section
zone
densified
under
Prior art date
Application number
PCT/EP2022/080306
Other languages
English (en)
Inventor
Thibaut PERRIN
Stephane Tondelli
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to CN202280074236.2A priority Critical patent/CN118302901A/zh
Publication of WO2023078810A1 publication Critical patent/WO2023078810A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a device for thermal regulation, in particular cooling, in particular for an electrical component capable of releasing heat during its operation, in particular a device for cooling at least one battery or vehicle battery cells, for example a motor vehicle.
  • the vehicle can be land, sea or air.
  • the invention relates in particular to plate heat exchangers intended for the circulation of a refrigerant fluid allowing the batteries of hybrid or electric vehicles to be cooled.
  • the invention aims to improve the temperature uniformity of the thermal regulation device, and to avoid undesirable overheating zones.
  • the invention thus proposes a device for thermal regulation, in particular cooling, for an electrical component capable of releasing heat during its operation, in particular for an electrical energy storage module, this device comprising an upper plate and a plate lower plate assembled with the upper plate to together form a plurality of circulation channels for a heat transfer fluid, in particular a refrigerant fluid, device in which the channels extend, successively in the direction of circulation of the heat transfer fluid, in a go zone in which the channels communicate with one or more fluid inlets, a turnaround zone and a return zone in which the channels communicate with one or more fluid outlets, the turnaround zone connecting the forward and return zones so that at the at least some of the channels have a substantially U-shape in this reversal zone, the device being characterized in that the outward zone has, successively according to the direction of circulation of the heat transfer fluid, an under-densified section and a densified section, the number (Nsd) of channels in the under-densified section being strictly less than the number (Nd) of channels in the den
  • the invention makes it possible to optimize the temperature gradients of the assembled plates via a particular arrangement of cooling channels in the forward zone, the reversal zone and the return zone. This layout is optimized for one or more U-shaped circulations.
  • the invention allows good temperature homogeneity of the device.
  • this under-densified section makes it possible, with the greater fluid velocity and the liquid phase, to improve overall heat exchanges in the under-densified section.
  • this under-densified section makes it possible to cool a neighboring region exposed to the risk of overheating located at the end of the U-shaped circulation.
  • the under-densified section is arranged between the fluid inlet, or inlets, and the densified section.
  • the number (Nd) of channels in the densified section is at least 1.5 times greater than the number (Nsd) of channels in the under-densified section.
  • the number (Nd) of channels in the densified section (28) is in particular twice the number (Nsd) of channels in the under-densified section (27).
  • the number (Nd) is equal to 12 and the number (Nsd) of channels in the under-densified section is equal to 6.
  • the number (Nd) is equal to 6 and the number (Nsd) of channels in the under-densified section is equal to 3.
  • the number (Nd) is equal to 3 and the number (Nsd) of channels in the under-densified section is equal to 2.
  • the hydraulic diameter of the channels remains identical in the under-densified section and in the densified section.
  • the channels in the under-densified section are parallel to each other and are in particular of rectilinear shape.
  • the channels in the densified section are parallel to each other and are in particular rectilinear in shape.
  • the channels in the under-densified section are parallel to the channels in the densified section.
  • at least one of the channels of the under-densified section, in particular each channel is connected to two channels of the densified section.
  • the number (Nd) of channels in the densified section is thus twice the number (Nsd) associated with the under-densified section.
  • the under-densified section extends over a length, measured according to the direction of fluid circulation, which is greater than 10%, or 20%, of the length total channels in the forward zone.
  • the under-densified section extends over a length, measured according to the direction of fluid circulation, which is less than 50% of the total length of the channels in the go zone.
  • the under-densified section extends over a length, measured in the direction of fluid circulation, which is substantially equal to 25% of the total length of the channels in the outward zone.
  • the channels in the under-densified section are spaced from each other by a constant pitch.
  • the channels in the densified section are spaced from each other at a constant pitch.
  • the outward zone comprises a junction section between the under-densified section and the densified section.
  • this junction section has ramifications of channels, ramifications which make it possible to increase the number of channels between the under-densified section and the densified section.
  • each channel of the under-densified section connects to two channels, or more channels, of the densified section via a node present in the junction section.
  • the branch node In the case of a channel dividing into two channels, the branch node is part of a Y or T formed by the channels. [37] In the junction section, the branching nodes have for example a spacing relative to a geometric line transverse to the longitudinal direction of the channels, spacing which is different between neighboring nodes.
  • the branching nodes are arranged in two rows so that the nodes of one row alternate with the nodes of the other row.
  • the two rows are for example spaced apart by a distance of between 5 mm and 100 mm.
  • This arrangement of the nodes makes it possible to smooth temperature gradients in this junction section. This is particularly advantageous when the battery cells are arranged perpendicular to the direction of fluid flow.
  • knots are possible, for example these knots are arranged along a line which is oblique with respect to the aforementioned transverse line.
  • the outward and return zones have the same length.
  • the channels of the under-densified section communicate with one or more fluid inlet channels.
  • each fluid inlet channel is connected to three channels of the under-densified section, in particular by making an angle strictly greater than 90° or by forming a rounded elbow .
  • these two fluid inlet channels communicate with a common fluid inlet.
  • these inlet channels are arranged offset from the locations which receive the electrical components to be cooled.
  • these input channels are not opposite the components to be cooled.
  • the channels of the outward and return zones are arranged opposite the components to be cooled.
  • the components to be cooled are battery cells which generally extend perpendicular to the direction of fluid flow, in the under-densified and densified sections of the forward zone and in the return zone.
  • these battery cells are arranged in rows, in particular parallel rows.
  • each row comprises, for example, two battery cells.
  • these rows are placed perpendicular to the outward and return zones.
  • the battery cells are arranged in 30 rows of two cells, i.e. a total of 60 cells to be cooled.
  • the components to be cooled are battery cells that extend generally parallel to the direction of fluid flow, in the under-densified and densified sections of the forward zone and in the return zone.
  • the number (Nr) of channels in the return zone is lower than the number of channels in the under-densified section (Nsd).
  • the number (Nr) of channels in the return zone is 4, the number (Nsd) in the under-densified section is 6 and the number (Nd) of channels in the densified section is 12.
  • the number (Nr) of channels in the return zone is 2
  • the number (Nsd) in the under-densified section is 3
  • the number (Nd) of channels in the densified section is 6.
  • the channels in the return zone are rectilinear in shape and are parallel to each other, in particular with a regular pitch between them.
  • the under-densified section is placed next to a terminal section of the return zone so that the under-densified section can extract calories released in the terminal section of the return area. [60] Thus it is possible to cool this terminal section, which may present risks of undesirable overheating.
  • the channels of the return zone connect to one or more fluid outlet channels.
  • some of the channels of the return zone connect to a common output channel.
  • the terminal section of the return zone is adjacent to the exit channels.
  • these output channels are arranged offset from the locations which receive the electrical components to be cooled.
  • the fluid inlet and outlet channels are arranged on the same side of the plates.
  • the width of the forward zone is greater than the width of the return zone, the width being measured in a direction transverse to the channels in these zones.
  • the turnaround zone comprises at least one transverse channel which connects channels in the forward zone to channels in the return zone.
  • this or these transverse channels have a direction perpendicular to the rectilinear channels of the outward and return zones.
  • the pitch between the transverse channels can be constant or non-constant.
  • the transverse channel has a shorter length than the cumulative width of the outward and return zones, the length of the transverse channel and this cumulative width being measured in the same direction, for example a direction parallel to a short side of the plates.
  • the ratio between the width (W1) of the outward zone and the distance (Dr1) which is measured between an edge of the plates and the proximal end of the transverse channel according to a direction parallel to the transverse channel is between 2 and 4.
  • this transverse channel for which this ratio is calculated is the outermost channel.
  • this channel connects the outermost channel of the forward zone to the outermost channel of the return zone.
  • the ratio between the width (W2) of the return zone and the distance (Dr2) which is measured between an edge of the plates and the proximal end of the transverse channel according to a direction parallel to the transverse channel is between 0.5 and 2.
  • the distance Dr2 is equal to the distance Dr1.
  • the distance Dr2 is strictly greater than Dr1.
  • At least some of the channels in the forward zone connect to transverse channels via oblique forward arms.
  • three channels from the outward zone connect to one of the transverse channels via three respective oblique arms.
  • a group of three channels connects to one of the transverse channels.
  • transverse channels each see the connection of a group of channels from the outward zone, for example groups of three channels.
  • the outermost oblique arm has a longitudinal extension (X1) measured along the longitudinal direction of the channels of the outward zone.
  • X1 longitudinal extension measured along the longitudinal direction of the channels of the outward zone.
  • these transverse channels are each connected to a single oblique arm.
  • transverse channels are equal in number to the number of channels in the return zone.
  • the outermost return oblique arm has a longitudinal extension (X2) measured in the longitudinal direction of the outward zone channels.
  • the outward and return oblique arms, with the outermost transverse channel form a trapezoidal circumference.
  • these oblique arms and the transverse channels define the U-shape of the flow in the reversal zone.
  • the longitudinal extension (X1) and the longitudinal extension (X2) are equal.
  • the device has slots for receiving the components to be cooled, in particular battery cells.
  • These slots have substantially the shape of rectangles, in particular for placing battery cells there.
  • Each battery cell location, in the rollover zone, is located at least partially in the gap between two neighboring transverse channels.
  • each battery cell mainly sees the gap between two transverse channels, not the entire width of a transverse channel.
  • the transverse channel straddles two neighboring battery cell locations. [95] Thus this transverse channel which is relatively little vis-à-vis the battery cells extracts fewer calories released by these cells.
  • the thermal regulation device has a single fluid flow path, this path having a U-shape between a fluid inlet and a fluid outlet, this path being formed by the channels of the forward zone, the reversal zone and the return zone.
  • the thermal control device has multiple fluid flow paths, each path having a U-shape between a fluid inlet and a fluid outlet, each path being formed by the channels of one of the forward zones, one of the turnaround zones and one of the return zones.
  • the thermal control device has two U-shaped flow paths sharing common fluid inlets and outlets.
  • the U-shaped paths have mirror symmetry with respect to each other.
  • the axis of mirror symmetry is parallel to the branches of the U.
  • the axis of mirror symmetry is perpendicular to the branches of the U.
  • the thermal regulation device has four U-shaped flow paths, in particular sharing two common fluid inlets and one outlet.
  • these four U's are arranged at the four corners of a rectangle or a square.
  • the invention makes it possible to have a fluid circulation speed which is increased in the channels of the under-densified section, because the total fluid passage section is reduced due to the limited number of channels.
  • the channels in the forward zone are under-densified so as to increase the flow velocity and the exchange coefficients under the first rows of cells.
  • Another subject of the invention is a device for thermal regulation, in particular cooling, for an electrical component capable of releasing heat during its operation, in particular for an electrical energy storage module, this device comprising a plate upper plate and a lower plate assembled with the upper plate to form together a plurality of circulation channels for a heat transfer fluid, in particular a refrigerant fluid, device in which the channels extend, successively in the direction of circulation of the heat transfer fluid, in a go zone in which the channels communicate with one or more fluid inlets, a turnaround zone and a return zone in which the channels communicate with one or more fluid outlets, the turnaround zone connecting the go and return zones so as to that at least some of the channels have a substantially U-shape in this turning zone, this device comprising slots for the components to be cooled, for example of rectangular shape, device in which the turning zone comprises at least one transverse channel connecting at least one channel of the forward zone to a channel of the return zone, this transverse channel straddling two neighboring locations which are provided to each receive, for example, a battery cell
  • these slots are for example arranged in parallel rows.
  • the transverse channel has a shorter length than the cumulative width of the outward and return zones, the length of the transverse channel and this cumulative width being measured in the same direction, for example a direction parallel to a short side of the plates.
  • the ratio between the width (L1) of the outward zone and the distance (Dr1) which is measured between an edge of the plates and the proximal end of the transverse channel according to a direction parallel to the transverse channel is between 2 and 4.
  • this transverse channel for which the ratio is calculated is the outermost channel.
  • this channel connects the outermost channel of the forward zone to the outermost channel of the return zone.
  • the ratio between the width (W2) of the return zone and the distance (Dr2) which is measured between an edge of the plates and the proximal end of the transverse channel according to a direction parallel to the transverse channel is between 0.5 and 2.
  • At least some of the channels in the forward zone connect to transverse channels via oblique forward arms.
  • three channels from the outward zone connect to one of the transverse channels via three respective oblique arms.
  • a group of three channels is connected to one of the transverse channels.
  • transverse channels each see the connection of a group of channels from the outward zone, for example groups of three channels.
  • the outermost oblique arm has a longitudinal extension (X1) measured along the longitudinal direction of the outward zone channels.
  • At least some of the channels of the return zone connect to transverse channels via return oblique arms.
  • the refrigerant is chosen from R134a, R1234yf or R744 refrigerants.
  • Another subject of the invention is a system comprising an electrical component capable of releasing heat during its operation, in particular for an electrical energy storage module, and a cooling device described above, arranged to cooling the component, this component, in particular battery cells, being in thermal contact with the upper plate of the cooling device.
  • FIG. 1 There is shown in [Figure 1] a system 1, known from the state of the art, comprising a set of battery cells 2 to be cooled, for example rows in a plurality of parallel rows 3, and a regulating device 10 arranged to cool the cells 2, which are in thermal contact with an upper plate of the cooling device 10, as explained below.
  • the thermal regulation device 10 comprises an upper plate 11, a lower plate 12 assembled with the upper plate 11 to together form a plurality of circulation channels 14 for a refrigerant, in particular a fluid selected from R134a refrigerants, R1234yf or R744.
  • the channels 14 extend between a common inlet 7 and a common fluid outlet 8.
  • a flange 9 can be connected to this input 7 and output 8 to provide connections.
  • the device 20 comprises an upper plate 11 and a lower plate 12 assembled with the upper plate 11 to together form a plurality of circulation channels 21 for the coolant.
  • the channels 21 extend, successively according to the direction of circulation of the heat transfer fluid:
  • the turnaround zone 24 connects the forward 22 and return 25 zones so that at least some of the channels 21 have a substantially U-shape in this turnaround zone 24.
  • the go zone 22 has, successively in the direction F1 of circulation of heat transfer fluid, an under-densified section 27 and a densified section 28, the number Nsd of channels 21 in the under-densified section densified 27 being strictly less than the number Nd of channels in the densified section.
  • the invention makes it possible to have a fluid circulation speed which is increased in the channels 21 of the under-densified section 27, because the total fluid passage section is reduced due to the limited number of channels.
  • the flow rate of the fluid increases in connection with the fact that the fluid is in the liquid state (because the fluid is still close to the inlet and is not yet sufficiently heated to pass to the gaseous state) makes it possible to have a sufficiently high heat exchange in this under-densified section 27.
  • the channels 21 in the forward zone 27 are under-densified so as to increase the flow velocity and the exchange coefficients under the first rows of cells.
  • the two cells of each row 3 are arranged in two columns 38 as shown in Figure 4.
  • the cells are denoted CELL 1, CELL 2...
  • the under-densified section 27 is arranged between the fluid inlet 7 and the densified section 28.
  • the number Nd of channels 21 in the densified section 28 is twice the number Nsd of channels 21 in the under-densified section 27.
  • the number Nd is equal to 12 and the number Nsd of channels in the under-densified section is equal to 6.
  • the number Nd is equal to 6 and the number Ns) of channels in the under-densified section is equal to 3.
  • the channels 21 in the under-densified section 27 are parallel to each other and are rectilinear in shape.
  • the channels 21 in the densified section 28 are parallel to each other and are rectilinear in shape.
  • the channels 21 in the under-densified section 27 are parallel to the channels in the densified section 28. [160] Each channel 21 of the under-densified section 27 connects to two channels 21 of the densified section 28.
  • the under-densified section 27 extends over a length L1, measured in the direction F1 of fluid circulation, which is greater than 10%, or 20%, of the total length L10 of the channels in the go zone 22, and smaller than 50% of this total length L10.
  • the under-densified section 27 extends over a length L1, measured in the direction of fluid circulation, which is substantially equal to 25% of the total length L10 of the channels in the outward zone 22.
  • the channels 21 in the under-densified section 27 are spaced from each other by a constant pitch DYA.
  • the channels 21 in the densified section 28 are spaced from each other by a constant pitch DY.
  • the DYA step is thus larger than the DY step due to the increased number of channels.
  • the outward zone 22 comprises a junction section 30 between the under-densified section 27 and the densified section 28.
  • This junction section 30 has ramifications of channels, ramifications which make it possible to increase the number of channels between the under-densified section 27 and the densified section 28.
  • each channel 21 of the under-densified section 27 connects to two channels of the densified section 28 via a node 31 present in the junction section 30.
  • branching node 31 is part of a Y formed by the channels.
  • the branching nodes 31 have a spacing relative to a geometric line LT transverse to the longitudinal direction of the channels 21, spacing which is different between neighboring nodes. [172] In the example described, the branch nodes 31 are arranged in two rows 33 and 34 so that the nodes 31 of one row alternate with the nodes of the other row.
  • the two rows 33 and 34 of knots are for example spaced apart by a distance of between 5 mm and 100 mm.
  • This arrangement of the nodes 31 makes it possible to smooth temperature gradients in this junction section. This is particularly advantageous when the battery cells are arranged perpendicular to the direction of fluid flow.
  • nodes 31 are arranged along a line which is oblique with respect to the aforementioned transverse line.
  • the channels 21 of the under-densified section 27 communicate with several channels 23 of the fluid inlet supply.
  • each fluid supply channel 23 is connected to three channels 21 of the under-densified section 27, making an angle strictly greater than 90° as illustrated in the figure 3.
  • These power channels 23 are arranged offset from the slots that receive the battery cells.
  • the channels 21 of the forward 22 and return 25 zones are arranged opposite the cells 2 to be cooled.
  • the battery cells are arranged in 30 rows of two cells, ie a total of 60 cells to be cooled.
  • the number Nr of channels in the return zone 25 is lower than the number Nsd of channels in the under-densified section 27.
  • the number Nr of channels in the return zone 25 is 4, the number Nsd in the under-densified section 27 is 6 and the number Nd of channels in the densified section 28 is 12.
  • the number Nr of channels in the return zone 25 is 2
  • the number Nsd in the under-densified section 27 is 3
  • the number Nd of channels in the densified section 28 is 6.
  • the channels 21 in the return zone 25 are rectilinear in shape and are parallel to each other, with a regular pitch between them here equal to DY, namely the pitch of the channels in the densified section 29 of the outward zone 22.
  • the under-densified section 27 is placed next to a terminal section 35 of the return zone 25 so that the under-densified section 27 can extract calories released in the terminal section 35 of the return area.
  • the channels of the return zone 25 connect to several fluid outlet channels 36.
  • the terminal section 35 of the return zone 25 is adjacent to the exit channels 36.
  • FIG. 2 and 3 illustrate different configurations of inlet 23 and outlet 36 channels. It is preferable to have the channels oriented obliquely as shown in Figure 3, for better flow.
  • the width W1 of the forward zone 22 is greater than the width W2 of the return zone 25, the width being measured in a direction LT transverse to the channels in these zones.
  • the reversal zone 24 comprises transverse channels 39 which connect the channels of the go zone 22 to the channels of the return zone 25.
  • transverse channels 39 have a direction LT perpendicular to the rectilinear channels of the go 22 and return 25 zones.
  • Each transverse channel 39 has a shorter length than the cumulative width of the outward and return zones W1 and W2.
  • the ratio between the width W1 of the go zone 22 and the distance Dr1 which is measured between an edge 40 of the plates 11, 12 and the proximal end of the transverse channel 39 in the direction LT, is between 2 and 4 .
  • This transverse channel 39 for which the ratio is calculated is the outermost channel. In other words, this channel connects the outermost channel of the outward zone 22 to the outermost channel of the return zone 25.
  • the ratio between the width W2 of the return zone 25 and the distance Dr2 which is measured between an edge 41 of the plates and the proximal end of the transverse channel 39 in the direction LT, is between 0.5 and 2.
  • the distance Dr2 is equal to the distance Dr1.
  • the distance Dr2 is strictly greater than Dr1.
  • Forward zone channels 22 connect to transverse channels 39 via forward slant arms 44.
  • three channels from the go zone 22 are connected to one of the transverse channels 39 via three respective oblique arms 44.
  • a group of three channels 21 is connected to one of the transverse channels 39.
  • Several transverse channels 39 each see the connection of a group of three channels from the go zone 22.
  • the outermost oblique arm 44 has a longitudinal extension X1 measured along the longitudinal direction of the channels of the go zone 22.
  • Channels of the return zone 25 connect to transverse channels 39 via oblique return arms 45.
  • transverse channels 39 are each connected to a single oblique arm 45.
  • the transverse channels 39 are equal in number to the number of channels in the return zone 25.
  • the outermost return oblique arm 45 has a longitudinal extension X2 measured along the longitudinal direction of the channels of the outward zone 22.
  • the device has slots 50 to receive the cells to be cooled.
  • Each battery cell location 50, in the turnaround area 24, is located in the interval between two neighboring transverse channels 39.
  • each battery cell 2 mainly sees the DX interval between two transverse channels 39, and not the entire width of a transverse channel 39.
  • the transverse channel 39 straddles two locations 50 of neighboring battery cells.
  • the ratio between the number of channels in the densified section 28 of the outward zone and the number of channels leaving the reversal zone 24 is between 2 and 4, for example this ratio being equal to 2, 3 or 4.
  • the ratio between the number of channels in the return zone 25 and the number of channels leaving the reversal zone 24 is chosen to be between 0.5 and 2, this ratio possibly being equal to 1.
  • the pitch DX between the transverse channels of the reversal zone is greater, in particular at least 1.5 greater, than the pitch DY between the channels in the densified section of the forward zone and in the return zone.
  • the pitch between the transverse channels of the reversal zone is between 10 mm and 100 mm.
  • the thermal regulation device has a single fluid flow path 60, this path 60 having a U-shape between the fluid inlet 7 and the fluid outlet 8, this path U being formed by the channels 21 of the forward zone, the reversal zone and the return zone.
  • FIG. 1 schematically illustrates this global path 60 simple U.
  • the thermal control device has several fluid flow paths, each path having a U-shape between a fluid inlet and a fluid outlet, each path being formed by the channels of one of the forward zones, one of the turnaround zones and one of the return zones.
  • the thermal regulation device has two U-shaped flow paths 61 sharing common fluid inlets and outlets 7 and 8.
  • the U-shaped paths 61 have mirror symmetry with respect to each other.
  • the axis of symmetry SY1 mirror is parallel to the branches 61 of the U.
  • the thermal regulation device has four U-shaped flow paths 61, sharing two common fluid inlets and one outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un dispositif de régulation thermique comportant une plaque supérieure et une plaque inférieure assemblée avec la plaque supérieure pour former ensemble une pluralité de canaux de circulation pour un fluide caloporteur, notamment un fluide réfrigérant, dispositif dans lequel les canaux (21 ) s'étendent, successivement suivant le sens de circulation de fluide caloporteur, dans une zone aller (22) dans laquelle les canaux communiquent avec une ou plusieurs entrées de fluide (7), une zone de retournement et une zone retour (25) dans la laquelle les canaux communiquent avec une ou plusieurs sorties de fluide (8), la zone de retournement reliant les zones aller et retour de manière à ce qu'au moins certains des canaux présentent une forme sensiblement en U dans cette zone de retournement, le dispositif étant caractérisé en ce que la zone aller (22) présente, successivement suivant le sens de circulation de fluide caloporteur, un tronçon sous-densifié et un tronçon densifié, le nombre (Nsd) de canaux dans le tronçon sous-densifié (27) étant strictement inférieur au nombre (Nd) de canaux dans le tronçon densifié (28).

Description

Description
Titre de l'invention : Dispositif de régulation thermique, notamment de refroidissement
[1] La présente invention concerne un dispositif de régulation thermique, notamment de refroidissement, notamment pour composant électrique susceptible de dégager de la chaleur lors de son fonctionnement, notamment un dispositif de refroidissement d’au moins une batterie ou cellules de batterie de véhicule, par exemple un véhicule automobile.
[2] Le véhicule peut être de type terrestre, maritime ou aérien.
[3] L’invention concerne notamment des échangeurs thermiques à plaques destinés à la circulation d’un fluide frigorigène permettant le refroidissement des batteries de véhicules hybrides ou électriques.
[4] En fonctionnement, lorsque toute la partie liquide du réfrigérant est évaporée, et donc qu’il ne reste que du gaz, l’échange thermique entre les parois de l’échangeur et le réfrigérant est fortement diminué comparativement à la situation où le fluide est à l’état liquide. Ainsi non seulement la température du réfrigérant (qui se réchauffe au fur et mesure qu’il avance sur le chemin) détériore les performances thermiques, mais cette chute de l’échange thermique impacte également le niveau de température des cellules en regard de la zone où le fluide est à l’état gazeux. Il risque de se créer des risques de surchauffe excessive sur certaines zones du chemin de fluide réfrigérant.
[5] L’invention vise à améliorer l’homogénéité en température du dispositif de régulation thermique, et éviter des zones de surchauffe indésirables.
[6] L’invention propose ainsi un dispositif de régulation thermique, notamment de refroidissement, pour composant électrique susceptible de dégager de la chaleur lors de son fonctionnement, notamment pour un module de stockage d’énergie électrique, ce dispositif comportant une plaque supérieure et une plaque inférieure assemblée avec la plaque supérieure pour former ensemble une pluralité de canaux de circulation pour un fluide caloporteur, notamment un fluide réfrigérant, dispositif dans lequel les canaux s’étendent, successivement suivant le sens de circulation de fluide caloporteur, dans une zone aller dans laquelle les canaux communiquent avec une ou plusieurs entrées de fluide, une zone de retournement et une zone retour dans la laquelle les canaux communiquent avec une ou plusieurs sorties de fluide, la zone de retournement reliant les zones aller et retour de manière à ce qu’au moins certains des canaux présentent une forme sensiblement en U dans cette zone de retournement, le dispositif étant caractérisé en ce que la zone aller présente, successivement suivant le sens de circulation de fluide caloporteur, un tronçon sous-densifié et un tronçon densifié, le nombre (Nsd) de canaux dans le tronçon sous-densifié étant strictement inférieur au nombre (Nd) de canaux dans le tronçon densifié.
[7] Il est entendu que l’ensemble des canaux dans le tronçon sous-densifié se raccordent tous sur l’un au l’autre des canaux du tronçon densifié.
[8] L’invention permet d’optimiser les gradients de température des plaques assemblées via une disposition particulière de canaux de refroidissement dans la zone aller, la zone de retournement et la zone retour. Cet agencement est optimisé pour une ou plusieurs circulations en U.
[9] L’invention permet une bonne homogénéité de température du dispositif.
[10] En effet, dans le tronçon sous-densifié, comme le nombre de canaux est réduit, la vitesse d’écoulement est plus rapide que dans le tronçon densifié.
[11 ] Ainsi dans le tronçon densifié, du fait de la vitesse du fluide et bien que le fluide soit à l’état principalement liquide (état qui présente un faible coefficient d’échange thermique), le fluide caloporteur peut évacuer une relativement grande quantité de chaleur grâce à la grande vitesse et ce malgré l’état principalement liquide.
[12] Ainsi même si le nombre de canaux est réduit dans ce tronçon sous-densifié, impliquant de fait une surface d’échange thermique plus petite, l’invention permet avec la vitesse de fluide plus grande et la phase liquide, d’améliorer globalement les échanges thermiques dans le tronçon sous-densifié. [13] Avec une circulation en U, ce tronçon sous-densifié permet de refroidir une région voisine exposée au risque de surchauffe située en bout de la circulation en U.
[14] Selon l’un des aspects de l’invention, le tronçon sous-densifié est disposé entre l’entrée, ou les entrées, de fluide et le tronçon densifié.
[15] Selon l’un des aspects de l’invention, le nombre (Nd) de canaux dans le tronçon densifié est au moins 1 ,5 fois plus grand que le nombre (Nsd) de canaux dans le tronçon sous-densifié.
[16] Le nombre (Nd) de canaux dans le tronçon densifié (28) est notamment le double du nombre (Nsd) de canaux dans le tronçon sous-densifié (27).
[17] Par exemple le nombre (Nd) est égal à 12 et le nombre (Nsd) de canaux dans le tronçon sous-densifié est égal à 6.
[18] Dans un autre exemple, le nombre (Nd) est égal à 6 et le nombre (Nsd) de canaux dans le tronçon sous-densifié est égal à 3.
[19] Dans un autre exemple, le nombre (Nd) est égal à 3 et le nombre (Nsd) de canaux dans le tronçon sous-densifié est égal à 2.
[20] D’autres nombres de canaux peuvent bien entendu être prévus.
[21] Selon l’un des aspects de l’invention, le diamètre hydraulique des canaux reste identique dans le tronçon sous-densifié et dans le tronçon densifié.
[22] Autrement dit, le diamètre hydraulique des canaux ne change pas lorsque l’on passe du tronçon sous-densifié au tronçon densifié.
[23] Selon l’un des aspects de l’invention, les canaux dans le tronçon sous- densifié sont parallèles entre eux et sont notamment de forme rectiligne.
[24] Selon l’un des aspects de l’invention, les canaux dans le tronçon densifié sont parallèles entre eux et sont notamment de forme rectiligne.
[25] Selon l’un des aspects de l’invention, les canaux dans le tronçon sous- densifié sont parallèles aux canaux dans le tronçon densifié. [26] Selon l’un des aspects de l’invention, l’un au moins des canaux du tronçon sous-densifié, notamment chaque canal, se raccorde à deux canaux du tronçon densifié.
[27] Selon l’un des aspects de l’invention, le nombre (Nd) de canaux dans le tronçon densifié est ainsi le double du nombre (Nsd) associé au tronçon sous- densifié.
[28] Selon l’un des aspects de l’invention, le tronçon sous-densifié s’étend sur une longueur, mesurée suivant le sens de circulation de fluide, qui est plus grande que 10%, ou 20%, de la longueur totale des canaux dans la zone aller.
[29] Selon l’un des aspects de l’invention, le tronçon sous-densifié s’étend sur une longueur, mesurée suivant le sens de circulation de fluide, qui est plus petite que 50% de la longueur totale des canaux dans la zone aller.
[30] Par exemple le tronçon sous-densifié s’étend sur une longueur, mesurée suivant le sens de circulation de fluide, qui est sensiblement égale à 25% de la longueur totale des canaux dans la zone aller.
[31] Selon l’un des aspects de l’invention, les canaux dans le tronçon sous- densifié sont espacés les uns des autres d’un pas constant.
[32] Selon l’un des aspects de l’invention, les canaux dans le tronçon densifié sont espacés les uns des autres d’un pas constant.
[33] Selon l’un des aspects de l’invention, la zone aller comprend un tronçon de jonction entre le tronçon sous-densifié et le tronçon densifié.
[34] Selon l’un des aspects de l’invention, ce tronçon de jonction présente des ramifications de canaux, ramifications qui permettent d’augmenter le nombre de canaux entre le tronçon sous-densifié et le tronçon densifié.
[35] Par exemple chaque canal du tronçon sous-densifié se raccorde à deux canaux, ou plus de canaux, du tronçon densifié via un nœud présent dans le tronçon de jonction.
[36] Dans le cas d’un canal se subdivisant en deux canaux, le nœud de ramification fait partie d’un Y ou T que forment les canaux. [37] Dans le tronçon de jonction, les noeuds de ramification présentent par exemple un espacement par rapport à une ligne géométrique transversale à la direction longitudinale des canaux, espacement qui est différent ente noeuds voisins.
[38] Dans un exemple de réalisation de l’invention, les noeuds de ramification sont disposés selon deux rangées de sorte que les noeuds d’une rangée alternent avec les noeuds de l’autre rangée.
[39] Les deux rangées sont par exemple espacées d’une distance comprise entre 5 mm et 100 mm.
[40] Cette disposition des noeuds permet de lisser des gradients de température dans ce tronçon de jonction. Ceci est particulièrement avantageux lorsque les cellules de batterie sont disposées perpendiculairement au sens de l’écoulement de fluide.
[41 ] D’autres dispositions de noeuds sont possibles, par exemple ces noeuds sont disposés suivant une ligne qui est oblique par rapport à la ligne transversale précitée.
[42] Selon l’un des aspects de l’invention, les zones aller et retour présentent la même longueur.
[43] Selon l’un des aspects de l’invention, les canaux du tronçon sous-densifié communiquent avec un ou plusieurs canaux d’entrée de fluide.
[44] Par exemple il est prévu deux canaux d’entrée de fluide et chaque canal d’entrée de fluide se raccorde à trois canaux du tronçon sous-densifié, notamment en faisant un angle strictement supérieur à 90° ou en formant un coude arrondi.
[45] Selon l’un des aspects de l’invention, ces deux canaux d’entrée de fluide communiquent avec une entrée de fluide commune.
[46] Selon l’un des aspects de l’invention, ces canaux d’entrée sont disposés en décalage des emplacements qui reçoivent les composants électriques à refroidir.
[47] Autrement dit ces canaux d’entrée ne sont pas en vis-à-vis des composants à refroidir. [48] Selon l’un des aspects de l’invention, les canaux des zones aller et retour sont disposés en en vis-à-vis des composants à refroidir.
[49] Les composants à refroidir sont des cellules de batterie qui s’étendent généralement perpendiculairement au sens de l’écoulement de fluide, dans les tronçons sous-densifié et densifié de la zone aller et dans la zone retour.
[50] Selon l’un des aspects de l’invention, ces cellules de batterie sont disposées selon des rangées, notamment des rangées parallèles.
[51] Selon l’un des aspects de l’invention, chaque rangée comporte par exemple deux cellules de batterie.
[52] Selon l’un des aspects de l’invention, ces rangées sont placées perpendiculairement aux zones aller et retour.
[53] Par exemple les cellules de batterie sont disposées selon 30 rangées de deux cellules, soit un total de 60 cellules à refroidir.
[54] En variante, les composants à refroidir sont des cellules de batterie qui s’étendent généralement parallèlement au sens de l’écoulement de fluide, dans les tronçons sous-densifié et densifié de la zone aller et dans la zone retour.
[55] Selon l’un des aspects de l’invention, le nombre (Nr) de canaux dans la zone retour est inférieur au nombre de canaux dans le tronçon sous-densifié (Nsd).
[56] Par exemple, le nombre (Nr) de canaux dans la zone retour est 4, le nombre (Nsd) dans le tronçon sous-densifié est de 6 et le nombre (Nd) de canaux dans le tronçon densifié est de 12.
[57] En variante, le nombre (Nr) de canaux dans la zone retour est 2, le nombre (Nsd) dans le tronçon sous-densifié est de 3 et le nombre (Nd) de canaux dans le tronçon densifié est de 6.
[58] Selon l’un des aspects de l’invention, les canaux dans la zone retour sont de forme rectiligne et sont parallèles entre eux, notamment avec un pas régulier entre eux.
[59] Selon l’un des aspects de l’invention, le tronçon sous-densifié est placé à côté d’un tronçon terminal de la zone retour de sorte que le tronçon sous-densifié puisse extraire des calories dégagées dans le tronçon terminal de la zone retour. [60] Ainsi il est possible de refroidir ce tronçon terminal, qui peut présenter des risques de surchauffe indésirable.
[61] Selon l’un des aspects de l’invention, les canaux de la zone retour se raccordent à un ou plusieurs canaux de sortie de fluide.
[62] Selon l’un des aspects de l’invention, certains des canaux de la zone retour se raccordent sur un canal de sortie commun.
[63] Selon l’un des aspects de l’invention, le tronçon terminal de la zone retour est adjacent aux canaux de sortie.
[64] Selon l’un des aspects de l’invention, ces canaux de sortie sont disposés en décalage des emplacements qui reçoivent les composants électriques à refroidir.
[65] Autrement dit ces canaux de sortie ne sont pas en vis-à-vis des composants à refroidir.
[66] Selon l’un des aspects de l’invention, les canaux d’entrée et de sortie de fluide sont disposés d’un même côté des plaques.
[67] Selon l’un des aspects de l’invention, la largeur de la zone aller est plus grande que la largeur de la zone retour, la largeur étant mesurée suivant une direction transversale aux canaux dans ces zones.
[68] Selon l’un des aspects de l’invention, la zone de retournement comprend au moins un canal transversal qui relie des canaux de la zone aller à des canaux de la zone retour.
[69] Selon l’un des aspects de l’invention, ce ou ces canaux transversaux présentent une direction perpendiculaire aux canaux rectilignes des zones aller et retour.
[70] Le pas entre les canaux transversaux peut être constant ou non constant.
[71] Selon l’un des aspects de l’invention, le canal transversal présente une longueur plus faible que la largeur cumulée des zones aller et retour, la longueur du canal transversal et cette largeur cumulée étant mesurées suivant la même direction, par exemple une direction parallèle à un petit côté des plaques. [72] Selon l’un des aspects de l’invention, le ratio entre la largeur (W1) de la zone aller et la distance (Dr1 ) qui est mesurée entre un bord des plaques et l’extrémité proximal du canal transversal suivant une direction parallèle au canal transversal, est compris entre 2 et 4.
[73] Selon l’un des aspects de l’invention, ce canal transversal pour lequel il est calculé ce ratio est le canal le plus extérieur. Autrement dit ce canal relie le canal le plus extérieur de la zone aller au canal le plus extérieur de la zone retour.
[74] Selon l’un des aspects de l’invention, le ratio entre la largeur (W2) de la zone retour et la distance (Dr2) qui est mesurée entre un bord des plaques et l’extrémité proximal du canal transversal suivant une direction parallèle au canal transversal, est compris entre 0,5 et 2.
[75] Selon l’un des aspects de l’invention, la distance Dr2 est égale à la distance Dr1.
[76] Selon l’un des aspects de l’invention, la distance Dr2 est strictement plus grande que Dr1 .
[77] Selon l’un des aspects de l’invention, au moins certains des canaux de la zone aller se raccordent à des canaux transversaux via des bras obliques aller.
[78] Par exemple trois canaux issus de la zone aller se raccordent à l’un des canaux transversaux via trois bras obliques respectifs.
[79] Par exemple un groupe de trois canaux se raccorde à l’un des canaux transversaux.
[80] Selon l’un des aspects de l’invention, plusieurs canaux transversaux voient chacun ainsi le raccord d’un groupe de canaux issus de la zone aller, par exemple des groupes de trois canaux.
[81 ] Par exemple il est prévu trois groupes de trois bras obliques chacun.
[82] Selon l’un des aspects de l’invention, le bras oblique le plus extérieur présente une extension longitudinale (X1) mesurée suivant la direction longitudinale de canaux de la zone aller. [83] Selon l’un des aspects de l’invention, au moins certains des canaux de la zone retour se raccordent à des canaux transversaux via des bras obliques retour.
[84] Selon l’un des aspects de l’invention, ces canaux transversaux sont connectés chacun à un seul bras oblique.
[85] Ainsi les canaux transversaux sont en nombre égal au nombre de canaux dans la zone retour.
[86] Selon l’un des aspects de l’invention, le bras oblique retour le plus extérieur présente une extension longitudinale (X2) mesurée suivant la direction longitudinale de canaux de la zone aller.
[87] Selon l’un des aspects de l’invention, les bras obliques extérieurs aller et retour, avec le canal transversal le plus extérieur, forment un pourtour trapézoïdal.
[88] Selon l’un des aspects de l’invention, ces bras obliques et les canaux transversaux définissent la forme en U de l’écoulement dans la zone de retournement.
[89] Selon l’un des aspects de l’invention, l’extension longitudinale (X1) et l’extension longitudinale (X2) sont égales.
[90] Le dispositif comporte des emplacements pour recevoir les composants à refroidir, notamment des cellules de batterie.
[91 ] Ces emplacements ont sensiblement la forme de rectangles, notamment pour y poser des cellules de batterie.
[92] Chaque emplacement de cellule de batterie, dans la zone de retournement, est situé au moins partiellement dans l’intervalle entre deux canaux transversaux voisins.
[93] Autrement dit, chaque cellule de batterie voit principalement l’intervalle entre deux canaux transversaux, et non toute la largeur d’un canal transversal.
[94] Encore dit autrement, le canal transversal est à cheval entre deux emplacements de cellules de batterie voisines. [95] Ainsi ce canal transversal qui est relativement peu en vis-à-vis des cellules de batterie extrait moins de calories dégagées par ces cellules.
[96] Ceci est avantageux pour ne pas refroidir excessivement les cellules de batterie dans la zone de retournement, ce qui permet de maintenir une homogénéité de température de cette zone de retournement par rapport aux zones aller et retour.
[97] Selon l’un des aspects de l’invention, le dispositif de régulation thermique présente un seul chemin d’écoulement de fluide, ce chemin ayant une forme en U entre une entrée de fluide et une sortie de fluide, ce chemin étant formé par les canaux de la zone aller, de la zone de retournement et de la zone retour.
[98] En variante, le dispositif de régulation thermique présente plusieurs chemins d’écoulement de fluide, chaque chemin ayant une forme en U entre une entrée de fluide et une sortie de fluide, chaque chemin étant formé par les canaux de l’une des zones aller, de l’une des zones de retournement et de l’une des zones retour.
[99] Selon l’un des aspects de l’invention, le dispositif de régulation thermique présente deux chemins d’écoulement en U partageant des entrée et sortie de fluide communes.
[100] Selon l’un des aspects de l’invention, les chemins en U présentent une symétrie miroir l’un par rapport à l’autre.
[101] Selon l’un des aspects de l’invention, l’axe de symétrie miroir est parallèle aux branches des U.
[102] Selon l’un des aspects de l’invention, l’axe de symétrie miroir est perpendiculaire aux branches des U.
[103] Selon l’un des aspects de l’invention, le dispositif de régulation thermique présente quatre chemins d’écoulement en U, notamment partageant deux entrées et une sortie de fluide communes.
[104] Selon l’un des aspects de l’invention, ces quatre U sont disposés aux quatre coins d’un rectangle ou d’un carré. [105] L’invention permet d’avoir une vitesse de circulation de fluide qui soit augmentée dans les canaux du tronçon sous-densifié, car la section totale de passage de fluide est réduite du fait du nombre limité de canaux.
[106] Ainsi même si la surface d’échange est moindre dans le tronçon sous-densifié car le nombre de canaux est réduit dans le tronçon sous-densifié, la vitesse de circulation du fluide augmentée en lien avec le fait que le fluide est à l’état liquide (car le fluide est encore à proximité de l’entrée et n’est pas encore suffisamment chauffé pour passer à l’état gazeux) permet d’avoir un échange thermique suffisamment élevé dans ce tronçon sous-densifié.
[107] Les canaux dans la zone aller sont sous-densifiés de façon à augmenter la vitesse d'écoulement et les coefficients d’échange sous les premières rangées de cellules.
[108] L’invention a encore pour objet un dispositif de régulation thermique, notamment de refroidissement, pour composant électrique susceptible de dégager de la chaleur lors de son fonctionnement, notamment pour un module de stockage d’énergie électrique, ce dispositif comportant une plaque supérieure et une plaque inférieure assemblée avec la plaque supérieure pour former ensemble une pluralité de canaux de circulation pour un fluide caloporteur, notamment un fluide réfrigérant, dispositif dans lequel les canaux s’étendent, successivement suivant le sens de circulation de fluide caloporteur, dans une zone aller dans laquelle les canaux communiquent avec une ou plusieurs entrées de fluide, une zone de retournement et une zone retour dans la laquelle les canaux communiquent avec une ou plusieurs sorties de fluide, la zone de retournement reliant les zones aller et retour de manière à ce qu’au moins certains des canaux présentent une forme sensiblement en U dans cette zone de retournement, ce dispositif comprenant des emplacements pour les composants à refroidir, par exemple de forme rectangulaire, dispositif dans lequel la zone de retournement comprend au moins un canal transversal reliant au moins un canal de la zone aller à un canal de la zone retour, ce canal transversal étant à cheval entre deux emplacements voisins qui sont prévus pour recevoir par exemple chacun une cellule de batterie. [109] Selon l’un des aspects de l’invention, tous les canaux transversaux de la zone de retournement sont placés à cheval entre des emplacements voisins, emplacements pour recevoir par exemple des cellules de batterie.
[110] Selon l’un des aspects de l’invention, ces emplacements sont par exemple disposés suivant des rangées parallèles.
[111] Selon l’un des aspects de l’invention, plusieurs rangées sont disposées dans l’intervalle entre deux canaux transversaux voisins.
[112] Ainsi certaines de ces rangées ne se superposent pas aux canaux transversaux.
[113] Ainsi les cellules de batterie ne sont pas refroidies excessivement.
[114] Selon l’un des aspects de l’invention, le canal transversal présente une longueur plus faible que la largeur cumulée des zones aller et retour, la longueur du canal transversal et cette largeur cumulée étant mesurées suivant la même direction, par exemple une direction parallèle à un petit côté des plaques.
[115] Selon l’un des aspects de l’invention, le ratio entre la largeur (L1 ) de la zone aller et la distance (Dr1 ) qui est mesurée entre un bord des plaques et l’extrémité proximal du canal transversal suivant une direction parallèle au canal transversal, est compris entre 2 et 4.
[116] Selon l’un des aspects de l’invention, ce canal transversal pour lequel il est calculé le ratio est le canal le plus extérieur. Autrement dit ce canal relie le canal le plus extérieur de la zone aller au canal le plus extérieur de la zone retour.
[117] Selon l’un des aspects de l’invention, le ratio entre la largeur (W2) de la zone retour et la distance (Dr2) qui est mesurée entre un bord des plaques et l’extrémité proximal du canal transversal suivant une direction parallèle au canal transversal, est compris entre 0,5 et 2.
[118] Selon l’un des aspects de l’invention, au moins certains des canaux de la zone aller se raccordent à des canaux transversaux via des bras obliques aller.
[119] Par exemple trois canaux issus de la zone aller se raccordent à l’un des canaux transversaux via trois bras obliques respectifs. [120] Par exemple un groupe de trois canaux se raccorde à l’un des canaux transversaux.
[121] Selon l’un des aspects de l’invention, plusieurs canaux transversaux voient chacun ainsi le raccord d’un groupe de canaux issus de la zone aller, par exemple des groupes de trois canaux.
[122] Par exemple il est prévu trois groupes de trois bras obliques chacun.
[123] Selon l’un des aspects de l’invention, le bras oblique le plus extérieur présente une extension longitudinale (X1) mesurée suivant la direction longitudinale de canaux de la zone aller.
[124] Selon l’un des aspects de l’invention, au moins certains des canaux de la zone retour se raccordent à des canaux transversaux via des bras obliques retour.
[125] Selon l’un des aspects de l’invention, le fluide réfrigérant est choisi parmi les fluides réfrigérants R134a, R1234yf ou R744.
[126] L’invention a encore pour objet un système comportant un composant électrique susceptible de dégager de la chaleur lors de son fonctionnement, notamment pour un module de stockage d’énergie électrique, et un dispositif de refroidissement décrit ci-dessus, agencé pour refroidir le composant, ce composant, notamment des cellules de batterie, étant en contact thermique avec la plaque supérieure du dispositif de refroidissement.
[127] D’autres caractéristiques et avantages de l’invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d’exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
[128] - la [Figure 1 ] illustre, schématiquement et partiellement, un dispositif de régulation thermique ;
[129] - la [Figure 2] illustre, schématiquement et partiellement, la disposition des canaux d’un dispositif de régulation thermique selon un exemple de mise en oeuvre de l’invention,
[130] - la [Figure 3] illustre, schématiquement et partiellement, une partie du dispositif de régulation de la [Figure 2], [131] - la [Figure 4] illustre, schématiquement et partiellement, une autre partie du dispositif de régulation de la [Figure 2],
[132] - la [Figure 5] illustre, schématiquement et partiellement, le chemin de fluide général dans le dispositif de la [Figure 2],
[133] - la [Figure 6] illustre, schématiquement et partiellement, un autre exemple de chemin de fluide général dans le dispositif de régulation thermique,
[134] - la [Figure 7] illustre, schématiquement et partiellement, encore un autre exemple de chemin de fluide général dans le dispositif de régulation thermique,
[135] - la [Figure 8] illustre, schématiquement et partiellement, un autre exemple de chemin de fluide général dans le dispositif de régulation thermique.
[136] On a représenté sur la [Figure 1 ] un système 1 , connu d l’état de l’art, comportant un ensemble de cellules de batterie 2 à refroidir, par exemple rangées suivant une pluralité de rangées 3 parallèles, et un dispositif de régulation 10 agencé pour refroidir les cellules 2, qui sont en contact thermique avec une plaque supérieure du dispositif de refroidissement 10, comme expliqué plus bas.
[137] Le dispositif de régulation thermique 10 comporte une plaque supérieure 11 , une plaque inférieure 12 assemblée avec la plaque supérieure 11 pour former ensemble une pluralité de canaux 14 de circulation pour un fluide réfrigérant, notamment un fluide choisi parmi les fluides réfrigérants R134a, R1234yf ou R744.
[138] Les canaux 14 s’étendent entre une entrée commune 7 et une sortie commune 8 de fluide. Une bride 9 peut être connectée à cette entrée 7 et sortie 8 pour assurer des raccordements.
[139] On va maintenant décrire en référence aux figures 2 et suivantes un dispositif de régulation thermique selon un exemple de réalisation de l’invention, qui présente une structure similaire au dispositif de la figure 1 mais dont les canaux sont disposés différemment. [140] On a représenté sur la figure 2, un dispositif de régulation thermique 20 pour refroidir des composants électriques susceptibles de dégager de la chaleur lors de leur fonctionnement.
[141] Ces composants sont, dans l’exemple décrit, des cellules de batterie 2 disposées suivant 30 rangées parallèles 3, chaque rangée ayant deux cellules.
[142] Ces cellules 2 présentent une forme rectangulaire.
[143] A l’instar de l’exemple de la figure 1 , le dispositif 20 comporte une plaque supérieure 11 et une plaque inférieure 12 assemblée avec la plaque supérieure 11 pour former ensemble une pluralité de canaux 21 de circulation pour le fluide caloporteur.
[144] Les canaux 21 s’étendent, successivement suivant le sens de circulation de fluide caloporteur :
- dans une zone aller 22 dans laquelle les canaux 21 communiquent avec une entrée de fluide 7 via des canaux d’alimentation 23, et le fluide circule principalement suivant la flèche F1 dans cette zone aller 22,
- une zone de retournement 24,
- une zone retour 25 dans la laquelle les canaux 21 communiquent avec une sortie de fluide 8, et le fluide circule suivant la flèche F2 dans cette zone retour 25.
[145] La zone de retournement 24 relie les zones aller 22 et retour 25 de manière à ce qu’au moins certains des canaux 21 présentent une forme sensiblement en U dans cette zone de retournement 24.
[146] Comme illustré sur la figure 3, la zone aller 22 présente, successivement suivant le sens F1 de circulation de fluide caloporteur, un tronçon sous-densifié 27 et un tronçon densifié 28, le nombre Nsd de canaux 21 dans le tronçon sous- densifié 27 étant strictement inférieur au nombre Nd de canaux dans le tronçon densifié.
[147] L’invention permet d’avoir une vitesse de circulation de fluide qui soit augmentée dans les canaux 21 du tronçon sous-densifié 27, car la section totale de passage de fluide est réduite du fait du nombre limité de canaux. [148] Ainsi même si la surface d’échange est moindre dans le tronçon sous-densifié 27 car le nombre de canaux est réduit dans le tronçon sous-densifié, la vitesse de circulation du fluide augmentée en lien avec le fait que le fluide est à l’état liquide (car le fluide est encore à proximité de l’entrée et n’est pas encore suffisamment chauffé pour passer à l’état gazeux) permet d’avoir un échange thermique suffisamment élevé dans ce tronçon sous-densifié 27.
[149] Les canaux 21 dans la zone aller 27 sont sous-densifiés de façon à augmenter la vitesse d'écoulement et les coefficients d’échange sous les premières rangées de cellules.
[150] Les deux cellules de chaque rangée 3 sont disposées selon deux colonnes 38 comme visible sur la figure 4. Les cellules sont notées CELL 1 , CELL 2...
[151 ] Le tronçon sous-densifié 27 est disposé entre l’entrée 7 de fluide et le tronçon densifié 28.
[152] Le nombre Nd de canaux 21 dans le tronçon densifié 28 est le double du nombre Nsd de canaux 21 dans le tronçon sous-densifié 27.
[153] Dans l’exemple décrit, le nombre Nd est égal à 12 et le nombre Nsd de canaux dans le tronçon sous-densifié est égal à 6.
[154] Dans un autre exemple (non illustré), le nombre Nd est égal à 6 et le nombre Ns) de canaux dans le tronçon sous-densifié est égal à 3.
[155] Le diamètre hydraulique des canaux 21 reste identique dans le tronçon sous- densifié 27 et dans le tronçon densifié 28.
[156] Autrement dit, le diamètre hydraulique des canaux 21 ne change pas lorsque l’on passe du tronçon sous-densifié 27 au tronçon densifié 28.
[157] Les canaux 21 dans le tronçon sous-densifié 27 sont parallèles entre eux et sont de forme rectiligne.
[158] Les canaux 21 dans le tronçon densifié 28 sont parallèles entre eux et sont de forme rectiligne.
[159] Les canaux 21 dans le tronçon sous-densifié 27 sont parallèles aux canaux dans le tronçon densifié 28. [160] Chaque canal 21 du tronçon sous-densifié 27 se raccorde à deux canaux 21 du tronçon densifié 28.
[161 ] Le tronçon sous-densifié 27 s’étend sur une longueur L1 , mesurée suivant le sens F1 de circulation de fluide, qui est plus grande que 10%, ou 20%, de la longueur totale L10 des canaux dans la zone aller 22, et plus petite que 50% de cette longueur totale L10.
[162] Par exemple le tronçon sous-densifié 27 s’étend sur une longueur L1 , mesurée suivant le sens de circulation de fluide, qui est sensiblement égale à 25% de la longueur totale L10 des canaux dans la zone aller 22.
[163] Les canaux 21 dans le tronçon sous-densifié 27 sont espacés les uns des autres d’un pas constant DYA.
[164] Les canaux 21 dans le tronçon densifié 28 sont espacés les uns des autres d’un pas constant DY.
[165] Le pas DYA est ainsi plus grand que le pas DY du fait du nombre augmenté de canaux.
[166] La zone aller 22 comprend un tronçon de jonction 30 entre le tronçon sous- densifié 27 et le tronçon densifié 28.
[167] Ce tronçon de jonction 30 présente des ramifications de canaux, ramifications qui permettent d’augmenter le nombre de canaux entre le tronçon sous-densifié 27 et le tronçon densifié 28.
[168] Ainsi chaque canal 21 du tronçon sous-densifié 27 se raccorde à deux canaux du tronçon densifié 28 via un nœud 31 présent dans le tronçon de jonction 30.
[169] Dans le cas d’un canal se subdivisant en deux canaux, le nœud 31 de ramification fait partie d’un Y que forment les canaux.
[170] Il est préférable d’avoir cette forme en Y pour la qualité de l’écoulement, en comparaison par exemple au cas où la ramification fait des angles droits.
[171] Dans le tronçon de jonction 30, les nœuds 31 de ramification présentent un espacement par rapport à une ligne géométrique LT transversale à la direction longitudinale des canaux 21 , espacement qui est différent ente nœuds voisins. [172] Dans l’exemple décrit, les nœuds de ramification 31 sont disposés selon deux rangées 33 et 34 de sorte que les nœuds 31 d’une rangée alternent avec les nœuds de l’autre rangée.
[173] Les deux rangées 33 et 34 de nœuds sont par exemple espacées d’une distance comprise entre 5 mm et 100 mm.
[174] Cette disposition des nœuds 31 permet de lisser des gradients de température dans ce tronçon de jonction. Ceci est particulièrement avantageux lorsque les cellules de batterie sont disposées perpendiculairement au sens de l’écoulement de fluide.
[175] D’autres dispositions de nœuds sont possibles, par exemple ces nœuds 31 sont disposés suivant une ligne qui est oblique par rapport à la ligne transversale précitée.
[176] Les zones aller 22 et retour 25 présentent la même longueur L10.
[177] Les canaux 21 du tronçon sous-densifié 27 communiquent avec plusieurs canaux 23 d’alimentation d’entrée de fluide.
[178] Par exemple il est prévu deux canaux 23 d’alimentation de fluide et chaque canal d’alimentation de fluide se raccorde à trois canaux 21 du tronçon sous- densifié 27, en faisant un angle strictement supérieur à 90° comme illustré sur la figure 3.
[179] Ces deux canaux d’alimentation 23 communiquent avec une entrée de fluide commune 7.
[180] Ces canaux d’alimentation 23 sont disposés en décalage des emplacements qui reçoivent les cellules de batterie.
[181 ] Autrement dit ces canaux d’alimentation 23 ne sont pas en vis-à-vis des cellules 2.
[182] Les canaux 21 des zones aller 22 et retour 25 sont disposés en en vis-à-vis des cellules 2 à refroidir.
[183] Ces rangées 3 de cellules sont placées perpendiculairement aux zones aller
22 et retour 25. [184] Dans l’exemple décrit, les cellules de batterie sont disposées selon 30 rangées de deux cellules, soit un total de 60 cellules à refroidir.
[185] Le nombre Nr de canaux dans la zone retour 25 est inférieur au nombre Nsd de canaux dans le tronçon sous-densifié 27.
[186] Dans l’exemple décrit, le nombre Nr de canaux dans la zone retour 25 est 4, le nombre Nsd dans le tronçon sous-densifié 27 est de 6 et le nombre Nd de canaux dans le tronçon densifié 28 est de 12.
[187] En variante non illustrée, le nombre Nr de canaux dans la zone retour 25 est 2, le nombre Nsd dans le tronçon sous-densifié 27 est de 3 et le nombre Nd de canaux dans le tronçon densifié 28 est de 6.
[188] Les canaux 21 dans la zone retour 25 sont de forme rectiligne et sont parallèles entre eux, avec un pas régulier entre eux ici égal à DY à savoir le pas des canaux dans le tronçon densifié 29 de la zone aller 22.
[189] Comme visible sur la figure 3, le tronçon sous-densifié 27 est placé à côté d’un tronçon terminal 35 de la zone retour 25 de sorte que le tronçon sous- densifié 27 puisse extraire des calories dégagées dans le tronçon terminal 35 de la zone retour.
[190] Ainsi il est possible de refroidir ce tronçon terminal 35, qui peut présenter des risques de surchauffe indésirable.
[191] Les canaux de la zone retour 25 se raccordent à plusieurs canaux de sortie de fluide 36.
[192] Le tronçon terminal 35 de la zone retour 25 est adjacent aux canaux de sortie 36.
[193] Ces canaux de sortie 36 sont disposés en décalage des emplacements qui reçoivent les cellules à refroidir.
[194] Autrement dit ces canaux de sortie 36 ne sont pas en vis-à-vis des cellules à refroidir.
[195] Les canaux d’entrée 23 et de sortie 36 de fluide sont disposés d’un même côté des plaques 11 et 12. [196] Les figures 2 et 3 illustrent des configurations différentes de canaux d’entrée 23 et de sortie 36. Il est préférable d’avoir les canaux orientés de manière oblique comme représenté sur la figure 3, pour un meilleur écoulement.
[197] Comme illustré sur la figure 3, la largeur W1 de la zone aller 22 est plus grande que la largeur W2 de la zone retour 25, la largeur étant mesurée suivant une direction LT transversale aux canaux dans ces zones.
[198] La zone de retournement 24 comprend des canaux transversaux 39 qui relient des canaux de la zone aller 22 à des canaux de la zone retour 25.
[199] Ces canaux transversaux 39 présentent une direction LT perpendiculaire aux canaux rectilignes des zones aller 22 et retour 25.
[200] Chaque canal transversal 39 présente une longueur plus faible que la largeur cumulée des zones aller et retour W1 et W2.
[201] Le ratio entre la largeur W1 de la zone aller 22 et la distance Dr1 qui est mesurée entre un bord 40 des plaques 11 , 12 et l’extrémité proximal du canal transversal 39 suivant la direction LT, est compris entre 2 et 4.
[202] Ce canal transversal 39 pour lequel il est calculé le ratio est le canal le plus extérieur. Autrement dit ce canal relie le canal le plus extérieur de la zone aller 22 au canal le plus extérieur de la zone retour 25.
[203] Le ratio entre la largeur W2 de la zone retour 25 et la distance Dr2 qui est mesurée entre un bord 41 des plaques et l’extrémité proximal du canal transversal 39 suivant la direction LT, est compris entre 0,5 et 2.
[204] Si on le souhaite, la distance Dr2 est égale à la distance Dr1 .
[205] En variante, la distance Dr2 est strictement plus grande que Dr1 .
[206] Des canaux de la zone aller 22 se raccordent à des canaux transversaux 39 via des bras obliques aller 44.
[207] Dans l’exemple décrit, trois canaux issus de la zone aller 22 se raccordent à l’un des canaux transversaux 39 via trois bras obliques 44 respectifs.
[208] Par exemple un groupe de trois canaux 21 se raccorde à l’un des canaux transversaux 39. [209] Plusieurs canaux transversaux 39 voient chacun ainsi le raccord d’un groupe de trois canaux issus de la zone aller 22.
[210] Il est prévu trois groupes de trois bras obliques 44 chacun, chaque groupe étant pour un canal transversal 39.
[211] Le bras oblique 44 le plus extérieur présente une extension longitudinale X1 mesurée suivant la direction longitudinale de canaux de la zone aller 22.
[212] Des canaux de la zone retour 25 se raccordent à des canaux transversaux 39 via des bras obliques retour 45.
[213] Ces canaux transversaux 39 sont connectés chacun à un seul bras oblique 45.
[214] Les canaux transversaux 39 sont en nombre égal au nombre de canaux dans la zone retour 25.
[215] Le bras oblique retour 45 le plus extérieur présente une extension longitudinale X2 mesurée suivant la direction longitudinale de canaux de la zone aller 22.
[216] Les bras obliques extérieurs aller et retour 44 et 45, avec le canal transversal le plus extérieur 39, forment un pourtour trapézoïdal.
[217] Ces bras obliques 44 et 45 et les canaux transversaux 39 définissent la forme en U de l’écoulement dans la zone de retournement.
[218] L’extension longitudinale X1 et l’extension longitudinale X2 sont égales.
[219] Le dispositif comporte des emplacements 50 pour recevoir les cellules à refroidir.
[220] Ces emplacements 50 ont sensiblement la forme de rectangles, pour y poser des cellules de batterie.
[221] Chaque emplacement 50 de cellule de batterie, dans la zone de retournement 24, est situé dans l’intervalle entre deux canaux transversaux 39 voisins.
[222] Autrement dit, chaque cellule de batterie 2 voit principalement l’intervalle DX entre deux canaux transversaux 39, et non toute la largeur d’un canal transversal 39. [223] Encore dit autrement, le canal transversal 39 est à cheval entre deux emplacements 50 de cellules de batterie voisines.
[224] Ainsi ce canal transversal 39 qui est relativement peu en vis-à-vis des cellules de batterie extrait moins de calories dégagées par ces cellules.
[225] Ceci est avantageux pour ne pas refroidir excessivement les cellules de batterie 2 dans la zone de retournement 24, ce qui permet de maintenir une homogénéité de température de cette zone de retournement 24 par rapport aux zones aller et retour.
[226] Le rapport entre le nombre de canaux dans le tronçon densifié 28 de la zone aller et le nombre de canaux quittant la zone de retournement 24 est compris entre 2 et 4, par exemple ce rapport étant égal à 2, 3 ou 4.
[227] Le rapport entre le nombre de canaux dans la zone retour 25 et le nombre de canaux quittant la zone de retournement 24 est choisi compris entre 0,5 et 2, ce rapport pouvant être égal à 1 .
[228] Le pas DX entre les canaux transversaux de la zone de retournement est plus grand, notamment au moins 1 ,5 plus grand, que le pas DY entre les canaux dans le tronçon densifié de la zone aller et dans la zone retour.
[229] Par exemple le pas entre les canaux transversaux de la zone de retournement est compris entre 10 mm et 100 mm.
[230] Dans l’exemple décrit, le dispositif de régulation thermique présente un seul chemin d’écoulement de fluide 60, ce chemin 60 ayant une forme en U entre l’entrée 7 de fluide et la sortie 8 de fluide, ce chemin U étant formé par les canaux 21 de la zone aller, de la zone de retournement et de la zone retour.
[231] La figure 5 illustre schématiquement ce chemin global 60 en U simple.
[232] En variante, le dispositif de régulation thermique présente plusieurs chemins d’écoulement de fluide, chaque chemin ayant une forme en U entre une entrée de fluide et une sortie de fluide, chaque chemin étant formé par les canaux de l’une des zones aller, de l’une des zones de retournement et de l’une des zones retour. [233] Dans l’exemple de la figure 6, le dispositif de régulation thermique présente deux chemins 61 d’écoulement en U partageant des entrée et sortie de fluide communes 7 et 8.
[234] Les chemins 61 en U présentent une symétrie miroir l’un par rapport à l’autre.
[235] L’axe de symétrie SY1 miroir est parallèle aux branches 61 des U.
[236] En variante, comme illustré sur la figure 7, l’axe de symétrie miroir SY2 est perpendiculaire aux branches des U.
[237] En variante encore, illustrée sur la figure 8, le dispositif de régulation thermique présente quatre chemins d’écoulement 61 en U, partageant deux entrées et une sortie de fluide communes.
[238] Ces quatre U sont disposés aux quatre coins d’un rectangle ou d’un carré.

Claims

Revendications
[Revendication 1 ] Dispositif (20) de régulation thermique, notamment de refroidissement, pour composant électrique (2) susceptible de dégager de la chaleur lors de son fonctionnement, notamment pour un module de stockage d’énergie électrique, ce dispositif comportant une plaque supérieure (1 1 ) et une plaque inférieure (12) assemblée avec la plaque supérieure pour former ensemble une pluralité de canaux de circulation pour un fluide caloporteur, notamment un fluide réfrigérant, dispositif dans lequel les canaux (21 ) s’étendent, successivement suivant le sens de circulation de fluide caloporteur, dans une zone aller (22) dans laquelle les canaux communiquent avec une ou plusieurs entrées de fluide (7), une zone de retournement (24) et une zone retour (25) dans la laquelle les canaux communiquent avec une ou plusieurs sorties de fluide (8), la zone de retournement reliant les zones aller et retour de manière à ce qu’au moins certains des canaux présentent une forme sensiblement en U dans cette zone de retournement (24), le dispositif étant carac$térisé en ce que la zone aller (22) présente, successivement suivant le sens de circulation de fluide caloporteur, un tronçon sous-densifié et un tronçon densifié, le nombre (Nsd) de canaux dans le tronçon sous-densifié (27) étant strictement inférieur au nombre (Nd) de canaux dans le tronçon densifié (28), et en ce que le nombre (Nr) de canaux dans la zone retour (25) est inférieur au nombre de canaux dans le tronçon sous-densifié (27).
[Revendication 2] Dispositif selon la revendication précédente, dans lequel le nombre (Nd) de canaux dans le tronçon densifié (28) est au moins 1 ,5 fois plus grand que le nombre (Nsd) de canaux dans le tronçon sous-densifié (27), le nombre (Nd) de canaux dans le tronçon densifié (28) étant notamment le double du nombre (Nsd) de canaux dans le tronçon sous-densifié (27).
[Revendication 3] Dispositif selon l’une des revendications précédentes, dans lequel l’un au moins des canaux du tronçon sous-densifié (27), notamment chaque canal du tronçon sous-densifié (27), se raccorde à deux canaux du tronçon densifié (28).
24 [Revendication 4] Dispositif selon l’une des revendications précédentes, dans lequel le tronçon sous-densifié (27) s’étend sur une longueur, mesurée suivant le sens de circulation de fluide, qui est plus grande que 10%, ou 20%, de la longueur totale des canaux dans la zone aller.
[Revendication 5] Dispositif selon l’une des revendications précédentes, dans lequel le tronçon sous-densifié (27) s’étend sur une longueur (L1 ), mesurée suivant le sens de circulation de fluide, qui est sensiblement égale à 25% de la longueur totale des canaux dans la zone aller.
[Revendication 6] Dispositif selon l’une des revendications précédentes, dans lequel la zone aller (22) comprend un tronçon de jonction (30) entre le tronçon sous-densifié (27) et le tronçon densifié (28), et chaque canal du tronçon sous-densifié (27) se raccorde à deux canaux du tronçon densifié (28) via un nœud (31 ) présent dans le tronçon de jonction.
[Revendication 7] Dispositif selon la revendication précédente, dans lequel les nœuds de ramification (31 ) sont disposés selon deux rangées (33, 34) de sorte que les nœuds d’une rangée alternent avec les nœuds de l’autre rangée.
[Revendication 8] Dispositif selon l’une des revendications précédentes, dans lequel le tronçon sous-densifié (27) est placé à côté d’un tronçon terminal de la zone retour de sorte que le tronçon sous-densifié puisse extraire des calories dégagées dans le tronçon terminal (35) de la zone retour.
[Revendication 9] Dispositif selon l’une des revendications précédentes, dans lequel le pas entre les canaux transversaux (39) de la zone de retournement est plus grand, notamment au moins 1 ,5 plus grand, que le pas entre les canaux dans le tronçon densifié (28) de la zone aller (22) et dans la zone retour (25).
PCT/EP2022/080306 2021-11-08 2022-10-28 Dispositif de régulation thermique, notamment de refroidissement WO2023078810A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074236.2A CN118302901A (zh) 2021-11-08 2022-10-28 特别是冷却装置的热控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2111801 2021-11-08
FR2111801A FR3128986B1 (fr) 2021-11-08 2021-11-08 Dispositif de regulation thermique, notamment de refroidissement

Publications (1)

Publication Number Publication Date
WO2023078810A1 true WO2023078810A1 (fr) 2023-05-11

Family

ID=79269592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/080306 WO2023078810A1 (fr) 2021-11-08 2022-10-28 Dispositif de régulation thermique, notamment de refroidissement

Country Status (3)

Country Link
CN (1) CN118302901A (fr)
FR (1) FR3128986B1 (fr)
WO (1) WO2023078810A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080563A1 (en) * 2000-06-05 2002-06-27 Pence Deborah V. Multiscale transport apparatus and methods
WO2016191881A1 (fr) * 2015-06-04 2016-12-08 Dana Canada Corporation Échangeur de chaleur avec distribution d'écoulement régionale pour le refroidissement uniforme de cellules de batterie
DE202019101687U1 (de) * 2019-03-25 2020-06-26 Reinz-Dichtungs-Gmbh Temperierplatte mit einem mikrostrukturierten Flüssigkeitskanal, insbesondere für Kraftfahrzeuge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080563A1 (en) * 2000-06-05 2002-06-27 Pence Deborah V. Multiscale transport apparatus and methods
WO2016191881A1 (fr) * 2015-06-04 2016-12-08 Dana Canada Corporation Échangeur de chaleur avec distribution d'écoulement régionale pour le refroidissement uniforme de cellules de batterie
DE202019101687U1 (de) * 2019-03-25 2020-06-26 Reinz-Dichtungs-Gmbh Temperierplatte mit einem mikrostrukturierten Flüssigkeitskanal, insbesondere für Kraftfahrzeuge

Also Published As

Publication number Publication date
FR3128986B1 (fr) 2023-10-27
FR3128986A1 (fr) 2023-05-12
CN118302901A (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
EP2737269B1 (fr) Plaque d'echangeur de chaleur
WO2008071511A1 (fr) Echangeur de chaleur comprenant au moins trois parties d'echanges de chaleur et systeme de gestion de l'energie thermique comportant un tel echangeur
EP1558886B1 (fr) Système de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile
EP0352158B1 (fr) Dispositif d'échangeur de chaleur pour plusieurs circuits de refroidissement utilisant un même fluide caloporteur
EP3769365A1 (fr) Système de refroidissement d'au moins une batterie de véhicule automobile
FR3093357A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
WO2023078810A1 (fr) Dispositif de régulation thermique, notamment de refroidissement
WO2023078811A1 (fr) Dispositif de régulation thermique, notamment de refroidissement
FR3086048A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2020178536A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3106199A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3115100A1 (fr) Echangeur de chaleur en contre-courant pour turbomachine, turbomachine et procédé de fabrication de l’échangeur
FR3115866A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3088994A1 (fr) Échangeur de chaleur et système de refroidissement d’un fluide comprenant un tel échangeur de chaleur
WO2024008649A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
FR3067797A1 (fr) Evaporateur a deux nappes, notamment pour circuit de climatisation de vehicule automobile, comprenant des tubes en "u" et circuit de climatisation correspondant
FR3114873A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
WO2024008648A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2022096278A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3132594A1 (fr) Dispositif de régulation thermique, notamment de refroidissement
FR2906019A1 (fr) Ailette pour echangeur de chaleur et echangeur de chaleur comportant une telle ailette.
WO2024008644A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2023066819A1 (fr) Echangeur thermique avec conduits de circulation
WO2023111466A1 (fr) Echangeur de chaleur a double etage et turbomachine equipee d'un tel echangeur de chaleur
FR3126763A1 (fr) Echangeur de chaleur pour boucle de fluide refrigerant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22813437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074236.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022813437

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022813437

Country of ref document: EP

Effective date: 20240610